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Chemical, Physical, and Biogenic 
Synthesis Methods for Nanomaterials 

Zeenat A. Shaikh, Chetan Kamble, and Rajaram S. Mane 

Abstract Through nanotechnology several concepts and phenomena are explored 
for technical understanding. An industrial potential of nanoparticles or nanostructures 
is the foundation of nanotechnology. Inorganic/organic, carbon-based, polymeric, 
metal organic frameworks and ceramic nanoparticles/nanomaterials etc., are envis-
aged in medicine, pharmaceutical, life, and engineering sciences for various appli-
cations. The aim of this chapter is to guide scholars and newly joined and expe-
rienced researchers in comprehending and learning the fundamentals of nanotech-
nology in addition to use of various physical and chemical synthesis methods for 
the production of nanoparticles/nanostructures. The particle size reduction to the 
nanoscale level reveals unique properties and better scientific/technical features such 
as increased surface area and engineered electrical and optical properties. Based 
on preparative parameters and bottom-up and top-down synthesis methods, the 
surface morphologies, structures, and physical properties of the as-prepared nanos-
tructures are different. This chapter presents the challenges and future perspectives 
of aforementioned methods. 

Keywords Nanomaterials synthesis methods · Top-down approach · Bottom-up 
approach · Biogenic synthesis methods 

1 Introduction 

The last century is the witness of originating nanotechnology which is booming to 
the next level in this century. Almost every branch of science, agriculture, medicine, 
and technology is directly or indirectly connected to field so called nanotechnology 
[1–3]. The technologies which are executed to the nanoscale level and can take 
to an application stage in the real world is nothing but the nanotechnology. It is 
described as the atomic and molecular control or reorganization of matter in the 1– 
100 nm size-range [4, 5]. Nanoscience is the name given to the underlying science.
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The word ‘nano’ is coming from nanos (a Greek word) or nanus (a Latin word) whose 
meaning is ‘dwarf’ [6]. Nanotechnology is a globular tree with several branches of 
physics, chemistry, engineering, pharmacy, medicine and life science (Fig. 1). One 
should not confuse nanoscience and nanotechnology as they are more or less related 
to invention and incubation. Nanoscience deals with the knowledge of atoms like 
basic properties and arrangements at nanoscale level while nanotechnology over-
rides the atoms of the matter for the development of advanced useful technology [4, 
7]. Because of the tremendous demand for nanomaterials in the field of engineering, 
medicine, electronics, the environment, and also in the defense and space sectors, 
researchers are trying their best to fulfill the needs [8–11]. The days are not far when 
nanotechnology will be going to control the living of mankind, communicating, and 
working fields. So, it will be interesting to discuss the basics and most important 
parameters of nanotechnology. 

The key parameter or building block of nanotechnology is the use of nanoma-
terials obtained from different synthesis methods having various optoelectrochem-
ical properties [12]. The ideal size of the nanomaterial is nearly 10–9 m which means 
one-billionth of the meter. The properties of the nanomaterials are different from the 
bulk materials [13, 14]. Several nanomaterials with different shapes like nanopar-
ticles, nanorods, nanobelts, nanoribbons, and nanosheets etc., are on the record. 
These nanomaterials are generally characterized on the basis of their dimensions. 
Zero-dimensional materials include nanoparticles (NPs), one-dimensional include
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Fig. 1 Applications of nanomaterials in different fields 
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nanorods and two-dimensional layered graphene sheets. Three-dimensional mate-
rials include spheres, cubes, and cylinders [13, 15–18]. To synthesize these materials, 
several synthesis methods are used by the researchers across the world to develop 
nanomaterials of various sizes and shapes. A wide classification of the synthesis 
methods used to make the nanomaterials is presented in Fig. 2. By adopting the proper 
synthesis method, one can obtain desired shape, size, and physical and chemical prop-
erties of the product nanomaterial. The synthesis methods are divided into two core 
approaches: top-down and bottom-up. Bottom-up, also known as self-assembly, is 
the process of building a nanostructure by means of atom-by-atom, molecule-by-
molecule, or cluster-by-cluster [19, 20]. These NPs are initially produced and then 
amassed into the final matter by employing either chemical or biological methods. 

The bottom-up strategy has the specific advantage of increasing the probability of 
getting metallic NPs with fewer flaws and additional homogenous chemical composi-
tions [1, 21]. On the other hand, in the top-down strategy, an appropriate host starting 
material is decreased in size with the help of the mechanical milling process (Fig. 3). 
The defectiveness of the surface structure is a fundamental disadvantage of the top-
down method. Because of the high aspect ratio, such flaws in the surface structure 
can have a major influence on the surface chemistry and physical characteristics of 
obtained NPs [1, 22–24].

1. Mechanical milling 
2. Electrospinning 
3. Sputtering 
4. Lithography 
5. Laser ablation 
6. The arc discharge 

method 

1. Hydrothermal and 
solvothermal method 

2. The sol-gel method 
3. Chemical Vapor 

deposition method 
4. Reverse micelle 

method 
5. Soft and hard 

templating methods 

1. Using virus 
2. Using bacteria 
3. Using Fungus 
4. Plants/Plants product 
5. Algae 
6. Yeast 

Biological Synthesis 

Fig. 2 Synthesis methods used for obtaining nanoparticles/nanostructures 
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Fig. 3 Synthesis of 
nanoparticles from the 
top-down and bottom-up 
approaches 
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2 Top-Down Approach 

In this, tactic mechanical model is used to synthesize the nanomaterials. Basically, 
these materials are crushed till the materials grasp the nanoscale level. By using the 
mechanical methods, one can achieve the nanomaterials of sizes less than 20 nm. 
This process is cheaper and offers mass scale products, but the shape of the final 
product is not orderly shaped. Ball milling is one of the most common and effective 
methods in this approach. Several physical methods fall in this category [4, 24]. 

2.1 Mechanical Milling 

The main purpose of this method is to decrease the size of the particle to the nanoscale 
level and blend the particles to new phases. In mechanical milling method, a high-
energy mill is used to blend the appropriate powder charge with a particular milling 
medium. Different types of ball millings are used for the synthesis of nanomaterials 
[25, 26]. In the chamber, without any restriction, the ball rolls down and influences 
the powder to be in nanoscale size. The mechanical milling method is the most 
economical because of the large-scale manufacturing with the production of desired 
nano-sized material [27]. The mechanical milling method has several categories like 
simple ball milling, Jarmill ball milling, and planetary ball milling wherein Jarmill
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method is more beneficial for producing more products although the crushing process 
is a bit slower. On the other hand, the planetary method is quicker as the movement 
of the chamber is transverse and rotational [28]. The entire kinetics of mechanical 
milling is hanging on energy delivered to the powder through the balls while milling. 
There are several parameters that govern the energy transfer like types of mills, 
milling temperature, duration of milling, wet or dry milling, speed of milling, and 
ball size [29, 30]. The ball kinetic energy, milling media, and powder characteris-
tics decide the temperature while milling. At adequate energy, an amorphous phase 
is anticipated if the temperature is low while high temperature leads to the forma-
tion of intermetallic phases. Furthermore, fracture of particles occurs as a result of 
high strain rate deformation and cumulative strain associated with ball collisions. 
These fractures and amalgamation measures linger throughout the progression. For 
the effective alloying process, an appropriate balance is essential among them. In 
some applications, stable state powder size distribution is attained, so the particles 
are often flakes type. A variety of nanomaterials and their composites can be prepared 
using the mechanical milling method. The carbon nanomaterials prepared from the 
mechanical milling method are envisaged in energy storage applications, environ-
mental remediation, and conversion of energy [31]. Rather than this, nickel (Ni), 
copper (Cu), magnesium (Mg), aluminum (Al)-based alloys, and oxides/carbides of 
Al were also prepared [32, 33]. 

2.2 Electrospinning Method 

In top-down methods, electrospinning is the simplest method that is used for the 
synthesis of various nanomaterials. This method helps to form the nanofibers mainly 
as scaffolds for tissue engineering. A variety of nanofibers of a few nanometer to 
micrometer dimensions were synthesized in the past [34, 35]. The setup consists of 
an injection pump, syringe, needle, high-voltage power supply, and collector plate 
as shown in Fig. 4. 

The solution is pumped to the tip of the needle, and an electric field is created 
between the tip of the needle and the collector plate with the help of a high-power

Fig. 4 Electrospinning 
method setup 
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Fig. 5 Formation of Taylor cone in electrospinning 

supply. Because of the force of the electric field, the surface tension in the liquid 
droplet is overcome, and the droplet is distorted to form the Taylor cone [35–37]. 
The distortion ejects the electrically charged jet toward the collector; consequently, 
fibers are obtained as depicted in Fig. 5. If the collector is rotating, then aligned fibers 
are obtained. One of the best revolutions in electrospinning is coaxial electrospinning. 
In this electrospinning process, two coaxial capillaries are compressed with the help 
of a spinneret. The two capillaries are filled with a viscous/non-viscous liquid which 
is used to form core-shell nano-architecture. 

It is a very effective and simplest method to get core-shell thin nanofiber in 
bulk quantity. The nanofiber can be ranged to several centimeters [38–40]. Also, 
organic/inorganic and hybrid core-shell and hollow nanofibers can also be obtained. 
The polyacrylonitrile-carbon nanotubes prepared by Kaur et al. through the electro-
spinning method revealed nanofibers of 75–1500 nm in length [41]. Furthermore, 
Dorneanu et al. synthesized nickel oxide (NiO), zinc oxide (ZnO), and nickel oxide-
zinc oxide polysulfone nanofibers (NiO–ZnO PSU). For synthesis of the aforemen-
tioned nanofibers, they used a needle of 0.8 mm diameter. The collector was kept 
15 cm away from a needle. The 20 kV voltage was applied to the solution [42]. 
Spinel ferrite-like calcium ferrite (CaFe2O4) nanofibers were synthesized by Rafie 
et al. with the help of electrospinning technique using process parameters, solution 
parameters, and ambient conditions [43]. Although, electrospinning method endows 
with several advantages and disadvantages. By optimizing the as-mention parame-
ters, one can get rid of the flaws of the electrospinning. A few limitations found for 
the electrospinning method are as follows: 

(i) Temperature and humidity-related issues 
(ii) Corner rounding and cracking of the nanofiber and 
(iii) Large-scale production is difficult. 

The selection of proper host materials and suitable combination routes is still 
challenging.
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2.3 Sputtering 

Sputtering, one of the popular processes for making thin nanocrystalline films, 
involves hitting the solid surface through high-energy particles like gas or plasma 
[44]. A sputtering deposition involves bombarding the target surface with energetic 
gaseous ions, which can cause the physical discharge of tiny atom clusters reliant 
on the energy of incident gaseous ions. Sputtering can be accomplished in a variety 
of methods, including using a DC diode, a radio-frequency diode, or a magnetron 
[45]. Sputtering is typically operated in an evacuated chamber in presence of the 
sputtering gas. Free electrons strike with gas molecules to form gas ions when a high 
voltage is supplied to the cathode target. The positively charged ions move rapidly 
in the electric field on the way to the cathode target, which they repeatedly strike, 
causing atoms to be ejected off the target’s surface. Sputtering is appealing because 
the composition of sputtered nanomaterials is similar to that of the target material, 
with fewer contaminants, and it is less expensive than electron beam lithography 
[46]. 

The following are the primary types of sputtering: 

(a) DC diode sputtering 

A low-pressure plasma of argon is exploded between a substrate and target with the 
help of DC voltage of 500–1000 V. Positive ions of argon cause atoms to be quickly 
out of the target, which subsequently wanders to the substrate for condensation. 

(b) RF sputtering 

Instead of a DC electric field, an alternating high-frequency field is used in radio-
frequency sputtering. A capacitor and plasma are linked in series with the high-
frequency voltage source. The capacitor separates the DC component and maintains 
electrical neutrality in the plasma. The electrons and the ions are alternatively accel-
erating in both directions [47]. The electrons fluctuate in the plasma area, causing an 
increasing number of collisions with argon atoms. This results in a high plasma rate 
which can lead to a pressure reduction of roughly 10–1 to 10–2 Pa. This enables the 
creation of thin layers with a microstructure that would otherwise be impossible at 
greater pressures. Positive ions flow in the vicinity of the target through an overlaid 
negative offset voltage and are cracked by collision atoms of the target material, as in 
DC sputtering [48, 49]. The sputter deposition is similar to those of other sputtering 
processes. 

(c) DC triode sputtering 

In this type of sputtering, outside the plasma chamber, the target is used as a third 
electrode. The sputtering and plasma production processes are separated. 

(d) Magnetron 

While just an electric field is supplied in simple cathode sputtering, an extra magnetic 
field is arranged at the magnetron sputtering behind the cathode plate. The charge
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carriers are diverted through a spiral path (precise cycloid orbits) due to the superim-
position of the electric and magnetic fields, and they now circle over the target surface 
instead of moving parallel to the electric field lines. This increases the number of 
hits per electron by lengthening their route path [50, 51]. When the magnetic field is 
parallel to the target surface, the electron density is maximum, resulting in a higher 
level of ionization in this region. 

2.4 Lithography 

Lithography, a helpful technology, uses a focused beam of light or electrons to 
produce nano-architectures. It is a versatile and effective technology for creating 
nanoscale patterns. Lithography is used to manufacture precise nanomaterials on 
the surfaces that are highly regular in shape and size [52]. Masked lithography and 
maskless lithography are the two basic types of lithography. With the help of a 
specific mask or template, nanopatterns are transferred over a high specific surface 
area in masked nanolithography. Photolithography, nanoimprint lithography, and 
soft lithography are a few examples of masked lithography. Scanning probe lithog-
raphy, focused ion beam lithography, and electron beam lithography are maskless 
lithography [53]. Without the use of a mask, arbitrary nanopattern writing can be 
performed in maskless lithography. Ion implantation through an attentive ion beam 
in combination with wet chemical etching can be used to accomplish 3D freeform 
micro-nano-fabrication. 

2.5 Laser Ablation 

In the laser ablation process, nanoparticles are created by striking the target mate-
rial with a powerful laser beam. Due to the high intensity of laser irradiation, the 
source material or precursor vaporizes during the laser ablation process, resulting in 
nanoparticle generation [54]. The generation of noble metal nanoparticles through 
laser ablation is considered a green technique because no stabilizing agents or other 
chemicals are required. Metal nanoparticles, oxide composites, carbonaceous nano-
materials, and ceramics are also obtained using this method. Pulsed laser ablation 
in liquids, where surfactants or ligands are not essential, is an intriguing way of 
producing monodispersed colloidal nanoparticle solutions. Nanoparticle parameters 
such as average size and distribution can be changed by adjusting fluency, wavelength, 
and laser salt addition.
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2.6 The Arc-Discharge Method 

The earliest approach for creating multiwall nanotubes (MWNTs) and single-wall 
nanotubes (SWNTs) is arc discharge. Among the carbon-based materials, it creates 
carbon nanotubes, amorphous spherical carbon nanoparticles, fullerenes, and few-
layered structures of graphene and carbon nanohorns [55]. The arc-discharge method 
is critical in the formation of fullerene nanoparticles. Two high phase-pure electrodes 
of graphite are commonly utilized as the anode and cathode in the arc-discharge 
process. These two electrodes are well separated by nearly 11–12 mm distance. 
For the vaporization of the electrode material, DC current is passed through these 
electrodes in presence of a helium atmosphere [56]. It is compulsory to fill the 
chamber with pure helium because the existence of moisture or oxygen prevents 
the formation of fullerene. After an arc-discharge period, at cathode, a rod of 
carbon is generated. With the inclusion of a metal catalyst such as Ni, Co, Fe, 
or Mo on either anode or cathode, this process can manufacture both MWNTs 
and SWNTs. Temperature, inert gas pressure, plasma arc, metal concentration, 
gas type, current, gas type and geometry of the system, etc., generally influence 
the quantity and quality of nanotubes produced, including lengths, diameters, and 
purity [57]. Throughout the arc-discharge procedure, distinct carbon-based nanoma-
terials are gathered from different sites. MWCNTs, nano-graphite particles, pyrolytic 
graphite, and high-purity polyhedral graphite particles are entirely recovered from 
anode/cathode deposits, or together electrode deposits. The interior chamber is also 
one of the sources to gather carbon-based nanomaterials. Single-walled carbon 
nanohorns (SWCNHs) of different morphologies depending on the environment were 
prepared. ‘Dahlia-like’ SWCNHs, for example, were made in an ambient atmosphere; 
however, ‘bud-like’ SWCNHs were made in CO and CO2 atmospheres [58]. The arc-
discharge approach is utilized to make graphene nanostructures quickly and easily. 
The conditions, under which graphene synthesized, have revealed an impact on its 
properties. When compared to those made with an argon arc-discharge, graphene 
sheets obtained with a hydrogen arc-discharge exfoliation process exhibit better 
electrical conductivity and thermal stability. 

3 Bottom-Up Methods 

3.1 Hydrothermal and Solvothermal Methods 

One of the most well-known and widely used processes for producing nanostructured 
materials is the hydrothermal method. Nanostructured materials obtained using the 
hydrothermal process involve a heterogeneous reaction in an aqueous solution at 
high temperatures and pressures near the critical point in a closed vessel [59]. The 
solvothermal technique is similar to the hydrothermal technique. The only distinc-
tion is that it takes place in a non-aqueous environment. In most cases, hydrothermal
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and solvothermal techniques are used in closed systems. The microwave-assisted 
hydrothermal approach, which combines the benefits of both hydrothermal and 
microwave processes, has attracted a lot of attention for developing nanomaterials of 
various metal oxides and chalcogenides [60]. Hydrothermal and solvothermal tech-
niques are used for creating various nano-geometries of materials, such as nanowires, 
nanospheres, nanosheets, and nanorods. 

3.2 The Sol–Gel Method 

The sol–gel technique is a wet chemical procedure that has widely been utilized 
in obtaining nanomaterials of various materials. This method is used to create a 
variety of high-quality metal oxide nanomaterials. This process is known as a sol– 
gel method because the solvent precursor is turned into a sol during the synthesis of 
metal oxide nanoparticles which is then converted into a network structure known as 
a gel [61]. Metal alkoxides are commonly used as precursors in the sol–gel process 
for the creation of nanomaterials. The sol–gel technique used for the production of 
nanoparticles has multiple steps. The metal oxide is first hydrolyzed in water or with 
the help of alcohol to form a sol in the first step. The condensation occurs next, 
leading to an increase in solution viscosity and the formation of porous structures 
which are allowed to develop [62]. Hydroxo- (M–OH–M) or oxo- (M–O–M) bridges 
develop during the condensation or poly-condensation procedure, resulting in metal– 
hydroxo- or metal–oxo-polymer production in solutions. Poly-condensation persists 
during the aging process, resulting in change in the structure, properties, and porosity 
[63, 64]. Porosity decreases with time, and the space among colloidal molecules 
increases. Following the aging process, the gel is dried, in which water and organic 
compounds are extracted. Finally, nanoparticles are obtained through air calcination. 
The sol–gel process is used to create both films and powders. The nature of the 
precursor, hydrolysis rate, aging period, pH, and molar ratio between H2O and the 
precursor are the parameters that influence the final product quality produced using 
the sol–gel process [65]. The sol–gel method is cost-effective and offers several other 
benefits, including the homogeneous nature of the obtained product material, low 
processing temperature, and the method’s ease of use in producing complex and 
composite nanostructures. 

3.3 Chemical Vapor Deposition Method 

In the production of carbon-based nanomaterials, chemical vapor deposition (CVD) 
is essentially required. The chemical reaction of vapor-phase precursors forms a 
thin coating on the substrate surface in CVD process. Whenever a precursor has 
acceptable volatility, high chemical purity, good evaporation stability, eco-friendly 
and economical, non-hazardous and has a long life, it is considered perfect for CVD.
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Furthermore, its decomposition should not leave any contaminants behind. When 
making carbon nanotubes by the CVD process, for instance, a substrate is put into 
the oven and heated to higher temperatures. As a precursor, a carbon-containing gas 
(like hydrocarbon) is gently introduced into the system [66]. The breakdown of the 
gas produces carbon atoms that reunite to form carbon nanotubes on the substrate at 
higher temperatures. However, the catalyst used can have a big impact on the form 
and type of nanomaterials produced. Nickel and cobalt catalysts produce multilayer 
graphene in CVD-based graphene production, although a Cu catalyst produces mono-
layer graphene. Ultimately, CVD is a great way to make high-quality nanomaterials, 
and it is especially skilled at producing two-dimensional nanomaterials [67]. 

3.4 Reverse Micelle Method 

The reverse micelle approach can also be used to create nanomaterials with specific 
shapes and sizes. Normal micelles form as a result of an oil-in-water emulsion, 
with hydrophobic tails aiming at a core containing trapped oil droplets. In the case 
of a water-in-oil emulsion, however, reverse micelles form when the hydrophilic 
heads point at a water-containing core. The reverse micelles’ core functions as a 
nanoreactor for NPs production [68]. It serves as a testing ground for nanomaterials. 
The size of these nanoreactors may be regulated by adjusting the water-to-surfactant 
ratio, which has an impact on the size of the nanoparticles manufactured using this 
process. On reducing the water concentration smaller water droplets occur. As a 
result, the reverse micelle approach is a simple way to make homogenous NPs with 
exact size control. The reverse micelle approach produces NPs that are incredibly 
tiny and monodispersed in nature. The reverse micelle approach is used to make 
magnetic lipase-immobilized NPs [69]. 

3.5 Soft and Hard Templating 

To make nanoporous materials, the soft and hard template processes are frequently 
employed. A soft template is a traditional approach for creating various nanostruc-
tured materials. Because of its simple implementation, relatively mild experimental 
conditions, and the production of materials with a variety of morphologies, the soft 
template approach has several advantages. Soft templates, like block copolymers, 
flexible organic molecules, and anionic, cationic, and non-ionic surfactants, are 
generally used to make nanoporous materials through a soft templating process [70]. 
Hydrogen bonding, Van der Waals, and electrostatic forces are the most prevalent 
interactions between the soft templates and the precursors. The 3D-ordered meso-
porous structures are synthesized using soft templates of 3D specially structured 
liquid crystalline micelles. The production of mesoporous solids such as lamellar 
(MCM-50), cubic (MCM-48), and hexagonal (MCM-41) structured mesoporous
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silicas employing alkyl-trimethyl ammonium surfactant can be a typical example of it 
[71, 72]. In general, two methods named cooperative self-assembly and ‘real’ liquid– 
crystal templating are used to synthesize ordered mesoporous materials using a soft 
templating method. Surfactant and precursor concentrations, surfactant to precursor 
ratio, surfactant structure, and ambient variables are strongly influenced by the meso-
porous material architecture generated from 3D organized micelles. The pore diam-
eters of nanoporous materials can be tuned by changing the surfactant carbon chain 
length or adding supplementary pore-expanding agents [73]. 

The soft template approach is used to make a variety of nanostructured materials, 
including mesoporous N-doped graphene, porous alumina, single-crystal nanorods, 
and mesoporous polymeric carbonaceous nanospheres. Nano-casting is another name 
for the hard template process. To produce nanostructures for necessary applications, 
well-designed solid materials are employed as templates, and the solid template 
pores are filled with precursor molecules [74]. The hard template must be chosen 
carefully to create well-ordered mesoporous materials. Such hard templates should 
maintain in a mesoporous material during the precursor conversion, and they should 
be easily removed without affecting the nanostructure developed. As hard templates, 
a variety of materials including carbon nanotubes, carbon particles, carbon black, 
colloidal crystals, wood shells, and silica are explored [75]. The synthetic approach 
for generating nanostructures via templating methods involves three basic phases. 
The proper original template should be generated or selected in the first phase. The 
template mesopores must then filled with a specific precursor to turn them through an 
inorganic solid. To create the mesoporous duplicate, the original template is erased in 
the last stage. Unique nanostructured materials such as nanostructured metal oxides, 
3D nanostructured materials, nanorods, nanowires, and many more nanoforms can 
be generated utilizing mesoporous templates [76]. From this brief explanation, it is 
clear that soft and hard template approaches can be used to create a wide range of 
unique structured nanomaterials. 

4 Biogenic Processes 

Chemical processes are often low-cost for mass production, but they have downsides 
such as using toxic, harmful, hazardous solvents, the product getting soiled because of 
the precursor chemicals and also, it produces harmful by-products. As a result, there 
is a growing requirement to obtain a high yield, cheap, harmless, and ecologically 
friendly metallic nanoparticles using alternative manufacturing processes. As a result, 
the biological tactic of nanoparticle manufacturing becomes imperative. Viruses, 
bacteria, fungi, plants/plant products, algae and yeast, etc., are only some of the 
biological resources accessible in nature that could be used to make nanoparticles 
[77]. It is worth noting that unicellular and multicellular organisms are acknowledged 
to create inorganic minerals, either intracellularly or extracellularly. Extracellular 
and intracellular extracts from the xylotrophic basidiomycetes Pleurotusostreatus, 
Grifolafrondosa, Ganoderma lucidum and Lentinus edodes were used to make Si,
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Table 1 Biosynthesis of nanoparticles by micro-organisms 

Name of 
microorganism 

Synthesized 
nanoparticle 

Morphology Location/Organelle Reference 

Marine alga, 
Sargassum wightii 
Greville 

Au Planer Extracellular [79] 

Yeast cell Au–Ag Irregular 
polygonal 

Extracellular [80] 

Escherichia coli Au Triangles, 
hexagonal 

Extracellular [81] 

Enterobacter sp. Hg Spherical Intracellular [82] 

Aspergillus 
fumigatus 

Ag Spherical Intracellular [83] 

Bacillus cereus Ag Spherical Intracellular [84] 

Neurospora crassa Au and Au–Ag Spherical Intracellular and 
extracellular 

[85] 

Se, Ag, and Au NPs using aqueous solutions of Na2SiO3, Na2SeO3 AgNO3, and 
HAuCl4 [78]. The extract type and the fungus species mainly influence on the shape, 
size, and aggregation properties of the NPs. The phenoloxidase activity of the fungal 
extracts is strongly related to the bioreduction of metal-containing substances and the 
production rate of Ag and Au NPs. The activity of phenoloxidase is not required for 
the biofabrication of Se and Si nanoparticles. Some of the regular metal biosynthesis 
prepared from microorganisms are given in Table 1. 

4.1 Bacteria-Assisted Synthesis 

Prokaryotic bacteria are the most widely studied bacteria among natural resources 
for manufacturing metallic NPs. The relative simplicity of management is one of 
the motives for ‘bacterial preference’ for the synthesis of NPs. In the initial exper-
imentations, Slawson et al. discovered that Pseudomonas stutzeri AG259, a silver-
resistant bacterial strain obtained from silver mines, have collected Ag NPs within 
the periplasmic region [86]. Inorganic compounds are generated by micro-organisms 
potentially intracellularly or extracellularly. Researchers have investigated bacteria 
extensively for the generation of metallic nanomaterials among micro-organisms as 
given in Table 2.
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Table 2 Bacteria-assisted synthesis of various nanoparticles 

Name of bacteria Synthesized 
nanoparticle 

Morphology Location/Organelle Reference 

Arthrobacter 
nitroguajacolicus 

Au Spherical Intra extracellular [87] 

Pseudomonas stuzeri 
AG259 

Ag Triangular, 
hexagonal, and 
spheroidal 

Periplasmic space, 
intracellular 

[88] 

Rhodopseudomonas 
capsulata 

FeS pH-7-spherical, 
pH-4 triangular 
nanoplates 

Extracellular [89] 

E. coli CdS Spherical, 
elliptical 

Intracellular [90] 

Ureibacillus 
thermosphaericus 

Ag Spherical Extracellular [91] 

4.2 Fungus-Assisted Synthesis 

Fungi are a pleasing middle step in the investigation of metallic NPs because of 
their endurance, the ease with which they can scale up and metal bio-accumulation 
capability. Because fungi are exceptionally resourceful secretors of extracellular 
enzymes, therefore, a significant synthesis of enzymes is quite simple. Economic 
feasibility and simplicity of processing biomass are two more advantages of adopting 
a green technique of fungal mediated for the production of metallic NPs. The Bhainsa 
and D’Souza revealed extracellular Ag NPs production via the filamentous fungus 
Aspergillus fumigatus. It is worth noting that the synthesis is completed quickly [88]. 
As soon as the Ag+ ion comes into contact with the cell filtrate, Ag NPs are formed. 
The comparison of different NPs syntheses using fungi-assisted method is given in 
Table 3.

4.3 Plant-Assisted Synthesis 

While micro-organisms such as bacteria, fungi, yeasts, and actinomycetes are still 
being investigated and analyzed in the production of metallic NPs, using sections 
of complete plants for comparable NP biosynthesis procedure has a fascinating and 
underexplored potential. In a different experiment, plant extract from lemongrass 
(Cymbopogon flexuosus) has been utilized to make nanoprisms of Au. Extracellular 
production of Ag NPs have been described by reducing aqueous Ag+ ions with a 
geranium leaf extract (Pelargonium graveolens). In comparison with previous inves-
tigations on the manufacture of Ag NPs with the help of bacteria or fungi, this 
plant extract reduces Ag+ ions quite quickly [83]. Table 4 summarizes the available 
information on the synthesis of NPs using plant extract.
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Table 3 Fungi-assisted synthesis of different nanoparticles 

Name of fungi Synthesize of 
nanoparticle 

Morphology Location/Organelle Reference 

Fusarium 
oxysporum 

Au–Ag 
compound 

Spherical Extracellular [92] 

Botrytis 
cinerea 

Au Spherical, pyramidal, 
hexagonal, triangular, 
and decahedral 

Extracellular [93] 

Aspergillus 
flavus 

Ag Isotropic Surface of cell wall [94] 

Verticillium 
luteoalbum 

Au pH-3 spherical, pH-5-
spherical, triangular, 
hexagons, spheres and 
rod, pH-7–9- small 
spherical, and 
irregular-shaped 
particles 

Intracellular [95]

Table 4 Plant-assisted synthesis of different nanoparticles 

Name of plant 
extract 

Synthesized 
nanoparticle 

Morphology Location/Organelle Reference 

Annona squamasa Pt Spherical Peel extract [96] 

Chenopodium 
album 

Au and Ag Quasi-spherical Extracellular [97] 

Magnolia kobus and 
Diopyros kaki 

Au Spherical, triangle, 
pentagons, and 
hexagones 

Leaf extract [98] 

Beetroot Ag Spherical Beetroot extract [99] 

Garcinia 
mangostana 

Cu Spherical Extracellular [100] 

Lemon grass Al2O3 Spherical Leaf extract [101] 

4.4 Algae-Assisted Synthesis 

The ability of algae is to absorb metals and decrease metal ions making it an excellent 
candidate for synthesis of metallic NPs, where both live and dead dried biomass are 
used. Algae are well-known for their ability to hyper-absorb heavy metal ions which 
can be restructured into more flexible forms. There are limited reports on the synthesis 
of metallic NPs using algae as a ‘biofactory’. Singaravelu et al. used an organized 
technique to investigate Sargassum wightii’s manufacture of metallic NPs [102]. This 
is the first time marine algae were employed to generate very stable extracellular Au 
NPs in a short amount of time compared to other biological techniques. Algae from 
the Rhodophyceae, Phaeophyceae, Cyanophyceae, and Chlorophyceae families are 
normally used to synthesize Au, Ag, and other metallic NPs using intracellularly
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Table 5 Algae-assisted synthesis of various nanoparticles 

Name of algae species extract Nanoparticle type Morphology Reference 

Turbinaria conoides Au Spherical and triangular [103] 

Cyanobacterium Oscillatoria 
limnetica 

Ag Quasi-spherical [104] 

Bifurcaria bifurcata CuO Elongated and spherical [105] 

Ulva fasciata ZnO Spherical [106] 

Table 6 Yeast-mediated synthesis of various nanoparticles 

Name of yeast 
extract 

Synthesize of 
nanoparticle 

Morphology Location/Organelle Reference 

Saccharomyces 
cerevisiae 

Ag Spherical Extracellular [108] 

Yarrowia 
lipolytica 

Au Hexagonal and 
triangular 

Cell wall [109] 

Sachharomyces 
cerevisae 

TiO2 Spherical Extracellular [110] 

Sachharomyces 
cerevisae 

MnO2 Spherical and 
hexagonal 

Intracellular and 
extracellular 

[111] 

and extracellularly. The various species of algae and their metallic synthesis are 
summarized in Table 5. 

4.5 Yeast-Mediated Synthesis 

Similar to algae, there are very few reports available on synthesis of the metallic 
NPs using yeast. Kowshik et al. synthesized Ag NPs of sizes ranging from 2 to 
5 nm using Ag-tolerant yeast species MKY3. The majority (N99 percent) of the 
Ag was precipitated extracellularly as elemental NPs [107]. Table 6 summarizes the 
biosynthesis of metal NPs using yeast. 

5 Challenges and Future Perspectives 

Various conceptual and practical research on nanotechnology and nanomaterials are 
being studied. The efficiency with which materials may be modified at the nanoscale 
for varied uses will determine future technology. The creation and efficient appli-
cation of nanomaterials, however, presents numerous difficulties. The following list 
includes some of the major difficulties:
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(a) Nanomaterials’ intrinsic properties can be degraded, and their effectiveness can 
be affected by flaws. For example, one of the recognized finest materials is 
carbon nanotubes. The tensile properties of carbon nanotubes can, however, be 
significantly reduced through contaminants, interrupted tube lengths, flaws, and 
unpredictable configurations. 

(b) A further significant difficulty is finding cost-effective ways to synthesize nano-
materials. The manufacturing of high-quality nanomaterials typically includes 
special and challenging environmental conditions, which restricts their use in 
mass production. The production of 2D nanomaterials makes this problem even 
more critical. The majority of low-cost production techniques are used on a big 
scale; however, they typically result in low-quality, defective items. Controlled 
synthesis of nanomaterials is still a difficult task. 

(c) Performance in pertinent domains can significantly be harmed by the aggrega-
tion of NPs at the nanoscale level, which is an underlying problem. The majority 
of nanomaterials begin to aggregate as they come into contact. Agglomeration 
may occur as a result of ionic interaction, physical interaction, or greater surface 
energy. 

(d) Except for graphene, relatively little experimental testing of 2D ultrathin mate-
rials has been performed, even though they represent a remarkable family of 
nanomaterials with promising theoretical features. One of the biggest problems 
with 2D ultrathin materials is their stability and production. It is projected that 
their fabrication and proper implementation will receive more attention in the 
future. 

(e) Both use of nanomaterials in industry and the rate at which nanoscale mate-
rials are prepared are on the rise. Furthermore, the field of nanotechnology 
investigation has a very broad scope; when new nanomaterials with intriguing 
properties are explored, new fields will be invented in the future. One of the 
key worries about nanomaterials that cannot be disregarded is their toxicity, 
which is currently not well-known and is a substantial worry in light of their 
home, workplace, and environmental appliances. It is uncertain to what extent 
compounds made of NPs can cause cellular toxicity. The scientific commu-
nity must work to close the information gap between the explosive growth of 
nanomaterials and the potential for harm in living organisms. For the framed 
structure and implementation of nanotechnology, a thorough understanding of 
how NPs interact with organisms, tissues, and protein is essential. 

Nanotechnology breakthroughs are connected to the future of modern tech-
nology. The development of nanomaterial-based engineering techniques is making 
the goal of producing clean energy. They have produced novel types of solar 
and hydrogen fuel cells, served as effective catalysts for hydrogen production, 
and have demonstrated good hydrogen storage capabilities. These materials have 
proved promising outcomes. Nanomedicine holds a bright future for nanomaterials. 
Therapeutic compounds can be delivered via nanocarriers.
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6 Conclusions 

When a material’s dimension falls between 1 and 100 nm, it is called a nano-
material. Nanomaterials are synthesized using two different approaches. Top-
down approaches include mechanical milling, electrospinning, sputtering, lithog-
raphy, laser ablation, and arc-discharge technologies. Bottom-up procedures are 
solvothermal and hydrothermal, sol–gel, CVD, reverse micelle processes, and soft 
and hard methods etc. Nanomaterials have several distinct characteristics that set 
them apart from their bulk counterparts. To obtain the intended consequences as 
a result of regimented nanostructures, more emphasis is being placed on manu-
facturing nanomaterials with regulated morphologies and nanoscale dimensions. 
Some commercial items have already been introduced using nanotechnology. Much 
further advancement is expected, with nanomaterials being incorporated into the 
next-generation technologies to meet future high-energy demands, as well as playing 
a larger role in biosensors and nanomedicine to combat existing and novel diseases. 
The majority of nanomaterials are being developed for laboratory use, and signif-
icant work is necessary to bring them before commercial marketing. Another key 
difficulty in current nanotechnology is identifying substitutes for endangered and 
limited-resource materials in nanomaterial synthesis. Forty-four of the 118 elements 
will encounter supply constraints in the next years. Critical elements include precious 
metals, phosphorus, and rare-earth elements. It is vital to lessen reliance on endan-
gered and crucial elements. In batteries, for example, efforts are currently underway 
to substitute crucial lithium ions with more abundant metal ions. Carbon-based nano-
materials are a good alternative for large-scale synthesis for a variety of applications 
due to the widespread availability of carbon sources. Core-shell morphologies are 
beneficial in decreasing the use of key elements in a variety of applications. With a 
deeper understanding and quick development of nanotechnology, future difficulties 
of modern society can be solved to some level. 
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Biosensor: Tools and Techniques 
for Characterization and Analysis 

Sambhaji S. Bhande and Shivaji Bhosale 

Abstract Recent advances in developing low-cost and highly efficient biosensors 
are under intense investigation for developing highly sensitive and specific opera-
tions. However, the basic research is still undergoing to refine the sensing strate-
gies and analytical instrumentation and procedures to develop new applications in 
numerous fields for rapid detection and development of biosensors. As a material 
scientist, one must need to focus on the detection and development of biosensors, 
and hence, they need to be characterized starting from their materials and their 
compositions to their activities/response to the specific application for the develop-
ment of biosensor applications. This chapter intends to provide brief and specific 
applications of biosensing devices developed in the laboratory and possible ways to 
characterize them. Various spectroscopic characterization techniques, electrochem-
ical measurements, electrochemical impedance spectroscopy, FT-IR, zeta potential, 
surface plasmon resonance spectroscopy, and dynamic light scattering are used in 
the complete analysis of the biosensor from its synthesis to potential applications 
which can serve as an introductory part for those who are new to this field as well as 
the people working in this field. 

Keywords Biosensor · Characterization techniques · Nanomaterials · Biosensing 
device 

1 Introduction 

Nano-sized and nano-dimensional materials that reveal considerably innovative and 
enhanced physical, chemical, and biological characteristics, phenomena, and func-
tioning have attracted great attention in rising technology and research during the
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last few decades. Nanotechnology is an emerging multidisciplinary field with several 
applications such as materials science, mechanics, optics, pharmaceuticals, plastics, 
energy, aerospace, and so forth. Because of their potential uses for attaining certain 
processes and activities, nano-phasic and nanostructured materials are also gaining a 
lot of attention from textile and polymer researchers and manufacturers. The under-
lying principle of nanotechnology is that the characteristics of materials change 
substantially when their sizes are decreased to the nanometer scale; yet, measuring 
nanoscale materials is a difficult operation that necessitates extensive sophisticated 
equipment techniques. Advanced approaches are being used in the fabrication of 
nanostructured and nano-phasic materials. Furthermore, it is a developing sector 
that presents several problems to scientists and technicians. Thus, nanotechnology 
has stimulated an increase in research activities focused on the discovery and devel-
opment of innovative nano-characterization procedures to enable greater control of 
the shape, size, and dimensions of materials in the nano-range. This chapter briefly 
discusses the key characterization strategies employed in the current investigation. 

2 X-Ray Diffraction 

The X-ray diffraction (XRD) technique is considered one of the most versatile, non-
destructive [1] analytical techniques which reveals information about the structural 
properties of the materials which are influenced by the crystallographic nature of the 
films [2]. XRD studies were carried out to study the crystallographic properties of 
the semiconducting, conducting, and insulating materials prepared which is based 
on observing the scattered intensity of an X-ray beam hitting a sample as a function 
of incident and scattered angle, polarization, and wavelength or energy. Whether 
a component is present in its pure condition or as one constituent of a mixture of 
substances, it always generates a distinct X-ray diffraction pattern. 

This knowledge serves as the foundation for the chemical analysis diffraction 
technique. The benefit of X-ray diffraction analysis is that it reveals the existence 
of a material rather than its individual chemical constituents. Diffraction analysis is 
beneficial when it is important to determine the state of the chemical combination 
of the elements involved or the specific phase in which they are present. When 
compared to conventional chemical analysis, the diffraction approach is quicker, 
uses a lot smaller sample, and is non-destructive. Each scatterer re-radiates a small 
proportion of its intensity as a spherical wave in response to the incoming beam 
(from the upper left). If scatterers are set symmetrically with a spacing d, these 
spherical waves will only be in sync (add constructively) in orientations where their 
path-length difference 2dsinθ equals an integer multiple of the wavelength λ. 

In this kind of scenario, an incoming beam is deflected by an angle 2θ, resulting in 
a reflection spot in the diffraction pattern. Crystals are regular atomic arrays, while 
X-rays are electromagnetic radiation waves. X-rays are scattered by atoms, typically 
through electrons. An X-ray impacting an electron creates secondary spherical waves. 
This is referred to as elastic scattering, and the electron is the scatterer. A regular
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scatterer array generates a regular array of spherical waves. Through destructive 
interference, these waves cancel each other out in most directions. This approach also 
reveals phase composition, lattice parameters, particle size, and lattice strain. The 
XRD method relies on diffraction, which is regulated by Bragg’s law [3]. Diffraction 
often occurs when waves interact with a periodic structure. It is critical to understand 
that for diffraction to occur, the wavelength of the wave should be about equal to 
the repetition distance of the periodic structure. Inter-atomic lengths are measured in 
angstroms. Since X-rays have wavelengths of the same order, they are employed to 
study crystals. When an X-ray beam strikes a crystal, it interacts either constructively 
or destructively with the parallel plane of atoms, depending on the path difference. 
When the waves satisfy Bragg’s law, [4, 5]. 

nλ = 2d sin⊖ (1) 

where “n” is an integer denoting the order of reflection, “λ” is the X-ray beam 
wavelength, “d” is the inter-planar spacing, and “⊖” is the incidence angle. A 
diffractometer is used to perform X-ray diffraction. We utilized a Rigaku Geiger-
Flex diffractometer with Cu k radiation (λ = 1.54) for this work. A diffractometer 
comprises essentially an X-ray source, a monochromatic, a slit, a specimen container, 
and a detector [6]. Figure 1 depicts an XRD system design. The X-ray source consists 
of a tube with a tungsten filament that works as a cathode and a copper (Cu) target 
as an anode. A large potential difference (30 kV) allows the filament to release elec-
trons, which are then accelerated to interact with the cathode, producing X-rays. The 
beam’s size and form may be changed via slits. When the beam is diffracted at an 
angle of 2⊖, the detector records its intensity. In a typical ⊖-2⊖ scan, the detector 
travels by 2⊖ and the specimen moves by an angle ⊖. Crystallographic information 
from a comparatively broad region of the sample may be obtained using the X-ray 
diffraction method. It needs little sample preparation and is non-destructive. Using 
clay, the sample is attached to the holder. It is crucial to install the sample carefully 
so that it is tilt-free and in the sample holder’s plane. It is critical to understand that 
the XRD method only uses surfaces aligned to the specimen surface to generate the 
signal. There is only one set of planes aligned with the surface for a single-crystal 
sample. As a result, an XRD scan of a single crystal ought to show just one peak and 
higher-order peaks from the same family. Multiple planes from various grains will be 
aligned to the sample surface in the scenario of a polycrystalline film. As a result, the 
XRD scanning of a polycrystalline sample will show many peaks that correspond 
to different planes. A sample that is amorphous will have a broad diffused signal 
at a 20° angle. The XRD method has drawbacks even though it offers simple and 
rapid information regarding crystallographic orientation and phase composition. It is 
significant because it only provides texturing information in the growing direction. 
It becomes challenging to identify material using an X-ray if the amount is smaller 
than 10% of the total weight. It could be difficult to identify particles or precipitates 
of nanoscale diameters.
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Fig. 1 Schematic illustration of the XRD Θ −2 Θ scan 

Limitations of XRD to porous structures: 

(a) A highly smooth surface is required, which is challenging to achieve with huge 
grain sizes. 

(b) Grinding is necessary to reduce the particle size, although doing so might 
damage the sample itself. 

(c) Mesostructured materials have a limited number of higher-order peaks in their 
diffractograms, making it challenging to determine their internal structure 
without the help of further characterization techniques. 

3 Scanning Electron Microscope 

The topology and morphology of specimens are studied using the scanning electron 
microscope (SEM), as opposed to the methods discussed above. To photograph the 
surface properties, the secondary scattered electrons (in-elastically released elec-
trons) are detected when the high-energy electron beam sweeps the surface. Widely 
employed in the study of materials, the SEM is a potent instrument for analyzing and 
understanding the microstructures of materials [7, 8]. The interactions of an incoming 
beam of electrons and the solid object are the foundation of the SEM concept [9, 10]. 
The specimen may emit a variety of emissions as a result of the electron bombard-
ment, including X-rays, visible photons, Auger electrons, backscattered electrons, 
secondary electrons, and others.
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3.1 Secondary Electrons 

When an incoming electron hits an electron in a specimen atom, the electron is 
knocked outside its orbital shell and the atom is ionized. Because incident electron 
loses minimal energy after each collision, many collisions are conceivable, and this 
process can be repeated until the incident electron no longer has enough strength to 
release secondary electrons. Each released secondary electron has a relatively low 
kinetic energy (< 50 eV) that is independent of the incident electron energy. Such 
secondary electrons can elude being caught by the detector if they are created near 
sufficient to the sample surface (< 10 nm). As a result, secondary electron scanning 
is intrinsically tied to sample topography. 

3.2 Backscattered Electrons 

The incoming electrons will bounce or scatter “backward” out of the sample as 
backscattered electrons if they hit the nucleus of surface atoms. These electrons 
often have an energy of 50 eV or more compared to the first incident electrons. 
Backscattered electron pictures can be utilized to identify variations in sample atomic 
number since the generation of backscattered electrons changes directly with atomic 
number. 

3.3 Auger Electrons 

A vacancy is left in the electron shell of an ionized atom as a consequence of 
secondary electron production. Electrons from the same atom’s higher-energy level 
outer shell can drop down and fill this hole. The atom now has an excess of energy, 
which can be reduced by releasing outside electrons or Auger electrons. Auger elec-
trons can be used to determine the composition of a target sample since they have 
a characteristic energy that is specific to the component through which they are 
released. Only short sample depths (< 3 nm) yield Auger electrons, which have low 
kinetic energy. 

3.4 Characteristic X-Rays 

The incoming electron beam’s interactions with the surface of the specimen also 
result in the production of X-rays. The process of moving electrons around to fill 
shell deficiencies can also result in surplus energy that can be released in the shape 
of an X-ray instead of Auger electrons, which is identical to the Auger electrons
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generation process. X-rays have a distinctive energy that is specific to the elements 
from which they originate; hence, they can reveal a sample’s composition. In this 
investigation, X-ray analysis and secondary electron imaging were the main methods 
employed for SEM sample characterization. This method offers both a deep field 
and excellent spatial resolution. The method also uses modest accelerating voltages, 
which minimizes sample radiation damage. For effective imaging, an ideal surface, 
and signal resolution, the specimen’s electrical conductivity and electrical grounding 
are critical. A thin layer of conducting material, mostly gold as well as other metals 
or carbon, is placed onto the specimen surface in the scenario of insulating materials 
to prevent charging. The electron column, the detecting system, and the viewing 
system are the three separate components that make up an SEM. A design of a 
straightforward scanning electron microscope is shown in Fig. 2. The same scan 
generator controls two electron beams at the same time: one for the incident electron 
beam and one for the cathode ray tube panel. Line by line, the incident beam is swept 
across the sample, collecting, detecting, and amplifying the signal from the secondary 
electrons that occur. This signal is then used to regulate the second electron beam’s 
intensity. As a result, changes in brightness representing the surface topography of 
the specimen will be displayed on the cathode ray tube display as a depiction of such 
intensity of secondary emission of electrons from the scanned region of the sample. 
Due to this technique, the SEM image’s magnification may be changed by merely 
altering the size of the area that is being examined on the specimen surface. 

Energy-dispersive X-ray spectroscopy coupled to either of the aforemen-
tioned electron microscopy methods allows for qualitative and precise quantitative 
elemental analysis. Inner shell electrons from the exposed sample’s atoms are ejected 
by the main electron beam, and when these electrons relax, element-specific X-rays

Fig. 2 Schematic diagram of a scanning electron microscope 
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are released, allowing for the analysis of the ensuing X-ray spectrum. Element iden-
tification and a relatively precise element composition may both be determined by 
calibration. The disadvantage of SEM in the context of porous materials is the loss of 
comprehensive information about a crystalline structure where the coating is required 
due to the aggregation effects of the metal particles. 

4 Transmission Electron Microscope 

A similar concept underlies transmission electron microscopy (TEM), which aims 
to provide a comprehensive picture of materials in the sub-micrometer area with a 
resolution of 0.2 nm [11, 12]. In TEM, a very thin electron-transparent material is 
passed through a high-energetic electron (> 100 kV) to create a magnified picture 
that is then projected onto a fluorescent screen or even a CCD camera using a series 
of electromagnetic lenses. 

The characterization of nanocomposites has made extensive use of the TEM 
method, one of the most potent methods in materials research [13, 14]. It can analyze 
these nanocomposites’ structural features, such as grain size and form, crystallinity, 
and chemical changes, at a resolution as low as the nanoscale level. Modern TEM’s 
sophisticated design makes it possible to view atoms, their motions, and even lattice 
flaws. 

Since electrons have a nearly 104-fold greater interaction with matter than X-ray 
photons do, it is conceivable to learn the structural details of crystals as small as a 
few nanometers in size that X-rays would not be able to reveal. Denser regions and 
regions containing heavier elements look darker in the resultant TEM picture as a 
result of enhanced electron scattering, and further diffraction contrasts are produced 
by scattering from crystallographic planes [15]. Individual crystal characteristics and 
crystal flaws may therefore be determined from a micrograph, along with component 
identification and an understanding of the atomic arrangement [16]. The general 
representation of TEM is shown in Fig. 3.

Following are the six fundamental parts that make up a typical TEM. 

4.1 An Illumination Source 

An electron source, which is typically employed in all TEM, consists of a filament 
that emits electrons either by thermal heating (a thermionic filament) or by applying 
a strong electric field to a metal filament tip, resulting in field-emission electrons 
(referred as field-emission filament). The field-emission filament gives a steadier 
source with better resolution and a longer lifetime than that of thermionic filament, 
but it is significantly more costly and necessitates a higher vacuum.
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Fig. 3 Schematic diagram of a transmission electron microscope

4.2 Electrodes 

One of these is the cathode, which accelerates the electrons produced by the filament 
to high energy, anywhere from a few hundred to more than a million volts. Most TEM 
equipment is operated between energies of 100 kV and 400 kV, while a greater voltage 
can result in a higher resolution. This will lessen sample damage and equipment 
expense while still obtaining the shortest feasible electron wavelength. 

4.3 An Optical Apparatus 

This is made up of a number of electromagnetic lenses, including the condenser, 
objective, projective, and intermediate lenses. These lenses aid in the focus of the elec-
trons, resulting in a tiny probe beam and the formation of sample pictures. The core 
of the microscope is the objective lens. The main drawbacks to the TEM instrument’s 
resolution are its inherent spherical and chromatic aberrations.
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4.4 A Sample Chambers 

The sample is inserted here, immediately in front of the objective lens. The chamber 
must be roomy enough to allow for the large range of tilting required for both the 
chemical analysis and the crystal orientation inspection of the samples. 

4.5 Camera(s) 

Typically, a video/scanned camera that is positioned underneath a phosphor screen 
where its pictures are visible is used to capture photographs of the samples. By 
raising the screen, the film is exposed to the camera to capture the images. However, 
the use of charge-coupled device cameras, which capture digital images that can be 
downloaded onto computers, has rapidly supplanted this recording technique. 

4.6 Vacuum System 

A vacuum system keeps the TEM operating at a very high vacuum. A typical example 
of such a system is one that combines mechanical and diffusion pumps. 

In order to use a TEM to analyze materials, the sample should typically have a 
diameter of less than 3 mm and an area of interest that is thin enough for electrons to 
pass through. As a precursor to any analysis employing different TEM methods, it is 
crucial to create a suitable TEM specimen (including imaging, EDX, and others). In 
addition to being challenging to prepare, such as mechanical/electrochemical refining 
and ion sputtering, which may produce a lot of artifacts in and on the sample and 
lead to incorrect information, it is also challenging to thin the bulk specimen down 
to the appropriate thickness (often less than 100 nm). 

4.7 Limitations 

(a) Mesoporous materials’ organization and structure are incredibly sensitive to the 
circumstances of preparation. As a result, the majority of them frequently have 
local fluctuations and/or intergrowths (domains). 

(b) TEM is solely utilized to offer crucial information on the local specifics of the 
materials, whereas XRD provides structural features of the bulk material. 

(c) In addition, investigating thick materials or samples made up of many layers 
is challenging, and the high working voltage frequently results in radiation 
damage.
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5 Atomic Force Microscope 

It was designed in 1986 by Binning et al. [17]. Both conducting and non-conducting 
substances may provide three-dimensional topographical pictures with AFM in any 
setting. The components of an AFM include a flexible cantilever working as a probe 
with a sharp tip, a piezoelectric scanner, a split photodiode cantilever deflection 
detection system, AFM electronics, and feedback loop, as well as a cantilever and 
sample containers (shown in Fig. 4). The force of contact between the cantilever tip 
and sample surface, as determined by the measurement of cantilever deflection, is 
used to characterize any substrate by AFM [18, 19]. 

A tip is employed in AFM to image. Typically, silicon or silicon nitride (Si3N4) 
is used to create it. It moves toward the sample at various inter-atomic distances (of 
around 10 Å). The tip is joined to the end of the spring cantilever and is typically 
3–15 microns long. The cantilever has a length of between 100 and 500 microns. 
The cantilever bends negatively or positively depending on whether the tip, which 
is attached to the cantilever, is far enough away from the surface to interact with it 
through attracting and repulsive forces. A laser beam is used to identify this bending. 

The cantilever’s spring constant, along with the separation between the tip and 
the surface, determines how much force is created between the tip and the surface. 
Hooke’s law can be used to represent this force. 

F = −k · x (2) 

where F = force, k = spring constant, and x = cantilever deflection.

Fig. 4 Simple ray representation of AFM 
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Cantilevers bend and their deflection is measured if the cantilever’s spring constant 
is smaller than the surface. The tip glides up and down as it traverses the sample 
topography in accordance with the sample’s surface characteristics. The interactions 
of numerous forces, including electrostatic, magnetic, capillary, and Van der Waals 
forces between the tip and the sample, are the causes of these variations. 

A picture of the topography is created after measuring the tip’s movement. On the 
back of the cantilever, a laser beam is concentrated. It can be redirected to a photo-
diode detector with four quadrants. This position-sensitive photodiode allows for 
exact measurement of the cantilever’s bending. The cantilever deflects in accordance 
with fluctuations in the atomic forces between the samples, allowing the detector to 
measure the deflection. As a result, the image that was produced is a topographical 
representation of the specimen surface. 

The different modes in which AFM works can be classified as follows. 

5.1 Static Mode 

The easiest way to use an AFM is in static mode, often known as contact mode. This 
mode allows the probe to remain in constant touch with the sample while scanning the 
surface in 2D and producing a picture as it “drags” over the sample. The most typical 
static mode design is to use continuous force or deflection feedback. The cantilever 
deflection serves as the feedback parameter in this mode. The user regulates how little 
or much the probe interacts with the sample by adjusting the cantilever deflection, 
which is correlated to how firmly the tip presses against the surface. In addition, the 
error mode also employs the static mode. A steady force is used to operate in this 
mode. The deflection signal added to the surface structure, however, then improves 
the topographical image even more. The deflection signal in this mode is also known 
as the error signal since it represents the feedback parameter; whatever characteristics 
or morphologies that occur in this channel result from the feedback loop having to 
boost in order to maintain the constant deflection set point. Height (also known as z 
topography) and the deflection signal are the two pictures that are produced in static 
mode with constant force. As long as the force can be regulated below 100 pN, the 
static mode can be a helpful, straightforward imaging mode, particularly for strong 
samples in the air that can withstand the high loads and torsional stresses imposed by 
static mode. Surprisingly, however, more fragile samples in liquid can also benefit 
from the static mode’s simplicity. 

5.2 Dynamic Mode 

The dynamic force mode is characterized by the cantilever oscillating at a high 
frequency at or near the resonance. The most typical dynamic mode is the so-called 
amplitude modulation mode (AM-AFM). The feedback parameter in AM-AFM is



36 S. S. Bhande and S. Bhosale

the oscillation’s amplitude; in other dynamic modes, the feedback parameter can be 
frequency or phase (modulation). Dynamic force mode, intermittent contact mode, 
tapping mode, and amplitude modulation mode are all applicable. The dynamic mode 
has a number of significant advantages as an image mode. In contrast to static imaging 
modes, the cantilever interacts with the specimen as the probe “taps” along the surface 
because it functions at resonance, which results in a less harsh engagement with the 
surface. This helps to maintain the tip’s sharpness. Additionally, the torsional forces 
in between probe and the sample are reduced in this type of contact. These forces 
are accentuated in static imaging mode. 

6 Selected Area Electron Diffraction 

A crystallographic experimental technique known as the selected area electron 
diffraction (SAED) pattern may be used within a TEM to analyze crystal defects 
and identify crystal structures [20]. Comparable to X-ray diffraction, but different 
in that it may analyze regions as tiny as few hundred nanometers, whereas X-ray 
diffraction normally examines regions that are around centimeters in size. One of 
the most widely utilized experimental methods in the domains of solid-state physics 
and material research is the SAED. The electron beam illuminates a sizable portion 
of the sample in SAED, but not all of the lighted region contributes to the pattern. 
Following the sample, an aperture places a limit on the diffracting region. Only that 
portion of the aperture—which is in a plane conjugate to the sample—contributes 
toward the diffraction pattern. Two types of interactions between the sample and the 
beam happen when a sample is added: (a) elastic scattering and (b) inelastic scat-
tering. Electrons are diffracted into well-defined paths at set angles with regard to the 
incident electrons if the sample is crystalline, as we will assume for the time being. 
This elastic scattering then takes the form of Bragg reflection. As a result, in SAED, 
the diffraction pattern is made up of a collection of distinct spots, each of which is 
spaced off from the direct beam by a vector dictated by the crystal structure. 

6.1 Inelastic and Diffuse Scattering 

It is not necessary for electrons scattered in a sample by inelastic or diffuse scattering 
mechanisms to fall in positions directly according to the incident beam’s direction. 
As the name “diffuse” implies, they can be dispersed in all directions. The area 
contributing to an SAED pattern is not simply defined by the size of the area-selecting 
aperture. There is also a fundamental constraint connected to the objective lens’s 
spherical aberration coefficient [8–15]. Although this limit will be determined by both 
the objective lens’s characteristics and the camera’s length (the range of diffraction 
angles included in the pattern), the smallest area that can be investigated using SAED 
is typically thought to be one meter in diameter. A thin crystalline sample is exposed
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to a parallel high-energy electron beam in a TEM. Since TEM samples are typically 
only 100 nm thick and electrons have an energy range of 100–400 kV, the sample 
is easily penetrated by the electrons. Depending on the sample’s crystal structure, a 
portion of these will be scattered at specific angles, while the remainder will pass 
through the material undisturbed. The electron beams will all be stopped by inserting 
a specified area aperture strip, which is positioned below the sample holder on the 
TEM column, with the exception of the small portion that passes through to contribute 
to a diffraction pattern on the screen. The diffraction pattern that results is then 
captured on photographic film or with a CCD camera. Single crystals, polycrystals, 
and amorphous materials are the three forms of solid matter that can affect diffraction 
patterns; 

(a) Atoms are aligned in an organized lattice to form single crystals. Spot patterns 
are created by an electron beam traveling through a single crystal. The type of 
crystal structure, such as FCC or BCC, as well as the “lattice parameter” (i.e., the 
separation between adjacent (100) planes) can be identified from the diffraction 
spots. Additionally, the single crystal’s orientation can be identified since the 
spot diffraction pattern will revolve predictably around the center beam spot if 
the single crystal is twisted or flipped. 

(b) Materials with polycrystalline structure contain a lot of tiny single crystals. A 
polycrystal’s smallest single crystals will randomly distribute among all of the 
potential orientations. Therefore, a polycrystal will generate a diffraction pattern 
similar to that generated by a beam traveling through a number of single crystals 
with different orientations. As a result of numerous spots being very close to one 
another at different rotations around the center beam spot, a series of concentric 
rings are created. Each circle represents a unique set of Miller indices, such as 
a plane. Additionally, the kind of crystal structure and the “lattice parameter” 
can be ascertained from the diffraction rings. However, because the ring pattern 
does not vary, it is impossible to determine the orientation of a polycrystal by 
tuning or flipping the polycrystal. 

(c) Atoms in amorphous materials are not placed in ordered lattices, but rather at 
random locations. Amorphous materials are hence totally disorganized. On the 
fluorescent screen, there will be fuzzy rings of light that represent the electron 
diffraction pattern. 

Using the following equations, a significant phase of the nanomaterial can be 
determined by indexing the diffraction pattern: 

The Bragg law for small angles roughly corresponds to 

λ = 2dθ. (3)
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From the figure, 

R/L = 2θ. (4) 

Therefore, 

R/L = λ/d (5) 

λL = Rd, (6) 

where L is the image recording’s TEM camera length. The amount of Lλ is frequently 
referred to as the microscope’s “camera constant”. On the diffraction pattern, “R” 
denotes the radius of every ring or the separation between a diffraction spot and the 
direct beam spot, and “d” stands for the phase’s lattice constant. In most samples, in 
between the Bragg peaks, the diffuse scattering has no structure (simply a reduction 
in intensity as we move away from the elastic peaks). However, there is a pattern in 
the diffused scatter of some samples with specific types of disorder that can provide 
information about the sample’s state [21–29]. 

7 Energy-Dispersive X-Ray Spectroscope 

The composition of the sample affects the energies and relative abundances of the 
X-rays that are produced when electrons of the right energy impact a sample. The 
term “microanalysis” refers to the process of using this phenomena to determine the 
elemental composition of microscopic volumes (between one and several hundred
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cubic micrometers) [30]. Chemical characterization is the primary use of energy-
dispersive X-ray spectroscopy (EDX or EDS), an analytical instrument. It is a sort of 
spectroscopy that depends on examining a specimen through interactions among light 
and matter, in this case through studying X-rays [31]. X-rays are produced when a 
high-intensity beam of electrons (in a TEM or SEM) collides with the substance to be 
studied. The elemental makeup of the specimen surface may be identified and studied 
using these X-rays, which can be detected using a Si-Li detector and calibrated in 
relation to cobalt metal emission (6.925 keV). Its ability to characterize is largely a 
result of the fundamental idea that every element in the periodic table has a distinct 
electronic structure and, consequently, a distinct reaction toward electromagnetic 
waves [32, 33]. Figure 5 depicts the schematic representation of the X-ray emission 
mechanism. First, an electron is ejected out of an inner shell of a sample atom by 
an electron from, let us assume, a scanning electron microscope. An electron from 
the atom’s higher-energy shell then fills the ensuing vacancy. This vacancy-filling 
electron is forced to surrender part of its energy, which manifests as electromagnetic 
radiation, in order to “drop” to a lower-energy state. Therefore, the energy of the 
radiation that is released is precisely equivalent to the difference between two relevant 
electronic states. For inner shells, such energy difference is quite considerable; hence, 
the radiation manifests as X-rays. 

The pulse is then translated into a numerical value in relation to the incoming X-
ray energy by an analogue to a digital converter. Once the signal has been allocated 
to a certain energy channel, it is counted as one. The result of counting is an energy-
dispersive spectrum. The initial vacancy’s shell is used to label each of the emission 
lines connected to X-rays that an atom emits, such as K, L, and M. The electron 
shell that fills the gap is often denoted with a Greek letter subscript. K radiation, for 
instance, is radiation that develops when an electron out from the highest shell fills 
a hole in the K-shell. An electron from K implies a vacancy in the K-shell that has 
been filled from the two shells above. 

The order and energy of X-rays are governed by a few fundamental laws:

Fig. 5 Electronic transitions among inner atomic shells serve as the foundation for X-ray micro-
analysis. An orbital electron from a low-energy shell is displaced by an energetic electron out of an 
electron column (E1). In order to fill the vacancy, an electron from such a shell with a higher energy 
must first lose energy. The lost energy manifests as radiation with the energy signature E2–E1 
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(a) The lower line series has more energy for a given element; such that, the overall 
energies of the K lines are higher than that of the L lines. 

(b) The elements in such a line series with more atoms radiate X-rays with higher 
energy. Thus, the energy of the oxygen K lines is greater than that of the carbon 
K lines. 

(c) The structures of the lower line series are simpler than those of the higher line 
series; for example, the K lines are simple, but the L and M lines become more 
complicated and begin to overlap. 

Almost a real-time visual depiction of the chemical analysis may be obtained 
from the EDX spectrum, which can be recorded over brief time intervals and shown 
practically instantaneously. While quantitative analysis uses peak intensities to calcu-
late the relative quantity of the elements in a sample by comparing them to other 
elements in the spectra or to values, the qualitative analysis uses distinctive peaks in 
the spectra to identify the components present in a sample. It has a dynamic range 
from the smallest detection limit to 100% with relative accuracy of 1–5% across the 
entire range, is sensitive to very low concentrations, and has minimum detection limits 
that are frequently less than 1% and below 0.1% in the best circumstances. In most 
circumstances, the method is essentially non-destructive, and sample preparation 
requirements are quite low [34]. 

8 X-Ray Photoelectron Spectroscope 

One of the most popular surface analysis tools in use today is the X-ray photo-
electron spectroscope (XPS), which is more accessible to researchers due to its 
user-friendly design. A surface-sensitive analytical method called X-ray photoelec-
tron spectroscopy bombards a material’s surface with x-rays and then measures the 
kinetic energy of the electrons that are released. The surface sensitivity and capacity 
to extract information about the chemical states of the sample’s constituent compo-
nents are two of this technique’s key strengths that make it effective as an analytical 
approach. Almost every material, including plastics, textiles, and semiconductors, 
has had its surface studied using XPS, which can detect all elements with the excep-
tion of hydrogen and helium. Every material has a surface, and it is these surfaces 
that affect how different materials behave. Surfaces and surface contamination affect 
several factors, including surface wettability, adhesion, corrosion, charge transfer, 
and catalysis. For this reason, researching and comprehending surfaces is crucial. 

8.1 Working Principle 

In XPS, the sample is exposed to soft x-rays with energies below 6 keV, as well as the 
kinetic energy of the released electrons is measured (Fig. 6). The full transmission



Biosensor: Tools and Techniques for Characterization and Analysis 41

of x-ray energy to an electron at the core produces the photoelectron that is released. 
The mathematical representation of this is 

hν = BE + KE + Φspec. (7) 

It simply says that the x-energy ray’s Energy (hv) is defined by the binding energy 
(BE) of an electron, its kinetic energy (KE), which is released, and the constant value 
of the spectrometer’s known as work function (Φspec). The element and orbital in 
which the photoelectron was emitted are noted on photoelectron peaks. For instance, 
“O 1 s” refers to electrons that leave an oxygen atom’s 1 s orbital. The sample should 
emit any electrons with binding energies lower than the energy of the x-ray source 
so that they may be seen using the XPS method. An electron’s binding energy is a 
characteristic of the material and is unaffected by the x-ray source that ejected it. 
The binding energy of photoelectrons does not change when tests are conducted with 
various x-ray sources, but the kinetic energy of the photoelectrons that are released 
does, based on the energy of the X-ray used [34–36]. 

Finding out the chemical environment of the atoms in a sample is one of XPS’s key 
advantages over other methods. The element’s oxidation state and closest neighbors 
are two aspects of this chemical environment that have an impact on the photoelectron 
peaks’ binding energy (and the Auger peaks). 

Figure 7 depicts the logical parts of an XPS instrument. A region of a sample is 
illuminated by X-rays, which causes electrons to be expelled from it at a diversity of 
energies and orientations. The electron optics, which can be a group of electrostatic 
or magnetic lens units, gather a percentage of the released electrons determined by 
the rays that can be focused onto the analyzer entry slit and passed via the apertures. 
Electrons with a certain beginning kinetic energy are measured by adjusting volt-
ages for such lens system which focus onto the entry slit that needed starting energy 
electrons and slows their velocity such that its kinetic energy upon going through

Fig. 6 Fundamental XPS equation is graphically illustrated in the energy level diagram 
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Fig. 7 Diagram depicting the instrumentation of the X-ray photoelectron spectrometer (Figure 
taken from the public domain: https://en.wikipedia.org/wiki/X-ray_photoelectron_spectroscopy) 

the electron collecting lenses equals the required pass energy of the analyzer. It is 
important to scan the voltages supplied to these lenses in order to obtain a spec-
trum spanning a variety of initial excitation energy. The set of lens functions is the 
prescription for these lens voltages. Typically, the acquisition system’s configuration 
files provide information on these lens functions. These lens functions are crucial to 
a spectrometer’s ability to efficiently sample electrons, and an instrument’s perfor-
mance might suffer if the lens functions are not appropriately calibrated. It is vital 
to describe an instrument using a suitable transmission function for every one of the 
lens modes as well as energy resolutions since even in well-tuned equipment, the 
collection efficiency differs across the various operating modes. 

9 Ultraviolet/Visible Absorption Spectroscope 

Light in the visible and nearby near ultraviolet (UV) bands is used in ultravi-
olet/visible spectroscopy or UV/VIS. Molecules have electronic transitions at these 
wavelengths [37]. In this method, the sample being studied is illuminated, with part 
of the light being absorbed by the specimen. The sample must thus be thin enough 
for some light to pass through it. Another consideration is that the sample needs to 
be mounted on a support material that is transparent for the light wavelengths being 
employed, such as quartz. The valence electrons of the material are driven from its 
ground states to higher-energy excited states whenever visible or ultraviolet light is 
absorbed by the substance (Fig. 8). In electronic transitions, the orbitals’ energies 
have fixed values. It is noted how much the starting and final intensities differed. 
The Beer–Lambert law, which is used to plot wavelength versus absorbance in a 
spectrum, defines absorbance as

https://en.wikipedia.org/wiki/X-ray_photoelectron_spectroscopy
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Fig. 8 Example of how electronic transition happens when light is absorbed 

A = −  log10(I /I0), (8) 

where A is the determined absorbance, I0 is the intensity of the incoming light at a 
certain wavelength, and I represents the transmitted intensity. The typically measured 
range of absorbance upon that vertical axis of most spectrometers is between 0 
(100% transmittance) and 2 (1% transmittance). Maximum absorbance is indeed a 
characteristic value with the prefix λmax. 

The least energy between the filled-in valence band and the vacant conduction 
band in a crystal is the band gap. The E04 band gaps and also the Tauc optical band 
gap are the two most widely used definitions. When the absorption coefficient is 
equal to 104 for a photon, the E04 band gap is calculated. Extrapolating from a plot 
of (αE)(1/2) against photon energy, one may get the Tauc gap. The magnitude of the 
Tauc optical gap is given by the intersection of this line with the energy axis [38, 39]. 
The absorbance variations of the thin film that was deposited were observed in this 
work using a UV/visible spectrophotometer (Cary 100, Japan). The reference film of 
glass was used to monitor the absorbance of the deposited nanocrystalline thin film. 

10 Electrochemical Impedance Spectroscope 

Early on in the twentieth century, electrochemical impedance spectroscopy (EIS) 
tests were performed largely to gauge the capacitance of a mercury electrode, which 
is an ideal polarizable electrode. An electrochemical method first appeared in the late 
1960s, but measurements of the whole impedance spectra were not achieved until 
about the 1970s, when potentiostats had gained broad use. For comprehending elec-
trochemical systems, the EIS is a potent tool. Briefly stated, this approach includes 
determining the cell impedance in response to a tiny (−5 mV amplitude) AC signal at 
any constant DC potential, at frequencies generally ranging from 5 kHz to 10 Hz (thus



44 S. S. Bhande and S. Bhosale

the term impedance spectroscopy) [40]. It is possible to evaluate and qualitatively 
assess a number of processes, such as the charge transport in the electrode and elec-
trolytes, interfacial charging at the surface films or the double-layer, charge transfer 
processes, and the mass transfer effects, if any, using a measured cell impedance as in 
the form of real and imaginary components and phase angle. These various processes 
involve various time constants, and as a result, the characteristics of these processes 
will manifest in the EIS spectrum at various frequencies [41]. An electrochemical 
cell (the system being studied), a potentiostat/galvanostat, and a frequency response 
analyzer (FRA) make up a standard electrochemical impedance experimental setup. 
FRA is a single-sine approach that involves applying the working electrode with a 
modest AC wave of 5–15 mV of a chosen DC bias voltage and measuring the AC 
current that results. By scanning the frequency and calculating the impedances using 
the AC voltage and current data at specified frequencies, this procedure is repeated. 
As seen in Fig. 9, the electrochemical cell in an impedance analysis can have three 
electrodes. The electrode being studied is typically referred to as the working elec-
trode, and the electrode required to complete the electrical circuit is referred to as 
the counter electrode. 

Typically, a liquid electrolyte is submerged behind the electrodes. There may be 
no electrolyte or solid electrolyte in solid-state systems. For conventional electro-
chemical applications, a cell with three electrodes is most frequently used [42]. To 
correctly calculate the working electrode’s potential, a third electrode referred to 
as the reference electrode is needed. Since it is impossible to determine the precise 
potential of a single electrode, all potential measurements in electrochemical systems

Fig. 9 Three-electrode configuration for EIS measurement 
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are made in relation to a reference electrode. Therefore, the reference electrode should 
be reversible and its potential should not change during the measurement. 

The majority of corrosion experts have tried to use different analogue circuit 
element combinations to investigate impedance spectra. The following can be used 
to outline the arguments in favor of this method: 

(a) Corrosion of alloys and similar conductive materials is an electrochemical 
degradation process driven by kinetics and thermodynamics. 

(b) In real-life complicated and frequently poorly described systems that are 
typically encountered, this chemistry is frequently challenging to understand. 

(c) Analogous circuit components let corrosion practitioners fill up knowledge gaps. 
(d) Because of this bridging, electrochemical impedance spectroscopy can predict 

corrosion rates and processes in systems with limited information. 

Capacitor, resistor, and inductor are common components in the particular circuit 
components. 

Corrosion is an electrochemical reaction involving molecules and ions, which is 
one aspect that cannot be emphasized enough. The elements of similar circuits offer 
a means of simulating and explaining the corrosion process. They are not a part of the 
actual corrosion process. A parallel combination of a resistor and capacitor in series 
with a resistor in series as an illustration of a straightforward circuit can simulate a 
very passive alloy (such as titanium in water). This circuit is illustrated in Fig. 10a 
[43]. 

As seen in (Fig. 10b), a Nyquist plot results from plotting the real component 
of impedance versus the imaginary part. Nyquist representation has the benefit of 
providing a fast summary of the data and allowing for some qualitative conclusions. 
To avoid distorting the curve’s shape when plotting results in the Nyquist format, the 
real and imaginary axes must be equal. When interpreting the data qualitatively, the 
curve’s form is crucial. Losing the data’s frequency dimension is a drawback of the 
Nyquist representation. The frequencies on the curve can be labeled as one method 
of solving this issue. The advantages of these techniques embrace the following [44]:

a b  

Fig. 10 a Electrochemical equivalent circuit and b a typical Nyquist plot where Rp is polarization 
resistance and Rs is solution resistance 
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(a) Since the applied polarization is low enough to preserve linear polariza-
tion circumstances—that is, conditions where polarization rises linearly with 
current—and since the rate equations are simplified as a result, it is non-
destructive. 

(b) Quick and simple measuring techniques that are currently feasible thanks to the 
development of computer-controlled equipment like potentiostats and frequency 
response analyzers and the corresponding software, which greatly simplify data 
collection and subsequent analysis. 

(c) This method is simple to use and can be managed the simplest using a laboratory 
computer. 

On the other hand, the weakness of this approach is mostly due to the difficulty in 
interpreting the data, imagining an appropriate electrical equivalent circuit to repre-
sent the electrochemical system, and quantitatively calculating the pertinent elec-
trical parameters that would assist and comprehend the response of the system. This 
method has been used in the past with many electrochemical systems. In particular, 
it has been used to comprehend how (neutral) molecules and passive films adhere 
to electrode surfaces, evaluate the effectiveness of corrosion inhibitor coatings, and 
track the performance of energy conversion technologies like batteries and fuel cells. 
This method for non-destructively estimating the level of charge in batteries has been 
employed effectively in several systems. This method has been used to assess the 
ionic conductivity of electrolytes or thin polymer films as well as the rates of elec-
trochemical processes, such as corrosion currents. This method allows researchers to 
look into the surface films that have an impact on the lithium primary cell’s voltage 
delay and shelf-life properties. 

11 Fourier Transform-Infrared Spectroscopy 

The FT-IR analysis of synthesized samples was done to confirm metal–oxygen bond 
stretching vibration. 

11.1 Working Principles 

Infrared electromagnetic radiation is absorbed in this process, resulting change in the 
vibrational energy of molecules. Every molecule will typically be vibrating in some 
way, usually by stretching and bending. The energy that is absorbed will be used to 
alter the associated energy levels. It is an effective and powerful tool for determining 
inorganic and organic compounds with polar chemical bonds (like OH, NH, CH, 
etc.) and good charge separation [45].
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11.2 Instrumentation and Working 

Fourier transform-infrared spectrometer is shown in Fig. 11. source (a red-hot 
ceramic material), a monochromatic grating, a thermocouple detector, and cells made 
of sodium chloride- or potassium bromide-containing materials, among other compo-
nents. The light of monochromatic is dispersed in this process. However, this sort 
of fundamental IR measuring architecture is now out of date. Fourier transform-
infrared (FT-IR), a more recent approach, has been used in place of the old one. The 
instrument parts for this method are identical to those of the preceding one, and it 
uses a single, undispersed beam of light. In FT-IR, the sample is illuminated by an 
undispersed light beam, and the detector concurrently detects absorbance across all 
wavelengths [46]. This data is subjected to an automated mathematical operation 
known as the “Fourier transform” in order to acquire absorption information across 
every other and every wavelength. The FT-IR apparatus has two mirrors, one fixed 
and one mobile, with or without scanning the sample, in order to do this, sort of 
computation interference of light pattern is necessary. A relatively new advancement 
in the way data is gathered and transformed from an interference pattern to a spectrum 
which is known as Fourier transform-infrared spectroscopy (FT-IR). 

Fig. 11 Schematic representation of the FT-IR spectrophotometer
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12 Zeta Potential 

The charge that forms at the boundary between the solid surface and its liquid 
medium is known as the zeta potential. In other words, an important fundamental 
characteristic that is known to influence stability is known as zeta potential, which 
is a measurement of the strength of the electrostatic interaction between particles. 
This millivolt (mV) potential can develop as a result of many causes. This might 
involve the surface ionogenic groups dissociating and the surface area being selec-
tively adsorbed with solution ions. The concentration of counterions adjacent to the 
particle surface increases as a result of the net electric charge at the particle surface, 
which also affects the ion distribution in the vicinity of the particle. The potential of a 
particle measured at its sliding plane while it is being affected by an external electric 
field is known as the zeta potential. It represents the potential discrepancy between the 
aqueous, inorganic, or organic layer surrounding the electrophoretic mobile particles 
at the sliding plane and the electric double layer surrounding them. A particle in solu-
tion creates its electric double-layer surface, which consists of two layers, instantly. 
The inner layer, or the Stern layer, is made up of particles with opposing charges 
that are strongly connected to the center of the core particle. A diffusive layer made 
up of both molecules and ions with opposing and similar charges makes up the next 
and outermost layer. The particles travel to the opposing electrode when the sample 
is exposed to an electrical field. While in the electrical field, a hypothetical plane 
within the diffuse layer serves as the interface between the layer of the surrounding 
dispersion and the moving particles. The zeta potential is present at this particle– 
fluid interface, and this plane serves as the typical shear plane [47, 48]. Charged 
particle electrophoretic mobility in an applied electric field is used to quantify the 
zeta potential. As a result, the area of the particle–liquid interface forms an electrical 
double layer. It can be used to enhance the formulation of dispersions, emulsions, 
and suspensions because its measurement provides an in-depth understanding of the 
causes of dispersion, aggregation, or crystallization and emulsification. 

12.1 Zeta Potential in Electrophoresis 

According to the definition of electrophoresis, it is the movement of charged poly-
electrolytes or colloidal particles submerged in a liquid under the effects of an external 
electrical charge (shown in Fig. 12). In this scenario, the electrophoretic velocity, ve 
(ms−1), is the speed of the electrophoresis, and the electrophoretic mobility, ue (m 
2 V −1 s −1), is the velocity magnitude divided by the electric field strength. If the 
particles are moving in the direction of a lower potential, the mobility is positive; 
otherwise, it is negative. Thus, we obtain the equation ve = ue E, where E is the 
electric field that is applied externally. In the electrophoresis case, the formula for 
zeta potential is as follows: εrs = relative permeability of electrolyte solution; ε0 is 
the electric permittivity of vacuum, ζ represents zeta potential, and η is the viscosity.
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Fig. 12 Ray diagram of laser Doppler electrophoresis representing its mechanism (courtesy: Horiba 
Scientific) 

ue = εrsε0ζη  − 1 (9)  

ve = εrsε0ζηE − 2 (10)  

Colloid particle stability behavior with regard to zeta potential. 

Zeta potential Stability of the particles 

0 to  ± 10 Speedy coagulation 

10 to ± 30 Initial stability 

30 to ± 40 Modest stability 

40 to ± 60 Good stability 

Greater than ± 61 Outstanding stability 

13 Surface Plasmon Resonance Spectroscopy 

In order to create the most effective and widely used optical biosensor, surface 
plasmon resonance (SPR) sensing has emerged as one of the most adaptable 
approaches. 

In addition to being widely used in the identification of chemical and biolog-
ical analytes, SPR biosensors have emerged as a key instrument for examining the 
kinetics of biological molecule interactions [49]. In addition, by combining the SPR 
method with an imaging system, one may easily perform high-throughput and real-
time tag-free biosensing in two-dimensional (2D) microarray analysis and parallel 
monitoring of many biomolecular interactions. Oscillations in charge density at the 
interface in between metal and a dielectric produce the visual phenomena known as 
the SPR. At the interface of the research media, such collective oscillation of the 
metal’s electron gas produces extremely strong and tightly contained electromag-
netic fields. The SPR is also responsible for other phenomena, such as the vivid hues
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of metallic colloids, which corresponds to the entire reflection in thin metal sheets, 
and diffraction abnormalities in metal gratings. In recent years, these phenomena 
have captured the interest of researchers, deepening our understanding of the inter-
action between light and metal. We can distinguish between two main classes of 
SPR sensors based on whether the surface plasmon resonance is spreading or local-
ized. The surface plasmon polaritons (SPPs), which are detectors relying on moving 
surface plasmons in thin metallic sheets and gratings, make up the first category. The 
second category consists of metal nanostructure-based sensors. Metal nanostructures 
show charge density oscillations that result in extremely strong and restricted elec-
tromagnetic fields, just as flat metal films and gratings. The term localized surface 
plasmon resonances (LSPRs) is frequently used to describe these excitations. It has 
been widely utilized in recent years to measure the specificity, affinities, and kinetic 
characteristics of the binding of macromolecules, including protein–protein, protein– 
DNA, receptor–drug, as well as cell/virus–protein bindings [50]. Four practical SPR 
sensing methods, including intensity, wavelength, angle, and phase investigations, 
have received a lot of attention to date [51]. The shift of the SPR dip is converted 
into a change in reflectivity in the linear section of the SPR angular/spectral response 
curve in the intensity probing SPR. The SPR spectral profile can be acquired in the 
wavelength investigation mode by scanning the incident wavelength or by exam-
ining the reflected beam with a spectrometer. The SPR angular spectrograph may be 
continuously scanned in the angular investigation mode to track the shift of the SPR 
dip. By identifying the phase difference in between the signal beam and the reference 
beam, the SPR phase shift may be determined in the phase investigation mode. 

The surface plasmon resonance (SPR) biosensor provides unique real-time and 
label-free measuring abilities with high detection sensitivities, making it an effec-
tive tool for exploring the kinetics of inter biomolecular reactions (Fig. 13). SPR 
technology had also been widely commercialized over the last several decades, and 
significant technical work has been done to constantly enhance its performance. The 
advancement of SPR techniques is concentrated on the identification of the samples’ 
portability, sensitivity, and speed. In order to detect chemical and biological ionic 
species with high throughput, real-time, and high sensitivity, numerous attempts have 
been done. The significant improvements in nanotechnology have led to several novel 
concepts incorporating nanoscale structures in SPR sensing that have surfaced more 
lately. In order to monitor interactions between tiny molecules, new SPR approaches 
have emerged that are based on the aforementioned concepts.

14 Dynamic Light Scattering 

For determining the size of particles in suspensions and emulsions, dynamic light 
scattering (DLS) is indeed a trusted and accurate measuring technique. It is based on 
Brownian particle motion, which explains why smaller particles move more quickly 
in a medium than bigger ones. The size distribution may be seen from the informa-
tion on diffusion speed included in the light dispersed by the particles. Dynamic light
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Fig. 13 Sketch diagram 
representing an SPR sensor. 
(Image taken from Twitter 
Creative-Biolabs 
@creativebiolabs dated May 
21, 2021, ProteOn™ XPR36 
protein interaction array 
system)

scattering enables the analysis of particles in a size range from 0.3 nm to 10,000 nm. 
Laser diffraction (LD) techniques often reach their limits for particles smaller than 
100 nm due to the weak signal and the low angular variance in the scattering signal. 
It is a technique suited to the analysis and characterization of nanoparticles. Other 
few advantages include measurements of both highly concentrated and highly dilute 
samples, and the ability to determine zeta potential, molecular weight, and concen-
tration, which is inbuilt into many analyzers of today’s modern instrumentation. The 
dynamic light scattering technique measures motion optically by recording the scat-
tered light signal at a fixed angle thus giving an advantage of non-destructive sample 
characterization. A coherent, monochromatic light source (LASER) is used to illu-
minate the particles, and the light reflected by that of the particles is then captured on 
camera. The analysis of the light dispersed as a result of light’s interaction with matter 
provides details on the sample’s physical properties. Typically, a monochromatic 
beam is focused onto the sample in light scattering tests, and a detector subsequently 
captures the dispersed light at a specific angle. When comparing the more uniform 
light scattering through each angle for tiny particles (Rayleigh theory) with the vari-
ations in the light scattering across various detection angles from bigger particles 
(Mie theory). 

When light is detected using static light scattering, its intensity is averaged over 
time, and from this we may determine the molecular weight of the particle as well 
as its radius of gyration (Rg). However, dynamic light scattering (DLS) allows for 
the determination of the diffusion coefficient (D), which itself is related to the 
particle’s hydrodynamic radius (Rh) via the Stokes–Einstein equation by monitoring 
the variations in light intensity over time as a result of particle Brownian motion [52].
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D = κbT/6πηRh (11) 

where Boltzmann constant is κb (1.380 × 10−23 kg · m2 · s−2 · K−1) and T and η 
represent absolute temperature and viscosity of the medium, respectively. 

Particle diffusion is influenced by temperature, medium viscosity, and particle 
size, as seen in Eq. (11). DLS calculates the amount of light that has been dispersed 
over time. When the intensity is interrelated over time, the scattered intensities are 
initially comparable, but with time they become less similar as a result of the move-
ment and aggregation of the particle. The photon correlation then deteriorates at 
early stages of the experiment, and the diffusion is quicker for tiny particles. The 
closeness of the intensities over time does, however, endure for longer durations 
since massive particles diffuse relatively slowly; hence, the photon correlation takes 
longer to fade. With regard to time spans (on the ns and μs timeframes), a digital 
correlation monitors intensity fluctuation and associated correlation. A normalized 
integration of such intensities at the start and a delayed time τ make up the measured 
parameter [53, 54]. 

g2(τ ) = 〈I (t) · I (t + τ)〉/〈I (t)2〉 (12) 

Figure 14 depicts a DLS instrument’s fundamental configuration. The sample 
within a cuvette is targeted by a laser with a single frequency. The incoming laser 
light is dispersed widely if there are any particles in the sample. The Stokes–Einstein 
equation uses the signal from the scattered light, which is monitored over time at a 
certain angle, to calculate the diffusion coefficient and particle size. A gray filter is 
frequently positioned in between the laser and the cuvette to reduce the incoming 
laser light. The user can manually set the filter parameters or the instrument will 
automatically modify them. When measuring turbid samples, the detector would not 
be able to handle the number of photons. In order to get an adequate yet manageable 
signal at the detector, the laser light is attenuated. 

For measuring particle size, modern DLS equipment has two or three detection 
angles. Depending on the sample’s turbidity, side scattering (90 degrees) or backscat-
tering (175 degrees) is preferable. Aggregation can be observed at a forward angle 
of 15°. The dispersed light signal’s temporal variation is significant since it provides 
insight into the motion of the particles. The fluctuations are caused by the fact that

Fig. 14 Representation of the DLS instrument with a ray diagram and important components along 
with an intensity-time graph with particle size 
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the particles scattering the light move relative to each other, resulting in constantly 
changing interferences within the total scattered light. As a result of the particles’ 
position or velocity being dependent on time, the light dispersed by them contains a 
few small frequency changes. Measured over time, motion causes a distribution of 
frequency shifts. These shift frequencies can be determined by comparison with a 
coherent optical reference. In dynamic light scattering, the shift frequencies are on 
the scale of 1 Hz to 100 kHz, which can be easily measured. 

15 Nuclear Magnetic Resonance 

NMR spectroscopy is a physicochemical investigation technique based on the 
interaction of radiofrequency radiation delivered externally with atomic nuclei. 
Nuclear spin, an inherent feature of atomic nuclei, changes as a result of the net 
energy exchange that occurs during this interaction. A physicochemical method 
known as nuclear magnetic resonance (NMR) spectroscopy is used to determine a 
molecule’s structural information. Isidor I. Rabi’s 1938 demonstration of the physical 
phenomena of magnetic resonance serves as its foundation. The very first efficient and 
effective studies of NMR in condensed matter were acquired separately in the 1940s 
by two research teams. For pioneering contributions to the discipline of magnetic 
resonance, the two leading researchers of these teams, Stanford University’s Felix 
Bloch and Harvard University’s Edward M. Purcell, shared the 1952 Nobel Prize 
in Physics [54–57]. Ever since, NMR has advanced alongside other fields of tech-
nology, including rapid Fourier transform-capable computers/workstations, effec-
tive spectrometer management, and reliable high superconducting magnets. Due to 
the characterization technique’s restrictions and technical shortcomings, NMR was 
only very infrequently employed for solid materials up until the previous decade. 
However, the enhancements in magnetic angle spinning (MAS)-induced spectrum 
resolution have made NMR a crucial tool for examining the local structure of solid 
materials. By using magnetic field gradients, NMR may deliver spatial informa-
tion. NMR spectroscopy developed in the modern age with developments in many 
other disciplines, but may not be confined to mathematics, physics, and informatics. 
Superconducting magnets and computers were both introduced into NMR equip-
ment in the 1960s, which allowed for a significant increase in sensitivity as well as 
the creation of novel NMR experiments and apparatus. As a result, researchers have 
created several cutting-edge approaches to examine complicated systems, including 
membrane proteins, metabolically highly complicated materials, and even biological 
tissues. One of the most effective methods for determining the structures of chem-
ical species as well as for researching molecular dynamics and interrelations is NMR 
spectroscopy [58, 59]. 

As nuclear spin behavior is the focus of NMR, nuclear spin is described by a 
quantum number (I), which changes depending on the isotope under consideration. 
NMR spectroscopy can only identify atomic nuclei with I /= 0. (NMR-active nuclei, 
such as 1H, 2H, 13C, and 15N). These magnetic nuclei that exhibit NMR activity
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behave like small magnets or magnetic dipoles and can align with applied magnetic 
fields from the outside. The gyromagnetic ratio (γ ), whose value varies depending 
on the isotope, is a constant that describes the force emitted by the small magnets 
[60–63]. Every element’s nucleus is charged; therefore when protons and neutrons 
inside the nuclei do not couple up, the total spin of the nucleus produces a magnetic 
dipole along the spin axis. The size of this dipole, also known as the nuclear magnetic 
moment, is a fundamental characteristic of the nucleus. The internal geometry and 
structure influence how charges are distributed in the nucleus symmetrically. I = 
1/2 is the spin angular momentum number for spherical distributions, such as the 1 s 
hydrogen orbital. This means that the magnetic moment magnitude in a certain direc-
tion can have two equal and observable values that correspond to the spin quantum 
numbers + 1/2 and − 1/2. Accordingly, any nucleus submerged in a magnetic field H 
along the z-axis may be regarded as oriented either alongside the field (Iz = −  1/2) or 
just against it (Iz = + 1/2). The synchronization along the field is a good energy state. 
Energy disparity (ΔE) between the states grows linearly with the applied magnetic 
field (H), orΔE = γℏH, where ℏ = h/2π and h is Planck’s constant, γ = proportion-
ality constant (gyromagnetic), which varies depending on the kind of nuclei (1H, 2H, 
13C, etc.). Higher spin numbers are also found in nuclei with non-spherical charge 
distributions, such as the hydrogen 3d orbital. The alignment of magnetic dipoles 
of NMR-active nucleus in S (S = 2I + 1) orientations or spin states, relative to 
the field, occurs in response to the application of an external magnetic field (B). 
Quantum mechanics has a limit on this alignment. The nucleus in question rotates 
with frequency n and may be expressed as follows: 

v = μβN β0/hI (13) 

where μ represents the nucleus magnetic moment and βN as nuclear magneton 
constant. The gyromagnetic ratio (γ ) can be expressed as 

γ = 2πμβn/hI. (14) 

By simplifying the above equation, we get 

v = γβ0/2π. (15) 

When some NMR-active nuclei align with an external magnetic field, their nuclear 
spins can take on two distinct orientations (B0). The least energy level of the nucleus 
is related to one orientation (parallel to the externally applied magnetic field), while 
the greatest energy level is connected to the opposite orientation (antiparallel to the 
externally applied magnetic field) (Fig. 15a). The gyromagnetic ratio (Eq. 14) and 
the magnetic field both alter the disparity between energy levels (E), which has an 
impact on the technique’s sensitivity.

When radiofrequency is used to irradiate nuclei, magnetic resonance is produced. 
Nuclear spins’ orientations shift as a result of these transitions between energy levels. 
The magnetic vector (μ) connected to the nuclear magnetic dipoles as a result of
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Fig. 15 Sample’s nuclear spin orientations (parallel and antiparallel) in accordance with the path 
of an externally applied magnetic field B0 (left panel). The two potential energy levels in nuclei 
with I = 1/2 and the dispersion of nuclear spin populations in those levels (right panel)

this precession movement has a component parallel to the magnetic field (μz) and 
other perpendiculars to the magnetic field (μxy), with the latter consisting of a net 
zero value in the absence of external disturbances. Since the magnetic field is too 
strong in the z direction, it is simply not possible to analyze the signal in an NMR 
experiment. As a result, the z component’s magnetization must be transferred toward 
the xy plane. In order to do this, a magnetic pulse perpendicular to B0 is delivered that 
has frequencies near the Larmor frequency in order to resonate nuclear spins, which 
produces a nonzero μxy component. Following this pulse, there occurs a relaxation 
phase, and the μxy component eventually regains its overall zero value (Fig. 16b). 
This relaxation causes energy to be released as radiofrequency, creating the distinctive 
signal known as free induction decay (FID), which is detected by the detector. This 
FID is then converted into an NMR spectrum, which is a graph of intensities vs 
frequencies [64, 65]. Distinct spin states have distinct energy levels, and photons of 
RF frequency can bridge these levels. Promotions between spin states (Fig. 16) take  
place whenever the incident frequency precisely matches the resonance frequency. 
Furthermore, the excited nuclei might relax into lower spin states by a process known 
as spin flipping [66]. The two most common processes for relaxing excited nuclei 
are spin–lattice and spin–spin relaxation. They are both non-radiative processes. An 
excited nucleus’ energy is transferred to an electromagnetic vector during spin–lattice 
relaxation (like a polar solvent molecule, the intramolecular group goes through 
vibrational–rotational processes). In contrast, more energy is added to a comparably 
relaxed nucleus during spin–spin relaxation. The excited nucleus may possibly re-
emit the extra energy in addition to this. The pace of relaxation controls the effective 
excitation. Sharp spectral lines are produced and the average half-life of relaxation 
is extended (to around 1 s) due to inefficient energy transfer, which can happen in 
non-viscous fluids with randomly oriented molecules, for example [67].

Three primary parts make up an NMR spectrometer: a superconducting magnet, 
a probe, and a sophisticated electronic apparatus (console) run by a workstation 
(Fig. 17).
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Fig. 16 Nuclear spin dynamics when an external applied magnetic field is present (a). Diagram 
of a fundamental NMR experiment, in which the introduction of a magnetic pulse causes the 
magnetization to move to the x–y plane (b)

Fig. 17 NMR spectrometer’s general layout and essential parts 

The creation of a powerful magnetic field by the magnet causes the atoms in 
the sample to align their nuclear spins. Since today’s NMR spectroscopy magnets 
are made of superconducting materials, they must operate at very low temperatures 
(around 4 K). NMR spectrometers have a cooling system built into them as a result, 
which consists of many layers of thermal isolating materials, and inner jacket filled 
with liquid helium, a second jacket filled with liquid nitrogen, and a cooling fan 
(Fig. 18). The instrument’s most important component, the “probe”, is a cylindrical 
chamber encircled by the superconducting magnet. The sample is inserted into the 
probe, coming into contact with the magnetic field. In addition, the probe has a 
number of magnetic coils positioned all across the specimen (Fig. 18). Numerous



Biosensor: Tools and Techniques for Characterization and Analysis 57

Fig. 18 Cross-sectional view of internal components of an NMR spectrometer 

uses exist for these coils. On the one hand, they are utilized to irradiate the radio 
frequency pulses and to find and gather the NMR signal the specimen emits. In 
addition, they also allow for the regulation of magnetic field uniformity and the 
implementation of pulse gradients, which are employed in several NMR research 
[63, 65, 68]. 

Last but not least, the spectrometer’s electronic system regulates all experimental 
settings and enables workstation-based setup and change of any NMR experiment 
parameter. Data collection and subsequent mathematical translation into an NMR 
spectra are also handled by this system. The spectrum has a number of peaks with 
varying intensities that are related to the chemical shift, which is calculated from the 
Larmor frequencies of the various atomic nuclei in the specimen [69]. 

16 Challenges and Future Perspectives 

Tools for clinical analysis, food safety, and environmental analysis that have long 
been used include enzymes and antibodies. Biosensors have only been used in a 
few number of applications, despite the high promise and high hopes in the early 
1980s. A range of biosensor platforms with varying application have been created, 
including wearable, implantable, and also most lately, ingestible biosensors, with 
the diversity of biomolecules that have been used both as the biological recognition 
layer and as analytes. Biosensors have been developed and applied in many scientific
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and technical fields, with a focus on the food business, environmental monitoring, 
and healthcare and medical fields. Research on biosensors has greatly profited from 
the use of innovative materials and technologies, similar to other scientific and tech-
nical domains. One such example is nanotechnology, which consistently leads to the 
development of biosensor systems that are more effective. The most typical nano-
materials for use in sensors include graphene, carbon nanotubes, quantum dots, and 
gold nanoparticles [70]. Nevertheless, despite the extensive scientific and techno-
logical advancements recorded in the field of biosensors, a discrepancy between 
these advancements and the number of commercially accessible products based on 
biosensors is plainly visible. Such a gap has likely been caused by the challenges of 
mass-producing sturdy and dependable devices with excellent specificity, sensitivity, 
and most importantly, repeatability. All application sectors face these difficulties, 
including the medical industry, which while having the greatest number of commer-
cially accessible devices still lacks items that can match the demands of portable, 
affordable, quick-response, disposable, and environmentally friendly applications. 

The use of biosensors as advanced analytics in critical scientific and technical 
fields is a scenario that is highly exciting, but there are still issues that pose significant 
obstacles to the profession. Enhancing biosensors’ precision, sensitivity, and speci-
ficity as well as repeatability and scalability of production in order to create dispos-
able, inexpensive, and highly effective devices, surface-based biosensors provide 
a wide range of options, from huge flat surfaces to extremely rough surfaces like 
nanoparticles and quantum dots. This makes the tuning of nanomaterial surface 
layers for sensing a difficulty even today. A bigger surface area opens up a wide 
range of opportunities for sophisticated detection techniques, but it also presents a 
number of difficulties, one of which is the difficulty in precisely measuring the struc-
ture and makeup of the surrounding environment as well as adsorbed molecules. 
When used in situ (in an aqueous buffered environment), surface analysis is most 
reliable for biosensor applications. However, this method of designing and fabri-
cating biosensing surfaces has additional technical difficulties related to interfacial 
characterization. Although in situ optical or probe microscopy examinations of the 
interface can produce nanometer-resolved surface assessments, they are neverthe-
less subject to the subjectivity of the region chosen for research. It will eventually 
be necessary to employ many strategies in order to thoroughly investigate the effec-
tiveness of the biosensors. In order to improve the surface area, accessibility, and 
grain boundaries of the connected probes [71, 72], nanostructured metal surfaces 
have been utilized. 

Utilizing SEM, TEM, and AFM, a great deal of research has been done on the 
monolayer-coated electrode surface [73, 74]. These techniques offer clarity that is 
suitable with numerous electrochemical techniques, from the micro to the atomic 
level. In comparison with optical approaches, the AFM’s area of view is quite tiny. 
Scanning probe techniques can show how the initial layer of probe molecules that 
have been adsorbed on the surface atoms coordinate with them under normal imaging 
settings. It may be possible to obtain additional information from later layers by 
carefully manipulating the imaging circumstances. The molecular layer covering the 
electrode surface will ultimately determine how well the electrochemical biosensor
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performs analytically, allowing for improved insight and control over the features of 
the probe interface and an increase in the measurement’s sensitivity and selectivity. 

Ex situ surface examination techniques (such as SEM, TEM, AFM, and XPS) are 
often utilized, however doing so removes the data from the aqueous environment, 
which makes them more difficult to interpret. The surface can be drawn out in terms 
of the chemical environment and probe design because many in situ technologies 
are sensitive to these less-than-perfect circumstances. The creation of strategies that 
guide us in the direction of desirable configurations may result in biosensors that are 
more dependable, robust, and capable of functioning better. 

Optical spectroscopic techniques have long been used to characterize the metal 
surface in situ. Recent developments and an increased understanding of optical spec-
troscopy, instrumentation, and surface-enhanced methods have made it possible 
to characterize surfaces that have undergone molecular modification. Important 
molecular-specific information, such as the composition and activity at the inter-
face, is provided by these measurements. Chromophore-containing monolayers can 
be studied in situ using electro-reflectance techniques [75]. Depending on electron 
transfer kinetics that is connected to optical changes, electro-reflectance studies may 
discriminate between the various components on a surface. Chemically detailed infor-
mation about the molecular makeup of the interface at various potentials may be 
obtained using in situ infrared spectroscopy. IR spectral response, a non-destructive 
and label-free technique, has good surface sensitivity and may disclose molecule 
direction, protein conformation, and functioning. Key information about the activity 
taking place at the interface may be gleaned from the thorough assessment of peak 
locations. 

Potential or charge upon that electrode surface can induce alterations in the molec-
ular adsorbate’s properties, which can be seen using potential modulation methods. 
SPR has been employed often for the investigation of probes immobilized on surfaces, 
particularly for the evaluation of binding kinetics and non-specific adsorption in 
actual solutions [76, 77]. SPR offers a means to quantify surface-bound aggregates 
since it is sensitive to areas that are 100 nm or less from the electrochemical surface 
(depending on the evanescent wave decay length). To conclude this chapter has given 
an overview of different characterization techniques and their fundamental opera-
tional modes for operating to get desired characteristics of particular biosensors and 
nanomaterials in general. The challenges discussed must be overcome to have better 
biosensors that will be portable, low-cost, fast response, disposable, and importantly 
in everyone’s reach. 

17 Conclusions 

The aim of this chapter is to facilitate the comprehension of the work by an inex-
perienced as well as an experienced reader in various characterization techniques 
that can be employed in the study of nanomaterials for various applications and in 
particular biosensors and, in some way, to include a general description of a group
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of basic characterization techniques in a clear way. For that, the principles on which 
the different techniques are based are presented. We have highlighted the applica-
tions of each characterization approach through this thorough overview, highlighting 
their benefits, drawbacks, and limits, as well as outlining how they might be utilized 
successfully for the particular application. It is common for a researcher to employ 
more than one approach to thoroughly and accurately assess even a single attribute 
in order to provide a complete picture of the range of properties related to a nano-
material. This chapter will serve as a reference, assisting the scientific community in 
better comprehending the different techniques and the science underlying them by 
outlining the function of each approach in a comparative manner. This will enable 
researchers to select the most appropriate methodologies for their characterization 
and to more accurately evaluate how they are being used. 
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Abstract Nanotechnology is one of the quickest developing fields dealing and 
controlling matter within approximately 1–100 nm in size dimensions. These small 
and unique sizes of nanomaterials (NMs) enable them to use in various novel fields 
including biomedical, consumer products as well as industrial products. Recent scien-
tific reports demonstrate that the assembly and utilization of NMs are increased in 
consumer products. Extensive use of NMs has enhanced the exposure frequency of 
NMs in our daily life. Therefore, the toxicity constraints and risk assessment of NMs 
found in the living environment is an area of hike in scientific concern. The infor-
mation and data provided in this chapter are acquired from the literature. It shows 
that NMs determined in our surroundings may also have conceivable toxicological 
results. However, the recent studies on the toxicological effects of NMs are non-
identical. These studies can be applied in-vivo, in-vitro, and in-silico test systems, 
diverse sources of test NMs, and various techniques for the characterization of NMs
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under experimental conditions. Therefore, available information is hard to illustrate. 
More studies on NMs related to toxicity, biological interaction, and impact on human 
health are expected. The available test methods for risk assessment of NMs require 
verification. Therefore, basic information is not presently accessible for risk assess-
ment of various NMs that might be carried in different industrial and consumer 
products, or these NMs may enter into the environment and market in near future. 
Established and accurate test methods are required for the risk assessment of NMs. 
Therefore, in the lack of well-optimized and validated test methods, any concrete 
regulatory testing conditions for NMs are presently premature. In the present chapter, 
we wrap up the physicochemical characteristics, route of nanomaterial exposures, 
and various test methods used for the risk assessment of nanomaterials on human 
health. 

Keywords Nanotechnology · Nanomaterials · Risk assessment · Human health ·
Toxicity 

1 Introduction 

Nanomaterials (NMs) are the understanding and control of matters such as nanopar-
ticles (NPs) of 1–100 nm dimensions [1, 2]. Due to size variation, these NMs have 
different shapes and display special physicochemical and biological attributes that 
are non-identical from comparable materials of relatively larger size and mass [3, 
4]. The small size and high volume to the surface area of NMs are affiliated with 
the prospective for excellent stability, physicochemical and biological activity, and 
greater strength [5–7]. Therefore, NMs have a vast range of applications and thereby 
become a billion-dollar industry worldwide by manufacturing the mat commer-
cial levels such as quantum dots (QDs), metal oxide nanomaterials (MONMs), 
fullerene, carbon nanotubes (CNs). NMs are consistently used in various applications 
in different fields of human interest such as water treatment [8], health sector [9], 
food and nutrition industry [10–12], drug delivery [13–15], production and engi-
neering sector, as well in our everyday life [16]. Despite this, NMs are also used 
extensively in the food industry to: enhance colour and texture for nutrition fortifica-
tion, enhance barrier properties of packaging materials, enhance bioavailability, and 
enhance food preservations [17, 18]. NMs permit us to make functional systems and 
devices by directing matters at the atomic and molecular levels. Due to nanosize, 
lightweight, and lowest demands of power, excellent sensitivity and high specificity 
are appropriate refinements seen in the design of the sensor. Due to their huge utility 
for diagnosis as well as treatment, NMs have been thoroughly utilized in biomed-
ical science and personal care products [19]. As per the data of 2014, more than 
6214 institutes and/or organizations from 32 nations have utilized NMs in approx-
imately 1814 consumer items. Approximately, 42% of the items belonged to the 
health sector [19]. The “nanodata base” is a catalogue of economically or commer-
cially listed items containing NMs manufacturing of approximately 3000 items in
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the consumer market of Europe. As per the data of the repository, most of the NMs 
are (approximately 2000) utilized in the health sector with approximately 900 items 
belonging to the category of cosmetics and personal care items. The most thoroughly 
utilized NPs for these purposes include NPs of silver (Ag), titanium, and silicon [20, 
21]. The growth in the application of NMs can immediately lead to the expanded 
presence of NMs in our surroundings and consequently, at once increase human 
exposure. There is a crucial public interest in better interpretation of the negative 
health impact of NMs existing in our environment. Despite these huge developments 
in the field of nanotechnology, the concern about whether NMs endow side effects 
has been initiated in the form of an agenda. The synergy of NMs, i.e. smaller size 
and higher surface area, with the microenvironment of cells and tissue can exhibit 
severe toxicity that is incapable to be generated with chemically similar and greater 
counterparts in living organisms. 

2 Physicochemical Properties of NMs Related to Toxicity 

NMs have exceptional features relative to their greater counterparts which transmit 
their useful properties; ironically, they may also grant them a distinctive mode of 
action of toxicity. Overall, toxicity from NMs has been thought to come from their 
size, shape, surface area, and composition, and so forth as discussed in the following 
parts and illustrated in Fig. 1. 

Fig. 1 Physicochemical 
properties of NMs
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2.1 Effect of Surface Area and Size 

Surface area and size of the NMs are crucial for their interaction with cellular systems. 
Reducing the dimensions and size of materials leads to an exponential enhancement 
in the surface-by-volume ratio, thereby creating the surface area of NMs more reac-
tive individually and to its adjacent setting. NMs surface area and size govern how the 
biological system reacts to distribute as well as eliminate the NMs [22, 23]. Several 
biological processes such as cellular uptake, endocytosis, and efficiency of nanopar-
ticle processing in the pathway of endocytic signalling are associated with the size of 
NMs [24, 25]. Different scientific groups have recently assessed in-vitro toxicity of 
NMs of diverse sizes utilizing different types of cells, exposure times, and different 
culture settings [26, 27]. However, in-vivo assessment of NMs is challenging due 
to their more sophisticated nature in the living systems and requires further detailed 
information on the NMs [28], though various researchers have calculated their cyto-
toxicity concerns in living systems applying different animal models. The toxicity 
of NMs associated with size can be ascribed to its potential to enter into the living 
systems [29] and then alter the composition of different macromolecules, thereby 
hampering the essential functions of biological systems [30]. In addition, the surface 
areas of these NMs are that exhibit toxic illustrations such as inflammatory responses 
in the lung and other epithelial cells in animal models [31]. With a gradual decrease 
in the size of particles, the surface area also changes which causes a concentration-
dependent gradual increase in deoxyribonucleic acid (DNA) damaging and oxidation 
potentials of these NPs [32] much higher as compared to the larger particles with the 
same mass concentration [33]. Various studies associated with toxicity have docu-
mented that NPs smaller than < 100 nm (in dimensions) cause severe respiratory 
health impacts as compared to larger size particles of the same compound [33, 34]. 
Another study also revealed that instillation of 80 nm particles of Ir192 caused bioac-
cumulation in the liver of rats with an increase of 0.1% of the total amount, while the 
smaller sized particles (15 nm) showed an increase of bioaccumulation to an increase 
of 0.3–0.5% [35]. The size of NMs also enhances oral cytotoxicity. In general, the 
oral cytotoxicity enlarges with the reducing size of NPs. Oral cytotoxicity of NPs of 
copper (Cu) can be enhanced by reducing its size. But large sized particles are the 
least toxic even at their higher concentrations [36]. 

2.2 Effect of Shape 

The shape of NMs is one of the crucial parameters in which there is limited absolute 
information with regard to its connection with cytotoxicity. Recently, designing NMs 
has fascinated much attention and led to the production of NMs with different shapes 
such as wire, rod, sheet, sphere, rings, tubes, fibres, and planes. Also, unique geomet-
rical shapes like cubes and squares can be constructed. Recently, shape-associated 
cytotoxicity has been reported for various NPs such as silica, allotropes, gold, carbon
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nanotubes, and titanium [37–39]. Generally, a shape associated with NMs cytotox-
icity affects the membrane wrapping activity in-vivo at the time of phagocytosis or 
endocytosis [40]. The impact of the shape of gold (Au) NPs on the cellular uptake in 
animal models has been proposed where a spherical shape has resulted in a 375–500% 
greater cellular uptake capacity as compared to rod-shaped NPs [38]. Rod-shaped 
NPs of single-walled carbon nanotubes (SWCNTs) can block K+ ion channels several 
times more potent in comparison to spherical carbon fullerenes [41]. It seems that 
endocytosis of spherical NMs is easier and quicker as compared to wire or rod-shaped 
NMs [42]. The shape associated with the cytotoxicity of silica is noticeable by the 
fact that silica (amorphous form) is utilized as food additives, but crystalline silica is 
carcinogenic to human health [37]. Likewise, another study has also demonstrated 
that the uptake of nanorods of gold (Au) is slower as compared to spherical ones 
[38]. 

2.3 Effect of Aspect Ratio and Surface Charge 

The aspect ratio is the ratio of length to width (or diameter) of NPs under investigation. 
Nanotubes of carbon are excellent examples of NPs having a greater aspect ratio. 
The aspect ratio of NMs is directly associated with cytotoxicity, the more the aspect 
ratio the more the toxicity of the nanoparticle [43]. NPs of silica of 70 nm diameter 
and identical chemical structure and surface charges but non-identical aspect ratio 
(5 and 1.5) demonstrate different levels of toxicity in-vivo [44]. The multi-walled 
carbon nanotubes (MWCNTs) which have a greater aspect ratio leave a more severe 
toxic response. Due to the high aspect ratio, MWCNTs could cause diseases such 
as asbestosis [45]. Studies have shown that the TiO2 fibre with a length of 15 mm 
is severely toxic as compared to fibre with a low aspect ratio fibre (5 mm in length) 
and induce an inflammatory reaction by alveolar macrophages in the rodent model 
[39]. The cytotoxicity of fibres with a greater aspect ratio is directly associated with 
their plasma shelf life. The fibrous NPs that are adequately soluble in the fluids of the 
lungs can pass out in a matter of months, later on; the non-soluble fibres are likely to 
persist in the lungs continually. Other studies also noticed that a greater aspect ratio 
of SWCNT generates severe pulmonary toxicity as compared to spherical NPs [46]. 
Further, long sized MWCNT enhances inflammation of the wall of the abdominal 
post-intra-abdominal infusion, whereas no inflammatory reaction was recognized 
in the case of small sized MWCNT [47]. Therefore, as the complexity of these 
mechanisms progressively untangles, they would support the application of a safer 
nanotechnology-based set-up.
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2.4 Effect of Surface Charge 

Surface charges on NMs also cause a significant role in the cytotoxicity of NMs 
as it enhances cellular uptake [48]. In the recent past, different studies have been 
completed to determine the correlation between the surface charge on NMs and the 
cellular toxicity of various NPs. The surface of NMs regulates a lot of characteristics 
of materials like the integrity of the blood–brain barrier, binding of plasma protein 
[49] colloidal nature as well as adsorption of NPs [50, 51]. Negatively charged 
and neural NMs show low cellular uptake as compared to positively charged NMs. 
Furthermore, negatively and neutrally charged NMs have displayed an enhanced 
platelet aggregation and haemolysis for generating huge cellular toxicity to the 
system [52]. Various studies have demonstrated that positively charged NPs of 
polystyrene produce high toxicity as compared to negatively charged polystyrene 
in HeLa (cervical cancer) cells [53]. Negatively charged NPs do not have a severe 
impact on the cell cycle checkpoints, whereas positively charged NPs activate cell 
cycle checkpoints and enhance DNA damage [53]. In other model systems such as 
bacteria, the negatively charged NMs of silica, gold, and silver cause low and non-
significant levels of toxicity, but the positively charged NMs of these metals cause 
severe toxicity [54]. Additionally, positively charged NPs of silica (Si) (Si–NP–NH2) 
have caused severe toxicity as compared to negatively charged and neutral NPs of Si 
which demonstrate nominal cytotoxicity [54]. 

2.5 Effect of Composition and Crystalline Structure 

The composition and crystalline characteristics of NMs may lead to cytotoxicity. 
The composition of carbon materials causes lung inflammation and injuries in the 
epithelial cells of rats as compared to NPs of titanium dioxide (TiO2). The composi-
tion of these NMs presents huge side effects as compared to their bulk counterparts 
[55]. Metallic NPs of iron can induce cytotoxicity of carbon NMs which is due to 
enhanced oxidative stress and reactivity [55]. Crystal structure of NMs can also affect 
the cytotoxicity of NMs; recently, it has been noticed that NPs of rutile TiO2 enhance 
lipid peroxidation, severe DNA damage, and micronuclei formation without light; 
however, the NPs of anatase with similar chemical composition and size did not cause 
these effects [34]. NMs can alter crystal structure post-interaction with dispersion 
mediums such as water molecules or others. But the NPs of ZnS are more organized 
in occupancy with water (H2O) molecules by reordering their crystal structure and 
become more similar to the structure of a bulk zinc oxide (solid ZnS) [56].
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2.6 Effect of Concentration and Aggregation 

The concentration and aggregation of NMs also affect their cytotoxic potential. 
Generally, the aggregation states of NMs rely on the surface change composition 
of NMs and size among others. Nanotubes of carbon are mostly bio-accumulated 
in different organs such as the spleen, livers, and lungs without manifesting toxi-
city but enhance toxic effects because of accumulations of NPs aggregates for 
chronic durations [57]. Agglomerated NMs such as carbon nanotubes have more 
severe effects as compared to well-dispersed nanotubes of carbon and increase the 
fibrosis of pulmonary interstitial [58]. It has been well documented that higher doses 
(concentration) of NMs, decrease the cytotoxicity. 

2.7 Effects of Physical Properties 

NPs have a relatively greater ratio of surface atoms and are also determined by their 
geometry. The ratio of NMs is also related to their porosity, roughness size, and 
smoothness of the surface. For example, NMs of Si (porous) have greater biocom-
patibility as compared to the non-porous silica NMs, additionally; the haemolytic 
activity of the Si (porous) is lower than Si (non-porous) [59]. The effect of defects 
found in the structure of NMs on pulmonary toxicity could be analysed [60, 61]. 
Surface defects of NMs generated reactive oxygen species and enhanced cytotoxi-
city in animal models [60, 61]. Other studies also demonstrate a great cytotoxicity 
level of nanosheets as compared to nanowires as well as nanospheres; this cytotoxi-
city is due to extensive defects on their surface generating surface reactions [62]. By 
altering the electrical characteristics, impurities may alter the cytotoxicity potential 
of NPs, whereas the finding of other studies illustrates that the toxicity generated 
by zinc and copper oxide particles is directly associated with their purity [63]. Zinc 
oxide containing aluminium impurities has more severe toxicity; this is because of 
induced electric charge leading from induced impurities. The roughness of the surface 
enhances non-specificity that increases cellular uptake of NMs [60, 62–64] and is 
useless in the reaction rate of NPs with cell systems. Particles may also cause toxicity 
by creating disorders in the plasma membrane as well as generating a transient hole 
in the plasma membrane [65]. 

2.8 Effect of Media/Solvents 

Conditions of medium/solvents are well documented to influence NMs agglomer-
ation state and dispersion which gradually have an impact on their particle size 
thereby affecting the cytotoxicity. The NPs of ZnO, TiO2, or carbon demonstrate 
a much greater size in phosphate buffer saline as compared to water as NMs show
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distinct diameters in biological systems [66, 67]. Consequently, the adverse effects 
of NMs display a huge variation based on the composition of the medium in which 
NMs are suspended. The same NMs demonstrate different toxic phenomena when 
dissolved in different mediums [68, 69]. The dispersing agent may enhance the char-
acteristics of the solution of NPs formulations in addition to their physicochemical 
properties. Medium and/or solvents may also severely affect the cytotoxicity of NPs. 

3 Classification of NMs 

The International Organization for Standardization (ISO) has defined “nanomaterial” 
as a “material with any external dimension in the nanoscale or having an internal 
structure or surface structure in the nanoscale” [70] and “NPs” as a “nano-object 
with all three external dimensions in the nanoscale” where nanoscale is defined as 
the size range from approximately 1–100 nm [71]. These definitions, based on the 
size of NMs may be sufficient from an evaluation of risk assessment standpoints. 
NMs can be broadly classified into four groups such as: (a) inorganic-based NMs, 
(b) organic-based NMs, (c) carbon-based NMs, and (d) composite-based NMs as 
shown in Fig. 2. 

Broadly, inorganic-based NMs consist of various metal and metal oxides such 
as metal-based inorganic NMs are gold (Au), aluminium (Al), copper (Cu), silver 
(Ag), iron (Fe), cadmium (Cd), lead (Pb), and zinc (Zn), while the examples of metal 
oxide-based inorganic NMs are magnesium, aluminium oxide (MgAl2O4), titanium 
dioxide (TiO2), copper oxide (CuO), silica (SiO2), cerium oxide (CeO2), iron oxide 
(Fe2O3), iron oxide (Fe3O4) and zinc oxide (ZnO), etc. Example of carbon-based

Fig. 2 Schematic classification of nanomaterials 
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NMs is graphene, multi-walled carbon nanotubes, single-walled carbon nanotubes, 
carbon fibre, fullerene, activated carbon, and carbon black. The example of organic-
based NMs constructed from organic NMs prohibits carbon materials, for specifying 
cyclodextrin, liposome, micelle, and dendrimers. The composite NMs are combina-
tions of metal oxide-based, carbon-based, metal-based, and/or organic-based NMs, 
and these composite NMs have sophisticated structures such as a metal–organic 
structure. 

3.1 Types 

Metal chalcogenides are inorganic compound that involves at least one molecule of 
chalcogen anion and one more electropositive metal element. The elements situated 
in the group of VIA in the periodic table are known as chalcogens. The term metal 
chalcogenides are most simply engaged for tellurides, selenides, and sulphides, rather 
than the oxides and polonium compounds. The metallic properties of the elements 
change in the periodic table in group VIA, going to top to bottom. Thus, the highest 
metallic potentials of polonium (Po) and extremely strong non-metallic potential of 
oxygen (O2) have constructed them fully different from the rest three chalcogens (Te, 
Se, and S). Due to this nature, the class of chalcogenides reveals semi-metallic prop-
erties. A lot of metal chalcogenides exist with different compositions and different 
structures like Cu2Se, Ti2S, CaTe, and Na2S. This diversity of chalcogenides is 
associated with the orbit of transition metals [16–18]. Non-metallic potentials of 
the chalcogens help in the formation of plentiful metal chalcogens. Specifically, 
transition metals containing empty orbitals can help in the shaping of various non-
stoichiometric compounds like In3Se2, Cu1.97S, Ta2S, In4Se3, InSe, Cu2S, and Ta3S. 
Thus, the chalcogenides are very broad and diverse in nature, and they can be classi-
fied in various ways [19]. These are tellurides, selenides, sulphides as well as double, 
triple, quartet, and multiple chalcogenides in terms of elements [72]. 

3.2 Metal NPs 

Metallic NPs have enchanted researchers and scientists for the last few decades and 
are at present most thoroughly utilized in the field of biomedical science and engi-
neering. They are a centre of interest due to their vast applications in nanotechnology. 
The major advantage of metal NPs can be modified and synthesized with lots of func-
tional groups, which enable these NPs to easily fuse with ligand, drugs, and anti-
bodies of interest and thus creating a huge opportunity in the field of biotechnology, 
the field of target drug delivery, magnetic separation, as well as pre-concentration of 
target analytes and carrier for drug and gene delivery and also helps in imaging 
at diagnostic levels. In the recent past, a lot of imaging procedures have been
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developed such as computerized tomography (CT) scan, positron emission tomog-
raphy (PET) scan, magnetic resonance imaging (MRI), ultrasound, surface-enhanced 
Raman spectroscopy (SERS) as well as optical imaging assist in image several disease 
conditions. These imaging procedures vary in both instrumentation and techniques 
and more critically demand a contrast factor containing distinctive physicochemical 
properties. This has influenced the discovery of different nanoparticulated contrast 
materials like gold, silver NPs, and magnetic NPs for their utilization in these imaging 
techniques. In addition to the utilization of numerous imaging methods in nanocages 
and tandem newer multifunctional nanoshells have been established. Mody et al. [73] 
have reviewed the therapeutic and diagnostic imaging applications of various metallic 
nanoparticles such as nanocages, nanoshells, magnetic nanoparticles (Fe3O4), gold 
and silver nanoparticles etc. 

3.3 Metal Oxides/Hydroxides 

Metal oxides/hydroxides are crucial and extensively defined solid catalysts. Metal 
oxides are treated as heterogeneous catalysts, exercised for redox and acid–base 
reactions in various groups of metals such as transition metals which have fascinated 
much concentration due to configured outer electrons. They are used thoroughly in 
several reactions which involve dehydration, oxidation, isomerization, and dehydro-
genation. The oxides of transition metals, for example, WO3 [74], Nb2O5 [74], and 
TiO2 [75] have more thoroughly been utilized as heterogeneous acid nanocatalysts. 
The mesoporous nature of these transition metal oxide NPs favours the substrate 
material’s inner side of the metal pores for the catalysed reactions. These metal 
oxides (mesopores) are investigated for their unique structural characteristics such 
as variable pore size, stability, and excellent surface area. Recently, mesoporous 
metal oxide (CeO2) was utilized for a breakdown of methanol and demonstrated a 
high transformation ability from 13 to 96% (non-mesoporous CeO2) [76]. The syner-
gistic association of Mn (IV) and Mn (III) along with the hematite phase has been 
shown to generate active oxidation of formyl furan acid to furan dicarboxylic acid 
[77]. Metal hydroxides are hydroxides of different metals. They are generally strong 
bases. Metal hydroxide is composed of metallic cations and hydroxide anions. Few 
metal hydroxides like alkali metal hydroxide ionize fully when dissolved, whereas 
several metal hydroxides are weak electrolytes and partially dissolve in an aqueous 
solution. Recently, nickel hydroxide was utilized as a Bronsted base for the oxida-
tion of alcohol. The catalytic system effectively oxidized both primary and secondary 
alcohols (86%) to their carbonyls [78].
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3.4 Polymeric NPs 

Polymeric NPs (PNPs), colloidal organic compounds, are produced from polymeric 
materials with nanosize from 1 to 1000 nm. PNPs are composed of active pharma-
ceutical elements that are adsorbed/within polymers (macromolecular substances). 
At present time, PNPs have heightened more interest in the field of polymeric 
materials due to their multifaceted utilization [79]. Due to quantum size effects, 
PNPs alter their cytotoxicity which is associated with toxicity, oxidative stress, 
and genotoxicity. Nanodiamonds have become an idea of current research conse-
quent to their fascinating characteristics. Recently, these PNPs have been utilized 
to eliminate heavy metals. These PNPs composite materials reveal exclusive prop-
erties such as optical and thermal properties, excellent electrical conductivity, and 
better mechanical strength. Nanofluidics is extensively utilized in controlled and 
sustained drug delivery due to their nature of biodegradability and biocompati-
bility [80, 81]. Poly-lactic-co-glycolic acid (PLGA) NPs are developed to synthesize 
nanomedicine (peptide-based) for controlled delivery of genes intruded by ultrasound 
waves [82]. Additional study has also described that PNPs lead to the alteration of 
the chemical structure of semiconducting polymer by photoacoustic amplification 
[83]. New fluorescent NMs, encouraged from the area of polymeric drug delivery 
vehicles and leading fluorophores, can fuse advanced brightness with low toxicity 
and biodegradability. 

3.5 Metal–Organic Frameworks 

Metal–organic framework NPs, also known as porous coordination polymers, are 
one of the important components of the science of NMs, and their position in catal-
ysis is fitting pivotal. The exceptional richness and variability of their structures 
provide engineering synergies between functional linkers, metal nodes, encapsu-
lated substrate, or NPs for activating MOF-based nanocatalysts. Pyrolysis of MOFs 
nanoparticle compounds form distinctly porous P- or N-doped graphitized MOFs 
derived NMs that are instantly utilized as dynamic catalysts uniquely in photo and 
electrocatalysts [84]. 

3.6 Hybrid NPs/Nanocomposites 

Inorganic or organic-based hybrid NMs can be classified into two groups as per the 
binding potential. The binding potential of these hybrid NMs is responsible for the 
various types of interaction between organic as well as inorganic-based elements [85, 
86]. Hybrid NMs belonging to class one interact weakly by electrostatic hydrogen 
bonds or van der Waals forces between organic and inorganic molecules. Hybrid
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NMs belonging to class two are held together by strong bonds like ionic or cova-
lent interactions. The progress of hybrid NMs (class two) with strong and stable 
binding interaction has been leading in the last few years [87, 88]. These hybrid 
materials (class two) carrying covalent bonds can be applied to synthesize entirely 
novel NMs from functionalized alkoxide, easily define organic–inorganic interfaces 
and minimum phase [88]. These organic/inorganic-based hybrid NMs or their hybrid 
conjugate such as metal nanoparticles (MNPs) carbon nanotubes, ceramic and natural 
polymers can enhance the processability and biocompatibility of the native mate-
rials, and the characteristics of NMs can be altered by the surface polymer [89]. 
Hybrid NMs reveal the properties of both organic as well as inorganic NPs. These 
hybrid NMs can be utilized in numerous biomedical products such as phototherapy, 
drug delivery, biomedical imaging as well as image-guided therapy [90, 91]. In the 
recent past, lipid-chitosan-based hybrid NMs are developed to be used as carriers 
for the successful delivery of cisplatin [92]. The authors have mentioned the excel-
lent biocompatibility of the NMs because of the mixture of phospholipid S75 (74% 
phosphatidylcholine with soybean) and chitosan (natural polymer). Distinct ratios of 
chitosan/lipid were evaluated to obtain the ideal characteristics, which were attained 
at the ratio of lipid polymer (20:1). The upgraded formulation has demonstrated 
89.2% drug-carrying potential with a mean size of 200 nm. Further therapeutic effi-
cacy of the formulation was evaluated in A2780 cells treated with various doses of 
blank and drug-loaded cisplatin NMs. Rezaei et al. [93] have reported that hybrid 
NMs of micelles enhance the drug delivery of cisplatin in the MCF-7 cell (breast 
cancer) line, without any significant toxic effects. Amorphous and highly porous 
hybrid nanogels have displayed crucial dexibuprofen release in hydrated solutions. 
These formulations are biocompatible and nontoxic in nature. 

4 Route of Exposures 

The major paradigm in the field of toxicity is focused on the exposure—a dose– 
response relationship. As stated in this fundamental principle, external exposures 
contribute a chance for agents to invade the body. It is universally studied that no 
adverse effect can take place without exposure. The word “exposure” can be described 
as a chance for external agents such as NMs or environmental chemicals to enter 
the body. Hence, exposure to aerosols of NMs (inhalation) may not or (may) have 
detrimental effects on the respiratory system. In addition, exposure to NMs by dermal 
route may have significance for the skin. This segment is designed to give short 
information concerning the probable route of exposure to NMs either in consumer, 
occupational or medical/diagnostic settings. It is well reported that prime concerns 
linked with potential respiratory tract responses to inhaled NMs happen majorly 
under workplace or occupational conditions. The concerns about the ingestion of 
NMs probably take place as unintentional oral exposures or food ingestion when 
encountering consumer items. The numerous routes of NMs exposure (as shown in 
Fig. 3) that may occur via the subsequent entrance of entry are briefly defined below.
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Fig. 3 Outline for route of exposure by NMs 

4.1 Inhalation Exposures 

Most of the exposures of NMs and toxicology research studies and evaluations with 
NMs so far have concentrated on inhalation exposures which are investigated to take 
place mainly in workplace environments. As a consequence, NMs such as agglom-
erates or aggregates are inhaled into the respiratory system wherein; they settle onto 
the outer wall of epithelial cells of alveoli and eventually may or may not move 
from pulmonary/interstitium regions of the capillary. It is difficult that inhaled NMs 
could ultimately get systemic circulation via this way, whereas the possibility is 
considered to be rarely possible or negligible [94, 95]. Most of the in-vivo studies 
demonstrated that inhaled NMs affect the cellular components within the anatomical 
compartments of the respiratory tract [96]. Inhalation is the most thoroughly studied 
route of exposures of nanomaterials. Recently, various screening assays have been 
established and delineated on an acute exposure of inhalation toxicity method to 
evaluate and categorize the cytotoxicity of thirteen different types of nanomaterials 
of metal oxides [97]. Therefore, rats were exposed to 0.5–50 mg/m3 concentration 
of aerosols of various test materials for approximately five consecutive days. The 
observation/recovery time is set from quickly following exposure to two or three 
weeks after exposure. The assay for investigation such as analysis of bronchoalve-
olar (BAL) and assessments of histopathology associated with pulmonary clearance 
or deposition and conversion of NMs into extra-pulmonary organs.
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4.2 Skin (Dermal Exposures) 

Lademann and colleagues have decided based on recent studies of penetration path-
ways and penetration kinetics of materials applied topically such as NPs of TiO2 

that there is an inadequacy of corroboration illustrating that NMs less than 100 nm 
are capable to penetrate dermal components of skin into living tissue under ordinary 
conditions [98, 99]. Nanoparticles of TiO2 (commercial product) with the size of 
100 nm, often utilized in the product of sunscreen, it was established that subsequent 
exposures of dermal, these NMs are detected exclusively on the upper surface of the 
skin. Generally, the skin involves a huge surface area and is involved in two important 
segments. Large components are classified as the more distal dermal components and 
epidermal components, which lie beneath the epidermis and have a finite vascular 
supply. Studies described that no NMs were detected in the innermost layer of the 
stratum corneum, even with subsequent application of long-term exposures. Other 
studies related to skin biopsies demonstrated that NMs may also penetrate the open-
ings of hair follicles. The importance of this information is that topically applied 
NMs did not infiltrate beyond the region of epidermal into the dermal surface which 
consists of a blood supply and hence could not get to the systemic circulations. 
Hence, in normal skin, it is unexpected that dermal exposure of NMs can go through 
the different layers of skin and successively enter the vascular component and give 
the crucial systemic exposure of the body to NMs. Indeed, it remains to be estab-
lished whether skin exposed to NMs can go through the inner layers under settings 
wherein the surface of the skin may be irritated or skin lesions like cold sores, eczema, 
psoriasis, or extreme sunburn [99]. 

4.3 Oral Exposures 

Ingestion of oral exposure of NMs is another entry wherein ingested NMs can invade 
the body. Exposures of inhaled NMs via the gastrointestinal route take place after food 
intake or subsequent pulmonary clearance as well as swallowing. Various sources 
of ingested items such as food pigments or supplements and flavour enhancers and 
the probability of numerous unintended, nonedible remnants like components of 
food and drink containers as well as nanosilver-coated toothbrushes are the some 
common sources of NMs [100, 101]. The major route for food consists of NMs 
involving the subsequent organs such as the large intestine, small intestine stomach, 
and oesophagus. Absorption and uptake of NMs rely upon various factors such as 
the type of NMs and physicochemical properties including dispersibility, size, and 
change of the NMs. Only a small amount of NPs are absorbed but excreted from the 
tract of gastrointestinal. One more pathway for NMs to move the gastrointestinal tract 
(GI) route may occur; subsequently, inhalation exposure of pulmonary clearance of 
NMs by the airways of a muco-ciliary escalator may result in swallowing of the 
“cleared”, inhaled NPs, which can then move through the GI tract. Several studies
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have described that oral exposures to NMs can bring absorption through the Peyer’s 
patches (epithelial cells) in the gut-related lymphoid tissue [36]. Another study also 
suggested that oral administration of NMs may be absorbed across the GI tract 
via the lymph nodes, finally migrating to the spleen and liver tissues [102]. As 
compared to these studies, high-dose exposures (acute) of oral gavage to nanosized or 
pigment grade TiO2 NPs in rodent models did not result in uptake into the circulation 
post-exposure of 48 h or 72 h [103]. 

4.4 Ocular or Eye Exposures 

Eye exposure or ocular exposure of NMs is easily evident and can be reduced in 
the site or workplace by the wearing of goggles or safety glasses. The probability of 
such an event is rare in occupational settings or the workplace, and therefore, ocular 
exposure has been poorly studied. 

5 In-Silico Assessment of NMs Toxicity 

Computer-based in-silico modelling is relatively a novel field that integrates experi-
mental procedures, providing an excellent technique to help in better understanding 
phenomena at the atomic level [104–106]. In the subject of nanotechnology research, 
in-silico-based modelling has been used to explore unique and safer NPs [106, 107]. 
Since 2006, Organization for Economic Co-operation and Development (OECD) has 
organized the Working Party on Manufactured Nanomaterials (WPMN), intending to 
design relevant policies to verify the safe utilization of NMs and avoid the possible 
risks of NMs toxicity [108]. However, the risk evaluation of an extensive type of 
different NMs is an inadequate and costly technique. Therefore, in-silico tools, like 
computational strategy and bioinformatics have grown as extensive tool that permits 
estimating the potential risks of NMs. At present, various nanospecific databases can 
be utilized to analyse the risk assessments of NMs like Nano Databank, NanoMILE, 
ModNanoTox and Online Chemical Modeling Environment (OCHEM) [109]. To 
review the nanomaterials as unique pharmaceutical drugs aimed at the prevention 
and cure of various diseases, the structural and physicochemical characteristics of the 
NMs must be analysed via in-silico methods. Molecular dynamics (MD) simulations, 
quantitative structure–activity relationship (QSAR), and molecular docking studies 
are three distinctive classes of computational techniques. In this segment, we outline 
the different types of in-silico modelling and their application in risk assessments of 
NMs.
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5.1 Molecular Docking 

Molecular docking studies are a reliable technique for computational simulations as 
well as assessment of biomolecules interaction with chemical molecules on the struc-
tural basis of 3D understanding. In brief, molecular docking research is a simulation-
based prediction tool that predicts how drugs or NMs interact with enzymes or 
proteins (large molecules). In the initiation of docking, every possible conforma-
tion and orientation of all ligands are developed as per the original shape of the 
active site in the structure of the protein. Subsequently, perform scoring functions 
to relatively predict suitable interactions between the docked ligand and protein. 
Post-docking, the docking scores, computed by the scoring functions, are utilized to 
order all correctly fitted ligand molecules in their active sites. These active sites can 
be utilized to explain the excellent affinity of ligand for selected protein molecules. 
A better score of docking denote that the ligand has excellent intermolecular inter-
actions such as hydrophobic interactions, hydrogen bonds, and electrostatics for a 
given molecule and illustrate the excellent affinity as a powerful association. The 
molecular docking studies put the ligand into the docking site of the crystal struc-
ture of the protein molecules that are acquired from the Research Collaboratory for 
Structural Bioinformatics Protein Data Bank (RCSB PDB). The application of every 
docking study is based on the algorithm of the conformational search like Monte 
Carlo (MC) [110], incremental construction (IC), and the genetic algorithm (GA) 
[111]. The desired protein associates with the ligand molecules (docked ligand) and 
further creates a protein–ligand complex that may increase or decrease the biological 
activity in the experimental conditions [112]. Therefore, the docking approach can 
be used to analyse the relationship of the protein with desired chemicals such as 
NMs. Thus far, molecular docking has applied the crystal structure of the protein to 
demonstrate the toxic potentials and probable risks associated with various NMs [5, 
113–116]. Computational approaches have also been utilized to assess the cytotoxi-
city of various types of NPs such as Mn2O3, Ag,  Au, Fe3O4, ZnO, CuO, TiO2, and 
Fe3O4 [117]. Therefore, molecular docking analysis between proteins and NMs has 
acquired attention in the field of NMs science as one of the alternative techniques 
that are sufficient to predict the cytotoxic potential [118]. 

5.2 Quantitative Structure–Activity Relationship (QSAR) 
Assay 

The QSAR assay is a computer-based method and one of the reliable tools that can 
be utilized as an alternative method to predict the cytotoxicity of different NMs. This 
technique helps to minimize the cost related to resources, manpower, and time in 
assessments of NMs [119]. QSAR modelling works based on mathematical algo-
rithms and knowledge of machine learning; therefore, it is a reliable technique 
for predicting the toxicity or biological activity of NMs. The general principle of
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the QSAR model is to describe suitable functions that have a feasible relationship 
between biological activity and chemical structures. The QSAR can further outline 
the biological as well as physicochemical knowledge to forecast the impacts of toxi-
city of NMs. As per the molecular descriptors dimensions utilized for the generation 
of the model, QSAR assay can be divided into various classes of modelling like 1D, 
2D, 3D, 4D, and 5D etc. [120]. Out of these, 2D and 3D-based QSAR works are 
utilized to analyse the lots of NMs and other environmental chemicals [121–123]. The 
1D-QSAR system permits for the establishment of interactions for 1D descriptors 
(structural fragments, log P, fingerprints and pKa) along with biological interests 
[124]. To date, the 2D-QSAR assay has been extensively investigated in several 
works for medicinal chemistry or toxic chemicals [125]. The physicochemical char-
acteristics of a 2D-QSAR model consider different variables such as polar surface 
area, topological indices, geometric parameters as well as molecular fingerprints. 
The absence of steric characteristics is a demerit of 2D-QSAR. To resolve this issue, 
the 3D-QSAR technique utilizes the 3D characteristics such as electrostatic field 
and steric surrounding the desiring molecules and utilizes chemometric assay to set 
up a correlation between the structural characteristics and the activity of molecules 
[126]. As per the uses of a variety of machine learning algorithms, QSAR models 
creation can be mainly divided into two groups such as linear and nonlinear systems. 
The linear systems carry partial least-square (PLS) methods, principal component 
analysis (PCA), as well as multiple linear regression (MLR) systems, whereas the 
algorithms of nonlinear regression involve artificial neural network (ANNs), support 
vector machine (SVM), and random forest (RF). 3D QSAR is more appropriate than 
2D-QSAR because it utilizes statistical tools like the PCA methods, PLS analysis, 
ANN algorithm, and cluster analysis for model creation [127]. At present, the QSAR 
tool is most thoroughly used in toxicology, chemical regulations, regulatory decision 
making as well as risk assessments. Therefore, recently researchers have practised 
QSAR models to investigate the potential risk assessment of NMs involved in uses 
and manufacturing as shown in Fig. 4 [127].

5.3 Molecular Dynamics Simulation 

MD simulation, the most advanced method, is most thoroughly used to analyse 
physical and chemical characteristics in the current time of computational nanotoxi-
cology. It can be considered a supportive method to evaluate the 3D structures (atomic 
motion) that are acquired from experimental facts like X-ray crystallography and 
nuclear magnetic resonance (NMR). Advanced versions of MD simulations similarly 
facilitate knowledge of the time-dependent nature of physical activity of molecules 
and atoms. MD simulation allows the kinetic and thermodynamics characteristics 
of the nanomaterial systems at the higher level (atomic). MD simulations can be 
applied to produce prediction models of toxicity that can be utilized in the design 
and development of NMs. Therefore, computational-based toxicology models are
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Fig. 4 Schematic showing QSAR model for toxicity assessment of NMs

universally accepted in the field of biomedical sciences to calculate the toxic poten-
tials of numerous biological models. Recently, MD simulations are applied to the 
analysis of numerous theories of toxicity systems in the subject of computational 
toxicology and nanotoxicology. To illustrate, agglomeration and aggregation of NMs 
are associated with induced toxicity at the time of preparation of the polymer matrix 
[128]. Hence, this can enhance programmed cell death such as apoptosis and produce 
intracellular ROS [129]. In other studies, agglomeration of NMs of TiO2 was demon-
strated to activate toxic responses in-vivo and in-vitro models. Large agglomerates 
of  NMs of TiO2 promote severe biological impacts like depletion of glutathione 
(GSH) content, inflammation, and DNA damage as compared to small aggregates 
[130]. Hence, studying the aggregation of numerous NMs is a crucial approach to 
demonstrate their toxic impact. 

6 In-Vitro Assessment 

In-vitro toxicity assessment of NPs is one of the important methods. The advan-
tages include lower cost, faster, and minimum ethical concerns. Assessment can be 
subdivided into cell viability and proliferation assay, apoptosis assay, oxidative stress 
assay and DNA damage assays, etc.
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6.1 Trypan Blue Assay 

Trypan blue is a widely used assay for the assessment of cytotoxicity in-vitro cell 
culture. In this assay, cells are treated with NMs or other agents, trypsinized, and 
later stained with a diazo dye (trypan blue), which is excluded by viable cells and 
taken up by the non-viable cells. Trypan blue negative cells indicate the total number 
of live cells collected from a well plate or dish. Trypan blue assay is superior because 
it brings the real number of live cells and decreases (cytotoxicity) or enhances (cell 
proliferation) in comparison to control cells. Recently, various studies utilized trypan 
blue assay to assess the cytotoxicity of various NMs and other cytotoxic compounds 
such as crocidolite asbestosTiO2 on a human mesothelial cell line, LP9/TERT-1 
(TERT-1 immortalized) [131]. Various other studies using this assay to measure the 
cellular toxicity of multi-walled carbon nanotubes (MWCNT) and different NPs 
of metal oxide to the human non-small lung carcinoma cells illustrated that CuO, 
ZnO and CuZnFe2O4 and MWCNT, lead to a significant elevation in dead cells at a 
20 μg/cm2 and 40 μg/cm2 concentration of CuO NPs, respectively [132]. 

6.2 MTT Assay 

The 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) assay is 
the most widely used method to understand the metabolic cell viability of in-vitro 
cell culture. It is a very reliable and sensitive benchmark of the assessment of cell 
viability and is favoured over the available assays quantifying termination points 
such as ATP and Bromodeoxyuridine (BrdU) incorporation assay [133]. This assay 
depends on the depletion of MTT, a yellow astringent tetrazolium dye, converted 
mainly by the enzyme mitochondrial dehydrogenases to formazan crystals (purple 
coloured). The end product is investigated by the colorimetric method at the wave-
length of 550 nM after termination in organic solvent such as dimethyl sulphoxide 
(DMSO) as shown in Fig. 5. The spectra of untreated and treated cells with NPs 
provide a measurement of cellular toxicity [134]. Recently, advanced variants of 
tetrazolium salt equilibrated by an intermediate have been described as an excellent 
alternative for researchers because of their tendency to form water-soluble outcomes, 
thus preventing the step of solubilization of the conventional assay. NMs interrupting 
with cell membranes may disturb their depletion by membrane related electron trans-
port. In such conditions, the cellular intake and sequential mitochondrial depletion 
of the cationic MTT give an excellent analysis of NMs toxicity. However, drug efflux 
pump or antioxidants suppressors may inhibit MTT assay and therefore NPs loaded 
with these should be assessed by other techniques to corroborate the outcomes [133]. 
In the recent past, various other studies also used MTT assay to measure the metabolic 
cell viability of different NPs such as CaS, on L929 cells and SiO2 on L-132 cells 
and THP-1 cells [135, 136].
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Fig. 5 Schematic representation of MTT assay 

6.3 Lactate Dehydrogenase Assay 

The lactate dehydrogenase assay (LDH) also known as LDH release assay is an indi-
cator of plasma membrane damage in a cell population. It is immediately discharged 
into the extracellular medium and damages the membrane resulting from necrosis 
or apoptosis. LDH assay is a universally approved marker of cell death; this assay is 
directly an indicator of the integrity of the cell membrane and in specific incidents 
can be limited when the cell number is not modified remarkably. The actual essay 
was outlined to estimate the oxidation potential of β-NADH to β-NAD+. At the time, 
LDH reduced pyruvate to lactate, an event that could be calculated as a reduction at an 
absorbance (340 nm). Following alteration of this assay concentrated on both build-
ings the method more accurate, cost-efficient and also enhanced sensitivity through 
the utilization of fluorometer [137]. The results of optical density (OD) of treated 
groups are demonstrated as LDH release (in %) relative to LDH values from fully 
lysed cells. The quantity of LDH release per sample can also be evaluated by creating 
a linear curve applying standards of LDH [138]. NMs consisting of various groups of 
metal/metal oxide have recently been investigated by the LDH method for their cyto-
toxic potential on BRL3A cells (rat liver) [139]. In another study by Jeng et al. [140], 
NPs carrying ZnO elicited the powerful LDH release in a concentration-dependent 
way in Neuro-2A cell lines as compared to TiO2, aluminium oxide (Al2O3), iron 
oxide (Fe2O3) and chromate (CrO4 

2−). 

6.4 BrdU Assay 

Another popular assay is the 5-Bromo-2-deoxyuridine (BrdU) assay (Fig. 6), which 
allows assessment of cell proliferation which is one of the important parameters in 
the analysis of cytotoxicity of various NMs. Recently, BrdU incorporation has been 
utilized to prevent the complexity of using hazardous radioactive materials since 
its existence can be identified by flow cytometry or using distinct antibodies. BrdU 
also intimates better selectivity for cells undergoing synthesis of DNA materials 
in comparison to [3H] thymidine, which can be incorporated into newly synthe-
sized DNA during spontaneous DNA synthesis in a generalized manner [138]. A 
recent study shows that the above assay has been utilized to display the prolifer-
ative effects of low dose particulate matter in epithelial cells of pulmonary [141]
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Fig. 6 Schematic representation of BrdU assay 

and anti-proliferative effects of NPs (heparin deoxycholic acid) on human umbilical 
endothelial cells and squamous cell carcinoma cells [142]. 

6.5 TUNEL Assay 

Apoptosis, a programmed cell death pathway, is specified by cytoplasmic and 
nuclear shrinkage, mitochondrial DNA damage, cell membrane blebbing, chromatin 
condensation fragmentation into apoptotic bodies and DNA fragmentation. In the 
recent past, morphological alterations of cells with regard to NPs of hydroxyapatite 
(HAP) were demonstrated by Liu et al. [143] utilizing a BEL-7402 cell line (human 
hepatoma). The nuclei of BEL 7402 cells were stained with Hoechst 33,258. When 
BEL-7402 cells were treated with a 50–200 mg/l concentration of HAP NPs for 
48 h, resulting in more fragmented and smaller nuclei and more condensed chro-
matin in BEL-7402 cells as compared to untreated cells. There are various immune-
histochemical methods to detect programmed cell death like apoptosis in-vitro cell 
culture. The TUNEL method labels the ends of DNA that have been fragmented or 
broken by endonucleases as an outcome of apoptosis following in biotinylated dUTP 
at the end of 3’ hydroxyl group which can be determined by horseradish peroxidase 
(HRP)-conjugated streptavidin and a diaminobenzidine chromogen by bright field 
microscopy. On the other hand, the incorporated nucleotides of dUTP can be tagged 
with a fluorescent dye and imagined through fluorescent microscopy. TUNEL assay 
is utilized to demonstrate the increased apoptosis in lung cancer cell lines treated 
with anticancer drugs paclitaxel post-loading into NPs of PLGA. Paclitaxel can be 
individually obtained a low apoptotic response but not as much as the PLGA-loaded 
treatment [144].
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6.6 Reactive Oxygen Species Measurement 

Reactive oxygen species are chemically unstable molecules that transfer oxygen 
(O2), carrying hydroxyl radicals (·OH), reactive superoxide anion radicals (O2−), 
and hydrogen peroxide (H2O2) [145, 146]. ROS are largely produced most extremely 
in mitochondria and organelles such as the endoplasmic reticulum [147]. During 
the time of oxidative phosphorylation, O2 is utilized for the synthesis of H2O, by 
the gain of electrons via the electron transport chain (ETC) of the mitochondria. 
Few of these electrons are received by oxygen molecules to form O2−, that can 
additionally convert into H2O2 as well as ·OH [145]. In normal physiology, ROS 
are generated as a natural reaction to the regular metabolisms of oxygen [148] and 
performing a crucial role in different signalling pathways in cellular levels [149– 
151]. The most conventional method for the detection of reactive oxygen species is 
the 2,7-dichlorodihydrofluorescein (DCFH) probe. This probe is a special indicator 
of the existence of free radical species (H2O2). The diacetate form (containing two 
acetate groups) of DCFH (DCFH-DA) has been widely utilized to recognize ROS 
levels in cells due to its potential to penetrate cellular membranes. Acetate groups 
are hydrolysed by the chemical reactions of intracellular esterase following DCFH-
DA carry into cells, and then, the appearance of peroxidases is essential for the 
oxidation of DCFH by hydrogen peroxide. Few other molecules are suitable for the 
oxidizing DCFH such as cytochrome c or hematin [152, 153]. That may enhance 
the fluorescence intensity of the probe without the building of hydrogen peroxide 
[154, 155]. 2’-7’dichlorofluorescin can also oxidize with hydrogen peroxide (H2O2) 
in the presence of ferrous (Fe2+) ion, but this is more suitable due to the generation 
of ·OH. However, O2·− is not able to oxidize the probe of DCFH. In the presence 
of UV radiation or visible light, a DCF photo-reduction can appear. The product 
of fluorescence displays fluorescence at 522 nm and excitation at 498 nm. Lots of 
NMs that enhance the generation of H2O2 also enhance the generation of hydrogen 
peroxide (H2O2). In a recent study, cell lines of colorectal cancer were treated with 
NPs of polystyrene (20 and 40 nm) in combination with two surfactants (carboxylic 
and amino acid). Post-treatment of cells to NPs of polystyrene, a significant reduction 
in cell viability was noted, and the activation of apoptosis was decreased by reduced 
production of H2O2 by catalase [156]. Gao et al. 2011 [157] observed a reduction in 
intracellular concentration of GSH post-treatment of cells to 8 nm NPs of Au. Later, 
there was increased production of H2O2 after the 48 h of incubation with Au NPs. 
Various other NMs such as ZnO [158], Ag [159], and TiO2 [160] are also capable of 
H2O2 production. 

6.7 Bacterial Reverse Mutation Test 

Bacterial reverse mutation test is commonly known as AMES test. This test is a short-
term and widely used biological assay to assess the mutagenic potential of chemical
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compounds using different strains of bacteria (S. typhimurium and E. coli) [161]. 
The AMES test is a short-term assay to assess the carcinogens using mutagenicity 
in bacteria as most carcinogens are mutagenic and cause cancer somatic mutations 
[162]. The Ames test is frequently used for screening methods of almost all new phar-
maceutical substances and chemicals used in the industry. This test includes different 
bacterial strains which are sensitive to different types of mutation that inactivate a 
gene involved in the synthesis of essential amino acid, either histidine amino acid (S. 
typhimurium) or tryptophan (E. coli), so they can only grow in the culture medium 
that is supplemented with that amino acid. This test uses the metabolizing system (S9) 
to mimic the metabolism of test substances that would occur in mammals. Induction 
of revertant colonies indicates that some histidine (his-) have been mutated (reverted) 
to his + which indicates the ability of bacteria to allow restoring of gene function 
and its ability to synthesize an essential amino acid for growth. This test is limited 
due to the use of bacterial auxotrophic strains (his- S. typhimurium or trp- E. coli) 
to assess the chemical mutagenicity, which is prokaryotic cells and therefore not a 
perfect test system for eukaryotic mammalian cells. Few studies previously evalu-
ated mutagenicity of NPs by bacterial reverse mutation test. Here, we also briefly 
illustrate the mutagenicity of metal oxide NPs, in bacterial cells as shown in Fig. 7 
[163, 164].

6.8 Single Cell Gel Electrophoresis (Comet Assay) 

The Comet assay also called single cell gel electrophoresis (SCGE) is a rapid, simple, 
and sensitive method for analysing and quantification of DNA strand breaks at the 
level of an individual eukaryotic cell. The resulting image that is obtained resembles 
a Comet-like structure with a distinct head (intact DNA) and tail (single-strand or 
double-strand breaks) or broken pieces of DNA. Comet assay was first developed 
by Ostling and Johansson in 1984 [165]. Singh et al. later modified this technique 
with increased applications as alkaline Comet assay in 1988 [166]. The comet assay 
has wide application in the field of genetic toxicology, either in-vitro or in-vivo and 
the environment, terrestrial or aquatic. Comet assay is applied widely as experi-
mental models: bacteria, fungi, cell culture, arthropods, fishes, amphibians, reptiles, 
mammals, and humans [167]. The method involves individual cells embedded in low 
melting point agarose (LMPA) on a glass slide followed by cell lysing. Therefore, 
the DNA is allowed to unwind under alkali to denature and electrophoresis which 
allows the movement of damaged DNA away from the nucleus. After staining with 
a fluorescent DNA intercalating dye, the sample is visualized under the microscope. 
The extent of DNA released from the head of the comet is directly proportional to 
the quantity of DNA damage as shown in Fig. 8. Some in-vitro and in-vivo studies 
have shown genotoxicity of titanium dioxide (TiO2) and zinc oxide (ZnO) NPs by 
measurement of DNA damage by Comet assay [168, 169].
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Fig. 7 Schematic representation of bacterial reverse mutation test

7 In-Vivo Assessment 

Nanomaterial size, shape, surface chemistry, and degree of aggregation are key 
factors that influence toxicity. Generally, the in-vivo toxicity studies can provide 
sufficient data to understand the absorption, distribution, metabolism, and excretion 
of NMs. The test usually involves the use of isolated tissues and organs or cells. The 
animal related toxicity tests are mainly conducted for:

● Acute toxicity: Acute toxicity is defined as the hazardous effects of a chemical 
that occurs as a result of single exposure or multiple exposures for a short duration 
of time.

● Subacute toxicity: It resembles acute toxicity except that the exposure duration is 
greater from several days to one month.

● Subchronic toxicity: It is the toxic exposure repeated or spread over an interme-
diate time range (one to three months).

● Chronic toxicity: It is defined as toxicity elicited because of long-term exposure 
to chemicals. It is the exposure (either repeated or continuous) over a long period 
of time (greater than three months).
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Fig. 8 Schematic representation of alkaline Comet assay

● The mammalian erythrocyte micronucleus test: This test used in toxicological 
screening for potential genotoxic substances. 

7.1 Mammalian Erythrocyte Micronucleus Test 

The mammalian erythrocyte micronucleus (MNM) test is widely applied for geno-
toxicity screening of various classes of chemicals for a long time, i.e. pharmaceutical 
chemicals, agricultural chemicals and food additives. In this test, micronucleus is the 
only DNA component in the cell because the main nucleus of the cell is expelled 
during the erythropoiesis of mammals; for any purposes, the micronucleus test data 
should be reliable and accurate [170]. This test was performed according to a method 
described in OECD TG 474, MEM updated in 2016 as shown in Fig. 9 [171]. A 
standard test battery for genotoxicity testing of pharmaceuticals (ICH S2R1 guid-
ance) has already been announced under the auspices of the International Conference 
on Harmonisation of Technical Requirements for Registration of Pharmaceuticals 
Intended for Human Use [172]. In this assay, commonly healthy young adult animals, 
i.e. mice or rats should be used. After exposure to the test substance, the femur will 
be excised, and erythrocyte cells will be harvested and stained cells are then anal-
ysed microscopically for the presence of micronuclei. The current revised procedure
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Fig. 9 Schematic for micronucleus test using mammalian erythrocytes 

mentioned in OECD TG 474 proposed 4000 young immature erythrocytes should be 
analysed, which is twice the number of cells stated in the previous guideline. Slide 
from the entire vehicle should be selected, and scoring should be carefully done by 
experienced and skilful persons for potential analysis. 

8 Challenges and Future Perspectives 

In the present chapter, we have critically reviewed the fate, toxicity behaviour, and 
risk assessment of NMs in human health and the environment. Though most of the 
research groups have focused only on the toxic effects of NMs, the reasons for the 
toxicity of NMs are largely unrecognized. There is still a considerable gap in research 
about the nature of interference of NMs with the human immune systems and tissues 
and the environmental system. Much more studies are required to assess the risk and 
stability of various NMs in different test systems to fully understand the potential 
for human exposure to the NMs of commercially supplied products and the near-
future products. Recently to an assessment of toxicity of various NMs using various 
cell lines and other model systems are gradually being published, but due to the 
broad range of concentration of NMs, different types of cell lines as and different 
culture conditions and inadequacy of knowledge of mechanisms, it is very critical 
to understand whether the observed toxicity of NMs is physiologically consistent. 
Altogether analytical techniques have required that consent to real-time monitoring 
(in-situ) to improve the production process of NMs. These techniques help in the risk 
assessment of NMs as well as providing mechanistic information also. Despite the 
various methods described in this chapter, there are still a lot of challenges within the 
risk assessment of NMs that remain to be addressed. We are not yet very much aware 
of which properties of NMs should be estimated like the surface area of concentration
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number or a combination of these or something else completely. Once the community 
accepts NMs as a unique tool for in-vivo imaging for durable scales, we believe that 
a novel understanding of how cells and organs work, both externally and internally 
with others, will be acquired. 

9 Conclusions 

In the last few decades, use of the NMs in human surroundings as well as in various 
consumer items is rapidly increasing. It is predicted that exposure of various NMs 
to human being will enhance continuously. Hence, substantial exposure of NMs 
to human is of serious public concern. Therefore, there is a requirement for more 
advanced tools to assess the risk of NMs. Present understanding of the impact of 
exposure of NMs to human is finite or very poor. The knowledge gathered from 
the present chapter specifies that various NMs present in the human environment 
may have a potential for cytotoxic impacts. Although, the current studies on adverse 
effects of NMs are distinct. These studies have utilized various rodent and cell-based 
test systems, different origins of NMs, different tests for characterization of NMs 
and numerous experimental settings. Therefore, this knowledge is difficult to analyse. 
More studies are required on biological interaction, toxicity assessment, character-
ization of NMs, and effects on human health. The current test methods require to 
be approved and need to be identified suitable negative and positive control for risk 
assessment of NMs. Hence, limited information is available for risk assessment of 
various NMs that exist in different types of consumer items or it may penetrate 
into the market in near future. In future, validated and standardized test methods 
are compulsory for risk assessment of various NMs. Therefore, in the deficiency of 
advanced and standardized methods, any unique regulatory testing requirements for 
NMs are premature at current situation. In this chapter, we critically have discussed 
the route of exposure of NMs, physicochemical characteristics, various in-vitro, in-
silico, and in-vivo methods for risk assessment of different NMs. We also discussed 
the fate behaviour and cytotoxicity of numerous NMs in human health. 
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Abstract Due to an increase in the world population, there is a requirement for 
effective and sustainable technologies to deliver global necessities and diminish 
the environmental toll. In medicine, nanoscale drug delivery systems endowment 
has improved therapeutic precision by overcoming biological barricades, which 
is followed by enhancing drug targeting tactics. A “family tree” is needed to 
trace the developments in the study of nanomaterials (NMs) more accurately. The 
utilization of NMs for surface engineerings like metal chalcogenides, metals, metal 
oxides/hydroxides, polymers, metal-organic frameworks, and hybrid nanostructures 
in the biological and medical fields is a topic of rapid progress. The implication of 
NMs in medical through biomedical implants. wound coverings and drug delivery 
systems trust upon their effective interface between the extracellular matrix, intra-
cellular cells, and components. The cellular and molecular points are mainly deter-
mined by the surface characteristics, morphological, and chemical analysis of NMs. 
An overview of the physical and chemical properties (i.e. superficial charge, surface 
composition, size, shape, and chemical nature, etc.) of NMs affect the biocompat-
ibility and uptake efficiency of medical platforms which is thoroughly explored in 
this chapter. 
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1 Introduction 

Nanomaterials (NMs) of different organic and inorganic materials are extremely 
minute in size, (between 10 and 500 nm) [1]. These NMs are surrounded by an inter-
facial layer that behaves as an entire unit with respect to their transport properties. 
These NMs display physico-chemical, optical and electrical properties which are 
expressively different from those of bulk materials and include a huge variability of 
dissimilar materials ranging from metals to insulators through semiconductors [2]. 
The size-dependent parameters lead to produce different opto-electrochemical prop-
erties. The optics [3], catalysis [4], drug delivery [5], antibacterial activity [6], surface 
plasmon resonance [7], and superparamagnetism [8], etc., are unique properties of 
NMs which are reported in several constituents and structures in scientific fields. 
The recognized applications of NMs include light-emitting devices [9], photodetec-
tors [10], solar cells [11], quantum dots (QDs) nanotechnology [12], liquid crystal 
displays [13], surface-enhanced Raman scattering (SERS) devices [14], plasmonic 
photonic crystals [15], battery anodes [16], heterogeneous catalysis [17], and medical 
platforms [18]. The high surface area-to-volume ratio of NMs offers an incredible 
driving force for the diminution of Gibbs free energy. This leads to a constant config-
uration with lower free energy to form a superior functional self-assembly unit. The 
spatial preparations of NMs formational assemblages can be assembled by molec-
ular interactions, which can externally be directed or indirectly through their envi-
ronment. Due to the propagation of NM synthesis methods, the design and study of 
NM assemblies are widely popular. The dipole–dipole, Van der Waals, electrostatic, 
and depletion interactions are the types of interactions that can induce the forma-
tion of NM assemblies [19]. The solvent evaporation method, solvent destabiliza-
tion method, and gravitational sedimentation method are generally used to prepare 
NM assemblies in which the modification of interparticle interactions is realized by 
modifying the type of reaction temperature and solvent, interface with the colloidal 
solution, and the vapour pressure [20]. The electric field or magnetic field is the appli-
cation of an external field [21]. The use of structure-directing media is also important 
for fabricating NMs [22]. The fabrication of NM assemblies containing functional, 
structural, and stable features is challenging. The 1D, 2D, and 3D NMs avail amor-
phous and crystalline, or semicrystalline crystal structures [23], etc. These small 
sized NMs particles of large surface area-to-volume ratio display various physical 
and chemical features compared to their bulk counterparts. These features have made 
them attractive for several applications like sensitive sensors, fast-moving consumer 
goods, electronic devices, pharmaceuticals, and medicinal products [24, 25]. These 
NMs are widely envisaged in biogenic applications such as biomolecule detection, 
regenerative medicine, gene and drug delivery, vaccines, tissue engineering, high-
accuracy diagnosis, cancer therapy, and theranostics [26]. The inorganic metal oxides, 
chalcogenides [27–29], and organic NMs such as graphene [30], carbon nanotubes 
[31, 32], C60 fullerene [33], and carbon quantum dots (CQDs) [34], etc., are used 
for numerous applications. Owing to the full range of applications in bioscience and 
biotechnology and also in other biomedical products, it is necessary to understand the
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Fig. 1 Schematic presents the interaction of NMs drug with cells and cellular components [36] 

interaction between mammalian cells and cellular components of NMs (see Fig. 1) 
[35]. 

Many researchers have studied nanotoxicity and reported that nanostructures can 
produce several adverse effects in biological schemes mostly due to the creation of 
reactive oxygen species (ROS) that outcomes in oxidative stress [37–40]. In the ROS-
independent mechanism, NMs produce toxic effects on cells [41, 42] which is asso-
ciated with zeta potential, morphology, size, and shape of NMs [43–45]. Therefore, 
a clear understanding of NMs-cell interaction has the key importance to effectually 
exploring the potential healthcare applications of these petite particles with minimal 
adversarial effects. Although, there is sufficient information available in the scientific 
literature concerning NMs-cellular interactions [46–50], a comprehensive reorgani-
zation in a simple understandable form is mandatory. In various biomedical and 
drug delivery applications, a proper level of interaction between NMs with cells 
and intracellular organelles is a fundamental issue [51, 52]. To superfine NMs-cell 
interaction and achieve an appropriate outcome via various methods like surface 
functionalization [53–56], surface modification [57], and monitoring the physical 
and mechanical properties [58], both theoretical and experimental attempts have 
no option [59]. Various factors (a net charge, size, shape, hydrodynamic volume, 
stiffness, etc.) can affect the interaction between NMs and cell membranes [60–63]. 
A fragile interaction between NMs and cell membrane can result in the Brownian 
collisions of NMs with the cell membrane without facilitating the adhesion of NMs 
on it. However, adequate adhesive forces can result in the adhesion of NMs on cell 
membranes and subsequent internalization by generating provisional pores in the
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plasma membrane [64, 65]. The whole internalization of NMs mainly depends on 
their surface functional groups, size, shape, etc. [66]. Surface chemistry phenomena 
and stiffness can also substantially influence on the NM-cell interaction [67]. 

Even with the cytotoxic effects [68], some inorganic NMs are exploited to destroy 
pathogenic micro-organisms and malignant cells [69, 70]. Inorganic NMs are exten-
sively studied for their potential applications in vaccine delivery and immunotherapy 
[71]. Thus, it is vibrant to understand both the material characteristics and the doses 
of NMs to draw a sharp line between the cytotoxic concentration and therapeutic 
window to use them in clinical settings. These necessitate substantial advancement 
in understanding the appropriate interactions at NMs-cell interfaces by demanding 
research [72]. The outcome of interactions between NMs with cellular compo-
nents, and mammalian cells at various levels, could help to identify the fundamental 
requirements for their use in the healthcare and fast-moving consumer goods sector. 
This chapter deals with the multiple properties of NMs that are influenced by their 
surface modification methods, chemical nature, shape, particle size, rigidity, texture, 
charge, hydrophilicity/hydrophobicity, and most importantly, the presence of func-
tional groups for knowing the influence cellular uptake and interaction with cellular 
components. Moreover, these properties are the uptake efficiency of pharmaceutical 
implants and biomedical products. 

2 Surface Modifications via Physicochemical Properties 

The chemistry of the base materials used for the synthesis of NMs is an important 
factor that influences their interactions with the cells and cellular components [73]. 
The NMs synthesized from biopolymers such as chitosan [74] and metals and metal 
oxide NMs synthesized by biotic routes are generally bioactive [75]. Their advanta-
geous properties are accredited to the occurrence of functional groups such as amino, 
acetamido carboxyl, and hydroxyl groups [76]. Moreover, non-bioactive NM-based 
synthetic biopolymers such as polycaprolactone, polyvinyl alcohol, and polylactic 
acid are companionable with mammalian cells [77]. 

The cytotoxicity exposed by the NMs is mostly due to the intrinsic toxicity of the 
elements used for the NMs preparation. Since, noble metals like gold and platinum are 
slightly companionable with mammalian cells, NMs prepared from noble metals are 
harmless in spite of their shape, size, surface phenomena, and morphology-associated 
effects (Fig. 2) [78–84]. However, toxic heavy metals such as cadmium and lead-
based NMs are generally toxic to mammalian cells [85]. These NMs can persuade 
their toxic responses depending upon the interaction with natural or biochemical 
properties. The cellular responses are dependent on how NMs are produced i.e. by 
simple molecules or specific chemical molecules, functional groups, and non-specific 
surface chemical features. Mostly, the systemic toxic effects are dependent on the 
release of metal ions, elemental chemistry, and the presence of specific biochemical 
molecules and specific chemical properties of NMs. However, non-specific chemical 
properties can play a title role in the NMs associated with cell-cell adhesion, cell
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proliferation, cell-substrate adhesion, and phenotypic changes in the local cellular 
responses [86, 87]. The ionization in the solution of metal or metallic-containing NMs 
plays a title role in the toxicity induced and cellular response by them at the tissue, 
cellular, molecular, and systemic levels [88]. The ionization in the dissolution of 
metal or metallic-containing NMs mostly depends upon the chemical behaviour and 
nature of the NMs in the environment of the biological system [89]. For example, 
more soluble zinc oxide NMs in aqueous conditions demonstrate comparatively 
higher cytotoxicity on cells rather than partially soluble titanium oxide NMs [90]. 
The probable reason for such a pronounced adverse effect is exposed due to the 
maximum amount of metal ions generated in aqueous conditions of soluble NMs. 
The silver/copper NMs generate the silver and copper ions in an aqueous solu-
tion that could interact with the cell wall components containing oxygen, nitrogen, 
or sulphur and damages them [91, 92]. A motivating recent study established that 
even negligible changes in surface coverage of functional groups would significantly 
affect the cellular interaction and sub-cellular delivery of ultra-small Au NMs [93]. 
The results of this study showed that subordinate surface coverage results in fast 
cellular communiqué and sturdy membrane binding but a little cellular uptake. In 
disparity, high surface coverage induces slow cellular interaction and low membrane 
binding but higher cellular internalization. Since the integral chemical properties of 
the materials working for the invention and surface functionalization of NMs can have 
a direct effect on their interaction with cells and cellular components [94], their bulk 
and surface chemistry should be sensibly evaluated before recommending them for 
biological applications [95]. The consequent sections have described detailed infor-
mation concerning various aspects that influences the interactions between NMs and 
cells.

2.1 Morphological Strategy

(a) Size 
The particle size of NMs acts a dynamic role in the toxicity, drug release 

kinetics, cellular uptake, bio-distribution, and biological applications [96]. 
Generally, distinct micro to large particles of NMs cannot be identified as 
extraneous bodies by the immune system [97, 98]. The particle size of NMs 
can play an important role in macrophage engulfment, and they recognize only 
relatively large NMs [99]. Apart from the cellular uptake, the kinetics of cellular 
uptake and intracellular distribution are influenced by the size and shape of the 
NMs [100, 101]. NMs should be able to traverse the extracellular matrix (ECM) 
due to facilitate effective interaction with cells and provide a biological response. 
The ECM inflexibly controls the movement of NMs across it due to the perme-
able mesh-like organization, [102]; ECM permits penetration of smaller NMs 
than its mesh size, and the bigger NMs are restricted [103]. Generally, ECM 
allows the transport of slightly smaller NMs due to the collagen fibrils of the 
ECM possessing an interfibrillar spacing of 20–40 nm [104]. While there are
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Fig. 2 Physicochemical properties of NMs

many hurdles in the ECM that hamper the diffusion of NMs, there are numerous 
factors that can significantly enhance NM movement through the ECM, such as 
the surface charge and hydrodynamic diameter of NMs [105]. Afterwards, NMs 
successfully pass the ECM barrier, then they should be successful in traversing 
the cell membrane to enter the cells [97]. The NMs enable their smooth entry into 
the cells due to the large surface area-to-volume ratio of small [96, 106, 107]. 
The NM size plays an important role in determining the mechanism of uptake 
too [108, 109]. Likewise, the size of NMs has an influence on the cell membrane 
receptor activation and resulting protein expression [110]. A novel study showed 
that smaller mesoporous silica NMs could obey red blood cells without dislo-
cating the membrane. Moreover, larger mesoporous silica NMs produce subse-
quent and speculative haemolysis [111]. The variation in cell membrane-NPs 
interactions can also be observed in metallic NPs, and it is a size-dependent 
variation [112–116]. In cancer cell studies, the existence of functional groups 
on the surface of NMs could not change the size-dependent privileged uptake 
of lesser NMs [117]. The size distribution of structures is one more essential 
factor to be thoroughly explored as the cellular responses may differ with the 
size of the NM particles. Furthermore, the accumulation activities of NMs have 
an influence on interactions and subsequent cellular responses as agglomerative
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NMs expose a much bigger size than individual ones [118]. Passive diffusion 
and active transport through the nuclear pore complex are mainly two different 
mechanisms in the cell nucleus. NMs should be very less size and passes through 
the passive nuclear pore complex channel (width 6–9 nm) [119]. The active 
transport through the nuclear pore membrane complex of NMs is proficient by 
the support of a cytoplasmic protein [120]. The below ~ 50 nm diameters of 
NMs can reach the nucleus by active transport through the nuclear pore complex 
mechanism [121]. The kinetics of NMs to the nucleus is extremely dependent 
on the size [119]. The ~ 2.4 nm size of functionalized gold NMs can able to enter 
the nucleus, but slightly greater ones are circulated in the cytoplasm (5.5–8.2 
nm) [122]. The GO-QDs (graphene quantum dots) are able to enter the nucleus 
due to their smaller size to deliver drug cargos and DOX/GO-QD (doxoru-
bicin/graphene quantum dots) conjugates [123, 124]. Even though there are 
numerous reports about the influence of cell interactions with the size of NMs, 
the hydrodynamic diameter (HD) is a warning of the apparent size of nanopar-
ticles that can be premeditated from the diffusion properties of the dynamic 
solvated/hydrated particle. In cell culture systems, hydrodynamic size is the 
most realistic size of the NMs and an indication of how the particles perform in 
a fluid. In addition to microscopic imaging techniques like transmission elec-
tron microscope (TEM) and atomic force microscopy (AFM), dynamic light 
scattering (DLS)-based particle size measurement can also provide information 
on HD. In addition, the particle size measurement techniques such as scanning 
electron microscopic imaging (SEM), FESEM, TEM, dynamic light scattering 
(DLS), and atomic force microscopy (AFM), can also provide information on 
HD. Many researchers reported the protein formed around NMs could signif-
icantly vary the size and influence cellular uptake. The self-assembled NMs 
or size-related effects of such nanostructures on cells need special attention in 
various biomedical applications [125–131].

(b) Shape 
The shapes of nanoparticles are also influenced due to nanomaterial uptake, 

distribution, interactions with cellular components, and resulting cellular func-
tions [132]. The elongated NMs usually demonstrate higher uptake than sphere-
shaped ones due to their sophisticated ability to effectively adhere to cell 
membranes [133]. Sphere-shaped NMs offer rarer binding sites to comply and 
interrelate with the cell membrane due to their rounded surface and display 
comparatively less internalization [134, 135]. Many researchers reported that 
discoid, rod, triangle sharp-shaped, cylinder, quasi-ellipsoidal nanostructures, 
squares, circles, etc., are more efficiently internalized by cells equated to spher-
ical particles [132–137]. However, rod-shaped NMs exhibit less effective inter-
nalization than disc-shaped ones [138]. Cylindrical shapes have approved higher 
cellular uptake than spherical nanostructures ones [139]. Additionally, sharp 
edged NMs can penetrate into the cell membrane and effectively internalize. 
However, sphere-shaped polymer NMs and their distorted quasi-ellipsoidal 
counterparts with variable ratios of the feature are investigated where different 
results are observed [140]. The triangular-shaped morphology of gold NMs have
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demonstrated higher uptake than sphere-shaped nanoparticles in HeLa cells 
[141]. The different morphologies (i.e. triangular rods, stars, etc.) of different 
functionalized gold NMs have exposed the highest to lowest cellular uptake, 
respectively [142]. Mathaes et al. completed a detailed examination to under-
stand the dis-similarity of cellular uptake of the sphere or non-sphere-shaped, 
elongated poly (d, l-lactide-co-glycolide) (PLGA)-based micro and NMs [143]. 
The carbon-based NMs like fullerenes [144, 145] and CNTs [146, 147] can enter 
the cells and penetrate the cell membrane by spontaneous penetration/insertion 
by endocytosis or crosswise the membrane [148–150]. The researchers reported 
that CNTs may pass the cell membrane by exploiting a lipid-mediated process 
[151] through multiple steps such as landing, piercing of the membrane, and 
subsequent internalization [152, 153]. It is also confirmed that tiny uptake 
of graphene-like materials naturally starts at the uneven sides or corners of 
these nanostructures [154]. The sharp edges of NMs initiate penetrating the 
cell membrane and propagate along the rest of it. Such local piercing dimin-
ishes the high-energy barricade and helps relatively informal penetration and 
cellular uptake. Nevertheless, in contrast to the internalization, the exocytosis 
of big aspect ratio NMs is found to be smaller than that of their sphere-shaped 
counterparts [155]. 

(c) Stiffness and topography 
The stiffness and topography are influenced by the NMs-cell interaction and 

subsequent cellular responses [118, 156]. Several studies have revealed that 
nanoscale surface features can alter cellular response [157], and also influence 
cell adhesion [158] and cell differentiation [159]. Similarly, the matrix stiffness 
of the structures can modify the NMs-cell interaction and subsequent cellular 
response [160]. The polyacrylamide-nanomaterials (PA-NMs) with tuneable 
stiffness as a role model substratum to validate the association between stiff-
ness and their internalization by mammalian cells are studied by Huang et al. 
[161]. They have verified that a harder particle could endure bigger internal-
ization per cell basis. Guo et al. reported that the in-vivo tumour penetration 
and in-vitro cellular internalization of NLGs (nanolipogels) depend on the elas-
ticity. [162]. Guo et al. established that the elasticity of NMs plays a vital role 
in cellular uptake, and its remnants are a critical strategy parameter to progress 
the tumour delivery formulations. Moreover, fibrous matrices with sceneries 
of the natural in-vivo ECM are being commonly used as muscle engineering 
scaffolds [163, 164]. The electrospinning technique is used then the fibrous 
scaffolds are realized [165, 166]. The individual fibre diameter of such fibrous 
membranes frequently comes below the submicron range, which is compa-
rable to the topography of native ECM [167]. Various approaches, such as 
controlling the solvent ratio [168], polymer concentration [169], incorpora-
tion of nanofillers, and inducing breath figure formation [170], have tried to 
manipulate the fibre diameter and surface topography of fibres.
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2.2 Non-covalent Bonding Strategy 

The non-covalent strategy is based on a large number of weak interactions (refer. 
Fig. 4) (hydrogen bonds, ionic, electrostatic, Van der Waals, absorption, and 
hydrophobic interactions,) and it is especially used with silica and metallic NMs 
[171–173]. The non-covalent bonds have the advantage of being relatively simple 
and do not affect the structure of the used molecules and their interaction with 
biological targets. Contrariwise, non-covalent alterations can also be predisposed by 
dissimilar variable quantities, such as ionic strength and pH [174]. 

(a) Surface charge 
The surface charge of NMs is influenced due to NMs-cell interaction, cellular 

uptake, and the resulting outcome. [175]. The zeta potential values of the NMs 
are usually stated as a net surface charge of NMs [176]. ECM remnants have 
a net negative (−) charge due to the presence of GAGs (glycosaminoglycans) 
chains, which are profuse in (−)ly charged functional groups. Away from the 
size filtering, there is a charge-dependent mechanism for NMs trafficking across 
ECM, namely interaction filtering [177]. The corona protein creation over the 
NMs in physio-logical conditions can alter the resulting interaction and the orig-
inal surface charge of NMs [178]. Generally, NMs with a net positive (+) charge 
are adopted by cells more energetically than those with a net (−) charge [179]. 
This privileged internalization can be due to favourable + and − electrostatic 
interactions, as cell membranes are (−)ly charged [180]. Nevertheless, phago-
cytic cells are described for the discerning uptake of anionic NMs [181]. In 
an exhilarating study, the high-affinity binding of citrate-coated superparamag-
netic iron-oxide NMs with cell membranes is hindered when GAGs synthesis is 
blocked [182]. This points out that the communication between GAGs and the 
(−)ly charged NMs has played a vital role in the cell membrane binding of NMs. 
A sequence of NaYF4: Yb3+, Er3+ up renovation NMs with several morpholog-
ical structures and surface coverings are synthesized to recognize the effect 
of surface charge on the scope of cellular uptake. The outcomes of this study 
have emphasized that the cellular uptake is also bigger when NMs with a bigger 
surface charge are used. The effect of surface charge on the cellular internaliza-
tion is protruding in very small-sized NMs, where numerous mechanisms are 
found to have taken a portion in the cellular internalization such as clathrin-
caveolae-mediated endocytosis and physical adhesion-consequent infiltration. 
However, in the case of relatively larger particles, an energy-dependent endocy-
tosis mechanism played a more protuberant role. Landgraf et al. examined the 
scope of internalization of neutral, (+)ly charged, or (−)ly charged quantum dots 
and the Au@MnO particles by CLSM [183]. Huhn et al. reported the impact of 
the charge on the interactions of NMs with mechanisms of subsequent cellular 
internalization and biological media [179]. For this, Au NMs with equal physical 
properties are improved with amphiphilic polymers to make NMs with opposite 
surface charges (positive/negative) [179]. NMs internalized by mammal cells 
with a (+) charge demonstrate a more important level than those with a (−) charge
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(Fig. 3) [184]. Upon contact with cells, NMs can: (i) basis the distortion of lipid 
membranes resulting in their internalization [185], (ii) dislocate the phospho-
lipids bilayer [186], and (iii) create “holes” in the cell membranes. NMs with 
a net (+) charge are much more prospective to generate such membrane falsifi-
cations than those with net (−) and neutral charges. Such holes may outcome 
in the leak of intracellular mechanisms and lead to cell death. Cationic NMs 
can deliver moderately vigorous interaction with cell membranes with net (−) 
charge and consequence in their rapid internalization with potential membrane 
falsifications [187]. 

In contrast, owing to the analogous net charge with cell membranes, anionic 
structures are less detrimental. Owed to the net (−) charge, relating to cation NMs 
are supposed to be electrostatically involved in plasma membranes and afterwards 
internalized by the cells. Nevertheless, of such theoretical expectations, newly experi-
mental research showed that structures with net (−) charges are also intelligent to pass 
in the cells by criss-crossing the (−)ly charged cell membrane [188]. In disparity to 
charged NMs, neutral ones display only low-slung sympathy with cells and thus affect 
a lesser amount of internalization [96]. There are numerous other aspects such as 
hydrophobicity which may also play an important role in the uptake of charged NMs,

Fig. 3 Microscopic images 
of charged Au NMs in 
different culture media [179]
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Fig. 4 Drug binding onto cellulose NMs [36]

and this could be one of the reasons for conflicting results concerning the consequence 
of charge on cellular uptake [181]. NMs also interrelate with cytoskeletal proteins 
dependent on their surface charge and outcome in the alteration of the possessions of 
NMs or cytoskeletal proteins [180, 190]. Along with these changes in the properties 
of NMs, such communications can affect cytoskeletal integrity, as evident from an 
increase in F-actin expression and the variance in cell polarity [191]. Metallic NMs 
can every so often result in the loss of cytoskeleton mechanisms such as β-tubulins 
and F-actins [192]. Artificial cationic macromolecules can interrelate with actin fila-
ments [193] and affect actin polymerization (at 1 μg mL−1). Nevertheless, at higher 
concentrations (≥ 10 μg mL−1), actin polymerization was augmented. Previous 
research also showed the reality of numerous mechanisms behind the internalization 
of cationic liposomes, such as those facilitated by actin links or tubulin-interceded 
cytoplasmic transportation [194]. NMs with a net charge can also interrelate with 
intracellular organelles like mitochondria [195]. A few of the charged structures 
can penetrate cell nuclei and generate genotoxicity [196, 197]. Disdain the probable 
harmful properties of DNA such as nucleus-targeted NMs are subjugated in cancer 
therapy [198].
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(b) Hydrophobicity/hydrophilicity of the NMs 
The development of hydrophobicity/ hydrophilicity NM is highly influenced 

by the nature of forces between NMs and cells [28, 61, 62, 199]. Fascinatingly, 
NMs with hydrophilic surface groups are exposed to a prolonged circulation 
period due to their resistance to phagocytosis [200–202]. Previous research 
also designated that proliferation and cell adhesion were larger on surfaces 
with middling hydrophilicity [203]. Among the NMs were functionalized with 
–NH2–COOH, –OH, or any functional groups. Out of these groups, –OH 
and –NH2 group functionalized NMs provide larger cytotoxic responses than 
–COOH functionalized group ones [204]. NMs with hydrophobic/hydrophilic 
surface functional groups demonstrate probable interaction with an endothelial 
cell model membrane [205]. The effect of inhibitors on the cellular internaliza-
tion of carboxyl-modified polystyrene (CPS) and plain polystyrene (PS) NMs by 
mesenchymal stem cells (MSCs) is also investigated [206]. From the outcomes 
of the above study, it is highly apparent that dynasore impedes the internal-
ization of CPS-NMs. However, dynasore does not affect the internalization of 
PS-NMs. The outcomes also established that with the addition of dynasore, the 
internalization of CPS-NMs was summarized by 30% equated to the controller 
cells without inhibitor; nevertheless, internalization of PS-NMs persisted the 
same. These outcomes show that the carboxyl groups currently present in 
the CPS-NMs resulted in dynamin-dependent endocytosis. The hydrophobic 
octane thiol surface modification of zwitterionic luminescent glutathione-coated 
gold NMs (GS-Au NMs) enhanced their interface with the cellular membrane 
and occasioned higher cellular uptake was studied [207]. The hydrophilic 
sulphonate ligand bearing NMs, internalized by dendritic cells, provided punc-
tate fluorescence signatures indicating the effective endosomal uptake [208]. 
The hydrophobic drug transporters are very significant in the delivery of water 
insoluble therapeutic agents [209, 210]. In the case of vocally managed NMs, 
effective mucus permeation and epithelial absorption are also challenging except 
the surface of them is functionalized with specific molecules [211]. 

Moreover, hydrophobically glycol chitosan nanomaterials (HGC-NMs) are 
reported for the effective delivery of hydrophobized DNA [212]. The HGC-NMs 
provide higher transfection efficacies equated to bare DNA and a commercially 
accessible transfection agent, demonstrating their gene delivery application poten-
tial. Thus, the hydrophilicity/hydrophobicity of NMs plays an important title 
role in defining the NM-cell interactions and influence the consequence of such 
communications. 

(c) Surface adsorption 
The informal system is to adsorb drugs on the surface. This is discovered for 

the distribution of hydroquinone (HDQ) cellulose nanocrystal complex (CNCs) 
to the skin in order to remedy hyperpigmentation [213]. In this experimen-
tation (refer. Fig. 4), the drug is adsorbed onto the surface by only mixing 
sulphuric acid-hydrolysed CNCs and drug molecules in condensed water with 
the accessory of HDQ being confirmed by FTIR peaks [213].
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(d) Electrostatic interaction 
The charged drugs can be elaborated by electrostatic interactions like cationic 

drug metformin [214], doxorubicin, and tetracycline [215]. The cellulose NMs 
are loaded with the drugs by mixing drugs and carriers at set pH values until all 
drugs are immobilized on the carrier. Jackson et al. reported a comparative study 
of the binding charged drugs and other neutral drugs as like paclitaxel. Moreover, 
it is found that only limited adsorption was done from non-charged drugs. [215]. 
The drug-loaded CNCs were efficiently taken up by KU-7 bladder cancer cells, 
but no cytotoxicity was measured. In order to deliver (−)ly charged drugs such 
as methotrexate (MTX), it is essential to functionalize the surface with cationic 
groups such as tris(2-aminoethyl) amine. After load Fe2O3 particles onto CNCs, 
the drug-loaded carriers are incubated with MCF-7 breast cancer cells. MTX 
delivered on quaternized CNC is found to be more efficient than free MTX [216]. 
The resultant particles are solvable in an aquatic solvent, but DLS investigation 
recommended some accumulation. Fascinatingly, the ultimate structures are 
sphere-shaped since the preparation method devastated the fibre structure of 
cellulose NMs. 

2.3 Covalent Bonding Strategy 

The covalent bond strategy can be achieved by using various alternate methods, 
dependent on the arrangement of the NMs [217–219]. Furthermore, this approach 
permits variations at numerous levels via consecutive functionalization [220–222]. 
This method can be demoralized to achieve structures with manifold functions [223, 
224], like therapy and diagnosis to implement the theranostic approach [225, 226]. 

(a) Functional groups 
The existence of several functional groups on the surface of NMs can change 

their interactions with cellular cells. Such functional groups depend on interac-
tions trusted upon the definite interaction of cell ligands with the present func-
tional groups over the surface of NMs. An appropriate surface functionalization 
permits the NMs to definitely interrelate with the safe cell membrane penetration 
and cellular uptake [227–229]. The cells reacted with hydrophilic group func-
tionalized NMs left crinkles on the surface of the cell as a trademark of cellular 
uptake. The functionalization with ligands like small molecules, proteins, 
nucleic acids, antibodies, and peptides, can work as a vigorous approach to 
goal NMs to intracellular components or specific cells [230]. The aiming poten-
tial of NM is contingent on the chain length of functionalizing representatives 
too [231]. Functionalization can prevent corona protein creation when it comes 
to interaction with serum proteins [232, 233]. Owed to the capacity to battle 
protein adoption, NMs can be ornamented with PEG to minimalize generic 
membrane interactions. Furthermore, covering with PEG can evade the accu-
mulation of NMs [234]. Functionalizing with exact biomolecules such as anti-
bodies to aim and enable internalization is a perilous approach in the arena
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of nanomedicine [235, 236]. A novel study exhibited that biotin integration 
into pullulan acetate rayon self-assembled NMs can improve the uptake by 
HepG2 cells [237]. The surface functionalization of NMs with certain agents 
that have to be distributed to the nucleus is an auspicious approach [238]. This 
is superficial from the introversions of nuclear cover nearby the internalized 
structures. Such NMs accompanying differences in nuclear morphology and 
superior therapeutic efficiency are extremely encouraging for nuclear-targeted 
cancer therapy [113, 239, 240]. Recent studies have also explored the perti-
nence of functionalized NMs to minimalize nuclear damage due to nuclease 
activity [240]. Some studies have considered the cellular internalization of 
NMs, which are instantaneously functionalized with manifold groups having 
dissimilar surface charges [241]. The fluorescent silica-based NMs embrace a 
wide range of zeta potential values. Remarkably, serum proteins adsorbed over 
these charged NMs neutralize the original surface charges by obstructive the 
accumulation within them [242]. When serum is non-providing in the medium, 
NMs with additional (+) zeta potential values can be accrued in cells more 
than those with (−) zeta potential values. However, in a serum comprehending 
medium, (−)ly charged FS-NMs demonstrate advanced uptake by the cells, 
indicative of the reputation of sulphonate-functionalized silica NMs in clinical 
applications where the presence of serum is predictable. Additionally, the micro-
scopic investigation can be executed to localize FS-NMs in cellular components 
such as actin cytoskeletons and lysosomal structures [243]. The functionalized 
and non-functionalized carbon-related NMs are broadly explored in numerous 
biomedical applications [244]. Cells showing to original graphene directed the 
incompetence of F-actin arrangement in mammalian cells [245]. In disparity, 
functionalized graphene did not generate such a consequence on the cytoskeletal 
proteins. Previously, researchers mentioned that Cl ligands and N ligands edge-
functionalized graphene QDs progress the nuclear uptake and histone binding in 
the nuclei [229]. Aminated graphene QDs have provided higher hollow cleavage 
and cross-linking of DNA chains in macrophages intervened by π–π stacking 
and H-bonding [246]. 

(b) Conjugation of drugs and targeting ligands 
Chemical conjugation can frequently be a good means of immobilizing drugs 

while confirming the leisurely release. The chlorotoxin peptide, which inter-
relates with MMP-2 confidential cells, is assured to the surface of CNCs by 
actuating the peptide drug using NHS esters. The (−)ly charged CNCs are 
occupied by MCF-7 and U87MG. As U87MG has higher MMP-2 concentra-
tions, the carriers are found to be additionally efficient [247]. Cellulose NMs, 
primarily, oxidized to aldehydes using periodide, followed by the reaction with 
the amino groups to yield (−)ly charged solvable particles that are internalized 
by bone-forming cells [248]. Finally, the conjugation of proteins to surfaces 
is a recognized process to immobilize proteins such as bovine serum albumin 
(BSA) onto cellulose NMs. In this case, the authors select an amalgamation 
of physical attachment and chemical conjugation. Deliberate and continued
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release of proteins was measured with the free proteins sustaining their struc-
tural veracity [249]. These protein-coated CNCs are observed to trigger a higher 
in-vitro cholesterol effluence accompanying free proteins. The benefit of chem-
ical attachment is the capacity to elect when the drug is unconstrained. The 
linkage between drugs and cellulose NMs could be approachable to the pres-
ence of certain acidic/enzyme atmospheres. Enzymatic cleavage-hollow of the 
drugs was exhibited using l-leucine linkage. Tang et al. studied the pretreated 
CNCs with l-leucine linkage to produce responsive amino acid functionalized 
CNCs. After coupling the drug tosufloxacin tosilate, a drug carrier for colon 
viruses was formed in which the drug could be unrestricted enzymatically by 
lysozyme, but not by pepsin [250]. A pH-responsive linkage was generated with 
a cis-aconitylamide linkage. Cellulose NMs were firstly modified with amino 
groups and reacted to the cis-aconitic acid and were subsequently lined with 
doxorubicin. The conjugation efficacy was satisfactory but small, and it was 
proposed that the heterogenous reactions play a vital role. In final, the drug is 
released extra-proficiently at small pH values [251]. The assembly of functional 
groups on the CNCs surface does not only empower the accessories of dyes, but 
also that of targeted ligands. This is confirmed by consuming folic acid, which 
suggestively has improved the cellular connotation of CNCs with the folic acid 
receptor (+)ve cell lines such as H4, DBTRG-05MG, and C6 cells [252] and 
KB and MDA-MB-468 [254]. Otherwise, the RGD peptide was conjugated to 
the surface of CNCs, which also host layers of pDNA and PEI. An improved 
uptake by integrin over articulating NIH3T3 cells was informed [255]. In all of 
these cases, it was critical to be able to monitor the uptake of NMs. This was 
frequently proficient by attributing fluorophores onto the surface [256, 257], but 
similarly, chemistries are working to conjugate amino-functionalized CQDs to 
create photoluminescent CNCs, which can be simply imaged throughout the 
cell uptake studies [258]. 

(c) Host–guest chemistry 
Some drugs are hydrophobic, ionic, and they cannot be conjugated to the 

surface without trailing movement (Fig. 4). Ntoutoume et al. studied immobi-
lized cationic β-cyclodextrin (β-CD) to the surface of CNCs via electrostatic 
interaction to host curcumin as a guest. The movement of curcumin against 
prostatic cancer cell lines and colorectal was prominently improved when trans-
ported in this complex [259] and other drugs chalcones [260]. As a substitute for 
binding cyclodextrin via electrostatic interactions, the host can be conjugated 
to the surface using epichlorohydrin [261] or acrylamidomethyl cyclodextrin 
[262] by altering the cyclodextrin with citric anhydride, shadowed by the reply 
with cellulose NMs. The anticancer drugs doxorubicin, paclitaxel, and antibiotic 
ciprofloxacin (CIP) were used for loading [263].
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3 Biocompatibility and Uptake Capacity of NMs 

The physical and chemical properties of NMs, such as charge, size, shape of the 
molecules, and surface chemical groups, impact their toxicity, uptake efficiency, and 
biocompatibility. Out of these, chemical groups and surface charges are effortlessly 
altered by surface modification. The surface modification of particles is a prevailing 
method to fix or diminish issues connected to NMs toxicity, uptake efficiency, and 
biocompatibility since these phenomena are closely connected to NM’s surface 
conformation. Using dissimilar methods manipulating profitable kits or conventions 
adapted to the type of investigation, it is probable to assess their aspects. 

3.1 Biocompatibility 

The functionalization of the NMs surface to improve biocompatibility can be demor-
alized by using dissimilar molecules; out of these PEG molecules are the best for 
in-vivo and in-vitro applications. Kostiv et al. reported that the addition of PEG 
on the surface of iron-oxide and silicon dioxide NMs rises the biocompatibility 
when PEGylated NMs are used at high concentrations (200 mg/mL) with murine 
neural stem cells, unlike bare iron-oxide and silicon dioxide NMs that are caused a 
viability decrease of about 50% previously at a dose of 20 mg/mL [264]. In this study 
report, the highly appropriate properties of PEG to increase NMs biocompatibility 
are clearly observed. Moreover, the chromium-doped zinc gallate and diatomite-
based NMs improve the hemocompatibility due to the presence of PEG on the NMs 
surface [265–267]. Dextran is widely used to reduce the toxicity of NMs and modify 
nanoparticles. Dextran is a branched polysaccharide complex and generally, dextran 
is exploited to improve iron-oxide NMs surface [268]. Oliveira et al. studied that the 
addition of dextran to iron-oxide NMs could improve biocompatibility in zebrafish 
caterpillars; in specific, the action with dextran-coated NMs can not determine any 
substantial impermanence or changes in the crosshatching rate of the caterpillars. The 
toxicity of dextran-modified iron-oxide NMs was investigated by Balas et al. [269] 
on Jurkat cells. The authors studied and observed less toxicity and minor effects on 
membrane veracity up to 72 h of growth incubation. In the primary cells, improved 
biocompatibility due to the use of dextran with iron-oxide nanoparticles was reported. 
The dextran-NMs had no important effects on cell viability and apoptosis in humans, 
mainly monocyte cells as reported by Wu et al. [270]. The researchers reported that 
NMs biocompatibility is enhanced through oligosaccharide, i.e. chitosan, [271, 272]. 
Shukla et al. [271] studied, the toxicity in three different cell lines was decreased 
when chitosan-NMs equated to iron-oxide NMs. Moreover, the chitosan used to 
modify silver NMs studied by Peng et al. [272]. The results exhibited that chitosan-
coated silver NMs have had a higher biocompatibility when equated with silver NMs 
without surface modification in human fibroblast cells.
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3.2 Uptake 

The physical and chemical properties of NMs (such as composition, surface charge, 
shape, surface size, surface functionalization, and hydrophobicity/hydrophilicity, 
etc.) surface can be exploited to enhance cellular uptake. They are mainly two types, 

(a) Passive uptake 
The PEG molecule decreases accumulation and increases NMs stability in 

biological systems [273, 274]. Moreover, PEGylation of NMs evaluates a reduc-
tion of the communication with non-specific proteins resulting in a “stealth” 
effect which able to enhance PEG-NMs circular time and diminish phagocy-
tosis [275]. This improved stability of PEG-NMs is directly connected to bigger 
cellular uptake if equated with plain NMs that can be collective in the biological 
atmosphere. Cu and Saltzman [276] reported that the use of PEG can efficiently 
modify the behaviour of NMs relative to their transport in tissues. The addi-
tion of PEG of dissimilar sizes (2.5, 5, and 10 kDa) on PLGA on the NMs 
surface can improve particle size. Cruje and Chithrani [277] showed that NMs 
properties can be affected by the length of PEG molecules and by the surface 
functionalization density. 

To functionalize Au NMs by using longer PEG molecules with a high density, 
a deduction in the not-specific protein adsorption is observed. Nevertheless, 
this kind of variation results in a reduction in the uptake of NMs in all cell lines 
verified. Modifying NMs surfaces include variations in the superficial charge by 
using other molecules. Generally, they contain R-NH2 molecules at a pH of about 
7.4 and are positively charged. The surface charge of SiO2 NMs distresses the 
cellular uptake in the HaCaT cell line and skin explants were studied by Rancan 
et al. [278]. The (−)ly charged SiO2 NMs have exhibited lower uptake levels 
equated to APS, i.e. 3-aminopropyl-trimethoxysiliane altered NMs. Equally, Liu 
et al. described that the PS-NMs are altered with amino groups on the surface 
improved toxicity, associated with the high responsiveness of the NH2 groups 
[279]. In an intestinal epithelial cell model, the (+)ly charged NMs exhibited 
higher uptake and toxicity rather than (−)ly charged NMs reported by Bannunah 
et al. [280]. Moreover, the insincere charge of NMs can be selectively altered to 
moderate cellular uptake. The Au NMs are improved with (−) charged pyranine 
which can reduce the NMs uptake. This performance can be inverted through 
the addition of a (+)ly charged molecular cage that counterbalances the (−) 
charge of Au NMs and permits cellular uptake [281]. The important role of the 
surface charge of NMs in cellular uptake efficacy has been elucidated [282], 
where the surface of f-PLNMs is improved with dissimilar types of functional 
groups (carboxyl, acetyl, and zwitterionic,) and molecules (polyethylene glycol, 
guanidinium, and sulphonic acid). These particles are incubated with THP-1 
cells and A549 cells. The results disclosed an NMs superficial charge-dependent 
uptake by both cell lines; in particular, a cumulative trend in incorporation is 
observed in (+)ly charged modified-NMs, and this relationship is stronger in the 
THP-1 cells compared to A549 cells. Additionally, the CPPs are widely used to
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increase the NMs uptake. These molecules are collected from a specific amino-
acidic sequence, usually polycationic or amphipathic structures that enhance 
NMs uptake capacity [283]. Feiner-Gracia et al. [284] studied the penetrating 
competence of T at peptide (Tat-NMs) to functionalize PLGA NMs surface. 
They reported that while basic NMs do not pass in HeLa cells when Tat-NMs 
are additional, cellular uptake can be perceived. Due to the reputation of pretty 
the uptake of NMs, research into alternate molecules that predicament on the 
NMs surface is very dynamic. Yang et al. [285] informed the use of PC, i.e. 
phosphatidylcholine altered with dissimilar alkyl chain lengths (from C12 to 
C18), to rapidly grown lipid-PLGA hybrid NMs internalization. If PC had a 
slight effect on NMs constancy followed physical and chemical properties, then 
an improved cellular uptake of hybrid particles in A549 cells or HepG2 cells is 
observed. Moreover, the PC-altered NMs uptake has increased proportionally 
to the length of the PC alkyl chain. 

(b) Active uptake 
In the past decades, the surface alteration of NMs was primarily aimed at 

active targeting and cellular uptake by misusing the specific connections of 
NMs surface ligands with a wide array of receptors over-expressed in cancer 
cells [286]. The nanoparticles suitable to perform NMs active uptake include 
numerous chief types; among them, the maximum used are monoclonal anti-
bodies (mAbs), proteins, small peptides, carbohydrates, aptamers, and small 
molecules (Fig. 5). 

Throughout the coupling process, generally achieved by covalent interactions, 
these molecules are associated with the NMs surface in order to preserve their ability 
to predicament the targeted receptors. The mAbs used to achieve active uptake of 
NMs are expansively studied due to their higher binding ability, specificity, and 
stability (Fig. 5a). The antibodies are very valuable molecules to improve specific 
NMs uptake, but they have a higher molecular weight (∼ 150 kDa), and this could be 
an issue in the bioconjugation method, all above with smaller (< 10 nm) NMs. The 
use of the antibody antigen-binding fragments (Fabs) to achieve NMs active uptake 
is a viable alternative [287] (Fig. 5b). A viable alternative to the use of antibodies and 
Fabs to alter NMs surface is denoted by peptides that bind with high affinity to specific

Fig. 5 Design of nanoparticles for active uptake; a monoclonal antibodies, b fabs, c small peptides, 
and d natural proteins 
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receptors (Fig. 5c). Certainly, precise peptides can be attained by the screening of 
the phage lending library and by the isolation of binding systems from proteins using 
3D structural investigation. The use of ordinary proteins that interrelate with cancer 
cell receptors has been broadly studied, as described in numerous current studies 
(Fig. 5d). Scheeren et al. [288] studied and used transferring (Tf) to functionalize 
the surface of doxorubicin-loaded PLGA NMs. The interaction between transfer in 
and Tf receptors (Tf-R), highly articulated in cancer cells, is demoralized to improve 
uptake and drug release system. The authors established that Tf-PLGA@DOX NMs 
can greatly condense the viability of HeLa cells when compared to eternalized HaCaT 
keratinocytes with low Tf-R appearance. The other protein used to perform NMs 
active distribution is human serum albumin (HSA) which interrelates with tumour 
allied protein SPARC. The modified hybrid MelaSil-Ag-NMs surface using HSA 
to improve cellular uptake in breast cancer cells was reported by Sanita et al. [289] 
where the MelaSil-Ag-HSA NMs are frequently internalized by SPARC (+) cell line 
(HS578T) compared to SPARC (−) cells (MCF10a). 

4 Challenges and Future Perspectives 

We know that the conclusion of NM-cell interaction is either helpful or harmful 
to the cells or cellular uptake. It is dependent on many factors as a morphological 
surface strategy or bonging strategy of functionalization of NMs. Several cellular 
factors are also inspiration the particle internalization and subsequent interaction 
with cellular components. Research work related to the potential effects of NMs 
on several cellular organelles at the biomolecular level in bio-medicinal systems 
would be of great interest in the future. Communal exertions from all researchers 
and scientists are essential to understand the plausible interaction between cellular 
components and NMs to explore outcomes at full capacity. This would be a creative 
track for upcoming studies. 

(a) To improve the solubility of NMs and simplify the access into the target cell 
resulting in the lessening of the off-target effect. 

(b) The drug summarized NMs can be appropriated from the bloodstream by the 
MPS, which is a link of protected cells located mostly in the lymph nodes, 
spleen, and liver [290–293]. 

(c) The NM internalization is commonly problematic when the cells are highly 
packed [294]. Future studies should attention to the interaction of NMs with 
cells in a tightly packed state-run both in-vivo and in-vitro. 

(d) Numerous reports concerning brain-targeted NMs highlight that much focus 
should be given to the surface morphological effects and surface functionality-
dependent possessions of several NMs on tight junction proteins and other 
blood–brain barrier (BBB) components. Furthermore, CNS targeted medicines 
are also vulnerable to this challenge.
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(e) The more detailed studies on the interactions of operative crosstalk of ECM 
protein mechanisms of BBB with NMs are essential to use NMs in brain therapy. 

(f) As a more detailed study of the uptake of graphene by subsequent interaction 
with intracellular components is necessary for commonly used materials in 
numerous industrial applications. 

(g) To develop smart nano-systems with innovative applications in biotech-
nology and biomedical areas. For example, adjutancy in vaccines, bio-robots, 
biosensors, etc. 

This conversation of current improvement in the field has discovered that the 
idea of evolution plays a significantly titled role-like an “imperceptible hand”. The 
enlargement of living NMs assures to improve advances in structural and functional 
and can endure the applications of biological and non-biological systems. 

5 Conclusions 

This chapter summarizes some developed molecules and experimental works with 
different combinations of NMs and as well as metallic particles with potential 
biotechnological applications. Nevertheless, the maximum imperative feature for the 
optimum performance of these compounds is the choice of the best-tailored func-
tionalization process for individual biological systems. The physical and chemical 
alteration is a vital step for related applications, leading to chemically stable and 
well dispersed with the biological atmosphere. The numerous features of NMs such 
as surface morphological functionalization and chemically structural bonded can 
influence their interaction with cells or cellular components and other intracellular 
organelles. These communications will be advantageous to biological systems in the 
future. 
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Abstract The ineffective response of conventional antimicrobial drugs and the rapid 
spread of drug resistance are major obstructs to the successful management of infec-
tious diseases all over the world. A highly effective antimicrobial approach is urgently 
needed to replace existing ones. Recent advances in nanobiotechnology and their 
unique physicochemical properties would be a new hope in the coming years. In 
this scenario, the excellent antimicrobial efficiency of nanoparticles has received 
a significant interest across the globe. An improved understanding of nanoparticles 
following their biological cell linkages would be propitious to develop nano-based 
antimicrobial services like food sensors, food packaging devices, water purification 
systems, medical care regimens, etc. The present chapter focuses on the antimicro-
bial activities of different types of nanomaterials, responsible factors for antimicro-
bial efficiency, and probable responsible mechanisms. Moreover, this chapter also 
addresses the major challenges and future perspectives of nanomaterials for their 
efficient use.
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1 Introduction 

Health and diseases of living organisms are the most prevalent medical conditions 
and a substantial part of life. The emergence and spread of infectious diseases with 
pandemic incidences such as plague, tuberculosis, cholera, pneumonia, typhoid fever, 
syphilis, and recently COVID-19 etc., have a long history of adverse impact on the 
human health [1]. Since ancient times, the discovery of medicine and its develop-
ment is most likely to evolve over the course of the diseases. Till the discovery of the 
first antibiotic penicillin, medicinal plant extracts and metals were most preferred 
medicines for natural treatments [2–4]. This discovery was a breakthrough in the 
research of antimicrobial agents. Antibiotics have enabled us to fight against several 
deadly infectious diseases like bubonic plague, cholera, tuberculosis, and pneumonia 
and could save millions of lives by reducing mortality rate to 95% [4, 5]. This great 
achievement of medical science is gradually transforming into the healthcare sector. 
Even now, it is being frequently used in most common medical practices like surgery 
including ocular, caesarean, organ transplantation, joint replacement, and those treat-
ments in which immunity of the body is drastically reduced, e.g., chemotherapy for 
cancer and HIV treatment [6, 7]. Despite its outstanding medical applications, it has 
widely been incorporated into various non-therapeutic applications like water purifi-
cation systems, textile industry, poultry farms, and food packaging processes etc., 
[8]. In the golden era of antibiotics, the mortality rate related to infectious diseases 
has significantly been decreased, assuring shortly infectious disease-related issues 
would have been completely resolved. In fact, in 1970, the US Surgeon General stated 
that, “it’s time to close the book on infectious diseases and shift national resources 
to such chronic problems as cancer and heart disease” [9]. Even though, infectious 
diseases are still one of the major health threats of the twenty-first century [10]. 
Undoubtedly, antibiotics made an incredible contribution to the medical field and 
society but as we also know that all good things come with a price, unfortunately, 
antibiotics too. Inappropriate medication management concerning overall antibiotics 
treatment including over-prescription and over-usage worsens the situation. As a 
result, various antibiotic drugs compromise their activity against pathogenic micro-
organisms [11]. According to the literature, the acquisition of antibiotic resistance 
usually develops within two to three years after introducing a new antibiotic into 
clinical practices [12]. Microbial infections related to drug resistance, are not only 
difficult to treat but also demand prolonged treatment period which ultimately add a 
burden on healthcare sectors [13]. Much efforts are being made to understand how 
drug resistance exactly works. It is reported that almost all micro-organisms avail 
an intrinsic ability to protect themselves by disturbing the antibiotics’ function [14]. 
Biofilm production is regarded as one of the most powerful defence mechanisms
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that allow selective permeability to antimicrobial substances for making them 1000 
times more resistant than planktonic micro-organisms [15]. Based on the National 
Institute of Health (NIH) survey, about 80% of infectious diseases are associated 
with biofilm formation [16]. Most implantable medical devices and immunocompro-
mised individuals are highly vulnerable to biofilm-associated diseases [17]. Similarly, 
they acquire numerous strategies like decreasing the uptake of antibiotic drugs by 
producing a certain enzyme to inactivate the antibiotics. They are also capable to 
alter the cellular structure to block the binding sites of antibiotics. Furthermore, the 
efflux pump system is an important tactic to pump out antibiotics from their cellular 
space [18]. A more precise understanding of the structural organization of different 
microbial groups (like Gram-positive, Gram-negative bacteria, and fungi) provides 
helpful insight for developing novel antimicrobial agents for effective treatment 
[19]. To date, several Gram-positive and Gram-negative bacterial pathogens have 
been reported to cause serious diseases and infections. A list of causative agents 
for the infectious diseases includes Gram-positive genera Actinomyces, Bacillus, 
Clostridium, Corynebacterium, Enterococcus, Listeria, Mycobacterium, Nocardia, 
Staphylococcus, Streptococcus, Streptomyces and Gram-negative genera Acine-
tobacter, Escherichia, Klebsiella, Neisseria, Pseudomonas, Salmonella, Shigella, 
and Vibrio [20]. Among these all bacterial pathogens, Gram-negative bacteria are 
more challenging than Gram-positive bacteria mainly due to the presence of an 
outer membrane permeability barrier, multiple efflux pumps, and target-modifying 
enzymes [21]. 

Increased infectious pathogenic strains are responsible for ~ 700,000 deaths 
annually across the globe [22]. A recent report estimated that by 2050, approxi-
mately 10 million deaths will be expected every year with the drug resistance trend. 
This mortality rate will be significantly higher than cancer-causing deaths [23]. 
Surprisingly, presently being used antibiotics are those antibiotic classes that have 
already been discovered in a golden age of antibiotics [24]. However, most infection-
causing pathogens have demonstrated resistance to at least one group of antibiotics 
which causes economic and social complications [25]. On the other hand, fungal 
pathogens are also not an exception to these problems. A wide range of fungal genera 
including most common filamentous fungi such as Aspergillus, Fusarium, Crypto-
coccus, Coccidioides, Mucor, Rhizopus, and the non-filamentous fungus Candida 
sp. etc., are known to cause severe infections in humans which constituted almost 
1.5 million mortality rates each year [26]. Moreover, at present, only a few antibi-
otics are routinely preferred for antifungal treatment. Most of them exhibited adverse 
side effects like nephrotoxicity, renal insufficiency, hypokalaemia, hypomagnesemia, 
polyuria, cardiotoxicity and gastrointestinal disturbances, headache, nausea, and 
allergic reactions such as skin rashes, itching, mouth swelling, or hand swelling 
restricting their direct usage [27]. While new antifungal drug development is a bit 
harder and more complicated as fungi shares similar feature with the host [28]. For 
instance, antifungal classes mainly azoles and polyenes are ergosterol inhibitors of 
the fungal cell membrane. However, the function of ergosterol is almost similar 
to cholesterol in animals [29]. As per the European Centre for Disease Preven-
tion and Control (ECDC), this antibiotic-mediated negative consequence expects
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almost 33,000 deaths every year. Thus, their controlled involvements are supposed 
to be effectively monitored [30]. Apart from the health issue, they amid on several 
other sectors like food processing, water treatment, and biofouling on surfaces of 
industrial interest which eventually causes heavy monetary loss [31]. These worri-
some situations demand a novel chemical/structural moiety to fight against microbial 
pathogens [32, 33]. In this regard, researchers have continued their efforts to find 
innovative antibiotics. However, it is very disappointing that in the past 20 years, only 
two new classes of antibiotics, i.e., oxazolidinones and lipopeptides are clinically 
approved (which were already discovered in the late 1900th century but launched 
in the market very lately). Unfortunately, none of them is efficient against Gram-
negative bacteria [34]. In the discovery of antibiotic research, repeatedly rediscovery 
of already known antibiotic classes is a major challenge not only due to costly efforts 
but from a time-consuming perspective also [35]. In addition, microbial pathogens 
are evolving faster than the discovery and development of novel antibiotics [36]. 
Moreover, the commercial production of antibiotics is a less profitable business as 
compared to other drugs mainly due to their use should be for a limited duration to 
avoid resistance. Similarly, the newly approved antibiotic drug is only prescribed in 
those cases where more established antibiotics failed to treat the infections. As per 
antibiotic medication guidelines, limited use of antibiotics helps to delay the emer-
gence of the resistance trend of pathogenic strains. However, this is a major reason 
for lowering the returns on investment which makes it an unattractive business [9]. 

In the last quarter of the twentieth century, the origin of many technological 
advances particularly genomic techniques paves a new hope to discover novel antibi-
otic classes [37]. In this approach, repositories of the sequenced and annotated 
genome of microbial pathogens are used to find conserved genes encoding targets 
that are mainly missing in mammalian cells. Thereafter, a high-throughput screening 
assay is carried out to identify ‘druggable’ molecules (which are bound to these 
targets) from existing chemical libraries [38]. Although, the target-based screening 
approach is not pragmatic because these druggable molecules mostly fail to reach 
the target sites, due to the low permeability of bacterial membranes or the action 
of efflux pumps [39]. Also, single gene targets are more often to lead single point 
mutations which cause drug resistance and thus there is a high probability to select 
resistant mutants. This case is more evident through the beta-lactamases resistance 
which is mainly conferred by point mutation [40]. According to the reports, a single 
nucleotide substitution in beta-lactamase leads to introduce a new beta-lactamase-
resistant penicillins, cephalosporins, carbapenems, and monobactams [41]. In this 
regard, the World Health Organization suggested that limited exposure to antibiotics 
is the only way to avoid the evolution and spread of resistance [37]. From these 
perspectives, exploring non-antibiotic approaches may find a special interest.
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2 Nanotechnology: Pursuit of Progressive Science 

Nanoscience is a highly interdisciplinary field that includes physics, chemistry, math-
ematics, pharmacy, biology, engineering, and materials science which stimulates 
innovations at the nanoscale level by reflecting the intersection of ideas [42]. As 
per the International Organization for Standardization (ISO), nanoscience can be 
described as the science of nanoscale objects, while nanoparticles are defined as ultra-
fine substances of a diameter within the range of 100 nm with at least one dimension 
[43]. The novel 1D, 2D and 3D nanomaterials should be fabricated through more 
investigation towards the broad range of nano-oriented services in various indus-
tries including biomedical, pharmaceutical, cosmetics, environmental, agricultural, 
and many more [44]. This outstanding progress of nanotechnology has been strik-
ingly apparent to society/public via the wide adoption of in-market products, which 
are most regularly consumed on daily basis like toothpaste, cosmetics, sunscreen 
lotions, paints, water purifiers, etc. [45]. A recent report from the Institute for Health 
and Consumer Protection (IHPC) envisages that the vast expansion of the nano-
based market will significantly intensify up to $30 billion by year 2025 [46]. While 
looking at the success graph of the nanotechnology, the most usual question is 
expected, “why these nanoparticles are so interesting?” Its answer is concealed in 
the unique properties of nano-scaled particles which are completely different from 
their bulk counterparts. In short, it’s all about the matter of size [47]. As the size of 
bulk material decreases, the surface area and surface-to-volume ratio exponentially 
increase [48]. This size variation leads to alteration in the electronic structure from 
continuous bands to discrete electronic levels as result it exhibits amazing properties 
including mechanical, electronic, optical, and chemical ones [49]. This projects them 
as a topic of intensive research in various sectors such as sensor devices, photo and 
electro-catalysts, electronics, photoluminescence, magnetic data storage, supercon-
ductors, dilute magnetic semiconductors hydrogen production, solar cells and battery 
components, fuel cells and supercapacitor [50]. 

3 Nanoparticles: A Promising Alternative 

In modern medical sciences, nanotechnology is emerged as a new fascinating field 
to develop promising nanomaterials, for possible clinical utility, at a lower cost [51]. 
The less toxic behaviour of nanomaterials against the human cells and unconventional 
antimicrobial mechanisms has demonstrated a great advantage over antibiotics [52]. 
In recent years, metal nanoparticles (NPs) have adduced a huge potential for their 
use as antimicrobial agents, such as in medical implants, waste-water treatment, 
food packaging, and dentistry [53]. However, the medicinal properties of metals like 
silver and copper are known and documented throughout history [54]. In ancient 
history, silver and copper were widely utilized in the form of jewellery and utensils 
to prevent microbial infections [55]. Because ancient people were already aware of
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the ‘contact killing’ phenomenon in which micro-organisms are get rapidly killed 
on metallic surfaces [56]. Similarly, aqueous silver nitrate was most preferred to 
prevent the transmission of Neisseria gonorrhoeae from infected mothers to their 
new born babies [57]. In 1891, surgeon B.C. Crede was the very first person who 
used colloidal silver to sterilize wounds [58], whereas Robert Koch was the first to 
explore gold’s biocidal potential [59]. Moreover, magnesium, arsenic oxides, copper, 
and mercury salts are also known to treat diseases such as leprosy, tuberculosis, 
gonorrhoeae, and syphilis [55, 60]. Therapeutic practices of these metals have gained 
more popularity from 1900 to the 1940s and are still under use. Nowadays, medical-
grade forms of silver such as silver nitrate, silver sulfadiazine, and colloidal silver are 
extensively being utilized in several clinical practices such as dental amalgam fillings, 
wound dressing, personal care products, domestic household products, etc. [61, 62]. 
Although, their use as medicine is known for ancient Indian medicinal systems i.e. 
in Ayurveda [63]. The concept of ‘reduction in metals particle size’ is more evident 
in the document ‘Indian Charaka Samhita’ [64]. In Ayurveda, Bhasma is regarded 
as a traditional form of medicine and claimed to be biogenic nanoparticles. For 
instance, Swarna Bhasma (gold powder) has been used in different formulations 
for the treatment of rheumatoid arthritis which has also been used for rejuvenation 
and tuberculosis treatment. In addition to Swarna Bhasma, Rajat Bhasma (silver 
ash), Tamra Bhasma (cupric oxide), Jasada Bhasma (zinc oxide), and Loha Bhasma 
(iron oxide) are reported to prescribe for their beneficial medicinal properties [65]. 
Similarly, around 2600 years ago, Indian surgeon Sushruta mentioned the biomedical 
uses of naturally occurring magnetite (a type of ferrite NPs which is also known as 
lodestone) [66]. This ancient knowledge and recently advanced understanding of 
nanofabrication have opened up unique opportunities in the diverse field of medical 
sciences and unlocked dreams which would never have had previously. 

In the last few years, the antimicrobial activity of metal and metal oxide NPs 
has been extensively explored against various types of pathogenic bacteria including 
Staphylococcus aureus, Escherichia coli, Streptococcus mutans, Bacillus subtilis, 
E. coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa, which are mainly 
responsible for the outbreak of several diseases [67]. However, the antifungal activity 
of NPs has relatively been less explored as compared to antibacterial activity [68]. 
During the past decade, many studies on the antimicrobial of metal-based NPs include 
silver (Ag), copper (Cu), gold (Au), titanium (Ti), platinum (Pt), zinc (Zn), magne-
sium (Mg), and selenium (Se) NPs, and metal oxide NPs like titanium dioxide (TiO2), 
zinc oxide (ZnO), copper oxide (CuO), iron oxide (Fe2O3), and selenium oxide 
(SeO) etc., are reported (see Table 1) [69]. Most of these studies have suggested that 
metal and metal oxide-based NPs are potent antimicrobials. Moreover, nanomate-
rials of metal sulphide (MS) and metal–organic framework (MOFs) have also been 
represented as promising antimicrobial materials in different biological fields [69, 
70].
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Table 1 Various nanomaterials and their antimicrobial applications 

Nanomaterials Antimicrobial applications References 

Ag NPs Intrinsic antibacterial and antifungal agents [62, 71] 

Food packaging, preservation of fruits and vegetables 

Dental care 

Antibacterial coating on an implantable device 

Au NPs Healthcare products (ointment, face cream) [72–74] 

Mixed with bone cement for dental applications 

Nano-carriers for antibiotics to reach target site 

Pt NPs Antimicrobial applications [69] 

Therapeutic evaluation 

Cu NPs Intrinsic antibacterial agent [75–77] 

Antimicrobial water disinfectants 

Se NPs Antibacterial, antifungal [69, 78] 

Antibiotic drug delivery 

Food processing and packaging industry 

Mg NPs Antibacterial applications [69, 79–81] 

Antibiotic drug delivery 

CuO NPs Antibacterial applications [69, 77] 

Antibacterial coating on an implantable device 

Antimicrobial water disinfectants 

ZnO NPs Antibacterial and wound-healing properties [82, 83] 

Skin protectant 

Food packaging 

Photothermal-mediated antibacterial activity 

TiO2 NPs Antimicrobial [76, 84, 85] 

Food industrial applications 

Water disinfectants 

Antibacterial coating on orthopaedic implantable device 

Fe2O3 NPs Antimicrobial [86–89] 

Hyperthermia treatment 

Wastewater treatment 

MOFs Antibacterial and antifungal properties [70, 90–94] 

Nano-carriers for antibiotics to reach target site 

Antimicrobial filter mask 

Graphene oxides Antimicrobial, antibiofilm properties [69, 95] 

Water decontamination applications 

Ferrites Antibacterial, anticandidal, anti-adhesion, antibiofilm [28, 96–98] 

Hyperthermia treatment
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4 Antimicrobial Activity: Governing Parameters 

The physicochemical properties and different morphologies of nanomaterials are 
essentially important and are directly connected with antimicrobial efficiency [99]. 
Morones et al., found that antimicrobial activity is closely linked with the size of 
the Ag NPs  [100]. The smaller sized NPs exhibit a strong antibacterial activities 
than the larger ones [101]. This size-dependent antimicrobial performance initiates 
curiosity about their influencing behaviour which basically raised several questions 
like, is this size-dependent antimicrobial phenomenon applicable to other nanomate-
rials too? And do different physicochemical parameters of nanomaterials account for 
extraordinary antimicrobial activity? Many studies were conducted to demonstrate 
the impact of NPs properties on micro-organisms. The main conclusion highlighted 
by these studies could be that size, shape, concentration, colloidal state, zeta poten-
tial, surface morphology, and crystal structure of NPs are the decisive fate of micro-
bial survival (Fig. 1) [100–102]. Excluding physicochemical properties, a few more 
factors such as environmental conditions like pH, bacterial strain, and exposure time 
play a vital role in antimicrobial performance [103]. 

4.1 Size 

Particle size is a very crucial property of NPs to determine antimicrobial efficacy. 
Numerous studies have extensively been discussed that small-sized NPs demon-
strate higher specific surface area-to-volume ratio which is responsible for higher 
antimicrobial action [104]. In general, particle size within a range of 50 nm can offer 
greater antimicrobial efficiency [105] as smaller size enables them to penetrate the

Fig. 1 Factors influencing antimicrobial efficiency 
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cell membrane barrier more easily and also can disturb the biofilm integrity greatly 
[106]. For ages, Ag NPs have been a first choice for exploring antimicrobial applica-
tions owing to their inherent antimicrobial potency [107]. Wani et al., evaluated higher 
antifungal efficiency for Au NPs of 25 nm than 30 nm as smaller NPs reveal a higher 
surface area (1795 m2g) than larger ones (1505 m2g) [108]. Similarly, selenium-based 
NPs have demonstrated broad-spectrum antimicrobial activity [109]. Shakeable et al. 
identified that the Se NPs carry a powerful bactericidal effect against clinical isolates 
as compared to the SeO2 NPs, wherein toxicity of the NPs mainly relies on their 
oxidation states [110]. Copper-based NPs are also well-known for antimicrobial 
action [111]. However, a very few studies are reported on size-dependent antimicro-
bial activity. For example, the size-dependent antibacterial activity of the CuO NPs 
was investigated against S. aureus, B. subtilis, P. aeruginosa, and E. coli [111, 112]. 
The CuO NPs of 14.62–22.80 nm sizes exhibited a major inhibitory effect on Candida 
albicans [27]. The antibacterial activity of the Cu NPs was explored against several 
bacterial and fungal pathogens includingM. luteus, S. aureus, E. coli, K. pneumoniae, 
P. aeruginosa, A. flavus, A. niger, and C. albicans. Results of this study showed that 
bacteria are highly susceptible to Cu NPs than fungi [113]. Another study revealed 
that the CuO NPs have considerable bactericidal effects against different Gram-
positive and Gram-negative bacterial strains excluding K. pneumoniae [114]. On an 
account of these studies, it is well-established fact that smaller NPs endow a greater 
antimicrobial potency. However, it was not the case with Mg(OH)2 NPs. A study 
analysed that the smallest Mg(OH)2 NPs reveal the weakest antibacterial effect [79]. 
In another study, it is reported that the larger and non-spherical Au NPs are more toxic 
to fungi [115]. A similar finding was also observed in the biofilm inhibitory study. 
In this study, three different-sized Ag NPs of 5, 10, and 60 nm dimensions exerted 
biofilm efficiency against C. albicans which is basically not size-dependent [116]. 
These contradictory results have drawn a huge attention of the research commu-
nity. Extensive research activities have revealed that particle size is a very important 
factor, but it cannot solely be credited to antimicrobial activity [117]. For instance, 
some studies have assessed the excellent bactericidal effect of MOFs ranging from 
a few sub-nanometres to a few hundred micrometres including Materials of Insti-
tute Lavoisier frameworks (MILs), MIL-100 (120 ± 40 nm), MIL-101-NH2 (100 
± 18 nm), MIL-88B (100 ± 20 nm) [90]; BioMIL-5, (9.83 ± 6.12 Mm) [91]; Ag-
MOF, (3.0–10.0 Mm) [92]. These studies have suggested that bacterial cells are get 
affected, similarly to other nanomaterials [93]. 

4.2 Shape 

Several studies have reported that the well-defined geometries of NPs can also vary 
the antimicrobial results [118]. For instance, Pal et al., demonstrated the antimi-
crobial activity of the Ag NPs having three different shapes i.e. truncated triangular, 
spherical, and rod-type, where, the truncated triangular-shaped Ag NPs have adduced 
stronger antimicrobial activity over rod-shaped NPs [119]. Similarly, cube-shaped
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Ag NPs have confirmed higher antimicrobial competency than sphere-shaped and 
wire-shaped Ag NPs. These studies suggested that shape-dependent antimicrobial 
activity is mainly attributed to the specific surface area and facet reactivity of the Ag 
NPs [120]. Moreover, Cheon et al., endowed that sphere-shaped Ag NPs exhibit 
stronger antimicrobial activity as compared to triangular plate and disk-shaped Ag 
NPs. Antimicrobial activities of the Ag NPs strongly depend on releasing rate of the 
Ag ions from the different surface areas of the Ag NPs which is greatly differed from 
one surface area of NPs to another [121]. Recently, many metals and metal oxide 
NPs such as Au NPs, ZnO NPs, and CuO NPs are very well documented to confirm 
a shape-dependent antimicrobial activity [72, 73, 122]. More recently, Au NPs of 
various shapes like spheres, stars, and flowers have also been studied for shape-
dependent antimicrobial activity. In this attempt, flower-shaped Au NPs have eluci-
dated more promising antimicrobial results than others [72]. Similar observations are 
also made by Wani et al. who demonstrated that the disc-shaped Au NPs offer signifi-
cantly higher fungicidal activity against Candida sp. than polyhedral-shaped Au NPs 
[108]. In another study, nanospheres (10 nm) and nanorods (41 nm) exerted more toxi-
city than the stars (240 nm), flowers (370 nm), and prisms (160 nm)-shaped Au NPs 
[122]. The antibiofilm potential of Au NPs has also been studied with diverse shapes 
like spheres, rods, cubes, stars and flowers, and peanuts. Among them, peanut and 
rod-shaped Au NPs have approved an excellent inhibitory effect on biofilm forma-
tion [73]. Different morphologies of the ZnO NPs with broad-spectrum antimicrobial 
activities were reported in the past [123]. As compared to rod or sphere-shaped ZnO 
NPs, flower-shaped ZnO NPs have documented enhanced photocatalytic inactiva-
tion of E. coli and S. aureus bacterial pathogens [124]. Whereas, Ramani et al., 
observed that the spherical-shaped ZnO NPs approve greater antibacterial propen-
sity than the flower-like ZnO NPs, suggesting involvement of sufficient defects in 
the form of oxygen vacancies that can be the main reason for distinct antimicrobial 
effects [125]. Another study confirmed that the mulberry-like ZnO NPs are more 
toxic to fungi C. albicans than sheet-like and flower-like ZnO NPs [126]. Interest-
ingly, Cha et al., examined the shape-specific nanomaterials inactivate the bacterial 
growth of methicillin-resistant S. aureus (MRSA) via inhibition of β galactosidase 
(GAL) enzymes. In this study, pyramid, plate, and sphere-shaped ZnO NPs were 
used to inhibit the GAL enzymes. The result of this study revealed that MRSA 
bacterial cells get highly damaged by pyramid-shaped ZnO NPs mainly due to the 
complete inhibition of GAL enzyme whereas, plates-shaped ZnO NPs showed a 
dose-dependent inhibition and sphere-shaped ZnO NPs do not exhibit any inhibition 
[127]. In recent years, TiO2 NPs in three different crystalline forms including anatase, 
rutile, and brookite are used as potential antimicrobial agents [128]. These crystalline 
structures with specialized shapes have generated high interest in their antimicro-
bial properties. Regarding the crystal structures, anatase has exhibited promising 
antimicrobial results as compared to others [129, 130]. Moreover, diverse shapes like 
spherical, rod-shaped, hollow nanotubes of the TiO2 NPs were also found to be excel-
lent antimicrobial agents [131, 132]. In particular, quasi-spherical shaped TiO2 NPs 
with a smaller size (15–19 nm) identified stronger antibacterial effects against several 
bacterial and fungal pathogens including S. aureus, E. coli, B. subtilis, P. aeruginosa,
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C. albicans, and A. niger. This study reveals higher antimicrobial efficiency against 
Gram-positive bacteria [133]. Similarly, the TiO2 NPs with a size ranging from 25 to 
87 nm exhibit superior antibacterial activity against E. coli, B. subtilis, S. typhi, and 
K. pneumoniae [134]. In a study developed by Haghighi et al., the authors reported 
that the TiO2 NPs significantly inhibit the biofilm formation of C. albicans where 
growth of the biofilm in medical implants is restricted [135]. 

4.3 Concentration 

Regarding antimicrobial activity, metallic and non-metallic NPs are being exten-
sively studied with size, shape, and the surface-to-volume ratio [136]. Apart from 
these, the concentration of nanomaterials is an influential parameter for antimicrobial 
activity [137]. Several studies have stated that the change in concentration range is 
directly affecting the antimicrobial response [138]. A higher concentration of nano-
materials is more effective against microbial pathogens than a lower concentration 
[139]. To date, studies on aforementioned metal and metal oxide NPs are reported 
that the antimicrobial activity increases with increasing concentration of nanomate-
rials [140]. Dong et al., performed antimicrobial activity of Ag NPs with different 
sizes and concentrations [141] where the smaller particle size (10 nm) completely 
inhibits bacterial growth at a lower concentration (1 μg/ml) while the larger particle 
size (90 nm) inhibits bacterial growth at a higher concentration only (11.5 μg/ml) 
[141]. Another study reported that smaller NPs exhibit greater antimicrobial activity 
than larger NPs at the same concentration (6 mM) [142]. These studies indicate that 
the antimicrobial propensity is comprehensive action of concentration along with the 
particle size. However, some studies demonstrated that the different microbial species 
can respond differently at particular concentrations [143]. For instance, Elkady et al., 
revealed that the complete inhibition of different bacterial strains can be achieved 
at different concentrations of the ZnO NPs [54]. Minimum inhibitory concentra-
tion (MIC) values were found to be 0.0585 mg/mL, 0.234 mg/mL, 0.234 mg/mL, 
0.938 mg/mL for E. coli, S. aureus, P. aeruginosa, and B. Subtilis, respectively [143]. 
Kim et al., demonstrated that the antibacterial activity of the Ag NPs is less suscep-
tible to S. aureus, while E. coli is completely inhibited at lower concentrations. The 
same study also observed that the Ag NPs were more effective against Gram-negative 
bacteria than Gram-positive bacteria though both types of bacteria show complete 
inhibition at higher concentrations (> 75 μg/mL) [144]. In another study, Se NPs 
with 10 μg concentration exhibited a higher antimicrobial activity towards Gram-
positive bacteria, whereas Gram-negative bacteria and fungi C. albicans were not 
inhibited at this concentration [145]. Lkhagvajav et al., reported that the 2–4 μg/ml 
of Ag NPs could be more effective against several bacterial strains including E. coli, 
S. aureus, B. subtilis, Salmonella typhimurium, P. aeruginosa, K. pneumoniae as 
well as fungal strain C. albicans [146]. Over the past few years, iron oxide-based 
NPs (Fe2O3 NPs) are widely investigated as a potential antimicrobial agent against
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both Gram-positive and Gram-negative bacteria [147]. The range of the bacterio-
static concentrations of Fe2O3 NPs was relatively higher i.e. 25–2000 μg/mL. This 
excess concentration of the Fe2O3 NPs could be toxic to bacterial pathogens, but it 
did not show any toxic effect on human cells because iron acts as one of the major 
trace elements for the human body [86]. Overall studies suggest that antimicrobial 
activity is also depending on metal type used. 

Furthermore, it is also explained that the microbial ability to respond to any 
nanomaterial mainly depends on various characteristics of the microbial cell surface 
[87]. Generally, either Gram-positive or Gram-negative bacteria are the most sensitive 
toward different nanomaterials [148]. These differences are largely attributed to the 
cell wall structure and metabolism of Gram-positive and Gram-negative bacteria [96]. 
From this perspective, researchers have developed a nanomaterial stabilizing strategy 
that provides better interaction with biological molecules like polysaccharides and 
proteins, and increased their antimicrobial performance [97]. More recently, a study 
was carried out with both IONPs and surface-modified IONPs with chitosan where 
higher antimicrobial efficiency of chitosan-coated Fe2O3 NPs was noticed [149]. 

4.4 Surface Charge and Surface Coating 

The surface charge of nanomaterials is represented as one of the most important 
physicochemical parameters that can significantly affect on antimicrobial activity 
[88]. Several studies have revealed that the surface charge of NPs regulates the 
interaction of NPs with the biological environment, making substantial differences 
in antimicrobial action [150]. This property is characterized by the zeta potential 
by calculating the electrophoretic mobility of the NPs in an electric field [151]. 
Zeta potential measurement gives a better insight into the long-term stability of 
NPs as well as predicts the microbial sensitivity towards NPs [152]. Generally, it is 
considered that the NPs with a zeta potential between − 10 mV and + 10 mV 
are almost neutral, whereas, if this value is greater than + 30 mV or less than 
− 30 mV NPs are denoted as strongly cationic and strongly anionic, respectively 
[153]. This zeta potential can influence the membrane penetration ability of NPs 
[154, 155]. To date, various positively and negatively charged nanomaterials have 
been explored for antimicrobial activity [156]. Abbaszadegan et al., evaluated the 
antimicrobial activity of three different Ag NPs of three different electrical surface 
charges i.e. positive, neutral, and negative. This study was performed against Gram-
positive (i.e. S. aureus, S. mutans, and Streptococcus pyogenes) and Gram-negative 
(i.e. E. coli and Proteus vulgaris) bacteria. Results of this study demonstrated that 
the positively-charged Ag NPs exhibit the highest antibacterial activity against all 
micro-organisms, while negatively-charged Ag NPs reveal the least and the neutral 
NPs avail intermediate antibacterial activity [157]. Another study investigated the 
antibacterial response of a model bacterium E. coli towards three fluorescent carbon 
dots (C-dots) with the positive, negative and uncharged electrical surfaces where
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both positively charged and uncharged C-dots have a stronger antimicrobial effi-
ciency than negatively charged C-dots [158]. Recently, it has been shown that the 
surface modulation or surface coating of the NPs can be a good strategy to alter 
the surface charge of nanomaterials for obtaining desired bactericidal efficiency [97, 
159]. Several materials are explored as efficient coating agents including organic 
molecules, polymers, biomolecules, or coating with an inorganic layer [159]. Inter-
estingly, Se NPs were synthesized and modulated their surface with three different 
polymers i.e. polyvinylpyrrolidone (PVP-Se NPs), poly-l-lysine (PLL-Se NPs), and 
polyacrylic acid (PAA-Se NPs) to obtain neutral, positive, and negative charged 
Se NPs, respectively then determined their antimicrobial activity. Results of this study 
confirmed considerable activity against Gram-positive S. aureus, but these NPs were 
not effective against Gram-negative E. coli and S. cerevisiae [78]. Similarly, a study 
was carried out with both negatively charged (n- Fe2O3 NPs) and positively charged 
(p- Fe2O3 NPs). In this study, n-Fe2O3 NPs were synthesized whose surface was 
altered with chitosan polymer to obtain p-Fe2O3 NPs then explored for antimicro-
bial efficiency measurement where p-Fe2O3 NP has a relatively higher zeta poten-
tial magnitude (+ 36.3 mV) than n-Fe2O3 NP (− 32.2 mV) [160]. Arakha et al., 
synthesized two types of ZnO NPs that have opposite potentials (+ 12.9 mV and 
− 12.9 mV) and tested them against Gram-positive S. aureus, B. subtilis, Bacillus 
thuringiensis, and Gram-negative E. coli, P. vulgaris, and Shigella flexneri bacteria 
with varying surface potentials, ranging from − 14.7 to − 23.6 mV. The as-obtained 
results demonstrated that the surface potential of nanomaterials plays an impor-
tant role in the interaction between bacteria and NPs. Positively charged ZnO NPs 
exhibit superior results than negatively charged ZnO NPs [89]. 

Recently, biogenically synthesized NPs have gained more popularity as an 
economical and environmentally friendly alternative approach to chemical and phys-
ical synthesis methods. This approach is fascinated by the use of biological entities 
as natural reducing and stabilizing agents which mainly include bacteria, fungi, acti-
nomycetes and yeast, algae, and plant materials [161, 162]. Mostly, micro-organisms 
have the inherent metal-tolerant ability, and they can survive under extreme environ-
mental conditions by tolerating metal and converting them into metal ions. While, 
plant extract contains phytochemicals mainly phenolic compounds, terpenoids, and 
flavonoids which can help in the reduction of metal ions and form a stable complex 
with metallic NPs [163]. These biological reducing agents can influence the size, 
shape, and surface charge of NPs. As result, they display varying levels of bactericidal 
activity [164]. Recently, Kumar et al., performed a comparative study on biogeni-
cally and chemically synthesized Ag NPs, where a stronger bactericidal effect than 
chemically synthesized Ag NPs is noticed [165]. These biogenic NPs are highly 
stable for clinical treatments due to their antimicrobial activity [166]. For instance, 
Syzygium aromaticum (clove)-mediated Ag NPs have zeta potential in the range of 
− 15.7 to − 16 mV which shows acceptable stability of the Ag NPs and demon-
strated strong antimicrobial activity against several oral micro-organisms including 
Gram-positive (S. aureus, S. mutans, E. faecalis) and Gram-negative microorgan-
isms (E. coli) and yeast (C. albicans) [167]. Similarly, extracellular biosynthesized



150 R. P. Sharma et al.

CdTe quantum dots from the fungus Fusarium oxysporum have also shown excel-
lent antibacterial activity [168]. Similarly, in another study, sulphur (S) NPs were 
synthesized from different plant extracts with strong negative zeta potential in the 
range of − 7.12 to − 34.1 mV. These values have confirmed the stabilization of 
NPs. The highest negative zeta potential of sulphur NPs has demonstrated a strong 
stability with bactericidal efficacy against common pathogenic bacteria E. coli and 
S. aureus [169]. In another study, Ag NPs were synthesized using natural plant poly-
mers of Indian origin: gum ghatti (GT) (Anogeissus latifolia) and gum olibanum (OB) 
(Boswellia serrata). These Ag NP-GT (5.7 nm) and Ag NP-OB (7.5 nm) were having 
zeta potential values of − 22.4 ± 8.7 mV and – 14.9 ± 6.6 mV, respectively. In this 
study, Ag NP-GT revealed higher antimicrobial potential than Ag NP-OB [170]. 

5 Antimicrobial Mechanism 

The adventitious properties of NPs have made them fascinating tools to treat micro-
bial infections. Several studies have confirmed their broad spectrum of antibacterial 
potential against both Gram-positive and Gram-negative bacteria. As well as they can 
fight against fungal infections [97, 171]. However, their exact antibacterial mecha-
nisms are not clearly understood. Emerging evidences suggest that the generation of 
oxidative stress, metal ion release, and non-oxidative mechanisms can significantly 
contribute to the toxicity of the NPs against microbial pathogens (Fig. 2). Previously 
reported studies revealed that the disruption of cell wall and cell membrane, ROS 
production, enzyme inhibition, photocatalysis, and interference in DNA and RNA are 
the most common processes mainly involved in the antimicrobial activity of the NPs 
[172, 173].

5.1 Cell Wall and Membrane Damage 

The cell wall and cell membrane of micro-organisms play a vital role in main-
taining bacterial cell integrity that take part in various cellular processes like home-
ostasis, nutrient supply, and also provide the first line of defence against environ-
mental threats or stress conditions [174]. Thereby, targeting the bacterial cell wall 
is the primary strategy of NPs for the successful eradication of microbial pathogens 
[175]. The cell wall damage caused by NPs can occur through different adsorp-
tion pathways as different micro-organisms have different cell wall compositions 
[176]. Many studies have demonstrated that NPs exert higher antimicrobial activity 
against Gram-positive bacteria as compared to Gram-negative bacteria [177]. The 
cell wall of Gram-negative bacteria is composed of lipoproteins, lipopolysaccharides, 
and phospholipids, which allow the penetration of only macro-molecules. Whereas, 
the cell wall of Gram-positive bacteria contains a thick layer (20–50 nm) of pepti-
doglycan and teichoic acid with numerous pores that allows easy penetration of
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Fig. 2 Antimicrobial mechanism of nanomaterials

foreign molecules, which leads to membrane disruption, and ultimately causes cell 
death [178]. Furthermore, the cell wall possesses a negative charge on both Gram-
positive and Gram-negative bacteria. However, several studies have confirmed that 
Gram-negative bacteria adduce a slightly higher negative charge than Gram-positive 
bacteria mainly due to the presence of lipopolysaccharide in their cell wall [179]. 
This can influence the interaction of NPs with microbes. The metal and metal oxide 
NPs including Ag Au, ZnO, and TiO2 NPs can be attracted to the cell wall by elec-
trostatic attraction, Van der Waals forces, and hydrophobic interactions, which make 
changes in the cell morphology, disturb the cellular function and permeability of the 
cells [180]. The accumulation of the Ag NPs on the surface of the cell wall causes 
numerous pits that alter the membrane permeability which leads to membrane leakage 
[181]. The biogenic Se NPs creates pits and holes on the surface of Gram-negative 
bacteria. While the membrane of Gram-positive bacteria could be wrinkled and flat-
tened, resulting in intracellular leakage [182]. In recent years, the strong antimicrobial 
potential of graphene nanomaterials has been well documented, and their antimicro-
bial effect is mainly associated with the physical damage to the bacterial membrane 
by the sharp edges of graphene sheets [95]. The positive chitosan-based NPs can be 
electrostatically attracted to negative bacterial cell walls to rupture of the cell wall 
by forming a strong bond with the cell membrane [97]. Similarly, positively charged 
SiO2 NPs lead to increase interaction with the negatively charged bacterial cell, 
causing prominent antimicrobial activity [183]. Interestingly, few studies evaluated 
the higher bactericidal effect for Gram-negative bacteria than Gram-positive bacteria, 
while other studies observe no such discrepancy among bacterial species [97, 184].



152 R. P. Sharma et al.

In this context, some researchers believed that bacterial species can largely affect 
the antimicrobial efficiency of NPs [173, 185]. For instance, Cu NPs demonstrate 
excellent bactericidal activity to B. subtilis mainly due to the surface of B. subtilis 
having a higher number of amines and carboxyl groups which facilitate high affinity 
to Cu NPs [186]. 

5.2 Intracellular Penetration and Damage 

Many studies revealed that the intracellular penetration of the NPs through the 
membrane greatly affects the metabolic functions of microbial cells [187]. This 
action is mainly based on the release of metal ions, a probable mechanism for the 
antimicrobial action of NPs [188]. Several studies reported that ions released by 
metal and metal oxide NPs directly penetrate through cell walls and inactivate the 
enzymes, proteins, and interrupt the metabolic action [80]. The release of Ag+ ions 
from Ag NPs is known to be the key contributor to antimicrobial action. Ag+ ions 
have a higher affinity towards the thiol group of the cell membrane which can adhere 
to the cell wall more easily. The adhered ions can increase the permeability of the cell 
membrane. After the uptake of Ag+ ions, the cellular respiration process is interrupted 
after inhibiting the enzyme by disturbing adenosine triphosphate production process 
[189]. The Ag+ ions can also affect the DNA replication process by interacting with 
sulphur and phosphorous components of DNA and cause DNA damage and cell 
reproduction of bacteria [190]. Similarly, Zn2+ ions released by ZnO NPs also have a 
high affinity to the thiol group of proteins which are mainly responsible for cellular 
dysfunction and causes cell death [191]. However, Fe2+ ions released by Fe2O3 NPs 
reveal antimicrobial activities at higher concentrations. Because less concentration 
of Fe2+ ions can act as a nutrient source for bacterial growth, and also take part 
in various cellular processes which promote tolerance in various micro-organisms 
[192]. In the past few decades, different research groups have reported that metal and 
metal oxide NPs such as Ag, Zn, Cu, Ti, Mg, Cd, and Au etc., release metal ions to kill 
microbial pathogens [80, 81]. Metal-based MOF NPs such as Ag, Cu, Ni, Zn, etc., 
have widely been researched for antimicrobial applications [193]. Studies reported 
that the leaching of metal ions from the MOF can contribute excellent antimicrobial 
activity [93, 193]. 

5.3 Oxidative Stress 

Oxidative stress is the cellular process that maintains the healthy redox process within 
cells, and also plays a crucial role in the defence response and programmed cell death 
[98]. The NPs exposure can induce excessive production of reactive oxygen species 
(ROS) which may interrupt the bacterial antioxidant defence responses [98, 194]. 
This increasing ROS level causes excessive oxidative stress which is responsible
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for irreversible damage to cell metabolism and affects cell viability by changing 
the cell membrane permeability [173]. The ROS is regarded as a contributing factor 
to the antimicrobial activity of several metal and metal oxide NPs [98]. A study 
was conducted to investigate the ROS generation mechanism for several metal NPs 
including Ag, Au, Ni, and Si NPs in aqueous suspension under UV irradiation. The 
as-obtained results revealed that the Ag NPs produce superoxide and hydroxyl radi-
cals, while Au, Ni, and Si NPs produce only singlet oxygen which is responsible 
for antimicrobial action [195]. Similarly, Cu NPs produce singlet oxygen, super-
oxide, hydroxyl radicals, and hydrogen peroxide [75], whereas ZnO NPs can generate 
hydroxyl radicals and hydrogen peroxide [196]. This leads to creating stress reac-
tions on cell membrane which eventually cause cell death [96]. The iron-based NPs 
including ferrite NPs catalyze the formation of ROS via Fenton reactions, Haber– 
Weiss, and heterogeneous redox reactions [28]. Moreover, the semiconductor nature 
of the ZnO NPs and TiO2 NPs is the main cause of antimicrobial activity [197]. 
The presence of holes in valence band and electrons in conduction band of the ZnO 
NPs and TiO2 NPs, produces a large number of electron–hole pairs system by gener-
ating free radicals through a series of reactions, is responsible for redox reactions. 
Holes react with water to produce a hydroxyl radical, while the lone electron in the 
conduction band reacts with dissolved oxygen molecules to form a superoxide anion. 
It causes oxidative stress on bacteria and ruptures the cell membrane, resulting in 
cell death [198]. A similar mechanism is attributed to explaining the antimicrobial 
activity of ferrite NPs [28, 97]. 

6 Applications of Nanomaterials as Antimicrobial Agents 

The remarkable properties of NPs have made them an efficient solution for several 
human health problems particularly to microbial-associated health problems. In 
recent years, the antimicrobial activity of NPs serves many applications, and their 
huge commercialization in market products has widely been noticed (Fig. 3).

6.1 Food Packaging 

Since few decades, food-borne diseases become a global public health issue [199]. 
Extensive research has been carried out to meet practical expectations for safe, 
healthy, and fresh food [200]. In recent years, nanotechnological involvement has 
increasingly been explored in food products and food packaging materials and 
processes [201]. The nanomaterial-based food packaging systems are mainly useful 
to protect food from microbial pathogens and chemical contaminants [76]. It also 
increases the shelf life, food quality, and safety of products with better cost benefits. 
Antimicrobial food packaging systems are useful to minimize microbial growth and 
spoilage [202]. Many metallic NPs such as Ag, Cu, and metal oxide NPs like ZnO and
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Fig. 3 Antimicrobial applications of nanomaterials

TiO2 have been widely reported in food industrial applications [76]. Nano-polymer-
based edible capsules are found to be suitable for providing micronutrients in daily 
foods [203]. However, a sole polymer fails to meet the expectations of effective food 
packaging. Thereby, incorporating metal NPs with polymer gaining interest can fulfil 
the desired applications [204]. The Ag NPs and Ag-based polymer nanocomposites 
have proven to be excellent materials for antibacterial packaging [205]. For instance, 
nanocomposite based on PVP polymer with Ag NPs can successfully prevent food 
from microbial spoilage for almost 25 days [206]. More recently, nano-based food 
storage bags, containers, and milk bottles are available on the market that protects 
food from microbial deterioration [207]. Despite food packaging, Ag NPs and their 
composites have widely used for food preservation purposes. Biogenic Ag NPs 
with sodium alginate can be used to preserve fruits and vegetables [71]. Similarly, 
polyethylene-based Ag nanocomposites have successfully used to preserve fresh 
orange juice [208]. Chitosan NPs can be incorporated in starch and hydroxypropyl 
methylcellulose to get biodegradable food packaging [209]. SiO2 NPs and TiO2 NPs 
are the most commonly used food nanomaterials to maintain colour and flavour in
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food products [76, 84]. Nano-biosensor-based food packaging systems are gaining 
significant attention in the food industry. It not only detects the presence of micro-
bial pathogens, and toxins in food products, but also gives an alert about the existing 
status of food quality like freshness, smell, etc. [210]. 

6.2 Water Purification 

Water has always been the most precious key resource for humans, and its purity 
poses an important health concern regarding hygiene. The present scarcity of drink-
able and clean freshwater, as well as increasing anthropogenic and industrial activi-
ties demands effective wastewater treatment practices [211]. Biological contaminants 
including bacteria, fungi, and viruses can have serious health concerns. Consump-
tion of biologically contaminated water can face a high risk of waterborne diseases 
which are mainly carried by pathogenic micro-organisms [212]. Moreover, water-
borne diseases are the leading cause of human morbidity and mortality throughout 
the world, particularly in developing countries due to the lack of capital resources. 
Therefore, it is necessary to manage water quality risks by using inexpensive and 
effective techniques to ensure safety [213]. According to the World Health Organi-
zation, the most common waterborne diseases are diarrhoea, cholera, and typhoid 
causing about 350 million illnesses, whereas the mortality rate associated with these 
diseases is about 190,000 per annum [214]. Moreover, outbreaks of these diseases are 
mainly associated with the most reported pathogens likeE. coli, Shigella, Salmonella, 
Klebsiella, and Campylobacter [215]. All these pathogens are widely reported with 
a higher incidence of diarrhoeal disease, which is mostly affecting children’s health 
[216]. Since the past century, chlorine has been widely applied as a water disin-
fectant, due to its efficiency to inactivate pathogens, economical, and ease to use. 
However, it produces disinfection by-products (DBPs), which pose a potential health 
risk and limits its service [217]. Apart from that various alternative water disinfec-
tion techniques to chlorine are also available and are well reported. This includes 
UV radiation, ultrasonic treatment, membrane technology, silver electrochemistry, 
bromine, titanium dioxide, potassium permanganate, etc. Unfortunately, less effi-
ciency and high costs mar their utility. In addition, a few of them are also frequently 
producing toxic DBPs, causing serious health concerns [218]. Thereby, safe drinking 
water becomes a major challenge in the twenty-first century across the globe, and 
there is high demand for novel alternative approaches to overcome the limitations of 
conventional methods [219]. 

Exceptional properties of nanomaterials have forced researchers to look after 
these problems. Most recently, their introduction as water disinfectants seems to be 
a promising way. Many nanomaterials like Ag, Cu, and Zn NPs etc., have exten-
sively been incorporated as antimicrobial water disinfectants [77]. Similarly, nano-
sorbents, nano-catalysts, nanostructured catalytic membranes, and nanoparticle-
enhanced filtrations have received much interest in the water purification system
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[220]. TiO2 is the second most used nanomaterial (next to silver) to inactivate micro-
bial pathogens. The photocatalytic activity of the TiO2 NPs supports solar disin-
fection [221] as in presence of UV light, Ag-TiO2 nanocomposites can completely 
eradicate E. coli [222]. The usage of nanomaterials as water purifiers may cause 
potential risks to the aquatic ecosystem [223]. The main reason is the difficulty in 
separating of NPs from water solution after treatment. Therefore, due to easily sepa-
ration ability from waste effluent by applying an external magnetic field, magnetic 
NPs have taken considerable attention [224]. Organized research can help greatly to 
minimize the adverse effects of water purification. 

6.3 Wound Dressings 

Skin is the body’s primary protective barrier that helps prevent the entry of foreign 
materials or microbial pathogens into the body [225]. Any type of structural damage 
to skin tissue results in a skin wound [226]. The wound healing process consists 
of several stages which is more susceptible to microbial infection and makes it 
highly challenging for quick recovery [227]. Multidrug-resistant bacteria such as 
Acinetobacter baumannii, P. aeruginosa, extended-spectrum β-lactamase-producing 
Klebsiella species, E. coli, and methicillin-resistant Staphylococcus strains are most 
frequently reported pathogens that interfere in the wound healing process [228]. 
Presently, available antibiotics-based wound healing therapies are not so useful due 
to the increasing resistance of pathogens [229]. Similarly, the commercially available 
wound dressing is also not much effective in 44–70% of patients, especially with 
chronic wounds. Therefore, the development of alternative wound dressing materials 
is urgently required [230]. Nanomaterial-based approaches are gaining more atten-
tion mainly due to their excellent physicochemical, antimicrobial properties and their 
efficiency in drug delivery, penetration ability, and cellular responses [231]. In this 
context, metal or metal oxide NPs including Ag, Au, and ZnO NPs are most reported 
materials as they have potential wound-healing properties [82]. Since ancient times, 
Ag NPs are being applied in wound dressing process [232]. Over the past few 
years, Ag NPs-based treatment therapy has widely been used in various medical 
applications. Recently, Ag NPs-based wound-dressing products including Aquacel 
Ag®, DynaGinate™ AG Silver Calcium Alginate Dressing, CuraFoam™ AG Silver 
Foam Dressing, DynaFoam™ AG Bordered Silver Foam Dressing, Biatain® Algi-
nate Ag, and SilverIon® are commercially available [62]. Moreover, the Ag NPs with 
different biopolymers like collagen, gelatin, silk, keratin, chitosan, starch, cellulose, 
and hyaluronic acid are extensively used for wound dressing [233]. Similarly, the 
outstanding antimicrobial and antioxidant properties of the Au NPs have made them 
efficient for wound-healing process [234]. Their functionalization with collagen, 
gelatin, and chitosan polymers has confirmed better results in wound repair [235]. 
The wound-healing ability of ZnO NPs is widely reported, but some studies also 
presented that intrinsic toxicity can limit its applications [83].
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6.4 Antibacterial Coating of Implantable Devices 

In the modern healthcare system, implantable devices play an important role to 
improve the quality of a patient’s life [236]. These can be either fully implantable 
devices such as heart valves and dental implants, or partially implantable devices like 
catheters, intravenous catheters, or neurosurgical catheters [237]. Most implantable 
devices are more susceptible to bacterial, fungal, and mixed infections [238]. Many 
microbial pathogens such as S. mutans, S. epidermis, E. coli, and Candida spp. 
etc., are frequently reported to colonize on implantable devices [239]. Moreover, 
implantable devices are often reported with a high risk of biofilm-associated infec-
tions which cause both implant failure and reoperation and even may lead to patient 
death [240]. The antimicrobial coating reduces microbial adhesion and its growth 
and prevents inflammation around the implants [241]. Nowadays, metals, alloys, 
ceramics, polymers, and nano-composites are most widely used as implant materials 
[242]. Biocompatibility, mechanical strength, and corrosion resistance make them 
suitable as implant materials [243]. However, microbial infection is one of the main 
reasons for implant failure which increases patient’s recovery time followed treatment 
cost [244]. Nano-coating on implants is a promising approach to improve implant 
applications [245]. Owing to the excellent physicochemical and antimicrobial prop-
erties NPs like TiO2 and Ag NPs are widely used in dental and orthopaedic implants 
[85]. Moreover, bimetal nanocomposites and polymer-based nanocomposites are 
extensively used in implant coating [246]. Ag-TiO2 film coatings have demonstrated 
a high bactericidal effect against S. aureus and E. coli [247]. A study reported that 
TiO2-film-coated silicone catheters revealed better antibacterial activity as compared 
to conventional catheters [248]. Similarly, Ag-polytetrafluoroethylene (Ag-PTFE) 
coating for catheters has reduced bacterial adhesion by up to 60.3%, while biofilm 
formation decreased by up to 97.4% [249]. 

6.5 Other Antimicrobial Applications 

Bone cement is commonly used for implant fixation in various surgeries including 
knee or hip replacement surgery, by filling the gap between the implant and bone, etc. 
[250]. Several studies have demonstrated that bone cement loaded with antibiotics is 
not much effective to reduce infection rate [251]. Bone cement mixed with Ag and Au 
NPs significantly minimizes biofilm formation [74, 252]. Nano-based antimicrobial 
has been widely explored in dental applications [253]. As compared to other metal 
NPs, Ag NPs have the first choice in the dental field [254]. A study demonstrated 
that root-canal surfaces treated with ZnO and chitosan NPs significantly reduced 
adherence of E. faecalis to dentine [255]. Similarly, Si NPs are used to polish the 
human tooth surface to protect it from bacterial damage [256]. Furthermore, Si NPs 
incorporated onto polystyrene surfaces could decrease the C. albicans growth in the
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oral cavity [257]. Over the years, nano-sized hydroxyapatite has been developed as 
oral healthcare products, including dentifrices, and mouth rinses [258]. 

MOFilter mask incorporated with ZIF-8 was developed to study the bactericidal 
properties under actual protective conditions. After spraying artificial pathogenic 
aerosols for 5 min and being exposed to the simulated sunlight irradiation for 30 min, 
almost no E. coli survived on three layers of the MOFilter mask, which was better 
than the commercial mask (N95) [94]. This work opens a door to the air disinfection 
and basic protection applications of MOF-based nanoplatforms with photocatalytic 
antibacterial effects. 

7 Challenges and Future Perspectives 

It is known that power comes with more responsibility; this belief is equally appli-
cable to nanotechnology. Nanotechnology is a new frontier that deals with diverse 
aspects of human life and improved quality of life. The outstanding properties 
of nanomaterials have made them useful in innumerable commercial products. 
However, safety issues associated with nanomaterials cannot be neglected. As every 
nanomaterial has its individual beneficial properties and toxicity that can be vary 
from material to material. Therefore, comprehensive studies should be required to 
analyse every aspect of nanomaterials. Accordingly, some safety regulatory stan-
dards for commercial products must be developed to ensure safety. In medical 
science, nanomaterials are widely envisaged for diagnosis and therapeutic appli-
cations. Though, the cytotoxicity, restricted cell targeting, and drug release efficacy 
of nanomaterials are still not completely explored. Therefore, these challenges must 
be addressed before using NPs as practical therapeutic agents. On the other hand, 
an extensive usage of nano-products and their inappropriate discarding in the environ-
ment can introduce serious toxicity problems. From this perspective, a more detailed 
investigation is necessary to emphasize the risk assessment of the environment. 

The nanofabrication technique is a crucial aspect to decide the fate of nanopar-
ticles, which has drawn attention to focus more on commercially reliable, cost-
effective, and environmentally acceptable synthesis approaches. Biogenic nanomate-
rials are gaining considerable popularity mainly due to their stability, smaller size, and 
biocompatibility. Numerous biogenic techniques are being developed to synthesize 
nanomaterials with various structures, morphologies and optoelectrochemical prop-
erties. However, the inability to large-scale production of biogenic nanomaterials is 
a major limitation. More research should be conducted to resolve this problem in 
coming years.
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8 Conclusions 

This chapter summarizes the opportunities that nanomaterials offer in various 
antimicrobial-based applications like food packaging, water purification, wound 
healing, medical implant coating, dental, and personal care to minimize microbial 
infections. Known antimicrobial mechanisms of diverse types of nanomaterials are 
shaded in brief. Moreover, the physicochemical relationship between the size, shape, 
concentration, and surface modification of NPs is also discussed as an important 
aspect to elevate the antimicrobial efficiency. However, challenges related to the 
cytotoxicity of NPs towards human and the environment needs to be studied more 
deeply and addressed systematically. 
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Abstract Parasites continue to cause substantial illness and mortality all over the 
globe to date. Malaria, Chagas disease, Ascariasis, Leishmaniasis, etc., are the major 
parasitic infection that carries a tremendous burden of diseases, particularly in trop-
ical and subtropical regions. Antiparasitic drugs are widely used for the control of 
parasitic diseases, but drawbacks such as low efficacy and short shelf-life limit their 
utilization. The incompetence of the antiparasitic drugs and the absence of a func-
tional vaccine has prompted the development of a new strategy for the treatment of 
these diseases. With the continuous development of nanotechnology, nanoparticles 
have attracted a lot of attention because of their great potential in medical appli-
cations. Different nanomaterials function as antiparasitic drug carriers to overcome 
the difficulties faced during drug delivery. Nanomaterial-based drug delivery system 
effectively targets the loaded drugs into the sites of infection as well as increases 
the efficacy of the drugs. While nanoparticles are efficient in the treatment of para-
sitic diseases, they also demonstrate promising applications in controlling parasite 
vectors. Currently, research is also being carried out for developing nanovaccines that 
are suitable candidates to prevent and fight against parasites. This chapter focuses on 
different nanocarriers developed for antiparasitic drug delivery. The role of nanopar-
ticles in keeping a check on vectors harboring parasitic organisms has also been 
discussed. In the final section, major challenges and further research on the use of 
nanoparticles in making potent vaccines are recommended. 
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1 Introduction 

Since antiquity, human beings and their ancestors are suffered from various diseases 
which are either caused by infectious pathogens (bacteria, viruses, parasites) or by 
the process of aging. Parasitic diseases are found throughout the world, but they are 
mostly endemic in tropical areas leading to morbidity, mortality, and socioeconomic 
backwardness in these areas [1]. The climate is the primary reason for the high 
prevalence of parasitic infections in the tropics; high temperatures and humidity are 
optimal for parasite growth. The infected populations are mostly living in tropical, 
subtropical, and remote areas where they are far behind the development, as these 
diseases are closely linked to many socioeconomic factors such as poor sanitation, 
lack of personal hygiene and health as well as poverty, development in drug resistance, 
and increase in global tourism [2]. 

Human parasite infections have a wide range of impacts, ranging from acute symp-
toms like severe diarrhea or anemia to more long-term issues like growth retardation, 
chronic limb, and organ enlargement, or blindness. Despite medical advancements, 
parasitic diseases continue to pose a significant threat to human health and life [3]. 
Moreover, parasitic infections are not restricted to human beings but are an equal 
threat to wild and domestic animals wreaking havoc on already poor countries [4]. A 
parasitic disease is an infectious disease that is caused or transmitted by a parasite, 
also referred to as parasitosis. A parasite (Greek pará: besides, on; sítos: food) is an 
organism that lives in or on another organism and derives nourishment at the expense 
of its host health [5]. Parasites are a wide and multifaceted group of organisms that can 
be broadly classified into three main categories: protozoa, helminths, and ectopara-
sites. Protozoa are microscopic, unicellular, heterotrophic organisms that multiply by 
binary division in people and lead to serious infections from a single cell. Protozoans 
that thrive in blood or tissue are transmitted with the help of an arthropod vector, 
whereas intestinal-inhabited protozoans are transmitted by the fecal-oral route. The 
protozoans are further classified on the mode of locomotion (Fig. 1). Helminths are 
large (1 mm–1 m long), invertebrate multicellular worms characterized by elongated 
round (nematodes) or flat bodies (cestode and trematode). Mortality by helminthic 
diseases is not high, but they have a negative impact on the host’s nutritional and 
immune condition, resulting in low resistance to subsequent infections [6]. Ectopar-
asites thrive either on the surface of the skin or burrow into it from which they derive 
their sustenance including lice, ticks, mites, and fleas. Ectoparasites are potential 
vectors for interspecific and intraspecific disease transmissions.

Several strategies have been undertaken in previous years to combat parasitic 
diseases. Antiparasitic drugs are used for the control of these diseases. However, the 
drawbacks of antiparasitic drugs such as toxicity and negative impact on human life 
could not be ignored. Likewise, as the drugs used in the treatment are so expensive, 
their use is mostly limited in undeveloped and developing countries [7, 8]. However, 
there is a major obstacle before the treatment efficiency of various diseases, which is 
the delivery of therapeutic agents to the target area. The application of conventional 
therapeutic agents has limitations such as non-selectivity, undesirable side effects,
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Fig. 1 Flowchart presenting types of parasites

low efficiency, and poor biodistribution [9]. Malaria is on the increase because of 
the development of drug resistance on the part of the parasites and insecticide resis-
tance on the part of the mosquito vectors. Sleeping sickness is also on the increase, 
but there are no cheap and effective drugs or simple control measures to combat it. 
Despite a vast amount of effort, there are no vaccines against any human parasitic 
diseases [10]. Controlling the population of vector organisms, harboring these para-
sites has been considered to be a major approach to limiting the spread of parasitic 
diseases. The application of insecticide had proved to be highly successful, but due 
to the prolonged usage, resistance was developed by the vector against the insec-
ticide. Similarly, a wide species of Aedes, Culex, and Anopheles have developed 
resistance against a wide variety of insecticides such as carbamates, pyrethroids, 
and organophosphates [11–13]. In the past few years, microbial agents like Bacillus 
sphaericus and Bacillus thuringiensis have received gained a lot of popularity in 
combating the vector population. These bacterial insecticides act as effective and 
eco-friendly mosquito larvicidal agents. They act as an ultimate substitute for chem-
ical insecticides. However, presently a high level of resistance is observed in the 
vector population against them [14, 15]. Similarly, disease-causing fungi referred 
to as entomopathogenic are highly destructive pathogens that can help in keeping a 
check on the vector population. However, entomopathogenic fungi also have limi-
tations such as difficulty in their mass production and the need for highly humid 
conditions makes entomopathogenic fungi slow killers [16].
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These drawbacks have prompted the development of a novel strategy to control 
parasitic diseases. In this scenario, nanotechnology has been regarded as a boon. The 
use of nanotechnology and nanomaterials in medical research is growing rapidly. 
Nanotechnology makes use of materials and systems at atomic scales (1–100 nm). 
The size of nanoparticles (NPs) is alike to that of most biological structures and 
molecules; therefore, nanomaterials can be helpful for both in vivo and in vitro para-
sitical studies and applications [17]. Formation of stable interactions with ligands, 
variability in size and shape, high carrier capacity, and convenience of binding of 
both hydrophilic and hydrophobic substances makes NPs favorable platforms for 
the target-specific and controlled delivery of micro- and macromolecules in para-
sitic disease therapy [9]. Likewise, there has been an increase in the plant-based and 
microbial-based metal NPs in vector control, owing to their pupicidal and larvicidal 
activity. The underlying mechanism may be related to the ability of NPs to penetrate 
the exoskeleton and bind to the proteins and DNA. This leads to the denaturation of 
the cells and organelles [18–20]. Nowadays, nanovaccines are also gaining a lot of 
prominence as NPs can be utilized as adjuvants for generating long-lasting immu-
nity through oral, intravenous, and transdermal administration [21, 22]. Therefore, 
the main focus of this chapter is to emphasize the growing importance of nanotech-
nology in controlling parasitic diseases. The chapter also throws light upon different 
kinds of parasitic diseases along with their vector species. Different strategies under-
taken to date along with their drawbacks have also been discussed. Finally, the role 
of nanotechnology in controlling parasitic diseases through drug delivery as well 
as putting a check on vector populations has been explained. In the final section, 
the importance of designing nanovaccines for developing long-lasting immunity has 
been done for future prospects. 

2 Nanotechnology-based Solutions (Targeted Drug 
Delivery) for the Treatment of Parasitic Diseases 

Parasitic infections are one of the leading causes of death in tropical and subtrop-
ical locations across the world. Malaria, produced by the single-celled apicomplex 
Plasmodium protozoan, is still a major parasitic illness. Plasmodium falciparum, 
Plasmodium vivax, Plasmodium malariae, and Plasmodium ovale are four signif-
icant species of this protozoan that may infect humans [23]. In 2013, 198 million 
malaria cases were recorded globally, according to the World Health Malaria Report 
2015. Malaria claimed the lives of 584,000 people worldwide (90% of the deaths 
were in Sub-Saharan Africa), with 78% of those under the age of five. The bulk 
of malaria cases in Africa is caused by the renowned P. falciparum, and the most 
common vector in transmitting malaria is Anopheles gambiae, one of the most effi-
cient and difficult-to-manage vectors. In 2014, malaria was still being transmitted in 
97 countries, putting 3.2 billion people at risk of illness, with 1.2 billion at high risk 
[24, 25]. Despite scientific progress, infectious diseases such as malaria continue
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to be a global problem. The development of resistance to many of the currently 
available antimalarial medications is the fundamental reason why this illness still 
poses a threat in many areas throughout the world [26]. Enhanced solubility and 
bioavailability of hydrophobic pharmaceuticals, greater drug payload, extended drug 
half-life, improved therapeutic index, and controlled release of bioactive along with 
reduced immunogenicity and toxicity are all advantages of nanotechnology-based 
drug delivery systems [27–29]. 

NPs, especially liposomes, have gained considerable prominence in the field of 
drug delivery for the treatment of human diseases, particularly cancer; they provide 
several advantages, including controlled drug release, protection of the drug against 
degradation, improved pharmacokinetics, long circulation, and passive targeting to 
tumors and inflammatory sites due to the enhanced permeability and retention effect. 
The functionalization of liposomes with monoclonal antibodies or antibody frag-
ments to generate immune liposomes has emerged as a promising strategy for targeted 
delivery to and uptake by cells overexpressing the antigens to these antibodies, with 
a consequent reduction in side effects [30]. 

2.1 Recent Advances in Treating Leishmaniasis: Impact 
of Nanotechnology 

Leishmaniasis is one of the fatal infectious diseases caused by an intracellular proto-
zoan. There are three main types of leishmaniasis, viz., Visceral (VL), often known 
as kala-azar, cutaneous (CL), and mucocutaneous leishmaniasis [31]. According 
to Kalepu and Nekkanti et al., 40% of the novel compounds licensed for thera-
peutic development, including those for the treatment of leishmaniasis, have limited 
water solubility, and this proportion rises to 90% when medicines in the discovery 
pipeline are included [32]. Several studies have revealed the use of nanosystems 
for treating leishmaniasis in the recent decade, including metallic, polymeric, and 
lipid NPs, as well as liposomes and nanocrystals [33]. According to Nanomedicine 
and drug delivery Symposium (NanoDDS 2019), the efficacy of anti-leishmaniasis 
drugs can be increased by releasing the drugs in macrophage-rich organs like the 
liver, spleen, and bone marrow because in leishmaniasis infection macrophages are 
the main phagocytic cells involved (Fig. 2) [34]. The macrophage cells have receptors 
that can internalize and engulf drug-loaded nanoparticles in the range of 50–500 nm 
[35].

2.2 Techniques for Targeted Drug Delivery 

Active and passive techniques are the two basic ways for targeted administration of 
drugs.



178 A. Najitha Banu et al.

Fig. 2 Macrophage-rich 
organs targeted for 
Leishmania treatment

(a) Active targeting 
Urban et al. [36] described an immunoliposomal nanovector capable of deliv-

ering its contents to P. falciparum-infected red blood cells (pRBCs). The scien-
tists found that delivering chloroquine within pRBCs-specific monoclonal anti-
body BM1234-functionalized immunoliposomes increased the efficiency of the 
antimalarial medication. The antibody revealed a preference for pRBCs with 
parasites in the late stages of maturation. In cell culture, surface-functionalized 
liposomes with an average of five antibody molecules per liposome performed 
significantly better than non-functionalized liposomes. The results show that 
encapsulating chloroquine and fosmidomycin in immunoliposomes increased 
treatment efficacy ten-fold [36]. Using peptides and long-circulating liposomes, 
targeted therapy using liposomes has also been researched for malaria treatment. 
A 19-amino acid sequence from the N-terminal region of a protein synthe-
sized by P. berghei circumsporozoite was used to surface functionalize PEGy-
lated liposomes. Bioavailability studies of such a system revealed that surface-
functionalized liposomes were 100-fold more selectively targeted to hepatocytes 
and non-parenchyma liver cells, and organs of the body revealed that 80% of the 
injected dose was found in the liver within fifteen minutes and that the uptake of 
peptide-bearing PEGylated liposomes by hepatocytes was over 600-fold higher 
than that of cardiac cells and over 200-fold higher than that in lungs or kidney 
cells. These findings imply that by employing peptide-targeted liposomes, anti-
malarial medications might be tailored to eliminate parasites from hepatocytes 
[37]. 

(b) Passive targeting 
In malaria, passive targeting is neglected. When nanocarriers are adminis-

tered intravenously, the mononuclear phagocyte system quickly absorbs them. 
As a result of the nanocarriers carrying medications inside macrophages, the
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phagocyte uptake pathways are blocked, resulting in a two-fold increase in 
macrophage capacity. While this may delay the antimalarial drug’s immediate 
action, it may also result in a depot-type release of medicines into the blood. This 
depot-type method might be useful for treating P. vivax infections in which the 
hypnozoites are latent within the hepatocytes. Because these hepatocytes reside 
in close proximity to the Kupffer cells, a depot release may be more thera-
peutically effective. Surface modification of the nanodrug delivery carrier with 
hydrophilic polymers such as poly (ethylene glycol) might potentially be used 
to accomplish passive targeting. Passive targeting is known to delay phagocy-
tosis, resulting in a change in the drug’s pharmacokinetic profile by lengthening 
the drug’s plasma half-life. Malaria, which was once thought to be a problem 
only in impoverished countries, is now found in both industrialized and devel-
oping nations. The development of quick drug resistance, widespread presence, 
and limited private sector participation due to a lack of economic advantages 
are all important challenges in the fight against malaria. Furthermore, bringing 
a novel drug to market takes a long time and demands a significant expendi-
ture [38]. To address this issue, it is critical to maximize the effectiveness of 
already available medications and improve their therapeutic efficiency. Combi-
nation therapy is preferred over monotherapy for the treatment of malaria, and 
artemisinin-based combination therapy is the most popular among the several 
options [39]. Despite the fact that artemether and lumefantrine are widely used 
as a combination therapy for uncomplicated malaria, the currently available 
formulation has various flaws, including drug breakdown in the gastrointestinal 
system, unpredictable absorption, and so on. Because of its nontoxicity, cost-
effectiveness, and high success rate, the artemisinin combination therapy of 
artemether and lumefantrine is the first-line treatment for uncomplicated malaria 
[40]. The combination of artemether and lumefantrine is currently accessible 
as oral tablets. Even though this combination has a high success rate, the oral 
dosage form has several drawbacks, including; (a) the need to take these drugs 
with fat-fortified food to avoid low and/or erratic absorption, (b) the need to 
administer the drugs twice a day, and (c) drug degradation in acidic condi-
tions [41]. These circumstances require the application of novel drug delivery 
approaches that have been previously successful in overcoming pharmacoki-
netic mismatches such as bioavailability, controlled release, and stability, in 
comparison to other drug molecules that are used to treat similar parasitic infec-
tions in general and malaria in particular [42–44]. As a result, the goal of this 
study is to develop an injectable (intraperitoneal; i.p.) co-loaded (artemether) 
nanolipid drug delivery system with the following advantages: 

1. Method of administration: Fabricating injectable formulations avoids drug 
degradation in the gastrointestinal system, bioavailability dependence on 
fat intake, low patient compliance, and variable assimilation, among other 
issues [45]. 

2. Drug delivery systems: Due to the lipophilicity of the core materials 
(artemether and lumefantrine) and previous successes in using these lipids as
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carrier materials in developing injectable delivery systems, lipid nanopar-
ticles were chosen over other carrier materials in the current formulation 
[46]. 

Due to these issues, an injectable formulation of artemether and lumefantrine is 
required, which is currently unavailable. Recently, curcuminoids, a type of phyto-
chemical, have been found to exhibit promising antimalarial activity. Curcumi-
noids are polyphenols obtained from the root of Curcuma longa Linn. Curcumin, 
desmethoxycurcumin, and bisdemethoxycurcumin are the three main active compo-
nents; among them, curcuminoids are being researched for use in the treatment 
of inflammation, oxidative stress, hepatic diseases, diabetes, and cancer [47–50]. 
In vitro (chloroquine resistance and sensitive P. falciparum strains) and in vivo (P. 
berghei), curcuminoids have shown considerable antimalarial efficacy [39, 51]. These 
delivery systems have the advantages of being biodegradable and biocompatible, as 
well as allowing for regulated medication release. Drugs encapsulated within lipo-
somes can also be protected from chemical degradation and have increased solubility. 
According to the researcher Owais, chloroquine was encapsulated into MAb F10-
bearing liposomes and its efficiency was assessed in mice infected with chloroquine-
susceptible or chloroquine-resistant P. berghei [52]. The chloroquine-loaded MAb 
F10-liposomes were able to remove both chloroquine-susceptible and chloroquine-
resistant P. berghei infections. On days 4 and 6, chloroquine-resistant P. berghei 
was completely cured after intravenous injection of chloroquine-loaded MAb F10-
liposomes at a dose of 5 mg/kg of body weight each day. This was attributable to 
the MAb F10-fragment’s strong selectivity for Plasmodium-infected erythrocytes. 
For the past decade, a renewed attempt to identify next-generation antimalarials has 
been ongoing since resistance to all existing antimalarials has been reported [52]. 

In recent decades, the use of nanomaterials in medicine for the diagnosis and 
treatment of parasitic disorders has acquired a lot of interest. Nanomaterials have 
shown diagnostic potential against malaria, toxoplasmosis, cryptosporidiosis, amebi-
asis, and leishmaniasis [53–56]. NPs have shown efficacy in targeting infected 
macrophages for the treatment of visceral leishmaniasis (VL) when used as a therapy 
option for parasitic infections [57]. Silver, alone or in conjunction with chitosan NPs, 
had anti-toxoplasma actions by increasing serum and decreasing parasite burden. 
Spiramycin-loaded chitosan NPs have been found to cure toxoplasmosis efficiently. 
Combination nanotherapy with silver, chitosan, and curcumin NPs has been demon-
strated to successfully eliminate parasites from the intestine without causing any side 
effects in giardiasis. 

NPs’ biodegradability and non-immunogenic qualities make them ideal delivery 
vehicles for medicines and vaccines. Pfs25H, a nanoformulation of recombinant P. 
falciparum protein, was used as malaria transmission-stopping vaccine, preventing 
the parasite from infecting mosquitos. Similarly, antigen-specific immune responses 
against P. vivax were elicited by polymer poly (lactide-co-glycoside) acid (PLGA) 
NPs containing the malaria antigen VMP001 and immunostimulatory monophos-
phoryl A (MPL-A). Furthermore, macrophages and DCs successfully absorbed 
iron oxide nanoparticles coupled with recombinant merozoite surface protein 1
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Fig. 3 Different types of drugs in the drug delivery system 

(rMSP1), triggering pro-inflammatory responses. In the treatment of VL, quercetin– 
gold (Au) NP conjugation, doxorubicin–chitosan conjugation, amphotericin B as 
chitosan nanocapsule, and mannose–chitosan-based nanoformulation of rifampicin 
have functioned as effective delivery systems. Figure 3 depicts the different types of 
drugs used in the drug delivery process. 

Drug developers are embracing a molecular medicine strategy that promises to 
deal with parasite diseases and improves the chances of successful therapy in a world 
where the expense of creating medicine for parasitic illnesses remains the greatest 
hurdle. Molecular medicine has changed drug discovery and development, yet there 
are enormous barriers to overcome before the promise can be realized. With the use of 
molecular platforms, better bioinformatics services, and better pharmacogenomics 
studies, the scientific community and stakeholders have considerably facilitated the 
scientific community and stakeholders to work together on a shared platform to battle 
parasitic illnesses. 

3 Nano-based Strategies to Prevent the Transmission 
of Parasitic Diseases (Vector Control) 

3.1 Different Parasitic Diseases and Their Vectors 

Parasites and pathogens causing diseases are transmitted by arthropods such as 
mosquitoes, bugs, blackflies, tsetse flies, sand flies, lice, and ticks. These arthropods 
belonging to different orders Phthiraptera, Siphonaptera, Heteroptera, and Diptera
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act as a vector for transmitting pathogens causing infectious diseases in humans [58, 
59]. It has been estimated that vectors harbor parasites that cause approximately 
17% of infectious diseases and about 700,000 deaths. The burden of these diseases 
is highest in the tropical and subtropical regions which affect the poorest popula-
tion. In such areas, insects act as a predominant vector for parasites causing malaria, 
filariasis, chagas diseases, leishmaniasis, etc. [60]. Malaria is caused due to the 
infection of a protozoan parasite belonging to the genus Plasmodium. The parasite 
is vectored by the female Anopheles mosquito. Anopheles mosquitoes that pose a 
great threat are abundant and dwell in the proximity of people. They also have a long 
life and commonly feed on humans [61]. Likewise, lymphatic filariasis is a para-
sitic disease that is transmitted through Culex mosquitoes. Brugia malayi, Brugia 
timori, and Wuchereria bancrofti are mosquito-vectored filarial parasites causing 
human lymphatic filariasis. Culex species of mosquitoes are globally distributed due 
to which the probability of an outbreak of such diseases tends to increase. It has been 
stated that in the year 2018, approximately 893 million people were affected by this 
ailment [62–64]. 

Likewise, leishmaniases are also a vector-borne parasitic disease that infects 
approximately 1.4 million people every year worldwide. The vector responsible for 
the transmission of leishmaniases is the sandfly. It has been estimated that there 
are about thirty different species of sandfly that have been recognized as disease 
vectors. The protozoan parasite Leishmania is vectored predominantly by sandflies 
belonging to the genera Phlebotomus and Lutzomyia. These vectors are principally 
found in tropical and subtropical regions. They are highly prominent near human 
habitation and breed in organic wastes such as feces, manure, leaf litter, and in dark 
corners in the crevices of the walls having high humidity and temperature [65, 66]. 
Chagas disease, or American trypanosomiasis, is the result of infection by the para-
site Trypanosoma cruzi. The parasite is transmitted by the blood-sucking triatomine 
vector also known as the kissing bug. It has been estimated that approximately six 
million people are found to be infected by this disease worldwide. The vector trans-
mitting Chagas disease mainly occurs in poor rural areas. They nest mainly in the 
holes and cracks in walls and on roofs made of bamboo and sugarcane. They forage 
at night. Similarly, African trypanosomiasis or sleeping sickness is a dangerous, life-
threatening, tropical parasitic disease triggered by trypanosomes belonging to proto-
zoans. Trypanosoma brucei gambiense and Trypanosoma brucei rhodesiense are two 
species of trypanosomes that are responsible for the development of the disease in 
people. The vectors transmitting the parasites containing approximately 20 species 
of tsetse flies (Glossina) have inhabited tropical and subtropical Africa. Tsetse flies 
commonly inhabit fields and rural areas. It has been estimated that sleeping sick-
ness has been detected in 36 different countries of Central and South America [67, 
68]. Likewise, Babesiosis is a parasitic enzootic disease triggered by the protozoan 
Babesia parasitizing erythrocytes of vertebrates, including humans. The parasite is 
vectored by Ixodid ticks. Ixodes ricinus has been identified as the primary vector for 
the parasite in Europe. According to surveillance conducted in the USA, there has 
been an increase in cases of Babesiosis by 11% in the year 2018 [69, 70]. Figure 4
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Fig. 4 Different vector species harboring a variety of parasites responsible for severing parasitic 
diseases 

illustrates different kinds of insect vector that carry deadly parasites which causes 
deadly diseases. 

The above-described parasitic diseases have rooted themselves throughout the 
globe, especially in Asia, Africa, and South America. They are continuously 
spreading at a fast pace due to a lack of awareness, education, and hygiene. People 
migrating to the natural environments of parasite occurrence also increase the like-
lihood of spreading infection. Destruction of the natural environment of vectors 
transmitting parasites also results in vectors moving to new areas to spread diseases. 
These insects occur in huge numbers, reproduce rapidly, and move quietly. They 
can very quickly and efficiently transmit a parasite to us, often painlessly and often 
during our sleep. Therefore, it becomes highly essential to combat the insect vector 
so that the chances of the disease spreading are minimized [67].
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3.2 Strategies Undertaken to Control Vector-Borne Parasitic 
Diseases 

The principal method for the control of parasitic diseases is through vector control 
strategy. Since the eighteenth century, vector control programs have been highly 
effective in the eradication of vector-borne parasitic diseases. Vector control aims to 
limit the transmission of parasites and pathogens by reducing or eliminating human 
contact with the vector. Various chemical and non-chemical-based methods that 
target the immature and adult stages of the vector have been undertaken to date [59]. 
Chemical insecticides like dichloro-diphenyl-trichloroethane (DDT) gained a lot of 
prominence during the nineteenth century. The DDT spray operation significantly 
reduced the mosquito and sandfly populations. However, in the later years, vector 
population developed resistance against DDT [12, 71]. Likewise, other chemical 
insecticides such as pyrethroids have been used for a long period to control the 
Triatomine vector, despite that pyrethroid resistance has been developed by the vector 
population. Control of tick vectors using acaricides had been highly effective in 
controlling the tick population, although recently resistance has also been developed 
by these vector species against the acaricides. Along with that, toxicity posed by 
the acaricides toward the environment also limits their utilization. Furthermore, the 
development of new acaricides is a long and expensive process, which reinforces the 
need for alternative approaches to control tick infestations [72–74]. 

In the past few years, microbial agents such as B. sphaericus, and B. thuringiensis 
have gained a lot of popularity in combating the mosquito vector population. They act 
as an ultimate substitute for chemical insecticides. However, presently, a high level 
of resistance has been observed in the vector population against them [15]. Likewise, 
entomopathogenic fungi have also been utilized for the eradication of the mosquito 
vector population. Although apart from being highly effective, entomopathogenic 
fungi [16]. Natural enemies of the vector such as tadpoles and larvivorous fishes act 
as potential predators of mosquito larvae. However, the introduction of larvivorous 
fishes belonging to the genus Gambusia and Poecilia is a threat to the native species. 
Along with this, though tadpoles and salamanders are efficient in putting a check on 
the mosquito larvae population, still they cannot be used alone as an independent 
intervention. More detailed knowledge is required to use them effectively. Other 
disadvantages such as the low survival rate of tadpoles and caution needed at the 
time of introduction of invasive species limit their applications [18, 75, 76]. 

Nowadays, nanobiotechnology is gaining a lot of prominence in vector control. 
Several nanopesticides and nanoformulations serve as important strategies for vector 
control. The specific utilization of nanoscience and polymer science that specifi-
cally affects vector physiology has been regarded as an efficient approach to vector 
eradication [77, 78]. Over the past decade, NPs have also been used as an alter-
native to minimize vector populations. NPs synthesized from microbes and plant 
parts have contributed to the area of public health in combating the vectors such as 
mosquitoes. Therefore, it can be stated that nanotechnology is the most promising
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branch of the twenty-first century which facilitates vector control and reduces the 
rate of transmission of infection [79–81]. 

3.3 Nanotechnology in Vector Control 

(a) Nanoemulsion 
The emulsion system which comprises droplet size on the nanometer scale 

(20–200 nm) is often termed miniemulsions and nanoemulsions [82, 83]. As 
the nanoemulsion has an appropriate size, they appear transparent or translu-
cent to the naked eye and therefore attains stability against sedimentation or 
creaming [84]. Due to these properties, this system is being practically applied 
in various fields such as pharmaceuticals and cosmetics. Currently, few studies 
have described possible applications of these nanoemulsions in the field of 
insect vector control strategies [77]. Nanoemulsion of essential oils is highly 
effective against insects. The underlying mechanism behind the toxicity is the 
deregulation of the growth hormone that ultimately stops insect shedding which 
finally leads to death. Recent studies have also reported the biological activity 
of nanoemulsified essential oils on etiological agents of parasitic origin. This 
potentially increases the diversification of the use of these nanoemulsions in 
the control of infectious/parasitic diseases [85]. Table 1 describes a variety of 
plant species utilized for the synthesis of nanoemulsion which has shown good 
efficacy against vector species. Eucalyptus oil nanoemulsion formulated using 
water, tween 80, and eucalyptus oil has been found to have mosquito larvi-
cidal activity. Eucalyptus oil acts as a natural pesticide due to its allelopathic 
property. After exposing the larvae to nanoemulsion, it was concluded that 
at a concentration of 250 ppm, nanoemulsion caused 98% mortality of Culex 
larvae. Along with this, the histopathological studies reveal that the midgut of 
the larvae was completely damaged which led to death [93]. Tarragon essen-
tial oil has also been found to be highly effective against malarial vector An. 
stephensi. It was stated that the decrease in the droplet size of the nanoemulsion 
caused an increase in larvicidal activity. It was concluded in the study that the 
nanoemulsion can be suggested as a low-cost, environment-friendly mosquito 
larvicide [94]. Pelargonium roseum essential oil has been a potent larvicidal 
agent as it caused more than 90% mortality above 40 ppm in the Anopheles 
vector. The major components such as citronellol, L-menthone, linalool, and 
geraniol present in P. roseum essential oil were responsible for the mosquitocidal 
property. Therefore, essential oil-based nanoformulation has been considered a 
potent candidate for mosquito larvae control [95].

(b) Nanoparticles 
NPs have been considered the most eligible candidate for the control of 

insect vectors. The insects have a hydrophobic and porous external surface. 
This waxy cuticular surface has orifices ranging from 0.5 to 2 μm, which is 
larger than the nanometer size scale. This allows the NPs to penetrate through
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Table 1 Different kinds of plant species engaged in the synthesis of nanoemulsion which is found 
to be highly effective against vectors 

Plant species Vector species Droplet size (nm) Effective LC50 
concentration 

References 

Neem (Azadirachta 
indica) oil 

Culex 
quinquefasciatus 

31.03–251.43 11.75 mg L−1 [86] 

Anethum graveolens Anopheles 
stephensi 

10.7–1880.0 _ [87] 

Ocimum basilicum Culex 
quinquefasciatus 

200 36.53–38.89 ppm [88] 

Ocimum basilicum Culex 
quinquefasciatus 

28 3 mg/L−1 [89] 

Ricinus communis Anopheles 
culicifacies 

114 3.4 ppm [90] 

Mentha spicata Culex pipiens 97.8 43.57 μg/mL [91] 

Schinus 
terebinthifolius 

Culex pipiens 41.3 6.8–40.6 μl L−1 [92] 

the exoskeleton and bind to the proteins and DNA. This leads to the denatura-
tion of the cells and organelles, which leads to death [18, 96]. Currently, several 
NPs include aluminium oxide (Al2O3), titanium dioxide (TiO2), zinc oxide 
(ZnO), gold (Au), and silver (Ag) have been widely studied for the evaluation 
of their insecticidal and acaricidal properties [97–99]. Nanosilica is consid-
ered to be ideal for the control of Anopheles and Culex mosquitoes. Larvi-
cidal bioassay reveals that 50% mortality was observed when Anopheles and 
Culex were exposed to hydrophobic nanosilica at the concentration of 32.3 
and 128.9 ppm. Along with this, hydrophobic nanosilica has also pupicidal 
and ovideterrence activity against both species of mosquitoes [100]. Nowadays, 
biosynthesized NPs are gaining popularity. Plants’ metabolites and microbial 
cultures are being extensively used for the synthesis of NPs. The advantages 
of this green synthesis include cost-effectiveness, single-step process, and eco-
friendly. Although bio-fabricated metal NPs are found to be highly effective 
against a wide variety of insects, to date majority of the studies are being carried 
out on mosquitoes [12, 98].

Vinca rosea leaf extract-based Ag NPs are suitable for controlling malarial vector 
An. stephensi. V. rosea leaf extract when mixed with silver nitrate (AgNO3) produces 
brownish-colored nanosilver particles. The synthesized particles were tested against 
An. stephensi larvae for a period of 24, 48, and 72 h. It was observed that more than 
90% mortality was seen at the concentration of 68.62 mg/mL after 72 h, thereby 
making phytofabricated nanosilver a potent candidate for malarial vector control 
[101]. Likewise, Au NPs synthesized using flower extract of Couroupita guianensis 
were highly effective in controlling pesticide-resistant Anopheles vectors. The Au 
NPs synthesized were oval, spherical, and triangular in shapes of 29.2–43.8 nm
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dimensions. A field study conducted concludes that a single treatment with C. guia-
nensis flower extract-fabricated Au NP had led to complete larval mortality after 72 h 
[97]. Entomopathogenic fungi like Fusarium oxysporum have also been involved in 
the synthesis of NPs. Fungus-based Ag NPs exhibit mosquito larvicidal properties. 
The characterization of the fungi-mediated nanosilver reveals the presence of func-
tional groups present in the fungal extract that assisted in the formation of Ag NPs. 
This myco-synthesized nanosilver tested for larvicidal activity against A. stephensi 
has shown strong mortality at the concentration range of 69.985–401.639 lg/ml. 
Thereby, the study confirmed that F. oxysporum cultures filtrate-mediated synthe-
sized Ag NPs as a very effective green pesticide for the control of mosquitoes. B. 
marisflavi has also been considered suitable for the synthesis of NPs [102]. Ag 
NPs synthesized using B. marisflavi culture was elucidated to evaluate their effi-
cacy against the immature stages of An. stephensi. The study illustrates that the LC90 

value for the ovicidal and pupicidal activity was attained at 65.84 ppm and 58.41 ppm 
concentrations of B. marisflavi-mediated Ag NPs. The larvicidal activity was also 
possessed by the nanosilver, which led to more than 90% mortality at the concentra-
tion of 55.90 ppm. Therefore, it was concluded that the marine Bacillus proves to be 
appropriate for NPs’ synthesis which can control malarial vectors [103]. 

Soil fungi such as Chrysosporium keratinophilum and Verticillium lecanii have 
been considered ideal for Au and Ag NPs formation. NPs based on soil fungus 
were studied to evaluate their larvicidal efficacy against Culex quinquefasciatus. 
After conducting the larvicidal bioassay according to the guidelines of the WHO, 
the results were analyzed. It was observed that the larvae of Cx. quinquefasciatus 
were found highly susceptible to the synthesized Ag NPs than the Au NPs [104]. 
Likewise, Ag NPs synthesized using the aqueous extract of the seaweed Sargassum 
muticum was studied to investigate their field efficacy against Cx. quinquefasciatus. 
The biosynthesized Ag NPs are mostly spherical in shape, crystalline in nature, 
with face-centered cubic geometry, and with a mean size of 43–79 nm. In the field, 
a single treatment of Ag NP in water storage reservoirs was effective against the 
Culex vector, allowing the complete elimination of larval populations after 72 h. In 
ovicidal experiments, egg hatchability was reduced by 100% after treatment with 
30 ppm of Ag NP. Ovideterrence assays highlighted that 10 ppm of Ag NP reduced 
the oviposition rate by more than 70% [105]. Similarly, Ag NP synthesized using 
Cassia fistula (fruit pulp), B. amyloliquefaciens, and B. subtilis has also been studied 
for their larvicidal and pupicidal property against Cx. pipiens. It has been concluded 
that the exposure of larvae to the biosynthesized Ag NP led to a decrease in protein 
content. Along with this, there was an alteration in the activity of different biochem-
ical constituents that affected the nervous system of the larvae ultimately leading 
to death [106, 107]. Marine sponge Spongia officinalis-synthesized ZnO-NPs were 
found to be an excellent insecticidal agent against Cx. pipens larvae. The synthesized 
NPs were subjected to characterization techniques such as FT-IR which confirmed 
the presence of different chemical functional groups such as polysaccharides, hydro-
carbons, phenols, amines, amides, and carboxylates that helped in the formation of 
ZnO NPs. ZnO NPs of very small size of 11.5 nm were obtained that were exposed 
to the mosquito larvae. It was observed that the tested ZnO-NPs severely induced
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larvicidal activity with LC50 and LC90 of 31.823 and 80.09 ppm for Cx. pipiens. The  
study thus concluded the possibility of using S. officinalis-mediated ZnO-NPs for 
vector control [108]. 

NPs are highly effective in controlling tick vectors. Studies are being carried 
out to prove that NPs synthesized through chemical and green fabricated routes 
have high acaricidal properties. Most of the studies assessed the toxicity of Ag NPs 
against ticks, followed by TiO2 NPs, and to a minor extent by ZnO, nickel (Ni) NPs, 
and copper (Cu) NPs. However, most of these studies have been carried out on the 
effect of NPs in controlling economically important ticks that parasite a variety of 
livestock species [99]. A study was undertaken by Avinash et al. [109] to investi-
gate the acaricidal property of neem-coated Ag NPs on the deltamethrin-resistant 
strain of Rhipicephalus (Boophilus) microplus. It was observed in the study that after 
24 h of exposure, maximum mortality of 93.3% was seen at the concentration of 
50 ppm of neem-coated nanosilver [109]. According to a very recent study, the acari-
cidal activity of green-synthesized nickel oxide (NiO) NPs using an aqueous extract 
of Melia azedarach ripened fruits was investigated against different developmental 
stages of the camel tick Hyalomma dromedarii. The synthesized NPs were exposed 
to the egg, nymph, larvae, and adult stages of the tick. NiO NPs of size ranging from 
21 to 35 nm were able to cause more than 50% mortality at the concentrations of 
5.00, 7.15, and 1.90 mg/mL in embryonated eggs, larvae, and engorged nymphs, 
respectively, whereas the egg productive index (EPI), egg number, and hatchability 
(%) were lower in females treated with the NiO NPs [110]. Table 2 summarizes the 
efficacy of biologically synthesized NPs against different developmental stages of 
the vector.

It can be concluded that nanotechnology is a science that is being widely employed 
for controlling a wide variety of pest and vector species such as mosquitoes and ticks 
[120–122]. In spite of that to date, maximum studies and research work have been 
done to control mosquito adults, pupae, and larvae [116, 123–125]. Several works 
have also been carried out to investigate the efficacy of NPs in controlling tick vector 
species causing parasitic diseases in livestock. However, the field application of NPs 
is still a major research gap in this field. In addition to this, further challenges for 
future research should be focused on broadening the number of studied tick species 
as this field is completely unexplored [17, 99, 111]. These NPs have also played 
an important role in controlling parasitic diseases such as Chagas disease, Leishma-
nial diseases, and African trypanosomiasis through various nanoformulations and 
via nanoparticulate drug delivery. No such study for controlling these vector popula-
tions through NPs has been performed to date. Therefore, it becomes highly essential 
to carry out further research work so that steps can be undertaken to put a check 
on vectors causing deadly parasitic diseases [126]. Figure 5 shows the diagram-
matic representation of nanoemulsions and metal NPs fabricated through plants and 
microbes such as bacteria, algae, and fungi. The synthesized nano-based particles 
and emulsions have been considered eligible candidates for controlling the vector 
population.

Likewise, essential oils obtained from plants assist in nanoemulsion formation 
which also helps in the vector control strategy.
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Table 2 Plant extract and microbial culture used for the synthesis of NPs which are found to cause 
more than 50% mortality in different vector species 

Plant/microbial 
extract 

Metal 
nanoparticle 

Vector species Stage LC50 References 

Mimosa pudica Ag Rhipicephalus 
microplus 

Larvae 8.98 mg/l [111] 

Euphorbia 
hirta (plant leaf 
extract) 

Ag Anopheles 
stephensi 

Pupa 
Larvae 

34.52 ppm 
10.14–27.89 ppm 

[112] 

Vinca rosea leaf 
extract 

Ag Anopheles 
stephensi Liston 
Culex 
quinquefasciatus 

Larvae 16.84 mg/mL 
(after 72 h) 
43.80 mg/mL 
(after 72 h) 

[101] 

Calotropis 
gigantea 

TiO2 Rhipicephalus 
microplus 

Larva 24.63 mg/l [113] 

Solanum 
trilobatum 

TiO2 Hyalomma 
anatolicum 

Larva 25.85 mg/l [114] 

Bacillus 
megaterium 

Ag Culex 
quinquefasciatus 

Larvae 0.567–8.269 ppm [115] 

Caulerpa 
scalpelliformis 
(frond extract) 

Ag Culex 
quinquefasciatus 

Pupa 
Larvae 

7.33 ppm 
3.08–586 ppm 

[116] 

Lobelia 
leschenaultiana 

ZnO Rhipicephalus 
microplus 

Adult 1.7 mg/ml [18] 

Citrus limon 
leaf extract 

Pd (Palladium 
nanoparticles) 

Anopheles 
stephensi 

Larvae 7.215% [117] 

Sargassum 
myriocystum 

Ag Culex 
quinquefasciatus 

Larvae 5.59 mg/L [118] 

Penicillium 
corylophilum 

Se (Selenium) Anopheles 
stephensi 

Larvae 25 ppm [119] 

Penicillium 
chrysogenum 

MgO Anopheles 
stephensi 

Larvae 12.5–15.5 ppm [20]

4 Recent Advancements in the Development 
of Nanovaccines 

Control of parasitic diseases necessitates a complex combination of public health, 
education, political will, and medical science efforts. As the key components vary 
widely, the nature of the interplay differs for each parasitic disease [127]. The 
following key points explain the limitations of drugs and vaccines that prompted 
the development of nanotechnology in controlling parasitic diseases.
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Fig. 5 Plants’ extract and microbial culture have been used for the synthesis of metal NPs which 
have the potential for controlling mosquito larvae, pupae, and tick population

4.1 Available Drug-Related Problems 

Antiparasitic drugs are still the best option for managing parasitic infections. Most 
of the available antiparasitic drugs by their insolubility are poorly absorbed and 
excreted out of the body. Additionally, the low gastrointestinal absorption profile 
and variable bioavailability of poorly soluble medicines pose a considerable chal-
lenge in developing appropriate dose forms [128]. Antiparasitic drug resistance as a 
result of widespread and irrational use is one of the major threats around the globe 
and is responsible for the mortality of millions per year [129]. Satisfactory effects 
often necessitate high and multiple doses, which are prone to drug resistance, low 
efficacy, reinfection, and hazardous side effects. Several ways to develop nano-sized 
medication delivery devices have been researched in recent years. Particularly, in the 
case of novel antiprotozoal, the lack of effective vaccinations, safe and affordable 
medications, increased drug resistance, and lack of novel drugs for the prevention 
and treatment of human protozoan infections have amplified the disease’s impact 
manifold [130].
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4.2 Drug Resistance and Lack of Vaccines 

Resistance to various antiparasitic drugs remains a major threat to global efforts 
to control and eliminate parasitic diseases. Vaccination has long been considered 
the most long-term approach for parasite disease control in humans and animals. 
The parasites share complex biology by the virtue of which their life cycle proceeds 
through various developmental stages in different hosts and the harvesting of vaccines 
from these animal hosts is a daunting task in terms of cost, quality control, standard-
ization, and shelf life [131]. A substantial impediment in vaccine development is 
the absence of in vitro methods required to culture different stages of parasites. The 
capacity of many parasites to modify host immune responses in order to postpone 
or prevent parasite clearance complicates vaccine development even more. Addi-
tionally, the maintenance of parasite populations necessitates passage through or 
formation of persistent infections in their specific animal host. 

4.3 Lack of Novel Drugs 

Increasing drug resistance among animal parasites along with the high cost of drugs, 
limited availability, and food safety concerns over drug resistance are the few notable 
limitations that have facilitated the need for the development and implementation 
of alternative management techniques [132]. Antigenic variation, sequestration, and 
immunosuppression are examples of adaptive strategies used by protozoan and meta-
zoan parasites to evade immunity. Many parasites use these strategies to extend their 
survival in the mammalian host to compensate for their low transmissibility to the 
arthropod vector on which their cyclical development depends. Parasites can delay 
sterilizing immunity which leads to their chronicity in the host cell. Many parasites 
have the ability to modify host immune responses in order to postpone or prevent 
parasite clearance. 

4.4 Nanotechnology as a Solution 

NPs are at the forefront of the rapidly developing field of nanotechnology with several 
potential applications. NPs with exceptional biodegradability and biocompatibility 
are regarded as the most effective vehicle for delivering drug compounds in the 
biomedical field. Nano-based drug delivery systems improve the bioavailability and 
therapeutic efficiency of drugs while lowering the side effect profile [133]. Reduction 
in particle size leads to higher dissolution rates due to increased surface area, which is 
one of the most effective strategies to solve these issues [134]. NPs, as an innovative 
novel drug carrier, offer a promising technique to treat parasitic infections effectively 
by addressing the constraints of limited bioavailability, poor cellular permeability,
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nonspecific distribution, and quick removal of antiparasitic medications from the 
body [135]. 

4.5 Availability of Different Nano-based Delivery Systems 

Over the years, nanomaterials have emerged as potable drug carriers. 
Nanotechnology-based drug delivery systems have included biodegradable nanopar-
ticles, dendrimers, polymeric micelles, liposomes, microcapsules, solid lipid 
nanoparticles, and solid core–shell nanoparticles. 

(a) Nanocapsules 
Nanocapsules consist of one or more active materials (core) and a protective 

matrix (shell) in which the therapeutic composition can be encapsulated (Fig. 6) 
[136]. The protective layer of nanocapsules is normally pyrophoric (liable to 
ignite spontaneously on exposure to air) and easily oxidized [137]. Nanocap-
sules are a class of polymer-based nanoparticles other than nanospheres that 
can penetrate the basal membranes due to their small size, making them suitable 
carriers for drug delivery. Their shape has a low aspect ratio, making them easier 
to penetrate cells than capsules with a high aspect ratio, such as rods. Antibodies 
and cell-surface receptors can be added to their surfaces to detect biomolecules 
for targeted administration. Nanocapsules are of biological relevance because 
they can be utilized for controlled drug release and targeting while protecting 
enzymes, proteins, and foreign cells, among other cellular components [138, 
139]. Sustained release, improved drug selectivity and effectiveness, enhanced 
therapeutic bioavailability, and reduced drug toxicity are some of the key advan-
tages of nanocapsules. Polymer-based NPs are being investigated as a means 
of delivering chloroquine and artemisinin against intracellular Plasmodium and 
amphotericin B against Leishmania [140–142].

(b) Nanosphere 
Nanospheres of inorganic materials are used as lubricants with the help of 

nano-sized “ball bearings.” By virtue of particle size, nanospheres are ideal to be 
administered orally, locally, and systematically. Nanospheres have small particle 
sizes; thus, they are suitable to be administered orally, locally, and systemically. 
Usually, most nanospheres are prepared using polymers that are biodegradable 
and biocompatible. They are used as a delivery system in order to enhance the 
entrapment and release of the drug (Fig. 7).

(c) Solid lipid nanoparticles 
Solid lipid nanoparticles (SLN) have emerged as a versatile alternative to 

polymer-based nanoparticles as the paucity of safe polymers with regulatory 
approval, as well as their exorbitant cost, have restricted the use of polymer-
based NPs in clinical practice. SLN contains aqueous surfactant dispersions with 
a matrix composed of solid lipids which is biodegradable [143, 144]. Generally, 
the lipids that are well metabolized by the body can be employed. Large-scale
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Fig. 6 Drug association 
with nanocapsules

Fig. 7 Drug association 
with nanosphere 

production can be performed in a cost-effective and relatively simple way using 
high-pressure homogenization leading to SLN (Fig. 8) [145].

(d) Liposomes 
Liposomes are a well-known formulation technique for enhancing drug 

delivery and boosting therapeutic results in a variety of medications, and 
vaccines. Liposomes are structurally related to the lipid membrane of viable 
cells. Liposomes are tiny artificial aqueous vesicles encircled by phospholipid 
bilayers that encapsulate hydrophilic, hydrophobic, and amphiphilic compounds 
[146]. Liposomes are biocompatible, shielding the encapsulated drugs from 
metabolic processes, enabling them for a bigger pharmacological payload per
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Fig. 8 Solid liquid nanoparticles loaded with drug 

particle as well as increasing chemical biodistribution to the targeted regions 
in vivo [147].

(e) Dendrimers 
The presence of a well-defined nanoscale polymeric framework with a low 

polydispersity index and high functionality is evolving dendrimers as viable drug 
delivery vehicles [148]. ‘The term dendrimer’ is derived from the Greek word 
‘dendron,’ which means ‘tree/branch,’ due to its similarity to a tree, and meros, 
which means portion. A dendrimer consists of a symmetrical core, multiple 
branches emanating from the core referred to as generations (first generation, 
second generation, and third generation subsequently), and the periphery func-
tional groups [149]. Dendrimers are nano-sized polymers of a regular structure 
and a high density of end groups that are heavily branched fractal-like macro-
molecules with well-defined three-dimensional structures, shapes, and topology 
[150]. Recently, dendrimers have been employed for the management of malaria, 
leishmaniasis, toxoplasmosis, and acanthamebiasis (Fig. 9) [151]. 

Fig. 9 Structure of dendrimer showing the core, branches, and periphery groups
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4.6 Brief Introduction of the History and Evolution 
of Vaccines 

Vaccination is the most effective and realistic strategy for eradicating infections 
since Edward Jenner’s pioneering work 200 years ago. Vaccination has made a huge 
difference in terms of human and animal health by eradicating two major infections, 
smallpox and rinderpest [152]. Polio has nearly been eradicated, and the success 
in combating measles makes it another possible eradication target. The disciple of 
vaccination is emerging rapidly and many new vaccines, including those for non-
infectious disorders, are likely to be produced in the next decade. Presently, seventy 
different types of vaccines are approved against thirty infectious diseases around the 
globe [153]. In recent times, SARS-CoV-2 vaccines are the most promising approach 
for curtailing the pandemic, and they have been an extraordinary success. Vaccines 
have got an upper hand when compared to conventional drugs because the enhanced 
drug resistance along with low efficacy, low shelf life, surging toxic effects, and drug 
incompetence to latch on to the site of infection are a few of the undesirable effects 
of traditional conventional drugs [126]. To design an optimal vaccine, there are some 
key facets to be kept under consideration like safety, stability, cost-effectiveness, and 
the property to show adequate and lasting immunity with the least number of doses 
[154, 155]. With the advent of science and technology, there was a breakthrough in the 
types of vaccines to boost the immune response and prevent life-threatening diseases. 
Currently, four types of vaccines including live attenuated vaccines, inactivated or 
dead vaccines, subunit vaccines [protein vaccines, polysaccharide vaccines, nucleic 
acid-based vaccines], and toxoid vaccines are widely known [156]. There are obvious 
challenges associated with vaccines in terms of safety with live attenuated vaccines, 
the inefficiency of dead vaccines to evoke an immune response, the need for prime-
boost vaccination regimens as well as cold storage for preservation [157, 158]. These 
shortcomings demand an alternative that can prevent these challenges. 

4.7 Need for Nanovaccines 

Nanotechnology advancements and their applications in medicine and pharmaceu-
tical fields have transformed the twentieth century [159]. In the realm of vacci-
nation, nanotechnology can aid in the improvement of existing vaccines [160]. 
Nanovaccines contain nanoparticles that specifically target the site where the infec-
tion arises, as opposed to conventional medicines that impact the entire body [161]. 
Caused by small tailored effects, nanotechnology is gaining prominence in biology 
[162, 163]. Nanoparticles have the properties like unique particle shape, size as 
well as hydrophobicity to manifest self-adjuvant effects, hydrophobicity and release 
kinetics [164]. The administration of particles from 20–100 nm in size can directly 
enter the lymphatic system while the larger particles need to be internalized by 
antigen-presenting cells prior to reaching the lymphatic system which signifies the
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relevance of size in the biodistribution of nanoparticles efficiently [165]. The rod-
shaped nanoparticles are found to be circulating more efficiently in the blood and 
gastrointestinal tract when compared to their spherical counterparts. As opposed to 
hydrophilic formulations, particles synthesized from hydrophobic polymers are more 
efficiently phagocytosed [166]. Nanovaccines are new-generation vaccines in which 
NPs are utilized as carriers and/or adjuvants and can elicit cellular and humoral 
immunity which is both immediate and long-lasting [21, 161, 167]. Nanovac-
cines can be designed to mimic the size and shape of pathogens to promote easy 
uptake by immune cells [168]. Materials at the nanoscale level can incorporate into 
membrane-bound endosomes, hence never getting access to the cytosol and cell 
machinery in contrast to other synthetic drugs which disrupt the integrity of biolog-
ical barriers. Nanotechnology-based vaccines can also be delivered via a variety of 
routes, including intranasal, intravenous, transdermal, and oral administration, and 
can be functionalized to breach the blood-brain barrier [22, 169]. 

5 Challenges and Future Perspectives 

Based on the elaborated literature explained in this chapter, it can be concluded that 
nanotechnology can play an important role in controlling parasites causing deadly 
diseases along with their respective vector species. Nanotechnology provides unlim-
ited opportunities for improving the efficacy of the currently used antiparasitic drugs 
by overcoming the drawbacks such as short half-life and low bioavailability of the 
medicines. NPs loaded with drugs can be applied either orally or could be directly 
injected for drug delivery. Despite all these, still research carried out on this is in 
its infancy and requires further studies. Likewise, controlling the vector population 
through nanotechnology is another strategy undertaken for the eradication of parasitic 
diseases. Nowadays, NPs synthesized using plants and microbes are gaining a lot of 
importance due to their insecticidal and acaricidal property against different vector 
species. To date, maximum research has been done to evaluate the mosquitocidal 
and acaricidal effect of metal NPs on different vectors. However, apart from these, 
there are other vectors such as bugs and sandflies that cause deadly parasitic diseases. 
Until now, no such study has been done to control these vectors using nanotechnology. 
Recently, NPs-based vaccine platforms (nanovaccines) have emerged as promising 
alternatives to more traditional vaccine platforms. Nanovaccines offer several benefits 
over traditional adjuvants by offering stability outside the cold chain, strengthening 
immunogenicity, activating humoral and cellular immune responses, and facilitating 
long-lived responses without the need for booster doses. However, further studies 
investigating the use of nanovaccines for disease prevention or therapies are urgently 
needed, so that the large-scale manufacturing of nanovaccines could be practiced.
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6 Conclusions 

Through the reformulation of conventional medications into site-specific targeted 
administration of drugs, nanomaterials-based drug delivery systems provide an 
upgraded and effective alternative therapy. The combination of nanotechnology 
and pharmaceutical sciences research is promising and has increased fast in recent 
years. They are frequently nanoscaled in size because nanoengineering-enabled drug 
delivery materials are intended at the atomic or molecular level. As a result, unlike 
larger materials or traditional medications, they can freely circulate throughout the 
human body. The development of novel medications for the control and treatment 
of neglected tropical diseases (NTDs) is a big problem that will require signifi-
cant funding. Despite the fast proliferation of parasite infections throughout the 
world, novel therapeutic options are urgently needed to combat them. According 
to the findings, the nanoparticulate-mediated drug delivery method improves effi-
cacy by allowing for site-specific administration, improved targeting efficiency, and 
greater drug bioavailability at the illness site. Disease causing parasites are vectored 
by arthropods, out of which mosquitoes, sandflies, and bugs are highly prominent. 
Putting a check over these vector populations has also been one of the most impor-
tant strategies for controlling parasitic diseases. Several methods have been under-
taken in the past to eradicate vectors, but the drawbacks of these traditional methods 
prompted the development of a novel approach. In such a scenario, nanotechnology 
can be considered an effective way to eliminate parasitic infection. Metal NPs are 
highly efficient in suppressing the insect vector population. Nanotechnology-enabled 
vaccinations are also a novel technique for successfully eliminating NTDs; there are 
currently no vaccines against NTDs, but research is underway to develop effective 
nanovaccines. Several reported outcomes in this research revealed that reformulation 
of conventional medications using nanoparticles can improve drug quality, efficacy, 
and minimize toxicity. Nano-based vaccinations, on the other hand, are required 
to enhance investigations and research to generate effective, safe, and low-cost 
medications to combat NTDs. 
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Cancer Diagnosis and Treatment 
with Nano-Approaches 

Shubhangi D. Shirsat, Rashmi P. Sharma, Rajaram S. Mane, 
and Varenyam Achal 

Abstract Since several decades, scientists are actively engaged in finding out effec-
tive diagnoses and treatment methods for cancer therapy. Early accurate detection 
is a key factor for effective treatment. However, conventional cancer diagnostic 
methods have several intrinsic limitations. The advent of nanotechnology boosts 
cancer research. So far, nanoparticles, hybrid nanosystems, and nanoplatforms have 
been proposed under the umbrella of nanomedicine for the same. These nanoplat-
forms are highly sensitive and specific for the detection of cancer cells, extracellular 
cancer biomarkers, and also for vivo imaging. Nanomedicine has the potential to 
effectively treat cancer by reducing the limitations of existing traditional cancer 
treatments. This chapter gives a detailed account of nanoparticle-based methods for 
the early detection and treatment of cancer. 

Keywords Nanomaterials · Nano-diagnostic approach · Nano-biomarker for 
cancer · Nano-based cancer treatment 

1 Introduction 

Complex pathophysiology characterized by uncontrolled, random cell division and 
invasiveness is associated with cancer, and due to this, it becomes a leading cause of 
death worldwide. About four major risk factors for cancer are found to be associated
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with cancer: (a) specific environmental factors such as prolonged exposure to radi-
ation and pollution; (b) an unhealthy lifestyle like tobacco consumption, smoking, 
poorly balanced diet, stress, and lack of physical activity [1, 2]; (c) inherited genetics 
due to the mutations of proto-oncogenes, tumor suppressor genes expression patterns, 
and those genes involved in DNA repair [3]; and (d) advancing age for cancer and 
many individual cancer types. It is very difficult to diagnose the cancer tissue due to 
the heterogeneous nature of cancerous tumors accurately. Inaccurate diagnosis often 
results in inappropriate treatments followed by the development of complications in 
the cancer patient. Interpatient tumor heterogeneity arises due to a variety of cancer 
sub-types, unique genetics, and epigenetics and dynamic factors such as age, medical 
history environment, and lifestyle [4]. Early detection and effective treatment of 
cancer re crucial for saving lives. Traditional cancer therapies include chemotherapy, 
radiation therapy, and immunotherapy, but acute side effects and a high risk of recur-
rences always question the effectiveness of these therapies. Chemotherapy and radi-
ation therapy possess cytostatic and cytotoxicity abilities, such as suppression of 
bone marrow, gastrointestinal, neuropathies, skin disorders, hair loss, and fatigue. 
Few drugs like anthracyclines and bleomycin demonstrate drug-specific side effects 
such as cardiotoxicity and pulmonary toxicity [5, 6]. Immunotherapeutic agents have 
generated very good results by not only treating primary cancer but also preventing 
distant metastasis with minimal risk of recurrence [7]. However, immunotherapy is 
ineffective against solid tumors due to the unusual extracellular matrix (ECM) which 
is difficult for immune cells to infiltrate and autoimmune diseases limit the use of 
immunotherapy [7, 8]. Chemotherapy and radiotherapy do not consider the patient-
specific heterogeneous nature of cancer tissue, so it is not that effective in combating 
cancer. Such an individualized platform includes the delivery of chemotherapeutic 
drugs to the patient under specific clinical situations. 

Efforts are being made to address the limitations of traditional therapeutic 
approaches using nanoparticles (NPs). The new era of cancer diagnosis and treat-
ment has begun with the application of nanotechnology principles to cancer therapy. 
NP-based drug delivery systems have reflected benefits in cancer treatment and 
management by demonstrating good pharmacokinetics, precise targeting, and drug 
resistance to lower side effects [9, 10]. These advantages enable NP-based drugs to 
be broadly applied to chemotherapy, targeted therapy, radiotherapy, hyperthermia, 
and gene therapy. Several types of NPs, including organic and inorganic NPs, have 
already widely been used in the clinical treatment of several cancer types. The use of 
nanotechnology in cancer medicine has a leading impact on the diagnosis and treat-
ment of tumors. One goal of nanomedicine is to develop therapeutic or diagnostic 
platforms using specially designed chemotherapeutic drug-conjugated nanocarriers 
to address cancer theranostics (therapy + diagnostics) [11–14]. Nanocarriers can 
be monitored through highly complex physiological networks and thus maximize 
the delivery of chemotherapeutics to the tumor. Present chapter provides detailed 
information on various diagnostic and therapeutic approaches employed using NPs.
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2 Nanotechnology in Cancer Diagnosis 

2.1 Cancer Cells Versus Normal Cells 

Cancer cells are distinct from normal cells. Some of the changes have been identified, 
while others are unprecedented. Cancer cells influence various parts of the body. It 
arises due to the accumulation of mutations in genes that control the cell cycle. The 
unlimited and independent development of cells is responsible for the development 
of different cancer cells which are immortal. Cancer cells are continuously growing, 
while normal cells stop increasing or reproducing when there are sufficient cells. 
Cancer cells have irregular blood vessels as compared to normal cells [15]. Normal 
cells stay where they belong in the body and are tightly bound to neighboring cells. 
Carcinoma cells liberate themselves and migrate to other regions by getting rid of 
underlying basement membranes and then attacking neighboring stromal segments 
which is nothing but metastasis [16]. 

2.2 Tumor Physiology 

In the 1860s, Rudolph Virchow revealed the fundamental structure of a solid cancer 
tumor, including its blood supply and some other important structure-related char-
acteristics [17]. Angiogenesis is the development of new blood vessels from existing 
vessel networks, and it occurs through the development, relocation, and variation of 
endothelial cells of the existing wall of blood vessels. Certain chemical signal in our 
body plays an important role in the angiogenesis process [18]. Several parameters 
need to be explored that affect the transportation and circulation of therapeutics to 
the tumor site including blood flow percentage, movement across the vascular wall, 
and migration within the interstitial medium [19]. 

2.3 Importance of Cancer Diagnosis 

Accurate analysis plays an important role in all stages of cancer. An early cancer diag-
nosis helps to recognize and trace cancers and subsequent best treatment strategies. 
Several complications are associated with progressing cancer due to which treatment 
plan becomes more complicated, increasing the chances of failure of treatment. So, 
an early cancer diagnosis is almost important. An early cancer diagnosis is associated 
with a greater than 90% survival rate. Early-stage diagnosis of cancer is currently a 
dynamic research area [20]. Currently, imaging techniques and morphological anal-
ysis such as histopathology or cytology are used for the diagnosis of cancer. The most 
commonly used imaging techniques include X-ray, computed tomography (CT), 
magnetic resonance imaging (MRI), endoscopy, and ultrasound which are effective
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Fig. 1 Strategies used for the detection of cancer by nanotechnology [28] 

only when there is a visible change in the tissue [21]. By that time, many cancer 
cells may have proliferated or metastasized. In addition, these imaging methods 
cannot distinguish benign lesions from malignant lesions [22]. Moreover, cytology 
and histopathology cannot be successfully and autonomously applied to detect cancer 
at an early stage [23]. Detection of abnormalities at the macroscopic level, such as 
detection of cancer-associated molecules and molecular changes even in a minor 
proportion of cells, has the potential to offer quick, sensitive, and early detection of 
cancer [24]. Therefore, the development of the method for diagnosis of cancer at an 
early stage, before metastasis, is a major challenge. 

NPs-based diagnostic methods are being developed as promising tools for real-
time, convenient, and cost-effective cancer diagnosis and detection [25]. For cancer 
diagnosis, NPs are being applied to capture cancer biomarkers, such as cancer-
associated proteins, circulating tumor cells, circulating tumor DNA, and exosomes 
[26]. A large surface area-to-volume ratio of NPs can be densely covered with 
antibodies, small molecules, peptides, aptamers, and other moieties. By presenting 
various binding ligands to cancer cells, multivalent effects can be achieved that can 
improve the specificity and sensitivity of an assay as shown in Fig. 1 [27]. 

2.4 Detection of Cancer Biomarkers 

Cancer biomarkers are biomolecules that are secreted or present on cancer cells and 
are found in blood and other tissues or body fluids, such as saliva and urine [29, 30]. 
The presence of biomarkers in these body fluids indicates the existence of cancer in 
the body. Cancer biomarkers are proteins [31], carbohydrates [32], or nucleic acids 
(circulating tumor DNA, miRNA, etc.) [33] that are secreted by the body or cancer 
cells when cancer is present [34, 35]. The measurement of these cancer biomarkers
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enables early detection of cancer or tumor recurrence and helps to monitor the efficacy 
of the therapy. The concentration of biomarkers in body fluids is extremely low and 
heterogeneity in the abundance and timing of biomarkers within patients, so it needs 
an efficient system for the detection of these cancer biomarkers [36]. NPs offer high 
selectivity and sensitivity and the ability to conduct simultaneous measurements 
of multiple targets. The performance of biosensors can be improved with NPs to 
provide efficient detection [37]. NPs provide an increased surface-to-volume ratio for 
making biosensors more sensitive in fulfilling the demands of specific biomolecular 
diagnostics [38]. Polymer dots (PDs), quantum dots (QDs), and gold (Au) NPs are 
three common NP probes used in diagnosing cancer [39, 40]. 

(a) Protein detection 
FDA has approved various protein molecules such as prostate-specific 

antigen (PSA), cancer antigen 125 (CA-125), carcinoembryonic antigen 
(CEA), and alpha fetoprotein (AFP) for the detection of prostate cancer, 
ovarian cancer, colorectal cancer, and liver cancer respectively. A sandwich-
type assay is most commonly used for finding protein biomarkers. It consists 
of many components such as a biomarker, a capture antibody, a second capture 
antibody, and a secondary antibody that binds to the capture antibody [23]. The 
secondary antibody is converted into a quantifiable signal that can visualize 
through various methods, such as staining and fluorescence [41]. QD-based 
biosensors are used for detecting protein-based cancer biomarkers. Unique 
properties of QDs such as high quantum yield, wide absorption with narrow, 
high-efficiency Stokes shift, and high resistance to photobleaching and degra-
dation make them more suitable for detection [42, 43]. A zinc oxide (ZnO) 
QD-based sandwich immunoassay was developed using ZnO nanowire and 
two conjugated antibodies against neuron-specific enolase (NSE) and CEA. 
CEA, the most popular cancer biomarker, is useful for monitoring anticancer 
treatment as well as for predicting tumor recurrence after surgical resection in 
late-stage cancer patients. NSE is an enzyme that catalyzes the conversion of 
2-phosphoglycerate to phosphoenolpyruvate, which shows a relationship with 
carcinoids, small-cell lung carcinoma, and islet cell tumors. This biosensor can 
detect two cancer biomarkers at very small concentrations in body fluid such 
as 15 ng/mL, and the limit of detection (LOD) of each reached 1.0 ng/mL [44]. 
Another immunosensor-based detection is done for pancreatic ductal adenocar-
cinoma. In this immunosensor, ZnO QDs are coated with antibodies against 
carbohydrate antigen 19–9 (CA 19–9, specific protein for pancreatic ductal 
adenocarcinoma). The immunological reaction of biosensor and CA19-9 gives 
amplified signals presented by square-wave stripping voltammetry (SWV) as 
well as the inherent photoluminescence (PL) exhibited by the labeled QDs. The 
dynamic range of the electrochemical assay was 0.1–180 U/ml, and the LOD 
reached 0.04 U/ml, while the dynamic range exhibited by the optical spectral 
detection was 1–180 U/ml, and the LOD reached 0.25 U/ml [45]. A10 RNA 
aptamer-conjugated polymeric NPs incorporating Cy5 can bind to prostate-
specific membrane antigen (PSMA). Cy5-PLA/aptamer NPs could only bind
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to LNCaP cells and canine prostate adenocarcinoma cells, which have PSMA. 
Cy5-PLA NPs have been applied in balb/c mice that displayed strong signals 
with low background fluorescence [46]. 

(b) Circulating tumor DNA 
Circulating tumor DNA (ctDNA) is released from primary tumors or circu-

lating tumor cells (CTCs). It is approximately 100–200 base pairs long and 
present in the bloodstream, allowing the detection of cancer through cancer-
specific genetic aberrations [47]. Hybridization with nucleic acid probes of 
complementary sequences can be employed to detect cancer-associated genetic 
aberrations [48]. A DNA silver nanocluster (NC) fluorescent probe was fabri-
cated for finding a single exon in the BRCA1 gene in breast cancer [49]). Large 
deletion mutations in BRCA1 gene were identified through nanocluster fluores-
cence after hybridization. Under optimized conditions, this probe has increased 
the LOD to 6.4 × 10–11 M [49]. 

(c) MicroRNA detection 
MicroRNAs (miR) are small RNA molecules present in serum samples of 

the cancer patient. miR-141 is a biomarker for prostate cancer. Jou AF et al. 
described a two-step sensing platform for the sensitive detection of miR-141. 
For the first step, the sensing platform uses CdSe/ZnS QDs modified with 
FRET quencher-functionalized with nucleic acid, containing telomerase primer 
sequence and recognition sequence for the miR-141. The FRET quencher 
has shown covalent binding with nucleic acid-functionalized CdSe/ZnS QDs. 
Hybridization of miR-141 from serum sample with probe results in the forma-
tion of a duplex, which is then cleaved by duplex-specific nuclease (DSN), thus 
releasing the quencher unit and is activated the fluorescence of the QDs. This 
cleavage results in exposure of the telomerase primer sequence. In the second 
step, primer unit elongation is initiated by telomerase/dNTPs, incorporation of 
hemin, and chemiluminescence is generated with the help of luminol/H2O2. 
This method helps to detect miR-141 in a serum sample [50]. 

(d) DNA methylation detection 
The genome methylation landscape (Methylscape) was recently reported as 

a common characteristic as a cancer biomarker of most types of cancers. The 
differences between cancer genomes and normal GenomeScan are detected 
on the basis of DNA-gold affinity and DNA solvation. Based upon this study, 
a simple, quick, selective, and sensitive electrochemicalor colorimetric one-step 
assay to detect cancer was developed [51]. 

(e) Extracellular vesicle detection 
Circulating vesicles (30 nm–1 μm) and extracellular vehicles (EVs) bundle 

molecular information, such as miRNA, DNA, protein, and mRNA from mother 
cells. Study of these EVs allows the detection of the molecular state of tumor 
cells that are difficult to access. A magnetic nanopore capture technique was 
developed to isolate certain subsets of EVs from plasma for a mouse model of 
pancreatic ductal adenocarcinoma. Capturing of EVs and subsequent machine 
learning and RNA-sequencing help in the identification of eleven EV miRNAs 
cancer biomarkers [52]. Another biosensor has been fabricated using Au NPs
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and an aptamer panel. Here, 13-nm Au NPs were noncovalently conjugated with 
a panel of five aptamers that profile proteins on the surface of exosomes. The 
aptamers complexed with Au NPs have prevented NP aggregation in a solution 
of high salt concentration. Exosomes help in breaking non-specific and weak 
interactions between the Au NPs and aptamers, while strong and specific binding 
between aptamers and exosome surface proteins separates aptamers from the 
Au NP surface, thus facilitating Au NP aggregation. Due to aggregation, the 
color of the Au NPs is changed from red to blue, which is indicative of aptamers 
that could bind to exosomal proteins. The intensity presented by the Au NP 
aggregation (A650/A520) is suggestive of the relative abundance shown by 
target proteins on the surface of exosomes [53]. 

2.5 Detection of Cancer Cells 

(a) Detection of circulating tumor cells 
Early detection of metastatic cancer cells in the bloodstream is recognized 

as circulating tumor cells (CTCs). Metastasis is the property of cancer cells in 
which cancer disseminates from the primary tumor and invades the surrounding 
tissue and enters the micro-vasculature of the blood (intravasation) and lymph 
systems. These CTCs survive in the bloodstream and translocate toward the 
micro-vessels in distant tissues, subsequent exit from the bloodstream (extrava-
sation), and survival in the microenvironment of distant tissues. In this way, 
CTC will form secondary tumors at distant tissues [16]. Approximately, 90% 
of deaths from solid tumors are attributed to metastasis [54]. The CTCs display 
relatively low abundance and heterogeneity, presenting technical challenges 
for CTC isolation and characterization. NPs of large surface-to-volume ratio 
enable the adsorption of high-efficiency targeting ligands that recognize specific 
molecules on cancer cells; therefore, CTC isolation shows high specificity 
and recovery due to which the detection sensitivity is enhanced. Researchers 
have reported different types of nanomaterials, such as magnetic nanoparti-
cles (MNPs), QDs, Au NPs, nanowires, nanopillars, silicon nanopillars, carbon 
nanotubes, dendrimers, graphene oxide, and polymers, for CTC detection 
(Table 1) [55].

MNPs are mature nanomaterials, which can effectively bind to cells and 
in vitro separation with the help of an external magnetic field [56]. Antibody-
functionalized MNPs, namely, immunomagnetic NPs, are frequently applied in 
the biomedical field. For CTC detection, anti-EpCAM functionalized MNPs are 
used that specifically bind with EpCAM expressing CTCs. Powell et al. used 
MagSweeper, which has the ability to isolate tumor cells from unfractionated 
blood. MagSweeper works on the principle of a magnetic cell sorting system that 
uses magnetic rods covered by a sheath to sweep across capture wells and attract 
target cells labeled with magnetic NPs [57, 58]. It can be used to obtain high-
purity CTCs from patient blood, while retaining their capacity to initiate tumors
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Table 1 Nanomaterials used in the detection of the cancer cells 

Nanomaterial Type of affinity 
probe on NPs 

Specificity ligand on 
cancer cells 

Cancer type Reference 

Quantum dots Aptamer PTK7 Leukemia [60] 

Magnetic NPs Antibody EpCAM Colon/liver 
/lung/breast 

[64] 

Polymer dots Antibody EpCAM Breast [65] 

Gold NPs Aptamer Her2 Breast [66] 

Antibody Cd2/cd3 Leukemia [67] 

Upconversion NPs Antibody Her2 Breast [62] 

Nanorod arrays DNA aptamer EpCAM Breast [68] 

Nanofibers Antibody EpCAM Breast [69] 

Nanoparticle-coated 
silicon beads 

Antibody EpCAM/CD146 Breast 
Colorectal 

[70]

and metastasize, facilitating strong analysis of single CTCs. This method has 
successfully been applied to patients with primary and metastatic breast cancer 
and performed direct measurement of the gene expression in individual CTCs. 
High quantum yield and special optical properties enhance the usefulness of QDs 
in the detection of materials with low abundance [59]. A new photocatalyzed 
renewable self-powered cytosensing device is presented on the basis of ZnO 
NDs@g-C3N4 QDs [60]. It conjugates with membrane PTK7-specific aptamer 
Sgc8c, and the device has been used to identify CCRF-CEM cells (human acute 
lymphoblastic leukemia cells), which express PTK7. The device offers better 
performance in terms of detection range, detection limit, reproducibility, and 
selectivity as it captures only CCRF-CEM cells (500 cell/mL) and no other cell 
types, such as K562, HL-60, and HeLa cells. 

Semiconducting polymer dots (PDs) functionalized with streptavidin and 
immunoglobulin G (IgG) have been synthesized and utilized for the effective 
and specific labelling of cellular targets. The fluorescence exhibited by PD-
labeled MCF-7 cells is 25 times higher than that of QD labeled cells and 18 
times higher than that of Alexa Fluor-labeled cells, according to flow cytometry 
analysis. Therefore, PD is ideal for CTC detection. Upconversion nanoparti-
cles (UCNPs) are usually selected for fluorescent labeling by considering the 
capacity to excite UCNPs with near-infrared (NIR) light to infrared (IR) light 
for the generation of fluorescence emission in the visible spectrum, leading to 
minimize background noise. Furthermore, applying NIR light as the excitation 
source can prevent damage to normal tissue and allows deep tissue penetration 
[61]. Multifunctional nanoparticles (MFNPs) with the core–shell structure of 
UCNP@-Fe3O4@Au coated with anti-HER2 antibody and polyethylene glycol 
(PEG) and exhibited an outstanding dispersity in different aqueous solutions and 
a high signal-to-noise ratio. These MFNPs have exhibited the specific detection
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of breast cancer BT474 cells (biomarker HER2 positive) with a high signal-to-
noise ratio [62]. Magnetic targeting multifunctional nano-bioprobes (MBMNs) 
were applied to detect and separate a small subset of malignant cells from 
normal cells. CoFe2O4@BaTiO3 magnetoelectric NPs distinguished different 
cancer cells from each other and from their normal counterparts through a 
magnetoelectric effect [63]. 

(b) Detection through cell surface protein recognition 
Detection of cancer cells depends on binding of conjugated NP probes with 

moieties (protein, antibodies, short peptides, oligonucleotide aptamers, etc.) 
to surface protein markers on cancer cells. Unique surface proteins on CTCs 
can be a primary target. Studies have demonstrated that EpCAM can highly 
be expressed on CTCs from many human malignancies. Hence, anti-EpCAM 
molecules which specifically bind to EpCAM are often applied to screening 
the CTCs. Many cell surface markers, such as vimentin, glycan, major vault 
protein (MVP), androgen receptor, and fibroblast activation protein α(FAPα), 
have been studied for the detection of CTCs. However, a majority of these 
markers are only specific to certain cells, and many markers do not exist after 
CTCs on experienced EMT. More mesenchymal CTCs are seen in the metastatic 
stages of cancer, and thus, seeking proper EMT markers to evaluate prognosis 
and metastasis in cancer patients is important [28]. Table 2 shows recently 
identified cell surface protein markers for the detection of CTCs in different 
cancer types.

(c) Detection based on mRNA 
With the help of NPs, it is also possible to detect intracellular mRNA in 

addition to extracellular. Nanoflares are specifically designed gold NP probes 
modified by oligonucleotides labeled with a fluorophore. It acts as a transfec-
tion agent and detects cellular mRNA in living cells [84]. Nanoflares overcome 
many technical challenges in the creation of effective and sensitive intracel-
lular probes and show a large signal-to-noise ratio and sensitivity to changes 
in the number of RNA transcripts in cells. Nanoflares show high orientation, 
dense oligonucleotide coating and can enter cells without any cytotoxic trans-
fection agents [85]. Quantification of intracellular mRNA at the single live 
cell level is possible with the help of multiplexed nanoflares. In some cases, 
the nanoflare platform can be extended to quantify intracellular RNA and detect 
spatiotemporal localization in living cells [84]. β-actin targeting nanoflares were 
incubated with HeLa cells that resulted in different intracellular distributions, 
showing strong colocalization with mitochondria. Smart flares were employed 
for studying melanoma tumor cell heterogeneity which is crucial for identifying 
novel biomarkers for early cancer diagnosis and metastasis [86]. Halo et al. 
[87] described nanoflares, which were applied to capture live circulating breast 
cancer cells. These nanoflares could detect target mRNA in model metastatic 
breast cancer cell (MBC) lines in human blood and displayed high recovery and 
99% reliability. They also used nanoflares together with later cultured mammo-
spheres to reimplant the retrieved live recurrent breast cancer cells into whole 
human blood. Only 100 live cancer cells could be detected per mL of blood.
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Table 2 Cell surface protein markers used for CTC detection 

Protein marker Cell type Cancer type Reference 

EpCAM CTC Colorectal 
Breast 
Head and neck 

[71] 

EpCAM and FRα CTC Non-small cell lung cancer [72] 

Glycan CTC Breast [73] 

Vimentin CTC Gastrointestinal [74] 

EMT CTC Prostate [75] 

CTC Sarcoma [76] 

Vimentin + PD-L1 CTC Colorectal, prostate cancer [77] 

Synaptophysin CTC Castration-resistant prostate 
cancer 

[78] 

Major vault protein Mesenchymal and 
intermediate CTCs 

Hepatocellular carcinomas [79] 

Androgen receptor CTC Metastatic breast cancer [80] 

p75 neurotrophin receptor 
+ EpCAM 

CTC Esophageal squamous cell 
carcinoma 

[81] 

Carbonic anhydrase 9 and 
CD147 

CTC Clear cell renal cell 
carcinoma 

[82] 

Excision repair 
cross-complementation 
group 1 

CTC Platinum resistance ovarian 
cancer 

[83] 

Relying on the nanoflare technology, it was possible to, simultaneously, isolate 
and characterize intracellular live cancer cells from whole blood. Lee et al. 
reported an approach based on a plasmonic NP network structure, generating 
a plasmon-coupled dimer able to detect single mRNA variants [88]. Two probes 
conjugated to NPs were connected to the BRCA1 mRNA target in a sequence-
specific manner, resulting in the spectral shift of spectra due to dimer formation. 
This method can detect and quantify of BRCA1 mRNA splice variants in vitro 
and in vivo.

2.6 Nanotechnology for in Vivo Imaging 

Imaging plays a vital role in the diagnosis and treatment of tumor tissues. NP of 
iron oxide has optical, magnetic, acoustic, and structural properties that can enhance 
imaging. NP probes can favorably accumulate in tumor tissues through active or 
positive targeting, thereby allowing imaging and diagnosis of cancer in vivo [89]. 
Interactions between NPs and blood proteins, penetration into solid tumors, uptake 
and clearance by the reticuloendothelial system (RES), and optimized active (vs.
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Table 3 NPs applied for medical imaging 

NPs Size (nm) Targeting 
material 

Cell line Imaging technology Reference 

MnO-TETT 6.7 ± 1.2 None C6 
glioma 
cells 

Fluorescence/T1-MRI [90] 

USMO@MSNs 30–50 Dox HeLa 
cells 

MRI-guided 
chemotherapy 

[91] 

PLGA-mPEG 151.1 ± 1.3 cRGD SKOV-3 
cells 

US [92] 

OINPs 300 Folate SKOV3 
ovarian 
cancer 
cells 

US/PA [93] 

PEG-coated and 
Gd-loaded 
fluorescent silica 

125.5 ± 9.9 YPSMA-1 LNCaP 
and PC3 
prostate 
cancer 
cells 

MRI/fluorescence 
imaging 

[94] 

SPIO/USPIO 50 None 4T1 
murine 
breast 
cancer 
cells 

MRI/MPI [95] 

passive) targeting are the main barrier to the clinical application of NPs. Table 3 lists 
some recent examples of NPs made with different materials for tumor imaging. 

US ultrasound, MSNs mesoporous silica NPs, USMO ultra-small manganese 
oxide, GEM Gemcitabine, OINPs oxygen/indocyanine green-loaded lipid NPs, PA 
photoacoustic, MPI magnetic particle imaging, MRI magnetic resonance imaging, 
SPIO superparamagnetic iron oxide, USPIO ultra-small SPIO, Optical coherence 
tomography (OCT) is a non-invasive, micron-level resolution useful in the real-time 
diagnosis and surgical guidance. In this technique, the light source is separated into 
two individual light sources. When these beams are recombined, their resultant inter-
ference signal depends upon the distance traveled by each beam. As the beam traveled 
into the tissue, it scatters cells and other structures and some light sends backward. 
This scattered light is collected and made to interfere with the second beam. Using 
the resulting interference signal, the depth of all the tissues can be measured. By 
analyzing this optical scattering, properties of cancer tissue like blood vasculature, 
anatomy, and lymphatic vasculature can be measured. As normal OCT cannot detect 
elastic scattered light, the use of NPs can be able to change the amplitude of OCT. 
This new imaging technique is called magnetomotive optical coherence tomography 
(MMOCT) [96]. 

MRI is another extensively used non-invasive, most effective tumor detec-
tion method which measures the magnetization of hydrogen molecules in water
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molecules. Each cancer tissue shows a different image as the protons of each tissue 
cause variation in magnetization. The visibility of images can be enhanced by 
utilizing more contrast agents [97]. Iron oxide magnetic NPs (IONPs) are presently 
the most common MRI nanoprobe contrast agent. Proper NP surface alteration and 
appropriate tumor-specific bio-oligomer embedding can improve the fixing of NPs in 
tumors, which gives clearer imaging and can be used for early micro-tumor imaging. 
For example, AuNPs targeted for human transferrin can successfully enhance the 
imaging of brain tumors [98]. 

3 Nanotechnology in Cancer Therapy 

3.1 Targeted Drug Delivery 

Chemotherapeutic drugs are the most frequently used treatment for tumors, but they 
are poorly targeted toward the malignant tumor and over accumulated in healthy 
tissue [99]. So, the cells which are actively growing such as hair follicles, bone 
marrow, gastrointestinal cells, and lymphocytes are adversely affected which may 
lead to bone marrow suppression, hair loss, mucositis, and even death. In targeted drug 
delivery, the nanotherapeutic drug should effectively differentiate between normal 
cells and cancer cells. Thus, it has low side effects than conventional chemother-
apeutic drugs and better efficacy [99]. Last few decades, researchers are actively 
focusing on to produce a large arsenal of nanoplatforms with diversified capabil-
ities for drug loading and releasing and also for tumor targeting. Several types of 
nanomaterials are being extensively used for this process. Liposomes [100, 101], Au 
NPs [102, 103], micelles [104], magnetic NPs, carbon nanotubes [105], mesoporous 
silica NPs [105], dendrimers [106], etc., are a few of them. The NPs used in cancer 
research are checked through their sizes, shapes, and surface properties for targeting 
specific tumors. NPs of different sizes are essentially important that travel through 
the bloodstream for delivering the nanocarriers to tumor tissues [107]. NPs can target 
chemotherapeutic drugs to tumor cells through active or passive targeting [108]. 

In passive targeting, abnormal vasculature of tumor tissue is utilized for targeting 
the nanomedicine to the target site. Blood vessels in tumors are leaky due to the 
presence of an enlarged gap junction of around 100 nm–2 μm [109]. Increase in 
hypoxia and metastasis is caused by an accumulation of interstitial fluid pressure 
due to leakiness of the vessels and irregular distribution of blood, nutrients, oxygen, 
etc. A tumor does not have a well-defined lymphatic system, so it cannot efficiently 
clean the macromolecules and drugs accumulated in it [110]. The enhanced vascular 
permeability and poor lymphatic drainage are collectively known as the enhanced 
permeability and retention effect (EPR), which is the gold standard for the delivery of 
nanomedicine and other types of drugs and imaging agents [111]. Passive targeting 
can be attained by utilizing the enhanced permeability and retention effect (Fig. 2a). 
Active targeting of nanocarriers is accomplished by decorating a variety of targeting
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Fig. 2 Types of targeting nanomedicines for the tumor tissue [112]

ligands on the surface of nanomaterials, which can effectively recognize a target 
within the tumor affected organs, tissues, cells or intracellular organelles [112]. 
Ligands have a high specificity to receptors and other cancer-specific targets which 
are over-expressed on the surface of tumor cells, such as glycans [113]. These recep-
tors must be expressed in high quantity and should be evenly distributed on the cancer 
cell’s surface (Fig. 2b). Stimuli-responsive systems may decrease non-specific expo-
sure to chemotherapeutic drugs. Internal and external stimuli can trigger the release 
of drugs by inducing a change in the nanocarriers. The pH, ionic strength, redox, 
and stress in target tissues are examples of internal stimuli, whereas temperature, 
light, ultrasound, magnetic force, and electric fields are external (physical) stimuli 
(Fig. 2c) [112]. Table 4 provides information on nanoplatforms used in targeted drug 
delivery. 

3.2 Cryosurgery 

In this technique, tumor tissues are destroyed by freezing which is advantageous 
because of low invasiveness, less intraoperative bleeding, low cost, and fewer post-
operative complications. Still, this technique is facing the issue of insufficient 
freezing efficiency and freezing damage to surrounding tissues. Although protec-
tive agents for instance antifreeze protein-1 are being utilized to assist cold ablation, 
the effect is not satisfying [121]. With the expansion of cancer nanomedicine, the 
concept of nano-cryosurgery is proposed. In nano-cryosurgery, NPs with specific 
physical or chemical properties are introduced into tumor tissues. Special proper-
ties of NPs increase the efficiency and effectiveness of freezing and also control 
the direction of ice ball formation. Intracellular ice formation is the key to tumor 
cell damage. Meanwhile, research proves that NPs can effectively induce intracel-
lular ice formation [122]. Tissues supplemented with NPs freeze faster than normal 
tissues and hence are more prone to heterogeneous nucleation. Under the same
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freezing conditions, ice formation of tissue with NPs is easier and faster. Thus, nano-
cryosurgery is effective in killing tumor tissue to prevent nearby healthy tissue from 
being frozen simultaneously [123]. Figure 3 schematically represents the advantages 
of nano-cryosurgery. 

NPs of metal oxides can significantly improve the thermal conductivity in tumor 
tissue. The application of NPs in cold ablation can be divided into two types: syner-
gistic effect and protective effect. Synergistic NPs are distributed inside the tumor 
and kill the tumor cells, while protective NPs are distributed around the tumor and 
protect the surrounding normal cells. Both these NPs are different in terms of the 
design requirements and the distribution in vivo [124].

Fig. 3 Diagrammatic illustration of NPs for cryosurgery. a NPs protect healthy cells during 
cryosurgery, and b NPs enhance the freezing damage and control the freezing coverage, c with 
the help of NPs, more ice has been formed [124] 
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3.3 Photothermal Therapy (PTT) and photodynamic Therapy 
(PDT) 

At present, PTT and PDT based on NPs have shown the virtues of strong efficacy, 
small invasion, and mild adverse effects during tumor treatment [125]. In addition to 
destroying tumor cells directly, fragments of dead tumor cells generated by PT and 
PTT treatment can act as potential antigens to trigger a continuous immune response, 
named photothermal and photodynamic immunotherapy [126]. NPs designed for 
PTT treatment are a new type of light-to-heat conversion nanomaterials, which can 
effectively convert light energy into heat energy to destroy cancer cells. The use of 
NPs in this method has two major advantages first, tumor targeted aggregation [127]. 
Second, NPs have better imaging capabilities which can be accurately positioned by 
CT, MRI, and photoacoustic imaging [128]. For example, targeted NPs can perform 
PTT under 0.2 W/cm2 NIR to induce tumor cell apoptosis by destroying the tumor 
cell nuclear DNA and inhibiting the DNA repair process [129]. Table 5 lists some of 
the recent examples of NPs used in PDT and PTT.

3.4 Radiotherapy (RT) 

RT is a tumor treatment technique that kills localized tumor cells by ionizing radi-
ation produced by rays and is presently an effective treatment for many primary 
and metastatic solid tumors. Experiments prove that radiotherapy can effectively 
kill tumor stem cells [138]. In recent years, NPs in the field of radiotherapy 
have demonstrated strong radio-sensitization capabilities, tumor-targeted delivery 
of radio-sensitizing drugs, and imaging guidance enhancement [139]. At present, 
the most popular NPs for RT are made of high atomic number metal materials, 
which are featured by chemical inertness and strong radiation absorption capacity. 
They produce the photoelectric effect and Compton effect after absorbing radiation, 
thereby releasing a variety of particles such as optoelectronics, Compton electrons, 
and Auger electrons. These electrons react with organic molecules or water in tumor 
cells to generate a large number of free radicals, leading to synergistic chemotherapy 
[140]. 

4 Theragnostic Nanomedicine for Cancer Therapy 

The heterogeneous nature of tumor tissue makes it difficult to present an exact diag-
nosis and consequently efficient treatment. The interpatient tumor heterogeneity 
rises due to unique genetics and epigenetics, the high diversity of cancer sub-types, 
and dynamic factors such as age, lifestyle, environment, and medical history [1]. 
Thus, for the development of effective treatments, patient stratification needs to be
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Table 5 Typical NP platforms used in PDT and PTT 

NPs Photosensitizer λ (nm) Size (nm) Outcome Cell line Reference 

MnO2 Chlorin e6 660 3.94 Upregulating the 
secretion of 
IL-12, IFN-γ, 
TNF-α. Inducing 
decomposition 
of tumor 
endogenous 
H2O2 to relieve 
tumor hypoxia 

4T1 murine 
breast tumor 

[130] 

Au-liposome None 780 100 ± 6.5 The cytotoxicity 
was enhanced to 
90% upon laser 
irradiation for a 
duration of 
5 min  

B16 F10 
(melanoma) 

[131] 

Silica-coated 
TiN 

None 785 80 High nitridation 
temperatures and 
long residence 
times lead to 
increased NIR 
light absorption 

HeLa cells [132] 

Silica Verteporfin 425 160–168 Inducing singlet 
oxygen release 
30% reduction 
in cell growth 

SK-MEL 28 
(melanoma) 

[133] 

Graphdiyne None 808 160 Higher cancer 
inhibition rate 
compared both 
in vitro and 
in vivo 
Biocompatibility 
and no obvious 
side effects 

MDA-MB-231 [134] 

RCDs Chlorin e6 671 3.7 Multimodal 
imaging 
capabilities 
Activating PTT 
and PDT at the 
same time 

MCF-7,4T1 
and Hela 

[135] 

CuSe Non-porphyrin 
containing 
COF 

808 150 Activating PTT 
and PDT at the 
same time 
Enhancing 
therapeutic 
effect on killing 
cancer cells and 
inhibiting the 
tumor growth 

HeLa [136]

(continued)
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Table 5 (continued)

NPs Photosensitizer λ (nm) Size (nm) Outcome Cell line Reference

HSA ICG and 
chlorin e6 

808 120 Preventing the 
side effects of 
active Ce6 
Activating PTT 
and PDT at the 
same time 

PC3 [137] 

RCDs amino-rich red emissive carbon dots, COF covalent organic framework, ICG indocyanine green, 
HAS serum albumin

optimal. However, conventional cancer therapeutic methods such as chemotherapy 
and radiotherapy are missing patient-specific individualized platforms to fight cancer 
effectively. These individualized platforms include the delivery of chemotherapeutic 
drugs in patient-specific clinical situations. The finest goal of nanomedicine is to 
develop therapeutic or diagnostic platforms using specially designed chemothera-
peutic drug-conjugated nanocarriers to address cancer theranostics (therapy + diag-
nostics) [12, 13]. Hybrid nanoplatforms (HNPs) contain multimodal nanocarriers that 
have extraordinary surface functionality, which can enhance anticancer activity by 
boosting the triggered drug release directly at the tumor site [141]. HNPs have various 
advantages in the treatment of tumor tissue because (i) efficient accumulation and 
retention at tumor sites; (ii) high penetration abilities due to functionalization, (iii) 
HNPs carry and release chemotherapeutic drugs in response to internal and external 
triggers or stimuli, and (iv) pharmacokinetics of HNPs are similar to those of drugs or 
small molecules [142]. Nanotheranostics have a wide scope to integrate with next-
generation cancer therapies such as PTT, PDT magnetic hyperthermia (MH), and 
external control, which facilitate excellent temporal and spatial control of acquisition 
aspects of cancer management [143]. The duplex effect of local heating can control 
the amount of drug released and the spatial control of the release. Furthermore, the 
higher temperature can increase the effectiveness of the drug, owing to the synergetic 
thermo-chemo effect [144]. Dual modalities of HNPs and preclinical reports have 
shown efficient photothermal damage of primary tumors under MRI-photoacoustic 
(PA) imaging guidance and a hyperthermia-mediated immunostimulatory effect on 
deep-seated tumors [145]. Figure 4 schematically presents an all-in-one nanother-
anostics approach. The imaging-guided light and magnetic responsive immunos-
timulatory nanoagents (MINPs) are proposed to trigger cancer immunotherapy for 
primary-treated and distant-untreated tumors. Under laser irradiation, HNPs initiate 
a photothermal effect to disrupt the primary tumor cells and further achieve strong 
immune responses for long-term tumor inhibition under light and magnetic trig-
gers [146]. In another approach, a reactive oxygen species-responsive core cross-
linked HNP micellar system has been designed to enhance the circulation stability 
that allows on-demand chemotherapeutic drug release via far-red-light-induced ROS 
generation [147].
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Fig. 4 Schematic illustration of next-generation HNP which consists of excretable lanthanide NPs 
for multifunctional biomedical imaging and surgical navigation in the second near-infrared window. 
The strategy reports innovative nano-theranostics using HNPs for proper real-time tumor imaging 
tools to assess the progression of diseases and their therapeutic response [146] 

5 Challenges and Future Perspectives 

In the past few years, using nanomaterials, many efforts have been made to develop 
assays for cancer diagnosis. In comparison with the presently available cancer detec-
tion methods, a variety of nanomaterial-based assays have exhibited improved selec-
tivity and sensitivity or offered totally new properties that are not possible with 
traditional approaches. Thus, it will improve the survival rate of cancer patients 
by allowing early detection. Also, nanomaterial-based cancer diagnosis methods 
are used to monitor cancer progress in response to treatment. A large number of 
nanoplatforms are used for cancer treatment. The main goal of these nanoplatforms 
is to decrease the drug dose that is needed to attain a specific therapeutic effect 
ultimately, reducing the costs and side effects associated with them. Great efforts 
have been directed by the scientists in specifically targeting the chemotherapeutic 
drug at tumor site and theranostic applications. Multifunctional NPs will become the 
trend of future of cancer research. Many nanoplatforms have been evaluated for drug 
targeting; some of them have managed to get FDA approval and are routinely used 
in the clinic. 

A large number of the NPs stay only in vivo and in vitro stages. There are the 
following reasons which hinder the clinical applicability of NPs.
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(i) Lack of injection routes and methods. 
(ii) Difficulty in localization of NPs in vivo. 
(iii) Difficulty of degrading in the human body. 
(iv) Difficulty in avoiding mononuclear phagocytic system. 

Synthesis and reproducibility of homogeneous nanomedicines and stability of 
formulations under various conditions are still a challenge. Furthermore, studies 
and optimization are required to ultimately scale up the synthesis process from the 
bench to clinical applications. In future efforts, it will be important to not only make 
ever more nanomaterials but also to understand subcellular-level interaction between 
cancer cells and nanomaterials. 

6 Conclusions 

The poor therapeutic effect, inefficient targeting capacity, possible biological risk, 
and several side effects are some of the undesirable characteristics of existing cancer 
therapy and diagnosis. In the past few decades, advanced nanotechnology and molec-
ular cell biology have endorsed the applications of NPs in the cancer field. Early 
detection is a key factor for successful treatment. Nanotechnology-based cancer 
diagnosis and our understanding in this field have greatly improved due to contin-
uous efforts made by researchers worldwide. A variety of NP-based assays exhibited 
improvement in selectivity and sensitivity or offered new capacities that could not be 
attained with conventional approaches. Collaboration among researchers, engineers, 
and clinicians, a nanotechnology-based cancer diagnosis is poised to move into the 
clinic in the near future. High sensitivity, specificity, and multiplexed measurement 
capacity nanotechnology provides great opportunities to improve cancer diagnosis, 
which will ultimately lead to an improved cancer patient survival rate. Nanomedicine 
has the potential to effectively treat cancer by reducing the limitations of existing 
traditional cancer treatments. Various types of nanoplatforms are used in the treatment 
of cancer. For effecting targeting and therapeutic effect of chemotherapeutic drugs, 
passive and active targeting along with theranostic methods is now the main area 
for cancer research. Understanding tumor biology is essential for the development 
of successful theranostic applications because cancer cells have different capacities 
to grow, differentiate, develop drug resistance, and form metastases. A deep under-
standing between cancer cells and theranostic nanomaterials must be accomplished 
considering a biological perspective. 
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Abstract Diabetes mellitus is one of the major health and economic concerns world-
wide, because of a high rate of prevalence and complications. A stable and satisfac-
tory level of glycemic control plays an important role in avoiding further compli-
cations related to diabetes. Therefore, persistent efforts with anti-hyperglycemic 
agents, herbal medications and routes of treatment are made for better control of 
this chronic disorder. Furthermore, novel drug delivery stems such as antidiabetic 
peptide delivery and nanotechnology-based therapies are playing a crucial role in the 
control of diabetes with elevated bioavailability, higher efficacy, minimal frequency 
of dosing and reduced toxicity. Among these, nanotechnology-based therapies and 
islet cell implantation have shown promising results in diabetic therapy. In this regard, 
the present chapter aims to provide insight into various novel therapies, nanocarrier 
delivery systems, antioxidant and anti-inflammatory agents used for the control and 
treatment of diabetes. 
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1 Introduction to Antidiabetic, Antioxidants 
and Anti-inflammatory Drugs 

1.1 Antidiabetic Drugs 

Diabetes also called diabetes mellitus is one of the chronic conditions caused by 
the inability to produce sufficient insulin by the pancreas or body cannot effectively 
utilize the insulin it produces. It is the 7th leading cause of death and accounts for 
6.7 million deaths worldwide in 2021 [1]. In 2021, USD966 billion was incurred as 
a global health expenditure on diabetes [1]. Diabetes has been classified into three 
types: type 1, type 2 diabetes and gestational diabetes mellitus (GDM) [2]. According 
to International Diabetes Federation 2021 data, the worldwide occurrence of diabetes 
in adults was estimated to be 537 million. The total number is expected to increase 
to 643 million in 2030 and 784 million by 2045. In India, the incidence and death 
due to diabetes are estimated to be 74.2 million and 6.47 million, respectively, and 
ranks 2nd in the world concerning the prevalence of diabetes in adults [1]. Among 
all the types of diabetes, type 2 diabetes (T2D) is the most prevalent and accounts for 
about 90% of total diabetes globally. T2D is called non-insulin-dependent diabetes 
and is caused due to insulin resistance, resulting in hyperglycemia. The increasing 
trend of T2D is due to obesogenic environments, ageing, lifestyle changes and rapid 
urbanization [3]. In recent years, a higher incidence of T2D in younger adults with a 
longer survival rate also contributes to the overall rise in T2D prevalence. Apart from 
this, type 1 diabetes accounts for 5–10% of diabetic cases and is caused by the body’s 
autoimmune reaction in which insulin is not produced by beta cells of the pancreas 
because of the destruction of beta cells by antibodies or the immune system resulting 
in a deficiency of insulin production [4]. Diabetes is clinically diagnosed based on 
any one of the four-plasma glucose (PG) criteria: (a) fasting plasma glucose (FPG) 
(> 126 mg/dl), (b) 75 g oral glucose tolerance test for 2 h resulting in > 200 mg/dl 
PG level, (c) random plasma glucose test (> 200 mg/dl) indicating hyperglycaemic 
condition and (d) > 6.5% of haemoglobin A1c (HbA1c) level [5]. 

Improper management of diabetes mellitus leads to life-threatening health compli-
cations such as lower-limb amputation, nerve damage (neuropathy), blindness, 
cardiovascular diseases and renal failure [4]. To prevent these complications and 
control diabetes, antidiabetic drugs or agents are used. Antidiabetic drugs are the 
agents used to reduce the blood glucose level concentration of people with diabetes 
mellitus. These agents lower the complications of diabetes by maintaining the blood 
sugar to the normal range [6]. Antidiabetic drugs and agents are used to treat both 
type 1 and type 2 diabetes by targeting and controlling ominous octet factors that 
contribute to the pathophysiology of diabetes such as neurotransmitter dysfunction, 
increased lipolysis, decreased insulin secretion, increased hepatic glucose produc-
tion, decreased incretin effect, increased glucose reabsorption, increased glucagon 
secretion and decreased glucose uptake [7]. Figure 1 shows the site of action of 
antidiabetic drugs for the treatment of T2D.
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Fig. 1 Site of action of antidiabetic drugs against type 2 diabetes [7] 

Antidiabetic drugs provide beneficial effects in lowering and controlling diabetes 
through: (i) insulin increase in the body; (ii) reducing the body’s resistance to insulin; 
and (iii) lowering the intestinal absorption of glucose [8, 9]. Various hormonal 
(insulin) and non-hormonal antidiabetic drugs used for the treatment of diabetes 
include meglitinides, glitazones, sulfonylureas, alpha-glucosidase inhibitors (AGIs), 
biguanides, sodium-glucose co-transporter inhibitors and dipeptidyl peptidase-4 
(DPP-4) inhibitors. The antidiabetic drugs are administered as monotherapy, dual-
therapy or multi-agent therapy along with or without insulin administration [10]. 
Table 1 summarizes the classification of antidiabetic drugs with their route of 
administration and mechanism of action.

Further, insulin pump systems, immune modulation/incretins, stem cell mobiliza-
tion, beta-cell (β-cell) encapsulation, microencapsulation interventions are used for 
the treatment of especially type 1 diabetes [13]. Due to several side effects of antidi-
abetic medications such as hypoglycemia, weight gain, mitogenetic effect, stigma, 
gastrointestinal effects, low durability, oedema/heart failure, increase risk of genital 
fungal infection and urinary tract infections (UTI), angioedema and high cost have 
led to a search of alternative treatments for type 2 diabetes [12]. 

The most common treatments for diabetes include antioxidants and anti-
inflammatory drugs. The following sections provide insight into the role of 
antioxidants and anti-inflammatory drugs in the management of diabetes mellitus.
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Table 1 Classification of antidiabetic drugs [11, 12] 

Antidiabetic agents Route of administration Mechanism of action 

Rapid-acting insulin By inhibition of hepatic glucose 
production and stimulation of 
peripheral glucose uptake in 
skeletal muscle and fat lowers 
blood glucose level 

Insulin lispro Subcutaneous 

Intermediate-acting insulin 

Neutral protamine Hagedorn 
insulin (NPH insulin) 

Subcutaneous 

Insulin (short-acting insulin) 

Insulin regular Subcutaneous 

Long-acting insulin 

Insulin glargine Subcutaneous 

Insulin detemir Subcutaneous 

Rapid-acting insulin 

Insulin aspart Subcutaneous 

Insulin sensitizers 

Biguanides—Metformin Oral By activation adenosine 
monophosphate kinase and 
hepatic gluconeogenesis 
inhibition 

Thiazolidinediones or 
glitazones—pioglitazone, 
rosiglitazone 

Oral Activation of PPAR-gamma 
receptor by acting as agonist 
increases insulin sensitivity 

Insulin secretagogues 

Sulfonylureas—gliclazide, 
glimepiride, glipizide, 
glibenclamide (glyburide) 

Oral By inhibition of potassium ATP 
channels insulin release is 
stimulated from beta cells of 
pancreatic isletsNon-sulfonylureas—repaglinide, 

nateglinide 
Oral 

Alpha-glucosidase inhibitors 

Acarbose Oral Inhibits intestinal 
alpha-glucosidases and delay 
that converts carbohydrates into 
absorbable monosaccharide units 

DPP-4 inhibitors 

Sitagliptin, vildagliptin, 
saxagliptin, linagliptin, alogliptin 

Oral Decrease the glucagon release by 
inhibition of dipeptidyl 
peptidase-4 increases the activity 
of glucagon-like peptide-1 
resulting in increase in 
glucose-dependent insulin 
secretion 

Sodium–glucose co-transporter 2 (SGLT2) inhibitors 

Canagliflozin, dapagliflozin, 
empagliflozin 

Oral Inhibits the SGLT2 
co-transporter and reabsorption 
of glucose from proximal 
convoluted tubules and promote 
glycosuria
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1.2 Antioxidant Drugs 

Several studies have proved that diabetes mellitus and its complications along with 
macro- and microvascular dysfunctions are related to a reduction in antioxidant 
potential and elevated levels of free radical formation [14]. Because of this, the 
balance between protection and free radical formation within the cells is disturbed, 
resulting in oxidative stress or damage of cell components such as nucleic acids, 
lipids and proteins. Elevated levels of oxidative stress in both type 1 and type 2 
diabetes play an important role in the progression and its complications [15, 16]. 

Many factors are responsible for elevated levels of oxidative stress in diabetes 
mellitus, which includes imbalance cellular oxidation, auto-oxidation of glucose 
leading to the formation of free radicals and decreased antioxidant defences such 
as cellular antioxidant property and activity of enzymes on free radicals. Further, 
five pathways activation occurs due to elevated production of superoxide leading 
to diabetes complications and pathogenesis, which includes the higher activity of 
hexosamine pathway, polyol pathway flux activation, higher rate of formation of 
advanced glycation end products (AGEs), protein kinase activation and expression 
of AGEs receptors and its ligands [17, 18]. The initiating factor for diabetes complica-
tions such as neuropathy, cardiomyopathy, nephropathy and endothelial dysfunction 
is superoxide formation through mitochondrial electron transport chain and neutral-
izing these reactive molecules leads to significant inhibition of complications [19]. 
Figure 2 presents the complications of diabetes due to oxidative stress. 

Antioxidants can be used to overcome the diabetes mellitus complications due 
to oxidative stress via various mechanisms for counteracting free radical formation

Fig. 2 Correlation of oxidative stress to complications of diabetes [15] 
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such as (a) degradation of free radicals by acting as enzymes, (b) by binding to 
metals that stimulate free radical production and (c) as free radical scavengers [20]. 
Some of the common deficiencies that are encountered due to lack of antioxidants in 
diabetes include reduced glutathione and superoxide dismutase, and reduced levels 
of ascorbate [21]. 

Antioxidants such as vitamins (C and E) and β-carotene are the most studied and 
ideal supplements for oxidative stress-induced pathophysiology of complications in 
diabetes. Apart from this, vanadium, zinc and selenium are also used along with 
plant-based active ingredients as natural antioxidants [14]. Tables 2 and 3 present 
the efficacy of antioxidants and plants and their antioxidant ingredients on diabetes 
and its complications. 

In addition to the above antioxidants, studies in diabetic patients and streptozocin-
induced diabetic rats by honey have contained polyphenols such as apigenin, 
quercetin, kaempferol, luteolin and catechin with antioxidant properties and reduced 
blood glucose level by following mechanisms; (i) oxidative stress reduction leading 
to protection of β-cell, (ii) α-amylase and α-glucoside enzymes inhibition, (iii)

Table 2 Efficacy of antioxidants on diabetes and its complications 

Antioxidants Target Efficiency 

Vitamin E Streptozocin-induced diabetic rats Decreases the activity of lipid 
peroxidation, glutathione S-transferase 
and glutathione peroxidase [22] 

Diabetic patients Reduces oxidative stress indicators, 
glycosylation of protein and insulin 
resistance [23] 

Patients with type 2 diabetes Reduces oxidative stress indicators, 
low-density lipoprotein oxidative 
susceptibility, haemoglobin A1c, levels of 
insulin and action of insulin improved 
[20, 21] 

Patients with type 1 diabetes Reduces homodynamic abnormalities of 
retina, normalize creatinine clearance [24] 

Vitamin C Patients with type 2 diabetes Reduces fasting plasma insulin and 
haemoglobin A1c, action of insulin 
improved [20] 

β-carotene Patients with type 2 diabetes Reduces low-density lipoprotein oxidative 
susceptibility [25] 

Streptozocin-induced diabetic rats Increases glutathione and glutathione 
peroxidase activity [26] 

Zinc Alloxane-induced diabetic rats Induces synthesis of metallothionein, 
decreases lipid peroxidation in retina [27] 

Vanadium Streptozocin-induced diabetic rats Free radical scavenging, reduces lipid 
peroxidation in pancreas [28] 

Selenium Alloxane-induced diabetic mice Increases glutathione in brain and liver 
[29]
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Table 3 Plants and their antioxidant ingredients on diabetes 

Plant name Active agent Target Efficiency 

Eugenia jambolana Flavonoids Streptozocin-induced 
diabetic rats 

Free radical scavenging 
[30] 

Juglans regia Pedunculagin Type 2 diabetic mice Reduces oxidative stress 
biomarkers [31] 

Plants like ferula 
asafoetida 

Ferulic acid Streptozocin-induced 
diabetic rats and KK-Ay 
mice 

Free radical scavenging 
and reduces lipid 
peroxidation [32] 

Allium cepa S-allyl cysteine 
sulfoxide 

Alloxane-induced 
diabetic rats 

Free radical scavenging 
[33] 

Trifolium 
alexandrinum 

Flavonoids Streptozocin-induced 
diabetic rats 

Free radical scavenging, 
reduces lipid 
peroxidation and 
increases hepatic reduced 
glutathione [34]

aldose reductase and gluconeogenic enzymes reduction and (iv) insulin cell receptor 
production and glucose transporter type 4 with increased absorption of glucose [35]. 

1.3 Anti-inflammatory Agents 

Many factors play an important role in the development of diabetes and its complica-
tions. Among them, innate immunity is the main driving force for pathophysiology. 
Type 1 diabetes mellitus (T1DM) is caused due to autoimmune-mediated inflamma-
tion response failing β-cells of pancreatic islets. While the mediator for type 2 diabetes 
mellitus and its macro/microvascular complications is systemic low-grade inflamma-
tory response [36]. T1DM incidence has increased dramatically in the past 10 years 
and accounts for about 5% of all diabetic patients. Pro-inflammatory cytokines (TNF-
α, IL-6 and IL-1β) and cytotoxic T cells are predominant players responsible for the 
progress of TD1M [37]. Furthermore, cytokine-induced cytotoxicity has resulted in 
the death of pancreatic β-cells, since it possesses specific receptors in abundance 
for different cytokines [38]. Apart from this, T2DM is developed due to one of the 
major reasons called metabolic inflammation and accounts for about 90% of the 
cases. Aforementioned case, dysfunction of β-cells leads to excessive production 
of glucose and this promotes activation of pro-inflammatory cytokines (IL-1β) and 
chemokines (IL-33, IL-8 and IL-6). Furthermore, immune cells and macrophages 
recruit lead to an increase in IL-1β and impaired function [38, 39] (Fig. 3).

Uncontrolled diabetes leads to consequences such as stroke, eye damage, heart 
disease, digestion problems, dental problems and susceptibility to infection. Further-
more, metabolic inflammation results in the progression of diabetic complications
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Fig. 3 Low-grade inflammation role in type 2 diabetes pathogenesis [36]

including neuropathy, retinopathy and kidney disease. Therefore, numerous anti-
inflammatory agents are being used for the management of diabetes. Among them, 
phytochemicals have shown positive results in the treatment and prevention of 
diabetic complications in experimental models. Tables 4 and 5 represent molecular 
targets to reduce inflammation and anti-inflammatory mechanism of phytochemicals 
in the management of diabetes and its complications. 

Table 4 Diabetes management by compounds and its target to reduce inflammation [40] 

Compounds Mechanistic target Target organ Consequence on the 
metabolism of glucose 

Rapamycin mTOR inhibitors Artery None 

Resveratrol Sirtuin 1 (SIRT1) 
activators 

Adipose tissue Insulin action improved 

Metformin AMPK activators Liver The output of hepatic 
glucose reduced 

Anakinra IL-1 receptor 
blockade 

β-cell Secretion of insulin 
improved 

Etanercept, infliximab TNF-α antagonists Adipose tissue and 
muscle 

Insulin action improved 

Salsalate IKKβ-NFkβ Liver 
β-cell 
Muscle 

Clearance of insulin 
reduced 
Insulin action improved 
Secretion of insulin 
improved
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Table 5 Mechanism of representative phytochemicals as anti-inflammatory agents 

Compound Result Animal model References 

Downregulation Upregulation 

Ellagic acid TNF-α, IL-6,  IL-1β, 
NF-κB activation 

– Diabetic kidney 
disease and 
peripheral 
neuropathy 

[41, 42] 

Naringenin TNF-α, IL-6, TGF-β, 
NF-κB and ICAM-1 

AMPK activation, 
PPARs 

Gestational diabetes 
disease and diabetic 
kidney disease 

[43–45] 

Eriodictyol TNF-α, IL-8 PPARγ2 Diabetic retinopathy [46, 47] 

Quercetin IL-18, IL-1β and 
NLRP-3 

Macrophages 
switching from M1 to 
M2 polarization 

Diabetic kidney 
disease and diabetes 

[48, 49] 

Chrysin TGF-β1, IL-1β, Smad 
2/3,IL-6 and NF-κB 
activation 

PPAR-γ Diabetic kidney 
disease and 
peripheral 
neuropathy 

[50–52] 

In this regard, the present chapter aims to discuss recent advances in diabetic diag-
nosis, treatment, methods of drug delivery and challenges, and future perspectives. 

2 Nanotechnology in Diagnosis, Treatment and Drug 
Delivery for Diabetics 

Numerous synthetic drugs or agents and traditional medicines are used for the treat-
ment of diabetes and its management. But, these agents have proven to cause severe 
side effects and insulin injections causes several problems such as allergies, weight 
gain and abnormalities in the site of injection like pain and swelling. Additionally, 
insulin pumps and glucose monitoring systems in combination have been developed 
to overcome these issues and found that it is only reasonably effective. Therefore, 
there is an immense demand for improved diabetic management tools [53]. 

Among several new technologies, nanotechnology has shown greater promise in 
solving the darkest avenues of medical diabetic management because of its unique 
physicochemical properties. Monitoring of blood glucose and delivery of insulin 
by various systems are the major improvements in the treatment of diabetes that 
nanotechnology has facilitated [54]. The most important aspect of diabetes is accu-
rate and early diagnosis with optimal patient outcomes which is necessary to over-
come diabetic complications. However, conventional diagnostic methods such as oral 
glucose tolerance test, HbA1c (glycated haemoglobin), or fasting glucose level anal-
ysis require constant and tedious glucose monitoring and insulin injections, impacting
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the quality of life and falling short to overcome diabetic complications [53]. Addition-
ally, autoantibodies measurement is used to as a test to diagnose and distinguish type 
1 diabetes [55]. These methods depend on antibody titre, measurement of glucose 
levels and painful procedure, and results vary based on the physiological condi-
tions of the person [56]. To overcome these problems, numerous nanotechnology 
methods have shown potential results in the early diagnosis of diabetes, which are 
non-invasive. Among them, quantification of β-cell mass and immune cell activity 
in diabetic patients using nanoparticle-based imaging techniques (MRI) has proven 
to be a novel route of diagnosis. For example, exendin-4 or ferumoxran-10 conju-
gated superparamagnetic iron oxide nanoparticles have been developed and used for 
the early diagnosis of diabetes [57–59]. This method has opened new avenues for 
treatment modalities and the identification of disease progression. Apart from this, 
a quantum dot-based gas sensor that analyses acetone levels has been developed for 
the diagnosis of diabetes [60]. 

Monitoring glucose levels is one of the prime importance in diabetes and one of 
the common approaches used is the finger-prick method. In this method, blood is 
drawn by pricking the finger with a sharp needle and loaded into the sample port of the 
standard glucose metre and the level of glucose is monitored. Several disadvantages 
are glucose measurement which is unreliable due to factors like age, mealtime and 
poor patient compliance [56]. Further, intermittent testing pattern leads to a higher 
risk of diabetic complications [61, 62]. Nanotechnology-based monitoring methods 
have provided a solution to the above limitations, which includes smart tattoos or 
fluorescence-based nanosensors (quantum dots and nano-optodes) [63, 64], layer-by-
layer technique [65] for glucose monitoring and multiwalled carbon nanotubes-based 
sensor for insulin monitoring [66, 67]. 

One of the main challenges in diabetes treatment even though accurate diag-
nosis and constant monitoring is the delivery of insulin through the gastrointestinal 
tract. The traditional treatment includes insulin-based therapies in the form of oral, 
injectable, inhalable and insulin analogues (insulin aspart and insulin degludec U-
200). These treatments cause the risk of hypoglycemia and unable to maintain 
euglycemia for a longer period. In recent decades, advances in nanotechnology have 
played a major role in the convenience, efficiency and safety of usage of insulin 
replacement therapies. In addition, nanotechnology-based therapies have been shown 
to provide strict glycemic control and reduce the continuous injections of insulin 
numbers. Novel methods used for the treatment of diabetes consist insulin patches 
and insulin nanogels [68–70], nanopumps [71], gene therapy [72] and cellular-based 
therapies [73, 74].
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3 Recent Trends in Antidiabetic Treatment like 
Nanoencapsulation, Nanocarrier and Nanopolyphenols 

Numerous conventional antidiabetic agents are being released into the market world-
wide, but a complete cure for diabetes mellitus remains still untouched. Because of 
the reason that severe side effects of these drugs and many intrinsic deficiencies. 
Furthermore, lack of target specificity, ineffective dosage, diminished potency, high 
protein binding, short half-lives, low bioavailability and risk of hypoglycemia limit 
their usage [72, 75, 76]. Last few decades, several research studies have proved 
the potential of nanotechnology with the aid of nanoparticles to overcome the limi-
tations of antidiabetic drugs. Therefore, nanotechnology-based novel drug delivery 
systems have gained attention in the treatment and management of diabetes including 
liposomes, niosome, dendrimers, polymeric nanoparticles, inorganic nanoparticles 
and polymeric micelles [77]. The advantages of the aforementioned drug delivery 
systems include a decrease in side effects, targeted therapeutic efficacy, reduced 
dosing frequency and prevention from acidic gastric environment degradation [78]. 

3.1 Liposomes 

Liposomes are produced from cholesterol and non-toxic phospholipids of natural 
origin consisting of one or more phospholipid bilayers and are small vesicles. 
This acts as a transporter for active molecules, easily crosses the bio-systems, 
fuse with biological membranes and release the encapsulated drug into the cyto-
plasm resulting in pharmacological action [79]. Liposomes are used as a common 
choice of drug delivery systems because of target-specific action, low toxicity 
to encapsulate hydrophilic and lipophilic drugs, biocompatibility and biodegrad-
ability [75]. Numerous forms of liposomes are used for drug delivery including 
sodium glycocholate, glycerolphosphate-chitosan micro-complexation, chitosan-
coated and anionic liposomes used for GLP-1, insulin and oral peptides protection 
from enzymatic degradation [80, 81]. Table 6 presents information regarding different 
liposomal approaches used for antidiabetic drug therapy.

3.2 Niosomes 

Niosomes are formed from cholesterol as excipients incorporated into non-ionic 
surfactant with a nanometric scale and are micro-vesicles of synthetic nature. 
Niosomes can be classified based on their bilayer and size as small unilamellar, 
unilamellar and multilamellar vesicles with a size range of 10–100 nm, 100–300 nm 
and > 300 nm, respectively. Niosomes act as reservoirs for drugs with maximum 
entrapment efficiency for sustained and prolonged release of drugs. Furthermore,
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Table 6 Liposomal mediated antidiabetic drug therapy 

Polymer Incorporated drug(s) Outcome Reference 

Chitosan coated liposomes Insulin Improved the absorption of 
insulin from GI tract by 
decreasing enzyme activity 

[82] 

Glycerolphosphate-chitosan 
microcomplexation 

Metformin Improved oral availability 
and controlled delivery of 
water-soluble antidiabetic 
drugs to site of action 

[81] 

Sodium glycocholate 
liposomes 

Insulin Improved proteins and 
peptides through oral 
routes by reducing 
enzymatic degradation 

[83]

drugs with varying solubility can be accommodated within niosomes. Moreover, 
these agents offer excellent low toxicity and bioavailability because of their non-ionic 
nature. Niosomes are used for the delivery of insulin through the vagina of alloxan-
induced diabetic Wistar rats. The results indicated a reduction of blood glucose level 
and prolonged drug release with a higher hypoglycemic effect compared to subcuta-
neous injections [84]. In addition, the release of antidiabetic agents using niosomes 
enhances the bioavailability and reduces dosing frequency and adverse side effects 
[85]. Table 7 provides insight into antidiabetic drug therapy using niosome-based 
drug delivery system. 

Table 7 Antidiabetic drug therapy using niosome-based drug delivery system 

Polymer Incorporated drug(s) Outcome Reference 

Span 40, span 60 and 
cholesterol 

Insulin Effective delivery of 
therapeutics agents via 
vaginal administration 
indicated reduced glucose 
levels with prolonged release 
of insulin 

[84] 

Span 60 and cholesterol Repaglinide Decreased the frequency of 
dosing and enhanced the 
bioavailability of the 
entrapped drug 

[86] 

Span 
60/cholesterol/N-trimethyl 
chitosan system 

Insulin 4 times more insulin 
absorption was observed via 
Caco-2 cell monolayer than 
free insulin 

[87]
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3.3 Polymeric Nanoparticles 

Nanoparticle usage has been widespread in drug delivery systems because of reduced 
adverse effects and enhanced drug utility. To increase the efficacy of nanoparti-
cles loaded with drugs and aiming potential towards the targeted site, nanoparti-
cles are capped with mucoadhesive agents, polyethylene glycol, etc. Since bioavail-
ability of oral administration of insulin loaded nanoparticles is low, it is poorly 
adsorbed by the GI tract with low permeability. Whereas, insulin loaded mucoadhe-
sive nanoparticles have shown increased bioavailability of insulin [88]. In addition, 
solid lipid nanoparticles incorporated with insulin exhibited have enhanced insulin 
adsorption and prevented degradation of insulin by proteolytic enzymes in the GI 
tract, thereby enhancing oral insulin tolerance, bioavailability and residence time 
in diabetic animals [89]. Examples of polymeric nanoparticle-based antidiabetic 
therapy are shown in Table 8. 

Table 8 Examples of antidiabetic therapy based on polymeric nanoparticle drug delivery system 

Carrier type Polymer Incorporated 
drug(s) 

Outcome Reference 

Solid lipid 
nanoparticles 

Cetyl 
palmitate-based solid 
lipid nanoparticles 

Insulin Lowered plasma 
glucose level 
compared to empty 
solid lipid 
nanoparticles and 
insulin solution 
administration 

[90] 

Nanoparticles Chitosan or 
alginate-coated 
nanoparticles to form 
nano-network gel 

Recombinant 
insulin 

Threefold increase in 
release of insulin was 
observed as induced 
by higher glucose 
level in 
hyperglycemic stage. 
This would provide 
control over both 
long-term and 
self-regulated 
diabetes 

[69] 

Nanoparticles PEG capped poly 
lactic-co-glycolic 
acid-loaded insulin 
nanoparticles 

Insulin Showed noticeable 
hypoglycemic effect 
with decreased 
cholesterol, lipid 
peroxidation and 
triacylglycerol with 
elevated level of HDL 
cholesterol 

[91]
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Table 9 Different dendrimers used in drug delivery systems for antidiabetic therapy 

Carrier type Polymer Incorporate drug(s) Outcome Reference 

PAMAM (G2, G3, 
G4) 

– Pancreatic insulin of 
human origin 

Fibrillation of insulin 
was strong with 
PAMAM dendrimer 
generation and ratio 
of protein 

[96] 

PAMAM (G2, G3, 
G4) 

Amidoamine Pancreatic insulin of 
human origin 

Secondary structure of 
inulin was not altered 
and did not enhance 
the aggregation of 
proteins 

[97] 

PAMAM dendrimer 
(G0, G1, G2, G3) 

– Calcitonin and 
insulin 

Generation dependent 
increase of absorption 
of calcitonin and 
insulin was observed 
(G3 > G2  > G1 > G0)  

[98] 

3.4 Polyamidoamine Dendrimers 

Dendrimers are nano-sized, polymeric globular hyperbranched macromolecules with 
tree-like morphology in 3D nanostructure which comprises a central core and 
branched monomers with different reactive end groups on the surface [92]. They 
are classified into glycol, peptide, liquid crystalline, core–shell, poly(propylene 
imine) (PPI), hybrid and poly (amidoamine) (PAMAM) dendrimers. Due to their 
unique physicochemical properties, dendrimers are widely used in biomedical and 
pharmaceutical applications as effective drug carrier. Based on the modification 
of functional groups and size, dendrimers with different hydrophilicity, molecular 
weight and effective diameters are obtained [93]. The insulin secondary structure is 
maintained when incorporated with dendrimer of class poly(amidoamine). In addi-
tion, poly(amidoamine) does not change the conformation of proteins and forms 
rigid protein interactions. Therefore, poly(amidoamine) dendrimers is one of the 
dendrimers commonly used as insulin delivery tool and reduces aggregation of insulin 
[94]. Apart from this, studies related to PAMAM G4dendrimers on diabetic animal 
models confirm a significant decrease in glucose level in plasma and hyperglycemic 
markers of long term with mimicking hypoglycemic action [95]. Table 9 provides 
insight into different dendrimers used as carriers for antidiabetic therapy. 

3.5 Inorganic Nanocarriers 

Inorganic materials such as metallic nanoparticles, mesoporous silica nanoparticles 
and carbon nanotubes are usually employed as nanocarriers with surface functional-
ization, size and controlled morphology. Thus, inorganic nanocarriers have brought
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more options for drug delivery [99]. Metallic and metallic oxide nanoparticles such 
as silver [100, 101], selenium [102, 103], gold [104] and zinc oxide nanoparticles 
[105, 106] have demonstrated promising results for type 2 diabetes mellitus treatment 
[107]. However, the synthesis of metallic nanoparticles carried out by chemical and 
physical methods reveals several drawbacks such as toxic solvents usage, produc-
tion of hazardous by-products and high energy consumption [108]. The synthesis of 
metallic nanoparticles using plant extract has gained attention over chemical tech-
niques as an alternative [109]. Phytoconstituents having antidiabetic properties are 
used and act as stabilizing and reducing agents for the synthesis of metallic nanopar-
ticles. The examples include docosahexaenoic acid zinc oxide nanoparticles [105], 
vicenin gold nanoparticles [110] and gymnemic acid gold nanoparticles [111]. All 
these nanoparticles have exhibited excellent antidiabetic properties in both in-vitro 
and in-vivo studies. In addition, metallic nanoparticles synthesized using phytocon-
stituents with antidiabetic properties have showed enhanced activity compared to bare 
metal nanoparticles. For instance, selenium nanoparticles prepared using polysaccha-
rides of Catathelasma ventricosum exhibited enhanced antidiabetic effects compared 
to selenium nanoparticles and their counterparts [112]. 

3.6 Nanopolyphenols 

Numerous treatments for diabetes mellitus are available worldwide, but they cause 
adverse side effects leading to find a natural alternative. Among them, polyphe-
nols have been found as one of the alternatives [113]. Polyphenols are bioac-
tive compounds as well as secondary metabolites produced by plants. They are 
chemogenic substances with phenolic rings of one or more and hydroxyl groups 
in their structure. Based on the phenolic ring numbers and attached groups, they 
are classified as polyphenolic amides, flavonoids, phenolic acids and non-flavonoids 
(tannins, lignans, diarylheptanoids and stilbenoids) (Fig. 4). Several reports indicate 
that polyphenols possess a wide range of biological activity like anti-inflammatory, 
antimicrobial, anticancer and antidiabetic effects [114]. In addition, polyphenols have 
been shown to exhibit antidiabetic effects via various mechanisms through their 
ability to: decrease hepatic glucose output, and insulin sensitivity, elevate insulin 
sensitivity, intestinal glucose uptake inhibition by sodium-dependent glucose trans-
porter 1 [115–118]. This has been observed via animal models and clinical trials 
[119–121]. Due to their compound particle size, low bioavailability and instability 
at low pH have restricted its usage as antidiabetic agents. To overcome this problem, 
nanoencapsulation techniques are being utilized in which polyphenols can be encap-
sulated using nanocarriers [114]. Antidiabetic effects of various nanopolyphenols 
are provided in Table 10.
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Fig. 4 Types of polyphenols [114]

4 Theranostics and Imaging 

Theranostic is defined as an emerging field that combines the utilization of nanoscale 
materials for both therapeutic modalities and diagnostic imaging. Diagnostic imaging 
is carried out using a magnetic resonance imaging (MRI) facility and is not sensitive 
enough for early diagnosis. To increase the sensitivity for diagnosis novel, MRI agents 
are necessary. To overcome this problem, magnetic nanoparticles need to be used as 
contrast agents for MRI. Magnetic nanoparticles are not only useful as imaging tools 
but also as a carrier of therapeutic moieties and the release of drugs in a controlled 
manner makes MRI important modalities for theranostic imaging applications [127]. 

Theranostic imaging is a multidisciplinary field consisting of synthetic chem-
istry, nanotechnology and molecular biology. Various classes of nanoparticles are 
used for imaging which are categorized into inorganic and organic materials. Poly-
mers, dendrimers and polymeric micelles are primarily used as nanocarriers for the 
delivery of drugs are grouped into organic materials. Magnetic nanoparticles, a class 
of inorganic materials, are commonly used for theranostic MRI than organic nanopar-
ticles because of unique physical properties like size and composition. In addition, 
ease of synthesis, modifications of surface to incorporate therapeutic agents and 
target specificity have enabled its usage as a smart platform for theranostic MRI 
[128, 129]. 

The probes used for theranostic MRI for treatment and management of diabetes 
should: (i) biodegrade and produce safe by-products, (ii) accumulate in target 
tissues or cells specifically, (iii) deliver therapeutic moieties effectively and (iv) 
provide functional and morphological information of the area. The commonly used 
probes for theranostic MRI are manganese nanoparticles, iron oxide nanoparticles
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Table 10 Effect of nanopolyphenols as antidiabetic agents 

Polyphenol (class) Nanocarrier (components used 
for delivery system) 

Outcome Reference 

Naringenin 
(flavanone) 

Polymeric nanoparticles (sodium 
alginate and chitosan) 

Reduced blood 
glucose level and 
free iron content, 
architecture of 
hepatic revived and 
Langerhans cells 
structural complexity 
was regenerated 

[122] 

Resveratrol (stilbene) Nanoemulsion Decreased glucose 
level in serum, 
elevated insulin in 
serum and reduced 
glutathione, catalase, 
superoxide dismutase 
and glutathione 
peroxidase 

[123] 

Curcumin 
(diarylheptanoids) 

Polymeric nanoparticles 
(polyethylene 
glycol—poly(lactic-co-glycolic 
acid, polyvinyl alcohol) 

Decreased 
diabetes-induced 
oxidative stress and 
enhanced 
anti-oxidative 
enzymes 

[124] 

Quercetin (flavonol) Inorganic nanoparticles (iron 
oxide nanoparticles) 

Reduced blood 
glucose levels 

[125] 

Syzygiumcumini (L.) 
(extract rich in 
polyphenols) 

Polymeric nanoparticles 
(polysorbate 80) 

Reduced blood 
glucose, creatinine, 
cholesterol, 
pancreatic and serum 
advanced oxidation 
protein products and 
thiobarbituric acid 
reactive substance 
levels in renal 

[126]

and gadolinium (Gd) loaded nanoparticles [127]. Pathological hallmarks of type 
1 diabetes include β-cell destruction, microvasculature leakage and mononuclear 
cell infiltration of the pancreatic islets. Theranostic imaging with new strategies is 
designed to target these biomarkers to provide therapy and prevention. For diag-
nostic application, Gaglia et al. [130] reported on the development of a MRI method 
to visualize active insulitis in T1D patients using superparamagnetic iron oxide T2 

contrast agents which exhibited promising results in the detection of early insulitis 
caused due to inflammation of the islets of Langerhans (β-cells). In addition, Castillo 
et al. [131] studied the usage of fatty acid-containing protected graft co-polymer for 
the application of therapeutics like glucagon-like peptide-1 (GLP-1) to pancreatic β-
cells for type 2 diabetes. The results indicated long circulation of blood pool agents
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for the treatment of diabetes. Apart from this, fluorescently labelled nucleic acid 
polymer functionalized iron oxide nanoprobe exhibited the potential of quantifying 
pancreatic beta-cell mass as an efficient indicator of the onset of type 2 diabetes 
[132]. 

5 Efficacy and Toxicity Studies 

Diabetes mellitus is one of the major concerns worldwide because it causes damage 
to many organs such as eyes, kidneys, heart, nerves and blood vessels as well as 
an elevated risk of several complications such as retinopathy, stroke, neuropathy, 
renal failure, blindness, cardiovascular diseases and peripheral vascular diseases. 
To reduce symptoms and save lives, antidiabetic drugs are used for the treatment 
of diabetes. In addition to this, the prime importance of using antidiabetic drugs is 
to eliminate risk factors to increase life span and to avert long-term complications 
of diabetes. The aforementioned complications and symptoms are reduced using 
various classes of antidiabetic drugs that have the intrinsic property of lowering blood 
glucose level. But these drugs have major drawbacks like severe side effects and to 
be taken lifelong. Therefore, the efficacy and safety of these drugs play an important 
role in the selection and utilization of appropriate drugs for diabetes therapy [133]. 
The different classes of drugs used for diabetes mellitus treatment and management 
are as follows; insulin, meglitinides, sulfonylureas, biguanides, thiazolidinediones, 
sodium-glucose co-transporter 2 (SGLT2) inhibitors, dipeptidyl peptidase-4 (DPP-
4) inhibitors, alpha-glucosidase inhibitors (AGIs), glucagon-like peptide-1 (GLP-1) 
agonists and dopamine agonists [134]. 

Insulin is a hormone produced by beta cells of the pancreas endogenously. 
Patients suffering from diabetes, especially type 1 diabetes have insulin deficiency 
and reduced production of insulin in the case of type 2 diabetes. Type 1 diabetic 
patients require insulin as lifelong treatment. Whereas, in type 2 diabetic patients, 
insulin is used as monotherapy or adjunct therapy to oral antidiabetic agents. Various 
types of insulin are developed using natural insulin and components as substitu-
tions. Depending on their pharmacodynamic and pharmacokinetic properties, they 
are classified as rapid-acting, short, long and intermediate-acting. Insulin therapy has 
many drawbacks such as low absorption from the subcutaneous tissue, 30–60 min 
for metabolic action and 2–3 h for attaining peak concentration. Neutral Protamine 
Hagedorn insulin (NPH) has different effects in lowering blood glucose levels. They 
are absorbed at varying rates from subcutaneous tissue and have a shorter action 
time. This causes an increase in blood glucose levels before breakfast and hypo-
glycemia at night-time [135]. To overcome this problem, insulin analogues are used 
as an alternative that absorbs more rapidly after subcutaneous injection compared to 
regular insulin and NPH with 15 min onset action [136]. Insulin therapy has the most 
common side effect called hypoglycemia. Apart from this, several other side effects 
are allergic reactions, pain, lower blood potassium, etc. [137]. The aforementioned
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side effects have limited the usage of subcutaneous administration and necessitate 
the need for non-injectable methods. 

Sulfonylureas are one of the oldest antidiabetic agents used for type 2 diabetes 
and act as insulin secretagogues [138]. Examples of this class include glimepiride, 
glibenclamide, glipizide, tolazamide, etc. [139]. They are effective only when some 
of the beta cells of the pancreas are effective and act by increasing the secretions 
of insulin. Sulfonylureas cause hypoglycemia and require hospitalization as they 
persist for several hours [140]. They are commonly used for patients with lower 
body weight and lowers glycated haemoglobin levels by 1.51% higher compared 
to placebo [141]. Among several forms of drugs in this class, glimepiride has been 
reported as effective in achieving control of glycaemia. In general, the side effects of 
sulfonylureas include nausea, vomiting, constipation and diarrhoea. Apart from this, 
hypoglycemic-associated symptoms are headache, dizziness, sweating, drowsiness 
and lack of energy. Therefore, they are not suggested for elderly persons and infre-
quently sulfonylureas can cause blood disorders and liver function disorders [140]. 
Metformin a class of biguanide group antidiabetic drugs has been used as primary 
treatment for type 2 diabetes worldwide. In recent years, metformin is also used 
for gestational diabetes treatment and prevention of diabetes. Alleviated glucose 
output is the consequence of biguanides by inhibition of gluconeogenesis in the 
liver and higher uptake of insulin-mediated glucose by skeletal muscle. Metformin 
improves the sensitivity of insulin, lowers blood glucose level, but causes weight loss 
and reduces food intake, and the absorption process of glucose is slightly delayed. 
They are beneficial in reducing diabetes-related complications and have a better 
safety profile compared to other antidiabetic drugs. Gastrointestinal problems are the 
common side effects of metformin with infrequent serious consequences of lactic 
acidosis [133]. 

In addition to the above, dipeptidyl peptidase-4 (DPP-4) inhibitors and glucagon-
like peptide-1 (GLP-1) agonists, etc., are used as a new class of therapy for diabetes 
in line with existing antidiabetic drugs as add on therapy. 

6 Nanomaterials Used as an Antioxidant 
and Anti-inflammatory Studies 

Patients with type 2 diabetes have elevated levels of oxidative stress and associ-
ated chronic inflammation. Oxidative stress causes a significant role in the onset of 
type 2 diabetes and tissue damage due to hyperglycemic conditions. Conventionally, 
exogenous antioxidants like glutathione, vitamin E, flavonoids and ascorbic acid 
are used to control higher cellular levels of reactive oxygen species (ROS) which 
leads to oxidative stress. Due to limited absorption profiles and low bioavailability 
of orally administered antioxidants, conventional therapies are proven to be inef-
fective. Therefore, nanotechnology-based approaches have gained moderate atten-
tion because of inherent properties such as high specificity, reduced frequency of
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dosing, increased bioavailability and degradation prevention capacity from gastric 
environments. In this regard, metal nanoparticles (gold, cerium oxide, zinc oxide 
and magnetic nanoparticles like Fe, Ni, Co) have shown considerable potential in 
the prevention and treatment of hyperglycemic-triggered complications by exces-
sive ROS generation. The nanomaterials that show antioxidant properties and can 
scavenge free radicals and reduce concentrations of ROS are called nanoantioxidants 
[107]. 

Nanoantioxidants include both nonorganic nanoparticles and functionalized 
nanoparticles with antioxidants. Higher antioxidant properties like superoxide 
dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX) mimicking 
activities are exhibited by metal nanoparticles obtained from iron oxide [142, 143], 
nanoceria [144–146], manganese dioxide [147], vanadium pentoxide [148] and 
copper oxide [149], gold [150, 151], platinum [152] and silver [153]. The behaviour 
of antioxidant capacity of metallic nanoparticles depends on oxygen vacancies and 
multioxidation state with oscillations. For instance, cerium oxide nanoparticles are 
considered as one of the prominent nanoantioxidants due to its better catalytic prop-
erties caused by surface oxygen vacancies and two oxidation states (Ce3+ and Ce4+) 
with auto-regenerative cycles [154]. In addition, cerium oxide nanoparticles alter the 
main antioxidant pathway such as nuclear factor erythroid 2-related factor 2 (Nrf2) 
[155]. Furthermore, the interaction of nanoparticles with lipids, proteins and nucleic 
acids is the main factor for antioxidant properties. Table 11 provides insight into 
antioxidant outcomes of nanoparticles in streptozotocin-induced diabetic rats. 

Apart from this, gold nanoparticles have exhibited anti-inflammatory effects that 
decreased production of pro-inflammatory cytokines and improved blood glucose 
level, liver and kidney performance causing hyperglycemic control in diabetic rats 
[159].

Table 11 Effect of nanoantioxidants in streptozotocin-induced diabetic rats 

Nanoparticle-type Route of administration Outcome Reference 

Zinc oxide Oral Elevated levels of SOD, 
CAT, GPX; reduced 
malondialdehyde and 
elevated levels of 
glutathione in testicular 
tissue 

[156] 

Gold Intraperitoneal injection Elevated levels of SOD, 
CAT, GPX activities and 
reduced levels of oxidized 
glutathione 

[157] 

Cerium oxide Intraperitoneal injection Antioxidant enzyme 
activity is recovered 

[158] 

Liposome delivered 
selenium 

Oral SOD, CAT, GPX activities 
of the pancreas are 
recovered 

[102] 
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7 Challenges and Future Prospectives 

The major challenge related to diabetic treatment is to find individualized factors 
that result in the control of blood glucose levels [160]. For type 2 diabetes manage-
ment, there is a need for control of the progressive deterioration of beta-cell function 
that results in loss of glycemic control. Insulin therapy and antidiabetic drug usage 
are efficient but not possible to avoid glucoregulatory and metabolic dysfunctions. 
To overcome this, targeted and combination therapies are needed such as peptide 
analogues and incretin-based therapy. This probably might restore the function of 
beta cells and stop type 2 diabetes and its complications. The efficiency of new ther-
apies depends on the ability to relieve disturbances caused by metabolic alterations 
resulting in elevated insulin production and uptake of glucose by skeletal muscles 
[161]. 

The emergence of leptin therapy would be the prospect for future and 
nanotechnological-based therapies during diabetes treatment. Furthermore, leptin 
therapy via CNS-dependent mechanism in mice has improved insulin-deficient type 
1 diabetes. Apart from this, novel therapies like the use of mucoadhesive microcap-
sules with glipizide drugs for achieving efficient targeting and controlling release 
of drugs are preferred [161]. Therefore, great efforts have to be made in the treat-
ment, prevention and diagnosis of diabetes and there is no successful treatment to 
date. With the advent of nanotechnology, new therapies and efficient medication for 
diabetes treatment are not unachievable. 

8 Conclusion 

Diabetes mellitus and its complications are the primary consequences of death world-
wide. Several types of therapeutic targets and anti-hyperglycemic drugs have been 
tested, and a few combination therapies have also shown better control over blood 
glucose levels and alleviated complications caused by diabetes. In addition to the 
above drugs, therapeutics have gained pace with innovation in science for a novel 
treatment for diabetic patients. Among these novel routes, nanotechnology-based 
drug delivery systems have proved greater potential with elevated bioavailability, 
higher efficacy, minimal dose frequency and lesser toxicity. In addition, nanoparticles 
synthesized from herbal extracts have demonstrated promising results as therapeutics 
for diabetes. Still, extensive research is needed to assess the underlying mechanism 
of new therapies and their effectiveness, safety and prognosis in diabetes treatment. 
Furthermore, it is essential to covert basic research into clinical medications for social 
benefits.
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Abstract Engineered nanoparticles have attracted much attention due to their 
successful implementation in different fields such as health, industry, and the space 
sector. Sustainable agriculture is a continuously evolving practice of various tech-
nologies working in a sustainable and eco-friendly manner. Further, recent advance-
ments in sustainable agriculture practices can be attributed to nanotechnologies 
applied for different purposes in agricultural sectors. Studies suggest that nanoparti-
cles of various materials can induce positive or negative effects on many plant growth 
parameters and regulate their hormones. Plant hormones such as auxin, gibberellin, 
cytokinin, ethylene, and abscisic acid can be regulated through nanoparticles to main-
tain plant growth, especially in stressful conditions for plants. Studies also suggest 
that these engineered nanoparticles exert a toxic effect on soil enzyme properties such 
as dehydrogenase, urease, and phosphatase that may negatively affect plant growth 
and also degrade soil quality in the long run. Further, many nano-based technologies 
used for disease control and pest control have also come into the picture. In this 
chapter, the readers will gain deep insights into nanotechnology for plant growth and 
disease control with sustainable agriculture practices in mind, exploring different 
technologies in practice and constraints related to them. 

Keywords Nanotechnology · Sustainable agriculture · Disease control · Plant 
growth 

1 Introduction 

Global population is increasing at a rapid pace. The world’s present-day population is 
7.7 billion, and it will increase to 9.7 billion in 2050. The United Nations report 2019 
data indicates it could be highest at nearly 11 billion around 2100. Overpopulation 
has led to crisis of good nutritious food and agriculture land. To address the rising
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demands of food for increasing population, certain measures are taken such as appli-
cation of chemical fertilizers and chemical pesticides to the crop fields. Further with 
the advent of concerns regarding the toxic nature and adverse effects of chemicals 
used for agricultural applications, a shift from chemical fertilizers was promoted [1, 
2]. Biofertilizers and bio-pesticides have tremendous applications with respect to the 
sustainability of agricultural soil maintaining its fertility as well as promoting high 
yields in the crops [3–5]. The major problems caused due to chemical fertilizers were 
more due to its uncontrolled and indiscriminate use rather than the toxic nature of the 
chemicals. Sustainable agriculture practice refers to the minimum use of agrochemi-
cals for maximum increase in the production of crops [6, 7]. Nanotechnology comes 
to the rescue of indiscriminate chemicals use by promoting the minimal chemicals 
with high precision results and therefore would be sustainable in nature. Nanopar-
ticles in the form of fertilizers can help to reduce the indiscriminate use with plant 
growth promotion [6, 8]. The use of nanotechnology reduces the uncertainty levels 
with respect to the yields of the crops which is a major factor for the indiscriminate use 
of the chemicals by the farmers. Nanotechnology not only enables increase in plant 
growth with high precision under normal conditions but also makes sure the plants 
growth in stress conditions with changing climates, reduced water, reduced minerals, 
high temperatures, and good yield even in the presence of toxic metals. In addition 
to the use of nanotechnology for plant growth, nanotechnology has also enabled the 
monitoring of the plants’ growth and response, their physiological variation over 
time at very precise and small levels, thus accelerating the response mechanism if 
the need arises. The use of nanotechnology not only promotes the plant growth and 
meets the food demands of the increasing human population but also doesn’t harm 
the thriving living species in the surrounding area, thus promoting the aspect of 
sustainability. Nanotechnology offers different solutions by a simple technique, i.e. 
by offering more surface area required for the action of growth and development for 
the plant. 

2 Nanotechnology for Plant Growth and Disease Control 

There have been many studies suggesting the use of nanomaterials for the promotion 
of plant growth and development (shown in Fig. 1). These nanomaterials bring about 
changes at the cellular level and hormonal level which induces changes visible in 
terms of their yield and productivity. In a study by Pallavi et al. [9], it was observed 
that silver nanoparticles increased the growth of wheat plants by increasing root 
nodulation at 50 ppm concentration while improvement in shoot growth parameters 
was observed at 75 ppm concentration. A study by Krishnaraj et al. [10] reported 
enhanced catalase and peroxidase activity on addition of silver nanoparticles to the 
plants of Bacopa monnieri L. which in turn enhanced plant growth and yield. Another 
study by Gruyer et al. [11] reported that the addition of silver nanoparticles to the 
plants of barley increased the root length, thereby affecting its yield parameters. 
Studies on effect of the gold nanoparticles done by Ferrari et al. [12] showed that
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Fig. 1 Nanomaterials used for plant growth and promotion

the application of gold nanoparticles enhanced the growth of Arabidopsis plants by 
reducing oxidative stress elicited by immune-stimulatory PAMP flg22. Studies on 
zinc or zinc oxide nanoparticles by Nandhini et al. [13] on  C. americanus reported 
that it helped in the inhibition of disease-forming spores which ultimately reflected in 
the growth yield parameters of the plants. Another study on zinc oxide nanoparticles 
by Keerthana et al. [14] reported that improvement in the growth and yield parameters 
of Abelmoschus esculentus plants. It also served as a great antimicrobial agent (Table 
1). 

Plant growth parameters are generally governed by the regulation of plant 
hormones. Therefore, it becomes imperative to study the effect of nanoparticles on 
plant hormones if they affect plant growth in any way. In studies by multiple authors 
[17–22] it was revealed that on application of different types of nanoparticles such as 
graphene oxide, zinc oxide, copper and silver nanoparticles the production of indole 
acetic acid (IAA) in plants greatly increased. Increase in IAA activity of plants in 
roots or shoots is directly associated with the increased plant yield. On the other hand, 
different studies on copper nanoparticles [18, 23] reported inhibition in the produc-
tion of IAA in plants, thereby resulting in the decreased growth of the plants. Studies 
on the enhancement of gibberellins by multiple authors [24–26] suggested that, on 
application of various nanoparticles, levels of gibberellins could be regulated in the 
plants. Similarly, studies on cytokinin regulation [23, 27–30] and ethylene regulation 
[31–35] showed that nanoparticles of silver, gold, zinc, and copper could directly 
influence plant hormones by affecting its growth (Table 2).

3 Nano-Bioformulations for Agricultural Development 

The worldwide increasing food demand prompts for high-yield crops production. 
Excessive use of chemical fertilizers and pesticides to increase the crop yield is surely 
not an appropriate choice for long term because they make a deleterious impression
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Table 1 Effect of various nanoparticles on the plant growth promotion 

Nanoparticles 
type 

Plant used Synthesis type Effect References 

Silver NPs Triticum aestivum, 
var. UP2338), 
Vigna sinensis, var.  
Pusa Komal, and 
Brassica juncea, 
var. Pusa Jai Kisan 

Chemical 
reduction of silver 
nitrate by 
tri-sodium citrate 
salt 

Growth promotion 
and increased root 
nodulation at 50 ppm 
treatment in cowpea; 
improved shoot 
parameters at 75 ppm 
in Brassica 

[9] 

Silver NPs Bacopa 
monnieri(Linn.) 

Treating 
AgNO3with 
aqueous leaves 
extracts of 
Acalypha indica 
Linn 

Enhanced peroxidase 
and catalase activity, 
simulated the stress 
conditions 

[10] 

Silver NPs Using barley as a 
reference plant (e.g. 
radish and lettuce) 

NA Root length increased 
for barley, but was 
dramatically inhibited 
for lettuce 

[11] 

Silver NPs Trigonella 
foenum-graecum 

Chemical 
reduction of silver 
nitrate with 
tri-sodium citrate 

Improved the growth 
parameters of 
fenugreek plant 

[15] 

Silver 
nanoparticle 

Arabidopsis NA Induced bifacial 
effects on plant 
growth, effectively 
inhibited ethylene 
perception 

[16] 

Gold 
nanoparticle 

Arabidopsis Aqueous 
dispersions of 
citrate-stabilized 
AuNPs 

Enhanced growth of 
the plants, reduced 
oxidative stress 
responses elicited by 
the 
immune-stimulatory 
PAMP flg22 

[12] 

Zinc oxide C. americanus Retentate of 
aqueous E. 
albaextract mixed 
with 80 ml of zinc 
sulphate 

Prevention of disease, 
inhibition of spore 
germination of S. 
graminicolazoospore 

[13] 

Zinc oxide Abelmoschus 
esculentus 

Aqueous peel 
extract of Citrus 
medica 

Improve the growth 
and yield; excellent 
antimicrobial 
potential 

[14]
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Table 2 Effect of nanomaterials on plant hormones 

Plant hormone Nanomaterial used Plant tested Effect References 

IAA Graphene oxide Rice Increase IAA in root [17] 

Zinc oxide Cicer 
arietinum 

Increased IAA in roots [18] 

Copper and Silver A. muricata Increased activity of 
IAA in leaves 

[19] 

Graphene oxide Brassica 
napusL. 

Modulates IAA in root 
growth 

[20] 

Graphene oxide Brassica 
napusL. 

Regulates IAA in root 
growth 

[21] 

Zinc oxide Pyrussp. Increase 
indole-3-acetic acid 
and indole-3-butyric 
acid in roots  

[22] 

Copper oxide Cotton Decreases in IAA in 
plant 

[23] 

Graphene oxide Brassica 
napusL. 

Co-regulate contents 
of IAA, cytokinin, and 
ABA in root 

[28] 

Silver NPs Wheat Increase in 
gibberellins and 
decrease in cytokinin 

[36] 

Silver NPs Triticum 
aestivumL. 

Increase in IAA [37] 

Silver NPs Arabidopsis 
thaliana 

Regulate IAA and 
ethylene signalling 
pathway 

[38] 

Copper oxide Cotton Inhibit IAA and ABA 
concentrations 

[18] 

Abscisic acid Graphene oxide Brassica 
napusL. 

Modulates ABA and 
IAA in root growth 

[20] 

Graphene oxide Brassica 
napusL. 

Regulates IAA/ABA 
in root growth 

[21] 

Graphene oxide Brassica 
napusL. 

Co-regulate contents 
of IAA, cytokinin, and 
ABA in root 

[28] 

Silver NPs Triticum 
aestivumL. 

Stimulating 
indole-3-butyric acid 
(IBA), 1-naphthalene 
acetic acid (NAA), 
6-benzylaminopurine 
(BAP) contents and 
reducing abscisic acid 
(ABA) content 

[37]

(continued)
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Table 2 (continued)

Plant hormone Nanomaterial used Plant tested Effect References

Copper oxide Cotton Inhibit indole-3-acetic 
acid (IAA) and 
abscisic acid (ABA) 
concentrations 

[18] 

Cytokinin Silver NPs Capsicum 
annuumL. 

Increased the level of 
Cytokinin in plant 

[27] 

Zinc oxide Arabidopsis 
thaliana 

Suppressed 
biosynthesis of the 
cytokinins and auxins 
in shoot apical 
meristems (apices) 

[39] 

Silver NPs Capsicum 
annuum 

Increased the level of 
Cytokinin in plant 

[23] 

Graphene oxide and 
IAA co-treatment 

Brassica 
napusL. 

Co-regulate contents 
of IAA, cytokinin, and 
ABA in root 

[28] 

Zinc oxide Arabidopsis 
Thaliana 

Induced the expression 
of ethylene and 
reduced the expression 
of cytokinin response 
genes 

[29] 

Chitosan 
microparticles 

Tomato Participation of 
cytokinin and auxin 
signalling pathways 

[30] 

Titanium dioxide Barley 
(Hordeum 
vulgareL.) 

Play a role similar to 
plant hormones such 
as cytokinin and 
gyberline 

[26] 

Graphene oxide Apple Affected cytokinin by 
regulating the 
expression levels of 
cytokinin-related 
genes 

[40] 

Gibberellins Silver and zinc oxide Maize Synthesis of plant 
hormones, such as 
gibberellins 

[24] 

Polyglutamic 
acid/chitosan 

Phaseolus 
vulgaris 

Regulates gibberellic 
acid in seed 

[25] 

Silver NPs and Silver 
ions 

Wheat Increase in gibberellin 
content and the 
accompanying 
decrease in cytokinins 

[36]

(continued)



Nanotechnology for Sustainable Agricultural Applications 271

Table 2 (continued)

Plant hormone Nanomaterial used Plant tested Effect References

Titanium dioxide Hordeum 
vulgareL. 

Play a role similar to 
plant hormones such 
as cytokinin and 
gibberellins 

[26] 

Ethylene Zinc oxide Arabidopsis Ethylene signalling 
and biosynthesis 

[31] 

Silver NPs Plant tissue 
culture 

Inhibitory effects of 
plant senescence 
phytohormone 
ethylene 

[32] 

Silver NPs Swertia 
chirata 

Ethylene interceptions [33] 

Potassium 
permanganate-coated 
zeolite 

Peach and 
Nectarine 

Inhibitory effect of 
ethylene gas 

[34] 

Gold NPs Brassica 
juncea 

Ethylene interceptions [35] 

Silver NPs Arabidopsis 
thaliana 

Inhibitors of ethylene [16] 

Silver NPs and silver 
ions 

Arabidopsis 
thaliana 

Regulate auxin and 
ethylene signalling 
pathway 

[38]

on the soil micro-flora and decline soil fertility, multi-nutrient deficiencies, shrinking 
of agriculture land. Synthetic fertilizers are not only costly but also lead to soil, air 
and water pollution [41, 42]. Nowadays, attention to nano-bioformulations an inno-
vative approach of using green fertilizers, known as biofertilizer has increased due 
to their ability of N2-fixation, phosphate solubilization, production of plant growth 
hormones, biocontrolling properties and sustenance of soil quality. Also increase of 
plant height, branch numbers and fresh and dry weight of plant in comparison with 
chemical fertilizers application alone has been observed [43]. Nanofertilizers are the 
important assets of nanotechnology, and nanofertilizers are the nanomaterials ranging 
from 1 to 100 nm at list in one dimension that should be classified as a nanomaterials 
size that supplies at least one or more types of nutrients to the plants. Different types 
of nanotechnological materials such as carbon nanotubes, zinc, iron, silicon, copper, 
manganese, molybdenum their oxides and nano-formulations are commercially used 
in agricultural inputs like urea, phosphorus and sulphur. Nanomaterials demonstrate 
a high surface area, absorption capacity and controlled release kinetics to the active 
sites with a smooth delivery system [44]. The NPs synthesized by novel methods are 
basically environment-friendly; i.e. no toxic chemicals are used during synthesis. 
Nano-bioformulation has come out as a tool in the agriculture sector to achieve 
novel approach in sustainable agriculture goal, and it has gained a rapid momentum 
in the modern agriculture system and is expected to become a main thrust in near
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future by offering potential applications. Nano-bioformulation of biofertilizers has 
emerged as one of the most promising techniques to achieve sustainable agriculture 
goal. Nano-bioformulation of biofertilizer NPs is obtained from both organic and 
inorganic substances that interact with micro-organisms and increase their survival 
by providing protection from biotic and abiotic factors [45]. Nanobiotechnolog-
ical products obtained through nanomaterials together with plant growth-promoting 
rhizobacteria (PGPR) will be more advantageous than conventional methods (such 
as direct application of biofertilizer). 

Plant growth-promoting bacteria such as Paenibacillus elgii, Pseudomonas 
putida, Pseudomonas fluorescens, and Bacillus subtilis, treated with silver, 
aluminium, and gold NPs have been shown to support plant growth and increase 
pathogen resistance [46]. Green nanosilver bioformulation of Trichoderma (Fu21) 
an efficient and eco-friendly bio-efficacy show and biocontroling activity against stem 
rot (Sclerotium rolfsii) in groundnut (Arachis hypogaea L.) [47]. Iron, manganese, 
phosphorus, calcium, magnesium, nano-zeolite, molybdenum, titanium, copper, 
zinc, carbonaceous materials, etc., are envisaged to Bacillus sp, Rhizobium sp and 
Pseudomonas sp. as bioagents with nanoparticle formulations for enhancing in 
yield quality and decreasing environmental deleterious effects for the plants [48]. 
The effect of silicon nanoparticle-mediated seed priming on Pseudomonas species 
enhanced growth, physiology, antioxidant metabolism, plant biomass indices, the 
relative water content of leaves, photosynthetic pigment values, and essential oil 
yield. All major components in Melissa officinalis L. seed priming, pre-sowing, 
and seedling inoculation with bio-elicitor improve plant growth and phytochemical 
constituents [49] (Table 3).

Nano-biofertilizer contains micronutrients and macronutrients together with plant 
growth for enriching micro-organisms (Azotobacter, Azospirihum, Azolla, Beijer-
inckia, Bacillus, Cyanobacteria, Pseudomonas, and Rhizobium) that assist to fix 
atmospheric nitrogen, phosphate solubilizing, restoring soil nutrient richness, and 
capable to transform and mobilize nutrients in the rhizosphere from complex organic 
matter into simple compounds and shown greater potential in plant growth in different 
agricultural plants [58–60]. The Bacillus species such as B. stearothermophilus, B. 
laterosporus, B. circulans, B. licheniformis, B. amyloliquefaciens, B. pabuli, B. mega-
terium, B. thuringiensis, and B. subtilis are known to secrete 8% of the total secondary 
metabolites with antagonistic properties [7]. 

Biodegradable nano-biofertilizer in agriculture has been preferred as an emerging 
alternative to conventional farming due to some benefits such as less nutrient loss and 
controlled release of nutrients to the plant. Previous research shows that iron oxide 
NPs may have been a possible source of iron for soybean for reducing chlorotic 
symptoms of iron deficiency [61]. Oil-based nanoemulsion formulation have a small 
size, large surface area, durability, increased effectiveness, high solubility, versa-
tility with Beauveria bassiana conidia as biopesticide can be used as a biopesti-
cide in agricultural sector and effective, eco-friendly, long-lasting management of 
plant diseases [62]. The combination of silver nanoparticle and PGPR increases 
water uptake and nutrient from salinity condition, and Pseudomonas moraviensis is 
most effective to enhance total chlorophyll and carotenoids contents, sugar, protein,
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Table 3 Nano-bioformulations for enhancement of plant growth parameters 

Nanoparticles Micro-organisms Function References 

Ag, ZnONPs R. leguminosarum(MTCC 
10096) 

Known symbiotic 
nitrogen fixer, biofilm 
former 

[50] 

Klebsiella 
pneumoniaeclsxc_AZ2 
(MH884598) 

Adherent biofilm former, 
free living nitrogen fixer, 
phosphate solubilizer 

Bacillussp. clsxc_NPS 
(MH884601) 

Phosphate solubilizer, 
air–liquid interface 
biofilm former, amylase 
producer 

Gold NPs Pseudomonas fluorescens, 
Bacillus subtilis, Paenibacillus 
elgii, and  Pseudomonas putida 

Significant increase in 
activity of P. fluorescens, 
P. elgii, and  B. subtilis 

[46] 

Nanogypsum Pseudomonas 
taiwanensisBCRC 17751 
(MK106029) 

Improving the structure 
and function of soil and 
plant health 

[51] 

ZnO, MnO2, and  
MgO 

Paenibacillus polymyxastrain 
Sx3 

Combat the antibiotic 
resistance of 
Xanthomonas oryzae pv. 
oryzae (Xoo) 

[52] 

ZnO Bacillus cereusRNT6 ZnONPs could be used 
as nano-pesticides 
against rice panicle 
blight 

[53] 

Titanium dioxide Bacillus thuringiensis AZP2, 
Paenibacilluspolymyxa A26, 
Paenibacillus polymyxa 
A26Δsfp, Alcaligenes faecalis, 
Fusarium culmorum 

Positive effect against 
abiotic stress (drought, 
salt) and biotic stress 
(Fusarium culmorum) 

[54] 

Zn–Fe oxide Azotobacter chrocoocum, 
Azospirillum lipoferum, 
Pseudomonas putida 

Improved wheat yield 
under salinity condition 

[55] 

TiO2 Bacillus 
amyloliquefaciensUCMB5113 

Biocontrolling against 
fungal pathogen 
Alternaria brassicaein 
Brassica napus plant and 
promotes plant growth 

[56] 

SiO2 Pseudomonas 
stutzeri,Mesorhizobium spp. 

Increased shoot and root 
dry weight of land cress 
(Barbareaverna) plant  
and increased nitrogen 
and phosphate in the soil 

[57]
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proline, flavonoids, and phenolic content in onion (Allium cepa L.) plants [63]. 
Combination of nanogypsum and Pseudomonas taiwanensis in maize (Zea mays) 
helps in improving the structure and function of soil which affects the plant health 
(enhance chlorophyll, total phenolic content, total sugar, protein content) without 
causing any toxic effect and increase in total bacterial counts, nitrogen, phosphorus, 
potassium (NPK) solubilizing bacterial population and soil enzyme activities (alka-
line phosphatase, β-glucosidase, dehydrogenase, arylesterase, fluorescein diacetate, 
and amylase [51]. The concentration of NPs in the soil may have neutral, negative, or 
positive effects and interactions with NPs mycorrhizas/rhizobia. The link to viability 
and functionality of the symbioses have been explored including the germination of 
mycorrhizal fungal spores, hyphal growth and function, multiplication of bacteroides 
in rhizobial nodules, and nutritional symbiotic benefits [64]. The different types of 
carrier-substrates used in bioformulation include plant waste materials (sawdust), 
inert materials (Vermiculite), soil (Peat), and plain lyophilized microbial culture 
(bioformulation of Rhizobium and Azospirillum). The NPs’ of carrier substrate-
based bioformulations has been beneficial to soil in increasing its nutrient uptake 
and enhancing growth of plants. Therefore, the use of NPs with different application 
in field of agriculture led to their efficacy and toxicity assay as well so that the NPs 
do not harm the environment. Nano-bioformulation is advantageous as it delivers the 
selective potential micro-organism at site of delivery in accurate concentration that 
avoids the suppression of cell numbers by indigenous population [65]. 

4 Inhibitory and Toxic Effect of NPs 

There have been a lot of applications of NPs for enhancing the growth and devel-
opment of plants, either in the form of direct application or in the form of biofor-
mulations mixed with microbes. However, the less studies part of the nanoparticle 
on plants is their inhibitory effects on growth and development (shown in Table 4). 
Water-soluble fullerenes exerted an inhibitory effect on the growth of the plants by 
disrupting auxin distribution, abnormal hormone distribution and cell division, and 
abnormal microtubule distribution and mitochondrial activity [66]. In another study 
by Salama et al. [67], it was found that silver NPs possessed a positive effect at 
lower concentrations but inhibited growth of the plants at concentration higher than 
60 ppm. The possible reason for this inhibitory effect could be the accumulation of 
silver NPs in the roots of the plants. Another study by Lin and Xang [68] concluded 
that higher concentrations of Zn or ZnONPs totally stopped the elongation of root 
in plants species tested. Furthermore, it was found that the inhibition occurred at 
the seed incubation process stage. The study by Nekrasova et al. [69] revealed that 
the copper ions and copper oxide NPs suppressed photosynthesis at a concentra-
tion of 0.5 mg/l and 1.0 mg/l, respectively. At higher concentration of NPs, catalase 
and peroxidase activities were also decreased. Among copper ions and NPs former 
inhibited the enzyme activity more strongly. Inhibitory effect on photosynthesis also 
followed the same trend, stronger in copper ions than in nanoparticle which could
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be credited to the disturbance in the pigment complex or due to RuBP carboxylase 
inactivation. Germination percentage reduced on exposure to silver and copper NPs 
and severe reduction in root and shoot length of plants observed when exposed to 
copper NPs [70]. Another study by Wang et al. [71] demonstrated the inhibitory 
effect of ZnONPs on the root and shoot growth development of tomato plants. Their 
enzymatic activity had also been disrupted and also decreased the content of chloro-
phyll a and b in the plants. In conclusion, the effect of nanomaterials or NPs on the 
plant is highly varied and even small variations in its concentrations can lead to the 
developmental activity being inhibited. In some studies, smaller concentrations have 
inhibitory effect but higher concentration could enhance the growth and production 
of plants. Therefore, it becomes highly important to take care of the concentration 
of NPs being applied to plants.

5 Critical Literature Analysis 

The literature analysis was done only in the context of keywords to extract the infor-
mation out of studies done on nanotechnology (Figs. 3 and 4) for sustainable agricul-
ture. All the type of bibliographic analysis has been excluded as that would have been 
beyond the scope of this chapter. The literature analysis was done using literature 
extraction from web of science database and with the topic, “nanotechnology for 
sustainable agriculture”. There were no limits with regard to time span or the type 
of articles set for analysis. It was found that most of the research is focussed upon 
silver NPs followed by ZnO and gold NPs, as evident from Fig. 2 (co-occurrence 
network map of the keyword plus). In the same map, it was observed that the liter-
ature keywords are basically categorized into three different domains, one in which 
nanotechnology aspects related to NPs have been discussed, second in which in-vitro 
studies ranging from drug delivery, encapsulation, controlled release and antifungal 
and antimicrobial activity keywords have been highlighted. Third domain is perhaps 
the field aspect in which toxicity, growth are highlighted. The thematic evolution map 
suggests the phases in which the study on NPs and nanotechnology has emerged with 
progress in time.

6 Future Perspectives and Challenges 

The use of nanomaterial for the promotion of growth in plants has long been studied at 
the experimental level but its implementation at the farm level still remains in infancy. 
The situation arises due to the limited knowledge, and alterations in the effect even 
at minute concentrations of nanomaterials. Therefore, more studies are required to 
study their effect on plants along with their inhabiting micro-flora in the region. With 
expanding knowledge and their huge potential in agriculture, nanomaterials could 
play a pivotal role in the enhancement of plant growth promotion sustainably.
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Table 4 Inhibitory effect of various NPs on different plants 

Nanoparticle Plant Method used Effect References 

Water-soluble 
fullerenes 

Arabidopsis thaliana Transgenic 
seedling lines 
expressing 
fluorescent 
makers 

Disrupted auxin 
distribution, aberrant 
spindle, abnormal 
microtubule 
arrangement 

[71] 

Silver NPs Phaseolus 
vulgarisL., Zea mays 
L. 

Plant 
application 

At a concentration > 
60 ppm the growth of 
the plants was inhibited 

[67] 

Multi-walled 
carbon 
nanotubes, 
aluminium, 
alumina, zinc, 
and zinc oxide 

Radish, rape, 
rye-grass, lettuce, 
corn, and cucumber 

Seed 
application 

Suspensions of 
2000 mg/L Zn and ZnO 
solution terminated root 
elongation of the plants 

[68] 

Copper (II) 
ions and copper 
oxide NPs 

Elodea densa Planch Plant 
treatment 

At high concentration of 
NPs photosynthetic 
activity was inhibited 
and the inhibition 
increased with 
increasing concentration 

[69] 

Silver, copper, 
and iron NPs  

Wheat (Triticum 
aestivum) 

Seed treatment Copper inhibited while 
iron stimulated wheat 
germination and growth 

[70] 

Zinc oxide NPs Tomato plants 
Solanum 
lycopersicumL. 

Seedling 
(3 weeks) 

Significantly inhibited 
tomato root and shoot 
growth, decreased 
chlorophylls aand b, and  
reduced photosynthetic 
efficiency 

[71] 

TiO2NPs Triticum aestivumL. Seed treatment At suitable 
concentrations of NPs 
seed germination was 
increased but very low 
concentrations of NPs 
actually decreased the 
seed germination 

[72] 

Aluminium 
oxide, silicon 
dioxide, 
magnetite, and 
zinc oxide 

Arabidopsis thaliana Plant 
treatment 

Direct exposure to NPs 
causes phytotoxicity in 
plants 

[73] 

Aluminium 
oxide NPs 

Nicotina tabacumL. 
cv. Bright Yellow-2 
suspension-cultured 
cells (BY-2) 

NA Aluminium oxide NPs 
induce programmed cell 
death in plant cells 

[74]

(continued)
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Table 4 (continued)

Nanoparticle Plant Method used Effect References

Ceria NPs Lactucaplants Plant 
treatment 

CeO2NPs were toxic to  
three kinds of Lactuca 
plants and their toxicity 
varied 

[75] 

ZnO NPs Arabidopsis 
thalianaColumbia 
wild-type, the 
ROS-deficient 
mutants respiratory 
burst oxidase 
homologue D 
(rbohD) and rbohF 

Seed treatment ZnO and Zn2+inhibited 
primary root growth; 
ZnO strongly inhibited 
elongation zones, 
whereas Zn2+ had a 
stronger toxic effect on 
meristem cells 

[76]

Fig. 2 Co-occurrence network map of the keyword plus

7 Conclusions 

NPs of metals and metal oxides have long been used in the treatment of diseases and 
delivering effects in humans with high precision due to their small size. The time has 
come to use nanotechnology in a very efficient manner for the promotion of plant 
growth as well. Various studies are being carried out to assess the positive effects 
of the nanomaterials on plant growth. There are also few studies showing the toxic 
effect of nanomaterials on plants if the slight changes in their concentration occur. 
Various metal NPs such as Ti, Ag, and Au are showing positive effects on plant growth 
promotion, while Cu has relatively proven to be toxic. Other nanomaterials such as
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Fig. 3 Co-occurrence development degree of keyword plus 

Fig. 4 Thematic evolution map of the keywords analysed during literature survey

graphene oxide and fullerene have also shown positive effects for the promotion 
of plant growth and if precise standardizations are carried out, nanomaterials could 
prove to be phenomenal. Therefore, at the farm level precise standardization of 
nanomaterials is required for mass-scale usability and acceptance among common 
people.
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Nanotechnology for Bioenergy 
and Biofuel Production 

Amruta P. Kanakdande and Rajaram S. Mane 

Abstract Biofuel is one of the best alternatives for petroleum-derived fuels glob-
ally, especially in the current scenario, where fossil fuels are day-by-day depleting. 
Biofuels are viable source of renewable energy in contrast to the finite nature, geopo-
litical instability, and deleterious global effects of fossil fuel energy. The use of 
nanotechnology in the field of biofuel and bioenergy is emerging as a novel and effi-
cient way to produce and enhance the eco-friendly production of renewable biofuels. 
Several methods have recently been proposed and adopted to prepare metallic, 
magnetic, and metal oxide nanoparticles (NPs) for enhancing biofuel production 
yield. The unique properties of NPs, such as easy design, high chemical stability, 
greater surface area-to-volume ratio, catalytic activity, and reusability, have made 
them as effective biofuel additives. In this context, current chapter explores the use 
of nanomaterials for biofuel production application. In addition to this, various types 
of nanocatalysts and their comprehensive applications in the production of biofuels 
followed significance have also been briefed. 

Keywords Bioenergy · Biofuel · Nanoparticles · Nanocatalyst 

1 Introduction 

Environmental impact of conventional fossil fuel has pushed researchers to explore 
substitute fuel which addresses the concern of cost, environmental issues like global 
warming, and security [1]. In this context, nanotechnology plays a crucial role in 
the development of sustainable bioenergy and biofuel production. Different nano-
materials like metal nanoparticles, nanofibers, nanotubes, and nanosheets are being
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reported to have their direct or indirect applications in the production of biofuels 
such as bioethanol and biodiesel. Basically, these biofuels are eco-friendly, renew-
able energy resources due to which they have gained special attention as an alternative 
energy source [2]. The core principle to explore nanotechnology in biofuel industry 
provides scientific (clean, green, and catalytic chemistry) and engineering solutions 
together in the quest of eco-friendly energy sources [3]. Also, the advances in the 
nanoscaffolds design (nanomaterials support) for immobilizing bioenergy-producing 
enzymes and the recent trends in biomass processing (untreated/treated agriculture, 
municipal and food waste, grasses, algal, etc., using advanced nanobiocatalysts for 
biofuel production) are useful essence of nanotechnology toward bioenergy sector. 
Also, the scale-up study of bioenergy production using nanomaterials/nanoparticles 
(NPs) immobilized enzymes and biofuel harvesting using nanomaterials; in this 
approach, nanotechnology contributed toward bioenergy sector [4]. Nanotechnology 
offers a significant deal of interest for the optimization of biodiesel production using 
nanomaterial-based catalysts for efficient, durable, economic, and stable nanocata-
lysts for attaining the higher production yield and quality of biodiesel. Various metal 
oxide nanocatalysts such as titanium dioxide (TiO2) [5], calcium oxide (CaO2) [6], 
magnesium oxide (MgO2) [7], and strontium oxide (SrO) [8] have been used for high 
catalytic performance followed biodiesel production. Scientists and engineers are 
continuously researching to improve the various components of biodiesel including 
biomass/feedstock pretreatments, process optimization parameters, reactor designs, 
product quality and yields, capital cost, public acceptance, and market availability 
[9]. One of the greatest advantages of using nanomaterials for biofuel is their high 
surface area and unique characteristics like high degree of crystallinity, catalytic 
activity, stability, adsorption capacity, durability, and efficient storage which could 
collectively help to optimize the overall system. Use of nanomaterial’s of high poten-
tial for recovery, reusability, and recycling ability [10]. The combination of these 
unique features of nanomaterials has proven to be the efficient, economical, and 
mature which are still mostly at laboratory and pilot scales. The conventional systems 
should be replaced on developing them at commercial scale [11]. Biofuel generation 
from multiple approaches such as physical, biological (includes microbial and enzy-
matic), chemical, and biochemical catalysis with the flavor of nanotechnology from 
multiple feedstocks is the key factor for biofuel production. A suitable conversion 
technology for lignocellulosic biomass via lignin valorization can be the key for 
complete utilization of lignocellulosic waste. 

Cellulose and hemicellulose mainly consist of monomeric sugar units, and after 
proper pre-treatment, lignocellulosic biomass sugar components via further saccha-
rification are converted into suitable biofuel [12]. However, the lignin component 
consists of phenyl propane unit, which is more recalcitrant than the cellulose and 
hemicellulose. During kraft pulping process lignin is utilized for the co-power genera-
tion which can be separated and suitably valorized into useful precursors for biofuel 
generation. The optimization process for biofuel production is normally done by 
understanding the whole process. Even biofuels productions have a direct impact 
on carbon sink; therefore, biofuels produced from oil-based fuels have a better 
choice as compared to greenhouse gas emissions into the environment critics of
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biofuels, which ultimately depends on the route of production. Therefore, majority 
of the governments of the various countries are taking initiatives to establish several 
biofuel industries by generating and providing funds for research and development 
along with mandating laws of Environmental Protection Agency (EPA) for specific 
percentage of blending of biofuel with conventional fuel. Renewable Fuel Standard 
(RFS) provides harness power of biofuels and infrastructure, and high production 
of biofuels must be widely available for customers with the competitive price of 
conventional biofuel [13]. 

2 Classification of Biofuels 

Biofuel is broadly classified by the raw materials or sources used for its produc-
tion. Basically, biofuel is classified into two types, i.e., primary and secondary. 
Primary biofuels are derived from plants, animals waste, forests, and crop residues 
while secondary biofuels are directly synthesized by using microorganisms [14]. 
Another basis for its classification is origin of raw material; biofuels are classified 
into first-generation (1G), second-generation (2G), third-generation (3G), and fourth-
generation (4G) [15] (Fig. 1). In the first-generation biofuel, sugar, starch, vegetable 
oils, and fats are converted into bio-alcohol from (n = 1–4) fatty acid methyl esters 
(FAME). Second-generation biofuel production depends on the carbon negative in 
terms of the carbon dioxide concentration in the environment, which majorly depends 
on the lignocellulosic biomass (plant material) [16]. The third and fourth genera-
tions of the biofuel utilize the algae and the blue-green algae (BGA) machinery for 
converting lipid into biofuel. Basically, in third-generation biofuel, algae is directly 
used for the production of the biofuel, where in the fourth generation, metabolic 
engineered algae from the oxygenic photosynthetic microorganism creates artificial 
carbon reservoir [17].

Furthermore, they are known as chemically synthesized biofuels and biologically 
synthesized biofuels. In chemical synthesis, in addition to catalyst various process 
parameters like pH, temperature, and pressure are playing significant role in process 
control. Due to more specific product formation rate and low cost for separation 
catalysts are preferred over the various physical processes. In biological methods, 
with the help of bacteria, halophilic archaea, fungi, and algae the complex lignocel-
lulosic biomass is treated microbially. Moreover, other than this, several biological 
processes include various kinds of biocatalysts, i.e., enzymes for the production of 
the biofuels (Fig. 2).

These enzymes include cellulases, xylanases, and lignolytic enzymes such as 
lignin peroxidase (LiP), manganese peroxidase (MnP), laccase, lytic polysaccha-
ride monooxygenase (LPMO), multicopper oxidases, cellobiose dehydrogenase 
(CBDH), and lipases. To date, all the biological processes demand a high produc-
tion cost than the chemical process. The cost-effectiveness of the biological process 
can only be possible to reduce by understanding the microbial pathways, enzymatic 
reduction, and substrate utilization strategy. However, new mutated strains (modified
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Fig. 1 Types and sources of biofuels

Fig. 2 Applications of nanotechnology in biofuel
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for special character) have shown various promises to overcome all the barriers. The 
nanostructure offers large surface area for high enzyme loading, higher enzymatic 
stability, and possible chances of enzyme reusability, which might reduce the opera-
tional cost for large-scale biofuel production plants [18]. The techniques developed 
for enzymes immobilization using nanotechnology include nano-encapsulation, self-
entrapment with silaffin, and adsorption. NPs have also been used for extracting the 
oils from algae without harming the cells. More specifically, for algal fuel production, 
nanomaterials like silica, metal oxide, single-walled carbon nanotubes, and nano-clay 
have been applied in various stages of lipid accumulation, extraction, and transester-
ification reaction [19]. Use of these techniques could reduce the production cost of 
algae biofuel plants at commercial scale. Another application of nanoparticle includes 
fuel additives to encourage blending performance of fuel which is another growing 
application of nanotechnology. The utilization of NPs like alumina and hollow 
carbon nanotubes showed enhanced combustion characteristics of biodiesel-operated 
engines with less harmful emissions [20]. In the anaerobic digestion, the employment 
of nano-iron oxide, zero-valence iron, nano-fly ash, nano-bottom ash, and bioactive 
nano-metal oxides has increased the performance of methane production [21]. 

3 Nanotechnology for Producing Biofuel 

3.1 Nanoparticles in Biofuel Production 

The NPs possess a large surface area and super-magnetic properties under the applied 
field which makes ease for the separation from biofuel cell and helps in their cycling 
of enzymes. Several NPs act as a supporting system for the nanocatalyst to apply 
for biofuel production. For example, magnetic NPs and carbon nanotubes (CNTs) 
act as a supporting system for enzymes. Other than these, metals, metal oxides, 
heterogeneous catalysts, acid-functionalized particles, etc., are also used. A range of 
nanomaterials like NPs, nanotubes, and nanosheets of carbon-based nanocatalysts 
like carbon nanotubes [22], carbon nanofibers [23], graphene oxide [24], and biochar 
[25] hold great potential for biodiesel production from a wide range of feedstocks, 
especially from non-food ones. These nanocatalysts are majorly used in the transes-
terification reactions. The transesterification reaction is used to reduce viscosity of 
oil and to produce the best quality biodiesel. Mainly two types of transesterification 
process are there: (a) with catalyst and (b) without catalyst. The biodiesel conver-
sion rate and yield improve with the consumption of catalysts [26, 27]. Utilization 
of nanomaterials like nano-MgO, potassium bitartrate (KC4H5O6), and lithium ion 
impregnated with calcium oxide and nanocrystalline calcium oxides were reported 
previously to produce biodiesel from various feedstocks [28].



288 A. P. Kanakdande and R. S. Mane

3.2 Carbon Nanotubes 

CNTs are allotropes of carbon formed by rolling up sheets of graphene to a cylin-
drical shape. Due to their potential in carrying redox reactions and electron transfer 
kinetics, NCTs are primarily used in the fabrication of biosensors and microbial fuel 
cells [29]. The CNTs are of two types, multi-walled carbon nanotubes (MWCNTs) 
are having multiple layers of graphene, whereas single-walled carbon nanotubes 
(SWCNTs) are consisting of a single atomic layer of carbon atoms [30–32]. These 
CNTs demonstrate application in a diesel engine when ethanol was blended with 
fuel [33, 34]. Moreover, ethanol has been employed as a carbon source to obtain 
high-quality CNTs by using a chemical vapor deposition (CVD) in the past [35, 36]. 
Also, even in the flame process using a burner, with the supply of ethanol as feed gas 
CNTs were also synthesized [37]. During the anaerobic digestion process, employ-
ment of CNTs resulted in a reduction of start-up period and enhanced performance 
as compared to other activated carbon (AC) particles. In a similar kind of study, 
the immobilization of Enterobacter aerogenes over functionalized MWCNT-COOH 
was used to enhance the hydrogen production rate (2.72 L/L/h), hydrogen yield 
(2.2 mol/mol glucose), and glucose degradation efficiency (96.20%) in comparison 
with the free cells [38]. Furthermore, employment of CNTs in biofuel generation 
increases the overall enzyme concentration and few properties of CNTs like porosity 
and conductivity due to which they are important for enzyme immobilization process 
[39]. 

3.3 Acid–Functionalized Nanoparticles 

The core–shell structured heteropoly acid (HPA)-functionalized zeolitic imidazo-
late frameworks-8 (ZIF-8) NPs were highly porous and heterogeneous catalysts 
for synthesis of biodiesel. Bifunctional heterogeneous catalyst was synthesized by 
using HPA functionalization on ZIF-8 nanoparticles. The HPA-functionalized ZIF-8 
catalyst showed a high reaction efficiency of the benzyl alcohol oxidation process, 
suggesting as an effective catalyst for wide range of applications. These bifunc-
tional core–shell materials are environmentally friendly heterogeneous catalysts in 
transesterification of rapeseed oil with methanol to produce a high-quality biodiesel 
[40]. A robust, magnetically recoverable Fe3O4@SiO2-SO3H core@shell nanopar-
ticulate acid catalyst as a heterogeneous catalyst for the process of transesterifica-
tion and esterification of triglycerides and free fatty acids in Jatropha curcas oil 
(JCO) to a FAME mixture has successfully been synthesized by a stepwise co-
precipitation, coating, and functionalization process. Thus as-obtained core–shell 
catalyst showed 98 ± 1% conversion yield under optimized reaction conditions such 
as 9:1 methanol:oil molar ratio and 8%wt. catalyst loading at a temperature of 80 °C 
with the time duration of 3.5 h. The transesterification of JCO to FAME using the 
present catalyst was benefitted from very low activation energy 37.0 kJ mol−1. The
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solid acid catalyst can exhibit excellent chemical and thermal stability and also 
reusability based on easy separation from the reaction mixture due to its inherently 
magnetic nature [41]. 

3.4 Magnetic Nanoparticles 

Characteristics of magnetic NPs include (a) high surface-area-to-volume ratio, (b) 
quantum size effect, and (c) ability to carry other compounds, such as drugs due to 
their small sizes. An additional advantage of magnetic NPs over others is that they can 
be utilized as a highly useful catalyst, making immobilized particles which are easily 
recoverable by applying suitable magnetic field without exerting any toxic effect [42, 
43]. Enzymes like cellulases and lipases are frequently used in the biofuel industries 
[44, 45]. Many studies on magnetic NPs have mentioned their role in immobiliza-
tion of enzymes for biofuel generation. Enzymes can be reused after immobilizing 
them to a support matrix coated with certain nanomaterials. This process is suit-
able for hydrolysis of lignocellulosic biomass [46]. The super-magnetic properties 
of magnetic NPs are useful in separation of immobilized enzymes which in fact 
increases their reusability [47]. Many such attempts have been made to immobi-
lize cellulose on magnetic NPs for hydrolysis of biomass [48]. Due to biodegrad-
able nature, enzymes are widely used for different biotechnological applications. 
However, their instability, high cost of operability, hard recovery, and non-reusable 
ability have made them the most critical and challenging which can be solved by 
the immobilization of enzymes in nanostructured materials as nanobiocatalysts. It 
has been reported that the surface coating or modification of magnetic NPs with 
a variety of complex materials, such as polymers, silica, metallic-organic frame-
works (MOFs), and carbon-based materials, might allow to improve few properties 
by providing potential industrial exploitability [49]. 

Methyl-functionalized silica and methyl-functionalized cobalt ferrite–silica 
(CoFe2O4@SiO2–CH3) NPs were used to improve syngas–water mass transfer. 
Of these, CoFe2O4@SiO2–CH3 NPs showed a better enhancement of syngas mass 
transfer. These NPs were recovered by using a magnet which were reused for five 
times to evaluate reusability [50]. Under optimum conditions, biodiesel production 
from crude Jatropha was measured at 94%, but after four cycles, it was decreased to 
85% and then, due to the inactivation of the NPs, gradually decreased further. The 
reason behind the inactivation of NPs is that the deposition of components of the 
reaction medium could block the pores after the fourth, seventh, and ninth cycles. 
The surface area was also reduced to 252 m2/g, which was less than earlier [51]. 
In biodiesel production, magnetic nano-ferrites doped with calcium have a signifi-
cant effect, enhancing production yield by almost 85% when used soybean cooking 
oils. It was demonstrated that employing sugarcane leaves and MnO2 nanoparticles 
increased bioethanol production [52]. Research work has demonstrated the potential 
of implementing MNPs to hydrolyze the microalgae cell wall by immobilizing the 
cellulose enzyme on MNPs accompanied by lipid extraction [53].
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In the absence of a magnetic field, MNPs get dispersed in the same manner as 
any other nanoparticles. MNPs are not only applicable as an enzyme immobilization 
support, as they can also be coated or used for attachment of other catalytically active 
nanomaterials, making them useful nanocatalysts for various applications. These 
nanocatalysts are promisingly used for hydrogenation, photo-oxidation, inductive 
heating by application of high-frequency magnetic fields [54, 55]. 

In addition to zero-valent nanoparticles, iron oxide nanoparticles, such as Fe2O3 

and Fe3O4, have been explored for the bio-hydrogen production using glucose, 
wastewater, and sugarcane bagasse [56–58]. Nano-zero-valent iron (nZVI) and Fe2O3 

were used for the enhancement of biogas production using waste-activated sludge 
[59]. The addition of 10 mg/g of total suspended solids (TSS) nZVI and 100 mg/g 
TSS Fe2O3 NPs increased the methane production by 120 and 117% of control, 
suggesting the addition of a low concentration of NPs can promote microbial growth 
as well as activities of key enzymes for higher biogas production. 

3.5 Metallic Nanoparticles 

Metallic NPs have so far not been explored widely. Various studies have to be 
performed to evaluate their performance toward biofuel production. Metallic NPs 
are known for their higher surface area, enabling many enzymes like oxidoreductase 
to bind with magnetic NP, as a result of improving electron transfer capability [60]. 
Metallic NPs may merge with structured way to enhance their electrocatalytic activity 
and create a biofuel cell with high loading capacity and good electron transfer rate 
when employed in a layer-by-layer assembly with suitable polymers and enzymes 
[61]. Biofuel cells can be configured with gold (Au), platinum (Pt), and Pt 0.75-
Sn0.25 supported by MWCNTs, whereas Au NPs demonstrate great electrical conduc-
tivity and biocompatibility, and better catalytic activity than PtNPs. The combination 
of Pt and Sn NPs showed high oxidation activity for ethanol [62]. These Au NPs 
(5 nm) have ability for improving substrate utilization capacity by 56% due to which 
promoted biohydrogen generation rate by 46% can be achieved [63]. Because of 
their smaller size and larger surface area, silver (Ag) NPs facilitate biohydrogen 
generation by adhering microbial cells to active sites. 

3.6 Metal Oxide Nanoparticles 

Metal oxide NPs are best known for their uses in sensors, catalysts, and electronic 
materials. Metal oxides like KOH, MoO3, ZnO, V2O5, Co3O4, and NiO are used 
for the conversion of vegetable oil to biofuel and have the capacity to catalyze the 
transformation of oil into organic liquid products [64]. Metal oxides are being used 
as a support system for synthesis of biodiesel because of their high catalytic activity. 
Biodiesel production using nanocatalysts like CaO and Al2O3 is carried out efficiently
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in the past. Jatropha oil acts as a good source of feedstock, wherein biodiesels are 
synthesized by transesterification reaction process with 82.3% yield using methanol 
and oil [65]. 

4 Tailoring the Nanocatalysts for Biodiesel Production 

Industrially, conventional homogeneous catalysts have long been used in the trans-
esterification reaction for biodiesel production [66]. However, the catalyst requires 
extensive washing and purification steps, causing undesired saponification when 
treated with high-FFA content feedstocks [67]. The enzymatic transesterification of 
lipases is commonly associated with a high production cost and fast deactivation 
under severe reaction conditions, limiting the production of scalable commercial 
applications [68]. An alternative method to overcome these challenges is to use 
heterogeneous catalysts. 

An effective ZrO2-based bifunctional heterogeneous catalyst is used to convert 
microalgae lipid into biodiesel in transesterification reaction. The effect of several 
process parameters on the surface area of ZrO2 prepared by surfactant-assisted sol– 
gel method followed by a hydrothermal treatment using non-ionic and cationic surfac-
tants under basic conditions is investigated. Hydrothermal energy, a non-conventional 
energy source for synthesis of NPs, prevents particle agglomeration and allows for 
uniform grain size with regular morphology [69]. The optimization of process param-
eters was investigated by using response surface methodology central composite 
design. Mathematical models were developed and validated to predict the maximum 
surface area of ZrO2. The acidic and basic properties of ZrO2 were tailored after modi-
fication with bismuth oxide (Bi2O3) via incipient wetness impregnation method. The 
Bi2O3 was supported on the ZrO2 via incipient wetness impregnation method. The 
catalysts were characterized by using different of techniques where the surfactant-
assisted ZrO2 NPs possess higher surface area, better acid–base properties, and well-
formed pore structures than bare ZrO2. The highest yield of fatty acid methyl esters 
(73.21%) was achieved for the Bi2O3/ZrO2. The catalytic activity of the developed 
catalysts was linearly correlated with the total densities of the acidic and basic sites 
[70]. 

Extensive research has been focusing on synthesizing the novel solid acid cata-
lysts using organic polymer and imidazole salt-based bifunctional catalysts under 
milder reaction conditions as compared to previous reported literature [71]. Pan et al. 
reported the synthesis of an imidazole salt-based catalyst, namely 1, 3-disulfonic acid 
imidazolium tetrachloroferrate bifunctional catalyst possessing Lewis (L) acid and 
Brønsted (B) acidic properties. In another study, synthesis of heterogeneous solid acid 
catalysts using ionic liquids functionalized with melamine formaldehyde polymer 
was reported. The as-obtained catalyst explored for biodiesel production from oleic 
acid under mild reaction conditions demonstrated reusability with the production 
efficiency of 88% in four runs [72].
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Dai et al. reported the synthesis of Si and Al-doped lithium carbonate compound 
derived from clay materials using one-pot blending and grinding method. The 
optimum doping and air calcination temperature significantly increase the number 
of active basic sites followed by the catalytic activity. Beyond optimum calcination 
temperature, the surface morphology reveals high agglomeration capability, which 
further decreases the pore size and diameter. The catalyst was utilized for biodiesel 
production using soybean oil with optimum reaction parameters such as reaction 
temperature of − 65 °C, time of 4 h, 36:1 methanol:oil molar ratio with 8 wt% cata-
lyst loading capacity that produces 98–99% yield. The catalyst was however recycled 
for seventh runs with insignificant loss of activity [73]. Nanocatalysts immobilized 
over enzymes can be a new perspective in the production of biodiesel. However, it 
still cannot be used on commercial scale due to some limitations like long reaction 
time, type of enzyme immobilized, operating conditions like pH and temperature 
[74, 75]. 

As a bulk, metal oxide-based catalysts confirm instability at high temperatures, 
which leads to catalyst deactivation along with the metal leaching and surface defor-
mation creating major hindrance in increased biodiesel production. To overcome 
these serious drawbacks, several recent studies have been focused pertinently on 
developing a wide range of nanocatalysts based on supported materials like zeolites, 
zirconia, polymers, and heteropoly acid catalysts, which significantly impart chem-
ical and structural stability to sustain at high reaction temperature followed longevity 
for obtaining increased catalytic activity [76] (Fig. 3).

5 Conclusions and Future Perspectives 

Nanomaterials have promising application in biofuel production due to their small 
size, large surface area-to-volume ratio, and good catalytic properties which are 
responsible for enhancing the production of various types of biofuel such as biohy-
drogen, biodiesel, and bioethanol. The present chapter discussed the different types 
of nanomaterials applied in the bioenergy field to act as a nanocatalyst efficiently. 
In addition to this, the chapter discussed the extended strategies for recycling of 
nanocatalyst. From an up-to-date study in nanotechnology, we conclude that these 
approaches can be used in biofuel industries to enhance biofuel production and mini-
mize the cost of biofuels due to unique structural properties of nanomaterials used as a 
nanocatalyst. Also, in the future the study can be extended toward the different waste 
materials that can be explored as a nanocatalyst, and also with the implementation 
of some of these key strategies, we can increase its efficiency also.
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Fig. 3 Comparative snapshot showing different types of catalysts
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for the Treatment and Management 
of Diabetes Mellitus 
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Abstract Diabetes mellitus (DM) is an emergent, severe health issue, widely spread 
throughout the world that needs to be tackled with enormous concern. There has 
been great interest in the use of nanomaterials for the treatment and management of 
diabetes mellitus due to their versatile theranostic applications and improved patient 
compliance. Nanoformulations can deliver drugs at the targeted sites, in a controlled 
manner for a prolonged period. They reduce drug toxicity and enhance drug stability, 
solubility, absorption, permeation, and bioavailability. Lipid-based nanoformula-
tion has shown great potential in delivering the active therapeutic ingredient to the 
intestinal lymphatic system, thus avoiding the first-pass metabolism and eliminating 
P-glycoprotein (P-gp) efflux and permeability-related issues. The use of nanocarriers 
can ameliorate the accumulation of ASOs in organs and tissues pertinent to diabetes 
and their delivery into a specific cell. Encapsulating insulin into nanocarrier can over-
come problems like short half-life, low intestinal permeability and bioavailability. 
This chapter explores the therapeutic potential of advanced nanomedicines like lipo-
somes, niosomes, nanocarriers, magnetic and polymeric NPs, carbon NPs, Au NPs, 
Ag NPs, and ASOs for the treatment of diabetes mellitus. Nanomaterials of hypo-
glycemic drugs can offer enhanced diabetes management along with the minimized 
threat of acute and chronic complications. 
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1 Introduction 

Nanomaterials have enormous pharmaceutical applications; for instance, nanopar-
ticle drug delivery systems are becoming emerging technologies. Pharmaceu-
tical nanomaterials include nanostructured lipid carriers (NLCs), nanosuspensions, 
nanoemulsions, carbon nanotubes, nanocomposites, solid lipid nanoparticles (SLNs), 
magnetic nanoparticles, lipid–drug conjugates, nanocrystals, dendrimers, liposomes, 
niosomes, etc., for targeted drug delivery. Nanomaterials are nano-sized particles of 
sizes less than 100 nm [1]. Nanoparticles exhibit excellent physical as well as chem-
ical stability, lower density, high surface area, improved solubility, and bioavailability 
which have made them excellent drug carriers. Nanomaterials have several applica-
tions including bio-inspired wearable electronics, biomedical, renal management, 
treatment and diagnosis of cancer, diagnosis, and treatment of diabetes mellitus, 
Alzheimer’s disease, targeted drug delivery systems, MRI, biomedical engineering 
gene delivery, immunotherapy, 3D printing, and theranostic materials. Theranostic 
exhibits simultaneous diagnostic and therapeutic applications, in the field of precision 
and personalized medicine [1, 2]. 

Functional nanomaterials have been widely used in life sciences as they demon-
strate excellent physicochemical properties, bioavailability, and good biocompati-
bility [2]. In the last few decades, nanomaterials have received huge importance. The 
applications of nanotechnology and nanomaterials to drug delivery include the use 
of precisely engineered materials to develop novel therapies and devices that may 
decrease toxicity as well as augment efficacy [2, 3]. As nanomaterials are extremely 
small in size, they can cross through various tissues, barriers, organs, and even cells 
to exert favourable therapeutic effects after critical and careful modification and 
engineering. Diabetes, being a chronic, lifelong metabolic disorder, is characterized 
by impaired secretion of insulin or deficiency in insulin secretion which leads to 
hyperglycemia. Diabetes mellitus type I is an autoimmune, juvenile diabetes that 
results from an insulin deficiency. Diabetes mellitus type II is non-insulin-dependent 
diabetes, which accounts for around 95% of diabetes [4]. 

If the diabetes is not cured properly, it may result in severe complications. Diabetes 
mellitus, one of the most common chronic metabolic disorders, is characterized by 
hyperglycemia that results from insulin resistance, or no insulin secretion, or both. 
Pancreas secret hormone is called insulin. Insulin metabolizes glucose that can be 
obtained from food for energy. People with diabetes mellitus type II, the pancreas 
either does not produce enough insulin or the pancreas can produce insulin but the 
liver, muscle, and fat cells do not use it. This condition is known as insulin resistance. 
When a cell becomes insulin resistant, it requires more insulin to convert glucose into 
energy, which leads to hyperglycemia or increases blood sugar. Diabetes mellitus is 
characterized by hyperglycemia, insulin resistance, and relative insulin deficiency. 
Type II diabetes mellitus (TIIDM) may result due to lifestyle-related factors, genetic 
factors, and environmental and behavioural risk factors [5, 6]. Due to the progressive 
nature of the disease, the management and treatment of TIIDM is a challenging and 
complex issue. To reduce the overall risk in patients with TIIDM monitoring multiple
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Fig. 11.1 Role of SGLT II inhibitors in diabetes mellitus type II 

treatments like glucose, blood pressure, and lipids is essential [6, 7]. Insulin therapy 
is used in almost every diabetic patient to provide insulin replacement (Fig. 11.1). 

2 Need of Nanomaterials in Diabetes Management 

Conventional drug delivery system exhibits certain limitations like lack of efficacy 
due to improper dosage, first-pass metabolism, P-gp efflux, reduced potency or effects 
due to drug metabolism, and lack of target specificity [6, 7]. Nanoformulations offer 
certain advantages over conventional formulations, including enhanced intestinal 
drug permeation, enhanced gastric retention time, inhibits P-gp efflux, high speci-
ficity, improved efficiency, targeted drug delivery, sustained and controlled drug 
release, enhanced bioavailability, etc. Insulin delivery through nanoparticles is more 
significant as it is a more convenient, safe, and non-invasive route for insulin delivery 
in order to overcome limitations like insulin resistance in diabetes management [8].
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3 Nanomaterials for Oral Delivery as Antidiabetic Drug 

Drug loading into nanomaterials can improve the stability of the drug as it protects 
the drug from enzymatic and chemical degradation in the gastrointestinal tract (GIT). 
Nanoformulations enhance drug contact with GIT, gastric residence time, drug 
absorption as well as oral bioavailability. NPs can enhance intestinal permeation of 
insulin, mean residence time (MRT), and lymphatic uptake thereby avoiding first-pass 
metabolism. Over the last decade, nanoformulations have been studied for the admin-
istration of insulin [8, 9]. Insulin encapsulation into polymer-based nanoparticles can 
improve the oral bioavailability of insulin. In the last few decades, different nanofor-
mulations and polymers are being used to encapsulate insulin and deliver insulin 
orally. Various nanoformulations including nanostructured lipid carriers, niosomes, 
liposomes, solid lipid nanocarriers, nanocomposites, polymeric, gold nanoparticles, 
phospholipid micelle, lipid drug conjugate, dendrimers, etc., have been designed 
and studied for the management and treatment of diabetes mellitus [10, 11]. Carbon 
nanomaterials play important role in the biomedical field, drug delivery system, 
imaging, and biosensing. Shao et al. developed carbon nanoparticles by carboniza-
tion using a polysaccharide from Arctium lappa L. root as the carbon source; these 
inhibit A-glucosidase activity and thereby induce a hypoglycemic effect in diabetic 
rats [12]. 

4 Role of Nanoparticles as Antidiabetic Therapeutics 

NPs offer many advantages including improved efficacy, reduced toxicity, enhanced 
biodistribution, improved bioavailability, and improved patient compliance [10, 11]. 
NPs can enhance the oral absorption rate of the antidiabetic drug which can be 
formed with biodegradable and biocompatible polymeric systems. They also can 
enhance the bioavailability of insulin. By formulating NP-based antidiabetic formu-
lations, drugs can be delivered precisely and safely in a controlled manner. NPs 
containing lipids increase lipophilicity and thus enhance the drug permeation across 
the gastrointestinal tract (GIT) wall. Partially water-soluble antidiabetic drugs can be 
formulated as NPs for improving solubility and bioavailability. Nanoparticles have 
several advantages over conventional dosage forms. Nanostructure-based sensors 
and imaging strategies like implantable nano-sensors or biosensors can be implanted 
into the body for continuous glucose monitoring and early diagnosis of diabetes 
[8–13].
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4.1 Nanoparticles in Diabetes 

Nanoparticles are the carrier of choice for antidiabetic drugs as these are showing 
higher intracellular and gastric uptake, thus enhancing solubility, bioavailability, and 
stability (Table 11.1) [14]. NPs can be formulated by various methods including 
emulsion solvent evaporation, spray drying, solvent displacement, diffusion solvent 
evaporation, supercritical fluid, supercritical antisolvent, ionotropic polyelectrolyte 
pre-gelation, nanoprecipitation, polyelectrolyte complexation, dispersion polymer-
ization, interfacial polymerization of the micro-emulsion, ionic gelation, solvent 
precipitation/dispersion, etc. [13]. They are of different types including polymeric 
NPs, magnetic NPs, metal-based or gold NPs, smart NPs, lipid-based NPs, solid lipid 
NPs, and biogenic NPs (Fig. 11.2) [14]. Diabetes patients should maintain glucose 
levels either through controlled monitoring or by oral insulin administration. Smart 
insulin is a commercially formulated nanoparticle formulation that releases insulin 
depending on lectin-mediated glucose binding [15].

Metallic NPs like zinc (Zn), gold (Au), silver (Ag), iron (Fe), and metal oxides 
have enormous medical and biological applications. Alkaladi et al. [27] studied the 
antidiabetic activity of zinc oxide and silver NPs which would significantly reduce 
blood glucose by acting as potent antidiabetic agents. MNPs with good biocompat-
ibility and excellent magnetic responsiveness are an outstanding class of materials 
that can be used for targeted drug delivery. Superparamagnetic iron oxide nanoparti-
cles (SPIONs) are biocompatible nanoparticles that are used as magnetic resonance 
imaging (MRI) contrast agents in magnetic resonance imaging for diagnostics and 
targeted drug delivery. Magnetic NPs labelled T-cells can be used as a non-invasive 
method for imaging the diabetic pancreas for diagnosis and treatment of diabetes. 
Ali et al. performed a comparative study of the antidiabetic effect of superparamag-
netic iron oxide nanoparticles on Type II diabetic rats and compared their effect to 
metformin treatment, wherein SPIONs significantly lowers blood glucose and lipid 
consequently plays a vital role in diabetes treatment. SPIONs extensively ameliorate 
glucose sensing and are the foremost component of the insulin signalling pathway. 
SPIONs are effective through multiple pathways as the used doses of SPIONs have 
produced an antidiabetic effect equivalent to metformin [28]. Zhao et al. formulated 
insulin NPs for transdermal drug delivery, using a supercritical antisolvent (SAS) 
micronization process where ultra-fine insulin NPs can be formulated with DMSO 
as a solvent and carbon dioxide as an antisolvent for the high rate of permeation [29]. 

4.2 Nanostructured Lipid Carriers 

Nanostructured lipid carrier is the next, and advanced generation solid lipid nanopar-
ticles consist of solid and liquid lipid (oil) to form unstructured matrices, which 
fundamentally improves the drug loading and decreases the drug expulsion from the 
matrix during storage. NLCs are lipid-based NPs, which are being introduced as
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Table 11.1 Nanoformulation delivery systems used for the treatment of diabetes mellitus [8, 16–26] 

Nanoformulation Antidiabetic drug Route of 
administration 

Outcome 

Nanostructured lipid 
carrier—NLC gel 

Gliclazide Transdermal Enhanced drug 
permeation and 
bioavailability of 
gliclazide 

Niosome Glipizide and 
Metformin 
Hydrochloride 

Oral route Niosomes are capable 
for sustained release of 
the drugs 

PEGylated liposomes Glibenclamide Injection through 
transdermal route 

Encapsulating the drug 
in the liposome core 
enabled sustained 
release 

Lipid-polymeric 
nanoparticles 

Insulin Oral route Nanoparticles provide 
insulin stability and 
intestinal permeability 

Zinc oxide NPs Docosahexaenoic acid Oral route Enhanced glucose 
lowering effects; 
Reduced insulin 
resistance 

Nanoliposomes Resveratrol Oral route Liposomal 
formulations have 
significantly decreased 
high glucose levels on 
enhancing the 
bioavailability of the 
drug 

Nanostructured lipid 
carriers 

Canagliflozin Oral route NLC has enhanced 
drug solubility and 
bioavailability 

Niosomes Metformin 
Hydrochloride 

Oral route Controlled release drug 
delivery of metformin 
hydrochloride with 
enhanced 
bioavailability 

Tegaderm™ silver 
nanoparticles 

Silver-containing 
alginate dressing 

Topical route This can be effectively 
used for the healing 
and management of the 
diabetic wound 

Solid lipid 
nanocarriers 

Repaglinide-loaded 
SLNs prepared using 
various surfactants 

Oral route Slow release of the 
drug repaglinide was 
observed from all 
formulations 

Lipid-based 
nanoparticles 

Gliclazide Oral route Prolonged drug release 
with a fivefold increase 
in oral 
bioavailability of 
gliclazide 

Chitosan-based 
glucose-responsive 
nanoparticles 

Insulin Oral route Prolonged intestinal 
residence time of 
insulin
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Fig. 11.2 Structure of dendrimers

the latest pharmaceutical delivery system. NLCs exhibit excellent solubilization and 
dispersing capacities and act as promising nanocarriers for oral drug delivery [30]. 

Lipids as carriers in drug delivery provide numerous opportunities due to their 
ability to enhance gastrointestinal solubilization and absorption of the drug by selec-
tive lymphatic uptake of week bioavailable drugs. Lipids in NLC possess various 
advantages like biocompatibility, high solubilization potential, easy manufacturing, 
and ability to enhance oral bioavailability of sparingly water-soluble drugs. Lipids 
eliminate various physiological barriers such as pre-systemic metabolism, gastroin-
testinal degradation of drugs, P-gp efflux, and permeability-related issues enhancing 
the bioavailability of biopharmaceutical classification system (BCS) class II and 
IV drugs. Lipid-based nanoformulation such as nanostructured lipid carriers has 
shown great potential in delivering the active therapeutic ingredient to the intestinal 
lymphatic system and to avoid the first-pass metabolism. After oral administration, 
NLC exhibits better-controlled release than other lipid-based formulations in the 
gastrointestinal tract. Nanostructured lipid carriers of poorly water-soluble drugs can 
maintain sufficient solubility at the intestinal absorption site on account of the small 
particle size and lipid solubilization. Among the various lipid nanocarrier formula-
tions, NLCs have grabbed more attention due to their unique binary lipid constituent 
of different chemical structures which provides an enormous scope of exploration of 
lipid vehicles that could improve in-vivo release through poorly water-soluble drugs. 

4.3 Nanostructured Lipid Carriers (NLCs) 

NLCs are administered by various routes like oral, parenteral, pulmonary, dermal, 
and ocular [31]. These NLCs have shown great potential in delivering therapeutic 
agents to the intestinal lymphatic system and to avoid the first pass metabolism
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and proved to enhance oral bioavailability and other pharmacokinetic properties of 
drugs to be administered orally. NLC can be prepared by using various methods 
including high-pressure homogenization, displacement or injection method, melting 
dispersion method, solvent emulsification-diffusion method, spray drying, hot melt 
emulsification, probe sonication technique, phase inversion method, ultrasonica-
tion technique, emulsification-solvent evaporation technique, solvent emulsification-
diffusion method, and micro-emulsion-based method [31, 32]. Pandey et al. formu-
lated repaglinide-loaded NLC gel using Gelucire as solid lipid, and Tween 80 as 
a surfactant. Formulated NLC has improved the pharmacokinetics and bioavail-
ability of repaglinide by transdermal route to manage diabetes mellitus [32]. Pioglita-
zone (PGZ) loaded NLCs fabricated using different concentrations of the surfactants 
(Tween 80 and Span 80), Compritol® 888 ATO was used as solid lipid, and Labrasol® 

was used as liquid lipid. It was found that PGZ-NLCs could be a promising drug 
delivery for the management of type II diabetes [33]. 

4.4 Liposome-Based Drug Delivery System 

Liposomes are nano- to micro-sized, comprising one or more phospholipid bilayers 
that are made up of natural non-toxic phospholipids and cholesterol, and surround 
an aqueous core. Phospholipids are major components of all biological membranes. 
Liposomes are showing excellent biocompatibility. Liposomes are nanocarriers that 
have the ability to encapsulate or entrap both hydrophilic as well as lipophilic drugs. 
Liposomes exhibit certain advantages including biocompatibility, biodegradability, 
and low toxicity that facilitate targeted or site-specific drug delivery. Liposome-
based delivery systems have been studied for their application in the oral delivery of 
therapeutic proteins and peptides; mainly for the oral delivery of the insulin hormone. 
Liposomes can be used to carry insulin as a targeted drug delivery system [34, 
35]. Amjadi et al. [36] formulated betanin-loaded sustained release nanoliposomes 
study revealed that nanoliposomes improved the stability as well as the therapeutic 
potential of betanin. Dwivedi et al. [37] formulated silica-coated liposomes for insulin 
delivery that was effective in reducing glucose levels. Ye et al. developed novel 
multivesicular liposomes DepoFoam™ technology for designing sustained release 
formulations of a protein like insulin and peptides like leuprolide, enkephalin, and 
octreotide. DepoFoam system has effectively encapsulated therapeutic proteins and 
peptides like biologically active macromolecules with higher drug loading, narrow 
particle size distribution, and controlled release profile [38]. 

Karathanasis et al. formulated insulin-loaded liposomes as aerosol insulin carriers 
based on the agglomerated vesicle technology. Cross-linking of liposomes with 
chemical bridging cleavable by cysteine was prepared. Liposomal carriers with 
cysteine encapsulated insulin release rapidly in the lungs [39].
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4.5 Niosome-Based Drug Delivery System 

Niosomes are non-ionic surfactant-based vesicles having a lamellar structure that is 
formed by the self-assembly of surfactant molecules. According to their structure, 
they can be administered through subcutaneous, intramuscular, pulmonary, intraperi-
toneal, intravenous, ocular, oral, and transdermal routes [40]. Niosomes can be 
formulated by various methods like thin-film hydration (handshaking) ether injection, 
reverse phase evaporation, emulsion, and bubble. Niosomes demonstrate potential 
applications in drug delivery system. It has several advantages including chemically 
stable, biocompatibility, biodegradable, and osmotically active. Niosomes, the poten-
tial drug carrier in drug delivery, act as reservoirs for drugs to attain maximum drug 
entrapment for sustained and prolonged drug release which enhances drug perme-
ation across the skin and improves the bioavailability of sparingly water-soluble 
drugs. Peptides like insulin can be fabricated as niosomes which prevent degradation 
of insulin by encapsulation of the drug along with the surfactant in their hydrophilic 
matrix, and thus sustained drug release can be achieved [40, 41]. Insulin-loaded 
niosomes of polyoxyethylene alkyl ethers (brij) have shown sustained release, good 
stability, and reduced toxicity in the presence of proteolytic enzymes of GIT [41]. 

4.6 Gold Nanoparticles in Diabetes Treatment 

Various nanodevices, nanotechnology-based biosensors, diagnostics therapeutics, 
and targeted drug delivery systems are being designed for theranostic applications 
in the management of various diseases. Gold nanoparticles (Au NPs) range from 
2 to 100 nm in size and can be synthesized in various shapes like hollow, rod, 
diamond, sphere, and prism as core–shell or solids, for excellent physicochem-
ical properties. AuNPs image can be observed using transmission electron micro-
graph (TEM). Au NPs are stable, biocompatible, and effective that show pharma-
ceutical applications like imaging, labelling, and sensing [42]. Omolaja et al. [43] 
designed and formulated chalcone-capped Au NPs of South African medicinal plant 
Helichrysum foetidum extract, which were effective against diabetes. Opris et al. 
designed and formulated Au NPs using Sambucus nigra L. (SN) plant extract that 
revealed great adjuvant in the management of diabetes [44]. As Au NPs are biocom-
patible and biodegradable, they are widely been used in diagnostic imaging, sensing, 
labelling, and biomedical applications. Au NPs have been designed to determine 
blood glucose level in patients [44]. Nair and Sreenivasan designed non-enzymatic 
colorimetric glucose estimation device using cyanophenyl boronic acid (CPBA) and 
β-cyclodextrin (βCD) stabilized AuNPs. These glucose sensors were designed by 
green one-pot tandem method to estimate glucose in human blood serum [45]. Nano-
materials improve biosensor sensitivity, performance, and response time. Recently 
developed novel AuNPs biosensors serve as diagnostics and theranostics thus these 
integrate nanomaterials as lab-on-chip [46].



306 S. S. Tiwari and S. J. Wadher

Nowadays, nano-biosensor devices are being developed for in-vivo and in-vitro 
glucose sensing. Many commercially available glucose biosensors are used for 
glucose monitoring [46]. Examples of these marketed glucose biosensors include 
the OneTouch Ultra2 by LifeScan, FreeStyle Lite by Abbott, Accu-Chek by Roche, 
and the Contour by Bayer. Electrochemical glucose biosensors measure electric 
signals directly in proportion with the glucose concentration. This biosensor moni-
tors oxidative current generated by glucose oxidase. Ag NPs reveal antibacterial 
and anti-inflammatory properties, and thus, they exhibit the exceptional potential to 
promote wound healing in diabetic condition [16]. 

4.7 Nanocarriers of Antisense Oligonucleotides in Diabetes 

Antisense oligonucleotides (ASOs) are short, chemically synthetic DNA oligomers 
that can alter RNA and shrink, refurbish, or modify protein expression through 
numerous distinct mechanisms. ASOs are capable of blocking gene expression 
and thus, obtaining a therapeutic outcome. ASOs are used in the development of 
antidiabetic agents as they can regulate the expression of disease-causing genes at 
the ribonucleic acid (RNA) and protein level. Nanocarriers are used for delivery 
of ASOs and targeting. Oligonucleotide therapy uses ASOs, siRNA, or aptamers. 
This approach blocks proteins expression using different intracellular mechanisms. 
Nanotechnology-based ASOs can be successfully used as antidiabetic agents with 
improved potency and delivery [47]. ASOs, being genetic materials, are promising 
tools used to regulate unsuitable expression of genes in pathological condition by 
the specific inhibition of expression of their mRNA targets [48]. Carbon nanotubes, 
dendrimers, protein or peptide conjugates, liposomes are used to deliver ASOs. 
ASO drugs have been investigated to use in combination with nanoparticles. In 
this approach, genes involved in the pathogenesis of insulin resistance and hyper-
glycemia can be identified. Therapeutic oligonucleotides reduce the production of 
target proteins or RNA level by inhibiting gene expression. ASO-induced gene inhi-
bition is useful in the identification, functionalization, and validation of target genes 
concerned in diabetes pathogenesis. Various small molecule drugs ASOs have been 
approved for using in the treatment of type II diabetes mellitus. Various classes of 
antidiabetic drugs including SGLT II inhibitors like Dapagliflozin, Canagliflozin, 
Empagliflozin, Ertugliflozin, Sotagliflozin; alpha-glucosidase inhibitors like Acar-
bose, Miglitol; Dipeptidyl-peptidase 4 inhibitors like Sitagliptin, Vildagliptin, 
Saxagliptin, Linagliptin are approved as small molecule drugs. Various antisense-
based drugs like ISIS 113715, ISIS 325568, IONIS-GCGRRX (ISIS 449884), 
Volanesorsen (ISIS 308401) are in various phases of clinical trials [47, 48].
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4.8 Dendrimers in Diabetes Treatment 

Dendrimers are basically three-dimensional, nano-sized, homogenous, polymeric 
globular hyper-branched macromolecules, with tree-like branched structure (shown 
in Fig. 11.3). Dendrimers consist of three regions: a central core, branched monomer, 
and different terminal functional groups on the external layer of repeat units. Polyami-
doamine (PAMAM) dendrimers and polypropylene imine dendrimers are frequently 
used dendrimers. Dendrimers consist of hydrophilic surface and hydrophobic 
core manufactured by convergent or divergent polymerization of branching units. 
Dendrimers are nanomaterials with great physicochemical stability that have ability 
to functionalize their end groups with different therapeutic agents. Thus, these are 
potential carrier for targeted drug delivery [49]. The muco-adhesive property of 
dendrimers increases drug residence time at intestinal epithelium; they get pene-
trated inside intestinal membrane through lymphoid tissues, thereby enhancing 
drug absorption. Surface-modified dendrimers inhibit P-glycoprotein efflux effect by 
enhancing drug gastric retention time, thus improves bioavailability [50]. Dendrimers 
have grabbed an enormous attention as drug delivery as well as for personalized 
medicines. It has been found that PAMAM G4 (generation 4) dendrimers imitate 
hypoglycaemic behaviour, through reduction of higher plasma glucose level and 
long-term markers of hyperglycemia in diabetic animal model [51]. Dong et al. 
conducted an experiment to study the effects of PAMAM dendrimers of various 
generations on the pulmonary absorption of insulin and calcitonin in rats. It was 
found that PAMAM dendrimers significantly increased the pulmonary absorption of 
insulin and calcitonin in rats [52].

4.9 Different NPs for Transdermal Drug Delivery 
of Antidiabetic Drugs 

Oral bioavailability is one of the major concerns for insulin delivery. Nowadays, 
parenteral route is mostly used for insulin delivery. NPs designed with biodegrad-
able and biocompatible polymeric systems improve the bioavailability of insulin. 
Transdermal and pulmonary routes are used for effective delivery of insulin. Insulin 
inhalation can be used for the treatment of T1DM and T2DM [53]. Transdermal 
drug administration is alternative to subcutaneous delivery. Skin is the largest organ 
of the human body; transdermal drug delivery system has potential advantages 
over other drug delivery including reduced systemic side effects, non-invasive drug 
delivery, patient compliance, self-administration, and controlled drug delivery. NPs-
encapsulated polymeric microneedles (NPs-MN) have been used for transdermal 
drug delivery of hydrophilic and hydrophobic drugs. NPs-MN has been successfully 
used in diabetes therapy, for enhanced bioavailability [54]. Insulin-loaded nanopar-
ticles can be formulated by encapsulating drug in various delivery systems like elec-
trosomes, liposomes, nanoparticles, niosomes, and nanodispersions for transdermal
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Fig. 11.3 Nanomaterials in treatment and management of diabetes mellitus

applications. Technologies like iontophoresis, electroporation, sonophoresis, and 
microneedles are used to enhance transdermal delivery of insulin-loaded nanopar-
ticles. NPs containing hydrogel are used to promote diabetic wound healing by 
loading bioactive molecules like growth factors, genes, and proteins/peptides [55]. 
Nanofiber-based systems can be intended for diabetes. Nanofibers can be formulated 
using natural and synthetic or both materials for the delivery of biomacromolecules 
like insulin and antidiabetic drugs. Insulin can be incorporated in nanofiber patches 
for administration via dermal, transdermal, or sublingual to lower blood glucose level 
[56]. 

5 Challenges and Future Perspectives 

Challenges associated with nanomaterials include toxicity, shorter shelf-life, toxi-
city, pharmacokinetics, stability, expensive formulations, reduced entrapment effi-
ciency, poor drug loading, etc. There is a need to develop smart nanoformulations 
for the future to overcome these challenges. While nanomaterials have already made
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a significant impact on management of diabetes, there are numerous areas where 
further developments are expected, particularly the design of biosensors, medic-
inal nano-sized devices, nanodiagnostic, and nanotherapeutics. Nanoparticles can 
deliver proteins and genes with improved therapeutic outcomes. The development of 
nanomaterials for gene therapy can be one of the best future prospects for nanoma-
terials. There is need to develop easy and cost-effective methods for the fabrication 
of nanomaterials of different functionalities and morphologies. 

6 Conclusions 

The application of nanomaterials in diabetes includes diagnosis, glucose sensing, 
glucose monitoring, insulin delivery, drug delivery, and wound healing. In the 
biomedical field, NPs are primarily used in drug delivery, imaging, and thera-
nostic processes. Nanomaterials can be formulated as various types of drug delivery 
systems, like NLC, liposome, niosome, nanosuspension, and SLN, which improves 
drug bioavailability. Nanocarriers can be administered through oral, parenteral, trans-
dermal route of administration that enhances patient compliance. Nanoparticles, 
being small in size, get penetrate throughout minor capillaries and are taken up by 
cells, which permit competent drug accumulation at the target sites. Nanoparticles 
have been shown to be the most safe and proficient vehicle for delivery of drugs at 
targeted site. Insulin after oral administration goes through enzymatic degradation. 
Encapsulation of insulin in the nanocarriers can eliminate this issue to some extent. 
In nutshell, nanomaterials are the most promising drug delivery for the treatment of 
diabetes mellitus. 
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Nanomaterials for Biosensing 
Applications in the Medical Field 

Rakesh K. Sahoo, Saroj Kumar Singh, Rajaram S. Mane, and Shikha Varma 

Abstract The combination of nanotechnology and biotechnology has emerged as 
an integrated technology for medical applications. Over the world, day by day, 
numerous researchers are developing novel materials using the suitable platform 
to detect pathogenic, mutagenic, or toxic compounds or any biological effect. This 
chapter addresses the classification of biosensors, especially for medical applica-
tions based on the two most important parameters: bio-recognition element and 
signal transduction. Furthermore, several grooming biosensing technologies are also 
addressed. Subsequently, more emphasis has been added to nanomaterial classifi-
cation employed in the biosensors based on their chemical contents and structural 
dimensions. Additionally, more insight into the current challenges in the applica-
tion of nanomaterials in biosensors, especially for medical applications, has been 
demonstrated. 

Keywords Biosensors · Biomedical detection · Nanomaterials · 2D materials ·
Carbon materials 

1 Introduction 

The alarming rise in several pandemic and epidemic diseases like severe acute respi-
ratory syndrome-coronavirus-2 (SARS-CoV-2), black fungus, cancer, etc., has forced 
the researcher to think up more advanced biological detection and monitoring systems
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to detect carcinogenic, mutagenic, and toxic elements [1–4]. Although modern tech-
nologies and industrialization have simplified our lives to a new level, others left 
behind several environmental issues leading to serious health issues [5]. Thus, it is 
highly desirable to design and explore the challenges in developing advanced detec-
tion and monitoring systems, especially bio-detection and bio-monitoring systems, 
to better human health. The potential of biosensors in various functional fields is 
schematically presented (Fig. 1). The technology that highly depends on genetically 
modified organisms can be treated as biosensor technology which is emerging in 
advancement. The research in biosensor had drawn attention when Gary Sayler’s 
group reported the report of the genetically modified microbial biosensor in the early 
1990s [6]. According to van der Meer and Belkin biosensor [7], a device detects the 
chemical and biological changes in the system and transforms them into a measur-
able signal when the biological materials interact with this engineered device. Based 
on the type of biological materials interacting with the bio-reporter, the sensor is 
nomenclatured by different names. When the biological material is an antibody or 
whole-cell or nucleic acid, it is termed as an immunosensor or microbial biosensor, 
or DNA aptamer [8], respectively. Basically, there are four major components in the 
biosensor namely; (i) bio-receptor, (ii) transducer, (iii) a signal processing unit, and 
(iv) a display or interface unit that showcases the output signal (schematically shown 
in Fig. 2). 

Fig. 1 Potential of biosensor in various fields of application in schematic form
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Fig. 2 Schematic of the biosensor 

More research in experimental and theoretical aspects is timely required to use 
the biosensors as the first filter for pre-screening the samples. The potential of syner-
getic research in engineering with biology has an enormous potential in designing 
biosensors for advanced applications. Thus, it is highly desirable to understand the 
fundamental changes in the biological sensing behavior of living beings. Some of 
the natural examples are (i) vibration, tactile, and airflow sensors in spiders, (ii) 
fast response of the plants toward the change in luminous intensity, osmotic pres-
sure, temperature, water availability, etc., (iii) the snapping system in venus flytrap, 
(iv) dogs possess a sense of smell far beyond the sensing behavior of the artificial 
sensor. More significantly, dogs can detection system is so sensitive that it can detect 
the concentration of parts per billion, and (v) the system for controlled bending of 
trees, etc. In the above, all cases functional outputs are highly correlated to materials 
behavior with biological needs. 

The biosensing platform is expected to be mechanically robust, versatile, and 
high throughput that will simplify the life in developing individual medicine, in vivo-
drug development, genomic-proteomic research, and point-of-care medical diagnosis 
[9]. Integrated technologies where nanotechnologies coupled with micro-fabrication 
technologies are able to develop new biosensors for medical applications [10]. 
However, the above type of advanced biosensor fabrication is in the embryonic stage 
and needs more research and development to enhance sensitivity, specificity, and 
high throughput. In this contest, designing the building blocks of the biosensor, i.e., 
the sensing materials in different scales and dimensions, has received considerable 
attention. Especially, nanomaterials in various dimensions and squeezing the atomic 
scale dimension have demonstrated fascinating bio-molecule detection behaviors. 
The work of Nam et al. [11] using nanoparticles and Liber et al. [12] using nanowires 
to design ultrasensitive biosensor is the pioneer in this area of research. 

Several up-to-date sensor platforms are tested and proposed [13–16], especially 
for bio-molecule detection; additionally, few integrated technologies are in the next 
research phase before the medical diagnosis [10, 17–20]. In this chapter, the classifi-
cation of biosensors based on bio-recognition elements and signal transduction has 
been described. The electrochemical, optical, thermal, and piezoelectrical sensors



316 R. K. Sahoo et al.

based on the signal transduction perspective are proposed. Additionally, the enzy-
matic, protein receptor, immunosensors, DNA aptamer, and whole-cell biosensors 
based on bio-recognition elements are expressed. In the next section of the chapter, 
the nanomaterials of different dimensions and compositions applied in biosensor 
design have thoroughly been elucidated. Very concisely, nanomaterials, especially 
the two-dimensional materials used in designing flexible energy harvest and sensing 
for biomedical applications, are presented. Further, the current challenge and future 
prospective design of nanomaterials for biosensing, particularly for biomedical 
applications, are outlined. 

2 Biosensors for Medical Applications 

Technically, the entire class of biosensors has been classified based on two critical 
perspectives out of several, i.e., signal transduction and biorecognition element. In 
the subsequent section, the above two prospectives are briefly elaborated as follows. 

2.1 Signal Transduction Perspective 

Based on the signal transduction perspective, biosensors are categorized as electro-
chemical, thermal, optical, and piezoelectric sensors [3]. The electrochemical sensors 
are the most advanced and vastly investigated sensors for vivo monitoring or on-site 
monitoring. Low detection limit, high sensitivity, and generalizability are the advan-
tages of this sensor compared to other category sensors. This category of the sensor 
is miniaturized to a lab-on-chip. Based on the signal from the sensor measured, it is 
subcategorized as amperometric (measuring the current produced during oxidation 
and reduction of the electroactive species), voltammetry (measuring the change in 
voltage of the working electrode concerning the reference electrode), and conductom-
etry (measuring the alteration in conductance due to biochemical reaction). During 
the ongoing COVID-19 pandemic, electrochemical biosensors have been considered 
a crucial tool for rapid, accurate, and large-scale diagnosis of severing acute respira-
tory syndrome-coronavirus-2 (SARS-CoV-2) [2, 4, 21–23]. During the biochemical 
reaction, the absorbed or emitted photons are measured through an optical transducer. 
The optical phenomena studied to observe the alteration in biological responses 
include fluorescence, surface plasma resonance, and absorption. In parallel, the 
advancement of fiber optics technology has boosted optical sensor research to an 
extent level. 

A thermal sensor, the most basic version, is a thermometer that is used to measure 
body temperature. However, the temperature range and toxicity of mercury limit its 
uses. Modern thermal sensors or enzyme thermistors are designed with a principal 
component called a sensitive thermistor based on similar working mechanisms. The 
function of the thermistor is to accurately estimate the change in enthalpy of the
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system during the biochemical reactions [24]. The piezoelectric sensor reciprocates 
the relationship between the resonant frequency change with respect to the mass 
of the molecule absorbed or desorbed on the crystal surface. The direct, label-free 
interaction with analyte mode is an efficient way of piezoelectric sensing platform. 
It is observed that the antibody or antigen is the best bio-molecule to be compatible 
with the piezoelectric sensor surface [25, 26]. 

2.2 Bio-recognition Perspective 

Based on the bio-recognition perspective, the biosensors are categorized as enzy-
matic, protein receptor, immunosensor, DNA aptamers, and whole-cell biosensors. 
Each of the categories is elaborated as below. 

a. Enzymatic biosensors 

This type of sensor enzyme is the primary component that recognizes and reacts 
with the analyte to produce the electrochemical outcome. The brief sketch consists 
of analytes, receptors, an electrochemical transducer, and a signal amplifier. Here, 
the enzyme acts as a catalyst. And the function of the electrochemical transducer 
is to convert the chemical signal from the bio-reaction into a measurable physical 
signal which is further amplified by an amplifier. Most enzyme-catalyzed reactions 
release oxygen, carbon dioxide, and residual ionic species, measured by a transducer 
[27]. Two types of analytical enzymes such as hydrolases and oxidoreductases are 
used in the enzyme biosensor. 

b. Protein receptor-based biosensors 

The role of protein is opposite to enzyme as discussed previously in enzyme 
sensor. In this case, the protein present in the cell membrane acts as a receptor 
and reacts in a non-catalytic way with the signal from the transducer and produces 
the detectable signal by the process of metabotropic receptors through enzyme secre-
tion or ionotropic receptors. Optical transduction has a significant role in this type 
of sensing platform [28, 29]. 

c. Immuno-sensors 

This is a solid-state device wherein the immunochemical reaction is coupled to a 
transducer which is a basic design to detect the direct binding between antibodies 
to an analyte. Due to direct detection, faster and more cost-effective detection is 
possible using this type of sensor. A most exciting feature of immune-sensor is their 
selective and sensitivity in detecting multiple analytes by designing new recombinant 
antibodies [30]. 

d. DNA aptamers biosensor 

Aptamers are short, single-standard DNA or RNA, and less than a hundred 
nucleotides are arranged/assembled in a specific sequence. This aptamer can interact
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selectively with superior specificity and affinity forms bonding with a particular 
type of analyte, virus, bacteria, proteins, small molecules, toxins, hormones, etc., 
by hydrogen or Van der Waal binding force for biosensing. The beauty of these 
aptamers is that they can rearrange to form a variety of shapes and dimensions [31, 
32]. Compared to immune sensor, DNA aptamer sensor is more specific, stable, and 
has a simple detection ability and also the cost is relatively lower. Due to its high 
stability, low cost, and superior specificity the DNA aptamer sensor is considered an 
alternative to antibodies. 

e. Whole-cell biosensor 

This type of sensor consists of two working components, i.e., the sensing element 
and reporter. The reporter element is a gene or gene cassette that has catalytic as well 
as non-catalytic functions. Catalytically, it accelerates the biochemical reaction to a 
detectable signal, and in a non-catalytic way as coding for the genes for metabotropic 
or ionotropic signal generation. The sensing element observes the gene or sets of 
gene’s transcription initiation point similar to a promoter. The microbial sensor is 
the widely used whole-cell biosensor [33, 34]. Functional information rather than 
analytical information can be obtained using the whole-cell biosensor. The functional 
information can be obtained from the living cells by understanding the stimulus on 
a living system which can be applied in pharmacology, toxicology, cell biology, and 
many more. For example, the bacteria whole-cell biosensors can be genetically modi-
fied to sense mercury, nitrogen oxide, and hydroxylated polychlorinated biphenyls 
in urine and serum. 

2.3 Limitations of Bio-based Biosensor 

The major limitations that lag behind the bio-based biosensor are 

1. First, low sensing performance with the low sensitivity and high limit of detection 
value of the designed sensor. 

2. Due to limited active catalytic sites and surface area, bio-based biosensors have 
less chemical and catalytic activity. 

3. The mechanical and cyclic performance stability and work life span of this type 
of sensor are very low. 

4. Relatively low diffusivity of the bio-based biosensors. Especially in the electro-
chemical sensing case where the rate change of Faradic current is proportional 
to the diffusivity of the analyte on the electrode probe surface. 

The above short-coming of the bio-based biosensors are tactically overcome by the 
use of engineered nanomaterials in the biosensor. Nanomaterials based biosensors are 
the rapidly growing research, especially for biosensor applications. Nanomaterials 
are basically used as transducer materials in biosensor development.
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3 Nanomaterials in Biosensors 

3.1 Metal Oxide Nanostructures 

The beauty of the metal oxide nanostructures lies in their inherent functional biocom-
patibility, abundant active surface area in absorbing the bio-molecules, and high 
catalytic property in immobilizing the biomolecules in a non-toxic way to enhance 
electron-transfer kinetics for effective sensing characteristics. Various metal oxides 
from metals like Fe, Zn, Ce, Mg, Zn, Cu, Ti, and Zr are extensively explored in 
the literature for biosensor applications (shown in Fig. 3) [35–37]. These oxides 
of different morphologies and dimensions are synthesized using various synthesis 
methods like hydrothermal, sol–gel, radio frequency sputtering, soft chemistry, etc. 
[3]. 

Fig. 3 Typical metal oxide nanostructures and their biosensing characteristics. The abbreviations 
in this picture can be read like this IEP as iso-electric point; ChOx as cholesterol oxidase; GOx as 
glucose oxidase; HRP as horseradish peroxidase; IgG as immunoglobulin G; Urs, as urease (adopted 
from Solanki et al. [35])
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3.2 Chalcogenide Nanostructures 

In biosensors, to enhance the optical, opto-electrical, electrical, and magnetic prop-
erties of the semiconducting oxides are deliberately used with metal oxide as a 
hybrid structure. Additionally, several semiconducting sub-atomic scale particles 
demonstrate fascinating biosensing characteristics. The use of semiconductor and 
semiconductor chalcogenide nanostructures is reported in optical transduction. As 
reported in the literature, semiconducting quantum materials are deliberately used in 
biosensing applications due to their superior photo-stability, size-dependent photoe-
mission, and broad absorption. However, the structural defects in fine quantum dots 
enhance the radiative recombination leading to inaccurate emission estimation. 

Several soft techniques are adopted to overcome such defects and make the trans-
ducer more sensitive toward analyte detection and bio-immobilization. Those are as 
follows. 

(i) In the case of CdS, a layer of ZnS is coated on the surface to form a core–shell 
structure which acts as a photo-quencher: Encapsulation 

(ii) Functionalization of the quantum dots to enhance biomolecule immobilization 
and minimize the chance of toxicity with a broad idea not to hamper the photo-
physical recombination: Ligand exchange 

(iii) An extension of the previous step where the quantum dots are coated with silica 
to enhance the stability: Silanization. 

This type of non-radiative or Fluro-quenched nanostructures is used as 
Förster/fluorescence Resonance Energy Transfer (FRET), especially for detecting 
optical DNA and oligonucleotides. Recently, two-dimensional nanomaterials and 
their derived quantum structures have demonstrated high potential donors in FRET-
based sensing applications. These materials are graphitic carbon nitride (g-C3N4) 
[38], perovskite materials [39], selenium [40], 2D metal–organic/covalent organic 
frameworks [41], and their derived 2D quantum structures [42, 43]. The details of 
the above materials are tabulated in Table 1.

Bioluminescence resonance energy transfer (BRET) is another type of biosensing 
technique where semiconducting quantum nanostructures are used as the acceptor. It 
is a distance-dependent non-radiative energy transfer from a bioluminescent donor 
to a fluorescent acceptor through resonance energy transfer. Using this technique, the 
blood glucose level can be estimated from teardrops. Bioluminescence donors are 
natural enzymes collected from marine animals. Certain donors have specific func-
tions based on their structural arrangement. Some of the BRET donor–acceptor pairs 
reported in the literature are listed below in Table 2. Recently, several quantum dots 
are used as the acceptor in BRET sensors due to their distinct advantages. Mattoussi 
et al. [60] tunable emission from Ag: ZnInSe QDs can be obtained by varying the 
In/Zn feeding ratio. This Ag: ZnInSe QDs demonstrates robust behavior in terms of 
tuning the emission to align the protein emission in the BRET sensor for several 
cycles. Some of the reported functionalized semiconducting quantum dots used 
in BRET sensors include polymer-coated CdSe/ZnS core–shell nanostructure [61],
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Table 1 Summary of the FRET sensing applications of 2D nanomaterials as donors 

Target analyst Donor: acceptor pairs Dynamic range Detection limit References 

Bilirubin MoS2 QDs: bilirubin 0.5–10.0 μm 2.1 nm [44] 

MicroRNA MoS2 QDs: 
FAM-MBs 

5–150 nm 0.38 nm [45] 

EP MoS2 QDs: PEP-PEI 
copolymers 

0.2–40 μm 0.05 μm [46] 

AA MoS2 QDs: PEP-PEI 
copolymers 

0.5–40 μm 0.2 μm [46] 

6-MP MoS2 QDs: DAP 0.5–70 μm 0.29 μm [47] 

BSA MoS2 QDs: RGO 5–50 nm Not mentioned [48] 

Dopamine MoS2 QDs-aptamer: 
MoS2 nanosheets 

0.1–1000 nm 45 pm [49] 

BSA MoS2 QDs: 
polyaniline 

10–70 nm 9.86 nm [50] 

GSH MoS2 QDs: R6G 5–50 nm 2.7 nm [51] 

Nitrite MoS2 QDs: BSA-Au 
NCs 

0.5–20 mg/l 0.67 nm [52] 

NFZ WS2 QDs: NFZ 0.17–166 μm 0.055 μm [53] 

DNA BP QDs: Dabcyl-L 
probe 

4–4000 pm 5.9 pm [54] 

GSH g-C3N4: MnO2 NM 0.2 μm [38] 

H2O2 g-C3N4: MnO2 0–130 μm 1.5 μm [55] 

Glucose g-C3N4: MnO2 0–150 μm 1.5 μm [55] 

Ricin g-C3N4: MnO2 0.25–50 μg/ml 190 ng/ml [56] 

Riboflavi g-C3N4: riboflavi 0.4–10 μm 170 nm [57] 

Metronidazole g-C3N4: 
metronidazole 

0.01–0.10 μg/ml 0.008 μg/ml [58] 

Dopamine BSA-Au 
NCs/g-C3N4: 
dopamine 

0.05–8.0 μm 0.018 μm [59] 

Hg(II) Perovskite: RBED 20–90 μm 2.36 μm [39]

semiconductor polymer nanoparticles with poly[2-methoxy-5-((2-ethylhexyl)oxy)-
p-phenylenevinylene] (MEH-PPV) [62], carboxylated quantum dots (Qd-625) [63], 
annexin V·RLuc-QDs [64], and glutathione-coated CdSeTe/CdS QDs [65].
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Table 2 Summary of bioluminescent proteins used in BRET sensing application 

Bioluminescent proteins Emission (nm) Substrate References 

Vargula luciferase (Vluc) or 
Cypridina luciferase 

460 Vagulin (Cypridina luciferin) [66] 

Bacterial luciferase (Lux) 490 FMNH2 long-chain aliphatic 
aldehydehdacf 

[67] 

Gaussia luciferase (Gluc) 480 Coelenterazine [68] 

Metridia luciferase 480 Coelenterazine [69] 

Renillaluciferase (Rluc) 480 Coelenterazine [70] 

Aequorin 469 Coelenterazine [71] 

Firefly luciferase (Fluc) 562 d-luciferin [72] 

Nanoluciferase (Nluc) 460 Furimazine [73] 

3.3 Magnetic Nanoparticles 

Intrinsic magnetic nanoparticles [74] and functionalized or coated nanoparticles 
have been applied in various biological applications like DNA [75] or cell sepa-
ration [76], biological missiles [77], radio-immunoassay [78, 79], and in several 
varieties of biomolecule immobilization [80–87], especially for biosensor applica-
tions. Core–shell nanostructures of Fe3O4@polydopamine [88], Ferrocene-modified 
Fe3O4@SiO2 nanoparticles [89], Au@Ni [90], Ag NPs@Fe3O4 [91], Fe3O4/Au 
@γ-Fe2O3/Au [92], etc., are designed for biosensor applications. Grancharov et al. 
[93] reported that the functionalized magnetic nanoparticles are used as biomolec-
ular labels in magnetic tunnel junction-based biosensor. Chuang et al. [94] inter-
preted the time scale of Brownian relaxation of magnetic nanoparticles suspended 
in liquid obtained from the susceptibility variation as a function of frequency as a 
bio-magnetic target molecule sensor. Simultaneous detection of the magnetic field-
assisted DNA hybridization is sensed using a spin valve sensor reported by Graham 
et al. [95]. Liu et al. [96] fabricated a phenol biosensor where carbon paste is used as 
the supporting substrate for chemically immobilized and functionalized core–shell 
magnetic nanoparticles. 

Research on magnetic nanoparticle-based biosensors is limited to lab-scale 
devices and medical diagnosis instruments in miniature form for bedside medical 
diagnosis. Several NPs are used in medical diagnosis devices; their sensitivity, the 
minimum sample volume, and the analyte that can be detected using these instru-
ments are listed in Table 3 which is adapted from Koh et al. [97]. One pioneer example 
is the μ-NMR designed by Weissleder et al. [10] using 39 nm functionalized iron 
oxide nanoparticles in the microfluidic network. Further, the improved version of 
the microcoils is embedded in PDMS to increase the filling factor and decrease the 
signal-to-noise ratio. Also, this instrument can detect a minimal amount of sample, 
i.e., 1 μl of the device [19, 20, 98].
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Table 3 Magnetic nanoparticle used in different medical diagnosis instruments with their sensi-
tivity [97] 

Analyte Magnetic 
particle/instrumentation 

Sensitivity Sample 
volume 
(μL) 

References 

MRSw type I Nucleotide CLIO, benchtop 
relaxometer 

Low nM-pM 300 [99] 

Proteins CLIO, benchtop 
relaxometer 

Low nM 300 [100] 

Virus CLIO, MRI 50 virus/100μL 100 [101] 

Bacteria Core/shell, DMR 20 CFUb/100 μL 
(membranefitered) 

5 [20] 

Cancer 
cell 

Mn-MNP, DMR 2 cells/1 μL 5 [19] 

MRSw type II Antibody MP, bench top 
relaxometer 

< 1 pM 300 [102] 

AC 
susceptometer 

Antibody Iron oxide 
nanoparticles 

< 1 nM [103, 104] 

SQUID Bacteria Iron oxide 
nanoparticles 

1.1 × 105 
bacteria/ 20 μL 

[103, 104] 

DNA Magnetic bead 3–10 pM (signal 
amplification) 

[105] 

GMR Protein Cubic FeCo NP 2 × 106 proteins 2 [106] 

DNA Antiferromagnetic NP 10 pM [107] 

Protein Iron oxide NP 2.4 pM [108] 

3.4 Carbon Nanostructures 

The beauty of carbon-based nanomaterials from its bulk count part is 
It is easy to electrochemically recognize a specific type of biomolecule (such as 

ascorbic acid and uric acid.) mixed with carbon nanomaterials and quantify it which 
is impossible with glassy carbon electrodes. In potentiodynamic analysis, carbon 
nanotubes act as an ion–to–electron transducer for biosensing analysis. 

a. The outstanding electrical transport properties of carbon nanomaterials like 
carbon nanotubes and graphene. Intrinsic single-wall carbon nanotubes and 
graphene possess ballistic transport properties with high electron mobility which 
is necessary for high-speed biosensors. 

b. Using carbon nanomaterial in particular single or bilayer defect-free graphene 
which has high conductivity with low thermal noise and due to fewer defects, the 
pink noise (i/f noise) is also very low and can be effectively utilized in designing 
ultrasensitive biosensors. 

c. For flexible biosensor design, carbon-based nanomaterials are considered the 
best selection based on cost, stability, and performance.
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d. Carbon nanodots/quantum particles are the best fluorescent centers for effective 
optical biosensor applications. 

3.5 Hybrid Nanostructures 

Hybrid nanomaterials are a promising platform for biosensor application, especially 
for the sensor in bio-medical diagnosis consisting of a unique conjugate of inorganic 
and organic components. The beauty of these hybrid nanomaterials lies in 

a. Fine inorganic nanoparticles (< 100 nm) have an enormous potential to be applied 
in electronics, catalysis, bio-medical, etc. However, for bio-medical applica-
tions, the inorganic particles must be bio-compatible and have colloidal stability 
in the aqueous environment without agglomeration and degradation. Thus, the 
organic material is widely hybridized with this inorganic particle to improve 
bio-compatibility, processability, and chemical stability. 

b. The organic/inorganic hybrids are mechanically robust and thermally more stable 
systems than individuals. Most importantly, the internal porosity of the hybrid 
can be tuned by anchoring the inorganic component which is highly desirable 
for ultrasensitive biosensor design and to increase the drug loading efficiency. 

c. The biological fluid when interacting with finer in-organic particles, the protein 
corona forms on the surface of the inorganic nanoparticles. The size and 
surface properties of the nanoparticles are highly dependent on the protein 
corona formation and cell-nanoparticle interaction. Additionally, the selection 
of organic components of the hybrid especially for biomedical application needs 
depth understanding of the protein corona formation and growth for effective 
biomedical application of the hybrid nanomaterial. 

Based on recent literature, we are citing some of the recent works on the use 
of hybrid nanomaterials in biosensing applications. The list of carbon materials in 
hybrid form, reported in the literature in tabulated form (adapted from [3]) is cited 
in Table 4.

4 Challenges and Future Perspectives 

Most importantly, the modern biosensor device can be miniaturized to a portable form 
for bedside clinical applications with effectively high throughput. Some of the new 
detection techniques that sound well from a scientific point of view and technological 
importance are grooming as next-generation electronic sensing chips such as field-
effect electrolyte–insulator-semiconductor (FE–EIS) sensors and capacitive FE–EIS. 
Recently, the application of 2D materials like nanocarbon, metal dichalcogenides, 
hexagonal boron nitride, black phosphorous, and metal oxides has highly impacted 
the research in the FE–EIS-based sensors. However, there remain several challenges
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in biosensor-based materials design, especially for medical applications which are 
as follows 

a. In enzyme-based biosensors, the presence of fouling agents and endogenous 
interfaces present in the sample has significantly hampered the sensor’s sensitivity 
and specificity. Though this issue was partially addressed by making hybrid 
biomaterial, still the interface effect persists. 

b. Generally, doped semiconductor nanostructures have particular importance in 
biosensor design. However, the synthesis of doped semiconductor nanostructures 
is carried out in a harsh environment, and it isn’t easy to achieve it on a large 
scale. Scale-up synthesis with high-quality control is highly desirable. 

c. Real-time in-vivo monitoring in complex media such as tissues and blood is 
still challenging. Moreover, it is highly desirable to establish a robust detec-
tion platform for in-vivo analysis, especially from a pharmacokinetic and 
pharmacodynamics point of view. 

d. Toxicity of the nanomaterials (carbon nanomaterials such as carbon whisker and 
carbon fiber.) in biosensors remains a significant challenge, especially for medical 
diagnosis. 

5 Conclusions 

This chapter comprehensively summarized the present scenario of nanomaterials in 
biosensors for medical applications. An attempt was made to summarize several 
chemical compositions and dimension nanomaterials applied in various biosen-
sors in worldwide research. Additionally, the classification of biosensors based 
on the biorecognition and signal transduction mechanism was discussed. In recent 
decades, biosensors have demonstrated their potential to detect various quantitative 
and qualitative targets, especially for medical diagnosis. Due to the high stability 
and lower price, biosensors such as aptasensors and DNA-modified electrodes are 
being used as point-of-care devices for quick diagnosis of the SARS COVID-19 
virus during ongoing pandemic emergencies across the globe. Modern biosensors 
have a vast perspective and high compatibility compared to conventional biosensors 
in medical applications due to their real-time diagnosis capability, high specificity, 
and sensitivity with minimal sample preparation. 
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