
Chapter 2 
Multi-response Optimization on Process 
Parameters of WEDM for Ti–6Al–4 V 
Alloy Using Grey Relational Approach 

Ranjan Kumar and Kaushik Kumar 

Abstract The present article produces an investigation of the material removal rate 
(MRR) and various surface roughness (SR) response parameters of the wire-cut 
electric discharge machining (WEDM) process. The paper also discusses the opti-
mization of various machining control parameters using the grey relational analysis 
(GRA) technique. The investigation has obtained the optimized value of machining 
process parameters for maximized MRR and minimized surface roughness param-
eters. For carrying out the experimentation, the design of experiments (DOE) has 
been designed using the traditional Taguchi DOE approach and the L27 orthogonal 
array (OA) has been selected. In this regard, the four factors and three levels have 
been chosen for designing the variation control table for L27 OA, and discharge 
current (Ip), voltage (V ), pulse-on time (T on) as well as the pulse-off time (T off) have  
been selected for variation control factors or variables. The response table based on 
the investigation and optimized data analysis “compares the relative magnitude of 
the effects,” including ranks on the basis of delta value. From the main effect plot, 
it can be clearly seen that the Ip is observed to be the most dominating significant 
factor over MRR and SR characteristics. The investigation suggests the most optimal 
process parameters for MRR and surface roughness performance characteristics of 
the aforementioned machining parameters. 
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2.1 Introduction 

In the last few decades, the inclination toward understanding the behavior of tita-
nium alloy has grown drastically and the continuous growth in the study has made 
it possible to commercialize such an attractive alloy. Titanium alloy (Ti-alloy) i.e., 
Ti–6Al–4 V is one of the toughest materials known for its characteristics of hard-to-
machine using the ever-known non-conventional machining process (Gnanavelbabu 
et al. 2018). The said alloy is loaded with the remarkable mechanical properties of 
high corrosion resistance, lower thermal conductivity, comparatively higher mechan-
ical strength as well as decent notable fatigue resistance characteristics. Owing 
to many other mechanical characteristics, it also possesses a lower modulus of 
elasticity, “high strength-to-weight ratio, and high elevating cutting temperature” 
(Barry et al. 2001; Hareesh et al. 2021). Titanium alloy (Ti–6Al–4 V) carries many 
amazing characteristics that made this alloy suitable for a larger application arena 
such as aerospace and rocketry, automotive and marine applications. Also, constantly 
increasing demand has made this alloy a quite loving material that has also been incor-
porated into many other industrial and marine-based applications. These are being 
tremendously utilized in “petroleum refining, chemical processing, surgical implan-
tation, pulp and paper pollution control, nuclear waste storage, food processing as 
well as electrochemical applications” (Ezugwu and Wang 1997; Myers et al. 1984). 
The extended applications of such titanium alloy are found in biomedical implants, 
jewelry, and chemical industries (Donachie 2000; Leyens and Peters 2003; Bodunrin 
et al. 2020). The Ti-alloy has been remarkably introduced in biomedical applications 
due to its “low elastic modulus comparable to human bones” (Rack and Qazi 2006; 
Niinomi 1998, 2019). The enormous utilization of titanium alloys (Ti–6Al–4 V) can 
be estimated from the wide domain-wise utilization chart as shown in Fig. 2.1 (Web 
of Science 2021).

Despite having loving mechanical characteristics, the broader application arena, 
and attractive properties, the Ti-alloys also carry some shortcomings and challenges 
that restrict their demand and potential applications in many other domains. Firstly, 
The Ti itself is a costly material and possesses a high processing cost. Also, the 
Ti-alloys have a significant hindrance to their widespread utilization because the 
products manufactured using Ti or Ti-alloys are highly expensive and demand very 
complex and multistage traditional manufacturing processes (Froes et al. 2004; 
Esteban et al. 2008). Secondly, Ti-alloys used in biomedical implants have gener-
ally been found to have “poor tribological performance and low surface hardness 
(T. Fra̧czek, M. Olejnik, and A. Tokarz 2009; Textor et al. 2001; Kustas and Misra 
2017). Their tribological activity is characterized by high coefficients of friction 
(COF), severe adhesive wear, and low abrasion resistance” (Yerokhin et al. Aug. 
2000). When in contact with surfaces, Ti and its alloys exhibit poor tribological char-
acteristics, especially under mechanical sliding conditions. The mechanical sliding 
can cause surface wear by destroying the protective oxide layer (Kaur et al. 2019; 
Dong 2010; Dong and Bell 2000). The wide range of machining characteristics and
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Fig. 2.1 Domain-wise utilization of titanium alloy (Ti–6Al–4 V) (Web of Science 2021)

operations using Ti–6Al–4 V can be estimated by domain-wise published documents 
as delineated in Fig. 2.2 (Scopus.com 2021). 

In the last few decades, “heat-resistant-super alloys (HRSA) like Ni and Ti-based 
alloys” earned exciting popularity and attention. The Ti-alloys possess unmatched 
mechanical and thermal properties that have found their potential applications in very 
much harsh and corrosive conditions (Devarajaiah and Muthumari 2018). “Gener-
ally, Ti alloyed with 6% Al and 4% vanadium, i.e., Ti–6Al–4 V is used in most of

Fig. 2.2 Subject area-wise documents published for Ti–6Al–4 V machining operations 
(Scopus.com 2021) 
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the applications, and the incorporation of the traditional way of machining results in 
higher cutting forces, excessive tool wear,” and possess poor machinability character-
istics. This is owing to the material’s lower heat conductivity, heightened “chemical 
reactivity, and great strength even at high temperatures.” There are several challenges 
that need to consider while machining Ti-alloys using traditional processes, these are 
as follows: 

i. Higher strength of Ti-alloys at higher temperature resists the “plastic deforma-
tion” during machining. 

ii. During the machining process, the maximum amount of heat is generated which 
results in the welding of the tool to the tool face. 

iii. The Ti shows “chemical reactivity with almost all the tool materials” above 
500 °C. 

iv. During machining, the issues of “deflection, rubbing and chatter occurs” result 
in the occurrence of a lower value of “modulus of elasticity.” 

v. Due to having an elevated temperature during the machining process, the risk 
of catching fire of Ti-alloy occurs. 

Hence, in order to avoid such machining issues that generally occur with 
the machining of hardened materials, we take the advantage of non-conventional 
machining (NCM) techniques. NCM is done by employing a variety of energy 
sources, including “mechanical, thermal, electrical, chemical, or a combination 
of the aforementioned energy sources,” and does not employ any cutting tools 
(Devarajaiah and Muthumari 2018; Singh 2015). The two most widely accepted 
non-conventional machining techniques are “electrical discharge machining (EDM) 
and wire-EDM.” Both of the prominent techniques are the electro-thermal machining 
method where the removal of materials is done by the “incessant sparks generated in 
a minute space available between the wire electrode and workpiece in the existence 
of dielectrics” (Sonawane et al. 2019). This generated spark affects the MRR. During 
the machining, wires made-up of different materials such as “brass, copper, tungsten, 
molybdenum” or some sort of coated wires are utilized as an electrode. WEDM is 
the best-suited machining operation for micro and macro machining of hardened and 
brittle materials and can be employed to develop any complex shaped products that 
help in finding their enormous industrial application such as aerospace, automotive, 
space, tool, and die making. 

In this regard, many researchers have carried out very significant work, and 
employing optimization techniques using various heuristic and meta-heuristic algo-
rithms has tremendously helped in achieving the most suitable and desired results. 
Devarasiddappa and coworkers (Devarasiddappa et al. 2020) have reported surface 
roughness during the WEDM machining operation of Ti–6Al–4V alloy by employing 
a modified TLBO algorithm. In this paper, the Taguchi L16 experimental was adopted 
in order to optimize the four process parameters, viz., pulse-on time (T on), pulse-off 
time (T off), current (I), and wire speed (WS) at four different levels. The novelty 
occurs in this work in terms of minimization of surface roughness parameter in 
WEDM machining by employing the reusable wire technology during machining 
operation and the modified form of teaching–learning-based algorithm was employed
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to optimize the process parameters. A similar kind of work was also carried out 
by Neeraj and coworkers (Sharma et al. 2019) in optimizing the multi-responses 
obtained during the WEDM machining process for titanium alloy. They proposed 
the employment of grey relational theory with consideration of Taguchi L9 orthog-
onal array-based experiments design. They tried optimizing only two machining 
parameters, viz, surface roughness (SR) and cutting speed (CS), and predicted for 
95% of confidence level. A similar study was also carried out by Devarasiddappa 
and his coworkers (Devarajaiah and Muthumari 2018) in terms of optimizing the 
six machining parameters at four different levels. The experimental investigations 
carried out suggest that the current (I) and (T off) are the most significant param-
eters that influence MRR and power consumption (PC). In this work, the process 
parameters were optimized using the desirability function analysis (DFA) showing 
the improvement in composite desirability (CD) by 7.88% at optimum parameters 
settings. Also, the obtained optimum parameters exhibit the improvement of 9.77 and 
6.40% for the current (I), and pulse-off-time (T off), respectively. Further, the response 
surface methodology (RSM) and analysis of variance (ANOVA) were employed and 
reported by Nitin and coworkers (Gupta et al. 2021) in order to obtain the optimal 
machining settings for determining the significance and contribution of input param-
eters to analyze the changes in output characteristics, viz., cutting speed and surface 
roughness. The study provides a comparative study on WEDM machining of annealed 
titanium alloy and quenched and hardened titanium alloy which shows that the cutting 
speed is quite large during the processing of annealed titanium alloy and is found 
to be 1.75 mm/min. in this way ahead, a predictive model of WEDM machining of 
titanium alloy was developed by Chandrasekaran and coworkers (Devarasiddappa 
and Chandrasekaran 2021) using soft computing-based fuzzy logic control. The 
proposed predictive model was developed using 180 sets of rule-base for optimizing 
the machining response of MRR providing the four input parameters. The proposed 
prediction showed better results with higher accuracy than the regression model along 
with an average percentage error of 5.44%. The study plots suggest that the higher 
levels of Ton coupled with lower levels of Toff results in increased values of MRR. 
This is attributed to the higher energy sparks produced due to the current supplied 
for a longer duration of time as well as the faster flushing off the molten material 
under the supplied dielectric fluid. 

Recently, the manufacturing industries have experienced enormous growth and to 
meet the market demand, increasing productivity along with maintaining the compo-
nent quality, the ecological and environmental concerns have been compromised 
which produced a very diverse effect. The environmental impact of sustainable manu-
facturing methods is concerned with energy efficiency, power consumption reduction, 
and carbon footprint is a significant issue that is needed to be addressed (Devara-
jaiah and Muthumari 2018). The tremendous rise in global warming and its negative 
consequences has driven manufacturers to adopt more sustainable means of manu-
facturing high-quality, cost-effective products that are also environmentally benign. 
Manufacturing sustainability is no more a choice but has become the necessity of 
today’s demand. Apart from “quality and productivity, reducing power consumption, 
which leads to less energy loss and reduced machining costs, has gained importance”
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(Tristo et al. 2015). In this regard, the present work has been carried out as a noble 
attempt of investigating the process parameters of multi-response optimization of 
Ti–6Al–4 V alloy. In the present work, the four factors such as Ip, V, T on, and T off 

have been considered to optimize the machining responses such as MRR and SR 
parameters like “Average surface roughness (Ra), root mean square roughness (Rq), 
skewness (Rsk), kurtosis (Rku), and mean line peak spacing (Rsm)” through WEDM 
machining process and the corresponding process parameters have been optimized 
using the grey relational optimization process. 

2.2 Machining Operation 

In a machining operation, the material is removed from the workpiece and the final 
product is obtained with the desired level of accuracy and high-end surface finish. 
Hence the MRR and surface topography (ST) are important aspects and of great 
concern. The finished product at Less machining time is another important aspect 
that directly depends upon the MRR, “expressed in mass per unit time as well as 
volume per unit time,” of the process and needs to be considered. MRR is important 
in terms of industrial perspective whereas, surface roughness is important in terms of 
tribological operation. It influences “the mechanical properties, like fatigue behavior, 
corrosion resistance, creep life, etc., and also affects the functional attributes of 
machine components like friction, wear, reflection, heat transmission, lubrication, 
electrical conductivity, etc.” 

2.2.1 Surface Parameters 

Surface roughness is referred to as the “variations that occurred in the height of the 
surface relative to a reference plane. It is measured either along a single line profile 
or along with a set of parallel It is usually characterized by one of the two statistical 
height descriptors advocated by the American National Standards Institute (ANSI) 
and the International Standardization Organization (ISO)” (Sahoo 2005; Bhushan 
2013) and generally categorized by “three different parameters, viz., amplitude, 
spacing, and hybrid parameters” as discussed below. 

(a) Amplitude parameters: it is a measure of vertical characteristics of the occurred 
surface deviations. For example, “center line average roughness (Ra), root mean 
square roughness (Rq), skewness (Rsk), kurtosis (Rku), peak-to-valley height, 
etc.” 

(b) Spacing parameters: it is the measurement of horizontal characteristics of 
surface deviations. For example, “mean line peak spacing, high spot count, 
peak count, etc.”
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(c) Hybrid parameters: it is the combination of both vertical and horizontal char-
acteristics of surface deviations. For example, “root mean square slop of profile, 
root mean square wavelength, core roughness depth, reduced peak height, valley 
depth, peak area, valley area, etc.” 

Hence, the consideration of only one surface roughness parameter such as Ra is 
not sufficient to completely describe the surface quality. 

2.3 Response Parameters 

2.3.1 Material Removal Rate (MRR) 

In the current study, the MRR has been selected as a response parameter that refers to 
the amount of materials that get removed in the unit interval of time and is generally 
defined as 

MRR = 
Wi − W f 

tm 
(2.1) 

where Wi and Wf are the initial (i.e., before machining) and final (i.e., after 
machining) weight of the workpiece samples and tm is considered as the machining 
time, taken generally in seconds (s) or in minutes (min). For the sample weight 
calculation, the electronic weighing machine is utilized with accuracy of 0.01 mg. 

2.3.2 Surface Roughness Parameters 

There occur various surface roughness parameters which are utilized for specific 
reasons. In the current work, only five surface roughness parameters have been 
considered which have been discussed below. 

2.3.2.1 Center Line Average or Average Surface Roughness (Ra) 

It is the measure of the “mean of occurred deviations of the sample profile surface 
from the center-line along the profile length” and is calculated as 

Ra = 
1 

L 

L∫

0 

|Z (x)|dx (2.2)
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Fig. 2.3 Schematic surface 
profile showing the 
center-line average surface 
roughness (Bhushan 2013) 

where L denotes the profile length and h(x) denotes the height of the deviated surface 
above the mean line measure from the origin along the x direction, and the Ra is 
generally expressed in µm as shown in Fig. 2.3. 

2.3.2.2 Root Mean Square Roughness (Rq) 

It is the measure of dispersion parameters for characterizing the surface roughness 
that is obtained by squaring the highest values of the available data and taking the 
square root of the mean. It is expressed in µm, and is given as 

Rq =

┌|||√ 1 

L 

L∫

0 

[Z(x)]2dx (2.3) 

2.3.2.3 Skewness (Rsk) 

It is the measure of “asymmetry of surface deviation about the mean plane”. The 
distribution curve from its symmetry as in Gaussian distribution and is given as 

Rsk = 
1 

Rq 
3

∫ L 

0 
[Z(x)] 

3 

dx (2.4) 

It’s a “non-dimensional number, and for symmetrical distribution like Gaussian 
distribution curve, Rsk = 0. A surface having positive skewness has a wider range of 
peak heights that are higher than the mean (peak type profile)” as shown in Fig. 2.4.
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Fig. 2.4 Schematic showing 
the skewness of roughness 
profile (Bhushan 2013) 

A surface having negative skewness possess more peaks with heights close to the 
“mean as compared to a gaussian distribution (valley type profile).” 

2.3.2.4 Kurtosis (Rku) 

It is the measure of the “sharpness of surface height distribution curve” and is 
expressed as 

Rku = 1 

Rq 
4 L 

L∫

0 

[Z(x)] 

4 

dx (2.5) 

It characterizes “the spread of height distribution” and also possesses the non-
dimensionality. The Gaussian distribution surface possesses the kurtosis value, 
Rku = 3, and if Rku > 3 means that the surface is distributed centrally and has relatively 
sharper peaks than Gaussian and vice versa as shown in Fig. 2.5. 

Fig. 2.5 Schematic showing 
the kurtosis of roughness 
profile (Bhushan 2013)
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2.3.2.5 Mean Line Peak Spacing (Rsm) 

This is the measure of “mean spacing between the peaks, with a peak defined relative 
to the mean line “and is expressed as 

Rsm = 
1 

L 
(2.6) 

where n denotes the “number of peaks spacing” and S denotes the “spacing between 
the consecutive peaks.” This quantity is expressed in millimeters (mm). 

Therefore, the surface roughness is a comparable factor, hence the absolute values 
of surface roughness needs to be considered. 

2.4 GRA Optimization 

Genichi Taguchi was the first to propose the Taguchi technique (Ghosh et al. 2012; 
Taguchi et al. 2005). This is a powerful technique utilized for designing high-quality 
systems at a relatively lower cost. It works on “orthogonal array” (OA) trials, which 
yield substantially lower variance for experiments with optimal parameters control. 
The Taguchi approach is appropriate for single-objective (SO) problems. However, 
the multi-objective (MO) optimization is not similar to single-objective problems 
and demands some better approach that can be employed to solve either the MO 
problems directly or one such approach that can convert the MO problems into SO 
problems and then the optimization can be done. 

One factor that may require the higher-the-better (HB) features can affect the 
system performance and at the same time another component may also require the 
lower-the-better (LB) criterion for their effects and performance. Hence, the proper-
ties of multi-response optimization are complex. Keeping the things in context, the 
grey relational analysis (GRA) has been employed in the current study for multi-
response optimization. Deng firstly proposes the “grey system theory” in the year of 
1989. In a grey system, some part of the information is known and some information 
is hidden. Due to the associated uncertainties, grey system provides various available 
solution (Rao 2011). Based on this theoretical perspective, the GRA technique has 
been adapted effectively in solving many complicated problems (Jozić et al.  2015). 
The GRA algorithm is depicted in Fig. 2.6.

2.4.1 GRA Generation 

The initial stage in GRA is initiated by normalizing the experimental results or 
numerical data in the range of 0–1. This is sometimes referred to as “grey relational 
generation.” In this stage, the data-pre-processing is done “in order to transfer original
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Fig. 2.6 Steps to employ the grey relational analysis optimization technique

sequence to a comparable sequence. However, depending on characteristics of data 
sequence, various methodologies of data pre-processing are available.” In this study, 
the normalization of various original data sequence for all the five surface roughness 
parameters have been done using lower-the-better performance characteristics and 
this performance characteristics of lower-the-better is given as 

ai j = max
(
bi j

) − (
bi j

)
max

(
bi j

) − min
(
bi j

) (2.7) 

where bij are the original individual data. 
Further, the normalized data sequence for MRR is done using larger-the-better 

performance characteristics and is given as 

ai j =
(
bij

) − min
(
bi j

)
max

(
bi j

) − min
(
bi j

) (2.8)
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The normalized data sequence for MRR and other five SR parameters using the 
WEDM process of Ti–6Al–4 V alloy is provided in the below sections of this work. 

2.4.2 Grey Relational Coefficient 

For the jth response of ith experiment, if the value aij obtained from the “data pre-
processing procedure is equal to or close to 1,” then the performance of ith experiment 
is regarded as best for the jth response. The reference sequence A0 is defined as (a01, 
a02, a0j, …,  a0n) = (1, 1, …, 1, …, 1), and it seeks to find the experiment “whose 
comparability sequence is the closest to the reference sequence”. In other, words, the 
GR coefficient determines how close the aij is to a0j. The larger the GR coefficient, 
the closer it is. The GR coefficient is calculated as follows (Bhushan 2013): 

ψ(a0j, ai j ) = 
(Δmin + ξΔmax) 
(Δoj + ξΔmax) 

∀i = 1, 2, 3, . . .  . . . ,  m, and j = 1, 2, 3, . . .  . . . ,  n 

(2.9) 

where ψ (a0j, aij) is referred to as the grey relational coefficient between aij and a0j.

┌( A0, Ai ) = 
1 

n 

n∑
j=1 

w j ψ
(
a0 j , ai j

)∀ i = 1, 2, 3, . . .  ,  m (2.10) 

ξ is ranging from 0 to 1, i.e., (0, 1] and is termed as distinguishing coefficient (DC). 
In present work, ξ is assumed to have a value of 0.5. This DC exhibits the index for 
distinguishability. This index of distinguishability is higher for smaller value of ξ . 

2.4.3 Grey Relational Grade (GRG) 

The grade values obtained in GRA depict the “relationship among the series.” It 
shows “measurement of quantification” in GR space. GRG is just the average of 
GR coefficients obtained in preceding phase that evaluates the overall response 
characteristics (Jozić et al.  2015; Das et al. 2015) and is given as

┌( A0, Ai ) = 
1 

n 

n∑
j=1 

w j ψ
(
a0 j , ai j

)∀i = 1, 2, 3, . . .  .,  m (2.10) 

where
∑n 

j=1w j = 1, n denotes the number of process responses.┌(A0, Ai) represents 
the GRG between the comparability sequenceAi and reference sequenceA0 “The grey 
relational grade indicates the degree of similarity between the comparability sequence
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and the reference sequence. If an experiment gets the highest grey relational grade 
with the reference sequence, it means that comparability sequence is most similar to 
the reference sequence and that experiment would be the best choice” (Taylor and 
Ziegel 2012). 

2.5 Ordering in GRA 

The numerical values of GRG between items are not absolutely important GRA 
technique, but the ordering among the GRG values possesses more significant infor-
mation. “The combination having the highest GRG value is given the highest order, 
whereas the combination having the lowest GRG value is given the lowest order.” 

2.6 Experimentation 

2.6.1 Experimentation Setup 

The delineated Fig. 2.7 exhibits the complete experimental set-up. For carrying out 
the investigation procedure, the 5-axis CNC type WEDM machine (ELEKTRA, 
MAXICUT 434) has been utilized. A dielectric medium separates the workpiece 
from the electrode (i.e., deionized water). The regulated movement of “the wire 
through the workpiece causes spark discharges, which then erode the workpiece 
to produce the desired shape. Because evaporation of zinc promotes cooling at the 
interface of the workpiece and wire, a coating of zinc oxide on the wire helps to 
avoid the short-circuits and the high MRR in WEDM without wire breakage can be 
achieved by using zinc-coated copper wire (0.25 mm diameter).”

2.6.2 Selection of Process Parameters 

However, there are numerous elements that might be investigated during the WEDM 
machining. But the literature suggests that the four machining parameters such as 
Ip, V, T on, and T off play a vital role in regulating the WEDM machining process. 
In the current study, the aforementioned design parameters have been chosen as 
design variables, whereas other parameters are considered to be “constant over the 
experimental domain.” Table 2.1 lists the variations in control machining variables 
with three different levels.
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Fig. 2.7 Experimental set-up

Table 2.1 Variations on process control parameters 

Process parameters Units Symbols Level 1 Level 2 Level 3 

Code 

1 2 3 

Discharge current (Ip) A A 6 8 10 

Voltage (V ) V B 50 55 60 

Pulse-on time (Ton) µs C 3 4 5 

Pulse-off time (Toff) µs D 3 4 5 

2.7 Design of Experiments 

Design of experiments (DOE) is a technique that provides an organized way of getting 
the maximum possible conclusive information by conducting the minimum number 
of experimental runs, or from the minimum amount of energy, money, or other limited 
resources. Taguchi’s design techniques (Taylor and Ziegel 2012) proposed an orthog-
onal array (OA) concept to employ to reduce the number of conducting experiments 
for determining the optimal machining parameters. To determine the main effects 
as well as the interaction effects of the considered factors simultaneously, an OA
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requires the fewest number of experimental trials possible. The “total degrees of 
freedom (DOF) necessary to explore the main effects and interaction effects deter-
mines which OA design is best suited to conduct experiments.” The total number of 
degrees of freedom (DOFs) required is 20 (8 + 12). In the present work, L27 OA was 
chosen because according to the Taguchi approach, “the total DOFs of the chosen 
OA must be greater than or equal to the total DOFs necessary for the experiments.” 
In the present work, the variations on process control parameters have been carried 
out and provided in Table 2.1. In Table 2.1, Ip, V, T on, and T off were selected as vari-
ables that are necessary to be optimized in three different levels. The corresponding 
varying parameters for the aforementioned process or machining control parameters 
have been tabulated with three different levels. 

2.8 Response Factors and Their Measurements 

In this study, the MRR and various SR factors have been considered as the response 
characteristics. MRR is defined as the ratio of the difference in weights before and 
after performing the machining operation of the workpiece to the total machining time 
taken as given in Eq. 2.1. In the current study, it is the measure of material’s weight 
loss and is given in gm/min. Further, for the current study, five different roughness 
parameters viz. Ra, Rq, Rsk , Rku, and Rsm have been selected. “Roughness measure-
ment is done using a stylus-type profilometer, Talysurf (Taylor Hobson, Surtronic 
3+). Roughness measurements in the transverse direction on the workpieces are 
repeated five times the average of five measurements of surface roughness parameter 
values are recorded”. The experimental data for the aforementioned response factors 
have been provided in tabulated form in Table 2.2.

2.9 Results and Discussions 

2.9.1 Multi-objective Performance Characteristics 

In determining the performance characteristics, the present study addresses various 
responses, namely MRR and SR characteristics in the WEDM process of titanium 
alloy Ti–6Al–4 V. Surface roughness is measured using “five surface roughness 
parameters: Ra, Rq, Rsk , Rku, and Rsm.” For determining the optimized machining 
or process parameters, the grey relational analysis (Julong 1989) and the Taguchi 
method maximize all six response parameters at the same time.
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Table 2.2 Experimental data based on the design of experiments 

Runs A B C D MRR Ra (µm) Rq Rsk Rku Rsm 

1 1 1 1 3 0.07763 2.9310 3.5915 0.0525 1.7700 0.0575 

2 1 1 2 2 0.11992 2.7500 3.4250 0.2630 2.0565 0.0590 

3 1 1 3 3 0.08295 2.5275 3.2115 0.0735 1.3405 0.0560 

4 1 1 1 2 0.05877 2.8540 3.5490 0.1505 2.0115 0.0725 

5 1 2 2 3 0.10997 2.6565 3.2775 0.1995 2.0025 0.0545 

6 1 2 3 3 0.11814 2.4915 3.0965 0.0715 1.8200 0.0815 

7 1 3 1 3 0.10120 2.6080 3.1910 0.1295 1.5715 0.0535 

8 1 3 2 3 0.09141 3.0750 3.7940 0.0435 1.4265 0.0570 

9 1 3 3 2 0.09745 2.6675 3.2790 0.0870 1.4500 0.0490 

10 2 1 1 2 0.09587 1.2490 1.5975 0.1270 2.0575 0.0595 

11 2 1 2 3 0.07830 2.3115 2.8400 0.0440 1.8690 0.0540 

12 2 1 3 2 0.06575 2.7675 3.4300 0.1485 1.6250 0.0655 

13 2 2 1 3 0.05356 2.8265 3.4415 0.0235 1.3215 0.0540 

14 2 2 2 1 1.01993 3.1765 3.9290 0.0430 1.5775 0.0625 

15 2 2 3 2 0.09435 1.6630 2.0665 0.0430 1.7890 0.0700 

16 2 3 2 3 0.09216 2.4485 3.0085 0.0735 1.5250 0.0590 

17 2 3 2 2 0.08007 1.5615 1.9400 0.0585 2.0240 0.0580 

18 2 3 3 3 0.10554 2.7675 3.4215 0.1180 1.6075 0.0600 

19 3 3 1 3 0.09546 2.8500 3.5065 0.0565 1.3865 0.0550 

20 3 1 2 3 0.11854 2.7315 3.4000 0.0660 1.6950 0.0640 

21 3 1 3 2 0.11634 2.6675 3.2965 0.0065 1.4500 0.0530 

22 3 2 1 3 0.10765 3.3515 4.1805 0.0385 1.4925 0.0590 

23 3 2 2 2 0.11579 3.2490 4.0000 0.0655 1.4085 0.0560 

24 3 3 3 3 0.11042 2.7125 3.3490 0.0220 1.5515 0.0610 

25 3 3 1 2 0.12930 2.8215 3.4550 0.0400 1.4575 0.0580 

26 3 3 2 3 0.10510 3.0650 3.3265 0.0615 1.3565 0.0550 

27 3 3 3 3 0.12369 10.8480 3.1715 0.0840 2.2955 0.0590

2.9.2 Grey Relational Approach 

The experimental data obtained during the WEDM machining operation for “MRR” 
and “SR” parameters have been provided in Table 2.2. Since we require the maximum 
for the first and minimum for the second characteristics, so in this regard, the HB 
criterion is employed to get the maximized result of the first characteristics and at 
the same time, LB criterion has been employed to obtain the minimized values of 
the second characteristics. Here, for all five SR parameters, the LB criterion has 
been implemented. Using these HB and LB criteria of the aforementioned response 
characteristics, the normalization of data has been carried out according to the GRA
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procedure. The normalized data sequence for the aforementioned response character-
istics has been provided in tabulated form in Table 2.3. Further, using Eq. (2.10), the 
difference of the absolute value (Δoj) was determined and has been listed in Table 
2.4. In the next step, the grey relational coefficient (GRC) has been determined using 
Eq. (2.9), and the results have been tabulated and shown in Table 2.5. Further, after 
averaging the GR coefficients, the grey relational grade (GRG) has been calculated 
using Eq. 2.10. “Here, it may be noted that the higher relational grade indicates that 
the corresponding parameter combination is closer to the optimal. The final values 
for the grey relational grade and their order are given in Table 2.6.” 

Table 2.3 Normalized data sequence for MRR and five surface roughness parameters 

Normalization of data 

MRR Ra Rq Rsk Rku Rsm 

0.02491 0.8248 0.2280 0.8207 0.5395 0.7385 

0.06866 0.8436 0.2925 0.0000 0.2454 0.6923 

0.03040 0.8668 0.3751 0.7388 0.9805 0.7846 

0.00539 0.8328 0.2445 0.4386 0.2916 0.2769 

0.05836 0.8534 0.3496 0.2476 0.3008 0.8308 

0.06682 0.8706 0.4197 0.7466 0.4882 0.0000 

0.04929 0.8584 0.3831 0.5205 0.7433 0.8615 

0.03916 0.8098 0.1496 0.8558 0.8922 0.7538 

0.04541 0.8522 0.3490 0.6862 0.8681 1.0000 

0.04377 1.0000 1.0000 0.5302 0.2444 0.6769 

0.02559 0.8893 0.5190 0.8538 0.4379 0.8462 

0.01261 0.8418 0.2906 0.4464 0.6884 0.4923 

0.00000 0.8357 0.2861 0.9337 1.0000 0.8462 

1.00000 0.7992 0.0974 0.8577 0.7372 0.5846 

0.04220 0.9569 0.8184 0.8577 0.5200 0.3538 

0.03994 0.8750 0.4537 0.7388 0.7911 0.6923 

0.02743 0.9674 0.8674 0.7973 0.2787 0.7231 

0.05378 0.8418 0.2938 0.5653 0.7064 0.6615 

0.04335 0.8332 0.2609 0.8051 0.9333 0.8154 

0.06723 0.8456 0.3022 0.7680 0.6165 0.5385 

0.06496 0.8522 0.3422 1.0000 0.8681 0.8769 

0.05596 0.7810 0.0000 0.8752 0.8244 0.6923 

0.06439 0.7916 0.0699 0.7700 0.9107 0.7846 

0.05883 0.8475 0.3219 0.9396 0.7639 0.6308 

0.07837 0.8362 0.2809 0.8694 0.8604 0.7231 

0.05333 0.8108 0.3306 0.7856 0.9641 0.8154 

0.07257 0.0000 0.3906 0.6979 0.0000 0.6923



46 R. Kumar and K. Kumar

Table 2.4 Values of Δoj for calculating the GR coefficients 

Values of Δoj 

MRR Ra Rq Rsk Rku Rsm 

0.97509 0.1752 0.7720 0.1793 0.4605 0.2615 

0.93134 0.1564 0.7075 1.0000 0.7546 0.3077 

0.96960 0.1332 0.6249 0.2612 0.0195 0.2154 

0.99461 0.1672 0.7555 0.5614 0.7084 0.7231 

0.94164 0.1466 0.6504 0.7524 0.6992 0.1692 

0.93318 0.1294 0.5803 0.2534 0.5118 1.0000 

0.95071 0.1416 0.6169 0.4795 0.2567 0.1385 

0.96084 0.1902 0.8504 0.1442 0.1078 0.2462 

0.95459 0.1478 0.6510 0.3138 0.1319 0.0000 

0.95623 0.0000 0.0000 0.4698 0.7556 0.3231 

0.97441 0.1107 0.4810 0.1462 0.5621 0.1538 

0.98739 0.1582 0.7094 0.5536 0.3116 0.5077 

1.00000 0.1643 0.7139 0.0663 0.0000 0.1538 

0.00000 0.2008 0.9026 0.1423 0.2628 0.4154 

0.95780 0.0431 0.1816 0.1423 0.4800 0.6462 

0.96006 0.1250 0.5463 0.2612 0.2089 0.3077 

0.97257 0.0326 0.1326 0.2027 0.7213 0.2769 

0.94622 0.1582 0.7062 0.4347 0.2936 0.3385 

0.95665 0.1668 0.7391 0.1949 0.0667 0.1846 

0.93277 0.1544 0.6978 0.2320 0.3835 0.4615 

0.93504 0.1478 0.6578 0.0000 0.1319 0.1231 

0.94404 0.2190 1.0000 0.1248 0.1756 0.3077 

0.93561 0.2084 0.9301 0.2300 0.0893 0.2154 

0.94117 0.1525 0.6781 0.0604 0.2361 0.3692 

0.92163 0.1638 0.7191 0.1306 0.1396 0.2769 

0.94667 0.1892 0.6694 0.2144 0.0359 0.1846 

0.92743 1.0000 0.6094 0.3021 1.0000 0.3077

2.9.3 Signal-to-Noise (S/N) Ratio Analysis 

Taguchi in the year 1990 proposed a Taguchi method for optimizing the single-
objective optimization problems. There he proposed the S/N ratio formula that is 
utilized to convert the available dataset into the dataset of evolutionary characteristics. 
In this work, the S/N ratio analysis has been carried out with the GRG performance 
index. To carry out the maximization of grey relational grade, the S/N ratio has been 
calculated for the higher-the-better criterion using the following S/N ratio relation 
as
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Table 2.5 Grey relational coefficient 

Grey relational coefficient 

MRR Ra Rq Rsk Rku Rsm 

0.33896 0.7405 0.3931 0.7360 0.5206 0.6566 

0.34932 0.7618 0.4141 0.3333 0.3985 0.6190 

0.34023 0.7897 0.4445 0.6569 0.9625 0.6989 

0.33453 0.7494 0.3982 0.4711 0.4138 0.4088 

0.34683 0.7732 0.4346 0.3992 0.4170 0.7471 

0.34887 0.7944 0.4628 0.6636 0.4942 0.3333 

0.34466 0.7793 0.4477 0.5104 0.6608 0.7831 

0.34227 0.7244 0.3703 0.7761 0.8226 0.6701 

0.34374 0.7719 0.4344 0.6144 0.7912 1.0000 

0.34335 1.0000 1.0000 0.5156 0.3982 0.6075 

0.33912 0.8187 0.5097 0.7738 0.4708 0.7647 

0.33616 0.7597 0.4134 0.4746 0.6161 0.4962 

0.33333 0.7526 0.4119 0.8830 1.0000 0.7647 

1.00000 0.7135 0.3565 0.7785 0.6555 0.5462 

0.34298 0.9206 0.7336 0.7785 0.5102 0.4362 

0.34245 0.8001 0.4779 0.6569 0.7053 0.6190 

0.33954 0.9389 0.7904 0.7115 0.4094 0.6436 

0.34573 0.7597 0.4145 0.5349 0.6300 0.5963 

0.34325 0.7499 0.4035 0.7195 0.8822 0.7303 

0.34898 0.7640 0.4174 0.6831 0.5660 0.5200 

0.34842 0.7719 0.4319 1.0000 0.7912 0.8025 

0.34625 0.6954 0.3333 0.8003 0.7401 0.6190 

0.34828 0.7059 0.3496 0.6849 0.8484 0.6989 

0.34694 0.7663 0.4244 0.8922 0.6792 0.5752 

0.35171 0.7532 0.4101 0.7929 0.7817 0.6436 

0.34562 0.7255 0.4276 0.6999 0.9330 0.7303 

0.35028 0.3333 0.4507 0.6233 0.3333 0.6190

S/N ratio = −10log

(
1 

n 

n∑
i=1 

1 

y2 i

)
(2.11) 

where y is referred to as the GRG for the current maximization of grade and n 
indicates the number of trials or runs. 

Further, the response table provided in Table 2.7 “compares the relative magnitude 
of the effects, including ranks based on the delta statistics.” The delta calculation is 
carried out by measuring the difference between the “highest average value and lowest 
average value” for each of the factors. Next, the ranks based on these delta values are
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Table 2.6 Grey relational 
grade (GRG) and rank 

Grey relational grade and rank 

Runs Grey relational grade Rank 

1 0.4742 19 

2 0.4273 25 

3 0.5254 5 

4 0.4114 26 

5 0.4505 22 

6 0.4493 23 

7 0.4905 18 

8 0.5075 12 

9 0.5331 4 

10 0.5238 7 

11 0.5033 14 

12 0.4441 24 

13 0.5479 3 

14 0.8050 1 

15 0.5094 11 

16 0.4971 16 

17 0.5191 9 

18 0.4664 21 

19 0.5202 8 

20 0.4695 20 

21 0.5540 2 

22 0.4919 17 

23 0.5029 15 

24 0.5072 13 

25 0.5140 10 

26 0.5244 6 

27 0.4111 27

assigned. From the response table, it is evident that factor A, i.e., the discharge current 
(Ip) got ranked 1 which means factor A plays a very significant role in controlling 
the response factors such as MRR and surface roughness characteristics during the 
WEDM machining process. For the GRG, the main effects plot, as well as interaction 
plots, has been drawn and delineated in Figs. 2.4 and 2.5.

If the line for a given parameter in the main effects plot is near horizontal, the 
parameter has no meaningful effect. A parameter for which the line has the greatest 
inclination, on the other hand, will have the most impact. From the given plot in 
Fig. 2.4, it is clear that parameter A, i.e., the discharge current (Ip) is the  most  
dominating factor, followed by factor D i.e., (pulse-on time). Further, estimating



2 Multi-response Optimization on Process Parameters of WEDM … 49

Table 2.7 Response table for grey relational analysis 

Response table for GRA 

Level A B C D 

1 0.474339 0.490191 0.496728 0.513206 

2 0.535131 0.521044 0.520685 0.493908 

3 0.499476 0.499149 0.488871 0.503976 

Delta 0.060792 0.030853 0.031814 0.019298 

Rank 1 3 2 4 

Mean of the GRG = 0.5030

an interaction plot helps in determining the existence of non-parallelism of param-
eter effects. “Thus, if the lines on the interaction plots are non-parallel, interaction 
occurs and if the lines cross, strong interactions occur between parameters.” From 
Fig. 2.5, it can be seen that there exists a strong interaction between the factors Ip 

and V, between V and T on, and between T on and T off that shows an appreciable 
agreement with the previous works done in the literatures. On performing the GRA, 
we finally obtain the optimal machining or process parameters from the main effects 
plot as A2B2C2D1, i.e., the experimental combination number 14 possess the desired 
“optimal machining parameters obtained for maximum MRR and minimum surface 
roughness” performance characteristics (Figs. 2.8 and 2.9). 

Fig. 2.8 Main effects plot of weighted for GRA factors
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Fig. 2.9 Interaction plot of weighted grade among the GRA factors 

2.10 Conclusion 

In the current work, the study of various machining parameters optimization has been 
carried out for the titanium alloy (Ti–6Al–4 V) under WEDM machining operation. 
The GRA has been implemented to get the desired optimized values for the MRR 
and other SR performance characteristics. The DOE has been designed for four 
factors with three levels. Ip, V, T on, and T off have been taken into account for the 
four factors. The main effect plot results in the best optimal combination of process 
parameters. Current is the most dominating factor during the optimization results. 
The investigation suggests the most optimal process parameters for MRR and other 
SR performance characteristics are A2B2C2D1, i.e., level 2 of A, B, and C (i.e., Ip,V, 
and T on) and level 1 of D (i.e., T off) being the optimal criterion of the aforementioned 
machining parameters. 
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