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Chapter 9
Artificial Intelligence and Machine
Learning in Drug Discovery

Vivek Yadav, Jurnal Reang, Vinita, and Rajiv Kumar Tonk

9.1 Introduction

An average of $1.3 billion is spent on research and development for individual
medicine (Kolluri et al. 2022). For non-oncology drugs, the median period from
conception to approval spans from 5.9 to 7.2 years, whereas for oncology drugs, the
median time is 13.1 with 13.8% overall probability of success for drug-development
(DiMasi et al. 2016). Hence, lowering the success rate and overall costs resulting to
lengthy timelines for the modern medication R & D process is a significant issue for
both business and academics. Furthermore, the ongoing attrition of drug candidates
is the cause of the modern pharmaceutical industry’s excessive expenditure. Recent
data indicate that animal toxicity (11%), poor pharmacokinetics (39%), and ineffec-
tiveness (30%) account for 80% of the causes of attrition of the drug development
process. Unpredictably, the issues raised above are directly connected to the discov-
ery of drugs prior to clinical trials, showing that there is space for improvement
(Wong et al. 2019). Since it is practically impossible to synthesis and evaluates all
the potential compounds through tests. However, the overall procedure is typically
decided by knowledge-based judgments, which might be highly prejudiced.

In the past 10 years, machine learning (ML) and artificial intelligence
(AI) techniques have been well-known, thanks to the significant developments in
computer technology. Artificial intelligence has the tendency to gather and process
massive amounts of data required for research purposes. This helps in finding broad
patterns of illness targets using a data-driven method which is a difficult task to
recognize due to the complexity of the disease mechanism. In this area, a number of
innovative researches have demonstrated the potential use of AI and ML techniques
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in drug-target identification as well as their capacity to learn and uncover disease
patterns with the corresponding targets without relying on biological proficiency.
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Fig. 9.1 Drug discovery process guided through AI and ML

The process of finding a medication lead starts with identifying the target of a
certain disease, followed by hit identification, and lead optimization (Fig. 9.1).
However, the traditional approaches to drug discovery required a lot of human
labor, money, and time over an extended period of time. Additionally, research
cannot be done with absolute certainty regarding the possibility that a given drug
candidate’s trial will be successful. The stages of drug discovery where AI is
effectively cost-reducible start with the target identification and then identification
of the lead or hit molecules through hit identification; furthermore, it helps in lead
optimization and even aids in post-marketing surveillance reports.

AI/ML and deep learning systems have the potential to upsurge the probability of
accomplishment ratio in drug development process. Moreover, these techniques
provide significant progress in a number of R & D fields that includes novel target
identification, deep learning and understanding of the target’s role in the disease,
insights protein structures prediction, and the molecular compound design and
optimization. AI further extends their support into the discovery of small molecule
by involving in different field deals with new biology, better or distinctive chemistry,
and in vivo and in vitro study with higher chances of success and less time making it
less expensive as well. In this chapter, artificial intelligence, machine learning, and
deep learning in the drug development process with its application will be discussed.
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9.2 Artificial Intelligence

9.2.1 Concept of Modernization

The use of computers and computational techniques in research and engineering
could be considerably improved with the development of modern artificial intelli-
gence (AI). By assessing clinically pertinent data that directs the discovery of new
potential targets, applications of artificial intelligence (AI) in data and chemical
synthesis process are directly involved in drug development optimization. The
creation and improvement of potential medications’ molecular structures can be
done using an AI in drug design. Additionally, medication design methodologies
comprehend how proteins’ specific forms impact their activities in health and
malfunction in sickness.

AI is commonly combined with better patient monitoring process performed
during clinical trials and medical devices that access specific patient data and advise
medical decisions in the organization, optimization, and operation and acquire
crucial patient’s data for clinical studies (Zhavoronkov et al. 2020). Additionally,
it is increasingly feasible to utilize AI approaches to enhance healthcare research and
services. However, one such application is risk-based guidance with deep-learning
models used to anticipate preventable hospital readmissions (Farghali et al. 2021).

9.2.2 Models

9.2.2.1 AI-Guided Target Identification

A very popular and effective approach to finding new drugs is target-based drug
discovery. For the treatment of any particular diseases, one should identify the target
responsible for the agonist or antagonist actions. However, because of the choice of
targets that are weakly related to the disease or have an unsupported theory, many
therapeutic candidates in clinical trials have poor efficacy or elevated toxicity (Kim
et al. 2020). Consequently, choosing appropriate targets requires a clearly distinct
model for the relationship between the ailment and biological components. To
interpret the connections, a variety of omics data types including genomics, prote-
omics, and metabolomics are required for better results.

The three kinds of conventional target identification techniques include machine
learning, network-based models, and statistical analysis (Brown 2007). The most
common and traditional methods for target identification have been statistical ana-
lyses of omics data for many years. These techniques were developed using the
genome-wide study of associations (GWAS) and its emphases on finding genetic
differences between samples from healthy and diseased people. By using association
tests for the disease’s gene expression, such as the Chi-squared test, Fisher’s exact
test, or t-test, it is possible to pinpoint potential target genes. Numerous study used



different types of data such as for the tumor samples from the Gene Expression
Omnibus (GEO) project, miRNA expression data from NCI-60 cancer cell lines, and
TNBC and non-TNBC data from the Cancer Cell Line Encyclopedia (CCLE) project
to identify three kinase (PKC, CDK6, and MET) targets for triple-negative breast
cancer (TNBC) (Chen and Butte 2016). They performed a two-stage bioinformatics
investigation that involved a patient-based Kaplan Meier survival test and cell-based
gene expression analysis. The disease-related genetic variations can be found using
GWAS (Zhu et al. 2016). In order to find the genes linked to a complex human
feature, Zhu et al. introduced a technique called Summary data-based Mendelian
Randomization (SMR).
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9.2.2.2 Network-Based Approaches

Network-based approaches are frequently employed to depict the intricate relation-
ships between the many biological components. Networks are made up of nodes,
which stand in biological components, and edges, which show how the nodes
interact. Furthermore, this method uses a heterogeneous network to manage the
various omics data types. Consequently, a network-based method to target identifi-
cation is used in numerous investigations.

This network identifies gene sets linked to disease pathways by capturing genes
with identical biological process function. Network analysis was utilized by Petyuk
et al. to pinpoint a late-onset Alzheimer’s target; to determine the gene-protein
expression association contours, they built a co-expression network using peptide
and transcript data (Petyuk et al. 2018; Mohamed et al. 2020). To add order or path
towards network edges, they also created causal predictive networks.

Recently, target identification has also been accomplished using the knowledge
graph. Entities, relations, and semantic data are represented in knowledge graphs as a
machine-interpretable graph. Based on tensor factorization, a knowledge graph’s
entity and relationship are encoded into three embedding vectors and efficient
through learning by decreasing wrong facts and maximizing accurate facts.

9.2.2.3 Machine Learning-Based Approaches

Finding broad spectrum of illness targets using a data-driven method remains
difficult due to the complexity of the disease mechanism. Using the classifiers, we
can determine whether a gene is associated with the therapeutic target or not.
Through gene-disease association data, Open Targets platform that can be classified
into four types such as Random Forest (RF), Support vector machine (SVM), Neural
Net, and Gradient Boosting Machine (GBM) (Ferrero et al. 2017). When the four
classifiers are performed similarly, the results will be an AUC of 0.75 and an
accuracy of about 70%. By combining these regression models with gene expression
data from GEO and Array Express, Mamoshina and co-workers created an age
prediction system. They used feature importance analysis to determine which



genes were most closely connected with age prediction, and found that five well-
known medication targets among the top 20 genes (Mamoshina et al. 2018).

9 Artificial Intelligence and Machine Learning in Drug Discovery 209

9.2.2.4 AI-Guided Hit Identification

The important milestone in preclinical drug discovery is the identification of drug-
target interactions. The molecular interaction among the drug and the chosen target
determines the desired effects of the treatment, but unwanted interactions that were
not specifically targeted during drug development might also result in side effects
and the need to reposition the drug (Keiser et al. 2009). In order to maximize the
effectiveness of the initial phases of drug development, numerous computational
models are used to detect drug-target interaction and estimate binding affinities,
which also has the benefit of delivering unique drug candidates (Ballester and
Mitchell 2012; Stepniewska-Dziubinska et al. 2018). There are three basic types of
hit identification computational approaches: the first focuses on the structure of the
protein, the second on the structure of the ligand, and the third on the chemogenomic
methods that describe similarity and feature-based methods (Fig. 9.2).

9.2.2.5 Structure-Based Approaches

The target protein’s 3D structures, which are produced by X-ray crystallography
(XRC) and proton nuclear magnetic resonance spectroscopy (protein NMR), are
utilized by structure-based approaches. A key strategy in structure-based techniques
is a molecular docking simulation, which is carried out in two parts (Imrie et al.
2018). The first phase is the search for ligands in conformational space, which
thoroughly simulates potential binding poses. Following a conformational search,
a scoring function ranks potential ligand poses on the targeted protein structure and
calculates binding affinity in the second phase. The evaluation of docking simula-
tions is influenced by the scoring function’s quality. Traditionally, binding affinity
posture is predicted using empirical or knowledge-based scoring systems.

Fig. 9.2 AI guided hit identification methods in drug discovery
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Data-driven machine learning scoring functions (MLSF) are created by
employing support vector machines (SVM) and a random forest score (RF-Score)
towards correcting the bias of classical scoring systems. In order to evaluate binding
affinity, numerous deep learning-based scoring functions (DLSF) have recently been
created. They have used a variety of deep learning approaches with the given pose,
including a 3D convolutional neural network (3D-CNN) and a graph convolutional
network (GCN). Each voxel has features that describe internal characteristics
including ionization, hydrophobicity, aromaticity, and hydrogen bonds, among
others. Deep learning today uses the convolutional neural network (CNN) as a key
tool for pattern recognition. 3D-CNN is considered to find a three-dimensional
spatial feature, binding pose, and affinity patterns for 3D voxel-based approaches.
The potential net performed better than the RF-Score using GCN for the
non-covalent (O’Boyle et al. 2011; Ma et al. 2015). Additionally, a number of recent
researches recommended an examination of feature weights, which helped to better
expand the compound’s design.

9.2.2.6 Ligand-Based Approaches

The foundation of ligand-based approaches is the idea that molecules with compa-
rable structural characteristics would interact with the same target. The main strat-
egies in ligand-based methodologies are the quantitative structure-activity
relationship (QSAR) models, three-dimensional QSAR, two-dimensional study
fingerprint regions for the arrangement of the atoms (2D-QSAR), and estimation
of quantitative associations (weights) between structure and its bioactivity (Yadav
et al. 2020). A compound’s structural and physicochemical characteristics have
several connections to its biological activity, for instance, the partition coefficient
is closely connected to the hydrophobic effect, which results towards receptor
affinity. Many quantitative representations of a chemical can be utilized for predic-
tion, ranging from a straightforward atom count to the Lipinski rule of five (Yadav
et al. 2022). In order to develop quantitative molecular descriptors of chemicals,
there are numerous tools available. To produce molecular descriptors for bioinfor-
matics and cheminformatics, there are three open-source programs: RDKit,
OpenBabel, and chemical development kit (CDK). QSAR creates a model to predict
the bioactivity of compounds based on the quantitative descriptors that are gener-
ated. On-target bioactivities and ADME attributes were included in the benchmark
datasets (Kaggle datasets) for QSAR prediction that is Merck Molecular Activity
Challenge (MMAC) issued in 2012. Deep learning-based QSAR calculations have
done better than earlier RF QSAR predictions as an advanced deep learning tech-
nique methodology.
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9.2.2.7 Chemogenomic Approaches

Target proteins and chemicals are both used in chemogenomic techniques. The
excellence and variety of chemogenomic techniques are taken advantage of by the
exponential growth of data on proteins, compounds, and drug-target interactions
(DTI). Chemogenomic techniques are often divided into two groups: similarity
methods and feature-based techniques.

(a) Similarity-Based Approaches
In order to predict DTIs, similarity-based approaches focus on resemblances

between the obtained protein and chemical structures. To develop most suitable
similarity index between the proteins and chemicals, a variety of methods can be
used such as the topological similarity in graphs and networks, normalized
Smith-Waterman scores, Tanimoto coefficient, and pretense distance between
protein domains. The bipartite local model (BLM) is a noteworthy study that
makes use of the graph-based approach (Bleakley and Yamanishi 2009; Ding
et al. 2013). BLM creates a bipartite graph connecting medications and targets,
which expects the drug target interactions, and then aggregates both to get a final
prediction.

(b) Feature-Based Approaches
Target and compound feature vectors, which are fixed-length vectors describ-

ing significant physicochemical qualities, are used in feature-based approaches.
Drug and target vectors are concatenated, and machine learning models are
trained to categorize DTIs using feature vectors of interaction and labels.
Moreover, the drug-target characteristics features can be analyzed by protein-
protein and drug-drug interaction networks to improve prediction performance
(Li et al. 2016; Lee and Nam 2018). Furthermore, applying a deep learning
model to feature-based methods has been suggested in numerous papers as a way
to improve the results for drug design. However, feature-based approaches have
a number of drawbacks, one of which is the information that is lost during
feature engineering.

9.2.2.8 AI-Guided ADMET Prediction

Optimizing pharmacokinetic parameters with absorption, distribution, metabolism,
excretion, and toxicity is one of the crucial parts in the drug discovery process
(ADMET). In order to effectively direct the stages of drug discovery, it is necessary
to examine compound’s ADMET properties for the detailed understanding of
complex biological mechanism (Gola et al. 2006). AI helps in understanding this
complex human biological process to determine the results in a faster way with
accuracy. The collection of bioactivity and data as well as sophisticated machine
learning techniques, the pharmaceutical industries, as well as academic institutions
have been drawn to in silico ADMET property predictions.
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9.2.2.9 AI-Guided Lead Optimization

The phrase “finding a needle in a haystack” is used to describe the process of
identifying a molecule that provides the appropriate pharmacological characteristics
or has activity against biological targets. Researchers believe that there are roughly
1030–1060 chemical possibilities in the space of synthesizable compounds,
although there are now only about 160 million chemicals listed in Chemical
Abstracts Service. Too many resources and computational resources would be
needed to fully count this enormous expanse.

These methods make use of deep learning techniques that have shown measur-
able effectiveness in the fields of machine translation and synthetic image synthesis.
Knowledge of the chemical space distribution and performing targeted optimization
to get the desired pharmacophore features are key aspects of performing deep
generative models in the lead optimization areas (Brown et al. 2019). Although
every method has its particular unique advantages, however the AI-guided methods
provide number of advantages over other conventional approaches such as it is
entirely data-driven and it can decrease human bias. Furthermore, using gradient-
based optimization, the chemical space is explicitly modeled as a continuous func-
tion (Noorbakhsh-Sabet et al. 2019).

9.3 Applications

Healthcare professionals ought to be prepared for the approaching era of artificial
intelligence and welcome the new capabilities that will enable more effective and
efficient care. In this article, we examine machine learning’s uses, difficulties, ethical
issues, and viewpoints in the fields of medicine, translational research, and public
health.

9.3.1 Disease Prediction and Diagnosis

Although artificial intelligence is increasingly being used in healthcare, research still
mostly focuses on cardiovascular, nervous system, and cancer related as these are the
major causes for the ill health and death. Early diagnosis of a variety of diseases can
now be accomplished by refining the extraction of clinical understandings and
performing these from the well-trained and verified system. For instance, the Food
and Drug Administration (FDA) of the United States has approved the use of
diagnostic software intended to find wrist fractures in adult patients. More over,
6% of the adult population in the United States suffers from depression. Image
heatmap pattern recognition was 74% accurate at predicting severe depressive
illness.
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Artificial intelligence has the ability to provide prompt and accurate disease
diagnosis, according to several researches. For the classification of complicated
and multifactorial diseases, supervised approaches are useful tools for capturing
nonlinear interactions. Abedi V. et al. discovered in a research involving 260 indi-
viduals that the model can identify acute cerebral ischemia more accurately than
skilled emergency medical peoples (Abedi et al. 2017). However, the noisy data and
experimental constraints diminish the therapeutic value of the models; deep learning
methods can solve these constraints by lowering the dimensionality of the data by
layered auto-encoding analyses.

9.3.2 Clinical Trials and In Silico-Based Prediction

With the AI method, researchers can partially replace animals or people in a clinical
trial and create virtual patients with particular traits to improve the results of such
investigations.

The deep learning techniques can be used in pharmacokinetics and pharmacody-
namics from the initial preclinical stage to the later post-marketing analysis, and they
are especially useful for pediatric or orphan disease trials. In one study, researchers
created a sizable in silico randomized, placebo-controlled Phase III clinical trial
study in which they treated artificial Crohn’s disease patients using virtual therapies.
However, with variable drug efficacy results revealed a favorable association
between the baseline disease activity score and the decline in disease activity
score. The investigational medicine GED-0301 did not receive a high score from
the model, and this prediction was confirmed when the business that was conducting
the phase III study on GED-0301 halted it after failing to pass an interim futility
review. The design and discovery stages of a biomedical product, the identification
of biomarkers, the optimization of dose, or the length of the proposed intervention
can all benefit significantly from AI-guided in silico clinical trials.

9.3.3 Drug Discovery and Repurposing

Around 25% of altogether medications have been found as a result of unintentional
bringing together of various areas. Due to the factors such as high costs of drug
research, low success rates in clinical trials, the application of AI and ML is growing
significantly and three-dimensional structural data that can aid in the characterization
of pharmacological targets, and are used in the drug discovery process. The AI in
drug repurposing process not only provides the new targets for the existing drugs but
also reduces the expenditure cost.

For example, the DSP-1181 is the first AI-created medication to enter in clinical
trials; it is a long-acting, powerful serotonin 5-HT1A receptor agonist. Exscientia is
the biotech company which discovered DSP-1181 in collaboration with Sumitomo



Dainippon Pharma of Japan, which noted that the time from screening to the
conclusion of preclinical testing was less than 12 months as compared to 4 years
utilizing conventional procedures. Researchers at the Massachusetts Institute of
Technology (MIT) discovered the medication halicin, which is effective against
bacterial type (Escherichia coli), using a machine learning algorithm (Stokes et al.
2020).
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Moreover, artificial intelligence is used in deep learning of the mechanism of
medication toxicity, for example, terbinafine toxicity. The antifungal terbinafine may
cause liver damage in some patients, which has very negative health effects. In
another example, the machine learning method was performed to determine potential
biochemical routes of the terbinafine drug to identify the biotransformation mecha-
nism by the liver. The student discovered that the terbinafine metabolism is a
two-step process through the AI/ML algorithm data.

In other examples, sildenafil, a drug first created in 1989 to treat angina, was later
discovered to be effective in treating erectile dysfunction and was given the name
Viagra. Thalidomide was initially created to treat morning sickness, but it caused
serious birth problems, including limb deformity, and was removed off the market. A
few years later, scientists learned that thalidomide has an anti-angiogenesis effect
and began using it to treat leprosy and multiple myeloma.

To advance the knowledge of understudied biological systems, AlphaFold AI
technique revealed the possible predictions of five SARS-CoV-2 targets in 2020,
including the SARS-CoV-2’s membrane protein, Nsp2, Nsp4, Nsp6, and papain-like
proteinase (C terminal domain). The antiviral medications such as atazanavir,
remdesivir, efavirenz, ritonavir, and dolutegravir were computationally identified
by the MT-DTI technique.

9.4 Machine Learning

Machine learning, a well-known branch of artificial intelligence, used a large
number of databases to identify different patterns of variable interactions. The ML
can generate novel ideas, uncover previously unknown relationships, and be found
to be helpful in obtaining a fruitful path for the drug development and research.
Many fields, including data production and analytics, have adopted machine learning
(ML). Algorithm-based approaches, like ML, have a strong mathematics and com-
putational theory foundation. Many potential technologies have made use of ML
models, including support vector machine-based improved search engines, deep
learning (DL) assisted driverless automobiles, and advanced dialogue recognition
technology.

Deep learning is a branch of machine learning that creates automated predictions
from training datasets by simulating the functioning of the human intellect with
numerous layers of artificial neuronal networks (Patel et al. 2020). Deep learning-
based models frequently have several parameters and layers; as a result, model over-
fitting may result in subpar prediction accuracy. Over fitting can be avoided by



enlarging the training sample, reducing the number of hidden layers to obtain the
balanced data. The example of the deep neural network application is to reduce the
time it took to diagnose new outpatient cerebral hemorrhages by 96% with an
accuracy of 84%.
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9.4.1 Classifications

The machine learning methods are categorized into two types such as supervised and
unsupervised methods (Table 9.1). In supervised learning, labels for fresh samples
are determined using training examples with established labels. The regression and
classification are useful applications of supervised learning. Examples of applica-
tions for supervised learning techniques include the identification of lung nodules
from chest X-rays, risk estimation models for anticoagulation therapy, automated
defibrillator implantation in cardiomyopathy, categorization of stroke and stroke
mimics, identification of arrhythmia in electrocardiograms, and the designing of the
in silico clinical trials. In addition to processing labeled input in supervised learning,
generative deep neural networks (DNNs) can also be used to analyze unlabeled data.
One of the most popular generative network topologies for unsupervised learning is
the deep auto-encoder network (DEAN).

Unsupervised learning does not require labeled data and can find unseen patterns
in the data that are frequently used for data exploration and the production of
innovative ideas. Prior to recognizing patterns in high-dimensional data, the data
are typically translated into a lower dimension using unsupervised learning methods.
The unsupervised learning utilized to review failed clinical trials with drugs such as
spironolactone, enalapril, and sildenafil versus placebo to revisit patients with
heterogeneous conditions who had heart failure. The examination was done with
three different studies to determine the patient’s recovery without any human
intervention (Carracedo-Reboredo et al. 2021).

Table 9.1 Components of artificial intelligence

Terms Description

Supervised Usage of a previously labeled database to predict outcomes of future events

Unsupervised Identification of previously uncategorized database to predict peculiar relation
between the dataset

Re-enforcement Interaction of a machine with its environment using sensors, camera, GPS
(global positioning system) and robotic interventions

Artificial neural Computing system that analyses and processes information in a similar way
compared to the human brain

Convolutional
neural

Performs analyses of visual images

Recurrent neural Functions by developing connections between nodes from a directed graph
along a dynamic temporal sequence
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The reinforcement learning method uses trial-and-error to increase accuracy
while combining supervised and unsupervised learning. In all stage of the drug
discovery process, large amounts of data are essential for the creation, development,
and feasibility of efficacious ML algorithms. In precision medicine and therapies
within drug discovery, the dependence on large, high-quality datasets and recog-
nized, well-defined training sets is very crucial for the study.

Apart from these classifications, other model classifications frequently used are
binary, multiclass, multi-label, and imbalanced. The binary is a two-label classifica-
tion that employs algorithms like logistic regression, k-nearest neighbors, choices
trees, support vector machines, and naive Bayes, while the multiclass involves more
than two labels using techniques such choices trees, support vector machines, naive
Bayes, random forests, and gradient boosting. In contrast to multiclass, which pre-
dicts a single class label for each example, multi-label classifies jobs that have more
than two labels. The imbalanced classification model is used to classify the class
labels with unevenly distributed jobs.

The deep learning (DL) is a type of machine learning algorithms which is known
for using higher level characteristics such as neural networks that are developed from
a model of the human brain to enable computers to read, create, and learn compli-
cated hierarchical representations. The input data are transformed into a more
compounded output data as a result of this process. There are various kinds of DL
architectures, and depending on how the training set is organized, each one may
recognize patterns and extract high-level features in a particular way. In this chapter,
we briefly discuss on the common architectures, such as the CNN, RNN, and
generative networks.

Convolutional neural network (CNN) is one of the most widely used DL designs
in various industries, including natural language processing, image and speech
identification, and many other natural language processing (NLP). Another sample
type of DL architecture is the recurrent neural network (RNN), which was specifi-
cally designed to handle sequence data, and has been successfully applied to NLP.

9.4.2 ML Algorithms Used in Drug Discovery

The use of multiple ML algorithms in drug discovery has considerably benefited
pharmaceutical businesses. There are different types of ML algorithms models
available for forecasting the chemical, biological, and physical properties of mole-
cules in drug advancement method. All phases from the drug identification to the
market surveillances of the drug discovery process can benefit from the use of ML
algorithms. As an illustration, ML algorithms have been applied to discover novel
therapeutic uses, forecast drug-protein interactions, identify medication efficacy,
assure the presence of safety biomarkers, and enhance the bioactivity of molecules.
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9.4.2.1 Naive Bayes

Machine learning algorithms seek out the most promising theory from a set of
relevant data, in particular, for the class of an unknown data sample. According on
the description provided by the vector values of each sample’s variables, Bayesian
classifiers assign each sample to the most likely class. The technique assumes that
the variables are independent in its most basic form, making it easier to apply Bayes’
Theorem (Madhukar et al. 2019). While the assumption that not all variables are
equally significant is impractical, this family of classifiers known as NB (Naive
Bayes) that comes from it achieves excellent results, despite the fact that sometimes
their set of characteristics exhibits high interdependence. This algorithm provides a
straightforward method which is quick and efficient that can handle noisy data.
Although it provides better results even though the data volume is very high in terms
of the number of samples because of the tiny datasets. It responds each variable as a
definite one and employs frequency tables to extract information. However, it is not
the best technique for large dimensional issues with many features and requires some
kind of transformation when dealing with numerical variables.

9.4.2.2 Naive Bayes in Drug Discovery

The identification of potential drug targets has been done using this approach in drug
discovery. They specifically created a Bayesian model that incorporates many data
sources, such as data of known side effects or gene expression, and they achieved a
model with 90% accuracy on more than 2000 compounds. There are reports that
used an experimental approach on machine learning and molecular docking study to
identify the potential inhibitors of DNA topoisomerase I enzyme of mycobacterium
tuberculosis (MtTOP1) species and evaluated in vitro confirmation of their compu-
tational findings (Ekins et al. 2017). The AUC values for these predictions were
74%. In this, the drug prediction models are used in accordance with the ATM
(Anatomical Therapeutic Chemical) system using the datasets from STITCH and
ChEMB. The different types of molecular descriptors were analyzed for the struc-
tural information, and interactions with similar targets are displayed with an accu-
racy of 65%.

9.4.2.3 Support Vector Machines

Support Vector Machines (SVM) were first presented by Vapnik in the late 1970s.
Due to the robustness and capacity to generalize in high-dimensional domains,
particularly in bioinformatics, these are among the most extensively utilized
approaches (Fernandez-Lozano et al. 2014). Sets of points in a particular space are
used in machine learning to figure out how to handle brand new observations. These



points are used by kernel-based approaches to determine how comparable the new
observations are and to reach a conclusion.
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9.4.2.4 Support Vector Machines in Drug Discovery

The SVM is one of the most often used models in bioinformatics because of its
capacity to handle challenging issues that are complicated, nonlinear, high dimen-
sional, and noisy. They have been utilized to classify pharmaceuticals based on their
KEGG categorization, with an accuracy score of 83.9%. A brand new method for
predicting intricate drug-target interaction networks using interaction matrices with
function values of 80% was put forward. Additionally, by calculating several
molecular descriptors and chemical indices using ChEMBL datasets with values
near 70% in validation, it is able to predict the stability in human liver microsomes.
The method used in expression data is an intriguing new method to anticipate a
drug’s impact on a tumor line by learning more about the genes involved in the
drug’s response in various tumor types (GEO).

For the prediction of HDAC1 inhibitors, SVMs were also applied to 3D-QSAR
descriptors using a feature selection strategy described (Hu et al. 2016). The
2D-QSAR used to predict the compounds that inhibit the P-gp membrane protein
target in the cancer study and wrapper feature selection models along with
metaheuristic as a genetic algorithm produced promising results that were later
confirmed by molecular docking approaches. Multiple Kernel Learning (MKL),
which generates various linear combinations of SVMs with various parameters or
kernels in an effort solve the problems, is an illustration of a sophisticated applica-
tion of SVMs. Additionally, this enables the integration of many heterogeneous data
sources, although at the expense of raising the computing cost.

9.4.2.5 Tree-Based Models

A decision tree is a hierarchical structure made up of nodes and the connections
between them or branches. The method employed for classification issues is distin-
guished among methods for other sorts of problems, such as regression, survival, or
outlier’s detection. In this, the root nodes, internal nodes, and terminal nodes were
found within a decision tree’s hierarchical structure. The root node is found at the top
of the tree model with one or more branches emerging from it but no branches
reaching towards it. Regarding internal nodes, two or more branches originate from
them and reach the next level of the hierarchy. There is no branches originating from
the terminal nodes since they are located at the bottom of the hierarchy.

The out of bag error is equivalent to the error that the algorithm would make when
the cross-validation is performed. The bagging approach in which the random forest
(RF) divides the dataset into one-third part for validation and two-third part for
training sets and analyzes to determine generalization error internally from each
individual decision tree. Finally, because each decision tree is trained using various



samples and characteristics, it is easy to estimate the importance of each attribute,
while ignoring the others and lowering the problem’s dimensionality. Because of
this, issues with very high dimensionality and noise are particularly well-suited for
this technique.
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9.4.2.6 Random Forest in Drug Discovery

When it comes to greater performance, speed, and generalizability, the RF model is
the greatest among all other models. This model is deemed to be more suited and
offers protein interactions with greater than 90% accuracy. They made use of the
Open Babel descriptors and the GO and KEGG protein enrichment scores for the
validation.

9.4.2.7 Artificial Neural Networks

The artificial neuron is a useful component of the network that accepts input from
other components and processes it in some way to provide an output that can be
processed by other components before talking about ANN. The artificial neurons
may communicate with one another, just like natural neurons, and their connections
are represented by weights, which are merely values that attempt to capture the
synaptic force of a connection between two neurons. The net value, which sums
together all the forces received by an artificial neuron or processing element, is
considered first. The output of the processing element is determined by applying a
trigger function after the net value calculation. The network of neurons can be
created where the outputs of one neuron are used as the input for other neurons. It
is important to realize that ANNs require input nodes, or neurons that receive data
from the external world; these neurons are referred to as the network’s input layer.
Additionally, the network involves output nodes, which are located in the hidden
layer and transmit ANN results. The network’s hidden nodes, which transport data
between neurons, are arranged into one or more hidden layers.

9.4.2.8 ANN in Drug Discovery

ACD (Available Chemicals Directory) and CMC (Comprehensive Medicinal Chem-
istry) data were used to train ANN and tree-based algorithms for drugs and
non-drugs, respectively. The 2D descriptors provide the detailed information of
the functional groups availability inside the molecules structures. However, 1D
descriptors provide the information regarding the molecule’s molecular weight and
hydrogen bond numbers for each available compound. An ANN with both 1D and
2D descriptors produced the greatest results, with an accuracy of 89%.

To forecast the initial carcinogenesis of substances suggested to be medications
includes the calculation of six distinct types of descriptors with a deep learning



model and an accuracy of 86% using 1003 chemicals from the Carcinogenic Potency
Database. AUC of 76% can be achieved by beginning an experimental phase in the
lab, generating a set of 2130 compounds of potential novel medications of interest
for cardiotoxicity, computing each compound’s DRAGON 3456 descriptors, and
including the analysis in a feature selection procedure.
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9.4.2.9 De novo Molecular Design

Recent developments in ML have greatly improved the field of de novo or inverse
molecular design. In a very short period of time, many intriguing strategies have
been proposed. Recurrent neural networks (RNNs), generative adversarial networks
(GANs), and auto-encoders, in particular, have been applied to the optimization of
devices and the rational design of organic and inorganic materials. ReLeaSE is a
deep reinforcement learning-based technology that produces chemical compounds
and focuses on chemical collections with anticipated physical, chemical, and/or
bioactivity features (RL). Both generating (G) and predictive (P) neural networks
are used in the ReLeaSE method’s main workflow. The generative model G serves as
an agent in this system by creating new, chemically viable compounds, whereas the
predictive model P serves as a critic. P assigns a numerical reward (or penalty) to
each created molecule in order to estimate the agent’s behavior.

9.4.2.10 Synthesis Planning

Recent advances in research, synthesis planning have made use of ML-based
methodologies. Without human support, full syntheses of crucial chemicals for
medicine were planned using the computer application Chematica. In order to
identify the successful synthetic paths, the reaction guidelines are merged into
graphs that connect lots of potential molecules with the chemical reaction knowl-
edge. Retrosynthetic paths can be found using Monte Carlo tree search and symbolic
AI without the aid of human expert rules and widely used today in the research
organizations. Practically, all organic chemistry-related reported reactions were used
to train this neural network. However, the synthetic chemists judged computer-
generated pathways to be comparable to approaches described in the literature and
with practical results.

9.5 Applications

9.5.1 CNS Disorder

Futuristic CNS drug discovery study will increasingly rely on AI/ML, mostly in the
fields such as patient subtyping, identification of crucial disease drivers, estimation



of cell type-specific drug response, sovereign novel drugs design, and with better
BBB (blood brain barrier) permeability tests. The role of AI/ML is now being
constrained by structural limitations in data and algorithms. However, in the long
run, we will be able to create CNS disease treatments that are more potent because of
ongoing and new breakthroughs in AI/ML approaches to neuropharmacology (Car-
penter and Huang 2018).
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9.5.2 Discovering Novel Antimicrobial Agents

Several reported works showed how ML may be used in the context of antibiotic
discovery to learn small molecule structural properties from screenings that contain
prevailing antimicrobial activity to advance novel antimicrobials. By first creating a
genetic library of hypomorph knockdowns for these crucial genes and then screening
50,000 chemical compounds against these hypomorphs, Johnson et al. done a
screening for finding biochemical inhibitors of key genes in M. tuberculosis.

The supervised ML classification evaluates the novel classes of chemical inhib-
itors for existing drug targets and recent discovered targets, validated in wild-type
cells against standard antibiotics. A deep learning ML model used screening of
several molecules with different structural features for antimicrobial activity against
E. coli in order to predict antimicrobial functions. To predict the inhibition of
Escherichia coli growth, the scientists used a training set of 2335 molecules for a
DNN model. The model was then run on more than 107 million molecules from
various chemical libraries.

9.5.3 Epidemic COVID

In order to find effective medications for 65 human proteins (targets) that had shown
to interact with SARS-CoV-2 proteins, Kowalewski and Ray created machine
learning (ML) models (Kowalewski and Ray 2020). They infer it from inhalation
treatments to directly target the injured cells because the virus is known to target the
respiratory tract, including nose epithelial cells, upper airway, and lungs. In order to
rank the chemicals and identify medications that share the identical chemical space,
they gathered 14 million compounds from ZINC databases and used machine
learning algorithms to obtain vapor pressure and mammalian toxicity. The objective
of the study was to create a short- and long-term pipeline for use in the future. They
also developed models that might forecast drug efficacy using SVM and RF.
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9.6 Drug Discovery Process

9.6.1 AI and Machine Learning in Precision Drug Discovery

A new approach to disease prevention and treatment called precision medicine
considers a person’s unique gene, lifestyle, and environmental variations. Based
on the genetic profiles of the patients, this technique aids scientists and medical
professionals in more precisely preventing and treating disease. Powerful supercom-
puter infrastructure and innovative algorithms that can autonomously learn in an
unheard of fashion from the trained set of data are needed to make the strategy more
comprehensive. Medical professionals’ cognitive abilities and biomedical data are
used by artificial intelligence to achieve results.

With technological advancements, the future of healthcare will change as a result
of the creation of large digital datasets obtained through next-generation sequencing
(NGS), use of image processing algorithms, patient-related health records, and data
resulting from significant clinical trials. Oncology can benefit greatly from machine
learning, which is frequently used in precision medicine. Complex neural networks
are used to generate diagnostic images and genetic data, which are then used to
forecast the likelihood of disease and treatment outcomes (Dlamini et al. 2020). In
radiomic field of machines that produces diagnostic images to discover malignant
tumors that are undetectable by the human sight, the implementation of AI and ML
technologies in healthcare is done to enhance illness management and deliver high-
quality medical care (Fig. 9.3).

By highlighting diverse uses of AI in oncology healthcare, such as next-
generation sequencing (NGS), advancements in medical imaging, digital pathology,
and drug discovery, we present information on AI and precision oncology towards
clinical environment for cancer management.

Fig. 9.3 Application of artificial intelligence and machine learning in the drug discovery
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9.6.1.1 NGS and Molecular Profiling

The NGS technique utilizes RNA sequencing to discover novel RNA variants and
splice sites, or quantify mRNAs for gene expression analysis. Genomic profiling is
conceivable and offers promise for the future of precision oncology to the imple-
mentation of NGS, which is quickly evolving the field of genomic sequencing for
clinical use. Advanced NGS methods can sequence DNA and RNA on a wide scale
with high-throughput data and at a lower cost. Numerous sequencing techniques,
such as whole-genome, whole-exome, RNA, target, and whole-transcriptome shot-
gun sequencing, as well as methylation sequencing, are made possible by NGS.
DNA or RNA samples from blood samples, tumor samples, cell lines, formalin-fixed
paraffin-embedded (FFPE) blocks, and liquid biopsies can all be used for sequenc-
ing. As part of the Human Genome Project, the first whole-genome sequencing was
carried out at significant expense and over a lengthy period of time. To detect
changes in the cellular transcriptome and changed molecular pathways, RNA
sequencing is frequently employed in cancer research and diagnosis (Jiang et al.
2017).

The advantages of RNA profiling of cancer models for treatment results have
been demonstrated in clinical studies that sequence RNA using precise oncology
protocols. RNA profiling is applied to RNA extracted from blood or a tumor sample.
According to a study, RNA profiling should be a standard of care for oncology
patients because it may have potential clinical benefits, particularly for cancers that
are challenging to treat in children and young adults. The study also illustrates the
impact of precision oncology. According to the study’s findings, about 70% of the
gene expression data acquired from RNA sequencing may have clinical applications.

Identification of gene expression signatures to decipher the underlying molecular
pathways of cancer and the detection of RNA mutations with implications for
alternative splicing are the two most significant and often used applications of
RNA sequencing. However, many NGS approaches have drawbacks such as
labor-intensiveness, the introduction of sequencing coverage mistakes, and expense.
Acquiring pertinent data from NGS datasets is becoming more and more time-
effective because of the developments in AI and computational approaches, with
some platforms enabling real-time viewing.

9.6.1.2 Biomarkers

Molecular biomarkers are often used in the cancer diagnostics in the early detection
of the diseases. Different biomarkers are used, for example, circulating cancer
antigen is used to detect ovarian cancer at early stage, carcinoembryonic antigen is
used to monitor relapse of colorectal cancer, and estrogen receptor 1 (ESR1) is used
for the prognosis prediction and treatment outcomes in breast cancer. Cancer
management can be improved by locating biomarkers in the early disease prevention
and prognosis prediction for successful treatment. By locating germline DNA



alterations and doing full transcriptome analyses by RNA sequencing, novel molec-
ular biomarkers for various malignancies can be uncovered and utilized to detect the
diseases. The potential of RNA sequencing in the development of biomarkers for
diagnosis and as a prognostic predictor has been demonstrated in large consortia
studies like the Cancer Genome Atlas (TCGA). Aside from pathogenic mutations
and changed expression or activity of proteins that regulate significant cellular
complexes, these investigations also clarified predicted biomarkers that fuel trans-
formation. Additionally, Shallow full genome sequencing was used to identify copy
number variants (CNV) in breast cancer utilizing FFPE samples to diagnoses for
breast cancer, lung cancer, and neuroblastoma.
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9.6.1.3 Medical Imaging

Applications of AI in radiology are essential for many modalities with enhanced
quality, including X-rays, ultrasounds, computed tomography (CT/CAT), magnetic
resonance imaging (MRI), positron-emission tomography (PET), and digital pathol-
ogy. Images are analyzed quickly and accurately using highly specialized algo-
rithms. Accurate diagnosis depends in large part on the ability to distinguish
between normal and aberrant medical images. Early cancer detection is extremely
important because it will result in a better prognosis and treatments. The future of AI
in medical imaging will be focused on increasing speed and lowering costs. AI has
already contributed to medical imaging by improving image quality, computer-aided
image interpretation, and radiomics (Lewis et al. 2019). The main advancements and
breakthroughs of artificial intelligence in healthcare have been widely used for
clinical purposes in medical imaging.

9.6.1.4 Radiographic Imaging

In order to accurately diagnose and treat patients, which can take time and be subject
to human error and variability, it is necessary to extract pertinent quantitative data
from medical images, such as size, symmetry, location, volume, and form. For
routine clinical treatment, automated medical imaging analysis is highly necessary.
The radiographic imaging includes three stages: the first one is the image segmen-
tation, which detects the image of interest and defines its boundaries; the second one
is the image registration, which establishes the spatial three-dimensional relationship
between images; and image visualization, which displays pertinent information for
precise interpretation, is necessary to analyze the medical images accurately. How-
ever, despite of the advancement in the medical imaging, there are still some
complications with data complexity, object complexity, and validation issues.

The deep learning-based algorithms for an automated detection system for chest
radiography are the recent advancement. However, the chest radiograph analyses for
thoracic disease are difficult and error-prone, and the highly skilled radiographers are



required to analyze the images. These AI methods were created to differentiate
between common thoracic disorders, including pulmonary malignant tumors.
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Imaging in medicine using AI extends beyond radiology. The advent of digital
pathology will soon revolutionize pathology laboratories. The gold standard for
pathology for many years has been microscopic examination of stained cells and
tissues. By reducing labor-intensive microscopic tasks, boosting efficiency, and
maintaining the quality for better clinical treatment, technological and AI advance-
ments will transform pathology. Digital pathology that incorporates AI improves
workflow, enables doctors to analyze images for precise interpretation, and lowers
subjectivity by standardizing processes. Additionally, digital pathology enables
reduced fluctuation in color information and larger-scale image viewing. This
makes it possible to successfully find distinctive markers linked to disease-specific
biomarkers for diagnosis, prognosis, and treatment (Bera et al. 2019).

9.6.2 Repurposed Drug/Drug Discovery by AI/ML Approach

About 25% of all medications have been found as a result of unintentional bringing
of various areas. Pharmaceutical companies prefer targeted drug discovery over
conventional blind screening because it has a clear mechanism and a better success
rate and is less expensive. Due to the following factors such as high costs of drug
research, growing accessibility of three-dimensional structural data that can aid in
the characterization of pharmacological targets, and shockingly low success rates in
clinical trials, machine learning is currently used in the drug discovery process.
Cross-domain linkage can be accomplished using machine learning as a bridge. By
identifying contextual cues like a discussion of a drug’s indication or side effects, it
may recognize a newly approved drug.

Despite these innovative methods for drug development, there are still significant
obstacles, such as data access and the fact that various datasets are typically kept in a
number of separate repositories. Additionally, clinical trial raw data and other
preclinical study raw data are often unavailable. The utilization of pharmacological
information to gain knowledge into mechanism of action by employing methods like
similarity metrics across all diseases to uncover shared pathways is just one example
of how artificial intelligence has been successful when applied to available data.
Another illustration is the use of NLP to find hidden or unexpected relationships that
may be significant in the identification of probable pharmacological side effects
based on scholarly articles.

Few organizations have started to make use of these developments to accelerate
the release of COVID-19 medications and better understand how the immune system
combats the illness. Pharmaceutical companies GlaxoSmithKline (GSK) and Vir
Biotechnology teamed together at the beginning of April to accelerate coronavirus
treatment development using CRISPR and artificial intelligence. Additionally, in the
academic world, the Human Immunomics Initiative, launched recently by the
Harvard T. Chan School of Public Health and the Human Vaccines Project, employs



artificial intelligence to accelerate the production of antibodies for a variety of
illnesses, including COVID-19. A team from Southern Illinois University (SIU)
recently developed an information visualization tool that shows users the locations
of known COVID-19 instances using GPS data. A contact following application
powered by Bluetooth technology has also been developed in cooperation between
Google and Apple. These techniques might be successful in collecting a lot of
precise data. Businesses that have developed wellness profiles for people based on
a fundamental understanding of the infection are conducting research into various
medicine delivery methods that have been successfully licensed. The two most well-
known examples of this in relation to COVID-19 to date are hydroxychloroquine
(recommended for the treatment of malaria) and remdesivir (for the treatment of
Ebola). The effectiveness dataset for these drugs may therefore be a decent input for
an AI model. The businesses using artificial intelligence (AI) to repurpose currently
available drugs for COVID-19 are listed in Table 9.2.
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Table 9.2 List of repurposed drugs for COVID-19 through AI

Sl. No. Drug Original used Company

1. Baricitinib Rheumatoid joint pain BenevolentAI

2. Hydroxychloroquine and Remdesivir Antimalarial Innoplexus

3. Atazanavir Antiretroviral HIV/AIDS Deargen

4. Niclosamide and Nitazoxanide Viral infections Gero

9.7 Limitations of AI/ML Approaches

The use of routine clinical NGS sequencing for cancer diagnosis and management
faces significant challenges with data interpretation. Large servers and knowledge-
able bioinformaticians are needed for the management and interpretation of big data.
The provided datasets for diagnosis contain details on variants that can be classified
as benign, likely benign, variant of unknown importance, likely pathogenic, and
pathogenic variants. It is crucial to classify all variations into groups and understand
their clinical importance. Data acquired can be helpful for cancer management in
addition to diagnosis.

However, the drawbacks of whole-genome and exome sequencing include high
costs, a heavy computing burden, and challenging data interpretation. In the follow-
ing 10 years, further development of NGS platforms may result in cost reductions
without a reduction in quality.

Despite the advantages of AI, there are still several obstacles to its implementa-
tion in the healthcare industry. Big data and costs are on the rise as a result of
automated computation. Due to their reliance on specialized computational require-
ments for rapid data processing, AI systems can be costly. Additional quality pro-
cedures are also necessary for these systems. The targeted users must receive training
and gain a knowledge of the technology in order to implement AI-based solutions for



everyday clinical practice. Rigby emphasized the moral dilemma presented by AI in
healthcare. It is crucial to resolve the ethical problem of using patient data without
authorization or justification in light of the big data boom. Additionally, in order to
safeguard patient privacy and safety, ethical norms and guidelines are necessary.
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Despite appearing to be effective and acceptable in the de novo lead creation
approach, the connecting mechanism has some drawbacks. The first restriction is
that for proper linking: the linking fragments must be precisely positioned in the
cavity. De novo design is additionally assumed to be totally automated, but still
requires some arduous manual labor. Furthermore, it is not always simple to
manufacture the chemicals created using this method in a lab. Thus, new software
that includes de novo compound design and considers synthesis parameters is
required.

Although the connecting approach in the de novo lead generation method appears
to be effective and acceptable, there are certain restrictions. The first restriction is
that for proper linking, the linking fragments must be precisely positioned in the
cavity. De novo design is additionally assumed to be totally automated, but still
requires some arduous manual labor. Furthermore, it is not always simple to
manufacture the chemicals created using this method in a lab. Thus, new software
that includes de novo compound design and considers synthesis parameters is
required.

Overall, the complexity of small molecule drug discovery will increase. DL ought
should be able to manage that complexity since it was made for complicated
simulation. Additionally, using DL techniques, we should not limit ourselves to
making the conventional predictions about biological activities, ADMET properties,
or pharmacokinetic simulations. Instead, it might be possible to systematically
integrate all the data and information and reach a new level of AI in drug discovery.

9.8 Conclusions and Future Perspectives

The ultimate goal of machine learning is to create algorithms that can learn contin-
ually from fresh information and data in order to find solutions to a wide range of
problems. Complex algorithms have appealing prospects for precision medicine, but
they also present computing difficulties. To realize this potential, unique solutions
are needed for at least three technical problems:

1. The quantity and size of data inputs, outputs, and attributes. This problem can be
partially solved by leveraging CPU clusters, data sharing systems, cloud com-
puting, and deep learning techniques.

2. Variety—diverse types of data (picture, video, and text). This problem can be
partially solved by integrating data from many sources using novel deep learning
techniques.

3. Velocity—the pace of streaming data. To solve this problem, online learning
techniques can be developed.
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Machine learning techniques used nowadays are very similar to real-world situa-
tions. As a result of the quick improvements in technology, algorithms will take on
duties that were previously the domain of humans. Radiologists and anatomical
pathologists will lose a lot of their jobs as a result of machine learning’s capacity to
turn data into insight. Clinical medicine, however, has always required physicians to
manage enormous amounts of data, from the history and physical examination to the
laboratory and imaging examinations, as well as the more recent genetic data.
Effective medical professionals have always been able to handle this complexity.

We anticipate that as more scientists become aware of its potential, the usage of
ML in VS for drug discovery will continue to expand in the search of new drugs.
Drug discovery will undoubtedly become more effective and less expensive, thanks
to the combined efforts of computer science and medicinal chemistry.
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