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Abstract QuantumDots (QDs) are zero-dimensional nano-particles portraying their
distinguishing optical and electronic properties, they are used as nano-sensors. QDs
have improved fluorescence characteristics, which comprise photostability, broad
excitation spectrum, and narrow emission spectrum. QDs deal with the extensive and
sensitive sensing of heavy metal ions ascribed to the presence of distinct capping
agents and various functional groups lying outwardly of the QDs. These capping
strata and functional moieties attune to the sensing capacity of the QDs, which
influences the interactions of QDs with different analytes by various mechanisms.
In this chapter, a brief overview of heavy metals as environmental contaminants,
their impact on human health, and conventional techniques of detection and under-
lying modes are first introduced. Then, the role of QDs in sensing heavy metals
such as mercury, cadmium, lead, arsenic, chromium, etc., and their progress in the
multiplexed determination of heavy metal ions are explored.
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1 Introduction

Quantum dots (QDs) are semiconductor nanoparticles with excitons contained in all
three spatial dimensions and the ability to transform an entering light spectrum into
a distinct frequency of energy output, resulting in different unique optical features.
QDs contain distinct energy levels, allowing energy levels to be tunedwith small vari-
ations in their size, paving way a for various applications like LEDs, photovoltaics,
etc. QDsmay pass through the bloodstream due to their small size, which unveils up a
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whole new application facet in biomedical applications like biosensing and imaging.
QDs portrayed excellent optical properties, as well as a useful surface chemistry,
ligand binding capability, and the ability to encapsulate in various materials or attach
to various functional moieties besides keeping their native luminescence property,
due to their unique photophysical properties. The occurrence of metallic ions in the
proximity of QDs has a significant impact on their optical characteristics. Optical
equipment can quickly detect even minor alterations in the optical characteristics on
the surface ofQDs (changes in fluorescence and/or colour), making them great candi-
dates formetal sensors. The sensitivity of aQDs to a certainmetal ion causes either an
increase in emission or a decrease inQD intensity. Heavymetals are one of the utmost
significant pollutants in the environment, and they are rapidly becoming amajor issue
of concern. Because of its toxicity, non-biodegradable nature, and ability to accrue
in the environment, metal contamination in the environment is a severe problem
all over the world. Anthropogenic activities such as mining, smelting, industrializa-
tion, domestic and agricultural activities, as well as natural activities such as weather,
metal soil erosion, and volcanic eruptions, are the primary sources of pollution heavy
metal contamination is a major source of concern worldwide, and toxicity caused by
a large number of heavy metal ions is far more destructive and severe than toxicity
caused by a single metal species. The number of worldwide health risks related to
heavy metal exposure has increased [1]. Because of their highly toxic and harmful
health effects, heavy metal ions like lead, cadmium, arsenic, and mercury contami-
nation in water has been a grave alarm around the globe. Their accumulation in the
human body, agricultural, and aquaculture systems has gained widespread interest
in recent years, even at extremely low concentrations. As a result of environmental
contamination, the concentration of these unwanted compounds is steadily growing.
The root cause is industrial effluents and garbage disposal, both of which end up in
the aquatic system. Since they have non-biodegradable nature and hence persists in
soil and water for prolonged periods of time, they ultimately damage humans and
domestic animals, necessitating their identification and removal from biological and
aquatic systems. There are a variety of instrumental methods for detecting heavy
metal species, including atomic absorption spectrometry, X-Ray fluorescence spec-
trometry, inductively coupled plasma mass spectrometry, capillary electrophoresis,
and high-sensitivity microprobes, but sample pretreatment, expensive instruments,
and the need for trained people to operate these instruments are the real challenges
for many of these techniques. As a result, we need a technique for detecting heavy
metal ions that is simple, quick, cheap, selective, and sensitive. For metal ion detec-
tion, quantum dots have significant benefits over traditional approaches. When metal
ions come into contact with the surface of quantum dots, their optical characteristics
are very sensitive. Optical equipment can quickly detect slight modifications on the
surface of QDs (such as fluorescence or colorimetric changes), making them a good
choice for use as a metal sensor.
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2 Mechanistic Insight of Human Health Effects of Heavy
Metals

Human caused activities such as mining and burning of fossil fuels, heavy metals
have been released into the environment by air, water and soil. Bioaccumulation of
thesemetals in living organisms has devastating repercussions. Heavymetals interact
with organelles of cell such as cell membrane, endoplasmic reticulum, mitochondria,
lysosome, nuclei, and important enzymes actively participating in metabolism and
detoxification reactions, leading to DNA damage and conformational changes within
cells, paving way for cancer and apoptosis (programmed cell death) in biological
systems. In the human body, heavy metals are compartmentalised within cells and
tissues of body, here they are attached to proteins and nucleic acids alters their struc-
ture and functioning. On the other hand, heavymetal poisoning can have a number of
effects on the human body. It can inducemental disease by disrupting central nervous
system function, as well as harming blood components and causing damage to the
lungs, liver, kidneys, and other vital organs, leading to a variety of ailments. Long-
term heavy metal deposition in the body may also slow the progression of physical,
muscular, and neurological healing processes, mimicking diseases like Parkinson’s
disease and Alzheimer’s disease. Long-term exposure tomany heavymetals ions and
their compounds cause mutations, and mimic hormones, disordering the functioning
of reproductive and endocrine systems and ultimately causing cancer. Heavy metals
and metalloids are among the major environmental contaminants in both aquatic and
terrestrial ecosystems. Heavymetals are particularly dangerous at low levels of expo-
sure due to their persistence and bioaccumulation, directly alerting living species on
the planet [2] (Table 1).

Table 1 Different limit
values of heavy metal
concentration set by WHO,
EU, EPA (all expressed in
mg/L)

Metal ions EPA WHO EU

Silver (Ag) – – 0.01

Manganese (Mn) 0.05 0.05 0.05

Copper (Cu) 1.3 1 1

Zinc (Zn 5 5 0.1

Iron (Fe) 0.3 0.3 0.2

Lead (Pb) 0.005 0.015 0.05

Mercury (Hg) 0.002 0.001 0.001

Chromium (Cr) 0.1 0.05 0.05

Arsenic (As) 0.01 0.01 0.05

Cadmium (Cd) 0.005 0.005 0.005

a EPA—Environmental Protection Agency
b WHO—World Health Organization
c EU—European Union
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3 Designing and Development of Sensors for Heavy Metals
Toxicity

A range of analytical techniques are used to identify heavy metals. High-
performance liquid chromatography, colourimetry, capillary electrophoresis, voltam-
metry, polarography, atomic emission spectroscopy, inductively coupled plasma
emission spectroscopy, atomic emission spectroscopy, and inductively coupled
plasma mass spectroscopy. Despite the high selectivity and specific sensitivity of
all of these techniques, their use in the sensing of heavy metal ions is restricted due
to high costs, time constraints, tough handling operations, the need for technical
assistances for sample preparation, and the need for a variety of instruments.

Optical fluorescence-based techniques for sensing heavy metal ions in the envi-
ronment have gotten a lot of attention since they offer real-time detection without the
use of expensive equipment. The exceptional generation of a realistic and resilient
fluorescence-based is intrinsically related to the type of the principles on which
it is built especially with new breakthroughs in materials to create unique optical
fluorescence fluorescence-based. Optical processes like as stroke shifts, fluores-
cence quenching, energy transfer, and charge transfer are exploited in fluorescence-
based detection systems. These are the core concepts that provide sensitivity and
selectivity to fluorescence-based sensing systems. Many different probes have been
used in fluorescence-based approaches in a range of scientific disciplines, including
fluorescent proteins, chemical dyes, and quantum dots [3].

3.1 Fluorescent Aptaswitch for Heavy Metal Detection

Aptamers are synthetic oligonucleotide sequences that can preferentially connect
to a target molecule. A simple immobilization method, good thermal stability, and
simplicity of synthesis and modification are only a few of their enticing properties
for sensor design. The most noteworthy characteristic is their outstanding affinity
and specificity for each of their target analytes. As a result, aptamer-based detection
techniques have risen to prominence as highly selective recognition tools [4]. When
thymine (T) interacts with mercury (II) ions, it generates T–Hg2+–T base pairs in
DNA duplexes, and when cytosine (C) interacts with Ag+ ions, it forms C–Ag+–C
mismatches [5]. Since Ono and co-workers [6] reported the first ON-based Hg2+

sensor, T-rich ON sequences have been widely used for the selective detection of
Hg2+ in water samples [7, 8].
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3.2 Heavy Metal Ion Sensors Based on Organic Dyes

Organic dyes are extensively employed in the construction of fluorescence-based
sensors because of their attractive qualities like a high value of molar extinction
coefficient, strong signal, simplicity of modification, and the existence of several
potential reactive sites in their structures. The fluorophores are modified with an ion
recognition unit (ionophore) that serves host for the specific metal ion in order to
detect heavy metal ions. The interaction between the ionophore and the mark analyte
leads to a change in the fluorophore’s photophysical characteristics, which leads to a
shift in its fluorescence emission, generally from “off” to “on.”Mostly, crown ethers,
aliphatic and aromatic amines are commonly used ionophores because they operate
as electron donors, quenching fluorescence light by a photo-induced electron transfer
(PET) mechanism through the fluorophore when the target metal ion is absent.

Rhodamine derivatives are the most widely used organic dyes because of their
structure-dependent characteristics. Fluorescein and coumarin derivatives are two
more dyes commonly used in the production of fluorescent sensors [9]. Fluorescent
dyes have a narrow excitation spectrum, rapid decay, and a low quantum yield. These
problems have been solved, and quantum dots can now be used in sensing devices
[10].

3.3 Quantum Dots as Probe for Inorganic Metal Detection

QDs show great potential for heavy metal ion detection because of their fluorescence
characteristics. QDs are proving to be superior fluorescent probes when equated to
different fluorophores such as fluorescent proteins and chemical dyes. In comparison
to other traditional fluorophores, QDs have greater brightness, high photostability,
hefty stoke shifts, wide absorption spectra, great molar extinction coefficient, high
quantum yield, long fluorescence time, photobleaching resistance, size-dependent
optoelectronic properties, broad absorption spectra, and tuneable emission spectra.
QDs are semiconductor nanocrystals that have lately become popular as fluorescent
probes in chemical research, bio-sensing, and bio-imaging [11]. They are used as a
new class of fluorescent markers as a substitute for conventional fluorescent markers
(organic dyes and fluorescent proteins) due to their excellent and unique optical
and electronic properties, such as broad absorption spectra, narrow and tunable
emission spectra, long fluorescence lifetime, high photostability, and resistance to
photodegradation [12]. The inter-band and intra-band relaxation pathways are altered
by the quantum confinement effect. QDs have inspired a lot of interest as fluorescent
probes for sensing processes, in vitro and in vivo bioimaging, quantum computers,
light-emitting devices, photovoltaics, and, most crucially, analytics-based chemistry.
QDs have remarkable electrical and optical properties which can be transformed by
lowering the number of atoms present in the QDs beside preserving the chemical
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composition. The optical and electrical characteristics of semiconductor nanoclus-
ters are determined by interactions amongst electrons, holes, and their immediate
surroundings. When the excitation energy exceeds the bandgap of QDs, electrons
move from the valence band to the conduction band, triggering photoexcitation. An
electron present in an excited state has a huge amount of energy. A hole and an
excited electron make form an exciton. After being recombined, electrons and holes
relax to a lower energy state. QD luminescence is caused by radiation relaxation.
Recombination and relaxation provide extra energy that might be radiative or non-
radiative. The presence of adsorbates on the surface of QDs has been discovered
to have an impact on their fluorescence efficiency. They can demonstrate a signifi-
cant change in fluorescence intensity property when they approach the surrounding
molecules, which is utilised in the sensing method [13]. Fluorescence intensity in
QDs is caused by combination of the excitation, which in turn is a recombination
of charge carriers (electron-holes), and variations in charges present on the surface
would influence both the efficiency of electron–hole recombination and lumines-
cence efficiency. Photodegradation and quenching of QD fluorescence intensity are
caused by atoms with unmet valencies found on the surface of QDs. To develop
QD-derived sensors for selective sensing of heavy metal ions, it’s best to modify the
surface of the QDs with appropriate capping layer materials and ligand molecules to
make them chemically stable and photobleach-resistant [14]. The nature of capping
layer and ligands affect the fluorescence response of quantum dots. A number of
bifunctional ligands are used to modify the surface of QDs (TOPO, cysteine, PEG,
amphiphilic polymer, glutathione, mercaptoacetic acid, thioglycolic acids, peptides,
avidin, and streptavidin). These surface ligands can modify their sensitivity and
choosiness for explicit analytes of interest by adjusting the fluorescence response
of QDs, and this response can be further changed by changing the capping layer.
Organic and inorganic materials are used as capping materials for QDs. An organic
capping layer facilitates the capacity of QDs to bioconjugate. QDs which are capped
by organic ligands are photo unstable, resulting in trap sites owing to weak interac-
tions between the atoms present on the surface and the capping molecules. Inorganic
capping compounds aid in the passivation of QD surfaces and the formation of the
core–shell structure of QDs [15].

Quantum dots (QDs) finds explicit applications in different fields such as photo-
voltaics, bioimaging, and light-emitting diodes. Direct interaction between the
analyte and the QDs, functionalization of the QDs, and integration of the QDs with
other sensorymaterials are three basic methodologies for developing sensing devices
[16]. Quantum dots are extensively used for detection of different heavy metals due
to their aforementioned features and unique process. Metals such as mercury, lead,
cadmium, arsenic, and chromium are commonly detected.

3.3.1 Detection of Mercury

Mercury (Hg2+) is regarded as hugely detrimental water pollutants by the World
HealthOrganization (WHO)because of its severe impacts on environment andhuman
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health, even at minuscule concentrations. Mercury binds to DNA, interrupting its
normal function, and the toxicity is linked to mitosis across the blood–brain barrier.
Clinical signs of mercury poisoning include pulmonary edema, minamata sickness,
renal damage, chest pain, and chronic central nervous systemdamage [17]. TheWorld
Health Organization (WHO) has set a maximum acceptable amount of 1 mg/L as the
upper limit based on these facts. The main factors attributed to their rising level of
water resources are emissions from several enterprises and refineries. Polluted water
containing mercury must be identified and rectified as soon as feasible.

Zhou and co-workers used CQDs for the detection of mercury for the foremost
time. The synthesis of quantum dots was done by EDTA pyrolysis. The attachment
of Hg (II) on the surface of CQD is anticipated to bring variations in surface states,
paving way for recombination of non-radiative electron/hole pairs. The synthesized
pristine material was capable of detecting Hg(II) to a equal of 4.2 nM, which is
less than limits set by WHO. The probe was effectively used for real water samples
obtained from tap water, lake water, and fountain water and against different ions
[18]. Additionally, CDs synthesized from different precursors like sodium citrate,
polyethene glycol (PEG), folic acid, and casein were used for the detection of Hg
(II) in water with LOD values of 10 nM, 1 fM, and 6.5 nM, respectively.

GCQDs produced from vegetables (Hongcaitai and mushrooms) were used to
detect Hg (II) in spiked and unspiked water samples [19–21]. Kaur and co-workers
[22] synthesized a glutathione-capped CdS quantum dot with a sensing range of
0.54 nM for detection of mercury. However, the presence of copper and chromium
ions obstructed mercury detection, restricting its usage in field applications [22].
Zhang and coworkers [23] used the cooperative effect of Ag2S and ZnS quantum dots
to detect Hg2+ electrochemically under visible light, a novel method that combines
metal and semiconductor sulphides. Manna and co-workers [24] established a ratio-
metric sensor based upon a metal–methyl salicylaldimine complex capped on ZnS
quantum dot doped with Mn+2 for identifying Hg2+ ions. The presence of the analyte
in the sample is indicated by a change in luminescence color [24].

Chu and co-workers [25] designed a mercury detection system based on cerium-
doped silicon sulphide quantumdots. The detectionmethod’s features include double
emission, linear fluorescence dependency on mercury level, and a detection limit of
0.8 m/l [25].

Tanwar and co-workers [26] established white light emission from a combina-
tion of silicon QDs and gold nanoclusters, besides its application in mercury ion
monitoring and mixture ratio management [26].

Non-metal-based quantum dots also find explicit application in heavy metal
sensing. Li and co-workers [27] discussed the application of multimodal carbon dots,
both blue and green carbon dots, in the detection ofmercury ionswith a limit of 50 nM
[27].Wang and co-workers (2019) used UV light to synthesize 1,2 dithioglycol func-
tionalized carbon nitride quantumdotswith a quantumyield of 27%,while Sahoo and
co-workers [28] deployed spider silk to synthesize environmentally-friendly carbon
quantum dots for recognising Hg(II) ions through the FRET mechanism [28].

Graphitic carbonnitride quantumdots (polymeric nanomaterials) forHg(II) detec-
tion via the PL quenching process was described by Patir and Gogoi [29]. A similar
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technique was utilised to develop boron-nitrogen co-doped graphene quantum dots
for sensing Hg2+ and graphene quantum dots [30]. The application of a nitrogen-
doped carbon dot for sensing Hg2+ with a detection margin of 5.3 nM was inves-
tigated by Tadesse and co-workers [31]. Extensive research has been conducted on
ratiometric fluorescence sensing of heavy metals such as Hg2+ and thymine-rich
ssDNA for Hg2+ detection [32].

3.3.2 Detection of Lead (Pb)

Lead (Pb) is a heavy metal ion that poses a substantial effect on biological communi-
ties, different ecosystem, and human health, even in minute concentrations. Lead has
been attributed to hypertension, developmental abnormalities, anaemia, and neuro-
logical and reproductive system malfunctions at blood concentrations more than
5 mM. As a result, the USEPA has set a Pb (II) limit of 15 mg/L in drinking water
[33]. The detection of different ions, such as Pb (II) and Cu (II) ions, was examined
using boron-doped CQDs (B-CQDs) with detection limits of 13.56 and 8.47 nM
[34].

In another study, citric acid-based N-CQDs were coupled with Fe2O3 to precon-
centrate and solid-phase extract little quantities of Pb (II) derived from a matrix
of both vegetable and water samples. This method had a linear detection range of
0.062–62.1 mM and a good detection limit of 16.8 mM [35]. Pb (II) sensing in actual
water samples was also achieved using fluorometric GCQDs made from Ocimum
sanctum leaves (LOD-0.59 nM) and Lantana Camara berries (LOD-9.64 nM) [12,
36]. Sharma and Mehata [37] used MoS2 quantum dots to design a tool for lead
ion detection based on quenching. This detection approach is delicate, with a detec-
tion limit of 50 M, due to dose-dependent fluorescence quenching. Mir and co-
workers [38] employed fluorescence quenching to detect lead ions using ZnSe and
ZnSe@ZnS core–shell quantum dots capped with thioglycolic acid [38]. Kaewprom
and co-workers [39] used dithiocarbamate doped graphene quantum dots to construct
a resonant light scattering sensor of complex metallic nanoparticles for the specific
detection of lead ions inwater samples.Carbondotswithflavonoidmoieties are a very
sensitive technique with a detection limit as low as 55 pM [19–21]. Another carbon
dot-based method developed by Bhamore and colleagues [40] combines glutathione-
capped carbon dots with an agarose gel for optical detection with the naked eye [40].
This systemhas aworthy linear connectionwith lead content anddoes not require a lot
of heavy instrumentation for detection, making it appropriate for a field application.

3.3.3 Detection of Chromium (Cr)

Thepresenceof highquantities of chromium inwater supplies ismostly attributable to
modern-day businesses (e.g., bronzing,mining, electroplating, and textile dyeing). Cr
(VI) is a well-knownmetal that has been linked to carcinogenic andmutagenic health
consequences, posing a hazard to ecological systems. According to the USEPA, total
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chromium in drinkingwater has an acceptable limit of 100 ng/ml, while Cr has a limit
of 50 ng/ml. The inner filter effect and static quenching processes are also examined
in relation to Cr sensing approaches employing CQDs. A detection limit of 24.6 mM
for Cr (III) sensingwas achieved using yellow fluorescent CQDs (y-CQDs) produced
by acid carbonization of sucrose in the presence of phosphoric acid as a dehydrating
agent [34].

Elmizadeh and co-workers [41] deployed a fluorescence quenching method based
on synthetic ligand coated CdTe quantum dots to design a sensitive nanosensor
for quick detection of Cr(III)ion [41]. Parani and Oluwafemi [42] investigated an
aggregation-based quenchingmethod for the selective detection of Cr (III) ions using
AgInS2-ZnS quantum dots [42]. This sensing system used the collaborative effect of
static and dynamic quenching to differentiate Cr(VI) from Cr(III) in mixed samples
[7, 8]. Khan and co-workers [43] presented a ZnO quantum dot-based sensor for
the selective detection of Cr6+, with a detection limit of 0.18 nM [43]. Mondal and
co-workers [44] make use of a white light-emitting Eu and Tb co-doped carbon
fluorescent sensor for the detection of Cr(VI) ions [44]. Hu and co-workers [45]
developed chlorine and nitrogen co-doped carbon nanodots for the speedy detec-
tion of Cr(VI) ions, and CQDs fluorescence was quenched using a combination of
dynamic quenching and the inner filter effect [45]. Wang and co-workers [46] used a
similar co-doping approach for selective detection of Cr3+ ions with a detection limit
of 6M bymeans of doping S/N in carbon dots [46]. A fluorescent probe for detection
of Cr3+ with a limit of detection as low as 0.02 M was also designed deploying a
carbon graphene allotrope.

3.3.4 Detection of Cadmium (Cd)

Cadmium (Cd) is a well-known non-essential human body component. Cd is used in
sectors such as bronzing, storage batteries, plastic stabilisers, waste metal treatment,
dyeing, colorants, nuclear reactor rods, and semiconductor manufacture. Cadmium
uptake beyond the tolerance limit (5 mg/L) has been associated with deadly diseases
such as itai-itai, prostate, kidney, and lung cancers, among others. An electrochemical
sensor based on N-CQDs-graphene oxide hybrid (NCQDs-GO) was designed for
numerous ion detection of lead and cadmium ions by deploying anodic stripping
voltammetry [47, 48]. Because of greater electro-agile surface area and plenty of
oxygen-rich functional surface moieties, the hybrid expedited the specific detection
of Cd (II) and Pb (II) ions through electrostatic force, which further amplified the
detection limit of the improved electrode (Cd (II): 834mM;Pb (II): 1420mM). CQDs
also find application as a luminophore for Cd (II) detection in graphite furnace atomic
absorption spectroscopy. Yin and co-workers [49] described a CdTe/CdS quantum
dot inscribed with ammonium pyrrolidine dithiocarbamate, which leads to structural
changes in reacting with Cd ions, causing dot quenching. The Cd ions are attached to
the changed surface, restoring fluorescence and letting for effective Cd ion detection
[49]. The presence of Cd ions in the material analyzed causes a variation in the ZnSe
quantum dot, generating a ZnSe/CdS core–shell structure. This approach exhibited
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high selectivity for Cd ions, with a detection limit of 11 nM [50]. Pandey and co-
workers [51] synthesized carbon dots using green technology which detect Cd (II)
ions via ligand-mediated electron transfer inMurraya koenigii leaves. This approach
may detect cadmium ions in the least value of 0.29 nM [51].

3.3.5 Detection of Arsenic (As)

Humans are prone to arsenic directly or indirectly by the absorption of contaminated
water, as well as foods and crops that have been irrigated with arsenic-rich water.
According to theWorld Health Organization, arsenic-related health problems impact
up to 140 million people in around 50 nations. The inorganic form of As (III),
also accepted as arsenite, is the utmost lethal of the various oxidation forms of
arsenic because of its kinesis in water and is readily uptaken by cells. Skin damage
(pigmentation, lesions, patches, and other symptoms), cardiovascular sickness, and
skin, lung, and bladder cancer have all been associated with long-term ingestion of
arsenic-contaminated water [52]. As a result of these observations, WHO has set an
acceptable limit of 10 mg/L. Microwave-based pyrolysis of citric acid and sodium
thiosulphate produces sulfur-doped CQDs that can be used in dual info systems,
such as colorimetric and fluorescence, to detect inorganic As (III). The addition of
glutathione to the SCQDs improved the sensor materials’ selectivity for As (III). In
fluorescence mode, these modified S-CQDs had detection limits of 32 and 48 pM,
respectively, in water samples obtained from river water and tap water [53]. CQDs
synthesized from decaying tomatoes and prickly pear cactus have recently been
described for detecting As (III) in pond, tap, river, and industrial water samples.
Pathan and colleagues [54] created a ‘turn-on’ sensor based on magnetic graphene
oxide quantum dots for the selective detection of As3+ ions [54]. An analogous
mechanism was studied by Wu and co-workers [55], in which CdTe/CdS core–shell
quantum dots capped with cysteine make coordinating interaction with the arsenic
ions, resulting in dots aggregating. This technique displayed high sensitivity and
selectivity with a detection limit of 10 ng/L [55].

3.3.6 Detection of Copper (Cu)

Isarov and Chrysochoos [56] proposed a method for determining Cu2+ content and
describing the mechanism of action using CdS QD. Cu2+ interacts rapidly with CdS
QD surfaces, stimulating the core conduction band excitation state electrons, leading
to recombinant valence band holes [56]. Itwould result inQDfluorescence quenching
and a redshift emission peak. Xie [57] enhanced the QD modifier by coating the
ZnS-coated CdSe core shell QD (CdSe/ZnS QD) surface with bovine serum albumin
(BSA). So they detected Cu2+ and copper in Chinese herbal medicine using QD-
BSA light probes [57]. Yan and co-workers [58] used cysteine and glutathione as
modifiers to manufacture CdTe QDs and obtained quantitative Cu2+ detection with
0.15 g L−1 LOD. In this, Cu+2 binds to the surface of CdTe QDs via coordinated
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actions initiated by the surface’s abundant carboxyl amino groups. Then it’s reduced
to Cu+, which causes fluorescence to fade [58].

3.3.7 Detection of Silver (Ag)

CdS quantum dots were synthesized using L-cysteine-cysteine. QDs on interaction
with AgC, produced florescence enhancement which could be ascribed to CdS/AgC
SR complexes. Fresh L-cysteine was add on to improve imperishability. The sensi-
tivity of this method has been improved, with a LOD of 5 × 10–9 mol/L. Xia [59]
tailoredwater-soluble CdTeQDof four varying sizes (19, 26, 31 and 42 nm) followed
by coated of mercaptopropionic acid and studied the interactions between CdTe QD
of different sizes and AgC [59].

3.3.8 Miscellaneous Metal Ion Detection

Li and coworkers [60] developed CdTe QD coated with thiol and nano-rods for
bivalent metal ions such as Co2+, Ca2+, Mg2+, Zn2+, Mn2+ and Ni2+. In this study,
fluorescence enhancement was caused by Zn2+, whereas fluorescence quenching
was caused by Mn2+, Ni2+, and Co2+ [60]. Na and Ming [61] created CdTe QD
modified with thioglycolate and discovered that the mechanism could be linked
to the coordination bond formed between hydroxyl and carboxyl groups and ions,
besides other characteristic groups present on the surface of the QDs. This approach
can be used for detection of vanadium in water samples in traces. Ali and co-workers
[62] synthesized glutathione modified CdTe and CdSe/ZnSe QDs for the quantitative
detection of fluorescence quenching Pb2 + with a LOD of 20 nmol L−1 [62].

3.3.9 Multiplexed Detection of Heavy Metals

Singh and colleagues [63] synthesized CdSe QDs which are capped with starch for
collective detection of Cr along with Hg in aquatic environments. The capacity to
determine the oxidation state of the analyte and the ease of synthesis are distinct
features that make it a feasible field application alternative [63]. On the basis of
quenching, Zhou and co-workers (2019) established a microfluidic system based on
ZnSe quantum dots for the specific detection of lead and cadmium. Because of its
eco-friendly nature, low cost, and high efficiency, this device is a viable alternative
for field application. A comparable approach using SnO QDs for effective detection
of Hg2+ and Pb2+ ions in water was discovered by Liu and co-workers [64]. Another
quenching-based detecting technology is CdTe QDs which are capped with mercap-
topropionic acid [65]. To detect Pb, Cr, and other metal ions, Baslak [66] employed
hydroxylated CdTeS QDs coated with cetyl tri ammonium bromide. This technique
had a higher sensitivity for detecting Cr (III) ions [66]. Radhakrishnan and colleagues
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[67] synthesized a carbon dot–graphitic nitride-based nano-composite with fluores-
cence recovery in the presence of lead and chromium. This turn-on sensor depicted
greater specificity and sensitivity, with detection limits of 0.2 nM, and 0.54 nM for
Lead and Chromium, respectively [67]. Chini and co-workers [68] designed a FRET-
based graphene quantum dot-carbon dot system for the detection of As5+, Pb2+, and
Hg2+, in which non-radiative energy transfer to carbon dots which is an acceptor
causes donor-graphene dots (donor) to quench [68]. Yarur and co-workers [69] used
carbon dots to construct a ratiometric detection system for the sensing of Pb2+ and
Hg2+ ions, with detection limits of 37.1 and 39.5 nM, respectively [69]. Buledi and
co-workers [70] studied a range of nanomaterial-based sensors formultiplexed detec-
tion of heavy metals like mercury and lead, using both metal and non-metal-based
QDs [70] (Table 2).

4 Important Trends and Challenges in Present Scenario

This chapter presents big picture on the different quantum dots with special emphasis
on carbon dots and their current development in the optical diagnosis of key envi-
ronmental contaminants (heavy metal ions) divulges their intensified progress in
topical past. Still, many tasks until now must be considered for their probable reli-
ability and application as practically feasible sensing probes in daily life. Synthesis
approaches for emerging highly stable and effective quantum dots, along with the
emission from the total visible spectrum and fine bandwidth of fluorescence signal is
essential for precise applications and improved sensitivity. Chemically tailored QDs
have high quantum yield and FL signal intensity in comparison to green QDs. Partic-
ularly, research is in progress to find the probable inexpensively feasible methods
for purification of green QDs. Numerous less explored workable precursors such as
recycled waste, microbes, and residuals, are lined up for assessment of synthesis of
QDs of natural doping with greater quantum yield. Above and beyond the mandatory
mechanistic apprehension of green QDs synthesis, it is crucial to recognize the cause
responsible for the precursor-predicated precision of theQDs for explicit heavymetal
ions. On the contrary, a synchronized and upfront surface alteration might upsurge
optical signal for improved pertinence. Further comprehensive studies are needed for
development of a ratiometric and recyclable (by operationalizing QDs onto 2D/3D
substrates) sensing probes exhibiting FL emission in the UV–visible-NIR range. We
have faith in up-coming inquisition of optical detection-based systems deploying
carbon dots will procure wide-ranging consideration in different fields such as agri-
culture, food, and textile pollutant sensing owing to its easiness, biocompatibility,
profitable.
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5 Probable Steps for Improving Sensitivity and Selectivity
of Individual Metal Ions

Suitable unpretentious and handy functionalization procedures, without mislaying
the biological, optical, and chemical properties of the nanoparticles, are needed to
augment discrimination and sensitivity of QDs toward various heavy metal ions.
Beside this, the application of maintainable genetically modified biomass with
precise metabolic paths can assist in the designing of finger-printed response based
on optical sensing. Like specificity, signal intensification is the unswerving process
for enlightening the sensitive nature of optical sensors. Specifically easy-going and
projecting ways to expand the signal strength is by passivating the QDs with various
polymer-based operationalization procedures. Therefore, equilibrium amid the selec-
tivity and sensitivity protocols can be attained. Furthermore, metal/semiconductor
nanoparticles functioning as a carrier for CQDs active species might conceivably
consequence in needed optical characteristics. These nanoparticles will be attaining
an improved signal amplification and function as an supersensitive optical sensor
for sensing analytes. There is a style for mini and simplification of detection by
portable and mini devices which deliver quick and precise responses with probable
importance in the point-of-care technologies. Hardware and software can be united
with detection measures like colorimetric assessment and luminescent assays using
portable devices adequately.

6 Concluding Remark

Escalating anthropogenic activities are responsible for releasing heavy metal pollu-
tants in natural aquatic and soil systems, and which poses a substantial menace
to human and environment. Taking into account the grave health and environ-
mental issues of these lethal and non-biodegradable metal ions, there is immediate
need of solutions like monitoring in aquatic system. Optical-chemical sensors of
nano-dimensions have undeniably shown higher sensitivity and specificity for these
contaminated metal ions. Yet, there is demand of environment friendly and work-
able sensor material in this area. Quantum dots are low-priced, ecologically friendly,
biocompatible, and exhibited improved properties, and hence are considered as supe-
rior nanomaterials for sensing of heavy metals. This chapter has been systematized
to brief the attempts made in the development of QD sensing systems with prime
focus on the present status, challenges, and future prospects. This chapter will benefit
the researchers, technologists, and engineers to scale up both biological and chem-
ical synthesis methods along with establishment of outstanding visual color-based
sensing techniques. Simplicity in designing and augmentation of specificity towards
target metals needs upgradation in their performance, selectivity, and sensitivity. To
conclude, challenges concerned with QD-based disposable sensors and user-friendly
readout systems needs extensive investigation to inflate their use in real-world sensing
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applications. The field applicability of the sensors will offer feasibility in onsitemetal
detection and the work hassle free. It will also impart incessant monitoring of metals
ions conceivable on the locations selected for observation.
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