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Abstract. Visual tracking aims to estimate the state of an arbitrary
object in a video frame only when the bounding box is given in the
first frame. However, the existing trackers still struggle to adapt to com-
plex environments due to the lack of adaptive appearance features. In
this paper, we propose a graph attention transformer network, termed
GATransT, to improve the robustness of visual tracking. Specifically,
we design an adaptive graph attention module to enrich the embedding
information extracted by the transformer backbone, which establishes
the part-to-part correspondences between the template and search nodes.
Extensive experimental results demonstrate that the proposed tracker
outperforms the state-of-the-art methods on five challenging datasets,
including OTB100, UAV123, LaSOT, GOT-10k, and TrackingNet.
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1 Introduction

Visual tracking plays a pivotal role in computer vision, aiming to estimate the
state of an arbitrary object in a video frame according to the given initial target
box. In recent years, object tracking has broad applications in intelligent traf-
fic, video monitoring, and other fields. However, the performance of the exist-
ing trackers are influenced by various challenging factors, including illumination
variation, deformation, motion blur, and background clutter.

Current mainstream trackers include Siamese-based trackers and transformer-
based trackers, which have achieved good results in terms of efficiency and accu-
racy. Siamese-based trackers [1,13] utilize the cross-correlation for embedding
information between the template and search branches. Transformer-based track-
ers [3,21,29] draw on the global and dynamic modeling capabilities to establish
a long-distance correlation between the extracted template and search features.
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For example, STARK [29] proposes an encoder-decoder transformer architecture
to model the global spatio-temporal feature dependencies between the target
object and the search region.

Despite their great success, there are still some indispensable drawbacks. The
transformer-based trackers can calculate the global and rich contextual interde-
pendence between the template and the search region. However, the extracted
features lack the part-level embedding information, resulting in the difficulty
of adaptation to complex tracking scenarios. In addition, the template features
extracted by the traditional trackers may contain too much redundant informa-
tion, which will accumulate the tracking errors.

To solve the above two points, inspired by the graph attention network and the
transformer, we propose a novel end-to-end graph attention transformer tracker
GATransT that introduces the graph attention into the transformer-based tracker
and establishes the local topological correspondences for the extracted features.
We first utilize a transformer as a feature extraction network, which can obtain
more semantic information through self-attention and cross-attention of the tem-
plate and search region features. Next, we use the graph attention mechanism
to propagate target information from the template to search region features. To
reduce the interference of redundant template information and obtain more accu-
rate tracking results, we employ an adaptive graph attention module to estab-
lish the correspondences between initial template nodes, dynamic template nodes
and search nodes. In addition, we use the FocusedDropout operation to make the
network focus on the target object, thus improving the tracking performance. As
shown in Fig. 1, compared with the state-of-the-art trackers, our method can suc-
cessfully track the target in cases of a similar object, background clutter, and
partial occlusion. Finally, we evaluate the different trackers on public tracking
benchmarks, including OTB100 [26], UAV123 [18], LaSOT [9], GOT-10k [12], and
TrackingNet [19]. The experimental results show that the proposed tracker can
outperform the competing trackers significantly.

The main contributions of this work can be summarized as follows:

– An end-to-end transformer-based graph attention tracking framework is pro-
posed. To the best of our knowledge, this is the first work to introduce the
graph attention into transformer for extracting the robust feature embedding
information of the target.

– We employ an adaptive graph attention module to establish part-to-part cor-
respondences by aggregating initial template nodes, dynamic template nodes,
and search nodes to obtain robust adaptive features.

– Comprehensive experiments demonstrate the excellent performance of our
method compared with the state-of-the-art trackers on the five challenging
benchmarks.

2 Related Work

2.1 Visual Tracking

The current popular tracking paradigm contains the three main stages, i.e.,
feature extraction, feature fusion, and prediction. Most researchers focus on the
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Fig. 1. Visualization comparison of the tracking results with TransT [3], STARK [29],
and SiamGAT [11], where GT represents the ground-truth of object tracking. From
top to bottom rows indicate the Basketball, Bird1, and Bolt sequences on the OTB100
dataset, respectively.

previous feature learning phase. Generally, almost all previous methods use CNN
as the feature extraction network and recent works [6,22,24] also use transformer
as the backbone. Regarding the critical feature fusion stage, the previous Siamese
trackers often use a cross-correlation operation to obtain the fused response
map of the template and search branches. And some online trackers learn the
target model to distinguish the target foreground and background. Recently,
several works [2,3,6,11,23] use the attention operation as a feature fusion method
and also achieve the good performance. This paper will main focus on how to
effectively introduce graph attention to transformer tracking.

2.2 Attention for Tracking

Attention mechanisms are often used in the visual tracking methods for feature
fusion. On the one hand, the self-attention and cross-attention of the trans-
former are introduced as a module to improve the learning of long-range depen-
dencies between the template and search branches. For example, TransT [3]
introduces the attention operations to the transformer which replace the pre-
vious correlation operation to obtain the valuable feature maps. Mixformer [6]
uses a transformer-based mixed attention backbone to extract more discrimi-
native features and generate extensive interactions between the templates and
search branches. On the other hand, graph attention is also applied in object
tracking. SiamGAT [11] establishes the part-to-part correspondences between
the target and the search region with a complete bipartite graph and propagates
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Fig. 2. Overview of the proposed transformer tracking framework based on the adap-
tive graph attention module.

target information from the template to the search feature. As in GraphForm-
ers [30], it can capture and integrate the textual graph representation by making
GNNs nested alongside each transformer layer of the pre-trained language model.
Inspired by [30], we take advantage of the graph attention and transformer to
obtain more robust adaptive features for visual tracking.

3 Proposed Method

3.1 Overview

In this section, we propose an effective graph attention transformer network
GATransT for visual tracking, as shown in Fig. 2. The GATransT mainly contains
the three components in the tracking framework, including a transformer-based
backbone, a graph attention-based feature integration module, and a corner-
based prediction head. In this framework, the adaptive graph attention module
we designed enriches the embedding information extracted by the transformer
backbone.

3.2 Transformer-Based Feature Extraction

Most previous trackers have adopted deep convolutional neural networks as fea-
ture extraction networks, such as AlexNet, ResNet, GoogleNet, etc. Although
the effective feature extraction performance has been achieved, the extracted fea-
ture and semantic information are still not compact and rich enough. Inspired by
Mixformer [6], we refer to the mixed attention network as the backbone, which
can establish long-distance associations between the target template and search
region to obtain richer feature representations. Since the transformer lacks the
processing of part-level feature information, we design an adaptive graph atten-
tion module (Sect. 3.3 for more details).

In the process of feature extraction, we first convert the input template and
search feature vector into tokens through patch embedding. Next, the convolu-
tion projection operation obtains the query, key, and value of the template and
search features. This process can be formulated as
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Fig. 3. Architecture of the adaptive graph attention module.

templateq/k/v = Flatten(Conv2d(Reshape2D(template), k s)), (1)

searchq/k/v = Flatten(Conv2d(Reshape2D(search), k s)), (2)

where templateq/k/v and searchq/k/v are the Q/K/V matrices obtained by the
convolution projection of the template and search input token, respectively.
Conv2d is a depth-wise separable convolution, and k s refers to the convolu-
tion kernel size.

Then we perform a mixed attention operation on the obtained queries, keys,
and values. We use qt, kt, and vt to represent the target, as well as qs, ks, and
vs to denote the search region. In this framework, the mixed attention is defined
as

vm = Concat(vt, vs), (3)

Attnt = Softmax(qtkT
t /

√
d)vt, (4)

Attns = Softmax(qskT
m/

√
d)vm, (5)

where vm is the value after concatenating the template and the search region; d
represents the dimension of the key; Attnt and Attns are the attention maps of
the target and the search region, respectively. Finally, the target token and the
search token are concatenated by a linear projection to get the output token.

3.3 Adaptive Graph Attention Module

Most existing trackers utilize cross-correlation operations or self-attention to
perform feature fusion, which might lose semantic and part-level embedding
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information. Inspired by the graph attention tracking, we establish part-to-part
correspondences between the template and search region features extracted by
the transformer backbone. These are achieved by aggregating initial template
nodes, dynamic template nodes, and search nodes to obtain more robust adaptive
features. As shown in Fig. 3, given two patches of the template and search region,
we convert the respective tokens obtained through patch embedding into h∗w∗c
nodes to generate graphs, where h, w, and c represent the height, width, and
channel of the feature, respectively.

In order to adaptively learn the feature representation between nodes, we
calculate the correlation score between nodes by inner product to express the
similarity of two nodes. Among them, to eliminate the background redundant
information of the template, initial template nodes and dynamic template nodes
are performed for graph attention to obtain more accurate template informa-
tion. If the set update threshold is reached, the obtained adaptive features whose
prediction results exceed a particular confidence score are used to update the
dynamic template nodes. In addition, we perform softmax normalization to cal-
culate the correlation scores αij so as to balance the amount of information as
follows:

αt = Softmax((Wtpt)T (W ′
tp

′
t)), (6)

αij = Softmax((Wsps)Tαj
t ), (7)

where Wt,W
′
t ,Ws are the linear transformation matrix of initial template,

dynamic template and search feature, respectively; pt, p′
t and ps refer to the node

feature vectors of the template, the dynamic template and the search region,
respectively.

In Eq. 7, the αij obtained by the above formula can be viewed as the attention
given to the search graph node i according to the information of the template
node j. Then all nodes in the template are propagated to the i-th node in the
search area to calculate the aggregate feature representation of this node, which
is written as

vi =
∑

j∈Vt

αijWvp
j
t , (8)

where Wv represents the linear transformation matrix of the original feature; Vt

represents the node set of template features; pjt refers to the template feature
vector of node j. Finally, the aggregated features and the original features are
combined to obtain a more robust feature representation as follows.

p̂is = Relu(Concat(vi,Wvp
i
s)), (9)

where pis refers to the search region feature vector of node i. In addition, we
refer to the FocusedDrop [27] operation on the aggregation node features after
graph attention to obtain adaptive features that can focus on more robust target
appearance features in the following formula:

P i
s = FocusedDrop(p̂is, rate), (10)

where the rate represents a participation rate.
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4 Experiments

This section first describes the implementation details of our tracker. Then we
analyze the influence of the main components in the proposed method. Finally,
we compare the performance of our tracker and the state-of-the-art trackers on
the OTB100 [26], UAV123 [18], LaSOT [9], GOT-10k [12], and TrackingNet [19]
datasets.

4.1 Implementation Details

The proposed method is performed based on the deep learning framework
PyTorch and implemented in an experimental environment of Intel-i7 CPU (32
GB RAM) and GeForce RTX TITAN (24 GB) with an average speed of about
11FPS. We compare our tracker with several state-of-the-art trackers on four
public datasets and use one-pass evaluation (OPE) with precision and success
plots on the challenging video sequences.

Training. We use the train splits of LaSOT [9], GOT-10K [12], COCO2017 [16],
and TrackingNet [19] for offline training. The training strategy refers to Mix-
former [6]. The entire training process is single-stage without too much parame-
ter tuning and post-processing. Based on the original model, we added the pro-
posed adaptive graph attention module to continue training. After 200 epochs
of training, each tracking dataset has a certain effect. We train our tracker by
using the ADAM optimizer and the weight decay of 0.0001. The learning rate
is initialized as 1e−4. The sizes of search images and templates are 320 × 320
pixels and 128 × 128 pixels, respectively. For data augmentation strategies, we
use horizontal flip and rotation to increase the amount of training data. We use
the GIoU loss and the L1 loss for training loss with the weights of 2.0 and 5.0,
respectively.

Inference. We take the initial template, multiple dynamic online templates,
and the search area as the input of the tracker to generate the target bounding
box and confidence scores. In this case, the dynamic template nodes of the
adaptive graph attention module are updated only when the set update interval
is reached, and the one with the highest confidence score is selected.

4.2 Ablation Study

To verify the effectiveness of each module of the proposed method, i.e., backbone,
feature fusion, head, we conduct a detailed study of the different components
on the LaSOT dataset. We use the STARK algorithm that removes temporal
information as the baseline. The details of all the competing variants and the
ablation results are listed in Table 1.

We design five different combinations for the three main components of back-
bone, feature fusion, and head. As shown in Table 1, we have several vital obser-
vations on the five different experimental settings. Firstly, the experimental set-
ting #1 uses resnet-50 as the backbone, encoder-decoder as the feature fusion
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Table 1. The ablation study of the main components of the proposed method on the
LaSOT dataset.

Setting Backbone Feature Fusion Head AUC Score (%)

#1 RestNet-50 Encoder-Decoder Corner 66.8

#2 Transformer Graph Corner 67.1

#3 Transformer Graph+DTN Corner 67.4

#4 (ours) Transformer Graph+DTN+FD Corner 67.5

#5 Transformer Graph+DTN+FD Query 67.3

method, and corner as the feature prediction head. By comparing #1 and #2 in
Table 1, we replace the backbone and feature fusion with transformer and graph
attention, respectively, and the AUC score is improved by 0.3%. We introduce
DTN (Dynamic Template Node) to the graph attention feature fusion method
in #2, and the AUC score is improved by 0.3%. Then we add the FD (Focused-
Dropout) operation based on #3, and the AUC score is increased by 0.1%.
Finally, we compare the feature prediction head and find that the corner head
is better than the query head. Overall, the main components of our proposed
tracker demonstrate the effectiveness and exhibit excellent performance on the
LaSOT dataset.

4.3 Comparisons with State-of-the-Art Trackers

In this section, we compare the GATransT with other advanced trackers on five
challenge datasets, i.e., OTB100, UAV123, LaSOT, GOT-10k, and TrackingNet
datasets.

OTB100. The OTB100 [26] dataset is composed of 100 video sequences, which
include 11 challenge attributes. Several state-of-the-art trackers are compared in
the experiments, including STARK-S [29], SiamRPN [14], GradNet [15], Deep-
SRDCF [7], SiamDW [33], and SiamFC [1]. Figure 4 reports precision plots
and success plots according to the one-pass evaluation (OPE) on the OTB100
dataset. The representative precision score is reported when the threshold is 20
in the legend of Fig. 4 (left). In Fig. 4 (right), when the overlap between the
tracking result and the ground truth is greater than 0.5, the tracking is consid-
ered successful. We can see from Fig. 4 that GATransT has achieved the highest
performance on the OTB100 dataset with the precision score of 88.8% and the
AUC score of 68.1%, respectively. It is worth mentioning that compared with
the STARK-S based transformer, the accuracy and AUC score of the proposed
tracker are higher 0.6% and 0.8% on OTB100, respectively.

UAV123. The UAV123 [18] dataset contains 123 short-term video sequences
and all sequences are fully annotated with upright bounding boxes. The UAV
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Fig. 4. Precision and success plots on the OTB100 dataset using the one-pass evalua-
tion (OPE).

Table 2. Comparions with state-of-the-art trackers on the UAV123 dataset.

CGACD [8] SiamGAT [11] SiamRCNN [20] FCOT [4] TREG [5] STARK-S [29] Ours

AUC (%) 63.3 64.6 64.9 65.6 66.9 67.2 68.2

Prec. (%) 83.3 84.3 83.4 87.3 88.4 88.5 89.2

dataset has the more challenging attributes than the OTB dataset, such as aspect
ratio change, full occlusion, partial occlusion, and similar object. Table 2 reports
the area under curve (AUC) scores and precision score values [25] compared with
SiamFC [1], SiamRPN++ [13], CGACD [8], SiamGAT [11], SiamRCNN [20],
FCOT [4], TREG [5], and STARK-S [29] on the UAV123 datasets. Among the
competing tracking algorithms, our tracker works better than STARK-S in both
AUC score and precision score due to the effective adaptive graph attention
module to be used. Specifically, the AUC and precision scores of the GATransT
are 68.2% and 89.2% on UAV123 respectively.

LaSOT/GOT-10k/TrackingNet. LaSOT [9] is a large-scale dataset for
long-term tracking, which contains 280 videos with an average length of 2448
frames in the test set. GOT-10K [12] is a large-scale benchmark with over
10000 video segments and has 180 segments for the test set. TrackingNet [19]
is a large-scale short-term dataset that contains 511 test sequences without
publicly available ground truth. We evaluate the GATransT on the above
three datasets, respectively. The compared state-of-the-art trackers include
SiamRPN++ [13], SiamFC++ [28], D3S [17], Ocean [34], SiamGAT [11],
DTT [31], STMTracker [10], SiamRCNN [20], AutoMatch [32], TrDiMP [21],
and STARK-S [29]. From Table 3, our tracker shows excellent performance on
three large-scale benchmarks, i.e., LaSOT, GOT-10k, and TrackingNet.
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Table 3. Comparisons with state-of-the-art trackers on LaSOT, GOT-10k, and Track-
ingNet.

Tracker LaSOT GOT-10k TrackingNet

AUC PNorm P AO SR0.5 SR0.75 AUC PNorm P

SiamRPN++ [13] 49.6 56.9 49.1 51.7 61.6 32.5 73.3 80.0 69.4

SiamFC++ [28] 54.4 62.3 54.7 59.5 69.5 47.9 75.4 80.0 70.5

D3S [17] – – – 59.7 67.6 46.2 72.8 76.8 66.4

Ocean [34] 56.0 65.1 56.6 61.1 72.1 47.3 – – –

SiamGAT [11] 53.9 63.3 53.0 62.7 74.3 48.8 – – –

DTT [31] 60.1 – – 63.4 74.9 51.4 79.6 85.0 78.9

STMTracker [10] 60.6 69.3 63.3 64.2 73.7 57.5 80.3 85.1 76.7

SiamRCNN [20] 64.8 72.2 – 64.9 72.8 59.7 81.2 85.4 80.0

AutoMatch [32] 58.2 – 59.9 65.2 76.6 54.3 76.0 – 72.6

TrDiMP [21] 63.9 – 61.4 67.1 77.7 58.3 78.4 83.3 73.1

STARK-S [29] 66.8 76.3 71.3 67.2 76.1 61.2 80.2 85.0 77.6

Ours 67.5 76.9 72.5 67.2 76.7 62.9 80.6 85.1 77.8

5 Conclusion

In this paper, we propose a novel graph attention transformer network for visual
object tracking. This network leverages an adaptive graph attention to enrich
long-distance correlation features extracted by the transformer backbone. The
employed adaptive graph attention module can acquire robust target appearance
features by establishing part-to-part correspondences between the initial tem-
plate, dynamic template, and search nodes, thus adapting to complex tracking
scenarios. The experimental results show that the proposed tracker can outper-
form the competing trackers significantly on five public tracking benchmarks,
including OTB100, UAV123, LaSOT, GOT-10k, and TrackingNet.
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