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Abstract. Recently, multi-agent reinforcement learning (MARL) has
achieved amazing performance on complex tasks. However, it still suffers
from challenges of sparse rewards and contradiction between consistent
cognition and policy diversity. In this paper, we propose novel meth-
ods for transferring knowledge from situation evaluation task to MARL
task. Specifically, we utilize offline data from a single-agent scenario to
train two situation evaluation models for: (1) constructing guiding dense
rewards (GDR) in multi-agent scenarios to help agents explore real sparse
rewards faster and jump out of locally optimal policies without chang-
ing the global optimal policy; (2) transferring a situation comprehension
network (SCN) to multi-agent scenarios that balances the contradiction
between consistent cognition and policy diversity among agents. Our
methods can be easily combined with existing MARL methods. Empir-
ical results show that our methods achieve state-of-the-art performance
on Google Research Football which brings together above challenges.

Keywords: Multi-agent reinforcement learning · Transfer learning ·
Football

1 Introduction

Deep reinforcement learning (DRL) has achieved super-human performance on
complex games [2,16,28]. However, in the multi-agent setting, task complexity
grows exponentially with the number of agents. In addition, some tasks have
only sparse rewards and require agents to emerge diversity while cooperating.
The above challenges make it difficult for agents to learn a robust and satisfactory
policy.

For the challenge of sparse rewards, dense rewards are designed with three
major ways to guide learning process of agents. Human knowledge rewards [13,25]
give agents a numerical reward when they complete sub-goals that are helpful
for the original task in terms of designers’ experience. Intrinsic rewards [3,30,35]
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encourage agents to perform certain characteristics, such as curiosity and diver-
sity. However, these two ways of reward shaping will change the optimal policy
of agents. [17] proposes potential-based reward shaping (PBRS) that guarantees
the optimal policy unchanging in single-agent setting. [31] additionally considers
the effect of agent actions on PBRS and [7] considers dynamic potential situa-
tion. [9] gives a method to translate an arbitrary reward function into PBRS. [6]
extends PBRS to multi-agent setting and proves the Nash Equilibria of underlying
stochastic game is not modified. However, the above three reward shaping meth-
ods require fine-tuning hyper-parameters, otherwise they possibly bring worse
results. A commonly adopted solution is to consider the hyper-parameter adjust-
ment of reward shaping as the second optimization objective in addition to the
reinforcement learning task. [11] uses population optimization to learn the opti-
mal human knowledge reward size by assigning different parameters to agents and
improving the optimal reward iteratively. [34] proposes a scalable meta-gradient
framework for learning useful intrinsic reward functions. [10] formulates the uti-
lization of PBRS as a bi-level optimization problem to adjust the weight of various
rewards. However, the above methods are difficult to deploy on complex multi-
agent tasks due to the exponentially growing complexity.

As for the contradiction between consistent cognition and policy diversity,
policy decentralization with shared parameters (PDSP) has been widely used
[15,26] to speed up training process and endow agents with consistent cognition
of their task. However, it also brings the difficulty of emerging personalities of
agents. Some approaches stimulate player roles [30], and diversity [4] by introduc-
ing intrinsic rewards. As mentioned above, these approaches changes the original
optimization objective, which results in agents less being eager to complete their
original tasks.

Transfer learning is to study how to utilize the knowledge learned from source
domain to improve the performance on target domain. Since deep learning has
strong representation learning capability and transferability, many achievements
are obtained in supervised learning [5,20,23,27]. As for RL tasks, they are also
expected to benefit from related source tasks to improve the performance of
agents.

Based on the above discussion, for the challenges of sparse rewards and con-
tradiction between consistent cognition and policy diversity in MARL, we trans-
fer the knowledge learned from offline dataset of a single-agent scenario to multi-
agent scenarios. Specifically, we (1) construct guiding dense rewards (GDR) in
multi-agent scenarios to help agents explore real sparse rewards faster and jump
out of locally optimal policies without changing the global optimal policy; (2)
transfer a situation comprehension network (SCN) to balances the contradic-
tion between consistent cognition and policy diversity among agents. Empirical
results show that our methods achieve state-of-the-art performance on Google
Research Football (GRF) [12] which brings together the above challenges.

2 Related Works

The advanced deep MARL approaches include value-based [21,24,29] algorithms
and policy-gradient-based [14,33] algorithms. Theoretically, our methods can be
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combined with any of above approaches, we choose to validate our methods on
MAPPO because of its better performance in solving sparse reward task than
others.

Though the constructing of GDR is close to the idea of inverse reinforce-
ment learning (IRL) [1,8,19] for both constructing dense rewards from offline
data, GDR has fundamental difference with IRL. The goal of IRL is to imitate
the offline policy. It always assumes that the offline policy is already optimal.
We still maintain the original task goal and do not have hard requirements on
the performance of offline policies. The transfer of the SCN is similar to the
pre-training and fine-tuning paradigm [32]. They both reuse the network from
upstream tasks in downstream tasks.

3 Background

Multi-agent reinforcement learning can be formulated as a Dec-POMDP [18],
which is defined as a tuple 〈N,S,A, P,R,O,Ω, n, γ〉. At each step, environment
is characterized as sεS. The set of n agents N receives the local observation oεΩ
according to the observation function O, then agents choose the joint action aεA
according to their joint policy π. The environment transfers to a new state s

′

according to the state transition function P and gives agents a reward rεR. The
task of agents is to learn the optimal joint policy to maximum the accumulated
reward E (

∑
t=0 γtrt) with discount factor γ.

4 Methods

In this section, we will introduce the details of GDR and SCN. We illustrate and
verify our methods with a football game. It needs to be emphasized that, our
methods are also applicable for other tasks with sparse reward character and
requiring cooperation and diversity among agents.

4.1 Situation Evaluation Task

The situation evaluation task is defined as:
Given: A vector representing the game state st.
Do: Estimate value φ(st): the value of st

Once the form of st, φ(st) and learning algorithm are determined, a corre-
sponding model will be obtained. To collect data for this task, we train an agent
with RL algorithm PPO [22] for single-agent 11 vs.11 scenario and test it with
easy baseline, hard baseline and self to collect 3000 episodes respectively for
each team combination. For each episode, we record all raw observation, which
is composed of:

– player information: the two-dimensional position, two-dimensional speed,
fatigue value, and role of all players in the game.

– ball information: the position, speed, rotation speed, and ball possession
which indicates the team and player controlling the ball.
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– game information: the score, remaining time, and game mode which includes
normal, kickoff, goal-kick, free-kick, corner, throw-in, and penalty.

where the score information is used to label samples and other information can
be combined as st.

4.2 Construction of Guiding Dense Reward

The first situation evaluation model is used to construct guiding dense reward.
Firstly, we label samples as:

φ (st) = γt−tgSign (tg) (1)

where tg represent the most recent score time after t, Sign (tg) is the signature
function. If it is a home team score at tg, Sign (tg) will be 1, otherwise it will
be -1. That means, the absolute value of a game state is positively related the
number of steps required to scoring. Then we choose two-dimensional position
of ball to represent game state st and divide the pitch into grids to calculate the
mean value of each grid as its expected state value:

φ (G) =
1
n

∑

stεG

φ (st) (2)

where G is the grid, and n is the number of samples in G. In addition, it can be
seen in Fig. 1 that we make the situation evaluation symmetrical in horizontal
direction, because the agent of offline data excels at scoring in the bottom half
of the pitch, which is agent’s biased knowledge that needs to be removed.

(a) Unsymmetrical state value. (b) Symmetrical state value.

Fig. 1. State value visualization (the boundary of GRF is equal to the limitation of
axis). The color of each point represents the state value of dribbling the ball there.

At each step, agents will obtain a PBRS reward F (st, st+1) for transferring
game state from st to st+1:

F (st, st+1) = γφ
(
G

′) − φ (G) (3)

where st represent the game state at time t, φ (st) the potential of st, γ the
discount factor, G and G

′
the grids that st and st+1 in.
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4.3 Transfer of Situation Comprehension Network

The second situation evaluation model is used to transfer situation comprehen-
sion network. The input of model st concludes the position, velocity and tired
factor of 22 players; the position, velocity and rotation of ball; ball possession,
scores of two teams and game mode. The model contains five fully connected
layers and the output is the probability of scoring before the changing of ball
possession.

We divided the observations of agents into two parts. One part is the infor-
mation related to game situation, which is the same as the input of the situation
evaluation network above mentioned, and the other part is private information.
The transfer method of deep network structure among similar tasks has been
widely used, which benefits from the strong representation learning ability of
deep network. Much researches claim that the output of low layers of deep net-
work is general semantics, which of medium layers is hidden variable, and the
output of high layers is specific semantics. That means if the situation eval-
uation network is properly extracted, a situation comprehension network that
processes the raw situation observation into situation comprehension informa-
tion can be transferred to RL task. Hence, we make agents share the situation
comprehension network (the first several layers of situation evaluation network).
Once agents obtain their raw observation, the situation comprehension informa-
tion given by SCN and private information will be spliced as the new observation.
Then agents train their actor separately to balance the contradiction between
consistent cognition and policy diversity among them.

5 Experiments

In this section, we will validate our methods on multi-agent scenarios of GRF
to illustrate the effectiveness of GDR and SCN.

5.1 Performance on Google Research Football

We validate our methods on following seven multi-agent scenarios: (a) academy 3
vs 1 with keeper, (b) academy pass and shoot with keeper, (c) academy run pass
and shoot with keeper, (d) academy counterattack hard, (e) academy corner, (f)
5 vs 5, (g) 11 vs 11 easy stochastic (we control four agents and the other seven
agents are controlled by built-in rules of GRF). In (a)–(e), agents need to learn
offensive skills that score a goal quickly in a short time span. In (f) and (g),
agents need to learn offensive and defensive skills that score more goals than
opponents in a whole match. To verify the effectiveness of our methods, we
experiment and compare the following four methods, in which SCN is only used
in the scenarios with 22 players on the pitch (d, e, g):
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Fig. 2. Comparison of our approach against baseline algorithms on Google Research
Football.

Score: Agents obtain a sparse reward +1 when scoring a goal and −1 when
opponents scoring.
Checkpoint: Checkpoint is built-in human knowledge reward of GRF, it divides
pitch into 10 zones based on the Euclidean distance from the goal. Agents will
obtain a 0.1 reward when they possess the ball for the first time in each zone to
encourage them to run towards opponents’ goal with the ball.
GDR: Agents obtain a dense reward that constructed according to Sect. 4.2 at
each step.
GDR+SCN: Agents share SCN to process situation information and obtain
GDR at each step.

As can be seen in Fig. 2, the winning rate of our methods significantly higher
than which of baselines (Score and Checkpoint) in all scenarios.

For Score, agents tend to fall into the first local optimal policy on account of
sparse reward in simple tasks (a, b, c, e), because agents find that sparse rewards
can only be obtained by adopting the local optimal policy. Without the guidance
of dense reward, agents will gradually strengthen the local optimal policy and
eventually converge. In complex tasks (d, f), agents hardly continuously sam-
ple good actions to explore sparse rewards. In these cases, most of samples are
invalid. As for Checkpoint, it plays a guiding role in some scenarios (d, f, g). How-
ever, it changes the optimization objective, which leads to ordinary convergent
policies. Moreover, due to the bias and incompleteness of human knowledge, in
some scenarios (a, b, e), Checkpoint even hinders the learning process of agents.

The role of GDR can be summarized as: (1) helping agents jump out of
random local optimal policies in simple tasks (a, b, c, e); (2) gradually guid-
ing agents to explore real sparse rewards, then continuously stimulate agents
to explore better policies in difficult tasks (d, f, g). As showed in Fig. 3, in
the academy pass and shoot with keeper, which is a simple scenario, the learn-
ing process of Score-agents and GDR-agents is divided into two stage. In the
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Fig. 3. The test results of the same seed trained with Score and GDR in academy pass
and shot with keeper. (a) the curve of winning rate over time. (b), (c) the curve of
average shot position over time.

first stage, the Score-agents obtain sparse rewards through randomly sampling
actions. At the end of the first stage, the Score-agents find a local optimal policy
of 30% test winning rate by strengthening the state-action pairs that obtain real
sparse rewards. The effect of GDR on agents is approximately equivalent to spec-
ifying different paths for agents to obtain sparse rewards. Therefore, unlike the
Score-agents, GDR-agents learn to approximate GDR with their critics, instead
of entirely relying on randomly sampling actions when exploring sparse rewards.
Hence, it appears that both agents learn the same policy at the end of the first
stage. In reality, GDR-agents collect much more valid samples than Score-agents.
In the second stage, GDR-agents quickly jump out of the local optimal policy,
while Score-agents fall into the local optimal policy. Academy counterattack hard
is a typical difficult scenario, which requires more steps and cooperation among
players than easy tasks. For Score-agents, it is difficult to explore real sparse
rewards by randomly sampling actions. Therefore, it can be seen in Fig. 4, the
winning rate of Score-agents is less than 10% during the entire learning process.
As for GDR-agents, their learning process is naturally divided into two stages
under the guidance of GDR. In the first stage, GDR-agents mainly focus on
dribbling skills to pursue higher dense rewards. They consciously learn to app-
roach opponents’ goal. Although shot is the key action of this task, GDR-agents
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Fig. 4. The test results of the same seed trained with Score and GDR in academy
counterattack hard. (a) the curve of winning rate over time. (b), (d) the curve of
average dribbling position over time. (c) the curve of the frequency of performing shot
action over time. The shot action is blocked when agents are much far from the goal.
Score-agents do not perform shot at the beginning of training, because they are always
far from the goal.

gradually weaken the frequency of performing shot action. They find that the
positions where they dribble the ball are not good enough to obtain real sparse
rewards, but make the ball out of control and lead to lower dense rewards. At
the end of the first stage, GDR-agents have found good shot positions, where
they possibly obtain real sparse rewards when performing shot action. Hence,
the frequency of performing shot action increases sharply. In the second stage,
GDR-agents mainly focus on shot skills to pursue higher sparse rewards. The
winning rate increases rapidly.

5.2 Parametric Sensitivity of GDR

We study the parameter sensitivity of GDR in two scenarios to illustrate that
GDR does not require precisely adjusting its parameter. It can be seen in Fig. 5
that regardless of the size of GDR, the winning rate will not be significantly
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affected. The relative size of potentials in different states is more important
than absolute size. The role of GDR is to guide agents from lower potential
states to higher ones. The parameter only affects the absolute value, while the
relative relationship is learned from offline data.

Fig. 5. We train agents respectively with 1, 0.5 and 0.25 times GDR in (a) academy
3 vs 1 with keeper and (b) academy pass and shoot with keeper, and contrast with
Score-agents.

5.3 Transfer Layers Study

As can be seen in Fig. 6, when one or two layers are transferred, the performance
in both academy counterattack hard and academy corner scenarios is better
than no transferring, because the low layers of deep networks is to learn general
features. On the one hand, these features have deeper semantic information
than raw observation. On the other hand, they are not limited to specific task.
Therefore, the transfer of low layers is effective and universal. However, for deep
layers, the third and fourth layers in our task, learn abstract features related to
specific task. When transferring three or four layers, agents perform exceptionally
well in academy corner scenario, but poorly in academy counterattack scenario.
The former is a fast-paced task. Hence the state space is smaller than the last.
The deep-layer features of the situation evaluation network happen to suitable
for solving this specific MARL task. As for counterattack, it is difficult for these
features to remain unbiased in such a large state space.
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Fig. 6. We respectively transfer 1, 2, 3, 4 layers from situation evaluation network as
situation comprehension network of GDR-agents in (a) academy counterattack hard
and (b) academy corner, and contrast with GDR-agents.

6 Conclusion

In this paper, we study viable solutions to the challenges of (1) sparse rewards
and (2) contradiction between consistent cognition and policy diversity in
MARL. On the one hand, the output of situation evaluation models can be
utilized to construct guiding dense reward. On the other hand, situation evalu-
ation network can be transferred as situation comprehension network to MARL
task. Our method can be easily combined with existing MARL methods.
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