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Abstract Platinum group metals (PGM) are used as a catalyst in the automotive
catalytic converters to curb engine emissions. The modern catalytic converter (three-
way) executes oxidation of CO and unburnt HC, and reduction of NO using its
large active surfaces containing PGM, which are precious metals with high cost
all over the world. Due to the high cost of the PGM, researchers are working on
efficient methods for extracting and reusing these valuable metals from catalytic
converters. Pyrometallurgy and hydrometallurgy are the most common ways for the
extraction of the PGMs among other methods. Alternative to platinum, materials like
titanium dioxide and other metal-based oxides can be used for carrying out redox
reactions of toxic vehicular emissions. The use of such alternative catalysts can help
in reducing the increasing demands and cost of PGMs. This chapter focuses on the
possibilities of recycling the PGMs from catalytic converters and also of reducing the
ever-increasing requirement of PGMs in the manufacturing of autocatalysts in the
catalytic converters. The chapter reports the recent global trends of PGM recycling
and its demand for use as autocatalysts, alternative materials ef to PGMs in catalytic
converters and alternative methods for emission reduction. Further, the engine-related
challenges and research on future directions of replacing PGM’s as autocatalysts has
been performed; it includes some experimental results of direct decomposition of
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NOx using non-noble metal catalysts such as Cu-COK12, Cu-Nb,Os, Cu-YZeolite,
and Cu-ZSMS. The article should also provide a quicker understanding of research
on development of low-cost non-noble metal-based alternative autocatalysts.

Keywords Alternative catalysts + Autocatalysts -+ Demand + PGM - Recycling -
Supply

17.1 Introduction

The harmful gas emissions from the engine exhausts contributes to air pollution and
imposes a great threat to environment [ 1-7]; thus, the automotive industries are much
inclined to counter the engine emissions. Hence, catalytic converters are applied after
the exhaust pipe to reduce the emission levels from the engine exhaust [8—10]. These
catalytic converters consist of an active surface of platinum group metals (palladium,
platinum, and rhodium), also sometimes denoted as PGM. PGMs are preferred due
to their catalytic ability for the conversion of the exhaust gases into less harmful
oxides [11]. The PGM'’s are called the state-of-the-art Industries’ Vitamin because
of its exceptional characteristics like resistance toward corrosion, catalytic activity,
stability (thermal and electrical), and inertness [12—-16]. By employing catalytic
converters, the engine exhaust emissions are controlled to be in the permitted range
set by the emission controlling body.

The automobiles are used extensively in the modern world; they have now been
basic daily need of an individual. But apart from all the advantages automotives
have, we are paying a huge cost in the form of environmental damage, as they emit
large amount of NOy, CO, unburnt hydrocarbons, Particulate matter emissions (also
known as Soot), and other toxic gases. There are many regulatory bodies around the
globe who have made laws, norms and emission regulations, standards according
to the country’s environmental conditions and extent of air pollution. The catalytic
converter serves as leading aid to fulfill such regulations, so their demand has become
obvious in today’s world. With the growing demand of catalytic converters, the
demand of their main ingredient’s such as PGM has of course increased and they
are under extensive research. Carrying the fact of increased demand of PGM in such
amounts, has led to beat the supply or yield globally [17-19], and consequently
making them “precious and costlier metals”. Table 17.1 shows the cost increment of
PGMs over consecutive years.

Table 17.1 Average costs of PGM globally (in the units of U.S. dollars per kg) for 4 consecutive
years [20]

Costs in — 2018 2017 2016 2015

Platinum metal 28 935.67 30 575.36 31797.08 33951.18
Palladium metal 31829.23 28 131.90 19 837.01 22 344.76
Rhodium metal 67 516.56 35783.78 22 409.07 30 703.96
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Figure 17.1 depicts the data of Platinum Group Metal’s Demand Vs Supply for
5 consecutive years for various sectors. From the above graphical representation, it
can be observed that supply of PGM has been lesser as compared to its demand since
these last 5 years. The following Table 17.2 presents the platinum group metals’
percentage of change among total demand and supply for 5 consecutive years.

Additionally, the demand of PGMs as autocatalysts in the automobile industries
for some countries around the globe is as shown in Fig. 17.2.

Moreover, this study further reviews the difference in usual usage or demand of
platinum group metals as compared to its demand in the automobile industry (as
autocatalysts), is shown in Fig. 17.3.

A comparison of the total gross demand of PGMs with the demand for its use as
autocatalysts is given in Fig. 17.3.

Figure 17.3 and Table 17.3 reflects that good percentages of the demand of plat-
inum group metals in automotive industry as autocatalysts with respect to its demand
in global market. The platinum metal has proved its dependence in the jewelries and
ornaments, so a huge percentage of platinum goes in the global market as compared
to its demand as autocatalysts.

Demand Vs Supply of different PGMs over past three years in
different sectors
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Fig. 17.1 Data of Platinum Group Metal’s Demand Vs Supply for 5 consecutive years for various
sectors [21]

Table 17.2 Platinum Group Metals’ percentage of change among total demand and supply for 5
consecutive years

2015 2016 2017 2018 2019 Average
Platinum 26 28 30 32 33 29.5
Palladium 30 33 34 37 35 33.8
Rhodium 29 23 26 28 30 27.2
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Fig. 17.2 Demand of PGMs as autocatalysts around the globe (ROW in the graph refers to the
“rest of world”) [21]

The huge requirements of PGMs convey that, if by any possibility we can reduce
the demand of platinum group metals in the automotive industry, the global prices
will be reduced significantly. Recycling of platinum group metals has been in consid-
eration since a long time, and it has been proved as a good practice in view of scenario
of increasing cost and demand of PGMs. Researchers are investigating new materials
and techniques as the alternatives to PGMs to reduce exhaust emissions in more effi-
cient ways [22]. However, due to the superior activity and results by the PGMs, the
most used metals for the catalytic conversion are platinum, palladium, and rhodium
[13,23-26].

17.1.1 History of Emission Control Research

Please note that the first paragraph of a section or subsection is not indented. The
first paragraph that follows a table, figure, equation, etc., does not have an indent,
either.

Subsequent paragraphs, however, are indented.

In 1975, after beginning of emission control research in the US, the investigations
directed that palladium and platinum as most suitable oxidation catalyst. While the
iridium, rubidium, and osmium showed their oxides are volatile [27]. From 1975 to
the 1980s, researchers were working actively to control emissions; the other challenge
was to finalize a catalyst to reduce NOy. For the very first time, a two-bed converter
came into the picture; in the primary bed, reduction of NOy took place, and in the
secondary bed, HC and CO were treated and oxidized. But the main discrepancy in
this came when NH3 formed into the primary bed went to the second one to again
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Table 17.3 Percentage of the demand of PGM in the automobile industry as autocatalysts from
total demand of PGMs in the global market [21]

2015 2016 2017 2018 2019 Average
Platinum 39 40 41 40 42 40.4
Palladium 83 81 80 82 81 81.4
Rhodium 82 81 83 84 82 82.4
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form NOx into the secondary bed. Moreover, ruthenium (even while readily forming
volatile oxides) was also tested and seen as a possible catalyst, and its chemical
properties were tested in many different studies [28—36], but they were not preferred
for further production because they did not serve the purpose as they not only proved
to be an inefficient reducing agent for NO, but also showed higher selectivity toward
NH;. Additionally, rhodium was taken into consideration for reduction of NOy, as
they shown good NOy reducing nature with lesser selectivity toward NHj.

Eugene Houndry, a French-based mechanical engineer is the inventor of catalytic
converter [37-39]. However, it was further developed by Carl D. Keith and John J.
Mooney in the year 1973, where it was produced for the very first time. After 5 years
of its production, the three-way catalyst was also studies for indispensable reduction
of NOx [40-45]. The platinum group metals are considered as a group of highly
valued and rarely available transition metals that consists of platinum, palladium,
rhodium, iridium, osmium, ruthenium, (all are periodic table’s d-block elements).
They are all white silvery metals that are unreactive, having almost the same chemical
and physical characteristics, and are also found at the same place together in mineral
deposits. There is a nice history behind using Pt, Pd, and Rh as autocatalysts [46]. Due
to difficulties in availability and the high costs of noble metals, in the mid-1970s the
research was focused on non-noble metal-based catalysts. But after some extent of the
research, it was found that non-noble metals with their oxides, for example, cobalt
oxide, nickel oxides, manganese oxide, copper oxide, and chromium oxide, etc.,
proved to have less durability, less abatement activity toward automotive emissions
[22, 27, 46-48]. So, the research was moved forward on the catalysts with noble
metals due to their exceptional capabilities of higher temperature stability and lesser
likeliness to react or interact with the material of support. Pardiwala et al., in their
study for the USA and Japan, stated that the catalytic converter has the ability to
abate the lethal emissions in forms of CO,, H,O, O,, and N,, and it has become
a compulsory for every vehicle [38]. Researches also stated the same for Indian
government has also made catalytic converters obligatory, and strict regulations are
there for harmful emission prevention [39—41]. In 1970s, Japan and the United States
of America are the countries, which made catalytic converter to be mandatory, and
further, this rule was also implemented in Asia, Europe, and Australia after 10 years;
additionally, later on other countries such as India, Brazil, and Mexico took 10 more
years to make it mandatory for all vehicles [49].

In the same scenario for the manufacturers, platinum group metal-containing
catalytic converter production became a must requirement. The position of catalytic
converter as shown in Fig. 17.4, is on rear side of vehicle, inside the exhaust pipe,
so that all kind of exhaust gases produced by engine combustion can pass through it
and they can be dealt in the Platinum group metal-containing catalytic converter
[37]. Additionally, researchers have also worked on the placement of catalysts
concerning the engine and explored interesting behaviors in the reduction of emis-
sions. For example, with the increase in distance of placement, the non-methane
hydrocarbon emissions increased [50]. However, they also used another factor of
palladium loading in their research and showed higher palladium loading results in
lesser non-methane hydrocarbon emissions.
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Fig. 17.4 Schematic of the placement of a catalytic converter in a car

17.1.2 Requirement of PGMs in the Catalytic Converters

PGMs are coated on the monolith substrate inside the catalytic converter so as to
deal with lethal exhaust emissions; the coated surface remains active and redox
reactions take place on it [5]. The catalytic converters can be further studied as
two-way (where HC and CO get oxidized to H,O and CO,) and three-way catalytic
converters (including function of converting HC and CO), it also reduces nitrogen
oxides into O, and N, [2]. Researchers studied some potential candidates similar to
PGMs such as Cr,03, TiO,, NiO, CeO,, Fe,0s3, and ZrO,. But in 1980s, PGM was
established well and found efficient in their role in the catalytic converters [2].

17.1.3 The Different Aspects of Platinum Group Metals

As discussed in the previous sections, the exhaust emissions undergo redox reactions
which is the primary goal of a catalytic converter, contributing to reduce the lethal
emissions [40]. The palladium metal and the platinum metal are mostly used as
oxidizing agent for unburnt hydrocarbons and carbon monoxide to convert them into
H,0 and CO,, respectively, as shown in the following reactions.

CO + 02 — C02

CxHx + O, — CO;, + H,0

However, rhodium is deployed to break NO into the N; and also steam reforming
[51, 52]. Figure 17.5 shows a typical three-way catalytic converter.

The alumina washcoat which is porous in structure helps for distribution of plat-
inum, palladium, and rhodium on the substrate’s surface. The washcoat is made up
of y-Al,O3. It provides a greater contact area for the interaction of exhaust gases
and active phases and a greater heating stability. In some cases, it may happen that
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Fig. 17.5 Typical three-way catalytic converter [53]

if temperature rises, the surface area of y-Al,O3 may get decreased; for this reason,
metal oxides like CeO,, La, 03, BaO, and ZrO, are used as stabilizing agents [54].
Furthermore, to assist the distribution of PGM on the substrate, a traditional addi-
tive (mixture of ZrO, with CeQ,) is used; this combination also helps in oxidation
reactions and promotes catalytic activity [55].

17.1.4 Availability of PGMs

The maximum supply of PGM in the world market is accomplished by South Africa.
Following Tables 17.4, 17.5, and 17.6 represents the supply chain of platinum,
palladium, and rhodium separately from some regions around the globe.

The data in Tables 17.4, 17.5, and 17.6 clearly specifies that PGMs are immensely
being used as a autocatalysts; there is a very high demand. The purpose of these
tables is to give an idea that there is a need of PGM recycling and reuse and focus
that recycling should be done as much as possible.

As shown in the Sect. 17.1, the current research inculcates the numbers of demand
and supply of PGM metals and focuses on the need of recycling of such precious

Table 17.4 Platinum’s supply available in units of ‘000 oz in last successive years [21]

South Africa North America Russia Others
2019 4565 385 668 956
2018 4467 372 687 959
2017 4450 370 720 953
2016 4347 369 652 153
2015 4571 318 670 149
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Table 17.5 Palladium’s supply available in units of ‘000 oz in last successive years [21]

South Africa North America Russia Others
2019 2744 983 2792 1460
2018 2543 950 2976 1458
2017 2547 960 2452 1409
2016 2571 922 2487 126
2015 2684 864 2434 142

Table 17.6 Rhodium’s supply available in units of ‘000 oz in last successive years [21]

South Africa North America Russia Others
2019 652 52 73 67
2018 618 43 69 70
2017 611 37 78 70
2016 593 24 80 54
2015 611 23 80 50

noble metals. There is ample amount of research already available on the topic of
PGM recycling and reuse, the current research reviews the developments made in
the methods of recycling, reuse, and alternative catalysts tested in place of PGMs.
The current study also presents experimental results of catalytic activity of alternative
catalysts such as Cu-COK12, Cu- Nb,Os, Cu-YZeolite, and Cu-ZSMS5 using DeNOy
(Direct decomposition of NOy) technology.

17.2 Current Scenario of the Use and Recycling of PGMs
from Catalytic Converters

As discussed in the earlier sections that the demand of PGM are higher than supply,
hence the idea of recycling the PGMs would be great. Figure 17.6 shows the trends
of demand volume and PGMs recycling volume being performed in recent times.

Figure 17.6 shows that the amount of PGMs obtained from the recycling of
autocatalysts is very small as compared to their total demand in the autocatalysts
industry. This low fraction of the extraction of PGMs from the autocatalysts adds
more to its demand and supply gap. This percentage needs to be increased so that
the maximum possible share of demand as autocatalysts gets fulfilled by recycling
the old autocatalysts from discarded automobiles.
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Fig. 17.6 Trends of demand
volume and PGMs recycling
volume, being performed in 000
recent times [21]
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17.3 Methods of PGM Recycling

The recycling of PGMs in catalytic converters has been of particular interest to many
researchers [10, 56-61]. It is considered that the recycling of autocatalysts from the
catalytic converter takes less effort than to purify or separate them as compared to
the ones taken out directly from mineral ores. Additionally, it is also a fact that the
content of PGM is higher when recycled from spent autocatalysts as compared to
the ones extracted directly from the earth [51]. Figure 17.7 gives a flowchart of the
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Fig. 17.7 Flowchart of the steps involved in common techniques of extraction of Platinum group
metals from the catalytic converters

steps involved in common techniques of extraction of platinum group metals from
the catalytic converters.
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17.3.1 HydroMetallurgy

Hydrometallurgy is the most basic and common metallurgical process of PGM extrac-
tion from the autocatalysts. In this process, the catalytic carrier is first immersed into
a solution of chlorides, nitrates, aqua regia, etc. Consequently, PGMs get converted
into their respective chlorides (MC16-2). The obtained solution is then concentrated
and separated by electrolytic decomposition of the metal chloride complexes.

Dissolving PGMs in common acids is not easy, as they show high chemical inert-
ness. Hence, aqua regia solution (firmly acidic) is availed to dissolve PGMs. The
presence of nitric acid helps as a reducing agent as the reducing potentials for the
formation of the chloride complexes of the PGMs is quite high. About 90% of the
PGMs used in a car’s catalytic converter get extracted by this process. However,
processing takes considerable time due to slow phenomenon of PGMs dissolution in
solution of aqua regia. Also, a lot of liquid waste gets created in this process which
may be hazardous due to the presence of strong metals [67].

17.3.2 PyroMetallurgy

It is second most used common way for the extraction of PGMs from the catalytic
converters. In this method, the catalyst carrier is first ground to break up its surface.
It is then melted with additional metal collectors, forming PGMs alloys and metal
collector, together with the slag. Further, the metal alloys are purified to yield pure
PGMs, and the slag is removed simultaneously.

For the choice of collector metal, several properties like melting point, mutual
solubility, and chemical properties between PGMs and collectors have to be consid-
ered thoroughly. Mostly copper, nickel, lead, and iron are considered good collector.
This technique has many advantages like a lesser investment, low melting tempera-
ture, a simple refining process, and simple operation. However, it has a disadvantage
of low extraction of rhodium and also by the formation of lead oxide, as it is a toxic
waste added into the environment [13].

17.3.3 Pressure Cyanidation

The use of pressure cyanidation is a potential way of extracting PGMs from the
automotive catalytic converters. In this method, the spent catalyst is first pre-treated
with pressure alkaline leaching. The metal concentrate so obtained is then once
again treated with two stages of pressure cyanide leaching. It is then followed by
the zinc cementation process giving out concentrates of the respective precious
metals. And ultimately, the PGMs are separated by electrolytic decomposition of the
metal concentrates [3]. Although it can be categorized under the hydro-metallurgical
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process, the pressure cyanidation process is, however, more complex and advanced.
Firstly, the selective dissolution of base metals by the acidic leaching process was
done with elevated pressure conditions, keeping nearly all the precious metals in
residue of iron. However, its results were not very satisfactory, partly due to the
uncertainty of extraction of PGM, high reagent consumption, lesser rhodium recov-
eries, and severe pollution, etc. The organization of the United States Bureau of Mines
consequently executed investigations on convalescing the platinum group metals by
cyanide leaching at high temperatures. The recoveries reported were not much high
and also the cyanide exhaustion was quite high in the process of leaching. Thus, a
conclusion was made that new pertinent pre-treatment methods are much needed.
Chen et al. [6] suggested a new method of pre-treatment, where followed by the
2 stages of leaching of pressure cyanide, the automotive catalysts are pre-treated
with pressure alkaline leaching. This leads to a very high number of recoveries of
platinum, palladium, and rhodium [3].

17.3.4 Industries Involved in Recycling

The art of recycling catalytic converters has now become well known and gained the
focus of industrialists globally. Some used catalytic converters are shown in Fig. 17.8.
The processes discussed above in Sect. 17.3 are employed to extract PGMs from them
and use them to make fresh catalytic converters.

Different companies have now begun works to recycle the old, discarded auto-
catalysts used in automobile vehicles to extract these metals back. Currently, most
of the companies that have been involved for production of PGMs are also actively
growing a facility for the recycling of catalytic converters to extract back the used
PGMs. Some companies are listed in Table 17.7.

Among the above-listed companies, the Umicore Autocatalysts recycling is the
most established name in the entire world that works to extract back the PGMs
from the used autocatalysts with its plants in Germany, Brazil, the U.S.A., Belgium,

Fig. 17.8 Some used catalytic converters before process of PGM extraction [59]
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Table _17'7 List O_f few PGM Stillwater mining company USA

recycling companies around

the world Umicore Autocatalysts Recycling Belgium
Alpha Recycling USA
Power Metal Recycling USA
Environmental Solutions (Asia) Pte Ltd Singapore
Evciler Turkey
Sufimet spa Italy
Duesmann & Hensel Recycling Germany
European Metal Recycling Ltd England

etc. Moreover, researchers have studied to substitute PGMs with different noble and
non-noble metal catalysts as discussed in the next section.

17.4 Alternatives of Platinum Group Metals
as Autocatalysts in Catalytic Converters

some potential catalysts, to replicate PGMs in the catalytic converters. Following
Table 17.8 shows the work of researchers since many years for the development of
reliable and low-cost solution for exhaust gas treatment. Selected PGM alternatives
are discussed in this section.

17.5 Alternative Methods/Techniques

17.5.1 Selective Catalytic Reduction (SCR)

The selective catalytic reduction can control the nitrogen oxides emissions, and
the technology involves a reducing agent coupled with catalyst which needs to be
injected in the exhaust gas flow stream [100]. Anhydrous ammonia, liquid ammonia,
and urea can be used as the reagent for the reduction of NOy. The use of liquid
ammonia is preferred over anhydrous ammonia, as it is safer to store and is not
toxic [101]. The initially manufactured SCR catalyst system was comprised of TiO,
anatase containing active components (mostly V,0s & WOs3). However, toxicity of
vanadium and need of catalyst activity at elevated temperatures gave an idea to focus
on another type of research, for example, the highly active metal zeolites [102].
Nowadays, catalysts are generally metal-based zeolites like iron, copper,
chromium, etc. The NO, is generated at just the center of metals on these
metal exchanged zeolites, whereas the selective catalytic reduction reaction occurs
inside zeolite lattice. On these metal-exchanged zeolites, the NO, is produced at the
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metal centers, while the SCR reaction itself takes place within the zeolite framework.
Because the NO; is destroyed as soon as it is produced in the SCR method, it doesn’t
appear as gas-phase NO, [103].

The main reactions for this process are:

2NO + 2NH; + /5,0, — 2N, + 3H,0

NO; + NO + 2NH;3; — 2N, 4 3H,0

17.5.2 NOy Traps

NOj traps or absorbers are applied to reduce the NOy emissions from the automotive
exhausts. Various metal-based Zeolites were employed as adsorbents in this study,
and their unique characteristics in a variety of applications such as ion exchange,
adsorbents, and catalysts have piqued the interest of automotive industry makers
[104, 105].

Das et al. [106] developed iron-exchanged X-zeolite and investigated it in real-
time exhaust of SI engine. For NOy, the conversion efficiency of 55.8% was achieved,
and the conversion of 57.4% was reported for CO. A numerical mathematical equa-
tion model for assessing the actions of a catalytic converter incorporating the Fe-X
catalyst was also created [107].

17.5.3 DeNO)y (Direct Decomposition of NOy)

The direct decomposition of NOy has been in research since a long time due to
its easy applicability to break NO into nitrogen and oxygen with the help of cata-
lysts. The direct decomposition of NOy method do not employ a reducing agent and
deals in temperature less than 1000 °C while decomposing the NO, hence known to
me thermodynamically favorable method [108]. The method includes conversion of
NO to Nitrogen and Oxygen (as shown in reaction below) at the catalyst’s surface,
with N desorbing as N, and O remaining strongly attached at surface of catalyst.

2NO — N, + O,

The dissolution and absorbance of NO occur efficiently on surface of transition
metal. The direct decomposition of NOx has widely been studies for PGM metals.
There’s also an article there in 1920s that stated that at a temperature of approximately
800 °C, DeNOy progressed on the surface of platinum metal [109], and though
research that time in this area slowed due to lack in activity of catalyst and necessary
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catalysts just weren’t readily available to recompense platinum metal. Also in early
1990s, the studies shown that Cu-ZSM-5, Ag/Co3;04, Pd/MgAl,0O4 and perovskite-
type oxides shown good activity for decomposition of nitrogen oxides, so researchers
focused on the rare earth metals and the compounds of the oxides of pyrochlore
[110-115].

17.6 Future Scope and DeNOy Results Using Non-noble
Metal Catalysts

The use of emission control techniques is however depends on particular charac-
teristics associated with different engines. Certain modifications in the discussed
techniques might improve the control of the engine exhaust emissions. For example,
for lean-burn Spark Ignition (SI) and Compression Ignition (CI) engines, the three-
way catalyst system is not effective for reducing NO4 emission. This is because the
reducing catalyst is used up in reducing the high level of O, in diesel exhaust gases.
To overcome this problem, other techniques such as Selective Catalytic Reduction
(SCR), in which ammonia is used as a reductant and metal oxides as an oxidizer
[101], are applied. Also, NOx traps or NOy adsorbers are applied, in which different
metal-based zeolites are used as an adsorbent [104].

Authors have conducted a study for direct decomposition of NOx using alternative
catalyst to PGMs. The experimental tests were based on the development of non-
noble metal-based catalysts in order to provide a low-cost solution. The catalysts
Cu-COK12, Cu- Nb,Os, Cu-YZeolite, and Cu-ZSMS5 were prepared by the standard
wet impregnation method, the supports ZSM-5, Y-Zeolite and Nb,Os were obtained
from Zeolyst International, the Netherlands, and COK12 support was prepared in
the laboratory of CSIR-Indian Institute of Petroleum, Dehradun, India. Furthermore,
the reactivity tests of prepared catalysts toward NO decomposition were performed
with the help of a quartz glass fixed bed reactor setup. This experimental setup at
the laboratory of EATA, AFLAD, and CSIR-Indian Institute of Petroleum consists
of quartz reactor, thermocouples, mass flow controllers (MFCs), furnace, gas shut
ON/OFF valves, gas regulators, and temperature control units. Helium and nitrogen
gases were simultaneously used as purging agents to remove the impurities in the
gas lines and fixed bed reactor. The prepared catalyst (of amount 250 mg) was placed
on the quartz wool (fixed bed) and NO gas was made to pass through the fixed bed
reactor; this fixed bed reactor was placed in a furnace to maintain the temperature of
the reaction from 200 to 600 °C. For this case, the flow rate of NO was maintained
(using mass flow controllers) at 100 ml/min. Similarly, for each catalysts, the tests
were performed at a NO flow rate of 100 ml/min, and temperature of furnace was
varied from 200 to 600 °C. The reacted NO gas coming out of quartz fixed bed
reactor was then taken into DANI Master Gas Chromatography machine, equipped
with the thermal conductivity detectors, and the output was seen in the form of
voltage signals with the help of Clarity software attached with the DANI Master GC.
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Fig. 17.9 Percentage
conversion of NO by 60 —4—Cu-COk12 == Cu-ZSM5
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The interpreted results are hence plotted for the percentage conversion versus the
temperature as shown in Figure 17.9.

Figure 17.9 shows the catalytic activity of Cu-COK12, Cu- Nb,Os, Cu-YZeolite,
and Cu-ZSMS5 at the NO flow rate of 100 ml/min. The reactivity of Cu-COK12
and Cu-ZSMS5 remains approximately 40% at lower temperatures and falls down
with subsequently higher temperatures; but, the reactivity of Cu-YZeolite and Cu-
Nb,Os remains low. Moreover, in order to enhance the catalytic activity and to
accomplish the aim to get comparable reactivity with platinum group metals, the
further investigations are planned to vary the flow rates of NO and the non-noble
metal catalyst weight. In the future, it is planned to calculate the dependence of NO
decomposition activity of catalysts in terms of space velocities. This study can be
extended for developing the diesel oxidation catalysts for the abatement of HC, CO,
and particulate matter emissions.

17.7 Conclusions

Platinum, palladium, and rhodium, have powerful catalytic abilities. Additionally,
platinum metals are naturally beautiful, which elevates their value as jewelery in
many cultures. The automotive sector is anticipated to have a substantial impact
on future PGM demand, while important Asian nations like China are anticipated to
have significant rise in jewelery market for platinum. Along with the expansion of the
world economy, there is also anticipated growth in the demand for platinum metals
for industrial uses. These metals, which are utilized in electronic components and
automotive catalytic converters, are increasingly being recycled because of recent
increases in PGM costs. PGM recycling often begins with scrap refiners, which
gather scrap materials such used catalytic converters and electronic components that
contain PGMs to recover the precious metals. To further improve the quality of
the recycled material, other refiners often purchase the recovered PGM material.
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Technological developments that rely on the catalytic capabilities of PGMs, such
as fuel cells, become more extensively employed across the globe, the market for
recycled platinum metals is anticipated to rise over the upcoming years. The study
highlights the following conclusions:

e The high demands of the PGMs emphasize the need to recycle the catalytic
converters for the chemical extraction of these precious metals used as auto-
catalysts.

e The gap between total gross supply and total gross demand of PGMs is around
30%; this is what it makes them precious.

e Only about 32% of the demand for PGMs as an autocatalysts gets fulfilled by
recycling from used catalytic converters. This percentage should be increased
with a target to achieve above 90% recycling.

e The use of PGMs in catalytic converters can be reduced by replacing them
with other materials and techniques like nickel oxide, titanium dioxide, CeO,
composite catalysts, Cu/Cr Oxide Catalysts, zeolites, selective catalytic reduction,
NOx traps, etc.

e A direct decomposition of engine exhaust is possible using alternative catalyst to
PGMs with comparable reactivity with platinum group metals.

e The current research showed an experimental investigation on NO decomposition
activity using Cu-based non-noble metal-based catalysts through DeNOy tech-
nology. The maximum reactivity achieved was for Cu-COK12 and Cu-ZSMS5, it
remains approximately 40% at lower temperatures.

In the future, the plan will be to find ways to increase the reactivity of the catalysts,
so that we can add to the research of alternative catalysis. Using non-noble metal
catalysts instead of PGMs would be a great breakthrough in this area of research.
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Abbreviations

ATR-FTIR Attenuated total reflectance-Fourier transform infrared
BET Brunauer—-Emmett—Teller

CHN Carbon Hydrogen Nitrogen analysis

CI Compression ignition

CO Carbon monoxide

DeNOy Direct decomposition of NOx

DPF Diesel particulate filter

FSP Flame spray pyrolysis

FTIR Fourier Transform Infrared Spectroscopy

H2-TPR Hydrogen-temperature programmed reduction

HC Hydrocarbons

HRTEM High-Resolution Transmission Electron Microscopy
ICP-OES Inductively coupled plasma—optical emission spectrometry
LRS Laser Raman spectroscopy

MEFC Mass flow controller

N,O Nitrous oxide

NDIR Nondispersive infrared sensor

NH;-TPD Ammonia-Temperature programmed desorption

NO Nitrogen oxide

NO, Nitrogen dioxide

NO-TPO Nitrogen oxide- Temperature programmed oxidation
NOx Nitrogen oxide gases

PGM Platinum group metals

PM Particulate matter

PXRD Powder X-ray diffraction

ROW Rest of World

SA Surface Area

SCR Selective catalytic reduction

SEM Scanning electron microscope

SEM-EDX Energy-dispersive X-ray spectroscopy

SI Spark ignition

TEM Transmission electron microscopy

TGA Thermogravimetric analysis

TGA-DTA Thermal gravimetric analysis -Differential thermal analysis
TPD Temperature programmed desorption

TPO Temperature programmed oxidation

TPR Temperature programmed reduction

UHC Unburnt hydrocarbons

USA United States of America

UV vis DRS  UV-vis diffuse reflectance spectroscopy

XPS X-ray photoelectron spectroscopy

XRD X-ray diffraction
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