
Synthesis and Applications of Graphene
and Its Nanocomposites

Mohd Asif and Irfan Ahmad

Abstract Graphene has been a material of interest, especially since the discovery of
its free-standing form in2003.Thediscoveryprovidedhope to researchers looking for
breakthroughs in the field that had not seen significant growth for long. Incremental
improvements are not enough to meet the exponentially growing demands for cheap,
convenient, and high-performing technologies. Graphene has the potential to provide
new ways of achieving goals that previously seemed impossible by redefining the
frontiers of science. It is because of the unprecedentedmaterial properties of graphene
that were never demonstrated before by any other material. Novel and better material
properties open up doors to new technologies and advancements in existing ones.
However, it is imperative to obtain the material of suitable quality at a reasonable
cost for it to compete with prevailing alternatives. In this chapter, variousmethods for
synthesizing graphene have been discussedwith a particular focus on the liquid-phase
exfoliation (LPE) of graphite. Characterization with Raman spectroscopy, electron
diffraction, andmicroscopy-based tools have been explored. The chapter also reviews
applications of graphene in a few emerging areas. Graphene-based composites, with
emphasis on their syntheses and applications, will be discussed.
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1 Introduction

Carbon is one of the critical elements for sustaining life on earth and has so many
compounds that a complete branch of chemistry has been dedicated to it. Pure carbon
itself has several naturally occurring allotropes, and numerous others can be synthet-
ically made in a laboratory. One such naturally occurring allotrope is graphite, in
which atomically thin layers are stacked together by van der Waals forces. These
individual layers are called graphene, where the ending term ‘ene’ marks the exis-
tence of sp2 bonding within the sheet plane. Atoms in graphene are bound together
in a honeycomb-like structure, with six carbon atoms forming a hexagon. Three out
of four valance electrons of each carbon atom make strong covalent σ-bonds with
other carbon atoms. The remaining one electron per atom contributes to π-bonding,
responsible for graphene’s aromaticity and unique electronic properties [1]. It has
been found that two π-electrons per ring are delocalized in graphene, making it
different from other aromatic compounds such as benzene [2]. Graphene has been
theoretically explored by many researchers for more than the past seven decades.
The first theoretical explanation of graphene is dated back to 1947, when Canadian
theoretical physicist P.R. Wallace studied the band structure of graphite [3]. Though
Wallace did not use the term ‘graphene’, his contribution is regarded as the basis of
theoretical studies of graphene.

For numerous decades, researchers tried to obtain free-standing single-layer
graphene, while another section of theirs believed that it was practically impos-
sible. The discrepancy came to an end in 2004, when K.S. Novoselov et al. reported
successful isolation of single-layer graphene (SLG) from graphite [4]. The discovery
of free-standing graphene and subsequent experiments by K.S. Novoselov and A.
Geimwon themaNobel in physics in 2010.Controversy followed the award andW.A.
deHeer of Georgia Tech., who had also contributed significantly to graphene science,
wrote a letter to the Nobel committee stating that “The Nobel Prize committee did
not do its homework” [5]. Nevertheless, graphene had been studied extensively and
had demonstrated tremendous potential in multiple applications by that time because
of its exceptional properties.

The exotic properties arise broadly due to single-layer thickness and sp2 hybridiza-
tion of electronic orbitals in graphene. The most interesting ones are high electrical
conductivity (>106 S/m) 6] very high thermal conductivity (up to ~ 5300Wm−1 K−1),
[7] highest ever measured mechanical strength (~130GPa) and Young’s modulus
(~1TPa), [8] extremely high experimentally calculated carrier mobility (~2 × 105

cm2V−1 s−1 for suspended graphene), [9] and very high theoretical specific surface
area of (~2630 m2g−1) [10].

The high carrier mobility is due to the conical band structure of SLG, in which
the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular
orbital (LUMO)meet each other at Dirac points (vertices of the Dirac cones) [3]. It is
a well-known fact that the effective mass of charge carriers is inversely proportional
to the curvature of the band, and at theDirac points, the curvature is very high (ideally
infinite), making electrons massless fermions (ideally). Carrier mobility is inversely
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Fig. 1 Representative images of (a) hexagonal structure of graphene and chirality, (b) sp2

hybridization with sigma and pi bonding electrons, and (c) valence and conduction bands meeting
each other at a Dirac point [11]

related to its effective mass hence such high mobility is observed in graphene. Due
to the unique band-structure of graphene, it has been called by multiple names,
such as zero-bandgap semiconductor and zero-overlap semimetal. The high elec-
trical conductivity of graphene is due to delocalized π-electrons that are free to roam
throughout the sheet [11]. The magnificent mechanical properties arise due to sp2

hybridization of orbitals, resulting in stronger bonding between hexagonally orga-
nized carbon atoms [12]. Representative images of hexagonal structure, σ and π

bonds, and Dirac cones for graphene are shown in Fig. 1.
The thermal conductivity of materials increases with bond strength between their

constituent atoms [13]. The outstanding thermal conductivity of graphene is, thus,
attributed to very strong sp2 bonding between carbon atoms [14]. High thermal
conductivity and very high mechanical strength is an excellent combination for heat
sinks in electronic circuits and devices [15]. Another compelling property of an SLG
is its light absorption, measured to be 2.3% [16]. A single layer with such a high
conductivity and good transparency makes it a suitable candidate for transparent
electrodes for optoelectronic devices [17].

The properties of materials degrade with their quality, and for a material with
such unique properties, high-quality synthesis is challenging. Often, researchers
seek an optimization between quality and cost (quantity). Various methods have
been developed to obtain graphene, and graphene’s quality varies with its synthesis
route. Some commonly used methods are epitaxial growth, [18] chemical vapor
deposition (CVD), [19] and exfoliation of graphite [20]. Graphite exfoliation-based
techniques aremore promising for producing large quantitieswith reasonable quality.
The quality assessment is the next step after the synthesis, for which various tools and
methods are employed. Raman spectroscopy is one of the most reliable techniques
for acquiring scores of information on synthesized graphene. It provides information
regarding the number of layers, [21] defects, [22, 23] doping, [23] chirality, [24]
etc., as well as effects of external parameters such as pressure, [25] and temperature
[26]. Other tools, for instance, selected area electron diffraction (SAED), and high-
resolution transmission electron microscopy (HRTEM), are competent for analyzing
crystallinity, defects, and the number of layers [27]. Atomic forcemicroscopy (AFM)
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is often used for the determination of electrical [28] and mechanical [29] properties
in addition to quality evaluation.

In the recent past, graphene has become a material of interest in a vast spectrum
of applications for commercialization. It has been, therefore, forecasted in a research
report by an apex market experts group named IDTechEx that the graphene market
will grow from < 100 M USD in 2020 to ~ 700 M USD in 2031 [30]. Graphene
has been commercialized with several products currently available in the market
such as automobile coating products by ‘Turtle Wax’, [31] sporting products by
a leading sports goods manufacturer ‘Head’, [32] shoes by ‘inov-8’, [33] many
products, especially face masks, by ‘G1 Wonders’, [34] tailor-made solutions for a
range of industrial requirements by ‘Graphene XT’ [35]. There are numerous sectors
where graphene is being explored, and the resulting products are expected to hit the
market in the coming years.

Even though graphene itself is a wonder material with a wide range of applica-
tions, still in a large number of applications, graphene-based nanocomposites (NCs)
are a better choice. Graphene has been investigated as the continuous phase (matrix)
as well as dispersed phase (filler) when hybridized with diverse classes of materials,
including metals, their oxides, and sulfides, and organic polymers. In-situ polymer-
ization is the most common route for making polymer-graphene NCs. For metal-
graphene NCs coatings, electrodeposition is commonly employed, while for their
powdered forms, simultaneous reduction of metal ions and graphene oxide (GO) has
been frequently reported. Graphene NCs with metal oxides and sulfides are usually
produced by solvo-/hydro-thermal methods.

This chapter is dedicated to discussing various synthesis protocols, character-
ization techniques, and applications of graphene. Synthesis using CVD, epitaxial
growth, and exfoliation of graphite will be briefly introduced. It will be followed by
a detailed discussion on the LPE of graphite. Evaluation of the quality of graphene
through characterization techniques, especially with Raman spectroscopy, will be
elaborated. For the sake of completeness, crucial methods such as SAED and micro-
scopic techniques will also be discussed. Potential applications of graphene in elec-
tronics, energy conversion and storage, environmental remediation, and healthcare
sectors will be reviewed. NCs of graphene with polymers, metals, metal oxides, and
metal sulfides will also be within the scope of this chapter. Finally, the chapter will
be summarized, and future scopes will be highlighted to conclude the chapter.

2 Synthesis of Graphene

Properties of the synthesized graphene are dependent upon the preparation route it
has undergone. Therefore, it is imperative to discussmajor synthesismethods in order
to understand the variation that may arise due to the preparation method. Commonly
utilized synthesis routes are discussed in this section.
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2.1 Epitaxial Growth

Epitaxial growth involves the deposition of a material layer onto a well-oriented
substrate. Thermal decomposition of silicon carbide and molecular beam epitaxy
(MBE) are the two most commonly employed methods for the epitaxial growth
of graphene. The decomposition of SiC, when heated to high temperatures, and its
structural studies were reported byD. Badami in 1962 [36]. In this approach, a crystal
of hexagonal SiC is annealed at high temperatures of around 1000°C in an ultra-high
vacuum (UHV) [37]. The high temperatures allow silicon atoms to sublimate into
the vacuum while carbon atoms, having lower vapor pressure than Si, [38] remain
on the surface. The carbon atoms at the surface then rearrange into a hexagonal
structure which is nothing but a graphene sheet. Two layers of SiC decompose to
form a single layer of graphene [39]. Both SLG and few-layer graphene (FLG) can
be grown with this method. Walt de Heer and his team studied the 2D electron gas of
epitaxially grown graphene on the (0001) face of a 6H-SiC crystal [40]. This method
is advantageous for the semiconductor industry because graphene inherently grows
on an insulating SiC substrate. Disadvantages of the process include the limitation
of synthesized graphene area by the SiC crystal size and the control over the number
of graphene layers synthesized. Decomposition of SiC and subsequent graphene
formation is represented schematically in Fig. 2.

Another frequently reported technique for growing graphene epitaxially is MBE.
In this technique, carbon deposition occurs atom by atom on a substrate from the
source material in the growth chamber under UHV (as shown in Fig. 3). The source
of carbon atoms could be solid such as highly ordered pyrolytic graphite (HOPG),
[41] or could even be a gas, such as acetylene (C2H2) [42]. One significant advantage
of this method is that graphene can be grown onto a variety of substrates. Researchers
have demonstrated the use of metals, [43] insulators, [44] elemental semiconductors,
[45] andmetal oxides [46] as substrates. Films of anothermaterial (especiallymetals)
can also be deposited onto the substrate before exposure to the beam of carbon
atoms and the subsequent growth of graphene. The choice of substrate affects the
quality of the graphene, and thus high-quality graphene can be grown with this
approach [47]. Furthermore, MBE offers possibilities for in-situ growth monitoring
and characterization of graphene sheets [48]. The growth process, however, is slow
and takes tens of minutes to hours depending on the product requirements and thus

Fig. 2 Formation of graphene via decomposition of SiC at {0001}surface; HRTEM images and
schematic representation [37]
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Fig. 3 A schematic representation of the setup for MBE synthesis of graphene

low throughput, which is a major disadvantage of this method. Also, the process
is costly, and therefore, it is generally reserved for applications where high-quality
(pristine) graphene is the prime requirement.

2.2 Chemical Vapour Deposition (CVD)

CVD technique is the most commonly used technique for growing high-quality and
large-area graphene sheets [49]. The process typically involves the adsorption of
a carbon-containing (hydrocarbon) gas on a transition metal surface, its decompo-
sition and removal of unwanted groups, and finally, the rearrangement of carbon
atoms to form the honeycomb structure (Fig. 4 shows the schematics). Commonly
used hydrocarbon gas precursors are ethylene, [50] methane, [51] and acetylene
[52]. Several transition metals have been reported to perform as catalytic substrates
such as Pt, [50, 53] Ni, [51, 54] Fe, [52] Cu [54]. The solubility of carbon in these
metals at high temperatures affects the process. Dissolved carbon tends to segregate
on the surface when cooled, and thus, an additional number of graphene layers are
formed. Therefore, it becomes challenging to control the number of layers with the
CVD process. Copper is considered the best amongst the metal substrates demon-
strated so far for SLG due to the very poor solubility of carbon in it (<1 C atom
per 105 Cu atoms at 1000 °C), [55] which allows only chemical decomposition of
hydrocarbon gas to form graphene. The first ‘single layer graphite’ (as they called it)
through CVD was reported by T.A. Land et al. in 1992 on Pt(111) surface [53]. The
process evolved considerably after Novoselov’s 2004 paper, and CVD has become
one of the most promising techniques for obtaining large-area graphene. The crys-
tallinity of a substrate is another critical parameter. Smooth and well-oriented single
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Fig. 4 Schematic representation of a typical CVD setup and process

crystal substrates are preferred formonolayer graphene because grain boundaries and
other defects act as nucleation sites and thus stimulate the formation of multi-layer
graphene (MLG) [56]. Hydrogen is generally used in the annealing step to remove
the oxide layer, if any, from the catalyst surface. It is crucial to note that increasing
the hydrogen:methane ratio in the feedstock reduces the graphene growth rate on
Cu substrate while boosting the growth rate when Ni substrate is used [54]. It can
be ascribed to the high hydrogen solubility and low carbon solubility in Cu, while
the opposite is true for Ni. The quality of the produced graphene depends on the
flow rate of the precursor gas, the transition metal used as the catalytic substrate,
and chamber temperature. Growth can take place at relatively higher pressures with
argon introduced into the system.

Two configurations, namely Thermal CVD (TCVD) and Plasma Enhanced CVD
(PECVD) are commonly employed for graphene synthesis. TCVD process uses high
temperatures of around 1000°C (close to the melting point of substrate metals) for
the decomposition of hydrocarbon gas [51]. High temperatures, generally, favor the
formation of highly crystalline wrinkle-free graphene sheets [50]. Hot wall CVD and
cold wall CVD are two subclasses of TCVD. The entire growth chamber is heated
in a hot-wall setup while only the substrate is heated in a cold-wall configuration.
High throughput is an inherent advantage of cold wall CVD because the reactants
are not deposited on the reactor walls, and thus it is more suitable for scale-up
production. PECVD, on the other hand, is a deposition technique of substantially
lower temperatures. The PECVD process for graphene synthesis has been reported
at temperatures as low as 240°C [57]. The elimination of heating and cooling of
the substrate in the PECVD process significantly reduces the synthesis time but at
the cost of quality degradation of product material. In a typical setup, plasma is
created, which reacts with the hydrocarbon gas to form more reactive radicalized
species capable of forming a honeycomb lattice at relatively low temperatures. Li
et al. studied the growth of graphene through the PECVD process on Cu substrate at
different temperatures [58].
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The CVD process is a reliable technique for synthesizing high-quality large-
area graphene sheets. However, the transfer of the prepared graphene from metal
substrates to other substrates is necessary for most applications. The transfer process
is critical and leads to the degradation of the quality of graphene by introducing
imperfections such as kinks, wrinkles, cracks, etc. [59]. Some techniques have also
been developed for synthesizing graphene on non-metallic substrates such as glass,
which can avoid transfer steps for multiple applications [60].

2.3 Exfoliation of Graphite

Graphite is a meticulous stack of graphene layers, and thus, free-standing graphene
can be obtained byunstacking these layers. Exfoliation of graphite is just another term
for unstacking it to obtain the graphene sheets. The energy required for exfoliation (or
separation) of two 1nm2 graphene sheets has been calculated to be around 2eV [61].
Several methods have been explored by researchers for providing this energy to exfo-
liate graphite. Mechanical, liquid-phase, and electrochemical exfoliation methods
have been reported more frequently in the literature.

Mechanical exfoliation was the first method used by Novoselov and Geim to
obtain free-standing graphene [4]. They used scotch tape and a crystal of graphite
for the purpose, and thus the technique is referred to as the “scotch-tape-method”
in layman’s terms. In this experiment, a piece of tape is first pressed against a well-
orientedHOPG crystal face and removed carefully. Due to this peeling process, many
layers detach from the crystal and come off sticking onto the scotch tape. Another
piece of scotch tape is then pressed against the first piece and then carefully separated,
which results in the distribution of the detached layers onto these two pieces. The
process is repeated multiple times until the desired number of layers remains on the
tape. The pieces of scotch tape are then either put in a solution to remove epoxy and
obtain free-standing graphene or on a silica slide to get graphene transferred onto a
substrate.

The electrochemical exfoliation process generally involves a setup of two elec-
trodes, one of which is graphite which could either be an anode or a cathode in
a liquid electrolyte solution. When a voltage is applied across the two electrodes,
ionic species intercalate between the layers of graphite, causing weakening of van
der Walls attraction and thus dissociation of mono- and few-layer graphene from
the graphite electrode into the solution [62]. Various geometries of graphite such
as foils, flakes, rods, and discs have been studied for this purpose. Electrodes made
up of HOPG were observed to be providing better quality graphene than naturally
occurring forms [63]. DC voltages between 1 to 30V and low-frequency AC voltages
up to 20V have been explored and reported [64]. Sulfuric acid is a commonly used
electrolyte, which dissociates into H+ and SO4

2− ions in an aqueous solution. Sulfate
ions, compared to other anions, easily intercalate between the graphite layers causing
them to exfoliate into graphene layers more efficiently [65]. High yield of around
50% was reported by J. Liu et al. by using vertical cell configuration [66]. Even
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better results (65%) were obtained by T.C. Achee et al. with the help of a permeable
and expandable container to make a compressed graphite electrode from graphite
powder [67].

Another fundamental method is the oxidation of graphite flakes to obtain exfoli-
ated andoxidized graphene called graphene oxide (GO),which is useful for numerous
applications. It can also be used as a precursor for obtaining graphene through suitable
reduction processes. Hummer’s method is the most popular protocol for oxidation
and exfoliation of graphite to convert it into GO [68]. The process is an age-old
technique used for graphite oxide synthesis, but it kept on modifying over time. In
a typical procedure, sulfuric acid is used for intercalation and potassium perman-
ganate as the oxidizing agent, while hydrogen peroxide is used at a later stage of the
process to eliminate excess permanganate. The material is then washed and dried to
obtain yellowish water-soluble GO. Several methods have been developed to convert
GO into graphene; chemical [69] and thermal [70] reduction are the most common
amongst them. The obtained graphene is not pure or pristine as some functional
groups remain attached to it. Thus, it is referred to as reduced graphene oxide (rGO).

Liquid phase methods use solvents such as water (with and without surfactants)
and organic solvents to exfoliate graphene sheets from graphite flakes. Ultrasonica-
tion in a suitable solvent is the primary method used in this category. Other impro-
vised methods wield a combination of mechanical techniques such as high energy
ball milling (HEBM), shear mixing, and centrifugation, in addition to ultrasonica-
tion. Biological substances instead of synthetic surfactants have also been reported
for LPE synthesis of graphene [71]. LPE methods will be discussed in more detail in
the next section. Exfoliation synthesis, especially LPE, is one of the best techniques
to obtain large quantities of quality graphene at an economical cost.

3 Liquid-Phase Exfoliation (LPE) Synthesis

Liquid phase exfoliation method has tremendous potential for scale-up production
of graphene. It is a simple technique where mechanical energy is applied to exfoliate
graphite flakes in a liquid medium. The energy could be provided through acoustic
waves, shear force, or centrifugal force. Acoustic waves such as ultrasonic waves
are applied through a liquid to transfer energy to graphite flakes which can stimulate
the separation process and lead to the formation of graphene sheets. Surfactants are
generally used to assist the exfoliation process by creating an electrostatic repul-
sive force between layers. Surfactant-free approaches, in which organic solvents are
used instead of water for dispersing the graphite powder, also recurrently appear in
the literature. Graphene is not dispersible in water but exhibits a high dispersion
in many organic solvents, which provides a better possibility of its stability after
exfoliation and hence a better yield. Organic solvents such as ortho-dichlorobenzene
(ODCB) [72] and N-methyl-pyrrolidone (NMP) [73] have been reported quite often
for synthesizing graphene through the LPE method. Further improvements were
reported by the addition and tuning of the concentration of n-octylbenzene in the
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former two organic solvents [74]. The primary stabilization mechanism, with or
without surfactants, mainly involves a charge transfer between unstacked graphene
and the stabilizing agents. The charge transfer, most of the time, takes place from
electron-rich graphene to the stabilizer molecules, but the reverse can also happen
(such as in the case of pyridine) [75].

M. Telkhozhayeva et al. studied in detail the ultrasonication-assisted exfoliation
of graphite [76]. They explored the effect of the frequency of sonic vibrations on the
quality of synthesized graphene and the efficiency of synthesis. They reported that
good quality graphene (~30%monolayer and ~ 45%bi- and tri-layer) with an average
lateral size of 13μm could be obtained in ethanolic bath sonication by increasing the
frequency from the usually used 40kHz to a higher value of 80kHz. They demon-
strated that increasing the frequency positively affects the exfoliation process and
reduces the chances of inducing lattice defects in the synthesized graphene. The
group also reported that bath sonication is a more efficient technique than probe
sonication.

M. Monajjemi theoretically explored the LPE of graphite by ultrasonication [77].
Various types of surfactants and their effects on the efficiency of exfoliation were
studied, and it was found that ionic surfactants are more efficient than others. The
exfoliation efficiency in any dispersion medium can be written in descending order
as cationic, anionic, zwitterionic, and non-ionic. It was further reported that the
sulfonic group is very effective in assisting the exfoliation of graphite and stabilizing
the produced graphene in solvents to prevent restacking.

Water-insoluble stabilizers have also shown potential for increasing the effi-
ciency of LPE [78]. Y. Shin and group have recently demonstrated the use of
pyrene derivatives such as bis-pyrene stabilizers functionalized with pyrrolidine,
which can substantially improve the quality of obtained graphene. The use of toxic
substances, however, limits its applications to the areas where biocompatibility is
not a requirement.

A detailed experimental as well as theoretical study on LPE of graphite was
performed by Coleman’s group, which has greatly contributed to LPE research
[79]. The study reveals three stages of the conversion of graphite into graphene
through the sonication-assisted LPE process, namely: Flake rupture and kink band
formation; peeling off of thin graphite strips; and exfoliation to thin flakes. In the
first stage, acoustic waves travel through the graphite piece due to applied sonic
energy, resulting in ridges forming on the graphite structure. These ridges have a
large number of defects which increase the reactivity and thus the possibility of
attachment of various functional groups. The ridges then crack in the second stage,
and the exposed edges become oxygen-rich due to the addition of functional groups.
The third and final stage mainly involves intercalation and peeling off the layers from
the graphite structure and graphene dispersion into the solvent. The study has led to
a very significant improvement in the basic understanding of the LPE process and is
expected to improve the overall process as well. The three stages are schematically
represented in Fig. 5.

A large number of organic and inorganic solvents have been reported for LPE of
graphite since the discovery of free-standing graphene. A.B. Bourlinos et al., in 2009,
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Fig. 5 Three stages of LPE process [79]

added multiple new solvents to the list of already known solvents for LPE [75]. They
experimented LPE with pyridine and some perfluorinated aromatic solvents such as
hexafluoro-benzene (C6F6), octafluoro-toluene (C6F5CF3), pentafluoro-benzonitrile
(C6F5CN), and pentafluoro-pyridine (C5F5N).

A mixed solvent strategy was proposed by M. Yi et al. for exfoliating graphite
powder to obtain graphene nanosheets [80]. They performed two experiments with
mixtures of alcohol and water. Mixture-1 was prepared with ethanol in water, and
mixture-2 with isopropyl alcohol in water. Mild sonication was employed to exfo-
liate nanosheets from graphite powder. The concentration of alcohols was varied to
optimize the processes for maximum yield and better quality. The optimum concen-
tration was reported to be 40% for mixture-1 and 55% for mixture-2, with a yield
up to 10%. Simple strategies like this one could benefit upscale graphene production
through LPE in the future.

D. Nuvoli and the team first used ionic liquids as solvents for graphite disper-
sion [81]. The team used grinding in mortar followed by ultrasonication and finally
centrifugation for obtaining FLG. Ionic solvent 1-hexyl-3-methyl-imidazolium
hexafluorophosphate was used with no other functionalizing compounds. They
reported a very high dispersivity of graphene (5.33 mg/ml) in the solvent. One more
advantage of this method is that the solvent can be processed for reuse, significantly
reducing the production cost.

The addition of common organic salts during the LPE process has also been shown
to have positive impacts. A group led by X. Jiang proposed using organic salts such
as edetate disodium, sodium tartrate, potassium sodium tartrate, and sodium citrate
in organic solvents to improve the exfoliation efficiency [82]. The group reported
more than a hundred times improvement in efficiency with a mixture of dimethyl
sulfoxide (DMSO) and sodium citrate.

A more sophisticated but effective ‘lab on a chip’ LPE was proposed by X. Qiu
and associates [83]. They exploited a phenomenon called hydrodynamic cavitation,
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which involves bubble generation and implosion in flowing liquid due to sudden
changes in pressure, to induce the exfoliation of graphite. The setup, a microfluidic
channel with a smaller orifice, was fabricated on a silicon wafer. A mixture of water,
sodium cholate (surfactant), and graphite powder were forced to flow through the
orifice, which resulted in a change in pressure of 10 bar. This local change in pressure
stimulates the unstacking of graphene layers. A series of these microchannels can be
fabricated on a silicon wafer for upscale production of graphene nanosheets.

HEBMprocessing of graphite powder is another crucial methodwithin LPE genre
for cost-effective high quality synthesis of graphene sheets. It has been reported by
several researchers that the blending of inorganic materials such as NaCl [84] and
sulfur [85] during the milling process improves the flake size and the quality of the
synthesized graphene, owing to the intercalation of these particles acting as a wedge
between the layers and thus assisting the exfoliation. However, M.F. Alam et al.
reported that the blending of salt during the ball milling process results in the creation
of defects in the synthesized graphene and the residual salt impurities degrade the
overall quality of thus synthesized graphene [86]. The group used a combination of
three techniques viz. ultrasonication, HEBM, and centrifugation, with and without
inorganic salts (NaCl, KCl, and LiI). They compared the results obtained from these
experiments and reported HEBM followed by three times centrifugation without
salts to be the best combination for synthesizing high-quality sheets. The results are
arranged in Table 1 as shown below:

The above discussed results seem counter-intuitive as the earlier discussion in this
section pointed out the intercalation of ions between the sheets acting as tiny wedges
during LPE, thus making it easier to exfoliate the graphene sheets. The results in
this part are with HEBM processing before the LPE step. With HEBM processing,
blending of salt negatively impacts graphene synthesis.

4 Characterization of Graphene

4.1 Raman Spectroscopy

Raman (inelastic) scattering is so tiny compared to Rayleigh scattering (elastic) that
its detection was practically impossible to be utilized in a probing technique until
high-intensity lasers were invented. Raman spectroscopy has become a tool with
extraordinary capabilities to probe molecules and crystals based on the Raman scat-
tering phenomenon which takes place due to the vibrational and rotational modes of
the material. The modes that change the polarizability of material are called Raman
activemodes, and the resulting output spectrum consists of bands of different intensi-
ties. A typical Raman instrument’s output, a plot between intensity and Raman shift,
gives information about the atoms and interatomic bondings that are signatures of a
molecule, and thus, the technique acts as a molecular fingerprinting. This tool has
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Table 1 Summary of results by M.F. Alam et al. [86]

Preparation
Method

Halide
Used

Results (TEM and SAED) Remarks

3 ×
Ultrasonication

None Few 100 nm
size, Fringes
0.33 nm, 2
prominent
rings in
SAED

HEBM
+ 3 ×
Ultrasonication

None Few 100 nm
size, 2
prominent 1
feeble rings
in SAED,
Lattice
defects

HEBM
+
3 ×
Centrifugation

None Size in μm,
sixfold
symmetry in
SAED,
Defect-free
lattice

HEBM
+
3 ×
Centrifugation

NaCl
(40%)

Size in μm,
2 prominent
1 feeble
rings in
SAED,
multi-layer,
Lattice
defects

(continued)
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Table 1 (continued)

Preparation
Method

Halide
Used

Results (TEM and SAED) Remarks

HEBM
+
3 ×
Centrifugation

KCl
(40%)

Multiple
overlapping
sheets,
Asymmetric
pattern in
SAED,
Inefficient
method

HEBM
+
3 ×
Centrifugation

LiI
(40%)

Multiple
overlapping
sheets, 1
prominent 1
feeble ring
in SAED,
Lattice
defects

been proven extremely useful for the characterization of honeycomb carbon mate-
rials. The technique is so sensitive that it can be used to analyze the electronic and
phononic behavior in a single sheet of graphene, [87] a single CNT, [88] a single
fullerene, [89] and any changes introduced in their structure. This section will mainly
be focused on the Raman spectroscopy of graphene and the effects of the number of
layers, defects, and doping on the spectrum.

Figure 6a shows a typical Raman spectrum of an SLG. Many bands arise due to
Raman active phonons, but most result in a weak signal. It is, therefore, a common
practice to study only four prominent bands, namely G, D, G’, and D’, for obtaining
relevant information on the underlyingmaterial. These bands originate due to various
phenomena occurring in graphene, which are illustrated in Fig. 6b. The information
about these bands in the following paragraphs is for laser photon energy of 2.41eV
(514nm wavelength).

The G band originates from in-plane C–C bond stretching vibrations and occurs
at around 1585 cm−1 due to first-order Raman scattering involving one phonon.
The peak of the G band is an outcome of resonance and is a characteristic peak
for honeycomb carbon materials. It is related to doubly degenerate phonon modes,
namely, longitudinal optical (LO) and in-plane transverse optical (ITO) at the center
of the first Brillouin zone. The G band is the only non-dispersive band (having
no correlation between band position and photon energy) in the Raman spectrum
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Fig. 6 Raman spectrum of an SLG showing: various bands (a) and origin of these bands (b) [87]

of graphene. The G’ band (also known as 2D band because it occurs at twice the
Raman shift of D band) at around 2700 cm−1 results from a second-order process
involving two phonons participating in the Raman scattering of the excited electron.
A double resonance process arising from inter/intra-valley scattering gives rise to this
band in the spectrum. Triple resonance processes are also sometimes involved and are
responsible forG’ band. TheG’ band is a signature of sp2 hybridized carbonmaterials
in Raman spectra. This band exhibits dispersion, and the slope of the dispersion curve
has been estimated to be ~ 90 cm−1/eV [87, 90]. The D band (D, here, is generally
referred to as defects), seen at around 1350 cm−1, is again a second-order process,
but it arises due to inelastic scattering of the excited electron by a phonon followed
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by elastic scattering by a defect. This band is an outcome of the so-called ‘breathing
of carbon hexagons’. Similar to G’ band, the D band also shows dispersive nature
with the slope of dispersion curve ~ 50 cm−1/eV [87, 90]. It is important to note
here that the G’ band, being the overtone of the D band, is twice as dispersive as the
D band. Sometimes other bands associated with the double resonance mechanism
in which a defect instead of a second phonon is responsible for the conservation of
momentum are also observed, such as D’ band at ~ 1620 cm−1 and D” band at ~
1100 cm−1 [91].

Y. You et al. studied the correlation between the intensity of D band and crystal
orientation (edge chirality) of graphene [92]. Their study revealed that for the zigzag
edge of graphene, the D band is either absent or is of very low intensity, while the
armchair structure produces a much intense D band. G band has also been studied
for determining the orientation of the graphene sheet [24]. The D band intensity,
being a more prominent Raman signature of defects than the G’ band, is a measure
of the number of defects in the graphene crystal. The nature of defects also plays a
significant role in altering the Raman spectrum of graphene. A detailed study in this
regard was performed by A. Eckmann et al. [22]. The study discloses the dependence
of the intensity ratio of D band and D’ band (ID/ID’) on the type of defects such as
a change in hybridization at some locations to sp3 (instead of sp2) and the creation
of vacancies. In the study, the intensity ratio was found to be ~ 13 for sp3 defects
and ~ 7 for vacancy type defects. A more careful study on the sub-bands of the D
band for suspended graphene was done by Z. Luo et al. [93]. They mainly focused
on whether the scattering first takes place through a phonon or a defect. The research
demonstrates that the two processes give rise to two D sub-bands.

A relative intensity, taking the intensity of the G band (IG) as a reference, rather
than the intensity of the band under investigation, is generally estimated for quanti-
tative and qualitative analysis of defects, doping, and the number of graphene layers
in the system. G.S. Papanai et al. studied the intensity of the G’ band as a func-
tion of the number of graphene layers on Si/SiO2 substrate [94]. The G’ band of an
SLG consists of one Lorentzian peak of high intensity (IG’/IG = 24) resulting from
one double resonance process. For two layers stacked in the Bernal AB pattern, the
system becomes more complex, and four double resonance processes take place,
due to which the G’ band becomes a superposition of four Lorentzian peaks. The
intensity of the G’ band compared to the G band is significantly reduced (IG’/IG ≤ 1).
Scattering possibilities keep increasing with the number of layers, and the G’ band
becomes a combination of multiple Lorentzian peaks, each representing a scattering
phenomenon. The relative intensity (IG’/IG) also decreases, which can be estimated
to calculate the number of graphene layers. Figure 7 shows the Raman spectra for
1–5 graphene layers and HOPG.

The positions of G andG’ bands change with doping because of coupling between
electron and phonon and are, therefore, studied to estimate the doping concentration
in graphene [95]. The G band shifts towards higher values of Raman shift, and its
width is also reducedwith increasing dopant concentration.However, the dependency
of the G’ band is different for electron concentration and hole concentration. The
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Fig. 7 Raman spectra for
different numbers of
graphene layers on Si/SiO2
substrate [94]

position of the G’ band shifts upwards with increasing hole concentration while in
the reverse direction for increasing electron concentration [23].

The temperature change significantly affects the position of the G band. I. Calizo
and his group calculated the temperature coefficient of the G band peak position for
SLG and two-layer graphene [26]. For SLG, the value was measured to be –1.62 ×
10–2 cm−1/°C, while for the two layers, it was found to be –1.54× 10–2 cm−1/°C. The
negative value indicates a blue shift in the scattering frequency when the temperature
is increased. Various other parameters such as pressure, [25] strain, [96] etc. have
also been found to be affecting the Raman spectrum of graphene, making it one of
the most valuable tools to study graphene and related carbon materials.

4.2 Selected Area Electron Diffraction (SAED)

Diffraction is simply a change in a wave’s path around the corners of and reaching
in geometrical shadow regions of an obstacle. The electrons, behaving as waves, are
diffracted by atoms in a crystal, and a pattern of diffraction maxima and minima
emerges. This pattern, obtained for a small area, is called SAED and has long been
used to study the crystallinity and crystal structure of materials. It is another valuable
tool to analyze the quality of synthesized graphene. First of all, the technique is used
for assessing the crystallinity of graphene sheets by visual analysis of the electron
diffraction pattern. Distinct and sharp spots arranged in a hexagonal pattern with
six-fold symmetry indicate the crystalline nature of graphene [97]. Furthermore, by
finding the intensity ratios of various spots corresponding to different planes, the
number of graphene layers present in the material can be estimated. The intensity
ratio of (1–210) and (1–100) points (Miller-Bravais indices) is measured, and a value
of less than unity indicates monolayer graphene. On the other hand, research groups



56 M. Asif and I. Ahmad

Fig. 8 SAED patterns attributed to a Graphene (with some overlapping/folding/rotational
stacking), bMLG with some amorphous carbon, and c only amorphous carbon [102]

have reported different values for MLG, but a value close to 2 for bilayer and 4 for
trilayer Bernal AB stacking is generally observed [98–100]. All these groups have
also confirmed the results with Raman spectroscopy.

Sharp concentric rings appear, in general, for polycrystalline materials with
randomly oriented crystallites. Similarly, a random orientation of sheets in MLG
(instead of Bernal AB structure) results in a sharp diffraction pattern with rings and
some intense points on the rings [101]. Similar multiple ring patterns with maxima
points can also appear due to the presence of amorphous carbon along with graphene
sheets, as can be seen in Fig. 8b. In contrast, only the halo ring pattern similar to
Fig. 8c infers the absence of crystallinity and, thus, of graphene (only amorphous
carbon is present) [102]. MLG, with slight misalignment between layers, produces
a cometic aberration-like pattern (Fig. 8a) instead of sharp points [103].

It is necessary to point out here that the electron beam is focused in a small area,
and thus, the results obtained give information only on that particular area of the
material. For thorough investigation, data should be obtained from different regions
of the sample separated by a fixed distance through SAED mapping [97, 99]. Some
researchers have proposed more sophisticated but faster methods to circumvent this
issue for large area sheets [104].

4.3 Microscopic Techniques

Non-microscopic techniques for the characterization of graphene provide data based
on the material’s properties, but a visual perspective makes an entirely different
impact on the understanding of a material. Optical microscopy is one of the oldest
in this category and is also employed for studying graphene in the micro regime, but
the information it reveals is very limited [105]. Transmission electron microscopy
(TEM), especially with high resolution (HRTEM), is a powerful tool to probe the
materials in nano and even sub-nano regimes. TEM is widely used to obtain informa-
tion on surface topographies, growth patterns, and discontinuities. Sheet-level defects
such as wrinkles, folds, kinks, rippling, and twists can be easily observed in TEM
micrographs [27, 98, 103]. It is a highly recommended tool to study the potentially
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preferred sites of the attachment [102, 106]. Information on a much deeper level,
such as lattice defects, atomic planes, and interplanar spacing, can be obtained from
the HRTEM [98]. It can also be utilized to measure the number of graphene layers
by carefully examining high-resolution images of the edges [98, 99, 107].

Atomic force microscope (AFM) is different from other techniques because it
uses a material cantilever tip, rather than electromagnetic (EM) waves or electrons,
to probe the underlying material. It is another useful tool in the microscopy group
to obtain crucial information about the synthesized graphene such as morphology,
[108] imperfections, [109] functionalization, [110] mechanical, [29, 111] and elec-
trical properties [28, 112]. The technique can also estimate the number of layers
by measuring thickness, but results are not very reliable unless confirmed with other
techniques. C.J. Shearer et al. conducted experiments to accuratelymeasure the thick-
ness of graphene with the help of AFM [105]. Apart from characterization, AFM can
also be modified for controlled thermal reduction of GO to draw graphene patterns
for the fabrication of electronic devices [113].

5 Applications

5.1 Electronics

One of the major problems that modern transistors face is power scaling with size.
Dennard scaling law states that the power density of transistors remains the same,
[114] but it no longer holds because of high leakage currents in devices with feature
sizes less than 65 nm [115].M.C. Lemme et al. first demonstrated the use of graphene
as the channel material in field effect devices [116]. The power consumption was
significantly reduced due to the high conductivity of graphene, and they were called
graphene FETs or GFETs. A typical configuration of graphene channel field effect
device is presented in Fig. 9. Graphene, being a zero bandgap semiconductor, causes
turn-off issues inGFETs andmakes them unsuitable for high-frequency applications,
particularly for digital circuits [117]. Several proposed solutions such as electrical
double layer gating, [118] uniaxially strained graphene, [119] graphene nanoribbons
(GNRs), [120] high-k dielectrics, [121] and wrapped channel [122] have demon-
strated potential. The performance was substantially enhanced, and up to 107 IDS
ON/OFF ratio was achieved by using GNRs [120]. A novel configuration, MSIS-
FET, was proposed by P. Li et al. with which they reported an even better ON/OFF
ratio than GNRs [123].

Graphene has shown massive potential for light emitting diode (LED) applica-
tions. Graphene can be used for engineering various components such as electrodes
and activematerial of the device. F.Withers et al. prepared van derWaals heterostruc-
tures using graphene, boron nitride, and metal chalcogenides to fabricate flexible
LEDs with an extrinsic quantum efficiency of nearly 10% [124]. They also proposed
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Fig. 9 A typical graphene-based field effect device (GFET)

further improvements by introducing 2D layers of other chalcogenides. F. Rodríguez-
Mas and his group introduced rGO in a previously explored structure for LED and
reported better intensity with an unaffected output spectrum [125]. D. Yu et al.
fabricated GaN micro-rod arrays on graphene films for flexible micro-LEDs emit-
ting blue light [126]. Y.-X. Chen with his team prepared functionalized graphene
quantum dots (QDs) from fullerenes and blended them with polyvinyl alcohol to
form photoluminescent films that can transform ultraviolet LED into white [127].
Graphene is not only used for improving the existing LED devices but has also
demonstrated the potential for novel all-graphene devices. X. Wang et al. demon-
strated an all-graphene, wavelength-tunable LED device by using GO/rGO interface
for producing light ranging from blue to red [128]. Graphene can also be used outside
of the principal device to enhance its overall performance and stability [129].

5.2 Healthcare

The biocompatibility of graphene has beenwidely studied, [130, 131]which provides
opportunities for its use in healthcare applications. Graphene has been explored for
its potential in diagnostics, therapeutics, medicine, water purification, etc. It has
provided technological advances in smart diagnostic tools for diseases and general
health monitoring. A group led by W. Gao made a diagnosis and telemonitoring
platform for COVID-19 [132]. A recent study shows that septicemia, which causes
the immune system to damage its own tissues, can be diagnosed with the help of
magnetic graphene-based micromotors [133]. Graphene-Based Transistors have also
been applied to disease diagnosis [134]. Graphene and its derivatives have exhib-
ited potential for detection of common bacterial [135] and viral infections [136]. A
large number of reports and reviews on graphene-based diagnostic tools for cancer
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indicate its enormous potential for the sector. E.G. Afshar et al. have reviewed appli-
cations of graphene in the diagnosis and treatment of one of the most menacing
cancers, Glioblastoma multiform [137]. R. Majidi and M. Nadafan theoretically
studied the application of twin graphene to diagnose lung cancer by sensing exhaled
gases in human breath with the help of density functional theory (DFT) [138].
An immune-sensor for detecting a biomarker (HER-2) for breast cancer diagnosis
was developed by H. Nasrollahpour with his team [139]. The group exploited the
electroluminescence property of rGO/chitosan nanocomposite for the purpose.

Graphene is not only suitable for diagnostics but also has properties that are
desirable in various therapies. Graphene-based therapeutics is one of the hot topics
in modern healthcare for superior quality products. Several medical scientists have
proposed and demonstrated ideas for the evolution of existing approaches and innova-
tion of techniques by exploiting the unmatched properties of graphene. Among other
methods, graphene-based materials for photothermal therapy (PTT) have gained
significant popularity for cancer treatment in the past decade. PTT involves the
delivery of a photothermal agent to the infection site (infected cells) and its subse-
quent heating through exposure to the near-infrared (NIR) radiation resulting in the
killing of infected cells (Fig. 10 represents the scheme). C.C. Barrera et al. studied
the interaction between rGO/Fe3O4 NC and cell membrane and the effects of PTT
on the viability of the cells [140]. The results show an excellent potential of the
material for PTT of cancer. Another iron oxide and rGO-based NC, Fe3O4/Au/rGO,
was demonstrated by T.S. Ardakani et al. as an effective material for synergistic
radio-/photo-therapy on the oral squamous carcinoma cell line [141]. The material
was reported to have good biocompatibility for healthy cells while having cytotoxic
effects on the infected ones. X. Jia et al. used a hybrid of rGO, Au nanostars, and lipid
bilayer for PTT of pancreatic cancer [142]. The material also exhibits an improved
targeting capability and hence a better efficacy. R. Lima-Sousa et al. demonstrated,
for the first time, the use of injectable GO and rGO incorporated hydrogels for the
treatment of breast cancer [143]. The system shows a chemo-photothermal effect
to reduce the cancer cell viability to 34% with Doxorubicin:Ibuprofen. Another
group reported functionalized rGO as drug loading platforms for targeted delivery of
the drug, doxorubicin hydrochloride, and subsequent chemo-photothermal treatment
[144]. Various other therapies utilizing graphene and derivedmaterials, such as sono-
dynamic, [145] photodynamic, [146] magnetothermodynamic [147] have also been
reported for tumor inhibition. Many researchers are exploring graphene-based scaf-
folds for regenerative medicines, which help enhance the repair process of damaged
tissues, and have reported impressive results [148, 149].

5.3 Energy

The ever-growing energy demand requires continuous improvements in existing tech-
nologies for energy conversion and storage and the creation of new paths that can
meet the needs of the future. Graphene has been extensively studied for solar energy
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Fig. 10 Step-by-step procedure of PTT for the treatment of cancer

conversion, irrespective of the type of device. However, substantial improvements in
the performance of dye-sensitized solar cells (DSSCs) were observed with graphene
introduced in photoanode or used at the counter electrode. One such device was
fabricated and extensively characterized by F.W. Low et al. (shown in Fig. 11)
[150]. They studied the effects of TiO2 content in rGO as photoanode material
on the open-circuit voltage and short circuit current density of the device. S. Sun
et al. also demonstrated the use of graphene/TiO2 composite for DSSC photoan-
odes and reported 59% enhanced efficiency compared to TiO2 photoanodes [151].
K. Basu et al. used graphene incorporated SnO2/TiO2 composite as photoanode
material and reported better efficiency and durability [152]. M.N. Mustafa and Y.
Sulaiman prepared photoanode with graphene QDs decorated titania and identified
the QDs as light scatters responsible for better performance [153]. The enhanced
efficiency has been attributed to the enhanced dye loading due to increased surface
area, which improves the carrier generation process. The addition of graphene also
improves charge transfer by providing shorter paths to the electrode, reducing the
carrier recombination rate. Pt has been themost widely used counter electrode by far;
however, its high cost led many researchers to explore alternative options. Counter
electrodes made by graphene ink spray deposited onto transparent conductive oxide
(TCO) were reported by S. Casaluci et al. for large area DSSCs [154]. W.C. Oh et al.
demonstrated the use of a rather complicated material, graphene composite with
Cu2ZnNiSe4-WO3 nanorods, for efficient (even better than Pt) counter electrode
material [155].

Apart from DSSCs, graphene has also exhibited potential for diverse applications
in most other types of solar cells. For example, X. Miao et al. used SLG/n-Si for
Schottky junction solar cells; [156]. J.Wu et al. made graphene transparent electrodes
applied to organic solar cells; [157]. N.F. Ramali et al. inserted graphene passivation
layer in perovskite solar cells; [158] graphene nanohills on silicon were illustrated
for solar cell applications byM.A. Rehman et al. [159]. T. Lin and team used pristine
and boron-doped graphene as the back electrode for CdTe solar cells [160].
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Fig. 11 Schematic of the device fabricated by Low et al. (a) and results obtained from the device
using different content of TiO2 with graphene as photoanode material (b) [150]

The scope of energy generation, particularly through renewable sources, is limited
unless a device can store it for later use. Batteries have long been used for energy
storage and are the most prominent technology at present for the purpose. Amongst
them, lithium-based batteries have been commercially available in the market for a
long time. A large fraction of them uses graphite electrodes. As the technology is
evolving, new materials are being explored to achieve higher charge storage capac-
ities and longer cycle life. C. Wang et al. demonstrated the use of graphene paper
as cathode for Li batteries [161]. N-doped graphene films have shown better Li-ion
intercalation in an article by A.L. Mohana Reddy et al. [162]. J. Xiao et al. fabricated
functionalized porous graphene structures for very high capacity (15,000 mAh/g)
Li-air batteries [163]. Graphene-incorporated polymer-derived SiOC aerogels have
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demonstrated stunning results as anode material for Li batteries [164]. X. Han et al.
illustrated the use of core–shell structures (Si core, graphene shell) for Li-ion battery
anodes [165]. Using a novel strategy with rGO/Ag-Li scaffolds as anode for Li-metal
batteries was developed by T. Ma et al. [166]. A group from Zhejiang University
led by C. Gao proposed a defect-free principle for high-performance Al-graphene
batteries in 2017 [167]. He, leading another group, reported an exceptionally long
cycle life of 250,000 for Al-graphene batteries later that same year [168].

Another prime requirement for an energy storage device is fast charging. Elec-
trochemical capacitors, otherwise known as supercapacitors, are the most promising
alternative to batteries with the inherent advantage of speedy charging. They offer
high power density, but the energy density is low. Graphene-based electrodes have
exhibited tremendous potential for supercapacitor applications because of graphene’s
high specific surface area. Supercapacitors made by RuO2 modified rGO as anode
and polyaniline modified rGO as cathode have been demonstrated by J. Zhang et al.
[169]. L.T. Le et al. prepared supercapacitor electrodes by inkjet printing of GO on
Ti and its subsequent thermal reduction [170]. Y. Fang et al. fabricated supercapac-
itor electrodes with functionalized graphene and demonstrated that the technology
could bridge the gap between supercapacitor and battery with further optimizations
[171]. H. Kim et al. proposed an all-graphene synergistic system for energy storage
[172]. They also reported that the system works on both battery and supercapacitor
mechanisms and thus creates a link between the two.

5.4 Environmental Remediation

Pollution, whether air, soil, water, or radiation, has caused much harm to the envi-
ronment and human health. Scientists are looking for materials and devices that
can be engineered for providing tools to reduce/eliminate pollution-causing agents.
Many properties of graphene, such as corrosion resistance and mechanical and
chemical stability, are ideal for environmental remediation applications. It has,
therefore, been explored for removing pollutants, especially from water and air.
Several reports have shown that graphene and derived materials are excellent for
organic dye removal applications for wastewater treatment. H. Guo et al. reported
GO/polyethylenimine (PEI) hydrogel for large-scale and efficient dye, Methylene
Blue (MB) and Rhodamine B (RB), removal from wastewater [173]. They attributed
the adsorption of dye to GO while PEI assisted the gelation process of GO. T. Jiao
et al., however, synthesized rGO/Ag/PEI hydrogel via simultaneous reduction of
GO and Ag+ and suggested its application in catalytic degradation of MB and RB
[174]. Y. Zhong and the group used dopamine GO composite decorated membrane
to adsorb Congo Red and Basic Blue dyes [175]. They also demonstrated that treat-
ment of membrane with a minute quantity of reducing agent (NaBH4) to reduce
a small part of GO makes it useful for removal of small concentrations of methyl
orange (MO), MB, RB, and 4-Nitrophenol. Photocatalytic dye (MB) degradation
ability of Ag decorated rGO was exhibited by M. Ikram et al. [176]. Heavy metals in
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water are another primary class of pollutants that are toxic to aquatic as well as non-
aquatic life. T.A. Tabish et al. prepared highly porous graphene and demonstrated its
application for efficiently removing MB and RB [177]. They further demonstrated
the removal of oils (vegetable, engine, and pump oil), heavy metal (arsenic ion), and
other harmful ions (fluoride and nitrate) fromwater. Many other groups also reported
graphene-based techniques as promising candidates for heavy metal removal from
wastewater. G. Zhao et al. prepared GOwith the help of modified Hummer’s method
and displayed its application for sorption of Cd(II) and Co(II) from water [178]. K.
Zhang et al. anchored TiO2 nanoparticles on graphene sheets for effective reduction
of Cr(VI) to Cr(III) [179]. A. Marjani et al. prepared GO dispersed in polyethersul-
fonemembrane for degradation ofMB andMOdyes and removal of heavymetal ions
(Cu2+, Cd2+, and Zn2+) [180]. J. Zhang et al. studied, for the first time, the molecular
interaction mechanism experimentally through single-molecule force spectroscopy
and theoretically with DFT [181]. The study revealed critical aspects of molecular
interactions that will help design graphene-based materials for wastewater treatment.

Though graphene has been extensively studied for the removal of water pollutants,
it has also shown potential for removing contaminants from the air. V. Kumar et al.
reviewed potential applications of graphene and related materials for adsorption and
removal of volatile organic compounds [182]. W. Jung et al. fabricated a robust
system by sandwiching a condenser between two layers of rGO filters to remove
particulate matter from the air [183]. The group demonstrated the removal of both
filterable and condensable particulate matter with the help of the fabricated system.

5.5 Sensing

Graphene, having a high surface-to-volume ratio, is an excellent material for sensing
applications. Graphene has been applied to a range of sensors for physical parame-
ters like pressure, temperature, strain, humidity, etc., and chemical species like gases,
analytes, heavy metals, etc. Due to extraordinary mechanical and electrical proper-
ties, graphene has been studied extensively for pressure and strain sensors that are
key to modern non-invasive techniques for health monitoring. Multiple innovative
graphene-based wearable pressure and strain sensors were demonstrated by T.-L.
Ren and associates for the purpose. In one report, they used tissue paper soaked in
GO solution, which was later given thermal treatment to reduce GO for making pres-
sure sensors for human motion detection [184]. Another report explains the use of
Ag nanoparticles linked to graphene sheets over PDMS substrate for strain sensors
that can monitor human motion [185]. In this work, the group used the laser scribing
technique to reduce the GO. In another innovative work, an abrasive paper was used
to make patterns on PDMS over which GO was deposited and subsequently reduced
[186]. The rGO was then sandwiched by placing another layer of PDMS, forming a
structure imitating the epidermis. The system was used to fabricate a wearable pres-
sure sensor for human motion detection. A strain sensor for motion detection was
made by dipping a polyester fabric in GO followed by thermal treatment to reduce
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GO [187]. In a more recent work by T.-L. Ren and associates, a breathable graphene
electronic skin, susceptible to strain and vibrations, and thus, useful for monitoring
electrocardiogram, body motion, and respiration, was demonstrated [188]. A wear-
able pulse monitoring device with high sensitivity and long-range linear response
graphene pressure sensor was reported by J. He et al. [189]. A graphene strain sensor
for real-time pulse monitoring systems was explored by T. Yang et al. [190]. W.
Liu et al. used wrinkled graphene for making piezoresistivity-based flexible, suscep-
tible, and reliable pressure sensors [191]. Another class of graphene-based sensors,
useful for healthcare applications, detect particular analytes from body fluids such
as non-enzymatic glucose sensors [192, 193].

Z. Zheng and H. Wang performed first-principles calculations through DFT on
doped and undoped graphene-based gas (CO2) sensors [194]. The results show a
better performance with Al-doped than B-, N-, and P-doped graphene. Y. Seekaew
and C. Wongchoosuk reported a novel CO2 sensor configuration utilizing electrolu-
minescencewith graphenefilmdeposited over a patternedAgelectrode on a phosphor
material [195]. G. Liu et al. fabricated a temperature sensor using rGO and demon-
strated its use in robot skin for internet of things (IoT) [196]. B. Davaji et al. demon-
strated the use of suspended SLG, deposited on SiO2/Si substrate and SiN substrate
for a resistance temperature sensor [197]. Devices formed on SiN substrates showed
better performance. J. Yun et al. illustrated using graphene electrodes to build high-
performance capacitive pressure sensors [198]. Graphene-based sensors for other
physical quantities such as humidity, [199] refractive index, [200] magnetic field,
[201] etc. have also been demonstrated.

5.6 Protective Coatings

Corrosion and biofouling are the major concerns for components used in marine
applications and wastewater treatment. Graphene has displayed a great potential for
protecting metals and alloys in corrosive conditions due to its hydrophobicity and
impenetrability. F. Yu et al. demonstrated the use of the CVD process for graphene
deposition onAl alloys for long-termcorrosionprotection [202].Acomparative study
onGOand rGObased epoxy coatings for corrosion protectionwas performed by F.A.
Ghauri et al. [203]. GO was found to be better protecting mild steel than rGO when
exposed to a 3.5%NaCl solution. Y. Ye et al. reported better corrosion resistancewith
salinized aniline trimer functionalized graphene [204]. They reported that graphene
forms an impermeable coating while salinized trianiline promotes self-healing of
the underlying metal; thus, these synergistic effects provide better protection from
the corrosive environment. S. Qiu et al. reported similar self-healing properties with
polypyrrole intercalation in graphene [205].

Even with numerous reports of graphene providing protection from corrosive
fluids, researchers have also shown that graphene coating can have degrading effects
due to it being cathodic to most metals [206]. They have proposed that graphene
inhibits corrosive solutions from reacting with underlying metal, but when a small
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Fig. 12 The chemistry of anticorrosion coatings: a the corrosion tendency of various metals and
graphite (galvanic sequence), b anodic coating of Zn over steel, c cathodic coating promoting local
oxidation, and d corrosion causing weakening of underlying metal/alloy by etching through grain
boundaries. [206]

portion of the metal is exposed due to scratch or some other reason, graphene, being
conductive, acts as the cathode and promotes localized oxidation (Fig. 12). The topic
is debatable, and some material scientists have reported methods to circumvent this
problem. X. Xu et al. demonstrated defect-free graphene coating on Cu(111) surface
for durable protection from humid air [207].

Graphene/Si based antifouling coatings have shown vast potential, especially
for maritime applications. H. Jin et al. proposed a novel graphene/Si rubber-based
antifouling coatings and its working mechanism [208]. They proposed a mechanism
inspired by sea animals having soft and flexible skin like dolphins due to which
a dynamic surface is created, and they named it ‘harmonic motion effect’. They
further reported, in another study, the effects of elastic modulus and color of the
material on its antifouling properties [209]. M.S. Selim and the group also explored
graphene/Si based materials for antifouling properties [210]. Antifouling coatings
have also been proven advantageous for protecting sensors used inmarine technology
[211]. Multifunction coatings, such as antifouling coatings with anticorrosion [212]
and antibacterial [213] effects, have also been proposed and tested.

6 Graphene Nanocomposites

Pristine graphene itself is a material with wonderful qualities and thus, has been
studied for a range of applications and has been commercially employed in various
industries. Other forms of graphene such as functionalized graphene, GNRs, GO,
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and graphene NCs can have desired properties for several applications that pris-
tine graphene cannot provide. Graphene has been utilized to make NC with many
materials, including metals, metal oxides, metal sulfides, polymers, CNTs, epoxy,
Mxenes, etc. Some of these NCs, especially their synthesis and applications, will be
discussed in this section. It is crucial to point out that in some of these NCs, graphene
will be used for reinforcement, while in others, graphene will be the matrix phase.
Nevertheless, the properties are generally improved due to the synergistic effects of
both phases.

6.1 Polymer-Graphene NCs

Graphene is hybridized with polymers to obtain materials having high mechanical
strength, porosity, and thermal stability. Porous materials have a high specific surface
area, one of the key requirements for electrochemical applications.X. Li et al. demon-
strated the synthesis of highly porous polyaniline (PANI)/graphene NC through elec-
tropolymerization of PANI on graphene for electrochemical capacitors [214]. They
reported up to 1209 F/gm specific capacitance and long cyclic stability with the
synthesized materials. S. Fazli-Shokouhi et al. used in situ polymerization to prepare
PANI-graphene NC, which demonstrated good anticorrosion and antifouling proper-
ties when incorporated in epoxy.[212] PANI- graphene NCs have also been used for
EM interferencemitigation [215]. In-situ polymerization, as presented schematically
in Fig. 13, is one of the most appreciated methods for polymer-graphene NCs.

Poly-methyl methacrylate (PMMA) has been used for making composite mate-
rials with graphene through techniques such as in-situ emulsion polymerization,
[216] precipitation polymerization, [217] solution blending method, [218] etc. The
synthesized materials were characterized to find mechanical, thermal, and electrical
properties [216] and dielectric and rheological properties [217]. Z. Zabihi et al.

Fig. 13 Steps involved in the in-situ polymerization process for the synthesis of polymer-graphene
NCs



Synthesis and Applications of Graphene and Its Nanocomposites 67

studied the interaction between the two components, graphene and PMMA, through
theoretical simulations and their potential for detecting volatile organic compounds.
[218].

Small quantities of graphene significantly improve the mechanical and thermal
properties of polymers such as polyvinyl alcohol (PVA). The majority of researchers
illustrated blending GO with PVA and then reduction of GO through a suitable
method to obtain the desired rGO/PVA NC. X. Yuan reported improved tensile
strength and thermal stability of PVA when 0.8% rGO was water blended into the
polymer matrix [219]. X. Zhao et al. have reported 150% increased tensile strength
andmore than ten times enhancedYoung’smoduluswith 1.8 vol%graphene addition
via facial aqueous solution [220]. X. Wang et al. also reported improved mechan-
ical and thermal properties of PVA with much smaller (0.1 and 0.3%) fractions of
graphene [221]. They attributed strong interfacial interactions between the compo-
nents to the improved tensile strength and restriction of motion of polymer chains by
graphene sheets to the enhanced thermal stability. T. Zhou et al. obtained mechani-
cally more robust and electrically conductive rGO/PVANCwith the help of a sodium
hydrosulfite reducing agent [222].

Graphene has also been reported for making NC with polydopamine for strain
sensor;[[223]] with poly(p-phenylenediamine) for detection of protein biomarkers;
[224] with poly(isobutylene-co-isoprene) for barrier, dielectric, and sensing applica-
tions; [225] with polyimide [226] and poly(ethylene-co-methyl acrylate) [227] for
EM interference shielding; with poly(butylene succinate) [228] and polyvinylbutyral
[229] for improving thermal and mechanical properties; with poly(styrene sulfonate)
[230] and poly vinyl pyrrolidone [231] for ascorbic acid sensing.

6.2 Metal-Graphene NCs

Metal-grapheneNCshave shownpotential in a large spectrumof applications ranging
from electronics to biomedicine. Nickel, which also acts as a catalyst for the synthesis
of graphene, can quickly form NCs with graphene via electrodeposition technique,
which are widely employed in tribological applications [232–236]. It was reported
by all these groups that incorporation of graphene in Ni increases hardness and, thus,
increases wear resistance of the coating as compared to Ni coating. Surfactants, such
as sodium dodecyl sulfate, were also used in deposition baths to further improve the
synthesis process and hence the resultant properties of the coatings [232]. A. Jabbar
et al. explored the effects of bath temperature in the range from 15°C to 60°C on
deposited coatings and reported that moderate temperatures around 45°C are suitable
for obtaining refined grain size and better microhardness [233]. A. Algul et al. exten-
sively studied the effects of graphene content on wear mechanism [234]. A theoret-
ical nanoindentation simulation study on Ni-graphene NCs was performed by S.-W.
Chang et al. [237]. Their study reveals that an increasing number of graphene layers
negatively impact the hardness but improve elastic deformability. The same group
also performed atomistic simulations on Ni- and Cu-based graphene NCs to record
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the effects of temperature andgeometry on thermal interface conductance [238]. They
reported that the effects are similar for both Ni and Cu. They also demonstrated that
the SLG provides a high thermal interface conductance of ~ 500MWm−2 K−1, which
decreases to ~ 300MWm−2 K−1 for bilayer and 150MWm−2 K−1 for trilayer. For
more than three layers, the value (~100MWm−2 K−1) becomes independent of the
number of graphene layers.

Similar to Ni, Cu-graphene NCs have also been used for tribofilm formation. N.
Khobragade et al. fabricated graphene-reinforced Cu NCs through the high-pressure
torsion method and found that the synthesized NC with 10wt% graphene is twice
as hard as pure copper [239]. S. Wang et al. also reported similar improvements
in mechanical properties when graphene layers were directly deposited over Cu
nanoparticles [240]. C.L.P. Pavithra et al. synthesized Cu-graphene NC foil via elec-
trochemical route and reported ~ 250Gpa hardness, which is also close to the above-
discussed results [241]. Not only tribological applications but Cu-graphene NCs
have also been employed for sensing applications such as EC immune-sensors for
detection of newcastle disease [242] and glucose sensor for food [243].

Noble metals such as Ag and Au have also been utilized to make NCs with
graphene and have found applications in numerous areas. The synthesis protocols
are quite similar but differ in the reduction methods applied for Ag+/Au3+ ions
and GO. In a typical procedure, an aqueous solution of silver/gold salt is mixed
with an aqueous solution of GO, followed by simultaneous reduction of ions and
GO [244–251]. Some researchers also reported sequential, instead of simultaneous,
reduction of metal ions and GO [251]. The reducing agents may be chemical (e.g.,
sodium citrate,[244] hydrazine, [247, 251] sodium borohydride [246]) and biolog-
ical (e.g., electrochemically active biofilms), [245, 249], or it can be done with other
means such as electrochemistry [250] and exposure to ultraviolet radiations [248].
Bimetallic-graphene NCs have also been frequently reported in the literature. F.
Tahernejad-Javazmi et al. studied rGO/FeNi3 NCs applied to the detection of tert-
butylhydroquinone in the presence of folic acid [252]. M.R. Vengatesan et al. used
Ag–Cu/graphene NC for hybrid capacitance deionization application [253].

6.3 Metal Oxide-Graphene NCs

Metal oxides are one of the most crucial inorganic materials because they exhibit
a range of properties with a distinct variation within each one. For example, metal
oxides can have bandgaps such that some of them are narrow bandgap semicon-
ductors or wide bandgap semiconductors, and others are insulators. NCs made by
incorporating graphene into metal oxide matrix, or the other way around, offer novel
properties desirable for many applications. Solvothermal/hydrothermal routes are
generally employed for synthesizing NCs of graphene with metal oxides as well as
sulfides. A typical procedure, as schematically represented in Fig. 14, involves the
treatment of precursor material at high pressure and a temperature above the boiling
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Fig. 14 Solvo-/hydro-thermal route for the preparation of graphene-metal oxide/sulfide NCs

point (BP) of the solvent for 24 h. Titanium dioxide (TiO2), a wide bandgap mate-
rial, makes NC with graphene, and the NC thus formed has been widely explored
for solar cells, especially DSSCs, as discussed in section VI [151–153]. A group led
by Y.-J. Xu has studied the photocatalytic applications of TiO2/graphene NC for the
degradation of volatile aromatic compounds [254] and oxidation of alcohols [255].
Both these reports compared the photocatalytic activity of TiO2/graphene NC with
TiO2/CNTNC and reported better performance with the former. TiO2/graphene NCs
have also been employed for several other applications such as battery, [256] pseudo-
capacitor, [257] and sensing [258]. Solvo-/hydro-thermal techniques are often used
to synthesize graphene-metal oxide NCs, especially graphene-TiO2 NCs. [254–256,
258].

Iron oxide, with its various oxidation states, has been reported to make NCs with
graphene, which has found applications in multiple areas. S. Lee et al. prepared
Fe2O3/graphene NC via a solventless route and demonstrated its use in detecting
heavy metal ions (Zn2+, Pb2+, and Cd2+) [259]. H. Su et al. prepared FeOx/GO
NC using the co-precipitation method and demonstrated its use for highly effi-
cient arsenic removal [260]. Y. Yuan et al. employed a hydrothermal method with
hydrazine to reduce GO and prepare Fe2O3/graphene NC applied as a catalyst for
the thermal decomposition of NH4ClO4 [261]. Numerous research papers on iron
oxide/graphene NC as anode material for batteries stipulate its potential for energy
storagedevices. L.Xiao et al. useddirect self-assemblyof ironoxide andGOfollowed
by hydrothermal treatment to reduce GO to synthesize Fe2O3/rGO NC [262]. They
demonstrated its use as anode material in lithium-ion batteries with superior perfor-
mance. W. Jiang et al. reported preparing a novel FeOx/graphene NC through a
solid-state method and exhibited its use as anode material for nickel–iron batteries
[263]. They ball-milled ferrous oxalate dihydrate, GO, and glucose (reducing agent)
followed by a series of heating processes to obtain the final product. H. Ren et al.
used a simple hydrothermal method for obtaining Mn-doped Fe3O4/graphene NC
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for Na-ion batteries [264]. Fe3O4/graphene NCs have also attracted attention for
mitigating EM pollution [265, 266].

Copper oxide/graphene NCs for Li-ion batteries have also been well documented
in the literature. B. Wang et al. prepared CuO/graphene NC through simple stirring
and centrifugation processes [267]. They reported much enhanced cyclic perfor-
mance with the NC compared to anodes made by using only CuO nanoparticles.
A.K. Rai also reported a significant enhancement in the cyclic performance of
CuO/graphene NC for Li-ion batteries [268]. They, however, used short time spex-
milling for obtaining the desired composite materials. L.L. Perreault et al. prepared
graphene-wrapped Cu-Ni oxide nanoparticles with remarkable performance as Li-
ion battery anode [269]. The group spray-dried the oxide nanoparticles and graphene
mixture to form the NC. The use of CuO/graphene NC as an interfacial layer
of metal/interlayer/semiconductor junction diode was demonstrated by Z. Orhan
et al. [270]. They also studied gamma radiation resistance properties of the layer
to demonstrate the device’s ability to work in a radiation-rich environment. L. Luo
et al. discussed CuO/graphene NC for non-enzymatic highly sensitive glucose sensor
applications [271].

Several materials engineers have exploited ZnO/grapheneNCs for photocatalysis,
[272, 273] sensing, [274, 275] solar energy conversion, [276] and pollution mitiga-
tion[[277]] applications. Preparation methods and thus the synthesized NCs differ in
properties, with the most common route again being the solvothermal method [273,
277]. Other methods that have also been explored oftentimes include combinations
of stirring, ultrasonication, and centrifugation techniques; [272, 274] ball milling;
[273] and in-situ reduction of zinc acetate and GO [275, 276]. Tin oxide (SnO2) is
also hybridized with graphene to form NC materials that have found applications in
many interesting areas. Na/Li-ion batteries have seen much advancement due to the
synergistic effects of graphene and tin oxide on the anode [278, 279]. D. Zhang et al.
developed highly sensitive humidity sensors using SnO2/graphene NCs [279].

6.4 Metal Sulfide-Graphene NCs

Metal sulfides have been materials of interest for the scientific community working
in diverse areas, from energy to biomedicine. Some of them, such as MoS2 and SnS,
have layered structures similar to graphite, making them suitable for high surface
area applications such as energy storage. The addition of graphene to these metal
sulfides allowed researchers to push the performance limits in these research areas.

Graphene NCs with tin sulfides (SnS and SnS2) have been researched for multiple
applications, energy conversion and storage remain the dominant ones. M. Zhang
et al. introduced a novel solvothermal technique to synthesize SnSx/grapheneNC and
demonstrated its application as anodematerial for Li-ion batteries [280]. Researchers
have been following the route with few or no modifications to synthesize metal
sulfide/graphene NCs. T. Ma and the team also used the solvothermal method to
prepare SnS/grapheneNC,whichwas later covered byN-doped carbon coating [281].
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They demonstrated the use of this material to make anodes for Li-ion batteries. J.
Shi et al. used graphene sheets hybridized with N, S co-doped carbon-coated SnS
nanoflakes, synthesized again via solvothermal route, for Na-ion battery applications
[282]. B.Yang et al. used solvothermal technique for the preparation of SnS/graphene
NC applied to counter electrodes for DSSCs, replacing the commonly employed
Pt electrode [283]. Another group used the hydrothermal route for the fabrication
of flexible SnS2/graphene sensors for NO2 detection [284]. J. Johny et al. made
SnS/graphene NCs for solar energy conversion and electrochemical applications, but
they followed a rather different synthesis protocol. The procedure involved spraying
a mixture of SnS and GO onto moderately (120 and 250 °C) heated substrates to
obtain the desired material [285].

Cadmium sulfide (CdS), with its various forms (films, nanoparticles, etc.), is a
popular material for solar cell applications [286]. When blended with conducting
graphene, CdS can also be employed for scores of other applications. Hydrogen
production is one such sector where CdS/graphene NCs have been extensively
studied [287–289]. A group led by T. Peng used GO, cadmium acetate, and dimethyl
sulfoxide as precursor materials which were given solvothermal treatment for
CdS/rGO NC preparation [287]. The same group also reported using unreduced
GO to form NC with CdS and its application in H2 storage [288]. In this work, they
just stirred the GO and cadmium acetate mixture and added Na2S dropwise, skip-
ping the thermal treatment step with the autoclave. S. Hammadi et al. used 7–8 layer
graphene (purchased), cadmium sulfate, and thiourea as precursors for NC synthesis
[289]. They performed experiments to display its potential for solar cells in addi-
tion to H2 production applications. CdS/graphene NC has also exhibited potential
for photoelectrochemical sensing applications in a report by L. Ge et al. [290]. They
used an entirely different approach for NC synthesis directly onto an indium tin oxide
(ITO) coated glass with the help of a direct-laser writing technique. The same article
also demonstrated the fabrication of sensing devices with PbS/graphene NC through
a similar approach. Other researchers have also investigated PbS/graphene NCs for
sensing applications [291].

Cobalt sulfide (CoS)/graphene NCs have found applications in supercapacitors
[292–294] and, like other metal-sulfide/graphene NCs, are generally prepared by
solvothermal route [292, 293, 295]. R. Ramachandran et al., however, demonstrated
the use of oil bath technique to synthesize thematerial [294].G.Huang et al. described
their cobalt sulfide phase as a mixture of CoS, CoS2, and Co9S8 and demonstrated
the use of NC thus formed for Li storage with excellent cyclic performance [295].
Graphene NCs with several other metal sulfides have also been investigated, but
the list is long, and thus we will restrict this discussion by mentioning them with
a few of their applications. MoS2, for instance, has been studied for EM pollution
removal, [296] hydrogen evolution reaction, [297] desalination, [298] etc. Copper
sulfide (CuS)/grapheneNCshave been explored for hydrazine andhydrogenperoxide
sensors, [299] biosensor to detect trichloroacetic acid [300] etc. Various reports on
the supercapacitor application of nickel sulfide (NiS)/graphene NC can be found in
the literature [301, 302]. Sulfides of tungsten (WS2) [303] and vanadium (VS2) [304]
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have been investigated for sensing dihydroxybenzene isomers (catechol, resorcinol,
hydroquinone) and Li-ion batteries, respectively.

7 Summary and Future Prospects

In this chapter, graphene and its nanocomposites with several crucial organic and
inorganic materials have been discussed. Researchers from across the globe unani-
mously believe that graphene is a material of unmatched properties and, therefore,
has a bright future. This chapter is designed to encourage this faith to further add
to what researchers have achieved in the past two decades with graphene. The chal-
lenges that current technologies face for the scaled-up production of graphene and
the currently available options to circumvent these issues have been explored. The
discussion has an emphasis on the liquid phase exfoliation (LPE) process as it is a
simple and one of the most promising techniques for cost-effective production of
commercial-grade graphene in larger quantities.

Characterization tools are required for the quality assessment of graphene. Few of
them, which reveal critical information, have been discussed in the chapter. Basics of
Raman spectroscopy andvarious aspects of it,when implemented for characterization
of graphene, have been critically discoursed. The origin of different bands appearing
in the Raman spectrum of graphene, their broadening and shifting due to structural
changes introduced by imperfections have been discussed. SAED was introduced,
within the scope of graphene, for information on the crystal structure and stacking
of layers. A brief discussion of microscopic tools such as TEM and AFM has also
been presented.

The remarkable properties of graphene made curious minds wonder about their
exploitation in real-world applications. In this chapter, applications of graphene are
reviewed in electronics, healthcare, energy, environmental remediation, sensing, and
protective coating sectors. Graphene nanocomposites are generally prepared to opti-
mize properties for application-specific requirements. For example, graphene NCs
with metals have excellent tribological properties, while NCs with metal oxides and
sulfides have shown much potential for energy storage devices, especially batteries
and supercapacitors. A discussion on the nanocomposites of graphenewith polymers,
metals, metal-oxides, and sulfides has been included in the chapter.
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