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Abstract Vehicle automation is regarded as one of the most promising technolo-
gies in transportation networks to alleviate congestion, improve safety and energy 
efficiency. Adaptive cruise control (ACC) systems, which serve as the first step of 
automation, are already standard equipment in many commercially available vehi-
cles. Therefore, the observation-based assessment of such systems individually and 
in platoon formations is very appealing. The thematic focus of this study is laid on 
investigations into the impact of ACC systems on energy and fuel consumption inside 
the platoon. High-resolution data from two experimental car-following campaigns 
consisted of platoons with ACC-equipped vehicles are collected. Two driving modes 
are considered, human- and ACC-driven vehicles. Results are presented with four 
independent energy consumption models. The findings reveal that an upstream 
energy propagation was observed inside the platoon by the ACC participants, indi-
cating that ACC systems are less efficient than human drivers. On the positive side, 
ACC systems do not generally fail inside a platoon, keeping steady time-gaps. They 
seem to operate based on a constant headway policy, and their performance is condi-
tioned to the environment. ACC drivers in protected environments and campaigns 
might perform better but should be (ideally) tested in adverse environments. 
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4.1 Introduction 

The energy and environmental challenges facing humanity are further exacerbated 
by the rising transport of goods and people. The transport sector is heavily reliant 
on fossil fuels. As a result, transportation generates a large share of greenhouse gas 
(GHG) emissions around the world. However, the future of transportation networks is 
expected to be transformed radically, due to the recent advances in vehicle automa-
tion and communication systems. Vehicle automation comes with the promise to 
increase road safety, road capacity, and traffic flow that are currently limited due 
to heterogeneity in vehicle dynamics and human driving behaviors. Nowadays, 
many commercially available vehicles are equipped with advanced driver assistance 
systems (ADAS) that support the driver by taking over particular driving tasks. 

Adaptive cruise control (ACC) systems, which are considered as the first step of 
driving automation (Level-1 of SAE levels of driving automation [1]), are already 
optional or standard equipment in many commercially available vehicles. Driving 
automation of Level-1 undertakes the steering or brake/acceleration task of the driver. 
Level-2 assumes a combination of multiple assistance functionalities, e.g., under-
taking both steering and brake/acceleration tasks of the driver. The ACC system 
controls the longitudinal movement of the equipped vehicle by monitoring the speed 
and distance from the vehicle ahead constrained by a user-defined desired speed. ACC 
uses onboard sensors (right and left side on the front bumper), such as LiDAR, radar, 
or cameras to continuously detect the distance to the preceding vehicle. ACC can be 
enabled and disabled by the driver upon request. The driver activates ACC by setting 
the desired maximum speed and by selecting among different time-gap settings from 
the preceding vehicle. Then, ACC can automatically adjust the vehicle’s speed by 
accelerating or decelerating it, to maintain a constant predefined headway with the 
vehicle in front or to reach the predefined desired speed. Moreover, a braking guard 
can warn about imminent collision and automatically start braking and disengage 
ACC. ACC disengagement occurs whether the headway between two vehicles is 
close to infinity or when a vehicle travels with the minimum ACC operating speed. 
The driving behavioral properties of ACC are considered to reduce heterogeneity, 
affecting traffic flow (negative or positive depending on the conditions) and affecting 
fuel consumption and emission pollutants. 

The penetration rate of ACC-equipped vehicles on public roads is rapidly 
increasing, gaining traction among car manufacturers and consumers. However, 
the surging acceptance of such systems across the globe is escalating concerns on 
undesired properties of commercial ACC systems such as string instability, nega-
tive impact on-road capacity, safety concerns, energy demand, and fuel consumption 
[2–6]. 

Studies on the energy footprint of ACC-equipped vehicles are based on traffic 
simulation or empirical data obtained from experimental campaigns. For instance, a 
novel vehicular ACC system was proposed that can comprehensively address issues 
of tracking capability, fuel economy, and driver desired response [7]. Detailed simu-
lations with a heavy-duty truck showed that the developed ACC system provides
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significant benefits in terms of fuel economy, achieving fuel savings of 5.9 and 2.2% 
during urban and highway driving scenarios, respectively. 

A large-scale study with a fleet of 51 test vehicles over 62 days and 199,300 miles 
(driven by General Motor employees on their daily commutes) was conducted to 
analyze the GHG emissions benefit of ACC from a statistical perspective [8]. The 
results show that ACC driving could significantly reduce GHG emissions at low 
speeds, which, however, would hardly deliver a meaningful benefit for the whole 
journey because ACC utilization rates at low speeds were marginal and low-speed 
driving only covered a small portion of the total travel distance. Generally, the study 
reports a positive total GHG (directly correlated to fuel consumption) emissions 
benefit of the ACC systems. 

An experimental campaign involving 10 commercially available ACC-equipped 
vehicles was presented [9]. The test campaign was executed in two different test 
tracks of the ZalaZONE proving ground, in Hungary. Results confirm the previous 
findings in terms of string instability of the ACC and highlight that in the present 
form, ACC systems may lead to higher energy consumption and introduce new safety 
risks when their penetration in the fleet increases. 

Another field experiment was conducted with seven commercial SAE Level-2 
equipped vehicles, driven as a platoon on public roads for a trip of almost 500 km 
[10]. The study concludes that SAE Level-2 systems are not suitable for driving 
as platoons of more than typically three to four vehicles, because of instabilities 
in the car-following behavior and hence, discomfort and large fuel consumption. 
Finally, another experiment was performed with ACC-equipped vehicles in real-
world car-following scenarios from Ispra to Vicolungo and back, in Italy [11]. 
Two driving modes were adopted, with and without ACC systems enabled. The 
results show that from individual and platoon perspectives, ACC followers tend to 
have energy consumption higher than those of human counterparts, questioning the 
positive impact of ACC systems on fuel and energy consumption. 

Experimental observations with partially or fully automated vehicles are scarce, 
but their number is expected to increase in the coming years due to the availability of 
heterogeneous, precise, and inexpensive sensors. Nevertheless, the energy demand 
of automated vehicles, as well as their commonalities and differences with human 
drivers are not widely discussed in the literature, which constitutes a gap that this 
work aims to fill. Toward this goal, the present chapter provides a comprehensive 
study of the energy impact of ACC systems under car-following conditions, based on 
empirical observations from two independent real-life experimental campaigns, with 
platoons of ACC-equipped vehicles, using two different data acquisition methods. 
Their energy impact is assessed by four state-of-the-art energy demand and fuel 
consumption models available in the literature. Both ACC- and human-driven vehi-
cles are considered in the investigation to elaborate on the behavioral similarities and 
differences between these two driving modes. As a result, it expands the discussion 
from safety concerns and technological aspects of ACC systems and includes the 
effect of transportation on the environment under real circumstances.
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The main findings of this work are as follows: (a) In both experimental campaigns, 
an upstream energy propagation was observed inside the platoon by the ACC partic-
ipants, regarding both tractive energy and fuel consumption, indicating that ACC 
systems are less efficient; (b) ACC driving operation (strong accelerations, steep 
speeds) may negatively affect the energy impact of ACC systems; (c) ACC systems 
may lead to string instability failing to avoid an upstream energy amplification; and 
(d) road gradient changes could create string instabilities in the traffic flow and may 
negatively affect the energy impact of ACC systems. 

Despite the above shortcomings of ACC, we highlight that ACC systems do not 
generally fail inside a platoon, and they drive very steady in equilibrium conditions. 
Especially on highways, commercially implemented ACC systems can be reliable, 
safe, comfortable (no need to press the pedal), and energy efficient in equilibrium 
conditions. To support the above arguments, we show that the time- and space-
gaps of the ACC participants are smaller (in absolute values) and better distributed 
when compared to their human counterparts. This highlights the ability of the ACC 
drivers to keep constant time-gap policies. We also show that the more efficient ACC 
systems are regarding their functional specifications, the less energy efficient tend 
to be. Consequently, commercially implemented ACC systems must be optimized 
to realize a trade-off between functional specifications in terms of time-gap policies 
and safe and eco-driving instructions. This will ideally eliminate high energy levels 
and achieve the desired eco-driving and safety features of commercial ACC systems. 

The rest of this chapter is organized as follows: Sect. 4.2 presents four independent 
energy and fuel consumption models. Two experimental car-following campaigns in 
Italy and Sweden are then presented, providing us with two large datasets, valuable 
for the assessment of the four models. Section 4.3 first analyzes the experimental 
data from the two test campaigns. Then, it assesses the energy footprint of ACC and 
human drivers as obtained from the application to the considered energy demand 
and fuel consumption models. Also, it offers a discussion around the similarities and 
differences between these two driving modes concerning several technical aspects. 
Specifically, ACC and human driving behaviors are compared with respect to the 
transient response of speed and acceleration profiles, traffic perturbation events, string 
stability, and time-gap policies. Finally, Sect. 4.4 summarizes the findings of this 
study and offers suggestions for future work. 

4.2 Methodology 

This section presents four independent energy and fuel consumption models. The first 
model concerns the tractive energy consumption [11, 12], ruling out the effect of the 
propulsion system (tractive power demand on the wheels). The other three models, 
namely VT-micro [13], VSP [14, 15], and ARRB [16], focus on the (instantaneous) 
fuel consumption.
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4.2.1 Tractive Energy Consumption 

Tractive energy consumption serves as a suitable indicator for the assessment of ACC 
driving behavior. This indicator considers only the tractive power demand on the 
wheels, without considering the powertrain dynamics and the regenerative braking 
power. Although it does not directly reflect the engine fuel consumption (which will 
be considered in Sect. 2.2) or the battery charge depletion, this metric can rule out 
the energy effect of heterogeneous propulsion systems in the traffic network [11]. 

The instantaneous tractive power (Pt , kW) required to move the engine at the 
defined velocity and surpass the aerodynamic and rolling resistances is given by 
[12]: 

Pt =
{(

F0 + F1ve + F2v
2 
e + 1.03mae + mg · sinθ)

ve · 10−3, Pt ≥ 0 
0, Pt < 0 

, (4.1) 

where F0, F1, and F2 are road load coefficients that describe the relationship between 
overall resistances to motion and the vehicle speed, given in N, Ns/m, and Ns2/m2, 
respectively; m is the vehicle mass (kg); ve and ae are the ego vehicle’s speed (m/s) 
and acceleration (m/s2), respectively; θ is the road gradient (rad); g is the gravitational 
acceleration (9.81 m/s2). 

The terms inside the parentheses in Eq. 4.1 represent the resistance forces to 
vehicle motion and speed. The F0, F1, and F2 coefficients are commonly used to 
characterize the road loads of vehicles, as mentioned above. They express the constant 
part of a vehicle’s resistances (tire rolling resistances), the part that is proportional 
to velocity (partly tire rolling resistance, partly drivetrain losses), and the part that is 
proportional to the square of the vehicle’s velocity (aerodynamic component) [17]. 
Consequently, the first two terms (F0 + F1ve) represent the rolling resistance force, 
the second one (F2v

2 
e ) the aerodynamic drag, the third term (1.03mae) is the  force of  

inertia, where the factor of 1.03 is applied to correct the inertia of the vehicle which 
accounts for the vehicle mass and the inertia of its rotating components, and the last 
one (mg · sinθ ) is related to the force due to gravity and roadway grade. 

The vehicle’s tractive energy consumption (Et , kWh/100 km) results by inte-
grating the instantaneous tractive power requirements (Pt , kW) at the wheels over 
time, without considering the negative power components from the regenerative 
braking, and dividing it by the distance covered which corresponds to the integration 
of the instantaneous speed over time [11]. Finally, a factor of 0.036 is applied to the 
denominator so that the results are available in the commonly used units mentioned 
above (kWh/100 km), as described by: 

Et =
∫ T 
0 Ptdt  

0.036 · ∫ T 
0 vedt  

, (4.2) 

where dt  is the time interval (s) between consecutive measurement points and T 
denotes the total duration (s) of the travel period.
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4.2.2 Fuel Consumption 

The impact of ACC driving behavior on fuel consumption is assessed with three 
state-of-the-art vehicle fuel consumption models, namely VT-micro [13], VSP [15], 
and ARRB [16], focusing on instantaneous fuel consumption. 

4.2.2.1 The VT-Micro Model 

Virginia Tech (VT)-micro model is a microscopic dynamic emission and fuel 
consumption model [13]. The VT-micro model was developed from experimenta-
tion with numerous polynomial combinations of speed and acceleration profiles, on a 
second-by-second basis [18]. Specifically, linear, quadratic, cubic, and quartic speed 
and acceleration terms were tested using chassis dynamometer data, collected at the 
Oak Ridge National Laboratory (ORNL). The ORNL data consisted of nine normal-
emitting vehicles, including six light-duty automobiles and three light-duty trucks. 
The raw data collected at the (ORNL) contained 1300–1600 individual vehicle data 
points, each collected every second during various driving cycles. Typically, vehicle 
acceleration values ranged from −1.5 to 3.7 m/s2 at increments of 0.3 m/s2, while 
vehicle speeds varied from 0 to 33.5 m/s at increments of 0.3 m/s [13]. 

Generally, two types of mathematical models were investigated, nonlinear regres-
sion models and artificial neural network models. For the purposes of this study, the 
instantaneous fuel consumption, F(vi , ai ) (L/s), of an individual vehicle, can be 
expressed as: 

F(vi , ai ) = exp 

⎛ 

⎝ 
3∑

j1=0 

3∑
j2=0 

K j1 j2 (vi ) j1 (ai ) j2 
⎞ 

⎠, (4.3) 

where vi and ai are the speed (m/s) and acceleration (m/s2) of the vehicle at time i , 
respectively; j1 and j2 are the power indexes; K j1 j2 are constant coefficients that can 
be found in Table 4.1 [19]. 

Table 4.1 Coefficients of the VT-micro model 

K j1 j2 j2 = 0 j2 = 1 j2 = 2 j2 = 3 
j1 = 0 −7.537 0.4438 0.1716 −0.0420 

j1 = 1 0.0973 0.0518 0.0029 −0.0071 

j1 = 2 −0.003 −7.42E−04 1.09E−04 1.16E−04 

j1 = 3 5.3E−05 6E−06 −1E−05 −6E−06
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4.2.2.2 The VSP Model 

The concept of vehicle specific power (VSP) is a formalism used in the evaluation 
of vehicle emissions. Vehicle specific power is defined as the instantaneous power 
per unit mass of the vehicle [14]. The instantaneous power generated by the engine 
is used to overcome the rolling resistance and aerodynamic drag and to increase the 
kinetic and potential energies of the vehicle [14], so VSP is described as: 

VSP = 
Power 

mass 
= 

d 
dt

(
Ekinetic + Epotential

) + Frolling · v + Faerodynamic · v 
m 

, (4.4) 

where Ekinetic is the kinetic energy; Epotential is the potential energy, Frolling is the 
rolling resistance force; Faerodynamic is the aerodynamic resistance force; v is the 
vehicle speed; and m is the vehicle mass. More specifically, it equals the product of 
speed and an equivalent acceleration, which includes the effects of roadway grade 
and rolling resistance, plus a term for aerodynamic drag which is proportional to the 
cube of the instantaneous speed [14], as described by: 

VSP = 
Power 

mass 
= 

d 
dt  ( 

1 
2 m · (1 + εi ) · v2 + mgh) + CRmg · v + 1 2 ρaCD A(v + vw)2 · v 

m 
, 

(4.5) 

and hence, 

VSP = v · (a · (1 + εi ) + g · grade + g · CR) + 
1 

2 
ρa 

CD · A 
m 

(v + vw)2 · v, (4.6) 

where v, m as described above, given in m/s and kg, respectively; a is the vehicle 
acceleration (m/s2); εi 1 is the “mass factor,” which is the equivalent translational 
mass of the rotating components (wheels, gears, shafts, etc.) of the powertrain; h 
is the altitude of the vehicle; grade2 [14]. However, for the purposes of this study, 
sin(tan−1 (grade)) was used.) is the vertical rise divided by the slope length; g is 
the gravitational acceleration (9.81 m/s2); CR 

3 is the coefficient of rolling resistance 
(dimensionless); CD is the drag coefficient (dimensionless); A is the frontal area of 
the vehicle; ρa is the ambient air density (1.207 kg/m3 at 20 °C); vw is the headwind 
into the vehicle. The last term of Eq. 4.6, the load due to aerodynamic drag, depends 
on the factor (CD · A/m) which is different for each specific vehicle model. An 
estimate was done based on the bibliography and was set equal to 0.0005. Thus, the

1 Typical values of εi for a manual transmission are 0.25 in 1st gear, 0.15 in 2nd gear, 0.10 in 3rd 
gear, 0.075 in 4th gear, etc. Finally, εi was set equal to 0.1 [14]. 
2 Rigorously sin(tan−1(grade)) should be used instead of grade, but the error of this approximation 
is small (less than 1% relative error for grades below 14%. 
3 The value of CR depends on the road surface and tire type and pressure, with a small dependence 
on vehicle speed, with typical values ranging from 0.0085 to 0.016, so a value of 0.0135 has been 
used [14]. 
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vehicle specific power, after calculations, is given in W/kg, as: 

VSP = v · (1.1 · a + 9.81 · grade + 0.132) + 3.02 · 10−4 (v + vw)2 · v. (4.7) 

For the purposes of this study, the following form was used: 

VSPi = vi · (1.1ai + 9.81g + 0.132) + 3.02 · 10−4 v3 
i , (4.8) 

where VSPi is the instantaneous vehicle specific power (W/kg); vi and ai are the 
speed (m/s) and acceleration (m/s2) of the vehicle at time i , respectively;g denotes 
the road grade given as mentioned previously. 

To perform the energy characterization of a vehicle, a portable laboratory was used 
to measure fuel consumption, pollutant emissions, and vehicle dynamics under on-
road conditions of 14 conventional vehicles and 5 hybrid vehicles. For each second 
of driving, according to the power demand resulting from the vehicle specific power 
VSPi mentioned above, the correspondent VSP mode was calculated. Using the 
data collected on-road, a general trend of fuel consumption as a function of VSP 
mode was observed, which was defined by 6 coefficients adjustable from vehicle to 
vehicle according to the certification inputs [15]. As a result, the instantaneous fuel 
consumption is expressed as a function of vehicle specific power, VSPi (g/s), as: 

F(vi , ai ) = F(VSPi ) = 

⎧⎨ 

⎩ 

f, if VSPi < −10 
αVSP2 i + bVSPi + c, if − 10 ≤ VSPi ≤ 10 
mVSPi + d, if VSPi > 10 

, (4.9) 

where α = 1.98E−03, b = 3.97E−02, c = 2.01E−01, d = 2.48E−03, f = 
2.48E−03, and m = 7.93E−02 are coefficient values corresponding to one of the 
testing vehicles that were used [15]. To obtain the results in L/s, the instantaneous 
fuel consumption, F(vi , ai ) (g/s), is divided by the fuel density. For the purposes of 
this work, we assume only diesel vehicles, and hence, the oil density ρ is estimated 
around 850 g/L. 

4.2.2.3 The ARRB Model 

Australian road research board (ARRB) model is an instantaneous fuel consumption 
model suitable for determining the incremental effects on fuel consumption resulting 
from changes in traffic management [16]. The model relates fuel consumption to 
the fuel to maintain engine operation and to the energy consumed (word done) in 
providing tractive force to the vehicle. 

A power-based model was proposed that could relate the instantaneous fuel 
consumption to the instantaneous power demand experienced by the vehicle, using a 
simple linear relation [20]. However, the validation of this power model was not suffi-
cient for the use of the model in the detailed assessment of the impacts of proposed
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traffic management schemes. Using data collected from carefully controlled on-road 
acceleration, deceleration, and steady-speed fuel consumption tests, it was demon-
strated that the power model gave adequate estimates of fuel consumption over trip 
segments of at least 60 s duration, as well as during cruise and slow-to-medium 
accelerations (mean errors generally less than 5%) [21]. On the other hand, during 
hard accelerations, fuel consumption was significantly underestimated, with mean 
errors of up to 20% depending on the acceleration and final speed [16]. Therefore, an 
extension (ARRB model) of the power model was presented, improving the accuracy 
of estimated fuel consumption, especially during hard accelerations [22]. 

For the purposes of this work, ARRB fuel consumption model can be expressed as 
the following simple polynomial function of instantaneous speed and acceleration, 
given in mL/s, as described by: 

F(vi , ai ) = β1 + β2vi + β3v
2 
i + β4v

3 
i + γ1vi ai + γ2vi

(
max(0, ai )2

)
, (4.10) 

where vi and ai are the speed (m/s) and acceleration (m/s2) of the vehicle at time 
i , respectively; β1 = 0.666; β2 = 0.019; β3 = 0.001; β4 = 0.00005; γ1 = 0.12; 
γ2 = 0.058. These parameters were calibrated using a Cortina test car, so that the 
model will accurately estimate the contribution of each energy component to fuel 
consumption [16]. 

4.2.2.4 Fuel Consumption Estimation 

To obtain meaningful results from the fuel consumption models, the vehicle’s fuel 
consumption, Fc (L/100 km), results by integrating the instantaneous fuel consump-
tion, F(vi , ai ) (L/s), and dividing it by the distance covered which corresponds to 
the integration of the instantaneous speed over time. A factor of 10–5 is applied to 
the denominator so that the results are available in L/100 km, given by: 

Fc =
∫ T 
0 F(vi , ai )dt  
10−5 · ∫ T 

0 vdt  
, (4.11) 

where F(vi , ai ) is the instantaneous fuel consumption of the various models, given in 
L/s; v is the instantaneous speed (m/s); dt  is the time interval (s) between consecutive 
measurement points; T denotes the total duration (s) of the travel period.
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4.2.3 Experimental Campaigns 

4.2.3.1 Ispra-Vicolungo 

The first campaign was conducted in the first quarter of 2019, involving three days of 
car-following testing, on a section of Autostrada A264 between Ispra and Vicolungo, 
in northern Italy. The testing was performed with five ACC-equipped vehicles of 
various brands and models, driving in a car-platoon formation, in a 124.6 km round 
trip. Tests were scheduled for non-peak hours to minimize interference from other 
road users, such as cut-in behaviors. This real-world experiment aimed to collect 
driving data under actual traffic conditions in real-world scenarios. 

Data acquisition was performed in binary format from the U-blox M8 devices,5 

with one device installed per vehicle. The acquired data had approximately a sampling 
frequency of 3–5 Hz, so cubic splines interpolation was implemented to achieve a 
10 Hz frequency. GNSS receivers were configured to collect signals from both GPS 
and Galileo,6 with the ability to process up to 16 satellite signals, enabling a good 
performance. The average horizontal accuracy reported by the receivers was less 
than 50 cm. GNSS active antennas were mounted on the roof of the cars, to ensure 
maximum satellite visibility and avoid signal attenuations from the body of the 
vehicles. At each time instant, the geographic coordinates (latitude, longitude, and 
altitude) of the vehicles were recorded. These coordinates were then transformed 
into a local East, North, and Up (ENU) Cartesian reference frame. Also, outliers 
were filtered using typical moving average postprocessing; big noisy parts have been 
removed from the dataset. Additional antennas were positioned to the front bumper 
of each vehicle to estimate the inter-vehicle distances. First, the instantaneous inter-
vehicle distances are calculated based on position data, and then, these measure-
ments are corrected based on computing bumper-to-bumper distances, by subtracting 
the leader’s antenna-back bumper distance and the follower’s antenna-front bumper 
distance. 

The leader was instructed to drive manually and perform occasional random decel-
erations and accelerations over the desired speed. The followers, whenever possible, 
were driving with ACC systems enabled, apart from the last day when manual driving 
situations were tested. Therefore, to investigate the impact of both driving behaviors, 
the last day of the experimental campaign was the most appropriate for the purposes 
of this work. Specifically, on the southbound (SB) route (from Ispra to Vicolungo) of 
the trip, all vehicles were operated by human drivers. On the contrary, on the north-
bound (NB) route, the followers adopted ACC driving to regulate the longitudinal 
speed and the inter-vehicle distance with the minimum distance setting selected, 
while the leader and the last follower, whose drivers were respectively the same 
during the trip, were always human-driven. Also, a fixed vehicle order was adopted 
during the whole trip. Table 4.2 summarizes some of the vehicle specifications.

4 Autostrada A26 is a motorway in the northwestern Italian regions of Liguria and Piedmont. 
5 https://www.u-blox.com/en/product/evk-8evk-m8. 
6 The European Global Navigation Satellite System (GNSS) receiver. 

https://www.u-blox.com/en/product/evk-8evk-m8
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Table 4.2 Vehicle specifications for Ispra-Vicolungo campaign 

Vehicles Max power (kW) Engine size (cc) Top speed (km/h) Model year 

C1 Mitsubishi 
SpaceStar 

59 1193 173 2018 

C2 Ford S-Max 110 1997 196 2018 

C3 Peugeot 3008 GT 
Line 

130 1997 208 2018 

C4 KIA Niro 77.2 1580 172 2019 

C5 Mini Cooper 100 1499 210 2018 

4.2.3.2 AstaZero Test Track 

The second campaign was conducted in the second quarter of 2019, involving two 
days of car-following testing on the rural road of the AstaZero test track in Sweden. 
The testing was performed with five ACC-equipped vehicles, from four different 
makes (all different models), driving in a car-platoon formation. AstaZero’s rural 
road is approximately 5.7 km long, half is designed for speeds around 70 km/h and 
a half for speeds around 90 km/h; however, its elevation profile is quite flat. 

Trajectory data acquisition was performed with an inertial navigation system, the 
RT-Range S multiple target ADAS measurements solution by Oxford Technical Solu-
tions Company, with a differential GNSS accuracy. The differential GNSS system 
ensures precision of 2 cm/s in the speed and 2 cm in the positioning measurements. 
This acquiring system provided a frequency of more than 100 Hz, so downsampling 
was applied to achieve a 10 Hz frequency, enough for capturing the vehicle dynamics 
in the platoon. 

The experiments were organized in laps, containing five vehicles in a platoon 
formation. In all the tests, the leading vehicle was the same, and it was driven with 
the ACC system enabled to avoid noisy fluctuations around the desired speed due 
to manual maneuvers. In general, two different car-following patterns were applied 
for the following vehicles, a) car-platoon with constant speed, and b) car-platoon 
with the performance of perturbations (deceleration to a new desired speed) from an 
equilibrium point. For the second pattern, a radio-based communication between the 
drivers of the first and last vehicles ensured that the speed of the last vehicle was stable 
at the desired speed, and therefore, the car-platoon was close to an equilibrium state, 
before applying a new perturbation. Each perturbation was triggered by the driver 
by setting the desired speed of the ACC system to a new lower desired speed value. 
Consequently, the vehicle decelerates autonomously, and when the new desired speed 
is reached, the driver resets the desired speed to the previous setting. The duration of 
the perturbation is automatically adjusted based on the deceleration strategy applied 
by the controller. This procedure was selected to perform the different perturbations 
in a controlled way, and it resembles the way that vehicles with the ACC systems 
enabled behave on-road. For safety reasons, in each lap, the desired speeds were fixed 
to 13.9–16.7 m/s along the curves and to 25–27.8 m/s on the straight parts. Followers
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Table 4.3 Vehicle specifications from AstaZero campaign 

Vehicles Max power (kW) Engine size (cc) Top speed (km/h) Model year 

C1 Audi A8 210 2967 250 2018 

C2 Audi A6 150 1968 246 2018 

C3 BMW X5 195 2993 230 2018 

C4 Mercedes A Class 165 1991 250 2019 

C5 Tesla Model 3 150 – 210 2019 

were driving with ACC enabled, with the minimum distance setting selected, apart 
from two laps where manual driving situations were tested. To investigate the impact 
of ACC driving behavior compared to the human one, the two most suitable parts 
of AstaZero’s database were selected for the assessment. The first part included 
only human driving vehicles except the first one, while the second one involved only 
vehicles with the ACC systems enabled. In addition, the same five vehicles were used, 
in the same fixed order. Table 4.3 summarizes some of the vehicle specifications. 

4.3 Results and Discussion 

This section employs several data analysis techniques to present the obtained results 
from the application of four energy demand and fuel consumption models (see 
Sects. 2.1 and 2.2) to the two experimental car-following campaigns presented in 
Sect. 2.3. The impact of ACC on tractive energy and fuel consumption is assessed 
from individual and platoon perspectives. Vehicles in the same platoon are experi-
encing quite similar road and traffic conditions but with totally different specifica-
tions. To isolate the driving behavior as the only possible contributor to tractive energy 
and fuel consumption differences, a scaling technique is employed to normalize 
heterogeneous vehicle specifications and road and traffic conditions. Specifically, this 
heterogeneity is handled by assuming that the same default values for the vehicle’s 
road load coefficients and mass, among the various energy and fuel consumption 
models, are used for the whole platoon (platoon normalization). 

4.3.1 Ispra-Vicolungo 

The first experimental campaign consisted of five vehicles in a platoon formation, and 
was divided into two trajectory paths, one going from Ispra to Vicolungo (southbound 
route) and another returning back (northbound route), using the same vehicles in a 
fixed order during the whole trip (third day of the experiments). On the southbound 
route, all vehicles in the platoon were operated by human drivers, while on the
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northbound route, the followers enabled the ACC systems. The first and the last 
vehicles were human-driven throughout the whole trip. 

4.3.1.1 Energy Consumption 

The tractive energy values of the vehicles sharing the same platoon are compared, 
provided that all vehicles share the same specifications as those of their leader 
(platoon normalization). Figure 4.1 presents the obtained results from the campaign 
in Italy. Figure 4.1i displays the tractive energy impact of human and ACC driving 
behavior inside the platoon. The figure reveals a tendency for upstream energy prop-
agation in the platoon with ACC systems enabled (northbound route). Specifically, 
the tractive energy values of the ACC followers (C2, C3, and C4) tend to consecu-
tively increase, in contrast to the tractive energy values that their human counterparts 
achieve in the southbound route. Therefore, ACC systems seem to be less energy 
efficient than human-driven vehicles from a platoon perspective. 

Fig. 4.1 Energy and fuel consumption models (Ispa-Vicolungo)
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4.3.1.2 Fuel Consumption 

The impact of ACC systems on fuel consumption inside the platoon is examined 
using the three independent fuel consumption models, as illustrated in Fig. 4.1. The  
results are given in (L/100 km). As can be seen, quite the same tendency is revealed 
among the various fuel consumption models, regarding the ACC driving behavior. 
More precisely, the findings of the VT-micro model reveal a strong fuel consumption 
amplification by the first ACC participant (C2) inside the platoon (northbound route), 
with the rest of them (C3, C4) maintaining the values on high levels relative to 
those that the human counterparts achieve in the southbound route. Additionally, the 
VSP model reveals quite similar results to the energy consumption model, regarding 
both ACC and human driving behaviors, showing the same exact tendency for fuel 
consumption propagation upstream of the platoon. On the contrary, the last human 
counterpart (C5) in the northbound route reveals a relatively downward value trend, in 
both VT-micro and VSP models, trying to absorb the fuel consumption propagations 
occurring upstream of the platoon from the ACC participants. The same behavior is 
also detected in the findings of tractive energy consumption, mentioned above. On the 
other hand, both driving modes seem to achieve very small value fluctuations showing 
almost flat fuel consumption profiles in the case of ARRB model, which seems to be 
a more conservative model. Finally, the value ranges among the three models seem 
to differ significantly, with the VSP model showing the largest deviations. Generally, 
ACC systems tend to increase fuel consumption inside the platoon in all three fuel 
consumption models and hence are less efficient compared to human-driven vehicles. 

4.3.2 AstaZero 

In this experimental campaign, a five-vehicle platoon was involved with the leading 
vehicle being always under ACC driving operation. Specifically, in the first phase, 
the following vehicles were operated by human drivers, while in the second one, 
all the vehicles adopted ACC driving. Finally, the same vehicles, in the same fixed 
order, were used in both parts. 

4.3.2.1 Energy Consumption 

Figure 4.2 presents the obtained results from the AstaZero test track. As can be seen 
in Fig. 4.2i, the tractive energy values are amplified upstream of the platoon when 
ACC systems are enabled, especially for the last participants (C3, C4, and C5). On 
the other hand, human-driven vehicles reveal a more constant behavior with very 
small variations in tractive energy values. Consequently, the present results verify 
the above findings from the first experimental campaign in Italy, proving that ACC 
systems end up being more “energy-hungry.”
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Fig. 4.2 Energy and fuel consumption models (AstaZero) 

4.3.2.2 Fuel Consumption 

In terms of fuel consumption, a clear upstream fuel consumption amplification by 
the ACC participants inside the platoon is detected among all three models, as shown 
in Fig. 4.2. On the contrary, the human counterparts seem to achieve very small value 
fluctuations showing a noticeably invariable behavior. The value ranges among the 
three fuel consumption models seem to differ again, with the VSP model showing 
quite unexpectedly small values. Eventually, the findings from both energy and fuel 
consumption models seem to be in total agreement with the above findings, indicating 
once again that the ACC systems turn out to be less energy efficient from a platoon 
perspective. 

4.3.3 Discussion 

Generally, the findings reveal that ACC participants cannot reduce fuel and energy 
consumption inside the platoon, tending to be more “energy-hungry” than human-
driven vehicles and hence less energy efficient from a platoon perspective. Both
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Fig. 4.3 Speed/acceleration profiles (AstaZero) 

experimental campaigns investigated, using four independent energy and fuel 
consumption models, seem to agree with this statement. 

As mentioned in Sect. 4.1, ACC systems can automatically adjust the vehicle’s 
speed by accelerating or decelerating it, to maintain a constant predefined time-gap 
with the vehicle in front or to reach the predefined desired speed. Figure 4.3 illustrates 
the speed and acceleration profiles of each testing vehicle, separately, taken from the 
second experimental campaign that was held on the rural road of AstaZero test track. 
As shown in the second subfigure on the right, ACC systems operate in a stricter way 
than human drivers do. More specifically, ACC participants reveal strong and sharp 
accelerations with several peaks and variations in the speed profile, especially when 
moving upstream the platoon (C3, C4, and C5), while human counterparts reveal 
smaller fluctuations around the equilibrium points, regarding speed and acceleration. 

As a result, the way that ACC systems operate under car-following situations 
seems to affect the energy impact of the ACC participants inside the platoon. All 
the models presented in Sect. 4.2 estimate energy demand and fuel consumption, 
mainly, as functions of speeds and accelerations. Hence, there are plenty of peaks 
and spikes appearing in both speed and acceleration profiles when ACC systems 
are enabled, which could possibly affect their energy impact. The findings seem to 
verify the above hypothesis that the steeper points and spikes appear in the speed 
and acceleration profiles the greater fuel and energy consumption is. 

Additionally, in Fig. 4.4 are presented two random perturbation events from the 
AstaZero campaign, which occurred between the same speeds for both driving modes. 
As previously mentioned, the ACC participants reveal several peaks and steep vari-
ations in the speed profile (as well as in the acceleration profile), especially when 
moving upstream of the platoon, as illustrated in Fig. 4.3ii. In the left subfigure,
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Fig. 4.4 Speed overshoots (AstaZero) 

the speed variations of the leader are not amplified through the human participants. 
However, in the second subfigure, ACC followers significantly enlarge their leader’s 
speed perturbation, revealing large speed overshoots amplified upstream the platoon. 
These black curved arrows indicate the stable car-following behavior of human 
drivers (Fig. 4.4i) and the string instability that ACC participants cause (Fig. 4.4ii). 

String stability is achieved in a platoon when the last following vehicle dissolves 
the perturbation imposed by the leading vehicle [23]. In other words, string stability 
means any nonzero position, speed, and acceleration errors of an individual vehicle 
in a string do not amplify when they propagate upstream [24]. The string stability of 
a platoon of five ACC-equipped vehicles under several conditions in the AstaZero 
proving ground was investigated, and the results show that in all conditions, ACC 
systems led to string unstable platoons [25]. 

Therefore, this string instability that ACC systems reveal could negatively affect 
their energy impact. Without loss of generality, a correlation between string stability 
and energy and fuel consumption seems to exist, with speed overshoots propa-
gating upstream being proportional to the upstream amplification of energy and fuel 
consumption inside the platoon. Of course, this relation should be studied across the 
complete operational domain and under all possible conditions, to obtain meaningful 
and solid results. 

Also, as it was previously mentioned, the last human participant (C5) in the 
northbound route of the first experimental campaign revealed a relatively down-
ward value trend among the various fuel and energy consumption models, trying 
to absorb the energy propagation that occurred upstream of the platoon. Figure 4.5 
depicts a random perturbation event during real-world conditions in the motorway 
of Autostrada A26 in Italy. The findings reveal that the last follower (C5) absorbs the 
speed overshoots propagating upstream the platoon. A possible explanation could be 
that human drivers can detect decelerations occurring 2–3 vehicles downstream of 
the platoon and hence responding in a more polite way. Therefore, this tendency for 
absorbing the perturbations propagating upstream of the platoon could be related to 
the lower energy and fuel consumption values achieved by the last participant.



104 Th. Apostolakis et al.

Fig. 4.5 Speed overshoots 
with ACC systems enabled 
(Ispra-Vicolungo) 

In addition, it is worth mentioning that another possible cause of string instability 
inside a platoon with ACC participants could be the road gradient. Several altitude 
changes are observed in the elevation profile of the Autostrada A26 motorway in 
Italy, since it is located at the foot of the Alps Mountains, which could significantly 
affect the way that ACC controllers operate under car-following situations. 

More specifically, if we assume a vehicle with an ACC system enabled, under 
steady-state conditions with a constant predefined speed, an altitude increase would 
require additional work from the controller to reach the predefined speed. In this 
effort, trying to counterbalance the impact of the road grade, the controller ends up 
overshooting. In a similar way, as the altitude decreases, the controller undershoots 
reaching a lower speed than the desired one. In both cases, oscillations are generated 
around the predefined speed directly affecting the followers (assume ACC partici-
pants). These oscillations propagating upstream of the platoon could lead to string 
instability and hence affect the energy impact of ACC systems as it was mentioned 
previously. Even for slight perturbations derived by variability in the road gradient, 
string instability can be observed, raising concerns about potential consequences in 
traffic flow as the penetration rate of ACC systems is rapidly increasing [25]. 

However, as it turns out, ACC systems do not generally fail inside a platoon. 
More precisely, Figs. 4.6 and 4.7 provide an estimation of time/space-gap distri-
butions for both experimental campaigns. The computation of time-gaps between 
two vehicles inside the platoon was performed by dividing the obtained space-gaps 
(IVS) between two vehicles with the speed of the following vehicle. Space-gaps were 
already estimated and hence, available in the two experimental datasets. As can be 
seen (see Figs. 4.6 and 4.7), the time- and space-gaps are smaller (in absolute values) 
with ACC engaged and better distributed compared to human drivers. Provided that 
the time-gaps are more or less constant with ACC engaged, we conjecture that the 
commercial ACC system in the cars in Table 4.3 employs a constant time-gap policy. 
However, the core functionality (controller type and its parameters) is not publicly 
available, so any conclusions must be drawn with caution.

This positive result for the ACC drivers is attributed to the ACC controller. It 
highlights that commercial ACC controllers (despite the criticism to their negative 
impact concerning traffic flow and stability) deliver some improvements. Actually, 
the improvements to be expected from their design and controller synthesis (e.g.,



4 Energy-Based Assessment of Commercial Adaptive Cruise Control … 105

Fig. 4.6 Time-gap/space-gap distributions (Ispra-Vicolungo) 

Fig. 4.7 Time-gap/space-gap distributions (AstaZero)

constant time-gap), i.e., to keep constant and safe space/time-gaps. However, it is well 
known that constant spacing (space-gap) policies lead to string unstable platoons of 
vehicles [26–28], while constant time-gap policies are string stable for ACC vehicles 
without inter-vehicle connectivity [2, 4, 5, 29]. 

Another observation is related to the comparison of the same graphs (Figs. 4.6 
and 4.7) for the two different campaigns (one took place in a public motorway 
network and the other in a protected test environment). In the protected environment 
of AstaZero, it seems that the improvements for the space/time-gaps are more evident 
and higher compared to the campaign in Italy. This is attributed to: (a) the employed 
vehicles (characteristics/specifications), (b) the environment (protected in AstaZero, 
so no inference with other cars and mixed heterogeneous traffic, a public motorway 
in Italy with mixed traffic and more disturbances). These observations also underline 
that ACC drivers in protected environments and campaigns might perform better but 
can be (ideally) tested in adverse environments. 

Therefore, as it was previously mentioned, in both experimental campaigns, an 
upstream energy propagation was observed inside the platoon by the ACC partic-
ipants, regarding both energy and fuel consumption, indicating that ACC systems 
are less efficient. However, the ACC participants succeed in maintaining a constant 
predefined time-gap between two consecutive vehicles, which is part of the ACC
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logic and one of the requirements vehicle manufacturers need to fulfill. ACC distri-
butions seem to be more accumulated around lower levels compared to human ones, 
especially in the AstaZero campaign, indicating that ACC systems are more effi-
cient. It seems that the more efficient ACC systems are regarding their functional 
specifications, the less energy efficient tend to be. Consequently, a trade-off between 
time/space-gaps and fuel and energy consumption could exist, to eliminate high 
energy levels and achieve the desired safety, at the same time. 

4.4 Conclusions and Outlook 

This study assessed the energy impact of ACC systems under car-following condi-
tions. The thematic focus was laid on investigations into energy demand and fuel 
consumption for human-driven and ACC-engaged vehicles in real-life experimental 
campaigns with a variety of vehicle specifications, propulsion systems, drivers, and 
road and traffic conditions. To this end, high-resolution empirical data from two 
experimental car-following campaigns were used. Then, energy demand and fuel 
consumption estimations were calculated by employing four independent models. 
The main findings of this study can be summarized as follows: 

• ACC systems are less energy efficient, revealing a tendency for upstream energy 
propagation inside the platoon. 

• Human counterparts adopt a more conservative and invariable energy behavior. 
• ACC driving operation (strong accelerations, steep speeds, etc.) may negatively 

affect the energy impact of ACC systems under car-following conditions. 
• ACC systems may lead to string instability failing to avoid an upstream energy 

amplification. 
• Road gradient changes could create string instabilities in the traffic flow and 

may negatively affect the energy impact of ACC systems under car-following 
conditions. 

• ACC systems succeed in delivering a constant time-gap policy, between two 
consecutive vehicles, at lower levels than human drivers do. 

It should be noted that there is an agreement for both campaigns (one conducted 
in a public highway and the other in a protected test site) and for four independent 
models in terms of tractive energy and fuel consumption footprint (human drivers are 
more efficient compared to the ACC drivers), despite the different data acquisition 
methods employed and the differences in the design and execution of the experimental 
campaigns. 

Finally, it should be highlighted that the more efficient ACC systems are regarding 
their functional specifications, the less energy efficient tend to be. Consequently, 
commercial ACC systems must be designed to realize a trade-off between functional 
specifications in terms of time/space-gaps and tractive energy and fuel consumption. 
This will ideally eliminate high energy levels and achieve the desired safety features 
of commercial ACC systems.
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Further study should focus on: 

• The trade-off between time/space-gaps and fuel and energy consumption of ACC 
systems driving in a car-platoon formation, toward a more complete picture of the 
fundamental relations between the several requirements vehicle manufacturers 
need to fulfill. 

• The correlation between the leader’s and the follower’s driving profile (i.e., speed-
acceleration), see, e.g., [11]. Such analysis would be useful to unveil how strong 
is the bond between the (free) leader and ego vehicles in a platoon (whose mission 
is to ensure safety and keep constant headways). 

• The design and synthesis of ACC systems with safe and eco-driving instructions. 
However, this might lead ACC drivers to brake at longer safety margins for safety 
and energy savings toward eco-driving. 

Finally, the results presented in this study and in the relevant literature might 
be biased toward the acquisition method used in different experimental campaigns. 
Thus, additional analysis for various energy and fuel consumption models using 
empirical data from other experimental campaigns employing different acquisition 
methods can be conducted to shed some light on the energy footprint of human and 
ACC drivers. 
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