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Abstract The combination of nanotechnology and biotechnology has emerged as 
an integrated technology for medical applications. Over the world, day by day, 
numerous researchers are developing novel materials using the suitable platform 
to detect pathogenic, mutagenic, or toxic compounds or any biological effect. This 
chapter addresses the classification of biosensors, especially for medical applica-
tions based on the two most important parameters: bio-recognition element and 
signal transduction. Furthermore, several grooming biosensing technologies are also 
addressed. Subsequently, more emphasis has been added to nanomaterial classifi-
cation employed in the biosensors based on their chemical contents and structural 
dimensions. Additionally, more insight into the current challenges in the applica-
tion of nanomaterials in biosensors, especially for medical applications, has been 
demonstrated. 

Keywords Biosensors · Biomedical detection · Nanomaterials · 2D materials ·
Carbon materials 

1 Introduction 

The alarming rise in several pandemic and epidemic diseases like severe acute respi-
ratory syndrome-coronavirus-2 (SARS-CoV-2), black fungus, cancer, etc., has forced 
the researcher to think up more advanced biological detection and monitoring systems
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to detect carcinogenic, mutagenic, and toxic elements [1–4]. Although modern tech-
nologies and industrialization have simplified our lives to a new level, others left 
behind several environmental issues leading to serious health issues [5]. Thus, it is 
highly desirable to design and explore the challenges in developing advanced detec-
tion and monitoring systems, especially bio-detection and bio-monitoring systems, 
to better human health. The potential of biosensors in various functional fields is 
schematically presented (Fig. 1). The technology that highly depends on genetically 
modified organisms can be treated as biosensor technology which is emerging in 
advancement. The research in biosensor had drawn attention when Gary Sayler’s 
group reported the report of the genetically modified microbial biosensor in the early 
1990s [6]. According to van der Meer and Belkin biosensor [7], a device detects the 
chemical and biological changes in the system and transforms them into a measur-
able signal when the biological materials interact with this engineered device. Based 
on the type of biological materials interacting with the bio-reporter, the sensor is 
nomenclatured by different names. When the biological material is an antibody or 
whole-cell or nucleic acid, it is termed as an immunosensor or microbial biosensor, 
or DNA aptamer [8], respectively. Basically, there are four major components in the 
biosensor namely; (i) bio-receptor, (ii) transducer, (iii) a signal processing unit, and 
(iv) a display or interface unit that showcases the output signal (schematically shown 
in Fig. 2). 

Fig. 1 Potential of biosensor in various fields of application in schematic form
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Fig. 2 Schematic of the biosensor 

More research in experimental and theoretical aspects is timely required to use 
the biosensors as the first filter for pre-screening the samples. The potential of syner-
getic research in engineering with biology has an enormous potential in designing 
biosensors for advanced applications. Thus, it is highly desirable to understand the 
fundamental changes in the biological sensing behavior of living beings. Some of 
the natural examples are (i) vibration, tactile, and airflow sensors in spiders, (ii) 
fast response of the plants toward the change in luminous intensity, osmotic pres-
sure, temperature, water availability, etc., (iii) the snapping system in venus flytrap, 
(iv) dogs possess a sense of smell far beyond the sensing behavior of the artificial 
sensor. More significantly, dogs can detection system is so sensitive that it can detect 
the concentration of parts per billion, and (v) the system for controlled bending of 
trees, etc. In the above, all cases functional outputs are highly correlated to materials 
behavior with biological needs. 

The biosensing platform is expected to be mechanically robust, versatile, and 
high throughput that will simplify the life in developing individual medicine, in vivo-
drug development, genomic-proteomic research, and point-of-care medical diagnosis 
[9]. Integrated technologies where nanotechnologies coupled with micro-fabrication 
technologies are able to develop new biosensors for medical applications [10]. 
However, the above type of advanced biosensor fabrication is in the embryonic stage 
and needs more research and development to enhance sensitivity, specificity, and 
high throughput. In this contest, designing the building blocks of the biosensor, i.e., 
the sensing materials in different scales and dimensions, has received considerable 
attention. Especially, nanomaterials in various dimensions and squeezing the atomic 
scale dimension have demonstrated fascinating bio-molecule detection behaviors. 
The work of Nam et al. [11] using nanoparticles and Liber et al. [12] using nanowires 
to design ultrasensitive biosensor is the pioneer in this area of research. 

Several up-to-date sensor platforms are tested and proposed [13–16], especially 
for bio-molecule detection; additionally, few integrated technologies are in the next 
research phase before the medical diagnosis [10, 17–20]. In this chapter, the classifi-
cation of biosensors based on bio-recognition elements and signal transduction has 
been described. The electrochemical, optical, thermal, and piezoelectrical sensors
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based on the signal transduction perspective are proposed. Additionally, the enzy-
matic, protein receptor, immunosensors, DNA aptamer, and whole-cell biosensors 
based on bio-recognition elements are expressed. In the next section of the chapter, 
the nanomaterials of different dimensions and compositions applied in biosensor 
design have thoroughly been elucidated. Very concisely, nanomaterials, especially 
the two-dimensional materials used in designing flexible energy harvest and sensing 
for biomedical applications, are presented. Further, the current challenge and future 
prospective design of nanomaterials for biosensing, particularly for biomedical 
applications, are outlined. 

2 Biosensors for Medical Applications 

Technically, the entire class of biosensors has been classified based on two critical 
perspectives out of several, i.e., signal transduction and biorecognition element. In 
the subsequent section, the above two prospectives are briefly elaborated as follows. 

2.1 Signal Transduction Perspective 

Based on the signal transduction perspective, biosensors are categorized as electro-
chemical, thermal, optical, and piezoelectric sensors [3]. The electrochemical sensors 
are the most advanced and vastly investigated sensors for vivo monitoring or on-site 
monitoring. Low detection limit, high sensitivity, and generalizability are the advan-
tages of this sensor compared to other category sensors. This category of the sensor 
is miniaturized to a lab-on-chip. Based on the signal from the sensor measured, it is 
subcategorized as amperometric (measuring the current produced during oxidation 
and reduction of the electroactive species), voltammetry (measuring the change in 
voltage of the working electrode concerning the reference electrode), and conductom-
etry (measuring the alteration in conductance due to biochemical reaction). During 
the ongoing COVID-19 pandemic, electrochemical biosensors have been considered 
a crucial tool for rapid, accurate, and large-scale diagnosis of severing acute respira-
tory syndrome-coronavirus-2 (SARS-CoV-2) [2, 4, 21–23]. During the biochemical 
reaction, the absorbed or emitted photons are measured through an optical transducer. 
The optical phenomena studied to observe the alteration in biological responses 
include fluorescence, surface plasma resonance, and absorption. In parallel, the 
advancement of fiber optics technology has boosted optical sensor research to an 
extent level. 

A thermal sensor, the most basic version, is a thermometer that is used to measure 
body temperature. However, the temperature range and toxicity of mercury limit its 
uses. Modern thermal sensors or enzyme thermistors are designed with a principal 
component called a sensitive thermistor based on similar working mechanisms. The 
function of the thermistor is to accurately estimate the change in enthalpy of the



Nanomaterials for Biosensing Applications in the Medical Field 317

system during the biochemical reactions [24]. The piezoelectric sensor reciprocates 
the relationship between the resonant frequency change with respect to the mass 
of the molecule absorbed or desorbed on the crystal surface. The direct, label-free 
interaction with analyte mode is an efficient way of piezoelectric sensing platform. 
It is observed that the antibody or antigen is the best bio-molecule to be compatible 
with the piezoelectric sensor surface [25, 26]. 

2.2 Bio-recognition Perspective 

Based on the bio-recognition perspective, the biosensors are categorized as enzy-
matic, protein receptor, immunosensor, DNA aptamers, and whole-cell biosensors. 
Each of the categories is elaborated as below. 

a. Enzymatic biosensors 

This type of sensor enzyme is the primary component that recognizes and reacts 
with the analyte to produce the electrochemical outcome. The brief sketch consists 
of analytes, receptors, an electrochemical transducer, and a signal amplifier. Here, 
the enzyme acts as a catalyst. And the function of the electrochemical transducer 
is to convert the chemical signal from the bio-reaction into a measurable physical 
signal which is further amplified by an amplifier. Most enzyme-catalyzed reactions 
release oxygen, carbon dioxide, and residual ionic species, measured by a transducer 
[27]. Two types of analytical enzymes such as hydrolases and oxidoreductases are 
used in the enzyme biosensor. 

b. Protein receptor-based biosensors 

The role of protein is opposite to enzyme as discussed previously in enzyme 
sensor. In this case, the protein present in the cell membrane acts as a receptor 
and reacts in a non-catalytic way with the signal from the transducer and produces 
the detectable signal by the process of metabotropic receptors through enzyme secre-
tion or ionotropic receptors. Optical transduction has a significant role in this type 
of sensing platform [28, 29]. 

c. Immuno-sensors 

This is a solid-state device wherein the immunochemical reaction is coupled to a 
transducer which is a basic design to detect the direct binding between antibodies 
to an analyte. Due to direct detection, faster and more cost-effective detection is 
possible using this type of sensor. A most exciting feature of immune-sensor is their 
selective and sensitivity in detecting multiple analytes by designing new recombinant 
antibodies [30]. 

d. DNA aptamers biosensor 

Aptamers are short, single-standard DNA or RNA, and less than a hundred 
nucleotides are arranged/assembled in a specific sequence. This aptamer can interact



318 R. K. Sahoo et al.

selectively with superior specificity and affinity forms bonding with a particular 
type of analyte, virus, bacteria, proteins, small molecules, toxins, hormones, etc., 
by hydrogen or Van der Waal binding force for biosensing. The beauty of these 
aptamers is that they can rearrange to form a variety of shapes and dimensions [31, 
32]. Compared to immune sensor, DNA aptamer sensor is more specific, stable, and 
has a simple detection ability and also the cost is relatively lower. Due to its high 
stability, low cost, and superior specificity the DNA aptamer sensor is considered an 
alternative to antibodies. 

e. Whole-cell biosensor 

This type of sensor consists of two working components, i.e., the sensing element 
and reporter. The reporter element is a gene or gene cassette that has catalytic as well 
as non-catalytic functions. Catalytically, it accelerates the biochemical reaction to a 
detectable signal, and in a non-catalytic way as coding for the genes for metabotropic 
or ionotropic signal generation. The sensing element observes the gene or sets of 
gene’s transcription initiation point similar to a promoter. The microbial sensor is 
the widely used whole-cell biosensor [33, 34]. Functional information rather than 
analytical information can be obtained using the whole-cell biosensor. The functional 
information can be obtained from the living cells by understanding the stimulus on 
a living system which can be applied in pharmacology, toxicology, cell biology, and 
many more. For example, the bacteria whole-cell biosensors can be genetically modi-
fied to sense mercury, nitrogen oxide, and hydroxylated polychlorinated biphenyls 
in urine and serum. 

2.3 Limitations of Bio-based Biosensor 

The major limitations that lag behind the bio-based biosensor are 

1. First, low sensing performance with the low sensitivity and high limit of detection 
value of the designed sensor. 

2. Due to limited active catalytic sites and surface area, bio-based biosensors have 
less chemical and catalytic activity. 

3. The mechanical and cyclic performance stability and work life span of this type 
of sensor are very low. 

4. Relatively low diffusivity of the bio-based biosensors. Especially in the electro-
chemical sensing case where the rate change of Faradic current is proportional 
to the diffusivity of the analyte on the electrode probe surface. 

The above short-coming of the bio-based biosensors are tactically overcome by the 
use of engineered nanomaterials in the biosensor. Nanomaterials based biosensors are 
the rapidly growing research, especially for biosensor applications. Nanomaterials 
are basically used as transducer materials in biosensor development.
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3 Nanomaterials in Biosensors 

3.1 Metal Oxide Nanostructures 

The beauty of the metal oxide nanostructures lies in their inherent functional biocom-
patibility, abundant active surface area in absorbing the bio-molecules, and high 
catalytic property in immobilizing the biomolecules in a non-toxic way to enhance 
electron-transfer kinetics for effective sensing characteristics. Various metal oxides 
from metals like Fe, Zn, Ce, Mg, Zn, Cu, Ti, and Zr are extensively explored in 
the literature for biosensor applications (shown in Fig. 3) [35–37]. These oxides 
of different morphologies and dimensions are synthesized using various synthesis 
methods like hydrothermal, sol–gel, radio frequency sputtering, soft chemistry, etc. 
[3]. 

Fig. 3 Typical metal oxide nanostructures and their biosensing characteristics. The abbreviations 
in this picture can be read like this IEP as iso-electric point; ChOx as cholesterol oxidase; GOx as 
glucose oxidase; HRP as horseradish peroxidase; IgG as immunoglobulin G; Urs, as urease (adopted 
from Solanki et al. [35])
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3.2 Chalcogenide Nanostructures 

In biosensors, to enhance the optical, opto-electrical, electrical, and magnetic prop-
erties of the semiconducting oxides are deliberately used with metal oxide as a 
hybrid structure. Additionally, several semiconducting sub-atomic scale particles 
demonstrate fascinating biosensing characteristics. The use of semiconductor and 
semiconductor chalcogenide nanostructures is reported in optical transduction. As 
reported in the literature, semiconducting quantum materials are deliberately used in 
biosensing applications due to their superior photo-stability, size-dependent photoe-
mission, and broad absorption. However, the structural defects in fine quantum dots 
enhance the radiative recombination leading to inaccurate emission estimation. 

Several soft techniques are adopted to overcome such defects and make the trans-
ducer more sensitive toward analyte detection and bio-immobilization. Those are as 
follows. 

(i) In the case of CdS, a layer of ZnS is coated on the surface to form a core–shell 
structure which acts as a photo-quencher: Encapsulation 

(ii) Functionalization of the quantum dots to enhance biomolecule immobilization 
and minimize the chance of toxicity with a broad idea not to hamper the photo-
physical recombination: Ligand exchange 

(iii) An extension of the previous step where the quantum dots are coated with silica 
to enhance the stability: Silanization. 

This type of non-radiative or Fluro-quenched nanostructures is used as 
Förster/fluorescence Resonance Energy Transfer (FRET), especially for detecting 
optical DNA and oligonucleotides. Recently, two-dimensional nanomaterials and 
their derived quantum structures have demonstrated high potential donors in FRET-
based sensing applications. These materials are graphitic carbon nitride (g-C3N4) 
[38], perovskite materials [39], selenium [40], 2D metal–organic/covalent organic 
frameworks [41], and their derived 2D quantum structures [42, 43]. The details of 
the above materials are tabulated in Table 1.

Bioluminescence resonance energy transfer (BRET) is another type of biosensing 
technique where semiconducting quantum nanostructures are used as the acceptor. It 
is a distance-dependent non-radiative energy transfer from a bioluminescent donor 
to a fluorescent acceptor through resonance energy transfer. Using this technique, the 
blood glucose level can be estimated from teardrops. Bioluminescence donors are 
natural enzymes collected from marine animals. Certain donors have specific func-
tions based on their structural arrangement. Some of the BRET donor–acceptor pairs 
reported in the literature are listed below in Table 2. Recently, several quantum dots 
are used as the acceptor in BRET sensors due to their distinct advantages. Mattoussi 
et al. [60] tunable emission from Ag: ZnInSe QDs can be obtained by varying the 
In/Zn feeding ratio. This Ag: ZnInSe QDs demonstrates robust behavior in terms of 
tuning the emission to align the protein emission in the BRET sensor for several 
cycles. Some of the reported functionalized semiconducting quantum dots used 
in BRET sensors include polymer-coated CdSe/ZnS core–shell nanostructure [61],
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Table 1 Summary of the FRET sensing applications of 2D nanomaterials as donors 

Target analyst Donor: acceptor pairs Dynamic range Detection limit References 

Bilirubin MoS2 QDs: bilirubin 0.5–10.0 μm 2.1 nm [44] 

MicroRNA MoS2 QDs: 
FAM-MBs 

5–150 nm 0.38 nm [45] 

EP MoS2 QDs: PEP-PEI 
copolymers 

0.2–40 μm 0.05 μm [46] 

AA MoS2 QDs: PEP-PEI 
copolymers 

0.5–40 μm 0.2 μm [46] 

6-MP MoS2 QDs: DAP 0.5–70 μm 0.29 μm [47] 

BSA MoS2 QDs: RGO 5–50 nm Not mentioned [48] 

Dopamine MoS2 QDs-aptamer: 
MoS2 nanosheets 

0.1–1000 nm 45 pm [49] 

BSA MoS2 QDs: 
polyaniline 

10–70 nm 9.86 nm [50] 

GSH MoS2 QDs: R6G 5–50 nm 2.7 nm [51] 

Nitrite MoS2 QDs: BSA-Au 
NCs 

0.5–20 mg/l 0.67 nm [52] 

NFZ WS2 QDs: NFZ 0.17–166 μm 0.055 μm [53] 

DNA BP QDs: Dabcyl-L 
probe 

4–4000 pm 5.9 pm [54] 

GSH g-C3N4: MnO2 NM 0.2 μm [38] 

H2O2 g-C3N4: MnO2 0–130 μm 1.5 μm [55] 

Glucose g-C3N4: MnO2 0–150 μm 1.5 μm [55] 

Ricin g-C3N4: MnO2 0.25–50 μg/ml 190 ng/ml [56] 

Riboflavi g-C3N4: riboflavi 0.4–10 μm 170 nm [57] 

Metronidazole g-C3N4: 
metronidazole 

0.01–0.10 μg/ml 0.008 μg/ml [58] 

Dopamine BSA-Au 
NCs/g-C3N4: 
dopamine 

0.05–8.0 μm 0.018 μm [59] 

Hg(II) Perovskite: RBED 20–90 μm 2.36 μm [39]

semiconductor polymer nanoparticles with poly[2-methoxy-5-((2-ethylhexyl)oxy)-
p-phenylenevinylene] (MEH-PPV) [62], carboxylated quantum dots (Qd-625) [63], 
annexin V·RLuc-QDs [64], and glutathione-coated CdSeTe/CdS QDs [65].
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Table 2 Summary of bioluminescent proteins used in BRET sensing application 

Bioluminescent proteins Emission (nm) Substrate References 

Vargula luciferase (Vluc) or 
Cypridina luciferase 

460 Vagulin (Cypridina luciferin) [66] 

Bacterial luciferase (Lux) 490 FMNH2 long-chain aliphatic 
aldehydehdacf 

[67] 

Gaussia luciferase (Gluc) 480 Coelenterazine [68] 

Metridia luciferase 480 Coelenterazine [69] 

Renillaluciferase (Rluc) 480 Coelenterazine [70] 

Aequorin 469 Coelenterazine [71] 

Firefly luciferase (Fluc) 562 d-luciferin [72] 

Nanoluciferase (Nluc) 460 Furimazine [73] 

3.3 Magnetic Nanoparticles 

Intrinsic magnetic nanoparticles [74] and functionalized or coated nanoparticles 
have been applied in various biological applications like DNA [75] or cell sepa-
ration [76], biological missiles [77], radio-immunoassay [78, 79], and in several 
varieties of biomolecule immobilization [80–87], especially for biosensor applica-
tions. Core–shell nanostructures of Fe3O4@polydopamine [88], Ferrocene-modified 
Fe3O4@SiO2 nanoparticles [89], Au@Ni [90], Ag NPs@Fe3O4 [91], Fe3O4/Au 
@γ-Fe2O3/Au [92], etc., are designed for biosensor applications. Grancharov et al. 
[93] reported that the functionalized magnetic nanoparticles are used as biomolec-
ular labels in magnetic tunnel junction-based biosensor. Chuang et al. [94] inter-
preted the time scale of Brownian relaxation of magnetic nanoparticles suspended 
in liquid obtained from the susceptibility variation as a function of frequency as a 
bio-magnetic target molecule sensor. Simultaneous detection of the magnetic field-
assisted DNA hybridization is sensed using a spin valve sensor reported by Graham 
et al. [95]. Liu et al. [96] fabricated a phenol biosensor where carbon paste is used as 
the supporting substrate for chemically immobilized and functionalized core–shell 
magnetic nanoparticles. 

Research on magnetic nanoparticle-based biosensors is limited to lab-scale 
devices and medical diagnosis instruments in miniature form for bedside medical 
diagnosis. Several NPs are used in medical diagnosis devices; their sensitivity, the 
minimum sample volume, and the analyte that can be detected using these instru-
ments are listed in Table 3 which is adapted from Koh et al. [97]. One pioneer example 
is the μ-NMR designed by Weissleder et al. [10] using 39 nm functionalized iron 
oxide nanoparticles in the microfluidic network. Further, the improved version of 
the microcoils is embedded in PDMS to increase the filling factor and decrease the 
signal-to-noise ratio. Also, this instrument can detect a minimal amount of sample, 
i.e., 1 μl of the device [19, 20, 98].
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Table 3 Magnetic nanoparticle used in different medical diagnosis instruments with their sensi-
tivity [97] 

Analyte Magnetic 
particle/instrumentation 

Sensitivity Sample 
volume 
(μL) 

References 

MRSw type I Nucleotide CLIO, benchtop 
relaxometer 

Low nM-pM 300 [99] 

Proteins CLIO, benchtop 
relaxometer 

Low nM 300 [100] 

Virus CLIO, MRI 50 virus/100μL 100 [101] 

Bacteria Core/shell, DMR 20 CFUb/100 μL 
(membranefitered) 

5 [20] 

Cancer 
cell 

Mn-MNP, DMR 2 cells/1 μL 5 [19] 

MRSw type II Antibody MP, bench top 
relaxometer 

< 1 pM 300 [102] 

AC 
susceptometer 

Antibody Iron oxide 
nanoparticles 

< 1 nM [103, 104] 

SQUID Bacteria Iron oxide 
nanoparticles 

1.1 × 105 
bacteria/ 20 μL 

[103, 104] 

DNA Magnetic bead 3–10 pM (signal 
amplification) 

[105] 

GMR Protein Cubic FeCo NP 2 × 106 proteins 2 [106] 

DNA Antiferromagnetic NP 10 pM [107] 

Protein Iron oxide NP 2.4 pM [108] 

3.4 Carbon Nanostructures 

The beauty of carbon-based nanomaterials from its bulk count part is 
It is easy to electrochemically recognize a specific type of biomolecule (such as 

ascorbic acid and uric acid.) mixed with carbon nanomaterials and quantify it which 
is impossible with glassy carbon electrodes. In potentiodynamic analysis, carbon 
nanotubes act as an ion–to–electron transducer for biosensing analysis. 

a. The outstanding electrical transport properties of carbon nanomaterials like 
carbon nanotubes and graphene. Intrinsic single-wall carbon nanotubes and 
graphene possess ballistic transport properties with high electron mobility which 
is necessary for high-speed biosensors. 

b. Using carbon nanomaterial in particular single or bilayer defect-free graphene 
which has high conductivity with low thermal noise and due to fewer defects, the 
pink noise (i/f noise) is also very low and can be effectively utilized in designing 
ultrasensitive biosensors. 

c. For flexible biosensor design, carbon-based nanomaterials are considered the 
best selection based on cost, stability, and performance.
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d. Carbon nanodots/quantum particles are the best fluorescent centers for effective 
optical biosensor applications. 

3.5 Hybrid Nanostructures 

Hybrid nanomaterials are a promising platform for biosensor application, especially 
for the sensor in bio-medical diagnosis consisting of a unique conjugate of inorganic 
and organic components. The beauty of these hybrid nanomaterials lies in 

a. Fine inorganic nanoparticles (< 100 nm) have an enormous potential to be applied 
in electronics, catalysis, bio-medical, etc. However, for bio-medical applica-
tions, the inorganic particles must be bio-compatible and have colloidal stability 
in the aqueous environment without agglomeration and degradation. Thus, the 
organic material is widely hybridized with this inorganic particle to improve 
bio-compatibility, processability, and chemical stability. 

b. The organic/inorganic hybrids are mechanically robust and thermally more stable 
systems than individuals. Most importantly, the internal porosity of the hybrid 
can be tuned by anchoring the inorganic component which is highly desirable 
for ultrasensitive biosensor design and to increase the drug loading efficiency. 

c. The biological fluid when interacting with finer in-organic particles, the protein 
corona forms on the surface of the inorganic nanoparticles. The size and 
surface properties of the nanoparticles are highly dependent on the protein 
corona formation and cell-nanoparticle interaction. Additionally, the selection 
of organic components of the hybrid especially for biomedical application needs 
depth understanding of the protein corona formation and growth for effective 
biomedical application of the hybrid nanomaterial. 

Based on recent literature, we are citing some of the recent works on the use 
of hybrid nanomaterials in biosensing applications. The list of carbon materials in 
hybrid form, reported in the literature in tabulated form (adapted from [3]) is cited 
in Table 4.

4 Challenges and Future Perspectives 

Most importantly, the modern biosensor device can be miniaturized to a portable form 
for bedside clinical applications with effectively high throughput. Some of the new 
detection techniques that sound well from a scientific point of view and technological 
importance are grooming as next-generation electronic sensing chips such as field-
effect electrolyte–insulator-semiconductor (FE–EIS) sensors and capacitive FE–EIS. 
Recently, the application of 2D materials like nanocarbon, metal dichalcogenides, 
hexagonal boron nitride, black phosphorous, and metal oxides has highly impacted 
the research in the FE–EIS-based sensors. However, there remain several challenges
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in biosensor-based materials design, especially for medical applications which are 
as follows 

a. In enzyme-based biosensors, the presence of fouling agents and endogenous 
interfaces present in the sample has significantly hampered the sensor’s sensitivity 
and specificity. Though this issue was partially addressed by making hybrid 
biomaterial, still the interface effect persists. 

b. Generally, doped semiconductor nanostructures have particular importance in 
biosensor design. However, the synthesis of doped semiconductor nanostructures 
is carried out in a harsh environment, and it isn’t easy to achieve it on a large 
scale. Scale-up synthesis with high-quality control is highly desirable. 

c. Real-time in-vivo monitoring in complex media such as tissues and blood is 
still challenging. Moreover, it is highly desirable to establish a robust detec-
tion platform for in-vivo analysis, especially from a pharmacokinetic and 
pharmacodynamics point of view. 

d. Toxicity of the nanomaterials (carbon nanomaterials such as carbon whisker and 
carbon fiber.) in biosensors remains a significant challenge, especially for medical 
diagnosis. 

5 Conclusions 

This chapter comprehensively summarized the present scenario of nanomaterials in 
biosensors for medical applications. An attempt was made to summarize several 
chemical compositions and dimension nanomaterials applied in various biosen-
sors in worldwide research. Additionally, the classification of biosensors based 
on the biorecognition and signal transduction mechanism was discussed. In recent 
decades, biosensors have demonstrated their potential to detect various quantitative 
and qualitative targets, especially for medical diagnosis. Due to the high stability 
and lower price, biosensors such as aptasensors and DNA-modified electrodes are 
being used as point-of-care devices for quick diagnosis of the SARS COVID-19 
virus during ongoing pandemic emergencies across the globe. Modern biosensors 
have a vast perspective and high compatibility compared to conventional biosensors 
in medical applications due to their real-time diagnosis capability, high specificity, 
and sensitivity with minimal sample preparation. 
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