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Abstract 

Characterized by coronary artery obstruction 
or stenosis, ischemic cardiovascular diseases 
as advanced stages of coronary heart diseases 
commonly lead to left ventricular aneurysm, 
ventricular septal defect, and mitral insuffi-
ciency. Extracellular vesicles (EVs) secreted 
by diverse cells in the body exert roles in 
cell–cell interactions and intrinsic cellular 
regulations. With a lipid double-layer mem-
brane and biological components such as 
DNA, protein, mRNA, microRNAs 
(miRNA), and siRNA inside, the EVs function 
as paracrine signaling for the pathophysiology 
of ischemic cardiovascular diseases and main-
tenance of the cardiac homeostasis. Unlike 
stem cell transplantation with the potential 
tumorigenicity and immunogenicity, the 
EV-based therapeutic strategy is proposed to 
satisfy the demand for cardiac repair and 
regeneration while the circulating EVs 
detected by a noninvasive approach can act 
as precious biomarkers. In this chapter, we 

extensively summarize the cardioprotective 
functions of native EVs and bioengineered 
EVs released from stem cells, cardiomyocytes, 
cardiac progenitor cells (CPCs), endothelial 
cells, fibroblast, smooth muscle cells, and 
immune cells. In addition, the potential of 
EVs as robust molecule biomarkers is 
discussed for clinical diagnosis of ischemic 
cardiovascular disease, attributed to the same 
pathology of EVs as that of their origin. 
Finally, we highlight EV-based therapy as a 
biocompatible alternative to direct cell-based 
therapy for ischemic cardiovascular diseases. 
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4.1 Background 

Ischemic cardiovascular diseases including 
myocardial infarction (MI) and heart failure are 
the leading causes of morbidity and mortality 
worldwide [1, 2]. The cardiovascular system 
supplies blood to all tissues in the body during 
which oxygen and nutrients are simultaneously 
carried to cells. Decrease or block of local blood 
perfusion leads to ischemia which also deprives 
cells of oxygen and nutrients such as glucose and 
growth factors [3]. Once myocardial ischemia
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occurs, cardiomyocytes would undergo cell death 
(apoptosis, pyroptosis, and necrosis) within 
20 min, followed by complete necrosis at 2–4 h  
after persistent coronary arterial occlusion 
[4, 5]. Clinical therapy of ischemic cardiovascular 
diseases is timely re-establishing blood flow in 
the ischemic cardiac tissue. However, reperfusion 
increases oxidative stress and causes paradoxical 
cardiomyocyte impairment, which is named 
ischemia–reperfusion (I/R) and determines the 
final infarct size after successful revascularization 
following MI [6, 7]. 
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Without sufficient blood supply to the heart, 
myocardial ischemia could hinder the supply of 
glucose and oxygen, as well as delay the clear-
ance of metabolic by-products such as lactic acid 
and CO2 [8]. Although hypoxia is a key determi-
nant to induce cellular damage in ischemic 
conditions, other abnormal events involving aci-
dosis, increases in oxidative stress, disturbed cal-
cium homeostasis, decreased levels of adenosine 
triphosphate (ATP), and mitochondrial and DNA 
damage exert significant effects on inflammation, 
neovascularization, and collateral formation 
[9]. Anaerobic glycolysis consuming glycogen 
storage allows short periods of ischemia. Glucose 
transporters (Glut1 and Glut4) are carried to the 
muscle fiber membrane to facilitate additional 
glucose uptake [10]. Ischemia could lead to aci-
dosis and decrease the cardiac pH from approxi-
mately 7.2 to 6.5, which is necessary to alter the 
activities of various enzymes including phospho-
fructokinase and phospholipid burning enzymes. 
Besides, acidosis can be further enhanced by 
inhibition of mitochondrial NADH oxidation 
and vacuolar proton ATPase, increased CO2 

levels in tissues, excessive glycogen conversion, 
anaerobic glycolysis, and ATP hydrolysis [11– 
14]. As a result, intracellular acidosis triggers 
apoptosis of cardiomyocytes via cavitation proton 
ATPase [15]. 

Cell-to-cell communication is essential for 
maintaining tissue homeostasis and disease pro-
gression. Two classic pathways are direct cell-to-
cell contact with short-range cell crosstalk and 
long-distance communication of cytokines or 
hormones [16]. Another intercellular communica-
tion mechanism emerges as the intercellular 

transfer of extracellular vesicles (EVs), which 
could deliver various biological signaling to 
receptor cells at an exceeded level than that of 
soluble factor signaling, attributed to a large num-
ber of bioactive molecules, surface receptors, and 
genetic information in EVs [17]. EVs are extra-
cellular structures surrounded by lipid bilayers 
and secreted by almost all known cell types. 
According to their sizes, EVs have been classified 
into three categories involving exosomes (sizes of 
30–150 nm), apoptotic bodies (sizes of 50 nm– 
10 μm), and microparticles or microvesicles 
(sizes of 100–1000 nm) [18, 19]. Exosomes are 
intracavinal vesicles that are formed through the 
membrane invagination of multivesicular 
endosomes and released into the extracellular 
space followed by the fusion of multivesicular 
endosomes with cell membranes 
[20]. Microvesicles (50–1000 nm) are heteroge-
neous EVs characterized by their origin and 
secretion to the exobud through the plasma mem-
brane. Apoptotic bodies are released by dying 
cells after apoptosis. Responsible for intercellular 
communication, EVs carry molecules such as 
DNA, proteins, lipids, RNA, and/or microRNAs 
(miRNAs) [21]. These functional components 
vary from cell origin and specific pathophysiolog-
ical conditions at the time of EV packaging and 
secretion. Extensive evidence suggests that EVs 
get involved in diverse cardiovascular physiolog-
ical and pathological processes including regula-
tion of angiogenesis and blood pressure, 
cardiomyocyte hypertrophy, apoptosis/survival, 
and cardiac fibrosis. Also, due to their wide dis-
tribution in human plasma, bronchoalveolar fluid, 
serum, saliva, urine, semen, bile, cerebrospinal 
fluid, amniotic fluid, tumor effusion, ascites, and 
milk, EVs have been employed as potential 
biomarkers for cardiovascular disease [22– 
28]. Cell-to-cell communication transferred by 
EVs between cardiomyocytes and vessel cells 
has an impact on cardiovascular pathology, diag-
nosis, and therapy [29–32]. 

In this chapter, we would summarize a variety 
of natural/engineered EVs derived from different 
types of cells, with an emphasis on their biogene-
sis and cargo formation, and performances as 
biomarkers of ischemic cardiovascular disease



for cardiac repair and regeneration. Finally, we 
would discuss the potential and challenges of EVs 
in clinical therapy of ischemic cardiovascular 
disease. 
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4.2 Different Sources 
of Extracellular Vesicles 
for Therapy of Ischemic 
Cardiovascular Diseases 

Current treatments for ischemic cardiovascular 
diseases mainly focus on slowing the progression 
of diseases, rather than repairing and regenerating 
damaged heart muscle [33]. Although cell trans-
plantation is considered one of the most 
promising ways to promote the proliferation of 
cardiomyocytes, it suffers from immunogenicity, 
risk of post-transplant arrhythmia and 
tumorigenesis, and uncertain differentiation and 
retention rate of cells [34]. A series of cytokines 
and growth factors, such as VEGF, HGF, Ang-1, 
SDF-1A, IGF-1, SFRP-2, TGF-β, and eNOS/ 
iNOS, are involved in the paracrine effect of 
cell-based therapy [35]. These factors are benefi-
cial to protect cardiomyocytes from apoptosis and 
necrosis, promote angiogenesis in infarcted myo-
cardium, delay interstitial remodeling, and 
increase the recruitment of circulating progenitor 
cells [36]. With the same bioactive factors as their 
source cells, EVs can function as an alternative to 
cell transplantation. EVs are isolated from all 
major cell types found in the heart ranging from 
primary adult cardiomyocytes, primary cardiac 
endothelial cells, primary cardiac fibroblasts, 
and vascular smooth muscle cells to cardiac pro-
genitor cells (CPCs) [37]. The majority of EVs in 
healthy people’s plasma is derived from platelets 
and red blood cells, but plasma EVs are also 
released from white blood cells, endothelial 
cells, monocytes, neutrophils, and 
lymphocytes [38]. 

1. Cardiomyocyte-derived EVs: Cardiomyocytes 
may be an important type of parent cells to 
secrete EVs, especially under stress conditions 
such as myocardial ischemia and failure. 
Cardiomyocytes can release EVs containing 

heat shock proteins HSP70 and HSP90 and 
HSP60 in response to hypoxia and reoxygena-
tion injury in vitro [39]. EVs containing tumor 
necrosis factor (TNF)-α can also be released 
by cardiomyocytes for inflammatory response. 
Glucose deprivation induces the loading of 
functional glucose transporters and glycolytic 
enzymes into EVs that are derived from neo-
natal rat cardiomyocytes [40]. Thus, 
cardiomyocytes can specifically regulate the 
function of neighboring cells by releasing spe-
cific EVs to respond to environmental stress. 

2. Cardiac progenitor cell-derived EVs: a kind of 
cells with the ability to proliferate and differ-
entiate into cardiomyocytes are called CPCs 
[41]. There were 857 unique gene products 
and 150 miRNAs in CPC-derived EVs, com-
pared to CPCs. The miR-22 in CPC-derived 
EVs could inhibit methylCpG binding protein 
2 and reduce apoptosis of the ischemic 
cardiomyocytes [42]. Hypoxia stimulates 
CPCs to release EVs which upregulate the 
expression of proangiogenic genes, anti-
fibrosis genes, and a cluster of miRs 
(miR-210, miR-132, and miR-146a-3p), as 
well as increase their capacity to improve car-
diac function after I/R injury in rats. After 
being inoculated into the ischemic/reperfusion 
heart, the CPC-derived EVs could elevate ATP 
and NADH levels in vivo [43]. With matrix 
metalloproteinases (MMPs) and extracellular 
matrix metalloproteinases (ECMPs) inside, 
EVs derived from CPCs could mediate 
proangiogenic efficiency. Therefore, 
CPC-derived EVs may play key roles in the 
EV-based therapy of ischemic cardiovascular 
disease [44]. 

3. Endothelial cell-derived EVs: The endothelial 
cells can release EVs containing miR-146a to 
stimulate angiogenesis [45]. Hypoxia changes 
the composition of mRNA and protein in EVs 
released from cultured endothelial cells 
in vitro. Exosomal intercellular adhesion pro-
tein expression was increased after TNF-α 
treatment of endothelial cells. These findings 
exemplify the protective function of 
endothelium-derived EVs against ischemic
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cardiovascular disease, which may also make 
them biomarkers for cardiac stress and 
diseases [46]. 

4. Fibroblast and smooth muscle cell-derived-
EVs: Cardiac fibroblasts secrete miRNA-
27a*-enriched EVs into the extracellular 
space in response to stimulation of Angioten-
sin II, which inhibits PDLIM5 translation, 
thereby leading to the expression of hypertro-
phic gene in cardiomyocytes [47]. EVs 
released by cardiac fibroblasts contain high 
levels of miR-21-3p/miR-21 which can induce 
cardiomyocyte hypertrophy [48]. EVs released 
by smooth muscle cells are associated with 
vascular calcification and atherosclerosis. Dif-
ferent conditions such as ischemia, stress, and 
volume overload are able to induce fibroblasts, 
cardiomyocytes, endothelial cells, and inflam-
matory cells to regulate mast cell responses 
through EVs-mediated intercellular 
communication. 

5. Mesenchymal stem cell-derived EVs: Mesen-
chymal stem cells (MSCs) are present in 
almost all tissues and play a major role in 
tissue repair and regeneration. Many signal-
ing molecules from mesenchymal stem cells 
are associated with self-renewal and differen-
tiation, which also have been found in the 
EVs derived from MSCs. Thus, these 
MSC-derived EVs could influence cell 
cycle, proliferation, cell adhesion, cell migra-
tion, and cell morphogenesis. Similarly, 
miRNAs shuttling through MSC-derived 
EVs mainly in their precursor form drive 
downstream signaling pathways. In addition, 
MSC-derived EVs carry anti-inflammatory 
cytokines such as interleukin-10 and tumor 
growth factor (TGF)-β to affect the lympho-
cyte proliferation [49]. 

6. Immune cell-derived EV: B cells and dendritic 
cells in immune cells mediate secretion of EVs 
with major histocompatibility complex 
(MHC)-dependent immune responses. These 
EVs express specific adhesion molecules to 
target specific receptor cells. NK cells-derived 
EVs surrounding perforin and granulase B 
could mediate antitumor activity in vitro and 

in vivo. Taking into consideration that 
macrophages can release IL-1β during 
inflammasome activation, the EVs secreted 
by macrophages exert roles in 
pro-inflammatory activity and initiating 
immune response [50]. 

7. Platelet-derived EVs: Studies have shown that 
increased cell adhesion factors, 
thrombopoietic factors, and inflammatory 
factors in EVs that are released by platelet in 
vascular plaques, thrombosis, and atheroscle-
rosis can promote the delivery of platelet EVs 
to endothelial cells and macrophages in the 
vascular lesion sites. Platelet-derived EVs 
also stimulate angiogenesis, and intramuscular 
injection may improve vascular remodeling 
after ischemia [51]. 

4.3 Native Extracellular Vesicles 
for Ischemic Cardiovascular 
Therapeutics 

The first study on EVs as a potential therapeutic 
intervention for cardiovascular disease was 
published in 2010. Since then, different types of 
cell transplantation were found to repair the 
infarcted heart. Besides, exploration of the under-
lying mechanism revealed that the protective 
effect of cell transplantation is mainly through 
the paracrine mechanism, especially EVs secreted 
by surviving cells, instead of directly mediation 
by cells [52]. EVs are naturally suitable for the 
transport of proteins and nucleic acids as well as 
cell-to-cell crosstalk, which makes them particu-
larly attractive as drug delivery agents. In addi-
tion, due to their biophysical properties, EVs are 
easy to isolate while their contents such as RNA 
and protein can be easily manipulated 
[53]. Although EVs must contend with low car-
diac osmotic and endocytosis rates, they can over-
come poor transplantation by being directly 
internalized by recipient cells when compared to 
cells [54]. The limitations of EVs in cardiovascu-
lar therapy are the lack of effective target for the 
damaged myocardium. Optimizing the storage, 
isolation, and purification procedures for EVs is



challenging to move EV-based therapy from the 
laboratory bench to the clinic [55]. 
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The therapeutic effect of EVs in recipient cells 
is mainly attributed to the delivery of proteins 
and/or non-coding RNAs, especially miRNAs. 
For example, miRNA-19, miRNA-21, miRNA-
24, and miRNA-210 have been reported to get 
involved in cardiovascular repair, while several 
novel miRNAs (miRNA-22, miRNA-29a, 
miRNA-143, miRNA-146, miRNA-181b, 
miRNA-222, miRNA-294-3p, and miR-126) 
favor cardiovascular protective effects of 
exosomes [56]. Another important component of 
EVs, which is also related to their bioactivity, is 
proteins such as platelet-derived growth factor D 
and pregnancy-associated plasma protein 
A. Highly expressed in exosomes, pregnancy-
associated plasma protein A has been shown to 
mediate cardiac protection and angiogenesis 
[57]. EVs could regulate autophagy, activate 
pro-survival signaling pathways, and reduce oxi-
dative stress, thereby improving the survival rate 
of cardiomyocytes and endothelial cells. In addi-
tion, it can regulate the inflammatory response 
and cytokine secretion, as well as increase the 
activation of CD4 positive T cells by affecting 
the polarization of immune cells [58]. 

It has been confirmed that EVs can be secreted 
by cultured heart and vascular cells, stem cells. 
EVs have been shown to mediate communication 
between endothelial cells and smooth muscle 
cells, endothelial cells (ECs) and pericytes, 
cardiomyocytes and ECs, and fibroblasts and 
cardiomyocytes [59]. Smooth muscle cells play 
important roles in the formation of atherosclerotic 
plaque which can lead to MI. Studies have 
indicated that ECs release microvesicles rich in 
miR-143/145, which are absorbed by smooth 
muscle cells and regulate gene expression in 
receptor cells. Injection of EVs containing 
miR-143/145 into a mouse model of atheroscle-
rosis reduced the formation of atherosclerotic 
lesions [60]. Cardiac fibroblasts have been 
demonstrated to secrete miR-21-rich EVs as key 
paracrine signaling mediators for cardiac hyper-
trophy. MiR-21 is shuttled to cardiomyocytes and 
affects the expression of its miR-21 target genes, 
thereby leading to cell hypertrophy [61]. EVs in 

the rat heart after ischemic preconditioning were 
responsible for the transmission of remote condi-
tioning signals to protect the heart. The 
proangiogenic activity of pericytes is partially 
dependent on the released miR-132, especially 
in response to hypoxia. Pericyte-derived 
miR-132 was absorbed by ECs, thereby resulting 
in a higher proangiogenic capacity [62]. A recent 
report suggested that both ischemic and healthy 
human and mouse cardiomyocytes might release 
exosomal-like vesicles in vivo [63]. In mice with 
acute MI, circulating miRNA-1 was released into 
the bloodstream via EVs to inhibit the expression 
of the SDF-1 receptor CXCR-4 in bone marrow 
mononuclear cells [64]. These studies reveal that 
EV-mediated communication mechanisms can 
effectively favor cardiac repair and regeneration. 

4.4 Bioengineered Extracellular 
Vesicles for Ischemic 
Cardiovascular Therapeutics 

Although native EVs function as a delivery 
modality with their unique characteristics, they 
have inherent limitations of unclear heterogeneity 
and lack of targeting. The bioengineering opera-
tion can endow the EVs with improved target as 
therapeutic tools for the treatment of cardiovascu-
lar disease [65]. In detail, engineered EVs over-
come their limitations by addressing the 
bioactivity, stability, internalization, and 
targeting of EVs. Exosome modifications are 
classified from a technical point of view 
depending on whether they are performed before 
EVs are secreted by donor cells or after the puri-
fication of EVs from culture medium or liquid. 
From a biological point of view, these 
modifications occur on the membrane or in the 
cavity of EVs [66]. Regulation of EVs-secreting 
cells has two different procedures: culture under 
stress conditions (hunger, hypoxia, inflammation) 
and transfection of exogenous compounds such 
as miRNAs, plasmid DNA, and small molecules 
to enhance their bioactivity. Some cell platforms 
have been customized to enrich EVs with specific 
proteins and RNAs [67]. Additionally, few stud-
ies have used cellular mechanisms to design EVs



with specific epitopes to the heart. Although the 
biophysical properties of EVs can be kept rela-
tively intact, overexpression may produce unfore-
seen biological consequences that ultimately 
interfere with the biogenesis of EVs [68]. Track-
ing EVs and their biological distribution in vivo 
are important for the full evaluation of their ther-
apeutic potential for cardiovascular disease. Most 
EVs have been isolated and labeled with fluoro 
groups, luminescent reporters, or radioactive 
tracers. In a few cases, reporter genes are 
expressed by transgenic treatment of 
EVs-secreting cells. EVs can be monitored 
in vitro or in vivo by luminescence or fluores-
cence [69]. To enhance the targeting of EVs, EVs 
have been modified with exogenous peptides 
(such as integrin αVβ3 high-affinity cyclic RGD 
peptides, ischemic targeting peptides, and 
cardiomyocyte-specific peptides), proteins (such 
as streptavidin), or lipids [70]. To enhance the 
internalization and endosomal escape of EVs, 
vesicles were modified with cationic lipids, 
pH-sensitive peptides, and cell-penetrating 
peptides. Taken together, these studies demon-
strate the possibility of improving the bioactivity, 
tracer, targeting, and internalization of engineered 
EVs, compared with naked EVs [71]. 
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4.5 EVs as Potential Biomarkers 
of Ischemic Cardiovascular 
Diseases 

EVs originate from different subcellular 
compartments and are released in the extracellular 
space. By transferring their cargos to targeted 
cells and tissues, they act as new regulators of 
cell-to-cell communication between adjacent and 
distal cells. Since their vesicle composition, 
biological content, and protein markers are the 
individual characteristics of cell activation and 
damage, most EVs detected in serum and saliva 
can be concentrated as diagnostic and prognostic 
biomarkers which could suggest the occurrence 
of ischemic cardiovascular diseases [72– 
74]. Their isolation within the membrane also 
protects proteins, RNA, and DNA from degrada-
tion [75]. The features of circulating EVs or 

non-vesicular binding nucleic acids are valuable 
tools for the diagnosis and monitoring of cardio-
vascular disease, recently referred to as liquid 
biopsy. In epidemiological investigations, 
circulating EVs provide a noninvasive and nearly 
continuous flow of information about disease sta-
tus [76–78]. Finally, the cell-specific application 
of genetic engineering and EVs may provide a 
new therapeutic approach for the treatment of 
ischemic cardiovascular diseases, offering hope 
for the application of EVs in ischemic cardiovas-
cular disease [79]. 

With a variety of proteins, lipids, mRNAs, 
non-transcriptional RNAs, miRNAs, and small 
RNAs that represent their cellular origin and 
reflect the pathology of their source cells, EVs 
have potential as biomarkers for clinical diagnosis 
of ischemic cardiovascular disease [80]. The pos-
sibility of isolating and characterizing EVs from 
body fluids makes them very attractive as diag-
nostic markers [81]. CPC-derived EVs possess 
several cardioprotective and angiogenic 
microRNAs, such as miR-132, miR-210, and 
miR-146. Compared with CPC itself, 
CPC-derived EVs contained a portion of specific 
miRNAs that were specifically enriched in 
miR-146a, suggesting that miRNA enrichment 
into EVs may have occurred through a specific 
mechanism rather than random selection 
[82]. Recently, the elevated serum miR-192 
levels (specifically EVs) were significantly 
associated with patients who developed heart fail-
ure within 1 year after MI, in comparison with a 
matched control group that did not develop a 
cardiovascular event after discharge [83]. In addi-
tion, miR-133 and miR-328 in plasma were ele-
vated in patients with MI, both of which are 
considered novel biomarkers for acute MI 
[84]. A study of EVs in patients with acute coro-
nary syndrome showed that miRNA-208a expres-
sion was significantly upregulated in serum EVs 
from patients with acute coronary syndrome 
[85]. In addition, survival was reduced in patients 
with high miRNA-208A expression, suggesting 
that exosomal miRNA-208A can be employed for 
early diagnosis and prognosis of acute coronary 
syndromes. Another study revealed an increase in 
the number of EVs binding cardiac miRNAs after



coronary artery bypass surgery [86]. In the future, 
diverse EVs can function as new biomarkers of 
persistent myocardial ischemia, vascular injury 
without cell death, non-infarct or asymptomatic 
myocardial ischemia, and different types of 
angina and microvascular angina. Besides, a bio-
marker of myocardial ischemia with low persis-
tence and no cell death would help identify the 
disease at an early stage [87]. Similarly, the diag-
nosis of acute coronary syndromes needs to be 
improved, especially at the early time point after 
MI, microvascular angina, and non-ST-segment 
elevation of acute coronary syndrome (ACS) 
[88]. Given the wide range of cardiac cell types 
that are able to secrete EVs, circulating EVs 
which originate from coronary and peripheral 
arteries could provide a potentially significant 
identifying biomarker to support diagnosis and 
reflect the formation of coronary thrombotic 
occlusion in patients of MI [89]. However, the 
practical application of exosomal-derived 
proteins or miRNAs as biomarkers has not been 
implemented in clinical practice despite the pres-
ence of a large number of exosomes in biological 
fluids, mainly due to the lack of a rapid and 
effective method to process large numbers of 
biological samples. Several commercial 
companies have begun to develop EV-based can-
cer diagnostics, while EVs as biomarkers of car-
diovascular diseases are still an unexplored world 
that we are committed to pioneering [90]. 
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4.6 Conclusion and Future 
Perspectives 

Circulating EVs can be detected in the plasma of 
patients with cardiovascular diseases, thus EVs 
expression patterns can be used as diagnostic 
and prognostic biomarkers for a variety of cardio-
vascular diseases. The multiple functional 
efficiencies of EVs on the progression of ischemic 
cardiovascular disease vary from the origin of 
cells, the functional status of source cells, and 
the transport capacity of functional bioactive 
molecules in the vesicle [91]. 

Since EVs get involved in the physiological 
and pathological processes of ischemic 

cardiovascular disease, research about their bio-
genesis, contents, and functional effects on target 
cells can provide new diagnostic and prognostic 
information for patients with cardiovascular 
diseases [92, 93]. Firstly, EVs are known to 
exert therapeutic effects on ischemic cardiovascu-
lar disease in preclinical MI models, which lights 
the future of EV-based therapy for cardiovascular 
diseases. Secondly, with advantages of modifi-
ability, high viability, and inherency, EVs has 
similar therapeutic effect when compared to 
stem cell/progenitor cells. Thirdly, the therapeutic 
effect of EVs can be enhanced by increasing the 
stability and targeting of EVs, enriching their 
therapeutic content, improving their internaliza-
tion and intracellular transport, and controlling 
their spatial and temporal release in biomaterials 
[94]. The implementation of standard separation 
and characterization of EVs are urgently required 
to explore EVs as a potential approach for ische-
mic cardiovascular disease [95–97]. Autologous 
EVs have the advantage of immune compatibil-
ity, but they cannot be collected on demand, and 
are difficult to be standardized as clinical products 
based on individual factors such as the donor’s 
disease and age. EVs provided by exogenous 
sources have the advantage of being easier to 
standardize and bulk storage [98, 99]. In addition, 
loading exogenous molecules into EVs and 
controlling their delivery in vivo provides many 
opportunities to enhance the bioactivity of EVs 
[100]. Therefore, targeted technologies that 
increase the accumulation of EVs in the cardio-
vascular system to reduce the necessary injected 
dose, as well as strategies that enrich specific 
biomolecules in EVs, may be the key approaches 
to unlocking its clinical application. In the future, 
EVs can become clinical biomarkers for ischemic 
cardiovascular disease due to the specificity of 
their inclusivity. Native and engineered EVs rep-
resent a promising cell-free, safe, and customiz-
able therapeutic approach to improving the 
therapeutic efficiency of cardiovascular diseases. 
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