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Chapter 5
Computational Methods in Natural
Products-Based Drug Discovery

Pankaj Dagur, Shreya, Rahul Ghosh, Gaurav Rakshit, Abanish Biswas,
and Manik Ghosh

5.1 Introduction

Drug discovery is an extensive, costing big-budget, time-consuming process with
the low rate of success. The development of a drug from scratch to market value,
maintaining its efficacy, takes around 13–15 years and costs billions of dollars on
average and still counting. In comparison to that, the rate of the launching novel
drugs in the market is less. It is estimated that about more than half of all the drugs
approved in the last three decades were either NPs (Natural products) or their
semisynthetic derivatives (Newman and Cragg 2016) (Patridge et al. 2016).

The reason is their diversity in species and utilization for medicinal purposes
since ancient civilizations. NPs possess comparatively greater molecular mass and a
number of sp3 carbon atoms, H-bond acceptors and donors, more hydrophilic nature,
and molecular rigidness than that of nonnatural compounds’ libraries (Atanasov
et al. 2015) (Feher and Schmidt 2003). The structural upper hand can be advanta-
geous while tackling protein-protein interaction owing to the greater rigidity of NPs
(Lawson et al. 2017). Despite not adhering to Lipinski’s rule of five, NPs are still a
class that is used for therapeutic purposes, owing to their high molecular mass.

Natural products, despite being an inspirational source for NP-based drug dis-
covery, pose disadvantages for the pipeline. NPs have diverse and complex molec-
ular structures which means a challenge for generating 3D molecular structures and
their analogs while considering stereochemistry, force fields, and algorithm for
predicting protein-bound conformations (Friedrich et al. 2019). Dereplication tools
are required to circumvent the rediscovery of known compounds. Other challenges
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include procuring the materials, extraction, detection, and isolation of bioactive
compounds and generating activity profiles are time-consuming and the success
rate is less. Considering the facts, the prior prediction of activity using in silico
methods can aid in simplifying the process.
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The capital needed for in silico experiments is comparatively less than the
expenses (for example- scikit-learn, CDK) associated with experimental procedures
of which software licensing costs alone, continue to be a significant cost component
and have been steadily rising in recent years. Moreover, on site efficient computing
center is no longer necessary as calculations can be performed affordably in the
cloud at very large scales, with a low degree of complexity. Computational-based
drug discovery has well-established techniques equipped with cheminformatics for
easing the process, reducing the loss and comparatively less time-consuming. These
techniques involve data mining on large data, dereplication, chemical space analysis,
visualization and comparison, prediction of bioactivity, ADME and safety profiles’
natural products-inspired de novo design, and prediction of natural products prone to
cause interference with biological assays (Chen and Kirchmair 2020).

5.2 Natural Products’ Collections

The definition of “natural products” is not universally agreed upon, with some
authors limiting the term to small molecule secondary metabolites while others
broadly accept that chemical substance produced by a living organism as NP. The
latter one holds more diversity and hence the line separating the subclasses remains
ill-defined. The therapeutic class of NP as per the definition can be classified into
phytochemicals, fungal metabolites, toxins, antibodies, and NPs with limited activ-
ity. The NPs collection can also be categorized as physical and virtual collections for
in silico technology.

5.2.1 Physical Collection

The importance of NPs in ailment curing can be dated back to ancient civilizations.
In earlier decades, natural compounds and their structural analogs have significantly
added to the therapeutic arsenal for curing numerous diseases, including cancer and
infectious disorders. According to a survey, only 6% of the estimated four lakh plant
species have undergone activity studies, while less than 20% have undergone
phytochemical investigations (Fabricant and Farnsworth 2001). Phytochemicals
being antioxidants and a source for many life-saving medicines form a broad class
of NPs including polyphenols, terpenoids, and alkaloids. The fungal metabolites
have been explored for their use as antidiabetic, antibacterial, antioxidant, antitumor,
and even insecticidal agents (Daley et al. 2017). In most cases, chemotherapy
medications are made from naturally occurring poisons produced by large clades



of organisms, such as plants, fungi, and bacteria. The next important therapeutic
class is antibiotics with more than 60% of drugs approved and more than 500 in the
developmental stage as per the survey in 2016 (Cragg et al. 1997). The common
mechanism of action includes receptor blocking or downregulation and induction of
target cell signaling which can be exploited for rheumatoid arthritis, non-Hodgkin
lymphoma, multiple myeloma, and various other diseases (Carter and Lazar 2018).
NPs such as biopolymers, spider silk are known for their activity in drug delivery
systems rather than therapeutic value.
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For virtual screening of NPs for in silico studies, the majority of compound
suppliers across the world now freely offer information related to the structures
and some other features of the compounds. According to a survey, of the total known
NP compounds in virtual databases, only about 10% of them are available for
experimental procedures (Chen et al. 2017). This lack of availability of NPs phys-
ically serves as a blockage in the path of drug discovery. However, the readily
available ones have favorable physicochemical properties for the drug discovery
pipeline. Moreover, more than half of them have a molecular weight of less than
300 Da hence, providing many prospects for optimization (Chen et al. 2017). There
are more than 100 commercial suppliers of purified NPs in the world, but only few of
them supply more than 5000 NPs.

The fact that the (abovementioned) 25 k easily accessible NPs encompass more
than 5700 Murcko scaffolds is noteworthy in this respect. Additionally, these NPs
including alkaloids, steroids, and flavonoids, provide a fair representation of all of
the major NP classes (Chen et al. 2018).

5.2.2 Virtual Collection

The rapidly growing attention of NPs has led to steep growth in NP-based databases.
The virtual collection (or databases) of NPs can be categorized into (i) the general-
ized NP-based databases, (ii) databases of traditional NPs, and (iii) specialized
databases (Chen et al. 2019a). The second category includes databases for tradition-
ally used NP-based drugs whereas the third category includes databases focusing on
some exclusive organisms belonging to a specific habitats, biological activities, or
specific NP classes. A survey reported that since the 2000s, approximately 120 dif-
ferent databases and collections have been released and used in context with NPs
(Sorokina and Steinbeck 2020). And of them, approximately 50 are open access,
whereas 98 are still in some way accessible. These open -access databases include
NP-based database collections published as supplementary material in scientific
publications as well as those available in the ZINC database (Sterling and Irwin
2015). The collection of NPs on ZINC database provides information about their
structure and their origin but no other additional information. The databases could be
open access or commercially available. Amongst free NP databases is Super Natural
II, consisting of more than 325 k NPs (Banerjee et al. 2015). A chemistry-aware
online interface can be used to query the database, although the bulk download is not



) 14 k

officially supported. Universal Natural Products Database (UNPD) is another free
database with more than 200 k NPs and downloadable resources (Gu et al. 2013).
Unfortunately, UNPD database appears to be nonfunctional. These virtual databases
are either specific to a particular geographical region (like databases only for Chinese
herbals), or particular section of NPs (like database for only marine-based NPs), or
could be generalized (COCONUT) (Sorokina et al. 2021). Some examples of
functional databases are listed below in Table 5.1.
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Table 5.1 Examples of some active databases

Databases Size

TCM database@Taiwan(Chen 2011) >60 k

Natural Product Atlas (Van Santen et al. 2019) >25 k

Collective Molecular Activities of Useful Plants (CMAUP) (Zeng et al. 2019) 47 k NPs

Marine Natural Library (Bugni et al. 2008

Some other examples include NuBBEDB (Pilon et al. 2017), KnapSack
(Nakamura et al. 2013),CMAUP (Zeng et al. 2019), and smaller databases like
FooDB. On the contrary, the data available on the therapeutic efficacy and protein-
bound conformations of NPs suffer from scarcity. Amongst the most relevant ones,
the Marine Natural Library has special mention, as it allows the download of the full
dataset of more than 14 k marine NPs (Bugni et al. 2008). NPs seem to have a slight
upper hand over synthetic compounds, as their “libraries” already exist in nature.
The generalized databases of chemical compounds (Li et al. 2010; Leach 2017)
(such as PubChem and ChEMBL) also include databases related to NPs that are
annotated by their class, while, more specific ones (such as ArachnoServer,
VenomKB, and the Dictionary of Marine Natural Products) provide even more
granular annotations for aggregating NP libraries with various characteristics of
interest (Dona et al. 2017; Romano et al. 2018).

5.3 Cheminformatics and Computational Approaches
for NP-Based Drug Discovery

5.3.1 Computational-Based Approaches

Computer-based approaches being the broader term encloses within
cheminformatics technology. Cheminformatics is the application of computational
approaches to facilitate collection, storage, analysis of large databases addressing the
major concern, drug discovery. Along with cheminformatics, other informatic
approaches such as bioinformatics, semantic methods have also been reviewed
(Romano and Tatonetti 2019). Computational techniques have long been regarded
as an important part of drug development and discovery procedures. The various
approaches it offers for drug discovery purpose are structural elucidation, analysis of
the physicochemical and structural properties, in determining macromolecular



targets, prediction of ADME properties and safety profiles. Computational methods
can be broadly classified into: structure-based and ligand-based for the
abovementioned approaches (Podlogar et al. 2001). This classification is revolving
around the level of structural information available in context with target to support
the computational calculations. Structure-based methods operate on the availability
of info regarding three-dimensional (3D) molecular target of interest, typically
obtained from X-ray crystallography, nuclear magnetic resonance, or homology
modeling (Cerqueira et al. 2015). Whereas ligand-based approaches focus on the
availability of information in context with active ligands (and inactive compounds,
when available) (Lill 2007). With the increasing need for prior virtual screening of
NPs and maintaining of databases, cheminformatics has made its way through drug
discovery process. The methods are generally classified as direct and indirect
approaches, based on the type of properties they exploit. Direct approaches deal
with chemical activity, their constants, reactive groups, ADME profiling, whereas
indirect ones deal with structural specifications, compound category or other obser-
vations (Romano and Tatonetti 2019).

5 Computational Methods in Natural Products-Based Drug Discovery 103

5.3.2 Cheminformatics and NP-Based Pipeline

So far, cheminformatics and other related informatics approaches have been
reviewed in drug discovery pipeline. Cheminformatics and other approaches have
played important part in curating NP-based fragmented databases and analyzing the
result. Cheminformatics and computational approaches share an important linkage,
basically cheminformatics is the application of computational approaches as shown
in Fig. 5.1. Cheminformatics techniques exclusive to NP-based drug discovery are
NP-based QSAR analysis, Molecular Docking and Dynamics, Computational Muta-
genesis, and Library Construction. Numerous classes of NPs have been studied
using QSAR, and the chemical descriptors used tend to be dictated by the particular
classes (Huang et al. 2016). For example, small-molecule NPs include categorical
variables suggesting their specific category of classification, species of origin.
Similarly, in case of molecular docking, the specific classes of NPs decide the
interaction of target and ligand. For example, if a macromolecular NP (belonging
to specific class) is suspected of showing interactions with small-molecule metabo-
lites, docking simulations can be used for mining which metabolites could bind to
that NP (Pithayanukul et al. 2009). Other aspects of molecular docking include
protein preparation and flexibility, pose scoring in context with binding affinity. The
generation of extensive libraries of compounds and its screening aids in prediction of
potential drug candidates along with awareness of encountering small fraction of hits
(Terrett et al. 1995). In case of NPs, their databases exist in nature way before
synthetics. In this chapter, we are going to discuss different analytical methods used
in computational approaches for NPs. Antibodies, despite of their large molecular
weight, are relatively easy to screen for large numbers via docking, indicating their
specificity in structural and binding properties that eventually reduces computational



complexity for simulations (Mann 2002). Additionally, noteworthy success stories
have emerged from screening smaller NP-based databases against specific drug
targets. For example, the compound ellagic acid, known to have both
antiproliferative and antioxidants properties, was identified by Moro et al. by
screening a proprietary database of 2000 NPs against the oncoprotein casein kinase
2 (Cozza et al. 2006).
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Fig. 5.1 Amalgamation of cheminformatics and computational approaches

5.4 Computational Approaches Related to Natural
Products

5.4.1 Structural Elucidation

For the extraction and isolation of NPs, the source of materials area is going to be
highly priced and long-time taking and when everyone gained knowledge about the
NPs, the discovering of novel compounds is decreasing. Of order to make the most
of the available experimental resources, it is necessary to integrate analytical and
computational approaches for early detection of both favorable and negative features
in NPs (Pereira and Aires-de-Sousa 2018). Databases that provide measurable
analytical statistics (such as bioactivities, chromatographic data, MS, NMR



spectroscopy, and FTIR data) for known NPs and their interrogation using compu-
tational methods play a crucial role in this interaction of technologies. However,
even the biggest of these databases only include a small subset of the NPs that are
considered. This is why NMR and MS fragmentation predictions are increasingly
being made using computational methods, often in tandem with structure generators
(Pereira and Aires-de-Sousa 2018).
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In recent days, for the virtual screening of natural product (NP) candidates in both
small datasets of isolated chemicals and huge databases, structure-based (SB) and
ligand-based (LB) cheminformatics techniques have become indispensable tools.
Quantitative structure-activity relationships (QSAR), assessment of drug similarity,
forecasting surface assimilation, distribution, metabolism, excretion prediction, sim-
ilarity detection, and pharmacophore identification are the most often used LB
approaches. Similar techniques used in SB methods include molecular dynamics,
docking, and binding cavity analysis (Pereira and Aires-de-Sousa 2018).

The potential of re-isolating well-known molecules has recently, however, put a
hold on the drug development process from natural products. The process of
dereplication, which automates the quick identification of previously isolated com-
pounds, directs researchers to fresh discoveries and cuts down on the time and effort
needed to develop innovative medication leads. Dereplication uses processed exper-
imental data to identify compounds by comparing it to data from known compounds,
hence it requires a variety of computing tools and resources to process and analyze
compound data. The combination of analytical data analysis and multivariate data
analysis is a key technique for computer-assisted dereplication (Chanana et al.
2017). Dimensionality reduction methods like principal component analysis
(PCA), cluster analysis, and/or discrimination assessment may be used to isolate
interesting NPs from complicated mixtures, such as NPs in extracts that are specific
to a certain organism of interest (Chanana et al. 2017; Abdelmohsen et al. 2014).

By analyzing spectroscopic data, computer-assisted shape elucidation (CASE)
systems aim to identify the optimal shape for an active molecule. Structures that are
in agreement with experimental (spectroscopic) data are listed and ranked by CASE
systems for greater precision. CASE structures ideally operate at low mistake rates
and in a fully computerized form. The assignment of stereochemical attributes to NP
structures can be done using sophisticated CASE systems because they also take
stereospecific NMR data and/or calculations based on DFT (density functional
theory) into account (Burns et al. 2019).

NP dereplication is a topic that machine learning techniques find very appealing.
Using 13C NMR spectroscopic data, for instance, a recent study once investigated
the possibility of machine learning algorithms to assign NPs to eight NP classes
(such as chromans) (Martínez-Treviño et al. 2020). It is used to take an XGBoost
classifier to achieve the remarkable overall performance. More than 80% of a test
set’s compounds were correctly assigned for the majority of NP classes. For the
quick identification of novel NPs from a filamentous marine cyanobacterium,
another discovery successfully applied a convolutional neural network-based
method (Reher et al. 2020).
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One of the most up-to-date resources for managing MS/MS spectra and sharing
the results of such analyses is the Global Natural Product Social Molecular Net-
working (GNPS). It enables researchers to investigate a dataset and compare its
results to anything else that is publicly available. Online dereplication is made
possible by GNPS’s usage of automated molecular networking analysis (Wang
et al. 2016).

5.4.2 Analysis of Physicochemical and Structural Properties

By utilizing the physicochemical and structural characteristics of NPs, NPs have
been characterized in a significant way by cheminformatics. The chemical space that
NPs occupy is substantially larger than that of synthetic compounds, and they also
occupy regions of the chemical space that are often inaccessible to synthetic
molecules (Ertl and Schuffenhauer 2008) (Singh and Culberson 2009).

Compared to synthetic pharmaceuticals and synthetic, drug-like substances, NPs
are generally heavier and more hydrophobic (Chen et al. 2019b). In addition, their
structural complexity is usually higher, particularly when it comes to stereochemis-
try (often measured by the number of chiral centers and the number of bridgehead
atoms in ring systems) and three-dimensional molecular form (Henkel et al. 1999)
(Lucas et al. 2015).

The vast variety of ring systems displayed by NPs, particularly in aliphatic
systems, is astounding (Ertl and Schuffenhauer 2008) (Grabowski and Schneider
2007). Researchers found that commercially available screening databases lacked
core ring scaffolds for 83% of NPs. The two characteristics of NPs that set them apart
from synthetic compounds in terms of atom composition are their low variety of
nitrogen atoms and their large number of oxygen atoms (Feher and Schmidt 2003;
Wetzel et al. 2007; López-Vallejo et al. 2012). However, the vast majority of known
NPs and, even more so, those found in actual NP libraries have pharmacological
properties (Chen et al. 2018).

Physicochemical and structural characteristics vary across NPs from various
kingdoms. For instance, marine species are more likely to have macrocycle-
containing NPs or lengthy aliphatic chains than terrestrial species (El-Elimat et al.
2012) (Muigg et al. 2013) (Saldivar-Gonzalez et al. 2018). Their NPs are distin-
guished by an excessive number of heteroatoms and, in conjunction with this, a wide
range of functional groups (Pilkington 2019) (Shang et al. 2018) (Ertl and
Schuhmann 2020) (Ertl and Schuhmann 2019).

5.4.3 Structural Diversity Analysis

In terms of structural variety, NPs are incomparable, and this is something that is also
evident at the fragment level (Tran et al. 2020). Using the concept of molecular



scaffolds, some research compares natural products (NPs) to synthetic ones in order
to evaluate the structural diversity of NPs (Bemis and Murcko 1996). Recent
research contrasts the scaffolds that are unique to natural products (NPs) with
those of synthetic chemicals and presents an intuitive depiction of them (Ertl and
Schuhmann 2020). This then allows us to compare the scaffolds often seen in NPs
derived from bacteria, plants, fungi, or mammals (Chen et al. 2018).
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Scaffold Hunter is a potent java-based application for the intuitive, visual study of
the structural variety of a set of chemicals (Schäfer et al. 2017; Lachance et al. 2012).
The concept of molecular scaffolds being represented and categorized hierarchically
forms the foundation of Scaffold Hunter. An early version of this tool was used to
develop the structural categorization of NPs (SCONP), a technique for mapping the
chemical space of NPs (Koch et al. 2005).

Principal component analysis (PCA) is a common technique for mapping the
chemical space since it transforms high-dimensional data into a low-dimensional
space with little loss of information. The most useful result of principal components
analysis (PCA) is the PCA scatter plot, which shows how the data points are
distributed in a low-dimensional space (Saldívar-González et al. 2019; Shen et al.
2012).

A method called ChemGPS was created and updated for usage with NPs under
the name ChemGPS-NP in order to prevent the need for the principal components to
be recalculated as new compounds are added to the datasets. For mapping the
chemical space of tiny compounds, predicting modes of action, and analyzing
structure-activity connections, ChemGPS-NP has been employed in a number of
research (Frédérick et al. 2012; Korinek et al. 2017; Muigg et al. 2013).

The recently developed UMAP for Dimension Reduction method and t-SNE are
two more reliable methods for dimensionality reduction. When various items are
modeled by distant points and the same objects are generally close together, t-SNE
creates plots. Although UMAP is quicker, it delivers results conceptually compara-
ble to those of t-SNE (Van der Maaten and Hinton 2008) (Burton 2020).

Researchers recently developed Statistical-Based Database Fingerprint
(SB-DFP), which is a new technique for representing the chemical space of com-
pound databases by a single fingerprint. In theory, any chemical fingerprint and any
reference set might be used to derive the SB-DFP, which has a wide range of
applicability. By contrasting the binomial distributions of the preferred molecular
fingerprint features among the compounds in an interest dataset with those in a
reference dataset, the SB-DFP is created (Sánchez-Cruz and Medina-Franco 2018).

5.4.4 Natural Product-Likeness Assessment

The NP-likeness of compounds can be quantified using computational techniques,
which can also distinguish NPs and NP-like substances from manufactured com-
pounds with high accuracy. As a result, they are often used in the development of
new compounds, the construction of libraries, the selection of NPs (and NP



derivatives and analogs) from collections of mixed compounds, and the prioritizing
of compounds (Chen et al. 2022) (Yu 2011).
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The NP-Likeness Score is one of the most well-known strategies (Ertl and
Schuffenhauer 2008). This score assesses the NP-likeness of compounds using
Bayesian statistics, mostly based on how similar their fragments are to those of
recognized NPs. With certain changes, the NP-Likeness Score has been modified in
several programs and platforms (Jayaseelan and Steinbeck 2014; Vanii Jayaseelan
et al. 2012; Sorokina and Steinbeck 2019). Additionally, a rule-based strategy and a
theoretically related method using extended connectivity fingerprints (ECFPs) are
other options (Zaid et al. 2010). A more recent method for locating NPs and NP-like
substances in vast sets of molecules is called NP-Scout (Chen et al. 2019b).

In order to properly characterize the structural properties of NPs, a novel method
known as the Natural Compound Molecular Fingerprint (NC-MFP) has been
developed (Seo et al. 2020).

5.4.5 Identification of Bioactive Natural Products

With regard to identifying bioactive NPs, computational approaches have demon-
strated their effectiveness. For NP research, the full spectrum of virtual screening
methods has been used, from straightforward, quick methods based solely on 2D
molecular fingerprint similarity to more sophisticated, 3D methods largely based on
similarity in molecular structure, pharmacophore models, molecular interaction
fields, or docking. Machine learning techniques have recently become a cornerstone
in virtual screening for bioactive NPs (Kirchweger and Rollinger 2018).

The sparseness of the structural information that is now available will make it
extremely difficult to attach NPs to the structures of macromolecules. This is due to
the fact that docking algorithms and scoring criteria are particularly sensitive to even
very small changes in 3D form, as those frequently brought on by ligand binding
(including solvent effects). The careful employment of homology modeling tech-
niques, induced fit docking methods, and molecular dynamics simulations, however,
can also aid to overcome this challenge. Docking toward a variety of representative
protein structures may be an effective strategy when dealing with highly adaptable
proteins (for binding mode prediction as well as virtual screening) (Amaro et al.
2018; Grienke et al. 2010).

In terms of binding mode prediction, docking algorithms frequently produce
accurate results as opposed to virtual screening. It is possible to generate a suffi-
ciently accurate binding pose that offers crucial insights for the development of
optimization techniques if the target NP is no longer excessively large or flexible, the
ligand binding site is well-defined (i.e., not too shallow, not solvent-exposed), and
the interaction between the binding companions consists of two or more directed
interactions (Chen and Kirchmair 2020). Binding posture prediction is more practi-
cal than virtual screening because it completely ignores the most difficult part of
docking—scoring compounds according to their binding affinity—and permits



researchers to focus their efforts on a single ligand-target combination. Importantly,
docking makes it possible to clarify the stereoselectivity of ligand binding, especially
in the context of NP research (and different processes, such as metabolism). It is
impossible to exaggerate how important it is to employ the proper stereochemical
data when using 3D techniques, particularly docking (Warren et al. 2006).
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5.4.6 Determination of Macromolecular Targets

When one, few, or even many compounds are tested against the broadest range of
macromolecules, it may be said that in silico target prediction is a large-scale use of
virtual screening (Grisoni et al. 2019). Numerous techniques including models have
been described in recent years, and they are now recognized as crucial resources in
the early stages of drug development. The majority of target prediction algorithms
are ligand-based due to the difficulties associated with docking and structure-based
approaches in general (specifically, the restricted representation of macromolecules
through the available structural data) (Cereto-Massagué et al. 2015; Ezzat et al.
2019; Sam and Athri 2019; Chaudhari et al. 2017).

Ligand-based approaches span the whole spectrum, from simple similarity-based
methods to sophisticated machine learning and network-based methods. Unexpect-
edly, despite the wide variety of computer approaches available today for target
prediction, we still have a limited understanding of the importance of these tactics in
practical situations. This is especially true given the (generally) expensive expenses
associated in experimentally evaluating such models in a systematic, prospective
manner. However, it is also true given the common use of partially inadequate,
cursory retrospective validation techniques (Mathai et al. 2020; Mathai and
Kirchmair 2020). To the best of our knowledge, the Similarity Ensemble Approach
(SEA) is the only computational strategy for which consistent experimental valida-
tion has been documented (Keiser et al. 2007) (Keiser et al. 2009)(Lounkine et al.
2012).

In recent research comparing the effectiveness and scope of a similarity-based
strategy and a machine learning technique toward determining the targets of small
molecules, it was discovered that the structural similarity between both the com-
pounds of interest and the compounds reflected in the training set is a key factor in
both methods’ predictability (or knowledge base). Given that target prediction
models are essentially created for and trained on experimental measurements for
synthetic chemicals, it is important to take this fact into consideration while working
with NPs (Mathai et al. 2020).

Surprisingly, in the same research, the similarity-based technique beat the
machine learning strategy for the data at hand. The results imply that the basic
similarity-based strategy is a realistic choice, in particular when taking into consid-
eration model interpretability. However, a direct comparison in between two
approaches should be approached with extreme caution for a number of reasons.



Additionally, this is demonstrated by the successful operation of several well-
known, similarity-based approaches like SwissTargetPrediction (Gfeller et al. 2014).
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In addition to 3D similarity-based methods, 3D pharmacophore-based
approaches are extensively utilized in the field of NP research for target prediction.
A profiling investigation, for example, evaluated secondary metabolites extracted
from the medicinal plant Ruta graveolens against a battery of over 2000
pharmacophore models covering over 280 targets (Rollinger et al. 2009). Arborinine
was discovered to be an inhibitor of acetylcholinesterase (estimated IC50= 35M) as
a result of this in silico search, among other potential bioactive NPs and interactions.

Machine learning-based methods have undoubtedly sparked the most interest in
NP target prediction in recent years. SPiDER, TIGER, and STarFish are a few
notable examples (Reker et al. 2014b) (Schneider and Schneider 2017a) (Cockroft
et al. 2019).

With the use of “fuzzy” molecular descriptors, SPiDER employs self-organizing
maps in an acronym that enables NPs to utilize it (Rodrigues et al. 2016b; Merk et al.
2018). The mannequin helped identify the targets of the macrolide PPAR, archazolid
A (Reker et al. 2014a), including 5-lipoxygenase, FXR, glucocorticoid receptor, as
well as, prostaglandin E2 synthase 1. It also successfully predicted the target of the
16-membered depsipeptide doliculide, which is prostanoid receptor 3 (Schneider
et al. 2016). Numerous fragment-like NPs were also successfully recognized by
SPIDER, including (i) sparteine, whose targets include the nicotinic receptors,
muscarinic, p38 mitogen-activated protein kinase, and kappa opioid receptor
(Rodrigues et al. 2016a), (ii) DL-goitrin, whose targets include the muscarinic M1
receptor and the pregnane X receptor, (iii) Isomacroin, whose targets were experi-
mentally verified to be the adenosine A3 receptor and the platelet-derived growth
factor receptor, and (iv) graveolinine, whose objectives were scientifically proven to
be cyclooxygenase-2 and the serotonin 5-HT2B receptor (Rodrigues et al. 2015).

SPiDER and TIGER have a similar conceptual framework. The projected targets
are scored using a new methodology and updated CATS descriptions (taking into
account ensemble similarity). The marine NP (+-)-marinopyrrole A (Schneider and
Schneider 2017a) has been effectively discovered by TIGER as a target of chole-
cystokinin receptor, the orexin receptor, and glucocorticoid receptor. The model
correctly identified the estrogen receptors and as targets of the stilbenoid resveratrol,
among other proteins (Schneider and Schneider 2017b).

A stacked ensemble target prediction approach called STarFish was developed
using synthetic chemical data (Cockroft et al. 2019).

Most recently, medical indication information was used to train multitask deep
neural networks and use them to identify privileged chemical scaffolds in NPs
(in this instance, scaffolds are used for which many NPs built within the same
scaffold are active inside the same indication). A privileged scaffold dataset was
created for 100 indications based on the predictions of these models, which may be
used as the starting point for NP-based drug development (Lai et al. 2020).
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5.4.7 Prediction of ADME and Safety Profiles of NPs

ADME and safety profiling has a major say in drug discovery. ADME failures
contribute to around 40% of all the drug failures (Bhhatarai et al. 2019). So far, the in
silico ADME techniques have seen significant progress as shown in Table 5.2. Drug
toxicity is still a major concern despite the fact that pharmacokinetics (PK) failures
have decreased as a result of preclinical ADME investigations. These failures at late
phases of drug discovery pipeline causes huge loss of time and capital. The in silico
models provide a prior prediction for optimization. Another concern is drug–drug
interactions (DDI) which can result in toxicity and severe ADR, obscuring the whole
process. Established and broadly applicable computational filters will serve the best
for screening and synthesizing and optimizing the drug product (Ekins et al. 2000).
In the 1960s, the early phase of ADME models was developed using Hansch’s
conventional QSAR methods. As a result, comparative molecular field analysis
(CoMFA), a type of molecular modeling software, was developed, in such a way
that three-dimensional visualization became an important direction for QSAR.

The different ADME properties that can be evaluated by computational approach
are solubility, permeability, clearance, metabolic stability, drug–drug interactions,
blood–brain barrier, and cardiotoxicity.

The different software available for predicting ADME properties are MolCode
toolbox, preADMET, MolCode toolbox, Discovery Studio,volsurfC, QikProp,
ADMEWORKS Predictor C Chembench, and admetSAR (Shin et al. 2017).

The major challenges addressed by NPs related to ADME profiling are off-target
receptors such as—hERG channel, cytochrome P450 enzymes (suspected for drug-
drug interactions, and toxicity), and the P-glycoprotein (suspected for drug resis-
tance). A plethora of such models based on statistical, machine learning,
pharmacophore address these and many other off-targets. Another major concern
is most of the computational models are validated by synthetic origin drug product.
Computational models such as FAME 3 have reportedly known to for their effec-
tiveness even when majority of compounds in the training set are again of synthetic
origin (Šícho et al. 2019).

Table 5.2 Progress in in silico ADME (Bhhatarai et al. 2019)

Phase Progress

1960s Classical QSAR methods with small datasets developed by Hansch (1972), introduction
of use of octanol ±water log P

1980s CoMFA was developed along with other membrane permeability and intestinal absorp-
tion models—CYP 3D-QSAR and 4D-QSAR modeling

2010s More than 100,000 data for in vitro ADME properties in big pharma, open access data in
thousands, growth of open projects (for example, eTOX, OpenTox, Tox21, ToxCast).
wide variety of ML algorithms (RF, SVM, KNN, NB, DNN)
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5.4.8 Case Study

Scientists have shown that five tropical plants—M. charantia, B. javanica,
E. longifolia, T. divaricata, and G. mangostana—exhibit inhibitory effect against
H5N1 neuraminidase. For the purposes of bioassays, different plant parts (leaves,
roots, and fruits) were extracted, chromatographed, and fractionated. The anti-H5N1
neuraminidase activity of the plant fractions and extracts ranged from excellent to
moderate. At 250 g/ml, G. mangostana showed the maximum inhibition (82.95
percent). Following this, pure chemicals were extracted from the five plants. The
IC50 values of rubraxanthone, mangostin, and garcinone C ranged from 89.71 to
95.49 M, making them stand out (Ikram et al. 2015). This process is depicted below
(Fig. 5.2) and the docking results of the abovementioned plant derivative are
mentioned in Fig. 5.3.

Fig. 5.2 Strategies for novel neuraminidase inhibitors discovery of natural product (Ikram et al.
2015)
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Fig. 5.3 (a) The superimposition of the docked and crystallographic oseltamivir poses (green and
blue, respectively). The RMSD was 0.84 Å. (b) Predicted hydrogen bonds of Garcinone C in the
active site of neuraminidase inhibitors. (c) Predicted cation-π interactions between R371, R292,
R152, and the xanthone moiety of Garcinone C in the active site of neuraminidase inhibitors. (d)
The crystallographic pose of oseltamivir, a potent inhibitor, shown for reference (PDB ID: 2HU4)
(Ikram et al. 2015)

5.5 Challenges to Computational Approaches

The major challenges for NP-based drug discovery is management and representa-
tion of the data. Although ArachnoServer and ConoServer are rich and highly
descriptive NP databases, but reserved only to specific clade of species producing
toxins (Kaas et al. 2012). A partial solution for this is Tox-Prot manual annotation
program within UniProtKB/Swiss-Prot which provides a more generalized and
improved representation of databases for NPs (Jungo et al. 2012). However, this



does not seem to be the complete solution. Another concern associated with NPs is
fragmentation of databases which means more scattered form of data to be
maintained by smaller or larger organizations. The added difficulty is shortage of
funding required for maintaining those databases which leads to mismanagement of
data, ultimately disabling the function of that database. Examples of such databases
include as follows (Table 5.3):
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Table 5.3 List of databases discontinued in 2019

Database Type of NPs Size

3DMET (Maeda and Kondo 2013) General 18,248

AfroDB (Ntie-Kang et al. 2013b) tm, plants,
Africa

954

CamMedNP (Ntie-Kang et al. 2013a) tm, plants,
Africa

>2500

Traditional Chinese Medicine Systems Pharmacology (TCMSP)
(Ru et al. 2014)

Chinese herbs 499

Fig. 5.4 Pictorial
representation of functional
and defunct databases

To have a clear view, a comparative data of functional and defunct databases have
been depicted in Fig. 5.4. A fundamental obstacle to the experimental screening of



NPs is their propensity to interact with biological tests. This could be explained with
the example of quercetin which has reportedly shown active in more than about
800 unique bioassays. The most common mechanism followed for interference is
aggregate formation, covalent binding, membrane disruption, metal chelation, inter-
ference with assay spectroscopy, and buffer decomposition buffers (Baell and
Holloway 2010). These problems could be overcome by specific set of rules
following statistical approach known as pan-assay interference compounds
(PAINS) rule set (Baell and Nissink 2018).
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5.6 Conclusion and Future Perspectives

Between the 1980s and the 2010s, two-thirds of the medications were either featured
NP pharmacophores (35%) or were analogs of NPs (5%). Modern computational
techniques discussed above can significantly expedite and reduce the risk of
NP-based drug development. The integration of computational approaches with
cheminformatics and other informatics methods has led to ease the management,
storage, and representation of vast NP-based databases. Computational tools offer
assistance in structural elucidation of bioactive NPs, in prior prediction of various
properties of NPs as discussed above which eases the procedure for drug discovery
pipeline. However, the major challenge being availability of descriptive database,
fragmented databases, and its maintenance along with physical availability of the
particular NP. These challenges have been resolved partially with introduction of
databases like COlleCtion of Open Natural prodUcTs (COCONUT) which provides
a web interface to browse and download elucidated and predicted NPs collected
from open sources. On a larger parameter, machine learning (ML) has been using
computational methods in drug discovery. For instance, clustering techniques have
enabled de novo molecular design, projected protein target druggability, and seg-
mented cell type imaging. The computational approach for NP-based drug discovery
holds great future for NP-based drug discovery. The amalgamation of computational
methods with advanced technologies in analytical domains can improvise the drug
discovery pipeline for NPs. The advancement of higher-field NMR instruments and
probe technology has made it possible to determine the structure of NPs from
extremely small amounts hence, less wastage of hardly obtained product. Pauli
and associates suggested conducting early, relatively sophisticated purity analyses
on lead nanoparticles using quantitative NMR and LC–MS to avoid pointless
downstream initiatives. Further advancement of metabolomics, genome mining,
microbial culturing technique has added to the future scope of NP-based drug
pipeline. In addition, antivirulence strategies may represent an alternative method
for combating infections, for which NPs that target bacterial quorum sensing may be
of interest. In silico Medicine, an American company, created an AI system called
GENTRL (Generative Tensorial Reinforcement Learning) in 2019 that, in just
46 days, successfully created six kinase inhibitors of the discoidin domain receptor
1 linked to lung fibrosis. Cheminformatics, bioinformatics, and other related fields



have made significant contributions to NP-based drug discovery over the years.
Recently, reviews of their successful applications and limitations were conducted.
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