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Abstract. To solve the problems of insufficient global exploration abil-
ity, low convergence accuracy and slow speed of traditional whale opti-
mization algorithm, an improved whale optimization algorithm by multi-
mechanism fusion is proposed. Firstly, the algorithm uses the nonlinear
parameter to coordinate the exploration and exploitation ability of the
whale optimization algorithm. Secondly, combine with the Harris hawks
optimization algorithm, it improves the global exploration and local opti-
mization ability of the whale optimization algorithm. Finally, consider
the important role of the fitness of the algorithm in the optimization, the
Gaussian detection mechanism is proposed. The improved algorithm and
other algorithms are simulated and tested on the eight variable dimen-
sion benchmark functions and design problems of tension spring. The
results show that the improved whale optimization algorithm by multi-
mechanism fusion has better robustness and stability, while ensure con-
vergence accuracy and speed.

Keywords: Whale optimization algorithm - Nonlinear parameter -
Harris hawks optimization algorithm - Gaussian detection mechanism

1 Introduction

The Whale Optimization Algorithm (WOA) is a population-based intelligent
optimization algorithm proposed by Mirjalili et al., in 2016 [1]. The algorithm
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uses mathematical formulas to simulate the whale’s predation behavior. Com-
pared with the traditional meta-heuristic optimization algorithm, the whale
optimization algorithm has the characteristics of simple principle, less param-
eter settings, and strong optimization ability. At the same time, there are also
some defects such as falling into local optimum, slow convergence speed and
low convergence accuracy [2,3]. Due to the existence of both advantages and
disadvantages of the Whale Optimization algorithm, its applicability is limited.
Therefore, this paper proposes an improved whale optimization algorithm by
multi-mechanism fusion to address the problems existing on the traditional whale
optimization algorithm.

For the defects of whale optimization algorithm, which is easy to fall into
local optimal and has low convergence accuracy, scholars put forward many
improved strategies. For example, Kaur et al. introduced chaos theory into WOA
optimization process to adjust the parameters of whale optimization algorithm,
enhance exploration and exploitation capacity [4]. Luo Jun et al. introduced
a new position update strategy in the exploitation and exploration phases to
avoid premature of the whale optimization algorithm [5]. Saha et al. adjusted
the control parameters, used correction factors to reduce step size to improve the
exploitation and exploration capability of the whale optimization algorithm [6].

In this paper, an improved whale optimization algorithm by multi-mechanism
fusion is proposed. Firstly, introducing the nonlinear convergence parameter a,
the improved whale algorithm can adapt to nonlinear problems by using the
improved parameters. Secondly, referring to Harris hawks optimization algo-
rithm [7], the shrinking encircling mechanism of whale optimization algorithm is
improved to speed up individual whale’s search for the optimal position, avoid-
ing the waste of computational resources by one individual exploring at a useless
position as far as possible. Finally, at the end of each iteration of the algorithm,
the fitness of the whale position is updated using the Gaussian detection mech-
anism [8], so that the whale algorithm has a better exploration position and
accelerates the convergence of the whale optimization algorithm.

2 Basic WOA Algorithm

The whale optimization algorithm simulates the whale’s predation action.
According to the characteristics of whale’s predation, the whale’s predation pro-
cess is divided into three steps. The three types of position updating: contraction
encircling, spiral position updating and random searching [9].

2.1 Shrinking Encircling Mechanism

The whale senses the area where the prey is located and surrounds it. Since the
location of the optimal design in the hunting or search space is not consistent
with the previous location, the WOA optimization algorithm assumes that the
current best candidate solution is the target prey or close to the optimal solution.
In this case, whales define the best search agent, the other search agents will
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try to change locations to the best search agent. The hunting behaviour of the
shrinking encircling is described by the following formula:

X(t+1)=X*(t)— A Dy (1)
Dy =|C- X*(t) — X(¢)] (2)

where, t represents the number of current iterations, A and C' are vector coeffi-
cients, X (t) is the position at the current moment, X (¢ 4 1) is the position at the
next moment, D; is C' times of the absolute value, that the difference between
the prey position and the current whale position, and X*(¢) is the position vec-
tor to obtain the optimal solution at present. If there is a better solution in the
result of each iteration, the fitness value of the position at this point is less than
the fitness value of X*(¢), then the whale position vector should be set to the
new X* in the iteration.

2.2 Location Update

The position of exploring and updating methods of whales is divided into two
types: spiral updating position and random searching. In order to simulate the
position updating mode of whales at a certain time, the whales are guaranteed to
choose spiral updating position or random searching mode with equal probability
at the same time. Set a random number p with values in the range [0, 1].

2.3 Spiral Updating Position

When p > 0.5, the spiral updating position method is selected, that is established
to update the position of the whale next time by simulating the whale’s spiral
updating position surrounding the prey. The calculation formula is as follows:

X(t+1) =Dy cos(2nl) + X*(t) (3)

Dy = |X*(t) — X (1) (4)

where, Dy represents the distance between prey and whale, b is the parameter
controlling the shape of the spiral, set to 1 in this paper, and [ takes values in
the range of [-2, 1].

2.4 Random Searching

When p < 0.5, select the position update formula of random searching. Random
searching is divided into two ways, when |A| < 1, indicates that the whale is moving
towards the prey position, then use the shrinkage encirclement formula to simulate
the action behaviour of the whale. Use formula (1) to encircle the prey.

When the |A| > 1 indicates that the whale is moving beyond the location
where the prey is present, right now the whales will give up before moving
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Fig. 1. The flow chart of improved whale optimization algorithm by multi-mechanism
fusion

direction, random searching new update location to the other direction, avoid
falling into local minima.

Drand - |C . Xrand (t) - X(t)‘ (5)

X(t+1)=Xana(t) — A Dyana (6)

where, X;anq denotes the randomly chosen whale position vector, and D,anq
denotes the absolute value of the difference between C' times X;anq and X (¢).
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3 Improved Whale Optimization Algorithm

In the basic whale optimization algorithm, the updating process of the whale
position is by randomly selecting three updating mechanisms, so there is a prob-
lem that the most effective updating method cannot be selected in the whale
position updating. Moreover, in the search process of the algorithm, there are
many iterations but the leader X*(¢) position is not changed, which leads to
the early end of the convergence process [10-12], when solving the optimiza-
tion problem, it may converge quickly to the local optimum, and the quality of
the solution decreases. Aiming at the problems existing in the traditional whale
optimization algorithm, this paper proposes an improved whale optimization
algorithm by multi-mechanism fusion.

Firstly, a new nonlinear parameter a is proposed to make the whale optimiza-
tion algorithm adapt to complex nonlinear problems and accelerate the conver-
gence speed of the algorithm 0. The soft siege mechanism of the Harris hawks
optimization algorithm is introduced to accelerate the hunting speed of whales.
Finally, at the end of each whale hunting iteration, a position control mecha-
nism using Gaussian detection is added to increase the optimization accuracy of
the algorithm. The flow chart of the improved whale optimization algorithm by
multi-mechanism fusion (IWOA) is shown in Fig. 1.

3.1 Nonlinear Parameter

For swarm intelligence optimization algorithms, exploration and exploitation
capabilities are very important for their optimization performance. As for WOA,
both shrinking encircling and random searching in position updating are related
to the value of a. How to select an appropriate convergence factor a to coordinate
the exploration and exploitation ability of WOA is a research problem worth
further investigation. The exploration ability means that the population needs to
detect a wider search area to avoid the algorithm falling into local optimum [13,
14]. The exploitation ability mainly uses the information already available to the
population to conduct local search on certain neighbourhoods of the solution
space, which has a decisive influence on the convergence speed of the algorithm.
The convergence factor a with large variation has better global search ability and
avoids the algorithm falling into local optimum. The smaller convergence factor
a has a stronger local search ability, which can accelerate the convergence speed
of the algorithm. However, the convergence factor a in the whale optimization
algorithm decreases linearly from 2 to 0 with the number of iterations, which
cannot fully reflect the exploration and exploitation process of WOA.

In this paper, a nonlinear decreasing convergence factor a with rapid change in
the early stage and relatively slow change in the later stage is designed to balance
the exploration and exploitation of WOA. The calculation formula is as follows:

t

=92.(1—
“ ( Tmaw

) (7)

The parameter A is controlled by the coefficient a, and the change of the coef-
ficient a leads to certain changes in both the random searching mechanism and
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the shrinking encircling mechanism. Where T},,4, is the maximum number of
iterations and ¢ is the current number of iterations.

3.2 Harris Hawks Optimization Algorithm

The Harris hawks Optimization algorithm simulates the predatory movements
of the Harris hawks by using mathematical formulas to simulate its movements.
The algorithm vividly simulates the siege predation mechanism of the Harris
hawks, making the algorithm extremely powerful in global search.

In the traditional whale optimization algorithm, the process of finding the
optimal position is a random exploration by individual whales. The lack of com-
munication between individuals and the group makes some individuals carry
out several useless explorations at a distance from the prey. Therefore, we will
refer to the soft besiege strategy of the Harris hawks optimization algorithm to
improve the location of the whale optimization algorithm as follows:

Y F(Y) < FX(2)
xern =17 1) <) )
Y =X*(t)—A- D (9)
Z=Y + 8% LF(D) (10)

where, S is a D-dimensional random vector on the uniform distribution of (1, D),
f(x) is the fitness function, which means that a certain position is substituted
into the fitness function to calculate its fitness value. LF(D) is a D-dimensional
random vector generated by the Lévy flight. The Lévy flight formula is shown
in formulas (11) and (12).

LF(D) = 0.01 x 227

(11)

o5

I'(1+4 ) x sin (7[})
r(52) xgx259)

where, u and v are random values between (0, 1), and 3 is set to 1.5.

o =

(12)

3.3 Gaussian Detection Mechanism

This section uses the Gaussian variant for the current position and compares the
position fitness of the variant with the position fitness before detection to select
the optimal position. The main purpose is to improve the ability of the algorithm
to jump out of the local optimum and enhance the optimization ability of the
algorithm.

The formula of Gaussian detection mechanism is as follows:

X(N) = X(t) + X (t) * N(0,1) (13)
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_JX(N) f(X(N)) < f(X(1))
A= { X(t) F(X(N)) > F(X(1)) (14)

where, N(0,1) generates a random number with Gaussian distribution between
0 and 1. X(N) is the position vector generated after Gaussian mutation.

4 Experiment and Analysis

In this paper, the eight variable dimension benchmark functions are selected
to test and evaluate the improved algorithm. All benchmark functions have a
theoretical optimal value, which is the extreme value of this test function. The
benchmark functions are shown in Table 1.

In this paper, the basic Whale Optimization Algorithm (WOA), Gray Wolf
Optimization Algorithm (GWO) [15], Harris Hawks Optimization Algorithm
(HHO), and other improved Whale Optimization Algorithms WOABAT [16],
EWOA [17] are selected and compared with the improved whale optimization
algorithm by multi-mechanism fusion in this paper, on F1-F8 variable dimen-
sional benchmark functions.

Table 1. Benchmark function

Function number | Function name | Dimension | Interval Theoretical optimal value
F1 Sphere 30 [-100,100] | O
F2 Schwefel 2.22 | 30 [-10,10] 0
F3 Rosenbrock 30 [-30,30] 0
F4 Step 30 [-100,100] | O
F5 Ackley 30 [-32,32] 0
F6 Griewank 30 [-600,600] | O
F7 Penalized1 30 [-50,50] |0
F8 Penalized?2 30 [-50,50] 0

In order to ensure the fairness of the comparison experiment, the population
and the number of iterations are set to the same value. The population is set to
30 and the number of iterations is set to 500. The convergence performance
of different optimization algorithms in different dimensions is analyzed by test-
ing multidimensional benchmark functions. To avoid randomness and ensure
the accuracy of the experiments, all optimization algorithms are run 30 times
independently. Since the mean value reflects the optimization accuracy of each
algorithm, the standard deviation reflects the robustness and stability of each
algorithm, the average convergence accuracy and stability of the optimization
algorithms are analyzed by comparing the mean and standard deviation of the
optimal fitness obtained by running each optimization algorithm separately for
30 times [18,19]. First, the mean results of the IWOA algorithms in different
dimensions are analyzed by means of the Sign test to determine whether they
are better, equal or inferior to the comparison algorithms. Second, the Friedman



138 R. Liao et al.

Table 2. 30 dimension optimization results comparison

Functions | Statistical | WOA GWO HHO WOABAT | EWOA IWOA
F1 Mean 4.17E-75 | 8.85E-28 | 1.48E-94 |1.82E-06 | 1.90E-147 | 0.00E+00
Std 7.24E-75 | 1.13E-27 |4.41E-94 | 7.71E-07 |5.69E-147 | 0.00E4-00
F2 Mean 6.86E-52 | 6.17TE-17 | 2.58E-50 | 7.20E-03 2.43E-79 | 0.00E+00
Std 2.83E-51 |4.50E-17 |1.04E-49 | 1.49E-03 |1.31E-78 |0.00E+00
F3 Mean 2.79E+01 | 2.7T1E+01 | 9.49E-03 | 8.46E+400 | 2.75E+01 | 1.52E-09
Std 4.43E-01 |6.44E-01 | 1.28E-02 | 1.29E+01 |5.96E-01 |4.23E-09
F4 Mean 4.05E-01 |8.40E-01 |1.86E-04 | 1.54E-06 |9.81E-01 |7.51E-13
Std 2.11E-01 | 4.00E-01 |3.64E-04 |8.04E-07 | 5.59E-01 |1.91E-12
F5 Mean 3.64E-15 |9.70E-14 |4.44FE-16 | 9.05E-04 2.58E-15 | 4.44E-16
Std 1.91E-15 |1.67E-14 |0.00E+400 | 2.34E-04 1.74E-15 | 0.00E4-00
F6 Mean 3.93E-03 | 4.01E-03 | 0.00E+00 | 7.35E-08 2.41E-03 | 0.00E+00
Std 2.12E-02 | 7.35E-03 |0.00E+00 | 3.13E-08 |1.30E-02 |0.00E+00
F7 Mean 2.37E-02 | 5.14E-02 |9.97E-06 |1.54E-08 |5.25E-02 |1.04E-13
Std 2.52E-02 | 3.18E-02 | 1.40E-05 | 7.40E-09 | 3.26E-02 |2.22E-13
F8 Mean 5.18E-01 |7.07TE-01 | 5.86E-05 |2.37E-07 |1.12E+00 | 3.90E-13
Std 2.86E-01 |2.16E-01 |7.79E-05 |1.056E-07 |3.51E-01 |9.70E-13
Friedman 4.25 5 2.63 3.75 4.25 1.13
+/-/= 8/0/0 8/0/0 6/0/2 8/0/0 8/0/0 -

test is performed to compare the performance of the optimization algorithms by
averaging them over eight benchmark functions.

By setting the same dimensionality, population and number of iterations, the
algorithms were compared in 30 and 100 dimensions using the variable dimen-
sional benchmark function F1-F8 to validate the WOA, GWO, HHO, WOABAT,
EWOA and IWOA algorithms.

Figure 2 shows the convergence curves of the three basic optimization algo-
rithms WOA, GWO, HHO and the improved whale optimization algorithm
IWOA in 30 and 100 dimensions. Figure3 shows the convergence curves of
the three different improved whale optimization algorithms WOABAT, EWOA,
IWOA and the whale optimization algorithm WOA in 30 and 100 dimensions,
where the horizontal axis is the number of iterations and the vertical axis indi-
cates the optimal adaptation values. It is clear from the figure that the con-
vergence characteristics of the selected optimization algorithms do not change
significantly in different dimensions, and the IWOA algorithm shows excellent
convergence accuracy and convergence speed.

Table2 and Table3 show the mean and standard deviation of the optimal
fitness values of the six algorithms run separately for 30 times in 30 and 100
dimensions. According to the Friedman test results in Table 2 and Table 3, under
different dimensions, the mean test results of IWOA are all the optimal values.
The standard deviation results are excellent, which proves that the IWOA algo-
rithm has the overall optimal convergence accuracy and stability in 30 and 100
dimensions. The average result of the IWOA algorithm is the 8 test functions in
different dimensions. Only in the 100-dimensional F3 function is lower than that
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Table 3. 100 dimension optimization results comparison

Functions | Statistical | WOA GWO HHO WOABAT | EWOA IWOA
F1 Mean 1.38E-71 |1.64E-12 |2.57E-94 |2.56E-05 |1.05E-138|0.00E400
Std 5.84E-7T1 | 9.72E-13 |8.01E-94 | 5.54E-06 |4.55E-138 | 0.00E+00
F2 Mean 2.96E-51 | 4.54E-08 |1.56E-51 |4.10E-02 |3.22E-83 |0.00E+00
Std 6.05E-51 | 1.30E-08 |2.86E-51 |3.93E-03 |6.09E-83 |0.00E+00
F3 Mean 9.83E401 | 9.82E+401 | 3.94E-02 | 2.94E+401 | 9.81E+401 | 9.72E+00
Std 1.10E-01 |3.02E-01 |2.53E-02 |4.48E+01 |2.33E-01 |2.91E+401
F4 Mean 4.22E+00 | 1.01E+01 | 2.83E-04 | 2.28E-05 | 6.03E+400 | 1.56E-12
Std 1.11E+400 | 6.57E-01 |3.73E-04 | 5.34E-06 1.17E400 | 3.02E-12
F5 Mean 2.93E-15 | 1.27E-07 |4.44E-16 | 1.99E-03 2.22E-15 | 4.44E-16
Std 2.77E-15 | 4.80E-08 |0.00E4-00 | 1.96E-04 |1.78E-15 |0.00E+00
F6 Mean 0.00E+4-00 | 3.60E-03 | 0.00E4-00 | 3.53E-07 | 0.00E+400 | 0.00E+00
Std 0.00E4-00 | 1.08E-02 | 0.00E4-00 | 1.02E-07 | 0.00E+400 | 0.00E+00
F7 Mean 6.14E-02 | 2.69E-01 |4.45E-06 | 5.10E-08 |1.13E-01 |6.30E-14
Std 2.17TE-02 | 1.04E-01 |4.33E-06 | 1.18E-08 |4.55E-02 |1.38E-13
F8 Mean 3.10E400 | 6.75E400 | 1.39E-04 | 2.93E-06 | 5.01E+400 | 1.83E-13
Std 1.36E400 | 4.32E-01 |1.08E-04 | 5.37E-07 |9.78E-01 |3.13E-13
Friedman 4.06 5.5 2.5 4 3.56 1.38
+/-/= 7/0/1 8/0/0 5/1/2 8/0/0 7/0/1 -

of the HHO, and all other conditions are better or equal to the other 5 algo-
rithms. Summing up the results of the above three tests, the IWOA algorithm
is superior and more stable than the WOA, HHO, IWOA, WOABAT, EWOA
and IWOA algorithms in the 30-dimensional and 100-dimensional F1-F8 test
functions.

5 Design Problems of Tension Spring

Design problems of tension spring [20] is a classic engineering design optimization
problem, which is composed of four design variables: inner radius R, cylindrical
length L, vessel thickness T's and head thickness Th. The goal of this problem
is to minimize the total cost while satisfying the production needs, which is
equivalent to the problem of minimizing the objective function with constraints.
If the four design variables are x1, x2, 3 and x4 respectively, the total cost is
f(z), and the mathematical model is shown in formulas (15) and (16).
Objective function:

min f(x) = 0.6224x1x3%x4 + 1.7781x2x3 + 3.1661x3x, + 19.84x%x3 (15)

Constraints:

g1(x) = —x1 + 0.0193x5 <0
22 (X) = —Xo + 000954X3 S 0
g3(x) = —mx3x4 — 37x3 + 1296000 < 0
g4(X) = X4 — 240 S 0
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where, the value range of z; and x5 is [0,99], and the value range of x5 and x4
is [10,200].

The optimization algorithm mentioned in this paper was used to optimize
the design problems of tension spring. All algorithms were run separately for 30
times, and the best value, mean value and standard deviation of the final results
were compared, as shown in the Table 4.

Table 4. The Optimization Results of Tension Spring

Function | WOA GWO HHO WOABAT | EWOA IWOA

Best 5.97E403 | 5.89E+03 | 6.56E+03 | 5.93E4+03 | 6.27E+03 | 5.89E4-03
Mean 9.72E+03 | 7.29E+403 | 7.00E4-03 | 3.37E+04 | 9.14E+403 | 6.93E+03
Std 2.44FE+03 | 6.98E+02 | 6.65E4+02 | 6.10E4-04 | 2.10E+03 | 2.69E+02

From Table4, it shows that the improved whale optimization algorithm by
multi-mechanism fusion proposed in this paper has the best optimal value, mean
and standard deviation in the design problems of tension spring, so there is some
effectiveness and stability of IWOA in the application of engineering problems.

6 Conclusion

Aiming at the performance deficiency of the traditional whale optimization
algorithm, this paper proposes an improved whale optimization algorithm by
multi-mechanism fusion, which introduces the Harris hawks optimization algo-
rithm and Gaussian detection mechanism based on the improvement of non-
linear parameters. The IWOA algorithm is analyzed by Friedman test, Sign
test and design problems of tension spring. Comparing the Whale Optimization
Algorithm (WOA), Gray Wolf Optimization Algorithm (GWO), Harris Hawk
Optimization Algorithm (HHO), and other improved Whale Optimization Algo-
rithms WOABAT and EWOA, it is proved that IWOA has excellent optimal
stability and convergence accuracy under eight different benchmark functions.
The experimental results show that IWOA has better optimization effect than
the original Whale Optimization Algorithm, has better stability while ensur-
ing convergence accuracy and speed, reflecting the effectiveness of the improved
algorithm.
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