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Abstract. Wind power is a major form of renewable energy and has significant
development potential. To deal with the wind power volatility, we need accu-
rate wind power forecasting methods. This article presents a comprehensive fore-
casting method combining Convolution Neural Network (CNN) and Long Short-
TermMemory (LSTM) Recurrent Neural Network, and uses differential evolution
algorithm (DE) for parameter optimization. First, CNN is used to extract high-
dimensional features, and then the LSTMmodel is used for time series prediction.
The differential evolution algorithm is used to adjust the parameters to achieve
better prediction results. The testing based on the data from a practical wind plant
shows that the prediction results using the proposed forecasting method is more
accurate than the prediction results using the existing forecasting method.
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1 Introduction

With worldwide energy shortage and environmental problems, the use of renewable
energy is becomingmore of a concern [1, 2].As a clean, pollution-free,widely distributed
renewable energy that is easy to exploit, wind energy has received widespread attention
[3, 4].

However, wind energy is easily influenced by wind speed and air pressure, leading
to strong fluctuation and intermittence of wind power, which harms its integration into
the power grid and hinders its development [5, 6]. Accurate and reliable short-term wind
power forecasting can not only help wind farms in work planning, but also reduce the
impact on the power grid, which is an effective way to overcome this obstacle.

With the progress of research, wind speed forecasting methods are constantly being
optimized and updated, from the physical method at the beginning to the statistical
method, and in recent years, intelligent algorithms are mainly used for data analysis [7].
Physical methods are usually based on complexmodels, andmake predictions according
to all kinds of meteorological data. This method is suitable for medium and long-term
wind forecasting, but performs not so well in short-term wind power forecasting [8].
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Traditional statistical methods use historical data of wind power to forecast, the most
popular model is auto-regressive integrated moving average (ARMIA) [9]. It predicts
well on the linear part of the wind power fluctuation, but it cannot learn nonlinear
characteristics of the change of wind power, so it fails to achieve a long-term satisfactory
effect.

A study on recurrent neural network (RNN) finds it have higher accuracy com-
pared with ARMIA method [10]. Many other neural networks such as Deep belief
network (DBF) [11], convolution neural network (CNN) [13], long short-term memory
(LSTM) [14] and echo state network (ESN) [12] are also valued for their advantages
in feature extraction and nonlinear fitting. Among these models, the LSTM model is
promising due to its advantages in processing long time series [15]. Hybrid model are
also proposed for wind speed forecasting [16]. For example, for the LSTM network,
empirical wavelet transforms [17], ensemble empirical mode decomposition [18] are
respectively combined into the model for pre-optimization of data. For the parameters in
the neural network model, many methods such as differential evolution algorithm (DE)
[19], grey wolf optimization (GWO) [20], multi-objective whale optimization algorithm
(MOWOA) [21] have been proposed. This is because network parameters, if not properly
selected, will have a bad influence on the prediction results [22]. Another problem of
those networks is when the input wind power fluctuates greatly, the prediction accuracy
will be greatly reduced.

To find features under long-term input sequence and smooth the data, we first use
CNN to extract local informative features in the input in our network. LSTM is often used
for time series data prediction due to its excellent performance in long-term and relevant
data processing [23]. Therefore, we next use LSTM to perform time series prediction
on non-linear wind power data. Considering that there is currently no clear algorithm
to guide the selection of parameters in the neural network, we use a reliable improved
differential evolution algorithm to optimize parameters such as the number of layers and
forgetting rate of the LSTM network to achieve better prediction results.

2 Strategy for Wind Power Forecasting

In order to achieve smart operation of wind farms and predict the wind power in advance
to better arrange the start and stop of wind turbines in wind farms, neural network
methods are used for short-termwind power forecasting. They can achieve better forecast
results than traditional methods based on the historical data of wind power in a period
of time, providing a basis for the subsequent optimal control.

Wind power prediction mostly adopts the LSTMmodel. It is suitable for time series
prediction, but sensitive to fluctuations, and if the network parameters are not properly
selected, the prediction accuracy is often low. Therefore, a comprehensive method of
integrating CNN, LSTM and DE is proposed here. First, we use CNN to smooth the data
and better extract high—dimensional features, then use LSTM network to predict the
result. Differential evolution algorithm is used to optimize the parameters of the network
(Fig. 1).
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Fig. 1. Structure of CNN-LSTM-DE method

3 CNN-LSTM Structure

3.1 CNN

CNN is a successful deep learning architecture and it is an effective for feature extrac-
tion and pattern recognition [24]. It can extract high-dimensional features of input data
through convolution layer (Fig. 2).

Fig. 2. Structure of CNN

The data input from the input layer is convolved, pooled, fully connected, and then
output through the output layer in CNN network [27]. The function of convolution layer
is to locally perceive input data, and extract the high-dimensional features of the input
through the product of convolution kernel and sliding window. After the convolution
layer is the pooling layer, also called the convergence layer. Convolution layer reduces
the number of connections between different neurons, but the number of neurons does
not decrease significantly. So the pooling layer is required to participate, which is used to
reduce feature dimensions and avoid over fitting [28]. The last step is the fully connected
layer to output the results. After the data is processed by the convolution layer and
pooling, it is input to the fully connected layer to get the final result. After such a series
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of operations, the data volume has decreased significantly, the efficiency has improved
significantly, and the computing cost has also decreased significantly. Themost important
convolution operation in CNN is shown in formula (1):

Ot = σ(W ∗ xt + b) (1)

whereW represents the weight coefficient of the filter; xt represents the data information
of the input sample at time t; * represents the discrete convolution operation between xt
and W ; b is the bias parameter, which is obtained by learning and will be passed when
training the model; σ represents the activation function; Ot represents the output data
after the convolution operation.

Each neuron contains a filter. The input data will be convolved with each filter, and
the results will be added together as the output data. For example, when a sequence is
all 2, the filter (1, 1) is used, the step size of the sliding window is 1, then the output is
4 if there is no bias parameter.

3.2 LSTM

LSTM network is a variant of Recurrent Neural Network (RNN). RNN is very effective
for data with sequence characteristics. It can mine temporal information in data [25], but
in the process of model training, gradient disappearance or gradient explosion will occur
along with the accumulation of time steps. This will cause the loss of previous historical
input information or generate invalid information, resulting in wrong prediction results.

The LSTM network selectively store information by introducing forget gate, input
gate and output gate to one cell to control the transmission of information, solving the

Fig. 3. LSTM cell structure
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problem of gradient disappearance or gradient explosion in long sequences in RNN to a
certain extent [26]. The cell structure of LSTM is shown in Fig. 3.

The left end of the LSTM network structure in the figure is the input layer, the right
end is the output layer, and the middle part is three gating units. First go through the
input gate to see whether there is information input, then judge whether the forgetting
gate chooses to forget the information in the memory cell, and finally go through the
output gate to judge whether to output the information at this moment.

The forget gate is used for deletion of memory. First, combine ht−1 with xt , and then
use the Wf matrix to adjust it to the same dimension as the hidden layer at time t. The
next step is to put them into the sigmod function. Finally, use the sigmoid function to
compress the output value between 0 and 1. Output values close to Output of 0 will be
eliminated, and values close to 1 will be retained. The operation formula is shown in
formula (2).

ft = σ
(
Wf · ht−1 + Wf · xt + bf

)
(2)

In the formula, ft represents the past memory measurement factor, Wf represents
the weight, bf represents the bias, ht−1 represents the state information of the previous
hidden layer, and xt represents the input vector at time t.

it = σ(Wi · ht−1 + Wi · xt + bi) (3)

kt = tan h(Wk · ht−1 + Wk · xt + bk) (4)

ct = ft ∗ ct−1 + it ∗ kt (5)

The input gate is used to update the information memory. First, ht−1 and xt are put
into the sigmoid function for information screening. Meanwhile, ht−1 and xt are passed
to the tanh function in order to create a new candidate value vector, then calculate the
output value of the sigmoid function with the output value kt of the tanh function and
add it to the past memory information ct−1 to expand the memory capacity, Finally, add
the product of ft and ct−1 to get the updated memory ct .

gt = σ
(
Wg · ht−1 + Wg · xt + bg

)
(6)

ht = gt ∗ tan h(ct) (7)

The output value of the output gate shall be determined according to the cell state.
First, we put ht−1 and xt into a sigmoid function to determine which part of the cell state
needs to be output, then process the cell state through the tanh layer, and multiply the
two to get the final information we want to output.
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4 Differential Evolution Algorithm

Differential evolution algorithm (DE) is a heuristic search algorithm, which adopts the
evolution law of “survival of the fittest” to conduct random search. Under the global
search strategy of preserving samples, mutation operation, crossover operation and
one-to-one competition, survival principle are adopted according to the difference of
vector between parent samples, which improves local search ability, robustness and
convergence.

Using the method of random selection, in the n-dimensional space, M sample data
are generated to satisfy the following constraints. In the search space, it is assumed
that xUij is the upper bound of the space search of the ith sample in the jth dimension

space, while xLij is the lower bound. Samples that meet the constraints within its range
are initialized.

xij(0) = randij(0, 1)
(
xUij − xLij

)
+ xLij (8)

In the formula, xij(0) represents the initialization sample.
When performing the mutation operation, the mutation factor F is introduced to

control the ethnic diversity and convergence. In the traditional differential evolution
algorithm, the value range of F is [0, 2]. When the value of F is small, it will not
necessarily break through its local extremum during the evolution process, resulting in
premature convergence. If the value of F is large, it will easily jump out of the local
extreme value; however, the speed of convergence is reduced as well.

The mutation vector and a predetermined target vector are mixed with parameters to
generate a test vector in themutation operation, and the global and local area searches are
balanced by controlling the numerical value of individual parameters in each dimension.
Compare the test vector with the original vector, and choose the better one as the new
solution vector, update the vector, and proceed to the next step. The traditional structure
of DE is shown in the figure below (Fig. 4).

This paper improves the traditional differential evolution algorithm in the following
two aspects. The first improvement is that two pairs of popular mutation operators are
used in themutation stage of the search process. In each generation, the selection depends
on the absolute error between the best value and the mean value of the objective function
according to the previous generation. When the error is large in earlier generations, one
pair of mutation operator are used to explore the scope containing the global optimal
solution. When error is smaller after several rounds of global search, another pair of
mutation operator will be used to increase the algorithm convergence speed [29].

Another improvement can be called elite selection technology. The test vectors gen-
erated after crossover operation are mixed with their parent population. Then select the
best individual from the whole group to build a new group for the next generation. In this
way, the best individuals in the whole population are passed on to the next generation,
which enables the differential evolution algorithm achieve better convergence speed.
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Fig. 4. Flow chart of DE algorithm

5 Case Study

Applying the CNN-LSTM-DE method to perform short-term wind power prediction on
wind farms. The experimental data comes from the wind power data of an offshore wind
farm from January 1st 2020 to January 16th 2020, with sampling intervals of 10 min.
The data only has one column of wind power over time. The original wind power output
of the farm is shown in the figure below.

Symmetric mean absolute percentage error (SMAPE) is used to evaluate the pre-
diction. It is a correction based on MAPE, which can better avoid the problem that the
calculation result of MAPE is too large when the real value is small. The formula is as
follow.

SMAPE = 1

n

n∑

t=1

|Ft − At |
(At + Ft)/2

(9)

where At is the actual value and Ft is the forecast value When the predicted Ft and the
real At are exactly the same, the minimum SMAPE value is 0, so the prediction is better
when its value of SMAPE closer to 0.
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Fig. 5. Original wind farm output power sequence

First, we study the case where the differential evolution algorithm is not used for
optimization.We arrange the hyperparameters in the LSTM network by convention. The
LSTM network has two layers, the number of neurons in the first and second layer is 64
and 16 respectively. The batch size is 12, learning rate is 0.01 and dropout proportion for
2 layers are both 0.5. The difference between the predicted value and the actual value is
shown in the following figure and we can calculate the SMAPE of it is 0.0165.

Then, we applied the differential evolution algorithm to the original model and
optimized the parameters of the LSTM. The number of neurons in the two layers is 176
and 124 respectively while the dropout proportion is 0.442 and 0.809. The batch size is
14 and learning rate decreases to 0.000696. The difference between the predicted value
and the actual value is shown in Fig. 5 and 6 and we can calculate the SMAPE of it is
0.0109 (Figs. 7 and 8).

Comparing the CNN-LSTM-DEmodel with the CNN-LSTMmodel that is not opti-
mized by the differential evolution algorithm, it can be found that the prediction results
come from the optimized model will be closer to the actual value. This shows the great
effect of optimization algorithms on model improvement.
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Fig. 6. Comparison of CNN-LSTM model predicted value and actual value

Fig. 7. Comparison of CNN-LSTM-DE model predicted value and actual value
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Fig. 8. CNN-LSTM-DE scatterplot prediction against observed

6 Conclusion

This paper proposes a combined CNN-LSTM-DE method for wind power short-term
data forecasting. For the existing past data, first use CNN for feature extraction, and
then use LSTM network for prediction, making full use of the historical data. In order to
improve the accuracy of the model, an improved differential evolution algorithm is used
to optimize parameters such as number of layers in the network, number of neurons in
each layer and the learning rate of the network. Tests on the offshore wind power dataset
show that the network model using the optimization algorithm has higher prediction
accuracy. The reliable performance of the model suggests that we can use this structure
in a variety of time series forecasting, especially with regard to power forecasting.
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1. Kılkış, Ş, Krajačić, G., Duić, N., et al.: Research frontiers in sustainable development of
energy, water and environment systems in a time of climate crisis. Energy Convers. Manage.
199, 111938 (2019)

2. Fan, F., Huang, W., Tai, N., et al.: A multilevel overvoltage prevention strategy for the distri-
bution networks with high penetration of rooftop photovoltaic systems. Int. Trans. Electric.
Energy Syst. 29(7), e12046 (2019)



892 S. Liu et al.

3. Vargas, S.A., Esteves, G.R.T., Maçaira, P.M., et al.: Wind power generation: a review and a
research agenda. J. Clean. Prod. 218, 850–870 (2019)

4. Fan, F., Zhang, R., Xu,Y., et al.: Robustly coordinated operation of an emission-freemicrogrid
with hybrid hydrogen-battery energy storage. CSEE J. Power Energy Syst. 8(2), 369–379
(2021)
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