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Abstract. To solve the problems of premature convergence and insufficient diver-
sity in high-dimensional multi-objective optimization. A preferred area-based
multi-objective particle swarm optimization (PAMOPSO) is proposed. The algo-
rithm first determines the preferred regions through reference points, divides the
target space into preferred regions and non-preferred regions, and uses different
dominance rules in the different regions to improve the survival pressure of the
algorithm in the high-dimensional space. Secondly, we design the selection mode
of the global optimal position Gbest in two stages, comprehensively considering
the convergence and distribution of the algorithm. Experimental results show that
the proposed algorithm has good convergence and diversity compared with other
improved multi-objective algorithms.

Keywords: High-dimensional multi-objective optimization · multi-objective
particle swarm algorithm · preferred multi-objective algorithm

1 Introduction

In practical optimization problems, decision-makers often have to consider many con-
flicting goals, namely, multi-objective optimization problems (MOPs). Intelligence opti-
mization algorithms prove to be effective for solving multi-objective optimization prob-
lems. Particle swarm optimization (PSO) is a well-known evolutionary algorithm to
simulate the interaction during bird group predation. Due to its simple mechanism, few
parameters, and fast convergence speed, PSO has been successfully applied to solve
MOPs and expanded to a multi-objective particle swarm optimization algorithm. How-
ever, MOPSO can easily fall into local optimal. Besides, a single search mode of particle
swarm quickly leads to poor convergence accuracy and diversity [1].

With the deepening of the research, the researchers explore the introduction of the
particle swarm algorithm into the process of multi-object problem solving, combined
with the rapid convergence characteristics of the use of the particle swarm algorithm
and the excellent performance in the multi-object optimization problem. Domestic and
foreign researchers mainly divided the multi-target particle swarm algorithms into the
following groups according to the selection mechanism:

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
L. Pan et al. (Eds.): BIC-TA 2022, CCIS 1801, pp. 44–53, 2023.
https://doi.org/10.1007/978-981-99-1549-1_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-1549-1_4&domain=pdf
https://doi.org/10.1007/978-981-99-1549-1_4


A Multi-objective Particle Swarm Algorithm 45

(1) Multi-objective particle swarm algorithm dominated by Pareto. Zhang et al.
proposed the CMOPSO algorithm to change the particle speed through the update
mechanism based on a learning strategy. The particles in the current population
select the winning particle through pairwise competition. This particle guides
another particle to perform speed updates, better balancing convergence and pop-
ulation diversity and reduces unnecessary memory overhead and computing com-
plexity [2]. By introducing two-stage strategies, Hu et al. emphasized convergence
and distribution in different stages. Theymaintained the variety of external archives
by introducing parallel cell systems to support the selection of more diverse solu-
tions [3]. Lin et al. facing the multi-target particle group algorithm under high
target space selection pressure drop, put forward the NMPSO algorithm, and intro-
duced a new fitness evaluation method to overcome the Pareto-dominated ranking
difficulty or the limitation of decomposition method, combining the convergence
distance and diversity distance to balance the algorithm convergence ability and
population diversity ability, and adopted the new speed update way, not research
provides another direction [4].

(2) Multi-objective particle swarm algorithm based on decomposition. This kind
of method is a multi-objective optimization problem into a set of single-objective
optimization problems, by solving each subproblem without using Pareto control.
Coello et al. use the decomposition method using a global optimal position solution
set to update example locations, simultaneously maintaining the diversity of the
population [5]. Dai et al. proposed the MPSO/D algorithm to maintain diversity.
The target space of the multi-objective optimization problem is divided through the
direction vector and incorporates the idea of differential evolution [6].

(3) Index-based multi-target particle swarm algorithm. The algorithm is in the
process of updating by evaluating the index to guide the search direction of the
algorithm. Garcia et al., by introducing the HV index guide algorithm search and
convergence, according to the optimal global location and individual historical
optimal HV index, the external archive update according to the size of HV index,
its low dimensional target space can be a good guide algorithm search, but in high
target problem, HV solution is very difficult, the calculation complexity of the
algorithm is further improved [7–9].

This study proposes a multi-objective particle swarm optimization algorithm
based on a preference strategy to divide the target space into preferred and non-
preferred regions and improves the archiving mode and the optimal global location
selection mechanism, verifying the algorithm performance on different test sets.

2 Relevant Theoretical Basis

2.1 Particle Swarm Optimization

The particle swarm optimization algorithm is initialized into a group of random particles,
inwhich theoptimal solution is found through iteration.During each iteration, the particle
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updates its speed and position by tracking two extreme values (Pbest, Gbest). the updated
formula is [8]:

vt(t + 1) = w × vt(t) + r1 × c1 × (pbesti(t) − xi(t)) + r2 × x2 × (gbest(t) − xi(t))
(1)

xi(t + 1) = xi(t) + vi(t + 1) (2)

where xi(t) = (xt1, xt2,…, xtn) is the position information of the i-th particle at the t
iteration, n represents the dimension of the decision variable in the particle solution vi(t)
= (vt1, vt2,…, vtn) is the velocity information of the i-th particle in the t-th iteration.
Pbest represents the historical optimal position of the i-th particle, the local optimal
position at the t generation, while Gbest represents the best location explored in the
whole population.

c1 and c2 are the learning factors, c1 is the individual learning factor, c2 is the
individual social learning factor, if c1 = 0 means the particle only group experience, its
convergence is fast, but easy to fall into local optimal, if c2 = 0, means the particle share
no group information, a scale for M group run M are particles, the chance of solution is
very small, so generally c1 and c2 is set to the same size. r1 and r2 are the randomnumbers
between [0,1], w is the inertial weight factor when w is larger, the next generation speed
is larger, so can expand the global search range, w small, the next generation speed will
decrease, thus local search ability enhancement, so can choose larger w value, prevent
the algorithm missing the possible optimal solution, into local optimal, and later choose
smaller w value, improve the convergence speed of the algorithm.

2.2 Multi-objective Optimization Problem

Due to the complexity of practical problems, our solution is not limited to single-objective
optimization but to two or more issues, calling these including two or more objective
problems as multi-objective optimization problems. These goals to be optimized include
the problems of maximization, minimizing, or both, and to facilitate the solution, we
can transform the goal problems into the maximization or minimization solution. This
paper discusses minimization. Then the mathematical representation of the minimized
multi-objective optimization problem is as follows [10, 11]:

min f (x) = (f1(x), f2(x), . . . , fm(x)) (3)

subject to x ∈ S ⊂ Rn (4)

where x = (x1, x2,…, xn) is n dimension decision variables, S is the feasible domain of
x, and m represents the number of objective functions. f i(x) the i-th objective function.

3 The Proposed Algorithm

3.1 Improve the Preference Areas

TheMOPSO algorithm follows strict Pareto dominance rules when evaluating themerits
of the solutions, but it works against the algorithm convergence in a high-dimensional
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space. Lopez et al. proposed a newpreference dominance relationship, dividing the entire
target space into two subspaces, one subspace of the individual is compared according to
the Pareto dominance relationship, and the payoff scalar function reaches one subspace.
In the proposed algorithm τ value is set in the algorithm initialization stage in advance
for the value of the [0,1] interval. Still, for multi-target particle algorithm itself has
“precocious” characteristics. If fixed the size of the preferred area is, it is easy to make
the algorithm converge to the local optimal, and it may miss other better solutions and
not be conducive to the diversity of the solution. Therefore, this paper proposes dynamic
value adjustment to ensure that the algorithm can expand the search range in the first
and mid stages, safeguard the diversity of solutions, and narrow the search range in the
late stage so that the algorithm can converge effectively.

The value of τ decreases gradually with the number of iterations but then linear. If
the decrease rate is fast before the algorithm has fully searched the feasible area, the τ

value is defined by formula (5):

τ = τmax − (τmax − τmin) ∗ (currentiter/maxiter)
c (5)

τmax and τmin set themaximum andminimum values of the decisionmaker for the search
stage, currentiter is the current number of iterations, maxiter is the maximum number
of iterations, and c is the descent speed.

3.2 Gbest Selection Strategy

The Gbest selection strategy of the MOPSO algorithm depends on the density of the
particles, but the algorithm only considers maintaining the uniformity of the solution
distribution while ignoring strengthening the convergence ability of the algorithm. This
paper proposes a two-stage Pbest selection strategy to consider both the algorithm’s
convergence ability and distribution ability when selecting the Pbest.

In the first stage, according to the position of the particle in the target space and the
target space to calculate the corresponding similar distance (Similarity Distance, SD),
according to the similar distance set selected from the particles far from the noninferior
solution, keep the noninferior solution as the selection set of the second stage, SD solution
method as shown in Eq. (6) and Eq. (7):

d(xi, yj) =
√
√
√
√

M
∑

k=1

(fk(xi) − fk(yi))2 (6)

SDi{d(xi, y1), d(xi, y2), . . . , d(xi, yt)} (7)

where xi represents the i-th particle in the population, yj represents the j-th non-inferior
solution (j = 1, 2, …, t), t is the number of non-inferior solutions in the external archive
Archive, fk(xi) represents the function value of the i-th particle on the k-th target, M is
the number of an objective function, SDi is the collection of stored i-th particle and each
particle in the external archive Archive in the target space.

Similar distances represent the distance of the particles to be updated from the par-
ticles in an external archive. In the first stage, the algorithm can mainly search for more
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solutions. The xi particles should tend to select particlesmore prominent than the average
similarity distance in the external archive, as shown in Eqs. (8) and (9).

AVGSDi =
∑t

j=1 SDi,j

t
(8)

∑t

j=1
SDi,j = d(xi, y1) + d(xi, y2) + . . . + d(xi, yt) (9)

Through the selection of the first stage, the set of non-inferior solutions to be
processed in the second stage, such as the formula (10).

S = {y|y ∈ Archive & d(xi, y) > AVGSDi } (10)

In the first stage, it considers the diversity of the algorithm solution. To strengthen the
convergence ability of the algorithm, the second stage focuses on realizing the uniform
distribution of the solution set and selects the individuals with excellent distribution
performance in the S set. The entire calculation step of the improved algorithm is as
follows: The whole calculation step of the improved algorithm is shown as Algorithm
1:

Algorithm 1 Improves the multi-objective particle swarm algorithm

Step 1: Set the relevant parameters, and initialize the population speed, posi-
tion, Pbest and Gbest;

Step 2: Calculate the value of the particles on each target function in the pop-
ulation and select the preferred region according to formula (5).

Step 3: evaluate the advantages and disadvantages of particles according to 
the control rules, and save the non-inferior solution set to the external archive.

Step 4: Select Gbest for each particle according to formula (6-10).
Step 5: Update the position and speed of each particle.

Step 6: execute the variation, evaluate the quality of the particles, update the 
particle Pbest.

Step 7: Update the external archive and remove particles if the external ar-
chive exceeds the storage capacity.

Step 8: Determine whether the maximum number of iterations or the stop 
condition of the algorithm is reached. If not reached, return to step 4, if reached, the 
cycle ends, output the solution set in the external archive, and the end of the algo-
rithm.

4 Experimental Results and Analysis

4.1 Evaluation Indicators

Different from single objective optimization, which can compare the size of the target
function value to evaluate the algorithmperformance,multi-objective optimization needs
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some performance indicators to evaluate the algorithm effect, mainly from two aspects
to evaluate the algorithm, on the one hand, evaluate the algorithm solution set and the
real Pareto edge, on the other hand, evaluate the distribution of the algorithm solution
set.

Therefore, the performance indicators ofmulti-objective optimization can be divided
into three categories:

(1) The first type of indicator considers the distance between the solution set obtained
by the algorithm and the real Pareto solution set, such as the GD index.

(2) The second type of indicator considers the distribution of the solution set obtained
by the algorithm in the target space, such as the Spacing index.

(3) The third category is the comprehensive index, which considers the algorithm solu-
tion’s convergence while considering the algorithm’s distribution, such as IGD and
HV index.

This paper uses GD, IGD, HV, and distance performance indicators from the
reference point to evaluate the algorithm [12–14].

(1) The GD calculation formula is shown in formula (11):

GD(P,P∗) =
∑

μ∈P d(μ,P∗)
|P| (11)

where P* is the set of sampling points uniformly distributed on the optimal edge
of real Pareto, P is the Pareto non-dominant solution set solved by the algorithm,
d(u, P) represents the minimum value of the distance between all solutions from u
to P. from formula (10) can be found that the smaller the GD value, the more the
algorithm converges.

(2) The IGD calculation formula is shown in formula (12):

IGD(P∗,P) =
∑

v∈P d(v,P∗)
|P∗| (12)

(3) The HV calculation formula is shown in formula (13):

HV =
⋃

i

voli| ∈ PF (13)

4.2 Algorithm Parameter Setting

To verify the performance of the proposed algorithm PAMOPSO, several commonly
used benchmark functions (DTLZ2,DTLZ4,DTLZ6–7)will be used to test the proposed
algorithm, and the test results will be compared with the more popular multi-objective
optimization algorithms, including MMOPSO, CMOPSO, g-NSGA. In the experiment,
the number of decision variables of all test functions is M+9, and M is the number of
objective functions.

Comparing the population size of the algorithm, the external archive capacity, and the
maximum number of iterations are shown in Table 1. The other parameters of each algo-
rithm are set from the relevant references. The algorithmwas run 50 times independently
in each case test function, and the performance index was averaged 50 times.



50 Y. Wang et al.

Table 1. Initial conditions

Algorithms Population size Archive Iterations

PAMOPSO 4 Objectives:150 Reference population size 800

MMOPSO 6 Objectives:150
——

800

CMOPSO 8 Objectives:200
——

800

g-NSGAII 10 Objectives:20
——

800

4.3 Experimental Results

Table 2, Table 3, and Table 4, respectively, show the measured values of the three test
functions on 4, 6, 8, and 10 targets, which include the average values of GD, IGD,
and HV. The best results are marked using the bold font method. Also, the number of
PAMOPSO better, worse, and equal to other algorithm test examples is given in the last
row of the table.

Table 2. The mean GD values obtained on the DTLZ problem

Test functions M PAMOPSO MMOPSO CMOPSO g-NSGAII

DTLZ2 4 3.7738E−02 5.3122E−02+ 1.5387E−01+ 3.7821E−02=

6 5.3536E−02 1.3321E−01+ 1.5442E−01+ 5.3235E−02=

8 5.9284E−02 1.4647E−01+ 1.5598E−01+ 5.9343E−02=

10 6.6561E−02 1.6158E−01+ 1.5996E−01+ 6.6670E−02=

DTLZ4 4 2.6924E−02 5.1425E−02+ 1.0257E−01+ 1.4394E−01+

6 5.0021E−02 1.4825E−01+ 1.3869E−01+ 1.2707E−01+

8 5.5324E−02 1.3526E−01+ 1.4015E−01+ 1.8321E−01+

10 7.6291E−02 1.4061E−01+ 1.2667E−01+ 1.2787E−01+

DTLZ6 4 6.1534E−02 5.6114E−01+ 6.9726E−01+ 6.3809E−01+

6 6.5981E−02 7.0722E−01+ 6.7222E−01+ 6.2658E−01+

8 5.4311E−02 6.2307E−01+ 6.8057E−01+ 6.2985E−01+

10 5.2320E−02 6.5274E−01+ 6.5195E−01+ 6.3943E−01+

±/= 12/0/0 12/0/0 8/0/4

Tables 2, 3 and 4 show that the proposed PAMOPSO algorithm performs well on
both the DTLZ4 and DTLZ6 test functions. The best convergence is achieved with the
other three algorithms, and the performance is comparable to the g-NSGA algorithm
on DTLZ2. Overall, this also proves that the PAMOPSO algorithm can be guaranteed
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Table 3. The mean IGD values obtained on the DTLZ function

Test functions M PAMOPSO MMOPSO CMOPSO g-NSGAII

DTLZ2 4 1.5221E−01 1.3221E−01= 1.0954E−01− 5.7264E−01+

6 5.3263E−01 3.83485E−01− 1.5987E+00+ 1.5961E+00+

8 7.3661E−01 7.6232E−01= 2.3621E+00+ 2.0513E+00+

10 8.2562E−01 1.0299E+00+ 2.4361E+00+ 1.1236E+00+

DTLZ4 4 2.2331E−01 1.2103E−01− 1.3954E−01− 1.8324E−01=

6 4.7395E−01 3.4351E−01− 6.2101E−01+ 9.3651E−01+

8 7.1324E−01 8.2571E−01+ 1.3215E+00+ 1.9876E+00+

10 8.0281E−01 1.5631E+00+ 1.3947E+00+ 1.4764E+00+

DTLZ6 4 1.8540E−02 4.2164E−02+ 2.5468E−01+ 2.8674E+00+

6 3.2440E−02 2.6345E−01+ 6.2422E+00+ 8.5981E+00+

8 3.1230E−02 4.8451E−01+ 9.4966E+00+ 8.6568E+00+

10 3.2931E−02 4.6954E−01+ 9.5032E+00+ 8.9614E+00+

±/= 7/3/2 10/2/0 11/0/1

Table 4. Average HV values obtained on the DTLZ problem

Test functions M PAMOPSO MMOPSO CMOPSO g−NSGAII

DTLZ2 4 5.7643E−01 6.3689E−01− 6.5911E−01− 1.4214E−01+

6 3.1364E−01 5.3652E−01− 4.5623E−01− 3.2462E−04+

8 2.9981E−01 2.8511E−01+ 0.0000E+00+ 3.2141E−05+

10 1.4695E−01 1.1364E−01+ 0.0000E+00+ 7.3124E−03+

DTLZ4 4 6.5684E−01 6.6542E−01+ 6.2965E−01+ 4.6912E−01+

6 4.6381E−01 6.0369E−01− 1.7361E−01+ 3.5243E−02+

8 4.8954E−02 2.2456E−01− 2.5124E−03+ 8.9631E−03+

10 2.9961E−02 4.1245E−02− 1.3512E−04+ 9.7512E−04+

DTLZ6 4 1.5631E−01 1.5212E−01= 1.2365E−01+ 0.0000E+00+

6 1.1023E−01 9.7864E−02+ 0.0000E+00+ 0.0000E+00+

8 9.8964E−02 8.8624E−02+ 0.0000E+00+ 0.0000E+00+

10 9.7521E−02 8.9657E−02+ 0.0000E+00+ 0.0000E+00+

±/= 6/5/1 10/2/0 12/0/0

faster in the high-dimensional target space by introducing the reference points and the
preferred regions, adopting the new dominance rules according to the preferred regions,
and adopting the new Gbest strategy.
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5 Conclusion

The particles of traditional multi-target particle clusters all use a single search pattern,
resulting in premature population convergence and poor diversity while causing poor
particle generalization ability.

In this study, we set up reference points and divided the target space into two sub-
spaces according to the preferred area. In different spaces, the solution evaluationmethod
improved the survival pressure of the population and searched the algorithm for the
region of interest of the decision maker. Secondly, the two-stage selection Gbest method
is proposed. In the first stage, the algorithm can search for a wider range of solutions,
and the second stage ensures that the understanding can be distributed more evenly.
Experimental results show that the improved algorithm has excellent performance.
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