
Towards a Unified Storage Scheme
for Dual Data Models of Knowledge

Graphs

Yuzhou Qin, Xin Wang(B), and Wenqi Hao

College of Intelligence and Computing, Tianjin University, Tianjin, China
{yuzhou qin,wangx,haowenqi}@tju.edu.cn

Abstract. As an important cornerstone of artificial intelligence, the
knowledge graph is one of the indispensable foundations of the new gener-
ation of artificial intelligence from perception to cognition. RDF graphs
and property graphs are the two main data models of KGs, and vari-
ous data management methods have been developed for the two models.
However, differences in data models will lead to differences in how the
data is stored and manipulated, which will further hinder the widespread
application of knowledge graphs. In this paper, we propose a novel uni-
fied storage scheme, UniS, which considers the characteristics of the two
data model comprehensively. Unlike the existing approaches, the detailed
conversion process for different storage forms of data that we devised will
make it easier to manage multiple KGs in one database. Meanwhile, the
experimental results show that UniS improves the storage and query effi-
ciency by up to an order of magnitude than the state-of-the-art storage
engines.

Keywords: Knowledge graphs · Data models · Unified storage scheme

1 Introduction

With the growing application of knowledge graphs in diverse domains, the scale
of knowledge graphs (KGs) is dramatically increasing. As the two dominant data
models for KGs, RDF (Resource Description Framework) [1] graph and property
graph are utilized by most graph databases. For one thing, RDF, which has
become a recommended standard for the representation of knowledge graphs
by the World Wide Web Consortium (W3C), is widely adopted by databases
represented by gStore [2] and Virtuoso [3]. For another, property graphs have
been widely used as the data model by graph databases such as JanusGraph [4]
and HugeGraph [5].

In recent years, there has been a consensus to unify the data model in the
management of knowledge graphs, as different data models will lead to many
differences in storage schemes and the databases built on them. Apart from the
fact that different data models can cause problems for database users, existing

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
S. Yang and S. Islam (Eds.): APWeb-WAIM 2022 Workshops, CCIS 1784, pp. 34–44, 2023.
https://doi.org/10.1007/978-981-99-1354-1_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-1354-1_4&domain=pdf
https://doi.org/10.1007/978-981-99-1354-1_4

Unified Storage Scheme 35

storage schemes also have problems such as excessive storage overhead and null
values. Therefore, we propose a unified storage scheme for RDF graphs and
property graphs, which can accommodate both of them. The contributions of
this paper can be summarized as follows:

(1) In order to store RDF graphs and property graphs, a unified storage scheme
is proposed, i.e., UniS, which considers the characteristics of the two data
model comprehensively. With UniS, the entities and edges are clustered and
stored in separate tables according to their types, managing data in a unified
way.

(2) To manage multiple KGs in one database, we have designed a detailed con-
version process for different storage forms of data, which is convenient for
further operation of data on this basis and meeting the storage and query
load requirements of KGs.

(3) Extensive experiments are carried out to verify the effectiveness and effi-
ciency of UniS. The experimental results show that UniS outperforms the
state-of-the-art methods in terms of storage overhead and query overhead.

2 Related Work

In this section, we discuss the related works, including storage schemes and graph
databases.

2.1 Storage Schemes

Most of the current storage solutions for RDF and property graphs are
relationship-based. Triple table, adopted by 3store [6], stores data into tables
with a 3-column structure, where each column corresponds to the subject, pred-
icate, and object of a triple, respectively. Developed from triple table, horizontal
table and property table are implemented in DLDB [7] and Jena [8], but they
can lead to problems with excessive number of tables and null values. To reduce
the join overhead of tables, the system represented by Hexastore [9] adopts sex-
tuple indexing, but it will increase the amount of space required significantly.
For the storage of property graph, storage schemes in the form of native graphs
or key-value pairs are also utilized. Therefore, it is necessary to develop a unified
and efficient storage scheme for RDF and property graphs.

2.2 Graph Database

gStore is an RDF graph database developed for storing triples of data, which
utilizes the signature graph corresponding to RDF data and builds VS tree
indexes to speed up SPARQL query processing. Moreover, supporting multiple
data models including RDF data, Virtuoso is a hybrid database management
system with built-in SPARQL and inference. On the other hand, designed for
storing property graph, both JanusGraph and HugeGraph are also compatible
with the query language Gremlin [10], but the Gremlin implementation cannot
migrate directly from JanusGraph to HugeGraph due to the limitations of edge
labels on HugeGraph.

36 Y. Qin et al.

3 Preliminaries

In this section, we introduce the definitions of relevant background knowledge.

Definition 1 (RDF Graph). Let U and L be the disjoint infinite sets of URIs
and literals. Then, a tuple t in the form of 〈s, p, o〉 ∈ U × U × (U ∪ L) is called
an RDF triple, where s is the subject, p the predicate, and o the object. An RDF
dataset T , which is a finite set of triple t, can be converted to an RDF Graph
G = (V,E,Σ). The V , E, and Σ denote the set of vertices, edges, and edge
labels in G, respectively. Formally, V = {s | (s, p, o) ∈ T} ∪ {o | (s, p, o) ∈ T},
E = {(s, o) | (s, p, o) ∈ T} and Σ = {p | (s, p, o) ∈ T}.

Fig. 1. An RDF graph example

Example 1. An example RDF graph G is shown in Fig. 1, which is composed
of resources, associated properties and the relationships between resources. The
ellipses and rectangles are used to denote resources and literals, respectively,
while directed edges connecting vertices, which corresponds to the triples in the
RDF dataset, represent relationships between vertices. In particular, the edge
label rdf:type is employed to specify the type to which the resource belongs.
For instance, the triple (Professor0, rdf:type, FullProfessor) indicates that
the type of Professor0 is FullProfessor.

Definition 2 (Property Graph). Given a property graph G = (V,E, η, src,
tgt, λ, γ), where V , E represent the finite set of vertices and edges respectively,
and V ∩ E = ∅. The function η : E → (V × V) denotes the mapping of edge to
vertex pair, e.g., η(e) = (v1, v2) means there is a directed edge e between vertex
v1 and vertex v2. Moreover, the function src : E → V and tgt : E → V denote
the mapping of edges to starting vertices and ending vertices, respectively, e.g.,
src(e) = v1 denotes the starting vertex of edge e is v1 and tgt(e) = v2 denotes
the ending vertex of edge e is v2. Furthermore, The function λ : (V ∪ E) → Lab
represents the mapping of vertices or edges to labels, where Lab denotes the set of
labels, e.g., let v ∈ V (or e ∈ E) and λ(v) = l (or λ(e) = l), then l is the label of
vertex v (or edge e). In addition, the function γ : (V ∪E)×K → V al represents
the mapping of the associated property to a vertex or an edge, where K is the

Unified Storage Scheme 37

set properties and V al is the set of values, e.g., v ∈ V (or e ∈ E), pro ∈ K
and γ(v, pro) = val (or γ(e, pro) = val) denotes the value of the property pro
on vertex v (or edge e) is val.

Fig. 2. A property graph example

Example 2. As shown in Fig. 2, every vertice and edge in the property graph
has a unique id, and both vertices and edges have labels, e.g., the label Student
on vertex v1 represents that the type of Student0 is Student. Furthermore,
Both vertices and edges have attributes, each of which consists of a key-value
pair of an attribute name and an attribute value. For example, the attribute
researchInterest on vertex v3 is Knowledge Graph.

4 Unified Storage Scheme

In this section, we present a unified data model, named UniS, which is capable
of storing both RDF and property graphs. We first introduce the design of the
UniS storage model, followed by a description of the process for transforming
RDF and property graphs into the UniS format.

4.1 Unified Storage Model

To store RDF graphs and property graphs in a unified manner, we propose a
unified data model, which is combined with the characteristics of both the two
data models.

UniS is based on the relation model, which is a tuple (Rv, Re, N, μ), where Rv

and Re represent the set of entities and edges tables, respectively. For each
entity table rv ∈ Rv, rv consists of two columns, where the first column records
the globally unique identifier of each entity and the second column records the
properties of entities. Meanwhile, for edge table re ∈ Re, re contains three
columns, storing the identifier of source entities, target entities, and properties
of each edge, respectively. N = {n1, n2, ..., nk} is the set of table names, and the
function μ : Rv ∪ Re → N maps relation table r to its corresponding name.

As shown in Fig. 3, UniS is compatible with both property and RDF graphs.
For the RDF graphs, we divide the entities into different entity tables based on

38 Y. Qin et al.

Fig. 3. The storage schema of UniS

the types specified by rdf:type and store the constant properties corresponding
to the entities in the property column. The RDF graph in Fig. 3 contains two
entities, i.e., Professor0 and Department0, whose types are FullProfessor
and Department, respectively, so we create the entity tables FullProfessor
and Department in UniS, and then insert the entity identifiers and properties
into them. For the edge worksFor between two entities, we create the edge table
worksFor in UniS for it and insert the identifiers of source entity and target
entity, and the properties of the edge into the edge table. For property graphs,
similar approach can be adopted to transform them into the UniS. The details
of the transformation process will be discussed in Sect. 4.2.

4.2 The Process of Transformation

To accommodate both RDF graphs and property graphs, the UniS are proposed
to store both of them. However, due to the differences in the data model between
RDF and property graph, various processes need to be designed to transform
them into the unified storage schema.

For the storage of RDF graphs, the set of all triples T can be divided into
3 subsets: Tt, Tp, and Te, which represent the set of triples related to the types
of entities, the properties of entities, and the relationship between the entities,
respectively. Formally, Tt = {t = (s, p, o) | t ∈ T ∧ p = rdf:type}, Tp = {t =
(s, p, o) | t ∈ T ∧ o ∈ L}, and Te = {t = (s, p, o) | t ∈ T ∧ p
= rdf:type∧ o /∈ L}.
In order to transform the triples to the unified storage model, further processing
are necessary for the above sets of triples with the following conversion rules:

1. For any triple t ∈ Tt, the entity s should be put in the entity table whose
name is o.

2. For any triple t ∈ Tp, the key-value pair (p, o) is inserted into the property
column corresponding to entity s in the entity table.

Unified Storage Scheme 39

3. For any triple t ∈ Te, the edge will be put in the edge table named p as a
record, where the start is s and the end is o.

The detailed processing flow is shown in Algorithm 1. The first step is to
divide the RDF dataset T into three disjoint subsets Tt, Tp, and Te (line 1–3).
To locate the type and properties of each entity in an efficient way, we first divide
the subjects in Tt by rdf:type (line 4–5) and the triples in Tp into groups by
subject (line 7–8), then assign globally unique identifiers for all subjects in Tt

(line 9–10). After that, we employ props to record the properties (line 13–15) for
each entity and insert (id(s), props) into the corresponding entity table (line 16).
For Te, we employ a similar approach to handle it. First, the triples in Tp are
grouped by the predicate (line 18–19). Then, for each triple t = (s, p, o) in the
group E(p), (id(s), id(o), ∅) will be inserted into the edge table re (line 20–22),
where μ(re) = p.

Algorithm 1: Transform RDF Graph
Input: RDF dataset T
Output: UniS = (Rv, Re, N, µ)

1 Tt ← {t = (s, p, o) | t ∈ T ∧ p = rdf:type} ;
2 Tp ← {t = (s, p, o) | t ∈ T ∧ o ∈ L};
3 Te ← {t = (s, p, o) | t ∈ T ∧ p �= rdf:type ∧ o /∈ L} ;
4 foreach t = (s, p, o) ∈ Tt do
5 S(o) ← S(o) ∪ {s} ; // group subjects by its type

6 N ← N ∪ {o} ;

7 foreach t = (s, p, o) ∈ Tp do
8 P(s) ← P(s) ∪ {t} ; // group triples by subject

9 foreach s ∈ {s | (s, p, o) ∈ Tt} do
10 id(s) ← a globally unique identifier ;

11 foreach n ∈ N do
12 foreach s ∈ S(n) do
13 foreach (s, p, o) ∈ P(s) do
14 props(p) ← o ; // insert (p,o) into properties

15 props(“uri“) ← s ;
16 rv ← rv ∪ {(id(s), props)} ; // insert data into entity table

17 Rv ← Rv ∪ {rv}; µ(rv) ← n;

18 foreach t = (s, p, o) ∈ Te do
19 E(p) ← E(p) ∪ {t} ; // group triples in Te by predicate

20 foreach p ∈ {p | (s, p, o) ∈ Te} do
21 foreach t = (s, p, o) ∈ E(p) do
22 re ← re ∪ {(id(s), id(o), ∅)} ; // insert edge data into edge table

23 Re ← Re ∪ {re}; µ(re) ← p ; N ← N ∪ {p};

24 return (Rv, Re, N, µ) ;

40 Y. Qin et al.

The time complexity of Algorithm 1 is O (|T | · log(|T |)), where |T | is the
numbers of triples in RDF dataset. The time complexity of the algorithm consists
of two parts: (1) traverse triples in Tt, Tp, and Te to generate mappings S, P,
and E, respectively, with complexity of O (|T | · log(|T |)); (2) traverse triples in S

and E to insert data into corresponding entity or edge tables, with complexity of
O(|T |). Hence, the overall time complexity of this algorithm is O (|T | · log(|T |)).

For the storage of property graphs, it is relatively easy to transform them
to the unified storage model as the property graph provides built-in support
for properties on vertices and edges. Specifically, the data of vertices or edges
with different labels in the property graph will be converted to records in the
corresponding entity tables or edge tables, then their properties are stored in the
properties columns. For instance, let λ(v) = l (or λ(e) = l) and γ(v, pro) = val
(or γ(e, pro) = val), the entity v (or the edge e) should be inserted into the
entity table (or the edge table) named l, and the (pro, val) will be put in the
property column corresponding to entity v (or the edge e).

Fig. 4. The process of UniS

Example 3. Figure 4 shows the process of transforming RDF data to UniS.
The set of triples is first classified according to the structure of them, then Rv

can be obtained by further processing Tt and Tp, while Re can be constructed
according to Te. Specifically, based on the type and attribute information of
Professor0, the entity table rFullProfessor can be constructed. Moreover, the
type FullProfessor is added to the set N and the mapping function μ between
rFullProfessor and FullProfessor is built. In the same way, we can construct
the entity table rDepartment and the edge table rworksFor, and further obtain the
final result of UniS.

5 Experiments

In this section, to verify the efficiency of the unified storage scheme, i.e., UniS, we
compare it against the RDF databases gStore [2], Virtuoso [3] and the property
graph database JanusGraph, HugeGraph on different datasets.

5.1 Experimental Settings

On the top of Nebula Graph, the proposed unified storage scheme is implemented
and deployed on a 4-node cluster, which has a 16-core Intel(R) Xeon(R) Silver

Unified Storage Scheme 41

4216 2.10 GHz CPU, 512 GB of RAM, and 1.92 TB SSD, running the 64-bit
CentOS 7.7 operating system.

Data sets. Our experiments are conducted on the datasets of LUBM [11]
and LDBC-SNB [12]. The LDBC Social Network Benchmark (SNB) models the
social network graph, including people and their activities over time. The Lehigh
University Benchmark (LUBM) is developed for evaluating the performance of
Semantic Web repositories, which describes universities, departments, and their
activities. In our experiment, we generate several different scales of data for both
datasets.

Baselines. To verify the efficiency of storage, we compare the unified storage
scheme with gStore, Virtuoso, JanusGraph, and HugeGraph in terms of both
storage space overhead and loading time. Specifically, gStore 0.3.0 and Virtuoso
7.2.6 are RDF graph databases and JanusGraph 0.5.3 and HugeGraph 0.11.2
are property graph databases. Moreover, based on the unified storage scheme,
experiments of query test was carried out to verify the query efficiency.

5.2 Experimental Results

Exp 1. Storage Efficiency. As shown in Fig. 5(a) and Fig. 5(b), UniS is sig-
nificantly more efficient than gStoreD in terms of storage time and space for the
LUBM dataset. UniS has a similar storage space overhead compared to Virtuoso,
and the storage time of UniS is longer than Virtuoso when the data volume is
small. However, as the data volume increases, UniS outperforms Virtuoso by up
to an order of magnitude in loading data. For the LDBC dataset, as shown in
Fig. 5(c) and Fig. 5(d), the storage efficiency of UniS is better than JanusGraph
and HugeGraph.

Fig. 5. The experimental results of storage efficiency

42 Y. Qin et al.

There are two reasons for these results: (1) we devise an efficient transfor-
mation process where the time complexity is O(|T | · log(|T |)), which improves
the efficiency of data loading significantly; (2)We employee advanced compres-
sion techniques, including dictionary encoding and common prefix extraction,
to optimize the storage of large RDF datasets in UniS. By implementing these
methods, we’re able to compress the raw data and save on storage space, thus
enabling UniS to store more data without requiring additional storage resources.

Exp 2. Query Efficiency. We executed the eight queries1 over the LUMB10
dataset to verify the query efficiency of UniS on the RDF dataset. As can be seen
in Fig. 6, the average query efficiency of UniS is 4.26 and 8.35 times higher than
that of gStoreD and Virtuoso, respectively, for the following reasons: (1) UniS
stores data of different types separately, which significantly accelerate the data
filtering for queries of specified types. (2) UniS stores entities and their properties
together, eliminating several join operations and improving the performance of
queries about multiple properties of a single entity, such as Q6. (3) UniS compress
the raw data, improving query efficiency by alleviating the burden of the disk.

Fig. 6. Execute time on LUBM10

As shown in Fig. 7, we executed seven interactive short queries provided by
LDBC [12] over the LDBC-SNB SF1 dataset to verify the query efficiency of
UniS on the property graphs. It can be seen that the average query efficiency of
UniS is 1.28 and 1.75 times that of JanusGraph and HugeGraph, respectively,
except for the queries that do not finish. The most significant advantage of UniS
compared to other property databases is that it exploits dictionary encoding and
prefix extraction to compress the raw data to reduce the cost of disk read, thus
improving the query performance.

1 https://github.com/rainboat2/KGMA2022.git.

https://github.com/rainboat2/KGMA2022.git

Unified Storage Scheme 43

Fig. 7. Execute time on LDBC-SNB SF1 (DNF denotes dooes not finish within 30 min.)

6 Conclusion

In this paper, we propose UniS, a unified storage scheme for different data models
on knowledge graphs. Considering the characteristics of RDF graphs and the
property graphs comprehensively, the unified storage model is utilized to store
the two data models in a unifed way. Furthermore, a detailed conversion process
is devised, which makes it easier to manage multiple KGs in one database. Micro-
benchmarks over LUBM and LDBC are proposed to verify the efficiency and
effectiveness of UniS. The experimental results show that UniS outperforms the
state-of-the-art methods in terms of storage overhead and query overhead by up
to an order of magnitude.

Acknowledgments. This work is supported by the National Key Research and Devel-
opment Program of China (2019YFE0198600) and National Natural Science Founda-
tion of China (61972275).

References

1. Consortium, W.W.W., et al.: Rdf 1.1 concepts and abstract syntax (2014)
2. Das, S., Agrawal, D., El Abbadi, A.: G-store: a scalable data store for transactional

multi key access in the cloud. In: Proceedings of the 1st ACM Symposium on Cloud
Computing, pp. 163–174 (2010)

3. Erling, O., Mikhailov, I.: Rdf support in the virtuoso dbms. In: Pellegrini, T.,
Auer, S., Tochtermann, K., Schaffert, S. (eds.) Networked Knowledge - Networked
Media. Studies in Computational Intelligence, vol. 221. Springer, Berlin. pp. 7–24
(2009) https://doi.org/10.1007/978-3-642-02184-8 2

4. Authors, J.: Janusgraph–distributed graph database. http://janusgraph.org/
(2020)

5. Team, T.H.: The hugegraph manual. https://hugegraph.github.io/hugegraph-doc/
(2020)

6. Harris, S., Gibbins, N.: 3store: Efficient bulk rdf storage (2003)
7. Pan, Z., Heflin, J.: Dldb: extending relational databases to support semantic web

queries. Lehigh univ bethlehem pa dept of computer science and electrical engi-
neering, Technical Report (2004)

https://doi.org/10.1007/978-3-642-02184-8_2
http://janusgraph.org/
https://hugegraph.github.io/hugegraph-doc/

44 Y. Qin et al.

8. Wilkinson, K., Wilkinson, K.: Jena property table implementation (2006)
9. Weiss, C., Karras, P., Bernstein, A.: Hexastore: sextuple indexing for semantic web

data management. Proc. VLDB Endowment 1(1), 1008–1019 (2008)
10. TinkerPop, A.: Tinkerpop3 documentation v.3.3.3. http://tinkerpop.apache.org/

docs/3.3.3/reference/ (2018)
11. Guo, Y., Pan, Z., Heflin, J.: Lubm: a benchmark for owl knowledge base systems.

J. Web Seman. 3(2–3), 158–182 (2005)
12. Angles, R., et al.: The ldbc social network benchmark. arXiv preprint

arXiv:2001.02299 (2020)

http://tinkerpop.apache.org/docs/3.3.3/reference/
http://tinkerpop.apache.org/docs/3.3.3/reference/
http://arxiv.org/abs/2001.02299

	Towards a Unified Storage Scheme for Dual Data Models of Knowledge Graphs
	1 Introduction
	2 Related Work
	2.1 Storage Schemes
	2.2 Graph Database

	3 Preliminaries
	4 Unified Storage Scheme
	4.1 Unified Storage Model
	4.2 The Process of Transformation

	5 Experiments
	5.1 Experimental Settings
	5.2 Experimental Results

	6 Conclusion
	References

