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Preface 

This book titled CADD and Informatics in Drug Discovery has been proposed to 
impart updated knowledge on recent advances in computational and bioinformatics 
tools/techniques and their practical applications in modern drug design and discov-
ery programme. This book encompasses fundamental principles, advanced method-
ologies, and applications of various CADD approaches including several cutting-
edge areas. This book also presents recent developments covering ongoing trends in 
the field of computer-aided drug discovery. Having contributions by a global team of 
experts (academicians, scientists, and researchers), the book is expected to be an 
ideal resource for drug discovery scientists, medicinal chemists, pharmacologists, 
toxicologists, phytochemists, biochemists, biologists, R&D personnel, researchers, 
students, teachers, and those working in the field of drug discovery. This book is also 
expected to fill the knowledge gaps that exist in the current CADD approaches and 
methodologies/protocols being widely used in both academic and research practices. 
Further, a special focus on current status of various computational drug design 
approaches (SBDD, LBDD, De novo drug design, Pharmacophore-based search), 
bioinformatics tools and databases, computational screening and modeling of phy-
tochemicals/natural products, artificial intelligence and machine learning, and net-
work pharmacology and system biology would certainly guide researchers, students, 
or readers to conduct their research in the emerging area(s) of interest. By design, 
this book is expected to be highly beneficial to different stakeholders working in the 
pharmaceutical and biotechnology industries (R&D), the academic as well as 
research sectors. This book would be the best choice for majority of readers 
among various communities such as scientists, researchers, R&D personnel, stu-
dents, and teachers. This book would, therefore, meet the basic needs of teaching, 
learning, and research practices particularly in the subject/area of computer-aided 
drug design and discovery. Looking into the focal theme of the proposed book, the 
following three unique selling points could be attributed to address the reader’s 
demands up to the level of their satisfaction:
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vi Preface

1. Highlights advanced computational approaches, tools, and techniques for drug 
design and discovery. 

2. Details fundamental knowledge, methodologies, and practical applications of 
CADD approaches. 

3. Depicts several cutting-edge areas of CADD approaches and bioinformatics 
tools/techniques. 

Guntur, India Mithun Rudrapal 
Majmaah, Saudi Arabia Johra Khan
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Chapter 1 
Role of Bioinformatics in Drug Design 
and Discovery 

Pinkal H. Patel, Adarsh Jha, and G. S. Chakraborthy 

1.1 Introduction 

The first phase within the procedure of finding new drugs is the diagnosis of illness 
along the nicely defined signs that lower life condition. An ideal medicine is 
typically defined as compound (that might be a straightforward molecule/complex 
polypeptide) or chemical mixture that reduces discomfort despite having a signifi-
cant negative impact on the patient. Other desirable drug characteristics include a 
low probability of drug resistance, which would dramatically reduce the medicine’s 
commercial value (David et al. 2009; Drews and Ryser 1997), and low negative 
environmental effects (Davies and Davies 2010), such as no reactivation of bacterial 
species after human usage (Boxall et al. 2012). As a result, a desired drug is the one 
that not only works well but also causes furthermore few brief consequences upon 
the individual, community, as well as surroundings negative impacts. 

The main object of this review will be how bioinformatics might speed up the 
search for such desirable medications. The fields of population gene fingerprint, 
evolutionary biology, genetics, metagenomics, and omics are all included in the 
interdisciplinary science of bioinformatics. Information from increased output mol-
ecules (Fig. 1.1) is used by bioinformaticians in drug discovery to compare patients, 
animal disease models, cancer cell lines, and those who carry symptoms, as well as 
normal subjects. Main goals parallel between: (1) relate signs of illness to sequence 
variation, transcriptional regulation, and additional external conditions that affect 
genomic regulation; (2) specify targeted therapies that both remove or recover 
cellular activity, such as cancer cells; (3) anticipate or further develop drug
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compounds that interact to the target and produce the intended beneficial benefit; and 
minimize adverse results; and (4) evaluate the efficacy of the candidate drugs.
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Fig. 1.1 Important high-throughput data types and their important details pertinent to the drug 
discovery. The exclusion of the metabolic data is because they pertain to cheminformatics. From 
“Bioinformatics and Drug Discovery” by Xuhua Xia, 2017, Copyright 2017 by Xuhua Xia 

1.2 Genome Sequencing and Genomic Exons Information 
in Drug Discovery 

The discovery of sequence homology between a platelet-derived growth factor 
(PDGF) and the cancerous gene of the simian sarcoma virus, v-sis, by straightfor-
ward string matching is among of the earliest bioinformatics applications to drug 
target finding (Doolittle et al. 1983; Waterfield et al. 1983). This discovery prompted 
two new ways of thinking in addition to the use of PDGF as a target for cancer drugs 
(Pietras et al. 2003; Bergsten et al. 2001; Ehnman et al. 2013). First, the viral 
transforming factor might simply convert a growth factor’s temporary expression 
to constitutive expression, indicating that growth factors could be potential targets 
for the creation of anti-cancer drugs. Second, anything that alters the way genes are 
expressed may be a factor in cancer. The advancement of mechanism-based anti-
cancer medication discovery throughout the ensuing years was aided by this new



conceptualization of cancer biology (Gibbs 2000; Shoemaker 2006; Moffat et al. 
2014). 
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1.2.1 Genetic Diseases 

Patients with inherited disorders whose genomes and complete exomes sequenced 
have revealed several somatic mutations that are linked to genetic diseases (Ow et al. 
2014; Song et al. 2014; Zhang et al. 2016) and may serve as therapeutic targets 
one day. 

Many genomic differences identifying illness causing variations between 
matched patients’ and healthy controls are the main challenge in bioinformatics 
research on somatic mutations (Brucher and Jamall 2016). High-genetic heteroge-
neity can be seen in some disorders, including cancer (Garraway and Lander 2013), 
even within the cells that make up a single tumour (Ling et al. 2015). Many of these 
somatic mutations can result from cellular dysfunction rather than being the cause of 
it (Brucher and Jamall 2016). 

There are three different types of somatic mutations that need to be distinguished: 
those that cause the disease and may be drug targets; individuals who are directly 
connected to the illness genotype are consequently related to the disease; who are 
consequently linked to the illness, and those who are not linked to the illness yet 
unavoidably appear in the patient group and not in the control group. Although not a 
pharmacological target, the second category of mutations can be utilised to diagnose 
disease. There are two ways to exclude the third category. The first is by expanding 
the sample size. If several forms of sarcoma share a similar somatic variation, its 
relation to that sarcoma is greater than the one which only affects one form of 
sarcoma (Pereira et al. 2016). 

Without knowledge of the illness process distinguishing among the initial and 
latter types of genetic differences between patients and controls is much difficult. A 
damage variation may arise in the coding sequence (CDS), a regulatory motif (such 
as the response elements for ligand-activated nuclear receptors), or an enhancer that 
may be up to 1 million bases away from the CDS. Three methodologies are 
frequently used by bioinformaticians to determine whether a mutation has a signif-
icant effect on gene activity: (1) If either the variation substitutes a very different 
amino acid for a generally conserved position, such as replacing the a positively 
charged arginine paired by a non-polar, uncharged glycine (Baird et al. 2015), if the 
mutation affects the change impacts and information in order; (2) the variation is a 
highly conserved non-coding sequence, which is typically determined by comparing 
the genomes of humans and non-human species; or for cellular machinery, such as a 
start and end point for expression, a junction point, or a control sequence (e.g., 
ribosome, spliceosome, degradosome). The available libraries of known compliance 
sequences that have been painstakingly assembled and evaluated facilitate the last 
method (Daily et al. 2011; Huang et al. 2006; Xie et al. 2009). Genomes are 
frequently searched for regulatory patterns using bioinformatics methods. Support



vector machines (Xia 2012; Rouchka 1997), whereby the differences between two 
groups of sequences can be extracted (like, sequence-present and sequence-absent), 
may be utilised to identify the distinctions between two sets of genomes (like motif-
present and motif-absent), and the information gathered from this process can be 
utilised to find or analyse structures in sequences (Hua and Sun 2001; Zien et al. 
2000). Nuclear receptor responses can be control sequence components, whose 
discovery frequently leads to the improvement of therapeutic targets (Kotokorpi 
et al. 2010). Software like DAMBE (Xia 2013), which with only a few mouse clicks, 
it is possible to retrieve codons, ribosomal RNAs, transfer RNAs, introns, exons, 5′ 
and 3′ crossover sites, upwards or downward regions of genomic features, etc., 
makes these investigations easier. DAMBE has tools for estimating the minimal 
folding energy, Gibbs sampler, and PWM, but it also calculates the protein isoelec-
tric point and measures protein translation efficiency. 
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A distantly related genome or a different biological pathway that can negate the 
effects of variation can be found using bioinformatics a distantly related genome or a 
different biological pathway which can negate the effects of variation. Mammals 
frequently have redundant or partially redundant functions. For instance, the mouse 
paralogous genes USP4 and USP15 have redundant functions (Vlasschaert et al. 
2015). The deposition of relatively lengthy fatty acids that causes Human adreno-
leukodystrophy (ALD) is brought on by the selective elimination of the 10-exon 
ABCD1 genome (Krasemann et al. 1996). This implies that in addition to restricting 
VLCFA intake through diet, alternative metabolic pathways for VLCFA should also 
be activated by controlling the expression of another lipolytic genome (ABCD2) and 
inhibiting the activity of an enzyme that produces VLCFA (Morita et al. 2011). 
Sickle-cell anaemia, which is brought when the human beta-globin gene changes by 
just one peptide (Pauling et al. 1949), is another instance of switching on alternative 
biochemical activities or partially redundant genomes (Steinberg and Rodgers 2001; 
Kutlar 2007). Because HbF inhibits haemoglobin (HbF) polymerisation and 
clumping, it makes the foetal HbF gene an attractive therapeutic target. Adults 
with sickle-cell anaemia and thalassemia might experience less discomfort if there 
was a medication that could restore the silent HbF (Kioussis et al. 1983; Taramelli 
et al. 1986). It is interesting to note that some individuals with thalassemia carry the 
normal copy of the β-globin gene, but due to mutations far from it, the gene does not 
express itself. Later on, epigenetic modification and genomic architecture will be 
discussed, along with such long-range gene regulation. 

1.2.2 Human Diseases Caused by Pathogens 

For the development of target-based drugs against pathogens, well-annotated 
genomes are crucial. The three key steps in the overall bioinformatics methodology 
are as follows. The first step is to determine which pathogen genes are crucial for 
therapeutic targets. Identification of these crucial genes can be facilitated by a 
genome, especially one that has been thoroughly annotated. Because pathogenic



organisms use the salvage process in place of a new method of producing nucleo-
sides, genes involved in nucleotide synthesis, for instance, are well recognised yet 
frequently absent in pathogenic species. The genes for ATP, GTP, and TTP de novo 
synthesis have been lost in Trypanosoma brucei, but the pathogen still has a small 
ability to synthesize CTP from scratch. It is most probably as CTP cannot be 
dependably acquired via recovery and normally has a lower concentration in cells 
than the other oligonucleotides. This suggests a potential therapeutic target: the CTP 
production route. In fact, preventing CTP synthesis stops the pathogen’s develop-
ment and replication (Hofer et al. 2001). When infections and their evolutionary 
relatives are compared genomically, essential genes are frequently found to be 
highly conserved. Occasionally, it also can be inferred from information collected 
from biological systems with specifically and purposefully scooped genomes, such 
as Escherichia coli, Bacillus subtilis, or  Saccharomyces cerevisiae. Any bacterium 
most likely needs the same genome that is needed for the two bacterial strains. 
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Checking if such crucial genes have host homologues is the second step in the 
development of medications to combat pathogens. If so, inhibiting these crucial 
pathogen genes could have a negative impact on how the host homologue functions. 
As a result, we must compare the sequences and structures to find parasite and host-
associated proteins have any distinctive features that can help thus in the creation of 
medications tailored to certain infections. 

Third, it is crucial that the medicine specifically targets neither of its evolution-
ary descendants who are not harmful but the infection itself in order to lessen 
the chance that the infection will develop antibiotic immunity. This is why the 
preferred source of drug targets has evolved into unlike its non-pathogenic cousins; 
infection islands are different in harmful microbes (Hacker et al. 1997, Hacker and  
Kaper 2000). 

A glutamate transport mechanism, which lacks in humans and birds, but presents 
in the disease Clostridium perfringens, was discovered using bioinformatic research 
(Bhatia et al. 2014). Humans as well as tamed creatures and birds will be protected 
by drugs created to combat such a conveyance mechanism. The phosphoinositide-3 
kinase (PI3K) signalling route is crucial for the human parasite Giardia intestinalis 
and may be used as a therapeutic target. It is crucial to determine what distinguishes 
the PI3K sequences (Gipi3k1 and Gipi3k2) in G. intestinalis from animals as the 
PI3K route is also crucial in many microbes. Comparisons of the parasite’s 
sequences with other organisms showed a special insertion that can be used as a 
pathogen-specific therapeutic target. Pseudomonas aeruginosa is also targeted using 
the same strategy (Fernandez-Pinar et al. 2015). Similar to this, when creating anti-
HIV-1 drugs may aim the genomes associated in reverse transcription and the 
proteolytic breakdown of the viral’ translated polypeptide because those functions 
are not just essential for viral viability and spreading but are also not closely related 
to human functions homologs, meaning that blocking them should have few nega-
tive effects on people. 

The use of existing medications against different pathogens can also benefit from 
genomic analysis. A number of bacterial pathogens’ cell surfaces include 
galactofuranose (Galf), whose synthesis needs the enzyme UDP-galactopyranose



mutase (UGM) (Gruber et al. 2009; Kincaid et al. 2015). Galf is not present in 
humans, making UGM a desirable pharmacological target (Pedersen and Turco 
2003). Later, nematodes and other eukaryotic unicellular pathogens (Beverley 
et al. 2005) were shown to contain UGM encoded by the gene GLF (Wesener 
et al. 2013). Drugs created to combat bacterial infections are repurposed to combat 
eukaryotic unicellular pathogens. Drug development is more affordable when drugs 
are repurposed. Genomic study reveals that while eukaryotic UGMs are comparable 
to one another and to prokaryotic UGMs, they are also very dissimilar from one 
another, suggesting difficulty in translating drugs from bacterial pathogens to 
eukaryotic pathogens. However, there is a very significant probability that a medi-
cine developed to treat one eukaryotic UGM could also be used to treat other 
eukaryotic pathogens. 
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Additionally, genomics has helped us better understand how drugs work. Plas-
modium falciparum growth might be inhibited by the venom protein PcFK1 of the 
spider Psalmopoeus cambridgei; however, the exact mechanism was unknown. 
Sequence similarities between PcFK1 and the protein substrate of the 
P. falciparum enzyme PfSUB1 were discovered through sequence analysis, 
supporting the idea that PcFK1 is an antagonist of PfSUB1. This theory is supported 
by further docking predictions and in vitro tests, which identify PfSUB1 as a 
potential therapeutic target (Bastianelli et al. 2011). 

Understanding functional redundancy in essential cellular processes is essential 
for creating pathogen-fighting medications that are successful. Ethambutol is a 
medication that targets the Mycobacterium tuberculosis arabino-
furanosyltransferases Mt-EmbA and Mt-EmbB, which are involved in the formation 
of the cell wall compound mycolyl-arabinogalactan-peptidoglycan. Another 
arabino-furanosyltransferase, Mt-AftA, was discovered by bioinformatic analysis. 
This enzyme is not inhibited by ethambutol, making it a potential therapeutic target. 
In addition to being more effective against the virus, medications that target all three 
arabinofuranosyltransferases also lessen the possibility that the pathogen may 
acquire drug resistance (Alderwick et al. 2006). Because the genomic shift between 
glucose and lactose as well as the lac-operon was discovered, bacterial species have 
been known to activate varied biochemical routes to meet the demand for vitality and 
development (Jacob and Monod 1961); however, without knowledge about how 
cells act with respect to alternate routes which may be triggered in regard to the 
medicine, a compound cannot be successful towards a bacterium or a sarcoma. 

Together with integrated genomic evolutionary relationships and constructed 
chronological outlook (Xia 2007, Higgs and Attwood 2013), bioinformatics fre-
quently contributes to settling disputes over molecular mechanisms. The causative 
analysis of CpG methylation causing CpG depletion by the following CT alteration 
caused by random deamination is one example of this. Mycoplasma genitalium and 
Mycoplasma pneumoniae both lack DNA CpG methyltransferase (Cardon et al. 
1994; Goto et al. 2000), but M. genitalium exhibits a much stronger CpG deficiency 
than M. pneumoniae, raising the possibility so the two groups’ different levels of 
CpG deficit has no bearing on CpG methylation. Without taking evolutionary theory



into account, such a conclusion from genetic investigations is frequently incorrect. 
Multiple CpG methyltransferases are found in M. pulmonis as well as other relatives 
that diverge before M. genitalium and M. pneumoniae, so a thorough phylogenetic 
analysis using the programme DAMBE demonstrated thus the two groups’ forebears 
ought to have numerous CpG methyltransferases (Xia 2013). Both M. pneumoniae 
and M. genitalium started to gain CpG following their mutual descendants’ inacti-
vation of the CpG methyltransferases. Compared to M. genitalium, M. pneumoniae 
developed very swiftly (with a longer branch) and recovered CpG quicker. Such 
findings validated a normal relationship between CpG-specific DNA methylation 
and CpG deficiency and emphasise the importance of viewing biological processes 
from an evolutionary perspective. Lately, a brand-new bilateral genome alignment-
based evolutionary approach was created to make it easier to conduct comparative 
genomic research on extremely divergent populations. Because many of these are 
due to the difficulty in obtaining accurate multiple sequence alignment with highly 
divergent sequences while studying widely dispersed bacterial or viral species 
(Xia 2016a, 2016b). 
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1.3 Epigenetics, Genome Architecture, and Cistromes 
in Drug Discovery 

Identical deleterious variants in monozygotic twins, such as the aforementioned 
ALD mutation, frequently exhibit significant phenotypic variation (Korenke et al. 
1996; Petronis 2004; Petronis 2006; Petronis et al. 2003). These findings show the 
connection between epigenetic changes and human diseases (Zoghbi and Beaudet 
2016; Jiang et al. 2004). DNA methylation and histone modification are two related 
processes that make up epigenetic modification. Maintaining the DNA methylation 
pattern is human DNA methyl transferase 1 (DNMT1), for whom CatD region 
recognises hemi-methylated CpG motifs in mammals in order to keep the DNA 
methylation sequence between parent and daughter cells. Histone deacetylase is 
instead drawn towards the methylated CpG in animal species, where it removes the 
acetyl group and restores the positive charge of the lysine residues (or histone 
N-terminal) in histone so that the negatively charged DNA backbone can tightly 
wrap around the positively charged histone to silence the genotype. In many aspects, 
a silent gene is analogous due to some kind of variant with failure (Wade and Wolffe 
2001). Blockers of histone deacetylase are being used as targeted therapies in an 
effort to reactivate the apoptotic process since it appears that some malignancies are 
induced via DNA methylation and histone deacetylation, which permanently silence 
apoptosis-related genes (Insinga et al. 2005a, 2005b). Given that deacetylase inhib-
itors frequently have a significant impact on the regulation of many other genes 
(Bolden et al. 2006), the fundamental issue with this strategy is specificity, which 
may help to clarify how some medications frequently avoid enrolling in clinical 
testing (Voelter-Mahlknecht 2016). Currently being developed are techniques for



precision epigenome editing that involve DNA-binding components and particular 
detection and modification of sequences (Kungulovski and Jeltsch 2016). 
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Fig. 1.2 An outline of how epigenetic changes to proteins that bind to DNA can affect gene 
expression. These changes can affect short-distance interactions like enhancer–promoter connec-
tions, as well as long-distance interactions like protein–protein and protein–DNA interactions. BQ: 
example bioinformatic queries; LM: laboratory technique. From “Bioinformatics and Drug Dis-
covery” by Xuhua Xia, 2017, Copyright 2017 by Xuhua Xia 

A very thorough conceptualisation of protein expression and genomic alteration 
has now taken the place of the widely held notion that irreversible genetic suppres-
sion is the primary function of DNA methylation and histone deacetylation 
(Fig. 1.2). This conceptual shift necessitates the combined study of a number of 
high-throughput data sources, including data on DNA/protein binding (cistrome) 
(Grigg and Clark 1994; Grigg 1996) from ChIP-on-chip and ChIP-Seq, methylation 
pattern from bisulfite sequencing (Robertson et al. 2007), and genomic architecture 
from Hi-C or its derivatives (Lieberman-Aiden et al. 2009). DNA methylation 
changes DNA/protein binding, which in turn changes genome architecture by 
enabling the joining of two DNA segments that are spatially separated along linear 
DNA. The ability to analyse the spatial relationship inducers and promoters can 
sometimes be up to 1 million units distant from each other, which is made possible 
by genome architecture data. Since 1930, studies of translocation have shown that 
the location of a gene’s promoter or enhancer on the genome affects how that gene is 
expressed (Muller and Altenburg 1930). However, it was not until much later that



empirical data emerged to support this theory. The genetic regulatory promoter 
cluster theory was developed as a result of this. In other words, a gene whose 
promoter loops stated near the centre. As the hub contains one or more enhancers, 
the function of all genomes will be silenced by the loss of this type of hub whose 
expression is dependent based on its vicinity toward the base physically. 
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What the methylation signal on DNA is and if it can be modulated to change 
epigenetic alterations are the two main questions from a bioinformatics perspective. 
As I’ve previously indicated, the beta-globin genome is correctly copied in certain 
thalassemia cases, although a few thalassemia cases get the proper version of the 
beta-globin genome, the genome is not activated because of alterations that hap-
pened far from it (Kutlar 2007; Kioussis et al. 1983). One may come up with two 
theories. First, the patient has a mutation or deletion in the promoter which regulates 
production of the β-globin gene (Kioussis et al. 1983; Forrester et al. 1990). Second, 
aberrant epigenetic changes and protein/DNA binding cause the enhancer that is 
normally situated close to the promoter of the β-globin gene to be moved to a 
different location. It would be clearer if these hypotheses were tested, which has 
only been made possible by the accessibility of high-output data on methylation 
frequencies, cistromes (a compendium of all protein/DNA receptor), and genomic 
structure, if we knew how to readjust the beta-globin promotor and the regulator to 
create the genome expression (Deng et al. 2012, Deng et al. 2014a, 2014b, Hou et al. 
2008). Similar to the previous example, if DNA methyl activation quiets the beta-
globin genome, understanding we can reawaken the genome by learning where to 
adjust the signal to change the methylation sequence that has been silenced. 
According to the same line of thinking, the understanding of location-selective 
methyl removal process particularly useful if methyl activation silences the prenatal 
globin genome and reactivating these prenatal globin genomes can lessen this 
problem brought upon with alterations in adult globin genomes (Kungulovski and 
Jeltsch 2016). 

Given that the mammalian genomes contain both methylated and unmethylated 
CpG, one basic bioinformatic approach would to find out if surrounding nucleotides 
add to methylation signs, analyse the surrounding locations of those two same 
components of CpG dinucleotides. Although done on a small scale, however, such 
examinations of the surrounding areas among methylated and unmethylated CpG 
have demonstrated a significant splicing sign in the adjacent regions of the 5′ and 3′ 
splice sites (Ma and Xia 2011; Vlasschaert et al. 2016) have not produced definitive 
conclusions (Bibikova et al. 2011; Eckhardt et al. 2006; Shoemaker et al. 2010). 
Although the idea of an imprinting centre (IC) has been around for a while (Ohta 
et al. 1999), its structural or sequence-level physical underpinnings continue to be a 
mystery. 

Monozygotic twins with the same genetic abnormality frequently express the 
related disease differently (Korenke et al. 1996; Petronis 2004; Petronis 2006; 
Petronis et al. 2003); therefore, it makes sense to look for environmental factors 
like nutrition that may have an impact on epigenetic alteration (Chen et al. 2016; 
Sharma et al. 2016). A methionine deficit is likely to influence DNA methylation 
since S-adenosyl L-methionine (SAM) is required for methylation as the methyl



donor (Ingrosso et al. 2003; Ingrosso and Perna 2009). This has been proven to be 
the case. Similar to this, it would be expected that any significant methionine 
disturbance, such as the loss of the essential enzyme methylthioadenosine phosphor-
ylase (MTAP), would likewise have an impact on DNA methylation, gene regula-
tion, and cancer. Indeed, cancer cells frequently have MTAP loss (Bigaud and 
Corrales 2016). Therefore, every gene that affects methionine metabolism may be 
a potential target for drugs, and bioinformatics can efficiently discover such genes 
using databases like KEGG (Kanehisa 2013; Kanehisa et al. 2016; Tanabe and 
Kanehisa 2012). 
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A perfect drug (or containing nano-device) must be able to recognise and rectify 
the incorrect DNA methylation sequence in a targeted manner (Kungulovski and 
Jeltsch 2016). We must first determine the proper methyl activation sequence or, 
better yet, locate a set of compounds which carry out this exact sequence in order to 
create such a medicine or nanomachine. The evidence from experiments has grown 
in favour of RNA’s function in adjustments to gene regulation (Jin et al. 2004). The 
epigenomic coding may not be on DNA since the zygote’s DNA gets demethylated 
to recover pluripotency (Clark 2015). The epigenetic codes, particularly those that 
define new DNA methyl activation (Bao and Bedford 2016), are not likely to be 
present in proteins because protamine replaces most fundamental histones in male 
germ cells and since proteins don’t seem to be very good at generating data. A group 
of extremely robust and physically preserved RNA sequences, though, may include 
such codes and is available from the egg and sperm phase onward. Long non-coding 
RNAs (lncRNAs) may regulate the chromatin state and take part in epigenetic 
modification. DNA that contains several sequential receptors were discovered during 
the lncRNAs such HOTAIR (Chu et al. 2011; Chu et al. 2012; Rinn et al. 2007), and 
Kcnq1ot1 (Pandey et al. 2008) engaging to such sites enhances the activation of 
Polycomb Repressive Complex 2 (PRC2) for regulating histone H3 lysine-27 
trimethylation. Analysis of lncRNAs bound to DNA and protein utilising the 
ChiRP-seq method (Chu et al. 2011; Chu et al. 2012). Small RNAs too can regulate 
genetic modifications (Chen et al. 2016; Sharma et al. 2016; Rodgers et al. 2015; 
Gapp et al. 2014). A variety of short RNA species are found in mature sperm, and 
these small RNAs do have an impact on the phenotypic of children. These short 
RNAs on children also seem to be involved in epigenetic remodelling (Rodgers et al. 
2015, Gapp et al. 2014). The ENCODE pilot project demonstrates “Most of the 
nucleotides in the gene could be found in main transcribed, demonstrating that the 
genome is pervasively expressed,” according to one study (Birney et al. 2007). 
These, for data scientists searching to recognise epigenome-modifying RNAs as 
prospective drug targets, non-coding transcribed may be a veritable great resource. 

Epigenetic alteration has a long history. In order to defend themselves in oppo-
sition to endogenic type II restriction endonucleases, many bacterial species meth-
ylate the DNA in their own cells (Murphy et al. 2013). Human viral diseases like 
HIV-1 can cause significant alteration in host epigenetic pattern (Abdel-Hameed 
et al. 2016). Some bacteriophages possess methyltransferases which can modify its 
own genomes to withstand human-restrictive digestion. It is now understood that 
many infections have the ability to alter host epigenetic patterns in order to survive



and reproduce in the host (Bierne et al. 2012; Arbibe and Sansonetti 2007), as well as 
some host defence systems against pathogens (Bierne et al. 2012). Uncertainty 
surrounds the ultimate course of such host cells that have undergone epigenetically 
driven pathogen modification. Do they stop the invasion of the virus, return the 
epigenetic pattern to normal, and resume normal function? Or do they start a specific 
apoptotic pathway and die? A model organism or cell line that can have its 
epigenetic pattern disturbed by external causes and subsequently returned to normal 
is what epigeneticists need. 
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1.4 Transcriptomics and Drug Discovery 

Using transcriptomic data, it is now possible to distinguish between patient and 
matched control groups’ transcription start and termination sites, alternatively 
spliced isoforms, and differentially regulated genes (Berger et al. 2010; Arvaniti 
et al. 2016; Bell et al. 2016; Furukawa et al. 2016; Haustead et al. 2016; Mlera et al. 
2016). Drug discovery is primarily aided by transcriptomic data analysis in 
two ways: drug target identification and phenotypic screening to identify and hone 
drug candidates. 

1.4.1 Phenotype Screening 

Phenotypic screening has been the subject of controversy, although recently pro-
posed definitions all share the following five characteristics (Moffat et al. 2014; Eder 
et al. 2014): (1) several different chemicals (chemical entity) should be selected in a 
systematic manner for the screening; (2) pheno-genomic alterations brought on 
every substance must be monitored; (3) a standard for requirement should be 
developed; (4) molecules that have favourable bioactivities (phenotypes) must be 
kept as active compounds for additional evaluation and validation; and (5) the 
method of action should not be the screening’s main point of interest. The revelation 
of artemisinin, one of the most successful treatments for the Plasmodium falciparum 
pathogen that causes malaria, is one of the success stories of phenotypic screening’s 
effectiveness in identifying active components in conventional medicine (Miller and 
Su 2011). 

When developing medications for illnesses with multiple causes, such as genetic 
disorders, morphological separation is more effective, whereas the target-based 
approach is more effective when developing medications for illnesses with compar-
atively simple causes, such as mono-genetic conditions (Swinney 2013; Swinney 
and Anthony 2011). The genetic makeup of cancer is varied (Garraway and Lander 
2013), and the genetic variety within a single tumour is incredibly significant 
(Ling et al. 2015). Phenotypic screening created especially for cancer has been 
utilised extensively in the discovery of cancer drugs for such complicated disorders



(Shoemaker 2006). The discovery of an effective chemical through screening fre-
quently illuminated the molecular mechanism of action (Swinney et al. 2016). 
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Because FDA-approved drugs have already undergone the challenging regulatory 
process, phenotypic screening for which medication reuse is economical. This 
approach has led to the development of potential antagonists for enteroviruses 
(Ulferts et al. 2016), anti-aging therapies (Snell et al. 2016), anti-neoplastic drugs 
(Ozsvari et al. 2016), and allosteric Bcr-Abl inhibitors in the fight against chronic 
myeloid blood cancer (Singh et al. 2016). 

In what ways can bioinformatics support phenotypic screening? The explanation 
is found in the fact that phenotype is frequently defined, most recent phenotypic 
separation studies (Wishart 2016a, 2016b, Xia et al. 2009), especially in separation 
for anti-neoplastic medicines, use either directly or indirectly a genomic (transcripts 
or protein) database (Shoemaker 2006) or metagenomic characteristics. From this 
vantage point, there are two more methods for treating cancer cells. The first step is 
to get cancer cells’ gene expression back to normal cell levels. When the first option 
fails, the second is to eliminate cancer cells by causing apoptosis (Shoemaker 2006; 
Moffat et al. 2014). These two methods suggest the following two criteria for 
phenotypic drug discovery: (1) raising similarity in genetic regulation between 
normal and cancerous cells and (2) raising similarity in genetic expression among 
both tumour and dead cells. 

By using genome expression data as characteristics to create a logical and rational 
indicator of drug desire (Idd) in morphological testing investigations, bioinformatics 
can support gene expression and drug development. For assessing pharmacological 
effects and safety at varied drug doses, therapeutic indices (Swinney 2009; Muller 
and Milton 2012) based on various pharmacokinetic theories might be supplemented 
by a similar Idd (Gabrielsson and Green 2009, Holford and Sheiner 1981a, 1981b). 
The poor success rate of medications revealed using phenotypic screen may have 
been caused by the absence of an explicit Idd (Eder et al. 2014). Due to this, I’ll take 
an uncommon step in this review article and start the process of creating a drug-
desirability index that includes both symptom relief and negative effects. 

Assign the genomic assessments of Gp, a “control,” and a “patient” who could be 
an animal illness model or a tumour cell line who is in a healthy state as Gn, and a 
patient who has taken a potential therapy as Gd. Today, it is simple to calculate a 
number of pairwise distances (Xia and Xie 2001) between Gn and Gp, Gd and Gp, 
and Gn and Gd (designated Dnp, Ddp, and Dnd, respectively, Fig. 1.3). The terms 
“Dnp” and “Dnp - Dnd” refer to the “Dnp - Dnd” correspond to the contender 
medication’s ability to lessen the intensity of the disorders, while “drug efficacy” 
(Emax) in pharmacodynamics models correspond to the contender medication’s 
ability to reduce the severity (Holford and Sheiner 1981a, 1981b). The difference 
between (Dnd + Ddp) and Dnp or (Dnd + Ddp - Dnp) could be used to measure the 
side effect. This suggests that Drug B in Fig. 1.3b has a more severe side effect than 
Drug A in Fig. 1.3a. We may create an inventory of medication desire (Idd) that uses 
these concepts as:
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Fig. 1.3 Illustration of numbers of phenotypic screening using Idd in Eq. (1.1) for two sets of 
transcriptome data (a) and (b). Genetic expression in healthy cells, sick-cytes before medication, 
and sick-cytes after medication are referred to as Gn, Gp, and Gd, respectively. From “Bioinfor-
matics and Drug Discovery” by Xuhua Xia, 2017, Copyright 2017 by Xuhua Xia 

Idd= ln 
Dnp-Dnd 

Dndþ Ddp-Dnp

� �
ð1:1Þ 

The use of Eq. (1.1) is seen in Fig. 1.3, where Drug A in Fig. 1.3a with Idd = 2.71 is 
preferred over Drug B in Fig. 1.3b with Idd = 1.03 (Fig. 1.3b), although this is not 
anticipated to occur in practise, one issue. The problem of Eq. (1.1) is whenever 
Gd = Gn or Gd = Gp, the fraction would be 0. To the equation, one might 
nonetheless add a small pseudonumber (c) as follows: 

Idd= ln 
cþ Dnpp-Dnd 

cþ Dndþ Ddp-Dnp

� �
ð1:2Þ 

The only prerequisite for c is that it must be small in relation to (Dnp-Dnd) in order 
for it to have a minimal impact on Idd. C could be set to 0.01*. 

Idd is available to assess any test results where a set of data is available to depict 
the individual prior medication use, the individual during a classic control period, as 
well as the individual after medication use, such as blood ferritin and transferrin 
levels, calcium and iron levels, etc. Idd’s use is not exclusively restricted to molec-
ular techniques or genomic regulation profiles. It can be used to assess the desirabil-
ity of various medications as well as those applied at various concentrations or given 
via various delivery methods (such as oral, subcutaneous injection, etc.). By simply 
substituting Gn with the gene expression of apoptotic cells, it is possible to obtain 
Idd for the second parameter, which is how far a drug may make cancerous cells 
result in cell death.



14 P. H. Patel et al.

Accurate gene expression characterisation is necessary for the two criteria to be 
applied effectively. The growth of greater-output tools, like including next genomics 
and microarrays inside this history currently (Xia and Xie 2001; Gentleman et al. 
2005), has been accompanied by the development of bioinformatic techniques and 
tools (Deng et al. 2014a, 2014b, Dobin et al. 2013, Langmead et al. 2010, Langmead 
and Salzberg 2012, Langmead et al. 2009, Roberts et al. 2013, Roberts et al. 2011, 
Trapnell et al. 2009, Trapnell et al. 2012). Sadly, the fundamental issue with 
allocating sequence reads to paralogous genes that has long plagued the analysis 
of microarray data has not been resolved. Instead, nearly all software provides users 
with two easy but ineffective options: either ignore sequence reads matching mul-
tiple genes or distribute such sequence reads equally among paralogous genes. 
Because multi-cellular eukaryotes have many duplicated genes, it follows that a 
large number of genes’ expression cannot be accurately defined due to an improper 
allocation of sequence reads to paralogous genes. 

1.4.2 Drug Target Identification 

To identify client and regulate differences in genomic expression pattern, as well as 
transcriptional variants, transcriptomic information from RNA-Seq can be 
employed. Diseases like Alzheimer’s disease (AD), which is linked to aberrant 
splicing from the parent peptide for amyloid, are frequently brought on by changes 
in the spatial and temporal distributions of various splicing isoforms (APP). Amy-
loid is produced by the proteolytic processing of APP, and it helps to build the 
extracellular neuritic plaques that are typically thought to be the cause of AD. The 
exon 7 (E7) of the multi-exon APP gene encodes for the Kunitz protein enzyme 
blocker. The animal central nervous system expresses three of at least eight variants 
created by variable splicing of such APP pre-mRNA that are distributed spatially and 
temporally (one deficit E7 and the rest two containing E7). While an E7-deficit 
isoform (APP695) is frequently exhibited in neurons, the E7-having isoforms 
(APP770 and APP751) are typically expressed in astrocytes as well as microglial 
cells. Contrary to the secreted E7-lacking isoform, the E7-containing APPs form 
persistent, non-covalent, inhibitory complexes with trypsin. Both in humans and 
mice, an increase in E7-containing isoforms is linked to AD symptoms. E7-skipping 
in APP695 is probably caused by the down regulation of U2AF expression during 
cellular development of brain tissues. However, according to the latest report, the 
RBFox1 protein has a binding domain (U)-GCAUG that is found both inside and 
ahead of E7, which is directly related to E7-skipping. RBFox1 is a splicing factor 
that is specific to neurons and muscles, and it causes exon skipping in a number of 
genomes, containing APP. Since both U2AF and RBFox1 are particularly expressed 
in brain tissues, a medication option, which either stimulates RBFox1 or inhibits 
U2AF, could lessen the chance of acquiring AD. These transcriptome investigations 
have considerably advanced our knowledge of the pathogenesis of numerous human 
diseases connected to alternative splicing, including AD.
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Diseases frequently have abnormal gene expression or regulatory alterations. The 
fundamental challenge is in interpreting reason and consequence since the transcrip-
tion of a genome that causes an illness may start at point t1, while many other genes 
could express differently at time t2, which could be years after time t1. As a result, 
there are virtually always many false positives when contrasting the gene expression 
patterns of diseased as well as healthy individuals. Sadly, despite the fact that it is 
easy to cut a wood chunk from the pine on a frequent basis, it is significantly more 
difficult to eliminate a client’s liver on a short and regular basis. 

Most of the human gene is translated according to an examination of 
transcriptomic data. Many RNA structures that are both little or large could be 
discovered by mining transcriptomic information medications or therapeutic targets 
because RNA interference has been shown to regulate a variety of biological 
functions. Which unannotated human transcripts are crucial for human biology 
among the vast number? 

A region is considered to be integral when it is predicted to be conserved amongst 
subspecies, such as apes or primates, from an evolutionary perspective. Using one of 
the many bioinformatics techniques available, lakhs of unique transcribed contain 
highly expressed RNAs. Any RNA species that is crucial for a certain function might 
be a potential aim. 

1.5 Proteomic Data and Drug Discovery 

The workhorses of living cells, proteins, are the aberrant overproduction of which is 
frequently linked to disease. Transcriptomic data are frequently not a useful indicator 
of protein abundance since transcribed genes may be differently translated (or not 
translated) (Ingolia et al. 2014; Xia 2003), and various proteins degrade at different 
rates (Gilbert et al. 2007). Because of this, proteome analysis and comparison 
between patient and control groups is frequently more useful in finding pharmaco-
logical targets than genomic or transcriptome information. Nearly all model organ-
isms have yielded proteomic data, which has been deposited in open databases like 
PaxDB (Wang et al. 2012). These data have made it much easier to create (Xia 2003) 
and use indices that predict translation efficiency (Prabhakaran et al. 2015, 
Chithambaram et al. 2014a, 2014b). 

Without a cohort to track over time, proteomic data suffer from the same issue 
with regard to causal interpretation as genomic and transcriptomic data, as I’ve 
already indicated. It is particularly challenging to determine which protein is actually 
causing the disease given the variable expression that has been seen in several 
proteins. At different cell cycle stages, certain proteins fluctuate in abundance. 
Unless the time and geographical variability of cellular molecules are not accounted 
for, comparing proteome (or transcriptome) across patient/normal pairings may still 
result in misclassification with minimal benefit to drug research. Cells can be 
sampled over a range of time periods in animal models. Mono-transcriptase molec-
ular analysis can rebuild a genome expression during the cell cycle (Heath et al.



2016; Saadatpour et al. 2015; Wu and Tzanakakis 2013) and proteome characteri-
sation over time (ordering cell gene sequences from phase 3, 1, and 2 to phases 1, 2, 
and 3 might lead to significantly more illuminating findings). 
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1.6 Ribosome Profiling and Drug Discovery 

Protein abundance statistics are limited by (1) the inability to identify peptides with 
lower concentrations, brief molecules, or transitory peptides and (2) the difficulty in 
isolating, separating, and purifying membrane proteins, which are frequently crucial 
elements in signal transduction. Once upon a time, transcriptomic data gave rise to 
the assumption that transcriptomic data might be used to estimate protein genomic 
data (Heath et al. 2016, Saadatpour et al. 2015, Wu and Tzanakakis 2013), yet 
varying mRNA conversion yields and protein degradation efficiencies skew the 
correlation among the ratio of peptide to mRNA availability. Although, it is antic-
ipated that ribosome profiling data combined with transcriptome data will produce 
accurate forecasts of the rate of protein synthesis. The mRNA availability as well as 
translating rate data is available via transcriptomic and ribosome profiling data, 
respectively. If genes A and B have translation efficiencies of RA and RB, respec-
tively, based on ribosome profiling data and Depending on transcriptome evidence 
as well as the mRNA availability levels of NA and NB, correspondingly, their 
corresponding related peptide formation efficiencies are NA*RA and NB*RB. 
Protein breakdown rate can be determined by comparing (Smircich et al. 2015) 
discrepancies amongst the peptide quantity estimated in this way as well as the actual 
peptide quantity. It is recommended that transcriptome and proteomic data be 
collected during a similar study, typically out of a single cell (Heath et al. 2016, 
Saadatpour et al. 2015, Wu and Tzanakakis 2013). 

Traditionally derived from microarray(Arava et al. 2003; MacKay et al. 2004), 
ribosome profiling data are now mostly derived through profound decoding of 
mRNA’s 30 nucleotide ribosome-protected fragments (RPF) (Ingolia et al. 2009; 
Ingolia et al. 2009; Ingolia et al. 2011). However, there is a good agreement between 
the two methods and the results from the yeast (Xia et al. 2011). The position of the 
ribosome on mRNA can be determined by mapping the sequenced RPFs to protein-
coding genes. Translational efficiency may be proxied by ribosomal density. How-
ever, across an mRNA, ribosomes could glide and cluster densely with poor codon 
use. Elongation efficiency must therefore be taken into account, for example, by 
ribosome density being regressed against the transforming growth score (Xia et al. 
2009). Control motifs like the poly(A) tract can be identified using information from 
ribosome sequencing that affect translation efficiency, for instance (Xia et al. 2011). 
Small poly(A) at 5’ UTR may make it easier to engage gene transcription elements 
and speed up translation, but lengthy poly(A) can link to poly(A)-binding proteins 
and restrict translation. These regulatory motifs can serve as easily manipulable 
pharmacological targets that are quickly recognisable.
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By combining two factors, there are four main models of translation initiation. 
The first is whether the internal ribosome entrance sites or the 5′ end of the mRNA 
(Kozak 1980; Jackson et al. 2010) are where the translation machinery begins 
scanning for the start codon (Gilbert et al. 2007; Doudna et al. 2007; Sonenberg 
and Meerovitch 1990; Yu et al. 2011; Elroy-Stein et al. 2007). The short ribosomal 
subunit’s ability to look for the initiation codon is the second, if the scan can also be 
done by a fully developed ribosome. Even while when inner ribosome uptake 
occurrence is now largely accepted, only new ribosome profiling studies have 
provided compelling empirical evidence for fully formed ribosomes along 
mRNAs’ 5’ UTRs (Ingolia et al. 2014), indicating that these ribosomes may also 
search for the start codon. 

Many viral internal ribosome entry sites (IRESs) have robust secondary structure, 
in contrast to eukaryotic IRESs for whom IRES action decreases as second structural 
stability increases (Xia et al. 2009). The inter-cistronic region of the cricket paralysis 
virus (CrPV) contains the IRES that can interact with the ribosome directly without 
the need for translation initiation components (Jan and Sarnow 2002; Jan et al. 2001; 
Pestova et al. 2004; Schuler et al. 2006). In order to avoid requiring initiation 
components necessary for cap-dependent translation (Pestova et al. 1998; 
Boehringer et al. 2005), the IRES of hepatitis C virus (HCV) can mimic the gene 
transcription unit (Komar and Hatzoglou 2005). 

An essential biological mechanism for reacting to the extracellular environment is 
translation regulation. A dozen or so genome of the yeast S. cerevisiae is ordinarily 
transcribed but not translated; nevertheless, when the surface nutrients are depleted, 
these genes are translated, and the resulting proteins allow the ability of yeast cells to 
scavenge nutrition from the growth media and proliferate (Gilbert et al. 2007). 
Ribosome profiling information can show if these translation-regulated messages 
are being translated, which will help us comprehend how animals employ transla-
tional control to acclimate to the surroundings. 

The best method for finding several novel peptide-coding genomes that would 
make good therapeutic targets is ribosome profiling. The discovery that unlabelled 
protein-coding genes can exist in the extensively researched phage λ gene empha-
sises how many protein-coding genes may still be unstudied (Liu et al. 2015). 
Usually, genes that are not categorised as translating segments contain ribosome in 
both human and mouse, which results in the creation of polypeptides (Yoon et al. 
2014). Given that the majority of the human genome is really transcribed (Birney 
et al. 2007), bioinformatic examination of the ribosome profiling data may lead to the 
identification of numerous additional protein-coding genes (Popa et al. 2016). 

Assigning RPFs to paralogous genes when an RPF matches many genes equally 
well is a critical issue in the analysis of ribosome profiling data. A polypeptide 
segment may bind to various peptides with perfect results when protein identification 
is commonly done using peptide mass fingerprinting, which is a difficulty with 
transcriptomic and proteomic data. Most programs provide two subpar choices: 
Genome runs with several paralogous genome matches ought to not be used, and



these runs should be distributed evenly across the matching paralogous genes. The 
Multiple Mapper Resolution (MMR) tool, just released and available at https:// 
github.com/ratschlab/mmr, aims to address this issue but provides no methodolog-
ical information. Because multicellular eukaryotes have so many duplicated genes, 
any downstream analysis will be unreliable if RPFs are incorrectly assigned to 
paralogous genes. I’ll describe the method used in the Tuxedo computer programme 
to assign RPFs to three or more paralogous genes. The assignment is quite straight-
forward when there are just two members of a gene family, thus it will not be covered 
in this article. 
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Fig. 1.4 Sharing of data 
within a genome family 
containing the paralogous 
genes A, B, and C, each of 
which has three idealised 
segments: a centre segment 
that is conserved and 
identical, a first segment that 
is strongly homologous to 
both B and C, and a third 
segment that has diverged. 
The colour of the reads 
matches that of the gene 
segment they match. From 
“Bioinformatics and Drug 
Discovery” by Xuhua Xia, 
2017, Copyright 2017 by 
Xuhua Xia 

For the appropriate distribution of genome reads from a protein family that 
contains three or many alternatively spliced genomes, a phylogenetic tree is 
required. I use a genome that has three parts made up of the three alternatively 
spliced genes A, B, and C. in Fig. 1.4 to illustrate the allocation concept. The centre 
region of the three genes was the same for all three, and it had 23 matched reads 
(which must match all three paralogues equally well). The first portion of both genes 
B and C is the same, and 20 readings matched it. The initial section of Gene A differs 
from that of Genes B and C, and received four matched readings. The three genes 
also have a third diverged segment where paralogous genes A, B, and C all matched 
3, 6, and 12 reads, respectively. The 23 reads that all three of us shared and the 
20 reads that B and C shared must then be divided among the three paralogues.

https://github.com/ratschlab/mmr
https://github.com/ratschlab/mmr
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TUXEDO employs a straightforward counting strategy using the following: 

PA= 
3þ 4 

3þ 4þ 20 þ 6þ 12 
= 0:15556 

PB= 1- PAð Þ  6 
6 12 

= 0:28148 

PC= 1- PAð Þ  12 
6 12 

= 0:56296 ð1:3Þ 

Therefore, using PA, PB, and PC, we assign the 23 evenly matched reads to 
paralogous genes A, B, and C, respectively. We divide the 20 reads into 20*6/ 
(6 + 12) for B and 20*12/(6 + 12) for C for 20 reads which exactly approximate B 
and C. The expected number of matches for each gene is provided as follows: 

NA= 3þ 4þ 23PA= 10:57778 

NB= 6þ 23PBþ 20 6 
6 12

� �
= 19:14074 

NC= 12þ 23PCþ 20 12 
6 12

� �
= 38:28148 ð1:4Þ 

1.7 Structural Biology and Drug Discovery 

One should be able to: (1) predict the 3-D configuration of a peptide or RNA on the 
basis of physiological environment where it is interpreted or decoded, (2) “BLAST” 
a defined peptide or RNA molecule against datasets of peptide or RNA molecule to 
extract all peptide or RNA with alike structural features in order to simplify 
structural and usage interpretations and analysis of usable redundant systems of 
the target gene in the cell. The 3D configuration of a peptide or RNA predicated on 
the physiological environment where it is interpreted or decoded (Dykeman et al. 
2013; Naveed et al. 2015), (3) locate and obtain all of a given query structure’s 
potential binding partners to help evaluate the query’s suitability as a drug target or 
drug candidate, including the effectiveness of the query and any negative effects 
resulting from which interacts physically with another cell elements, (4) using 
structural modelling and simulation instantly detect peptides and RNA which can 
make intricates and put those intricates together (like the ribosome and spliceosome), 
(5) offer novel structures that can physically interact with the query to activate or 
deactivate the query protein/RNA function in the cell. Steps 5 and 6 include 
predicting activity, whether alone or as part of the component of a network, of 
proteins and RNAs of defined structures. Despite not always being ideal, technolo-
gies and libraries for programming gathered at http://www.click2drug.org/ can 
perform almost all of these tasks.

http://www.click2drug.org/
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The first thing to do when a protein piques one’s curiosity is to see if the PDB 
already contains a structure for it (Rose et al. 2015; Westbrook et al. 2002). If not, 
then one can infer its structure using tools like homology modelling depending 
solely on a single or many structurally identified near homologs. SWISS-MODEL 
(Biasini et al. 2014), TASSER (Zhang et al. 2005), and their offspring are examples 
of such tools. Once the structure has been refined, it can be visualised UCSF 
Chimera (Pettersen et al. 2004), or PyMOL, and possible medication options 
which might affect the peptide of interest can be found using automated screening 
tools like SwissSimilarity (Zoete et al. 2016). The use of metabolic and ligand 
databases like ChEMBL (Gaulton et al. 2012) and SuperSite (Bauer et al. 2009) 
considerably improves this screening method. 

To explore the physical interactions between proteins and tiny molecules, one can 
also utilise docking tools like SwissDock (Grosdidier et al. 2011)  
SwissBioisostere (Wirth et al. 2013). Such structural research enhances the devel-
opment of anti-HIV-1 protease medications (Heal et al. 2012). Each homodimer of 
the protease has 99 amino acids, and in order to interfere with the action of the 
enzyme, an inhibitor normally needs to wedge itself in between the two monomers 
(Broglia et al. 2008, Wlodawer and Erickson 1993, Wlodawer and Vondrasek 1998). 

It makes sense to suppose that additional peptides to a related code or form may 
engage to that same reagent given a previously observed and well-documented 
protein–ligand interaction (Ding et al. 2014; Ekins et al. 2015). The software 
SwissTargetPrediction is conceptually built on this similarity-based method (Gfeller 
et al. 2014). 

It is crucial to remember that a protein’s structure behave differently depending 
also on cells surroundings and since the form obtained using X-ray or NMR only 
offers a glimpse of dynamic analysis. The characterisation of these changing 
engagements of peptides with their complexes is made easier by the software 
CHARMM (Brooks et al. 2009) and its derivatives. Such studies are aided by 
basic libraries of ligand–protein engagements (Hecker et al. 2012), specialist librar-
ies describing peptide correlations in membrane surface including GPCR-ligand 
connections (Chan et al. 2015) or in tumour cells, or organism-specific libraries 
like as of M. tuberculosis (Kinnings et al. 2010). 

1.8 Bioinformatics and Drug Resistance 

After penicillin was discovered in 1928 and began to be used regularly in medicine 
in 1940, bacterial resistance to penicillin quickly became apparent (Abraham and 
Chain 1940; Abraham et al. 1941). Following the widespread use of artemisinin in 
Asian nations, multicellular microorganisms, like the plasmodium species, Plasmo-
dium falciparum, are capable of developing alike resistance swiftly to the strongest 
anti-malarial medication (Noedl et al. 2008; Noedl et al. 2010; Noedl et al. 2009). 
Drug development is expensive, and drug resistance frequently renders expensively 
developed drugs useless (David et al. 2009; Drews and Ryser 1997). The quick



emergence of chemical tolerability in HIV-1 emphasises how crucial it is to com-
prehend drug resistance (Smyth et al. 2012; Smyth et al. 2014). 

1 Role of Bioinformatics in Drug Design and Discovery 21

Extreme selectivity towards the microorganism is required for modern medica-
tion development against pathogens. Drug-mediated selection will only favour those 
with drug resistance in this specific population of bacteria if a medication is 
detrimental to that specific bacterium infection. Medication resistance may, how-
ever, arise in all of these species when a medication is toxic to the 100 additional 
non-parasitic bacteria, which frequently with subsequent transmission of drug resis-
tance from a non-pathogenic species to a pathogenic one. Bioinformaticians have 
developed databases to make it easier to identify pathogenicity islands as therapeutic 
targets (Pundhir et al. 2008; Yoon et al. 2015). Pathogenicity islands (Gal-Mor and 
Finlay 2006; Hacker and Kaper 2000) are unique DNA segments found although not 
in its infectious counterparts, in a large variety of infectious bacterium diseases. 

The speed at which microbial pathogens can evolve medication resistance has 
been clarified by contemporary bioinformatic analysis and creative experimentation. 
In one study (Belanger et al. 2002), random mutations were introduced into the 
Streptococcus pneumonia genes using error-prone PCR. Following the transforma-
tion of S. pneumoniae using these altered amplicons, some of the colonies that 
resulted showed resistance to the antibiotic fusidic acid. A single mutation in the 
fusA gene, identified through DNA sequence analysis, is responsible for the drug 
resistance. There are numerous instances when a single mutation in the HIV-1 
protease can drastically alter how susceptible the protease is to inhibitors (Rhee 
et al. 2010; Young et al. 2010). These investigations we enable can determine the 
proportion of genetic drift that results in medication tolerance. 

The rate of mutation, the size of the parasite population, and genetic diversity all 
have major roles in how quickly bacterial and eukaryotic infections can adapt to 
treatment resistance. Tolerance is probably due to a deficit of genomic diversity must 
develop from scratch, in where such situation the pace of variation becomes a 
substantial barrier wherein scenario the frequency of variation becomes important 
in the development of chemoresistance in microorganisms. Historically, the sponta-
neous mutation rate was assessed through laborious mutation accumulation exper-
iments, which were typically conducted on a small number of rapidly replicating 
bacterial species and viruses (Drake 1964; Drake 1966). On determining the source 
of pseudogenes and evaluating their deviation from that of their operational versions, 
one can estimate the sporadic alteration frequency and alteration range (Smyth et al. 
2012; Smyth et al. 2014; Pundhir et al. 2008). The chances of a pathogen becoming 
resistant to medications are increased by high-mutation rates and large population 
sizes. 

Variations have been identified that have been long thought to exist indepen-
dently from one another and represent distinct mutation events. Because UCU and 
AGU must undergo, it is indeed highly doubtful that the two serine codes in the 
conventional genetic sequence (UCU and AGU), which are generally exposed to 
severe purging choice, will ever evolve into one another. Nevertheless, omics 
analysis and modelling studies have demonstrated that multiple mutation events 
can take place in organisms in “clusters and showers” over the period of a single



generation (Schrider et al. 2011; Averof et al. 2000) as well as in viruses and bacteria 
species (Drake 2007a, 2007b, Drake et al. 2005). 
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Since genomic and morphological correlations usually indicate homology in 
complex formation, genomes in order to find conserved sequences or structures 
that can guide the creation of vaccines and ligands developed as blockers towards 
pathogenic microbial diseases, genome research and evolutionary biology have 
already been extensively explored (Manocheewa et al. 2015; O’Connell et al. 
2014; Anisimova 2015). 

Strongly conserved regions of a gene do not necessarily mean that mutations 
there will cause the gene to malfunction. The HIV-1 proteolytic enzyme has several 
amino acid residues that are shared by several variants of M group, suggesting that 
they belong to crucial for the enzyme’s functionality. Protease inhibitors, on the 
other hand, rapidly because mutations at these highly conserved sites, decreasing the 
susceptibility to them (Rhee et al. 2010; Young et al. 2010). The emergence of 
antibiotics is analogous to how this adaptation to drug-induced selection operates. 
Plasmids in a bacterial species like E. coli, whether or not they carry antibiotic-
resistant genes, represent a replication burden in the absence of antibiotics. As a 
result, they are promptly eliminated from E. coli cultures via selection. However, in 
the presence of antibiotics, the benefit of antibiotic resistance more than outweighs 
the expense of a replication burden, and the plasmids containing the antibiotic-
resistant genes will proliferate. 

The probability of a substance alteration will appear in the first population after 
drug administration, the likelihood that it won’t appear until the second generation, 
or generally the likelihood that it won’t appear until the Nth generation can all be 
estimated, when we are aware of the parasite’s group density, its speed of random 
mutagenesis, as well as the ratio of drug-tolerant mutations among all random 
mutations in the bacterial population. The lots of decades are needed for the very 
first medication resistant variant to appear can also be calculated. This type of 
estimation falls under the purview of population genetics. 

1.9 Bioinformatics Software and Database 

The Swiss Institute of Bioinformatics maintains http://click2drug.org/, a compre-
hensive collection of tools, databases, and web services specifically relevant to drug 
discovery. The following are basically categorised: (1) databases, (2) chemical 
structure representations, (3) molecular modelling and simulation, (4) homology 
modelling to estimate the structure of a protein using a homologue of a known 
structure, (5) prediction of the binding site, (6) docking, (7) drug candidate screen-
ing, (8) prediction of the drug target, (9) design of the ligand, (10) calculation of the 
binding free energy, (11) QSAR, and (12) ADME-Toxicity. 

Numerous software programmes are robust, available for free, and backed by 
well-known organisations. These include databases like ChEMBL (Gaulton et al. 
2012) and SwissSidechain (Ekins et al. 2015), software programmes like UCSF

http://click2drug.org/


Chimera (Pettersen et al. 2004), a platform for structural biology-focused software 
developers, SwissSimilarity for virtual screening, SwissBioisostere for ligand design 
(Wirth et al. 2013), SwissTargetPrediction (Gfeller et al. 2014), SwissSideChain to 
facilitate experiments that expand the protein repertoire by introducing non-natural 
amino acids, and SwissDock for docking drug candidates. Even though certain 
software, such PyMOL (Schrödinger) and CHARMM (Brooks et al. 2009), is 
commercial, they often have free versions for students and teachers. 
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1.10 Conclusion 

A data-driven field of study, bioinformatics, developed or modified many of its 
databases and algorithms in reaction to new kinds of data. This is the reason why 
high-throughput data gathering methods frequently outpace bioinformatic tools. But 
many molecular biologists, computer scientists, and mathematicians have devoted a 
great deal of their time and energy to creating new, potent software programmes and 
databases to expand our perspectives of nature, much like how microscopes and 
telescopes enable us to see patterns that we have never seen before. Examining this 
work by pharmaceutical scientists more closely could be very valuable for the 
bioinformatics research community as well as the pharmaceutical industry. 
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Chapter 2 
Computational Modelling and Simulations 
in Drug Design 

Akansha Agrwal 

2.1 Introduction 

Currently, computational chemistry, organic synthesis, chemical and structural 
biology, and pharmacology are all involved in the process of discovering new 
drugs. As a result, it is divided into numerous stages. In order to priorities and 
choose candidates with the best potential for development as a safe and effective 
medicine, both in vitro and in vivo investigations are carried out. 

It is commonly acknowledged that the process of discovering and developing 
novel drugs is time-consuming, dangerous, and expensive. From concept to market, 
the typical drug discovery and development cycle lasts about 14 years and costs 
between $800 million and $1 billion USD (Myers and Baker 2001; Moses et al. 
2005). Despite the fact that there has been a large increase in investment in the past 
few decades, the output is not positively correlated with the expenditure due to the 
low efficiency in addition to elevated failure rate of drug research. As a result, 
numerous strategies have been created to shorten the research cycle, lower costs, and 
eliminate failure risk in quest for new drugs. One of the most efficient ways to 
accomplish these objectives is through computer-aided drug design (CADD) 
(Ou-Yang et al. 2012; Prieto-Martínez et al. 2019). For storage, management, 
analysis, and modelling of chemicals, the term “CADD” is frequently used to refer 
to computational tools and sources. It encompasses a wide range of topics related to 
drug discovery, such as computer programmes for generating compounds, instru-
ments for methodically evaluating possible lead candidates, and the creation of 
digital repositories for researching chemical interactions (Song et al. 2009; Baig 
et al. 2018). Leading pharmaceutical corporations and research organisations have
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accelerated the drug discovery and development process by using computer-aided 
drug discovery tools in preliminary investigations to reduce costs and failures in 
the final stage (Yu and Mackerell 2017). Drug development is increasingly relying 
on CADD approaches, which are essential for efficiently identifying viable drug 
candidates. These computational techniques help medicinal chemists and pharma-
cologists during the drug discovery process by reducing the usage of animal models 
in pharmacological research, assisting in the rational design of novel and safe drug 
candidates, and repositioning already-marketed medications (Brogi et al. 2020). In 
addition, structure–activity relationships (SARs) are created to identify relevant 
pharmacokinetic and pharmacodynamic characteristics that can be used to evaluate 
analogues that are synthesized. (a) Target identification entails the finding and 
isolation of individual targets in order to research their roles and connections to a 
particular disease. (b) Target validation is the process of establishing a connection 
between the therapeutic target and the desired disease as well as the target’s ability to 
control biological processes in the body after attaching to a partner molecule. 
Numerous investigations are conducted to determine whether the target macromol-
ecule and the sick condition are related. (c) The discovery of a synthetic chemical 
that demonstrates some potency and selectivity against a biological target and is 
presumed to contain the makings of a medication that can treat the intended (d) Lead 
optimisation entails enhancing potency and other crucial characteristics through 
repeated evaluations of the lead compound(s) and its analogues. (e) Research on 
drug production and formulation, in vivo tests on animals to determine toxicity and 
potency, and characterisation of mechanistic toxicity are all part of the preclinical 
stage. (f) Clinical studies consist of three phases that examine the proposed drug’s 
pharmacokinetics and pharmacological properties as well as its safety, adverse side 
effects, dose, effectiveness, and safety in human volunteers.
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CADD has been crucial in the identification of numerous pharmaceuticals that are 
currently on the market, have received FDA approval, and are available (Kitchen 
et al. 2004; Clark 2006; Talele et al. 2010). The discipline of CADD is developing 
quickly, and new techniques and technologies are constantly created. It holds great 
promise for the workflow of drug discovery. 

The rising application of information technology in the discovery of novel 
molecular entities encourages the use of modern molecular modelling tools to assist 
in the teaching of critical aspects of drug design to undergraduate students of 
chemistry and pharmacy. When developing and optimizing a leading drug, statistical 
models like quantitative structure–activity relationships (QSAR)—often in its 3D 
QSAR variant—are frequently used (Herwig 2014; Ragno et al. 2020). 

Molecular dynamics (MD) in drug designing is a scientific technique for inves-
tigating how atoms and molecules interact and move in accordance with Newtonian 
physics. The forces between interacting atoms are estimated using a force field, and 
the system’s overall energy is computed when Newton’s equations of motion are 
integrated during MD simulations; the resulting configurations of the evolving 
system produce trajectories that specify the positions and velocities of particles 
across time. Numerous properties, such as free energy, kinetics measurements, and 
other macroscopic values, which may be compared with experimental observables,



can be determined from these MD trajectories (De Vivo et al. 2016). Not only MD 
simulation demonstrates structural variation in response to environmental variables 
like pH, temperature, and residue mutations, but it can also show the dynamic 
process of protein or peptide misfolding with aggregation (Santini and Derreumaux 
2004; Campos et al. 2010; Chen et al. 2014). 
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In this chapter, we will discuss the whole process, methods, and applications of 
computer-aided drug designing. 

2.2 Computational Modelling and Methods in Drug 
Discovery 

2.2.1 Structure-Based CADD 

“Structure-based drug design” (SBDD) is generally effective and potent procedure in 
the whole drug finding concept (Batool et al. 2019). “De novo drug design 
(DNDD)“and virtual screening are both steps in the process known as “SBDD.” 
Utilisation of computational resources (ADMET) speeds up the drug development 
procedure, which involves combinatorial chemistry, many selection techniques, and 
computation of possessions like “absorption, distribution, metabolism, excretion, 
and toxicity.” SBDD is a process that goes all over several cycles and produces an 
improved drug contender ready for experimental testing. The drug finding procedure 
typically consists of four stages: the discovery phase, the development phase, the 
phases of clinical trials, and registries. Scientists and pharmaceutical businesses 
frequently employ the computational method known as SBDD. The market has a 
wide variety of medications that have been identified by SBDD. The primary success 
story of SBDD is the development of FDA-approved HIV-1 inhibitors (Wlodawer 
and Vondrasek 2003). Additional medications discovered using the SBDD method 
are the thymidylate synthase inhibitor raltitrexed and the antibiotic norfloxacin 
(Rutenber and Stroud 1996; Anderson 2003). Other success cases of SBDD are 
Raltitrexed (Anderson 2003), Amprenavir (Clark 2006), Isoniazid (Marrakchi et al. 
2000), Pim-1KinaseInhibitors (Ren et al. 2011), Norfloxacin and Dorzolamide 
(Grover et al. 2006). 

2.2.2 Ligand-Based CADD 

In the need of an experimental 3D arrangement, “ligand-based drug design” tech-
niques are helpful. Owed to the lack of an investigational arrangement, it is neces-
sary to analyse the identified ligand molecules which bind to drug targets in order to 
comprehend the structural and physicochemical characteristics of the ligands which 
correspond with the intended pharmacological action of those ligands (Mason et al.



2005; Bernard et al. 2005; González et al. 2009; Guner et al. 2012). Pharmacophore 
modelling, QSARs”, and artificial intelligence (AI), are a few methods frequently 
utilised in the ligand-based virtual screening methodology. A pharmacophore model 
reveals the spatial arrangement of chemical characteristics of ligands necessary for 
dealings through the object receptor (Schaller et al. 2020). Negatively charged 
ionisable groups, hydrophobic regions, positively charged ionisable groups, hydro-
gen bond donors, acceptors, and aromatic ring systems are some of the chemical 
characteristics employed in pharmacophore modelling (Schaller et al. 2020). Cata-
lyst, ligand scout, PHASE, PharmMapper, and GALAHAD are a few regularly used 
applications that enable automatic generation of the pharmacophore model (Hecker 
et al. 2002; Wolber and Langer 2004). A computational technique called QSAR is 
used to measure the connection among a given chemical or biological process and 
the chemical structures of a group of chemicals. Equivalent structural or 
physiochemical qualities should result in similar activity, according to the funda-
mental theory of the QSAR approach (Akamatsu 2005; Verma and Hansch 2009). 
The foundation of QSAR investigations is the idea that differences in a compound’s 
bioactivity can be linked to changes in its molecular structure. They are frequently 
utilised in the strike to direct identification or lead optimisation stage of the drug 
finding procedure. The correlation studies which are used to build a statistical model, 
and this resulting model be capable of forecasting the biological action of novel 
molecules (Melo-Filho et al. 2014). There must be an adequate figure of data sets 
through biological activities beginning frequent investigational protocol, the training 
and test set compounds should be carefully chosen, there must be no auto connection 
between the physiochemical property of the ligands that could lead to above 
appropriate of data, and the final model’s applicability and predictability must be 
verified using both internal and external validates (Cherkasov et al. 2014). 
Depending on how the descriptors are created, there are six main forms of QSAR 
that can be distinguished: (i) 1D-QSAR, is the method which examines the connec-
tion between biological processes and some characteristics like logP and pKa; 
(ii) 2D-QSAR, is a method which investigates the connection between biological 
activity and structural pattern, including connectivity index and 
2D-pharmacophores; and (iii) 3D-QSAR, is a method which investigates the con-
nection between ligands’ non-covalent interaction fields with biological activities, 
(iv) 4D-QSAR, is an expansion of 3D-QSAR which incorporates a group of ligand 
configurations, and (v) 5D-QSAR, which expands 4D-QSAR by using multiple 
induced-fit models (Patel et al. 2014). The HypoGen unit of Catalyst, PHASE 
(Dixon et al. 2006), comparative molecular field analysis (CoMFA) (Cramer et al. 
1988), and comparative similarity indices analysis are some examples of 3D QSAR 
programmes (CoMSIA) (Klebe et al. 1994). In the chemical, biological, and engi-
neering sciences, deterioration or categorisation models are used to provide quanti-
tative structure–activity connection models. Regression methods like QSAR 
associate a variety of “predictive” variables with potency, just like other regression 
models. Followings are various online portals to find QSAR of test molecules.
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[A] VEGA platform [ ].https://www.vegahub.eu/portfolio-item/vega-qsar/
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We can access a variety of QSAR models using the VEGA platform for regulatory 
purposes or create your own for research purposes. A chemical compound’s 
property can be predicted using QSAR models by using data from the com-
pound’s structure. 

[B] DEMETRA [http://www.demetra-tox.net/]. 
An EU-funded initiative is DEMETRA. In particular, pesticide compounds, poten-

tial pesticides, and their derivatives were the focus of this effort, which aimed to 
create software and predictive models that provide a quantitative estimate of the 
toxicity of a chemical. The chemical makeup of the substance serves as the input. 
Software algorithms make use of QSARs. To assess the toxicity of pesticide 
molecules and related chemicals, utilise the DEMETRA software application. 
DEMETRA models can be found for free. To forecast the toxicity to trout, 
daphnia, quail, and bees, five models were created. The software is built on a 
homogeneous integration of the knowledge gained through the DEMETRA EU 
project, using the best algorithms discovered as the foundation for hybrid com-
bination models to be utilised for prediction. 

[C] “T.E.S.T [https://www.epa.gov/chemical-research/toxicity-estimation-soft 
ware-tool-test]”. 

Utilizing the aforementioned QSAR approaches, users will be able to quickly 
estimate acute toxicity utilising the Toxicity Estimation Software Tool (T.E.S.T.). 

[D] “OCHEM [https://ochem.eu/home/show.do]”. 
OCHEM is a modelling environment-integrated online database of experimental 

measurements. Build prognostic QSAR model intended for physical–chemical or 
biological virtues. 

[E] “E-DRAGON [http://www.vcclab.org/lab/edragon/]”. 
It is an electronic remote version of the renowned programme DRAGON, which 

R. Todeschini developed to calculate molecular descriptors. These descriptors 
can be used for similarity analysis, molecular SAR, and high-throughput screen-
ing of the molecule database. 

[F] SeeSAR [https://www.biosolveit.de/SeeSAR/]. 
A software device for visual, interactive composite prioritization and development is 

called SeeSAR. A multi-parameter optimisation to optimise the chance of 
achievement rather than just similarity is ideal for structure-based design work. 
The availability of the necessary parameters and real-time, 3D visual computer 
help are two advantages of SeeSAR. 

[G] Dragon [https://chm.kode-solutions.net/products_dragon.php]. 
Dragon generates 5270 molecular descriptors, which cover the majority of the 

different theoretical stances. The basic atom types, functional groups, part counts, 
topological and geometric descriptors, three-dimensional descriptors, as well as a 
number of property prediction (like logP), drug- and lead-like stimuli (like 
Lipinski’s) are all included in the list of descriptors (Alarm). 

[H] PaDEL-Descriptor [http://www.yapcwsoft.com/dd/padeldescriptor/].

https://www.vegahub.eu/portfolio-item/vega-qsar/
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A programme that determines molecular ngerprints and identi cations Currently,
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the software generates 12 different types of fingerprints and 1875 identifiers 
(including 1444 1D, 2D, and 431 3D identifiers) (16,092 bits total).

The Chemistry Development Kit is used to calculate additional identities and 
fingerprints, including ring numbers, the Crippen logP and MR, the extended 
topochemical atom (ETA) descriptors, the McGowan volume, and the descriptors 
for the molecular linear free energy relationship. 

AI is a subset of machine intelligence that depends on computers’ capacity to 
learn from data already in existence. Various computational modelling techniques 
have employed AI to forecast the biological activity and toxicity of pharmacological 
compounds (Patel et al. 2014). Additionally, AI has many uses in the drug discovery 
process, including de novo drug design, virtual screening, QSAR, protein–protein 
interaction prediction, and protein folding prediction (Wang et al. 2019). Machine 
learning (ML) and deep learning (DL) are two potent techniques that are frequently 
employed in rational drug design (Patel et al. 2020). Support vector machine (SVM) 
(Cortes et al. 1995), Random Forest (RF) (Breiman 2001), and Naive Bayesian 
(NB) ML algorithms have been widely used in drug discovery. Convolutional neural 
networks (CNN), deep neural networks (DNN), recurrent neural networks (RNN), 
auto encoders, and limited Boltzmann machines are a few examples of DL tech-
niques (RBN) (Zhong et al. 2018). 

2.3 ADMET Prediction in CADD 

Successful drugs must have an appropriate ADMET profile in addition to biological 
activity to have a therapeutic effect. Although there are a number of ADMET 
screening techniques available for in vitro and in vivo research in the lab, it is still 
crucial to execute an in silico method for determining the pharmacokinetic activity of 
these medicinal medicines. In fact, the ability to predict the pharmacokinetic char-
acteristics of drugs using a computational approach facilitates early ADMET 
research and reduces the need for laboratory animal testing (Villoutreix et al. 
2013; Aguayo-Orozco et al. 2016). A chemically vigorous molecule must meet a 
number of requirements set forth by these pharmacokinetic characteristics in order to 
be considered as a potential therapeutic candidate. Therefore, it is crucial to deter-
mine a possible drug’s ADMET qualities after in silico molecular docking has 
predicted and demonstrated that it has the ability to connect to object receptor. 
These preclinical candidates need to have a propensity for absorption into the object 
exterior, good distribution from the place of inclusion to the object site, normal 
hepatic metabolism, elimination through the excretory system following action, and 
they should not be lethal (Jorgensen and Duffy 2002). Additionally, for optimal 
drug-likeness and absorption, the possible medication candidates must adhere to the 
Lipinski rule of five (RO5) (Lipinski 2004). Christopher Lipinski based his drug-
likeness on several physicochemical characteristics, including the quantity of



H-bond donors (must be 5) and acceptors (must be 10), molecular weight (must not 
exceed 500 Da), and partition coefficient represented by logp (must be 5). Poor 
ligands, phytochemicals, or bioactive substances (natural or manufactured) are those 
that break more than one of these guidelines (van de Waterbeemd and Gifford 2003). 
The development of new medications is said to depend heavily on ADMET data. 
Both in vitro and in vivo models offer information about the ADMET properties of 
pharmaceuticals, which can then be used to forecast how the drugs will behave once 
they have been taken. Drug candidates are advanced, held, or cancelled based on 
ADMET characteristics (Zhang et al. 2012). Since pharmacokinetic profiles can be 
inferred based on drug ADMET data, preclinical data on drug ADMET qualities are 
important in assessing how well medicines target after administration. When eval-
uating drug exposure in the intended site of action, variables such as drug absorption 
rate, deposition, and metabolism inside the embattled appendage are engaged into 
description (Zhuang and Lu 2016). The need to optimise physicochemical proper-
ties, together with their bioactivities and ADMET properties, has arisen in order to 
expand drugs by means of the fewest side effects, because drug developers today 
face serious challenges to develop more effective as well as cost-effective drugs 
compared to the existing therapies (Peach et al. 2012). The amount of doses and their 
frequency are additional characteristics that are considered while forecasting the 
behaviours of recently discovered medications. These characteristics include the 
medications’ bioavailability, oral absorption, clearance, volume of distribution, 
and blood–brain barrier penetration (BBB) (van de Waterbeemd and Gifford 2003). 
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Table 2.1 Most widely used software in ADMET prediction 

Software Developer Reference 

ADMET predictor Simulation plus Liu (2022) 

ADME suit ACD labs Yinghuang et al. (2022) 

Tox suite ACD labs ([CSL STYLE ERROR: Reference with no printed 
form.]) 

ADME works 
predictor 

Fujitsu FQS ([CSL STYLE ERROR: Reference with no printed 
form.]) 

SwissADM SIB (Daina et al. 2017) 

TopKat BIOVIA software ([CSL STYLE ERROR: Reference with no printed 
form.]) 

OSIRIS CRO/CMO 
services 

Lipinski et al. (2001) 

Metasite Molecular 
discovery 

Cruciani et al. (2005) 

The most widely used software in ADMET prediction are given in Table 2.1.
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2.4 Molecular Dynamics Simulation in Drug Discovery 

2.4.1 Process of MD Simulation 

“MD simulation” , a method which model the arrangement since a set of particle 
with the aim of interaction during classical mechanics, is a very effective computa-
tional scheme for achieving mechanistic knowledge. For those with a background in 
chemistry, it makes sense intuitively to assume that these particles symbolise atoms, 
by means of relations among the atoms generating the forces that control molecule 
structure and the intermolecular forces that organise relations among molecules. 
However, the particles can also be used to represent larger structures than just a 
single atom, such as groups of atoms, complete molecules, or even collections of 
molecules. These models, sometimes referred to as coarse-grained models, can 
provide information about the system on a longer time scale than an atomistic 
model does (De Vivo et al. 2016; Bunker and Róg 2020; Salo-Ahen et al. 2021). 
While its inception in the late 1970s, MD simulation has advanced from simulating a 
few hundred atoms to systems with biological significance, such as whole proteins in 
solution with explicit solvent representations, proteins embedded in membranes, or 
massive macromolecular complexes like nucleosomes (Sotriffer 2006; Roccatano 
et al. 2007; Tinoco and Wen 2009; Durrant and McCammon 2011). When the 
necessary computer resources are available, simulations of systems with 
50,000–100,000 atoms are increasingly commonplace. Simulations of systems 
with 500,000 atoms are now quite popular. Due in significant part to the utilisation 
of high-performance computing (HPC) and the clarity of the fundamental MD 
algorithm, this amazing improvement has been achieved (Brandman et al. 2012; 
Le and Le 2012; Hernández-Rodríguez et al. 2016). Almost all types of macromol-
ecules with biological or therapeutic significance are studied using MD simulations 
nowadays, including nucleic acids, proteins, and carbohydrates. In explicit, every 
thousand to millions of individual atoms move in a succession of brief (for example, 
2 fs), discrete time steps. The forces on each atom are calculated at each step and 
updated in accordance with Newton’s laws of motion along with the atomic position 
and velocity. The forces on each atom are derived from the “force field,” a set of 
physics-based parameters that represent both bonded and non-bonded (for example, 
van der Waals) inter-atomic forces. Even while free energy can be computed using 
various computational techniques, it has been demonstrated that the one obtained 
using MD has low false positive rates and great performance. Trajectories simulation 
with either MM-PBSA or MM-GBSA is integrated into MD to calculate binding-
free energy, which is the affinity of the ligand for the target. Because the degree of 
binding a ligand has to the target determines its capacity to provide a therapeutic 
effect, evaluating binding-free energy is important in the drug discovery process. A 
trustworthy MD tool for calculating the affinity of protein–ligand complexes has also 
developed and it is called the umbrella sampling technique. The difference between 
the highest and minimum values of the free energy change, calculated using the



potential of mean force, is used to measure the binding affinity (PMF) (Perez et al. 
2014; Gao et al. 2018; Bao et al. 2019). 

2 Computational Modelling and Simulations in Drug Design 43

2.4.2 Software Used in MD Simulation 

The conventional drug design process relies heavily on the protein–ligand interac-
tion, and MD simulation’s lower cost compared to its experimental counterpart 
minimises the expense and time involved (Arcon et al. 2017). The study of dynamics 
and conformational flexibility of drug-target complexes has made use of MD 
modelling as a key technique. In a computer simulation, MD simulation helps to 
simulate biological phenomena. It has revolutionised the field of drug development 
and has evolved into a standard computational tool for CADD. It offers a precise 
estimation of the thermodynamics and kinetics related to the interaction and binding 
of the drug with the target. The use of MD simulation among scientists working with 
CADD and in the biopharmaceutical business has increased as a result of the 
development of new techniques, software, and hardware. The simulation period 
needs to be long enough to yield accurate results. The simulation is more accurate 
and produces dependable findings when run at the millisecond and microsecond time 
scales. Even though this is not relevant for evaluating protein–ligand interactions, 
the study can be completed in a few nanoseconds of simulation time (Liu et al. 
2017). To address the issue with molecular dynamic simulation time length, a special 
purpose machine named ANTON has been created. However, few scientists can 
afford this supercomputer due to its tremendous computing capability (Shaw et al. 
2008). To accelerate the most expensive computational systems for MD simulation, 
other supercomputers with specialised hardware, such as MDGRAPE (Taiji et al. 
2002), MD Engine (S. 1999), and FASTRUN (Fine et al. 1991), have been devel-
oped. A powerful Graphical Processing Unit (GPU)-equipped computer system was 
recently designed to enable running MD simulation at a low cost (Stone et al. 2016). 
The most widely used software in MD simulation is given in Table 2.2. 

2.5 Case Studies 

Finding new therapeutic possibilities has always been a component of research that 
has proven to be essential for enhancing human health (Taubenberger and Morens 
2006). For many years, the use of MD modelling has revolutionised the process of 
finding new drugs. Using physics-dependent intermolecular interaction, simulation 
often aids in the timely and relevant prediction of atom mobility in a molecular 
system. However, in simulation, this difficult operation in the wet lab is simple, 
lowering the intricacy surrounding the wet tests in the smallest amount of time (Van 
Gunsteren and Mark 1998; Karplus and McCammon 2002; Hollingsworth and Dror 
2018). Due to this potential, MD is now thought of as a computational microscope.
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Table 2.2 Most widely used software in MD simulation 

Software Details Reference 

CHARMM It stands for “Chemistry at HARvard Macromo-
lecular Mechanics.” It is a multi-scale MD 
modelling tool with broad applicability to many-
particle systems. 

Jo et al. (2008) and Brooks 
et al. (2009) 

GROMACS GROMACS is one of the most well-known open-
source and free chemistry software applications. It 
is mainly used for dynamical simulations of bio-
logical molecules. It provides a wide variety of 
computing, preparation, and analysis tools. 

Kumari et al. (2014) and 
Abraham et al. (2015) 

NAMD NAMD is an analogous MD programme which is 
intended and used for high-performance simula-
tion of big biological system. 

Phillips et al. (2005) 

AMBER The term “Amber” refers to a group of software 
applications that let users run and examine MD 
simulations, chiefly for nucleic acids, proteins, 
and carbohydrates. 

Case et al. (2005) 

DESMOND Desmond is a piece of software used to carry out 
high-speed MD simulations of biological systems 
on traditional computer. 

Gopinath and Kathiravan 
(2021) 

TINKER With certain unique capabilities for biopolymers, 
the Tinker molecular modelling programme is a 
comprehensive and all-encompassing solution for 
molecular mechanics and dynamics. Tinker can 
employ any of a number of widely used parameter 
sets, including Amber, CHARMM, and others. 

Rackers et al. (2018) 

DL_POLY I.T. Todorov, W. Smith, A.M. Elena, and others 
created the general-purpose classical MD simula-
tion programme known as DL POLY at 
Daresbury laboratory. 

Smith et al. (2010) 

ACEMD It is a MD engine that supports the CHARMM 
and AMBER force fields is called ACEMD. 

Harvey et al. (2009) 

GENESIS GENESIS stands for GENeralised-Ensemble 
SImulation System. 
GENESIS makes it feasible to efficiently simulate 
and model different biomolecular systems using 
MD. 

Ito et al. (2022) and Oshima 
and Sugita (2022) 

MDynaMix A computer software programme called Molecu-
lar Dynamics of Mixes (MDynaMix) simulates 
mixtures of molecules interacting with AMBER-
and CHARMM. 

Lyubartsev and Laaksonen 
(2000) 

Orac Orac is a traditional MD programme, which used 
to simulate complicated molecular systems at the 
atomistic level. 

([CSL STYLE ERROR: 
Reference with no printed 
form.]) 

YASARA A computer application called Yet Another Sci-
entific Artificial Reality Application (YASARA) 
is used to visualise, model, and simulate MD. 

Krieger et al. (2002)

https://www.r-ccs.riken.jp/labs/cbrt/


The enigma surrounding the disorders linked to protein misfolding and aggregation 
could also be revealed by MD simulation, which would then aid uncover small 
molecular modulators (Urbanc et al. 2010; Ye et al. 2013). In recent times, it was 
claimed that using “MD simulation,” medications used to treat or control neurolog-
ical illnesses might be targeted (Manglik et al. 2016; Spahn et al. 2017; McCorvy 
et al. 2017).
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The spectrum of applications for MD simulation in biology is expanding swiftly, 
revealing distinctive characteristics of protein structure that are difficult to identify 
using only experimental techniques (Wu et al. 2022). Herotika et al. explained the 
role of MD simulation in virology research (Ode et al. 2012). Probable covalent and 
FDA-approved SARS-CoV-2 major protease 3CL inhibitors were discovered 
through MD simulation research (Alamri et al. 2021). Wadhwa et al. used MD 
simulations to estimate the membrane permeability of two naturally occurring 
medicines called withanolides (withaferin-A and withanone), which are structurally 
similar but have strikingly different lethal properties (Wadhwa et al. 2021). Liu et al. 
assessed the uses of MD simulations for drug detection, including virtual screening, 
drug–target interaction mechanisms, and the pathogenic mechanisms of illnesses 
induced by amyloidosis (Liu et al. 2018). As discussed by Durrant et al., atomistic 
computer simulations of macromolecular (such as protein) receptors and the small 
molecules that bind to them can be used to identify cryptic or allosteric binding sites, 
improve conventional virtual-screening techniques, and directly predict the binding 
energies of small molecules (Durrant and McCammon 2011). A 2013 study geared 
toward the detection of novel “aldose reductase inhibitors” (ARI) that was in print 
with the “Journal of Chemical Information and Modelling” employed MD as part of 
its methodology. It is challenging to identify a specific obligatory place to be worn 
meant for this enzyme because of the active site architecture’s sampling of diverse 
conformations while various ligands are bound to it. For example, when ligand A 
binds, the residues it interacts with are vastly different from those of ligands B and 
C. Three average conformations were obtained from a quick MD simulation of this 
protein target (aldose reductase), and these conformations were then utilised to dock 
a variety of substances. Later, MD was tried to assess the communication among the 
lead chemical and the target protein (complex dynamics). Compared to Epalrestat, 
which are being marketed, pre-clinical and clinical testing of this lead chemical 
showed it to have high-biological activity and a decreased off-target effect (Wang 
et al. 2014). Another team of Filipino researchers examined MD applications in 
tuberculosis and came to the conclusion that MD has accelerated the pace of drug 
discovery for this condition (Macalino et al. 2020). In a study to identify possible 
inhibitors for “HMG-CoA reductase,” the rate-limiting enzyme in cholesterol man-
ufacture, bio-active chemicals from 10 plants were virtually screened. Rutin emerge, 
and the constancy of the “Rutin-HMG-CoA reductase” complex was assessed using 
MD. Comparing the complex to the unbound apoprotein, a close examination of its 
“RMSD, RMSF, ROG, and H-bond” spectra revealed that it was more stable 
(Suganya et al. 2017). Another study was focused on the “γ-aminobutyric acid 
(GABA)” receptor, a common target for anaesthetics. Corresponding data from 
MD analysis (RMSD) assured the researchers that the lead 5 ligand was a potent



GABA receptor inhibitor and should be directed to the pre-clinical stage of the drug 
discovery process. This group in China was the first to use in silico study to search 
for novel anaesthetic compounds (Peng et al. 2014). Permeability is a crucial factor 
that is optimised in the drug discovery process. Drugs having intracellular targets 
must be able to penetrate membranes in order to be effective, as this is dependent on 
their bioavailability. A number of techniques are already available to determine a 
potential drug candidate’s capacity to infuse membranes, including the parallel 
artificial membrane permeability test (PAMPA) and the “immobilised artificial 
membrane” (IAM) (Tsopelas et al. 2016). Martini force field coarse-grained MD, a 
technique that reduces the lengthy time that would have been invested in all 
atomistic MD by grouping atoms jointly into super-particles or bead, can currently 
be used to evaluate the penetration of a drug candidate (Hoffmann et al. 2020). In the 
lead optimisation process, MD modelling is helpful. Scientists always assume a 
desire to introduce a medicine with high potencies into clinics after the lead 
identification stage, which occurs before pre-clinical trial in the drug discovery 
scheme. To achieve a stronger therapeutic impact, this may, however, necessitate 
the optimisation of the lead chemical at the target’s active site. MD has been used to 
support the idea that comprehending a ligand’s ensuing communication in the 
dynamic pocket of the target is a vibrant procedure that involves adding or removing 
groups (Carnero 2006; Dror et al. 2011). It is now abundantly obvious that the utility 
of MD simulation in drug development extends commencing the earliest stage of 
drug finding to direct optimisation. 
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2.6 Conclusion and Future Perspectives 

In the protracted process of drug discovery and development, Computer-Aided Drug 
Designing is now a vital instrument. Additionally, it offers alternatives for 
comprehending chemical systems in various methods, giving data that are difficult 
to collect in laboratory research and requiring significantly less time and money than 
trials. As is common in the early phases of practically any new technology or 
research, CADD initially had a rough reputation in the field of drug development 
and may have overstated its claims. The two disciplines of computer-aided drug 
discovery that play a vital part in the design and identification of therapeutic 
molecules in a quicker and more affordable manner are structure- and ligand-based 
drug design. We think that there is now a lot of room for growth in drug development 
and other fields by carefully combining MD simulations with complementary 
experimental techniques. This possibility will further expand as simulations get 
more precise, swifter, less expensive, and broadly available. Applying simulations 
to molecular biology and drug development successfully necessitates careful con-
sideration of the experimental and computational data at hand and as a result, 
benefits from a wide range of skills and interdisciplinary partnerships. At the 
moment, conformational changes or ligand binding can be accurately modelled 
when routine simulations are reaching the microsecond scale. We can transition



from the analysis of single structures, the foundation of molecular modelling as we 
know it, to the analysis of conformational ensembles thanks to advancements made 
in computational hardware, particularly the use of GPUs, and optimisation of MD 
algorithms, including coarse-grained ones. In conclusion, CADD is useful for 
pharmaceutical development in the areas of 3D structure prediction, compound 
design, druggability prediction, and in silico ADMET prediction; however, it must 
be understood that computational predictions need to be combined with experimen-
tal methods for effective drug discovery and development. 

2 Computational Modelling and Simulations in Drug Design 47

References 

Abraham MJ, Murtola T, Schulz R et al (2015) GROMACS: high performance molecular simula-
tions through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2:19–25. 
https://doi.org/10.1016/J.SOFTX.2015.06.001 

Aguayo-Orozco A, Audouze K, Brunak S, Taboureau O (2016) In silico systems pharmacology to 
assess drug’s therapeutic and toxic effects. Curr Pharm Des 22:6895–6902. https://doi.org/10. 
2174/1381612822666160907093215 

Akamatsu M (2005) Current state and perspectives of 3D-QSAR. Curr Top Med Chem 2:1381– 
1394. https://doi.org/10.2174/1568026023392887 

Alamri MA, Tahir Ul Qamar M, Mirza MU et al (2021) Pharmacoinformatics and molecular 
dynamics simulation studies reveal potential covalent and FDA-approved inhibitors of SARS-
CoV-2 main protease 3CLpro. J Biomol Struct Dyn 39:4936–4948. https://doi.org/10.1080/ 
07391102.2020.1782768/SUPPL_FILE/TBSD_A_1782768_SM9175.DOCX 

Anderson AC (2003) The process of structure-based drug design. Chem Biol 10:787–797. https:// 
doi.org/10.1016/j.chembiol.2003.09.002 

Arcon JP, Defelipe LA, Modenutti CP et al (2017) Molecular dynamics in mixed solvents reveals 
protein-ligand interactions, improves docking, and allows accurate binding free energy pre-
dictions. J Chem Inf Model 57:846–863. https://doi.org/10.1021/ACS.JCIM.6B00678/SUPPL_ 
FILE/CI6B00678_SI_001.PDF 

Baig MH, Ahmad K, Rabbani G et al (2018) Computer aided drug design and its application to the 
development of potential drugs for neurodegenerative disorders. Curr Neuropharmacol 16:740. 
https://doi.org/10.2174/1570159X15666171016163510 

Bao Y, Zhou L, Dai D et al (2019) Discover potential inhibitors for PFKFB3 using 3D-QSAR, 
virtual screening, molecular docking and molecular dynamics simulation. J Recept Signal 
Transduct 38:413–431. https://doi.org/10.1080/10799893.2018.1564150 

Batool M, Ahmad B, Choi S (2019) A structure-based drug discovery paradigm. Int J Mol Sci 20: 
2783 

Bernard D, Coop A, MacKerell AD (2005) Conformationally sampled pharmacophore for peptidic 
δ opioid ligands. J Med Chem 48:7773–7780. https://doi.org/10.1021/JM050785P/SUPPL_ 
FILE/JM050785PSI20050921_043101.PDF 

Brandman R, Brandman Y, Pande VS (2012) A-site residues move independently from P-site 
residues in all-atom molecular dynamics simulations of the 70S bacterial ribosome. PLoS One 7: 
29377. https://doi.org/10.1371/JOURNAL.PONE.0029377 

Breiman L (2001) Random forests. Mach Learn 451(45):5–32. https://doi.org/10.1023/ 
A:1010933404324 

Brogi S, Ramalho TC, Kuca K et al (2020) Editorial: In silico methods for drug design and 
discovery. Front Chem 8:612

https://doi.org/10.1016/J.SOFTX.2015.06.001
https://doi.org/10.2174/1381612822666160907093215
https://doi.org/10.2174/1381612822666160907093215
https://doi.org/10.2174/1568026023392887
https://doi.org/10.1080/07391102.2020.1782768/SUPPL_FILE/TBSD_A_1782768_SM9175.DOCX
https://doi.org/10.1080/07391102.2020.1782768/SUPPL_FILE/TBSD_A_1782768_SM9175.DOCX
https://doi.org/10.1016/j.chembiol.2003.09.002
https://doi.org/10.1016/j.chembiol.2003.09.002
https://doi.org/10.1021/ACS.JCIM.6B00678/SUPPL_FILE/CI6B00678_SI_001.PDF
https://doi.org/10.1021/ACS.JCIM.6B00678/SUPPL_FILE/CI6B00678_SI_001.PDF
https://doi.org/10.2174/1570159X15666171016163510
https://doi.org/10.1080/10799893.2018.1564150
https://doi.org/10.1021/JM050785P/SUPPL_FILE/JM050785PSI20050921_043101.PDF
https://doi.org/10.1021/JM050785P/SUPPL_FILE/JM050785PSI20050921_043101.PDF
https://doi.org/10.1371/JOURNAL.PONE.0029377
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324


48 A. Agrwal

Brooks BR, Brooks CL, Mackerell AD et al (2009) CHARMM: the biomolecular simulation 
program. J Comput Chem 30:1545. https://doi.org/10.1002/JCC.21287 

Bunker A, Róg T (2020) Mechanistic understanding from molecular dynamics simulation in 
pharmaceutical research 1: drug delivery. Front Mol Biosci 7:604770 

Campos SRR, MacHuqueiro M, Baptista AM (2010) Constant-pH molecular dynamics simulations 
reveal a β-rich form of the human prion protein. J Phys Chem B 114:12692–12700. https://doi. 
org/10.1021/JP104753T/SUPPL_FILE/JP104753T_SI_001.PDF 

Carnero A (2006) High throughput screening in drug discovery. Clin Transl 87(8):482–490. https:// 
doi.org/10.1007/S12094-006-0048-2 

Case DA, Cheatham TE, Darden T et al (2005) The Amber biomolecular simulation programs. J 
Comput Chem 26:1668. https://doi.org/10.1002/JCC.20290 

Chen W, Van Der Kamp MW, Daggett V (2014) Structural and dynamic properties of the human 
prion protein. Biophys J 106:1152. https://doi.org/10.1016/J.BPJ.2013.12.053 

Cherkasov A, Muratov EN, Fourches D et al (2014) QSAR modeling: where have you been? Where 
are you going to? J Med Chem 57:4977–5010. https://doi.org/10.1021/JM4004285/ASSET/ 
IMAGES/MEDIUM/JM-2013-004285_0009.GIF 

Clark DE (2006) What has computer-aided molecular design ever done for drug discovery? Expert 
Opin Drug Discov 1:103–110. https://doi.org/10.1517/17460441.1.2.103 

Cortes C, Vapnik V, Saitta L (1995) Support-vector networks. Mach Learn 203(20):273–297. 
https://doi.org/10.1007/BF00994018 

Cramer RD, Patterson DE, Bunce JD (1988) Comparative molecular field analysis (CoMFA). 
1. Effect of shape on binding of steroids to carrier proteins. J Am Chem Soc 110:5959–5967. 
https://doi.org/10.1021/JA00226A005 

Cruciani G, Carosati E, De Boeck B et al (2005) MetaSite: understanding metabolism in human 
cytochromes from the perspective of the chemist. J Med Chem 48:6970–6979. https://doi.org/ 
10.1021/JM050529C/SUPPL_FILE/JM050529CSI20050823_063632.PDF 

Daina A, Michielin O, Zoete V (2017) SwissADME: a free web tool to evaluate pharmacokinetics, 
drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep 71(7):1–13. 
https://doi.org/10.1038/srep42717 

De Vivo M, Masetti M, Bottegoni G, Cavalli A (2016) Role of molecular dynamics and related 
methods in drug discovery. J Med Chem 59:4035–4061 

Dixon SL, Smondyrev AM, Rao SN (2006) PHASE: a novel approach to pharmacophore modeling 
and 3D database searching. Chem Biol Drug Des 67:370–372. https://doi.org/10.1111/J. 
1747-0285.2006.00384.X 

Dror RO, Pan AC, Arlow DH et al (2011) Pathway and mechanism of drug binding to G-protein-
coupled receptors. Proc Natl Acad Sci U S A 108:13118–13123. https://doi.org/10.1073/PNAS. 
1104614108/SUPPL_FILE/SM01.AVI 

Durrant JD, McCammon JA (2011) Molecular dynamics simulations and drug discovery. BMC 
Biol 9:1–9. https://doi.org/10.1186/1741-7007-9-71/FIGURES/4 

Fine R, Dimmler G, Levinthal C (1991) FASTRUN: a special purpose, hardwired computer for 
molecular simulation. Proteins Struct Funct Bioinforma 11:242–253. https://doi.org/10.1002/ 
PROT.340110403 

Gao J, Zhang Y, Chen H et al (2018) Computational insights into the interaction mechanism of 
transcription cofactor vestigial-like protein 4 binding to TEA domain transcription factor 4 by 
molecular dynamics simulation and molecular mechanics generalized Born/surface area calcu-
lation. J Biomol Struct Dyn 37:2538–2545. https://doi.org/10.1080/07391102.2018.1491889 

González PM, Acharya C, MacKerell AD, Polli JE (2009) Inhibition requirements of the human 
apical sodium-dependent bile acid transporter (hASBT) using aminopiperidine conjugates of 
glutamyl-bile acids. Pharm Res 267(26):1665–1678. https://doi.org/10.1007/S11095-009-
9877-3 

Gopinath P, Kathiravan MK (2021) Docking studies and molecular dynamics simulation of triazole 
benzene sulfonamide derivatives with human carbonic anhydrase IX inhibition activity. RSC 
Adv 11:38079–38093. https://doi.org/10.1039/D1RA07377J

https://doi.org/10.1002/JCC.21287
https://doi.org/10.1021/JP104753T/SUPPL_FILE/JP104753T_SI_001.PDF
https://doi.org/10.1021/JP104753T/SUPPL_FILE/JP104753T_SI_001.PDF
https://doi.org/10.1007/S12094-006-0048-2
https://doi.org/10.1007/S12094-006-0048-2
https://doi.org/10.1002/JCC.20290
https://doi.org/10.1016/J.BPJ.2013.12.053
https://doi.org/10.1021/JM4004285/ASSET/IMAGES/MEDIUM/JM-2013-004285_0009.GIF
https://doi.org/10.1021/JM4004285/ASSET/IMAGES/MEDIUM/JM-2013-004285_0009.GIF
https://doi.org/10.1517/17460441.1.2.103
https://doi.org/10.1007/BF00994018
https://doi.org/10.1021/JA00226A005
https://doi.org/10.1021/JM050529C/SUPPL_FILE/JM050529CSI20050823_063632.PDF
https://doi.org/10.1021/JM050529C/SUPPL_FILE/JM050529CSI20050823_063632.PDF
https://doi.org/10.1038/srep42717
https://doi.org/10.1111/J.1747-0285.2006.00384.X
https://doi.org/10.1111/J.1747-0285.2006.00384.X
https://doi.org/10.1073/PNAS.1104614108/SUPPL_FILE/SM01.AVI
https://doi.org/10.1073/PNAS.1104614108/SUPPL_FILE/SM01.AVI
https://doi.org/10.1186/1741-7007-9-71/FIGURES/4
https://doi.org/10.1002/PROT.340110403
https://doi.org/10.1002/PROT.340110403
https://doi.org/10.1080/07391102.2018.1491889
https://doi.org/10.1007/S11095-009-9877-3
https://doi.org/10.1007/S11095-009-9877-3
https://doi.org/10.1039/D1RA07377J


2 Computational Modelling and Simulations in Drug Design 49

Grover S, Apushkin MA, Fishman GA (2006) Topical dorzolamide for the treatment of cystoid 
macular edema in patients with retinitis pigmentosa. Am J Ophthalmol 141:850–858. https:// 
doi.org/10.1016/j.ajo.2005.12.030 

Guner O, Clement O, Kurogi Y (2012) Pharmacophore modeling and three dimensional database 
searching for drug design using catalyst: recent advances. Curr Med Chem 11:2991–3005. 
https://doi.org/10.2174/0929867043364036 

Harvey MJ, Giupponi G, De Fabritiis G (2009) ACEMD: accelerating biomolecular dynamics in 
the microsecond time scale. J Chem Theory Comput 5:1632–1639. https://doi.org/10.1021/ 
CT9000685 

Hecker EA, Duraiswami C, Andrea TA, Diller DJ (2002) Use of catalyst pharmacophore models for 
screening of large combinatorial libraries. J Chem Inf Comput Sci 42:1204–1211. https://doi. 
org/10.1021/CI020368A 

Hernández-Rodríguez M, Rosales-Hernández MC, Mendieta-Wejebe JE et al (2016) Current tools 
and methods in molecular dynamics (MD) simulations for drug design. Curr Med Chem 23: 
3909–3924. https://doi.org/10.2174/0929867323666160530144742 

Herwig R (2014) Computational modeling of drug response with applications to neuroscience. 
Dialogues Clin Neurosci 16:465. https://doi.org/10.31887/DCNS.2014.16.4/RHERWIG 

Hoffmann C, Centi A, Menichetti R, Bereau T (2020) Molecular dynamics trajectories for 
630 coarse-grained drug-membrane permeations. Sci Data 71(7):1–7. https://doi.org/10.1038/ 
s41597-020-0391-0 

Hollingsworth SA, Dror RO (2018) Molecular dynamics simulation for all. Neuron 99:1129. 
https://doi.org/10.1016/J.NEURON.2018.08.011 

Ito S, Yagi K, Sugita Y (2022) Computational analysis on the allostery of tryptophan synthase: 
relationship between α/β-ligand binding and distal domain closure. J Phys Chem B 126:3300– 
3308. https://doi.org/10.1021/ACS.JPCB.2C01556/SUPPL_FILE/JP2C01556_SI_002.PDF 

Jo S, Kim T, Iyer VG, Im W (2008) CHARMM-GUI: a web-based graphical user interface for 
CHARMM. J Comput Chem 29:1859–1865. https://doi.org/10.1002/JCC.20945 

Jorgensen WL, Duffy EM (2002) Prediction of drug solubility from structure. Adv Drug Deliv Rev 
54:355–366. https://doi.org/10.1016/S0169-409X(02)00008-X 

Karplus M, McCammon JA (2002) Molecular dynamics simulations of biomolecules. Nat Struct 
Biol 99(9):646–652. https://doi.org/10.1038/nsb0902-646 

Kitchen DB, Decornez H, Furr JR, Bajorath J (2004) Docking and scoring in virtual screening for 
drug discovery: methods and applications. Nat Rev Drug Discov 3:935–949. https://doi.org/10. 
1038/nrd1549 

Klebe G, Abraham U, Mietzner T (1994) Molecular similarity indices in a comparative analysis 
(CoMSIA) of drug molecules to correlate and predict their biological activity. J Med Chem 37: 
4130–4146. https://doi.org/10.1021/JM00050A010/ASSET/JM00050A010.FP.PNG_V03 

Krieger E, Koraimann G, Vriend G (2002) Increasing the precision of comparative models with 
YASARA NOVA—a self-parameterizing force field. Proteins Struct Funct Bioinforma 47:393– 
402. https://doi.org/10.1002/PROT.10104 

Kumari R, Kumar R, Lynn A (2014) G-mmpbsa—A GROMACS tool for high-throughput 
MM-PBSA calculations. J Chem Inf Model 54:1951–1962. https://doi.org/10.1021/ 
CI500020M/SUPPL_FILE/CI500020M_SI_001.PDF 

Le L, Le L (2012) Incorporating molecular dynamics simulations into rational drug design: a case 
study on influenza a neuraminidases. Bioinformatics. https://doi.org/10.5772/52642 

Lipinski CA (2004) Lead- and drug-like compounds: the rule-of-five revolution. Drug Discov 
Today Technol 1:337–341. https://doi.org/10.1016/J.DDTEC.2004.11.007 

Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (2001) Experimental and computational 
approaches to estimate solubility and permeability in drug discovery and development settings. 
Adv Drug Deliv Rev 46:3–26. https://doi.org/10.1016/S0169-409X(00)00129-0 

Liu X, Shi D, Zhou S et al (2017) Molecular dynamics simulations and novel drug discovery. 
Expert Opin Drug Discov 13:23–37. https://doi.org/10.1080/17460441.2018.1403419

https://doi.org/10.1016/j.ajo.2005.12.030
https://doi.org/10.1016/j.ajo.2005.12.030
https://doi.org/10.2174/0929867043364036
https://doi.org/10.1021/CT9000685
https://doi.org/10.1021/CT9000685
https://doi.org/10.1021/CI020368A
https://doi.org/10.1021/CI020368A
https://doi.org/10.2174/0929867323666160530144742
https://doi.org/10.31887/DCNS.2014.16.4/RHERWIG
https://doi.org/10.1038/s41597-020-0391-0
https://doi.org/10.1038/s41597-020-0391-0
https://doi.org/10.1016/J.NEURON.2018.08.011
https://doi.org/10.1021/ACS.JPCB.2C01556/SUPPL_FILE/JP2C01556_SI_002.PDF
https://doi.org/10.1002/JCC.20945
https://doi.org/10.1016/S0169-409X(02)00008-X
https://doi.org/10.1038/nsb0902-646
https://doi.org/10.1038/nrd1549
https://doi.org/10.1038/nrd1549
https://doi.org/10.1021/JM00050A010/ASSET/JM00050A010.FP.PNG_V03
https://doi.org/10.1002/PROT.10104
https://doi.org/10.1021/CI500020M/SUPPL_FILE/CI500020M_SI_001.PDF
https://doi.org/10.1021/CI500020M/SUPPL_FILE/CI500020M_SI_001.PDF
https://doi.org/10.5772/52642
https://doi.org/10.1016/J.DDTEC.2004.11.007
https://doi.org/10.1016/S0169-409X(00)00129-0
https://doi.org/10.1080/17460441.2018.1403419


50 A. Agrwal

Liu X, Shi D, Zhou S et al (2018) Molecular dynamics simulations and novel drug discovery. 
Expert Opin Drug Discov 13:23–37 

Liu Y (2022) Use in silico and in vitro methods to screen hepatotoxic chemicals and CYP450 
enzyme inhibitors. Methods Mol Biol 2474:189–198. https://doi.org/10.1007/978-1-0716-
2213-1_17 

Lyubartsev AP, Laaksonen A (2000) M.DynaMix – a scalable portable parallel MD simulation 
package for arbitrary molecular mixtures. Comput Phys Commun 128:565–589. https://doi.org/ 
10.1016/S0010-4655(99)00529-9 

Macalino SJY, Billones JB, Organo VG, Carrillo MCO (2020) In silico strategies in tuberculosis 
drug discovery. Molecules 25:665. https://doi.org/10.3390/MOLECULES25030665 

Manglik A, Lin H, Aryal DK et al (2016) Structure-based discovery of opioid analgesics with 
reduced side effects. Nature 537(7619):185–190. https://doi.org/10.1038/nature19112 

Marrakchi H, Lanéelle G, Quémard A (2000) InhA, a target of the antituberculous drug isoniazid, is 
involved in a mycobacterial fatty acid elongation system, FAS-II. Microbiology 146:289–296. 
https://doi.org/10.1099/00221287-146-2-289/CITE/REFWORKS 

Mason J, Good A, Martin E (2005) 3-D pharmacophores in drug discovery. Curr Pharm Des 7:567– 
597. https://doi.org/10.2174/1381612013397843 

McCorvy JD, Butler KV, Kelly B et al (2017) Structure-inspired design of β-arrestin-biased ligands 
for aminergic GPCRs. Nat Chem Biol 142(14):126–134. https://doi.org/10.1038/nchembio. 
2527 

Melo-Filho C, Braga R, Andrade C (2014) 3D-QSAR approaches in drug design: perspectives to 
generate reliable CoMFA models. Curr Comput Aided-Drug Des 10:148–159. https://doi.org/ 
10.2174/1573409910666140410111043 

Moses H, Dorsey ER, Matheson DHM, Thier SO (2005) Financial anatomy of biomedical research. 
JAMA 294:1333–1342. https://doi.org/10.1001/JAMA.294.11.1333 

Myers S, Baker A (2001) Drug discovery—an operating model for a new era. Nat Biotechnol 
198(19):727–730. https://doi.org/10.1038/90765 

Ode H, Nakashima M, Kitamura S et al (2012) Molecular dynamics simulation in virus research. 
Front Microbiol 3:258. https://doi.org/10.3389/FMICB.2012.00258/BIBTEX 

Oshima H, Sugita Y (2022) Modified Hamiltonian in FEP calculations for reducing the computa-
tional cost of electrostatic interactions. J Chem Inf Model 62:2846–2856. https://doi.org/10. 
1021/ACS.JCIM.1C01532/SUPPL_FILE/CI1C01532_SI_001.PDF 

Ou-Yang SS, Lu JY, Kong XQ et al (2012) Computational drug discovery. Acta Pharmacol Sin 33: 
1131–1140 

Patel HM, Noolvi MN, Sharma P et al (2014) Quantitative structure–activity relationship (QSAR) 
studies as strategic approach in drug discovery. Med Chem Res 23:4991–5007. https://doi.org/ 
10.1007/S00044-014-1072-3 

Patel L, Shukla T, Huang X et al (2020) Machine learning methods in drug discovery. Molecules 
25(22):5277. https://doi.org/10.3390/MOLECULES25225277 

Peach ML, Zakharov AV, Liu R et al (2012) Computational tools and resources for metabolism-
related property predictions. 1. Overview of publicly available (free and commercial) databases 
and software. Future Med Chem 4:1907–1932. https://doi.org/10.4155/FMC.12.150 

Peng QX, Guan XH, Yi ZG, Su YP (2014) Insilico approaches in anesthetic drug development: 
computer aided drug designing. Drug Res 8:587–591. https://doi.org/10.1055/S-0034-1395564/ 
ID/R2014-08-0840-0029 

Perez C, Faust B, Mehdipour AR et al (2014) Substrate-bound outward-open state of the betaine 
transporter BetP provides insights into Na+ coupling. Nat Commun 51(5):1–11. https://doi.org/ 
10.1038/ncomms5231 

Phillips JC, Braun R, Wang W et al (2005) Scalable molecular dynamics with NAMD. J Comput 
Chem 26:1781. https://doi.org/10.1002/JCC.20289 

Prieto-Martínez FD, López-López E, Eurídice Juárez-Mercado K, Medina-Franco JL (2019) Com-
putational drug design methods—current and future perspectives. In: In silico drug design:

https://doi.org/10.1007/978-1-0716-2213-1_17
https://doi.org/10.1007/978-1-0716-2213-1_17
https://doi.org/10.1016/S0010-4655(99)00529-9
https://doi.org/10.1016/S0010-4655(99)00529-9
https://doi.org/10.3390/MOLECULES25030665
https://doi.org/10.1038/nature19112
https://doi.org/10.1099/00221287-146-2-289/CITE/REFWORKS
https://doi.org/10.2174/1381612013397843
https://doi.org/10.1038/nchembio.2527
https://doi.org/10.1038/nchembio.2527
https://doi.org/10.2174/1573409910666140410111043
https://doi.org/10.2174/1573409910666140410111043
https://doi.org/10.1001/JAMA.294.11.1333
https://doi.org/10.1038/90765
https://doi.org/10.3389/FMICB.2012.00258/BIBTEX
https://doi.org/10.1021/ACS.JCIM.1C01532/SUPPL_FILE/CI1C01532_SI_001.PDF
https://doi.org/10.1021/ACS.JCIM.1C01532/SUPPL_FILE/CI1C01532_SI_001.PDF
https://doi.org/10.1007/S00044-014-1072-3
https://doi.org/10.1007/S00044-014-1072-3
https://doi.org/10.3390/MOLECULES25225277
https://doi.org/10.4155/FMC.12.150
https://doi.org/10.1055/S-0034-1395564/ID/R2014-08-0840-0029
https://doi.org/10.1055/S-0034-1395564/ID/R2014-08-0840-0029
https://doi.org/10.1038/ncomms5231
https://doi.org/10.1038/ncomms5231
https://doi.org/10.1002/JCC.20289


repurposing techniques and methodologies. Academic Press, London, pp 19–44. https://doi.org/ 
10.1016/B978-0-12-816125-8.00002-X 

2 Computational Modelling and Simulations in Drug Design 51

Rackers JA, Wang Z, Lu C et al (2018) Tinker 8: software tools for molecular design. J Chem 
Theory Comput 14:5273. https://doi.org/10.1021/ACS.JCTC.8B00529 

Ragno R, Esposito V, Di Mario M et al (2020) Teaching and learning computational drug design: 
student investigations of 3D quantitative structure-activity relationships through web applica-
tions. J Chem Educ 97:1922–1930. https://doi.org/10.1021/acs.jchemed.0c00117 

Ren JX, Li LL, Zheng RL et al (2011) Discovery of novel Pim-1 kinase inhibitors by a hierarchical 
multistage virtual screening approach based on SVM model, pharmacophore, and molecular 
docking. J Chem Inf Model 51:1364–1375. https://doi.org/10.1021/CI100464B/SUPPL_FILE/ 
CI100464B_SI_001.PDF 

Roccatano D, Barthel A, Zacharias M (2007) Structural flexibility of the nucleosome core particle at 
atomic resolution studied by molecular dynamics simulation. Biopolymers 85:407–421. https:// 
doi.org/10.1002/BIP.20690 

Rutenber EE, Stroud RM (1996) Binding of the anticancer drug ZD1694 to E. coli thymidylate 
synthase: assessing specificity and affinity. Structure 4:1317–1324. https://doi.org/10.1016/ 
S0969-2126(96)00139-6 

Salo-Ahen OMH, Alanko I, Bhadane R et al (2021) Molecular dynamics simulations in drug 
discovery and pharmaceutical development. Processes 9:71. https://doi.org/10.3390/ 
PR9010071 

Santini S, Derreumaux P (2004) Helix H1 of the prion protein is rather stable against environmental 
perturbations: molecular dynamics of mutation and deletion variants of PrP(90–231). Cell Mol 
Life Sci CMLS 61:951–960. https://doi.org/10.1007/S00018-003-3455-3 

Schaller D, Šribar D, Noonan T et al (2020) Next generation 3D pharmacophore modeling. Wiley 
Interdiscip Rev Comput Mol Sci 10:e1468. https://doi.org/10.1002/WCMS.1468 

Shaw DE, Deneroff MM, Dror RO et al (2008) Anton, a special-purpose machine for molecular 
dynamics simulation. Commun ACM 51:91–97. https://doi.org/10.1145/1364782.1364802 

Smith W, Yong CW, Rodger PM (2010) DL_POLY: application to molecular simulation. Mol 
Simul 28:385–471. https://doi.org/10.1080/08927020290018769 

Song CM, Lim SJ, Tong JC (2009) Recent advances in computer-aided drug design. Brief 
Bioinform 10:579–591. https://doi.org/10.1093/BIB/BBP023 

Sotriffer CA (2006) Molecular dynamics simulations in drug design. In: Encyclopedic reference of 
genomics and proteomics in molecular medicine. Springer, Berlin, pp 1153–1160. https://doi. 
org/10.1007/3-540-29623-9_0820 

Spahn V, Del Vecchio G, Labuz D et al (2017) A nontoxic pain killer designed by modeling of 
pathological receptor conformations. Science 355:966–969. https://doi.org/10.1126/SCIENCE. 
AAI8636/SUPPL_FILE/AAI8636_SPAHN_SM.PDF 

Stone JE, Hallock MJ, Phillips JC, et al (2016) Evaluation of emerging energy-efficient heteroge-
neous computing platforms for biomolecular and cellular simulation workloads. In 2016 IEEE 
30th International Parallel and Distributed Processing Symposium IPDPS, Chicago, IL, USA, 
pp 89–100. https://doi.org/10.1109/IPDPSW.2016.130 

Suganya S, Nandagopal B, Anbarasu A (2017) Natural inhibitors of HMG-CoA reductase—an 
Insilico approach through molecular docking and simulation studies. J Cell Biochem 118:52– 
57. https://doi.org/10.1002/JCB.25608 

Taiji M, Futatsugi N, Narumi T et al (2002) Protein explorer: a petaflops special-purpose computer 
for molecular dynamics simulations. Genome Inform 13:461–462. https://doi.org/10.11234/ 
GI1990.13.461 

Talele T, Khedkar S, Rigby A (2010) Successful applications of computer aided drug discovery: 
moving drugs from concept to the clinic. Curr Top Med Chem 10:127–141. https://doi.org/10. 
2174/156802610790232251 

Taubenberger JK, Morens DM (2006) 1918 Influenza: the mother of all pandemics. Emerg Infect 
Dis 12:15–22. https://doi.org/10.3201/EID1201.050979

https://doi.org/10.1016/B978-0-12-816125-8.00002-X
https://doi.org/10.1016/B978-0-12-816125-8.00002-X
https://doi.org/10.1021/ACS.JCTC.8B00529
https://doi.org/10.1021/acs.jchemed.0c00117
https://doi.org/10.1021/CI100464B/SUPPL_FILE/CI100464B_SI_001.PDF
https://doi.org/10.1021/CI100464B/SUPPL_FILE/CI100464B_SI_001.PDF
https://doi.org/10.1002/BIP.20690
https://doi.org/10.1002/BIP.20690
https://doi.org/10.1016/S0969-2126(96)00139-6
https://doi.org/10.1016/S0969-2126(96)00139-6
https://doi.org/10.3390/PR9010071
https://doi.org/10.3390/PR9010071
https://doi.org/10.1007/S00018-003-3455-3
https://doi.org/10.1002/WCMS.1468
https://doi.org/10.1145/1364782.1364802
https://doi.org/10.1080/08927020290018769
https://doi.org/10.1093/BIB/BBP023
https://doi.org/10.1007/3-540-29623-9_0820
https://doi.org/10.1007/3-540-29623-9_0820
https://doi.org/10.1126/SCIENCE.AAI8636/SUPPL_FILE/AAI8636_SPAHN_SM.PDF
https://doi.org/10.1126/SCIENCE.AAI8636/SUPPL_FILE/AAI8636_SPAHN_SM.PDF
https://doi.org/10.1109/IPDPSW.2016.130
https://doi.org/10.1002/JCB.25608
https://doi.org/10.11234/GI1990.13.461
https://doi.org/10.11234/GI1990.13.461
https://doi.org/10.2174/156802610790232251
https://doi.org/10.2174/156802610790232251
https://doi.org/10.3201/EID1201.050979


52 A. Agrwal

Tinoco I, Wen J-D (2009) Simulation and analysis of single-ribosome translation. Phys Biol 6: 
025006. https://doi.org/10.1088/1478-3975/6/2/025006 

Tsopelas F, Vallianatou T, Tsantili-Kakoulidou A (2016) Advances in immobilized artificial 
membrane (IAM) chromatography for novel drug discovery. Expert Opin Drug Discov 11: 
473–488. https://doi.org/10.1517/17460441.2016.1160886 

Urbanc B, Betnel M, Cruz L et al (2010) Elucidation of amyloid β-protein oligomerization 
mechanisms: discrete molecular dynamics study. J Am Chem Soc 132:4266–4280. https://doi. 
org/10.1021/JA9096303/SUPPL_FILE/JA9096303_SI_001.PDF 

Van Gunsteren WF, Mark AE (1998) Validation of molecular dynamics simulation. J Chem Phys 
108:6109. https://doi.org/10.1063/1.476021 

Verma RP, Hansch C (2009) Camptothecins: a SAR/QSAR study. Chem Rev 109:213–235. https:// 
doi.org/10.1021/CR0780210/ASSET/CR0780210.FP.PNG_V03 

Villoutreix BO, Lagorce D, Labbé CM et al (2013) One hundred thousand mouse clicks down 
the road: selected online resources supporting drug discovery collected over a decade. Drug 
Discov Today 18:1081–1089. https://doi.org/10.1016/J.DRUDIS.2013.06.013 

Wadhwa R, Yadav NS, Katiyar SP et al (2021) Molecular dynamics simulations and experimental 
studies reveal differential permeability of withaferin-A and withanone across the model cell 
membrane. Sci Rep 11:2352. https://doi.org/10.1038/s41598-021-81729-z 

Wang B, Buchman CD, Li L et al (2014) Enrichment of chemical libraries docked to protein 
conformational ensembles and application to aldehyde dehydrogenase 2. J Chem Inf Model 54: 
2105–2116. https://doi.org/10.1021/CI5002026/SUPPL_FILE/CI5002026_SI_001.PDF 

Wang L, Ding J, Pan L et al (2019) Artificial intelligence facilitates drug design in the big data era. 
Chemom Intell Lab Syst 194:103850. https://doi.org/10.1016/J.CHEMOLAB.2019.103850 

van de Waterbeemd H, Gifford E (2003) ADMET in silico modelling: towards prediction paradise? 
Nat Rev Drug Discov 2:192–204. https://doi.org/10.1038/NRD1032 

Wlodawer A, Vondrasek J (2003) Inhibitors of HIV-1 protease: a major success of structure-
assisted drug design. Annu Rev Biophys Biomol Struct 27:249–284. https://doi.org/10.1146/ 
ANNUREV.BIOPHYS.27.1.249 

Wolber G, Langer T (2004) LigandScout: 3-D pharmacophores derived from protein-bound ligands 
and their use as virtual screening filters. J Chem Inf Model 45:160–169. https://doi.org/10.1021/ 
CI049885E 

Wu X, Xu L-Y, Li E-M, Dong G (2022) Application of molecular dynamics simulation in 
biomedicine. Chem Biol Drug Des 99:789–800. https://doi.org/10.1111/CBDD.14038 

Ye W, Wang W, Jiang C et al (2013) Molecular dynamics simulations of amyloid fibrils: an in silico 
approach. Acta Biochim Biophys Sin Shanghai 45:503–508. https://doi.org/10.1093/abbs/ 
gmt026 

Yinghuang GSS, Gong ZH et al (2022) Mechanism of Sanhua decoction in the treatment of 
ischemic stroke based on network pharmacology methods and experimental verification. 
Biomed Res Int 2022:7759402. https://doi.org/10.1155/2022/7759402 

Yu W, Mackerell AD (2017) Computer-aided drug design methods. Methods Mol Biol 1520:85. 
https://doi.org/10.1007/978-1-4939-6634-9_5 

Zhang D, Luo G, Ding X, Lu C (2012) Preclinical experimental models of drug metabolism and 
disposition in drug discovery and development. Acta Pharm Sin B 2:549–561. https://doi.org/ 
10.1016/J.APSB.2012.10.004 

Zhong F, Xing J, Li X et al (2018) Artificial intelligence in drug design. Sci China Life Sci 61(10): 
1191–1204. https://doi.org/10.1007/S11427-018-9342-2 

Zhuang X, Lu C (2016) PBPK modeling and simulation in drug research and development. Acta 
Pharm Sin B 6:430–440. https://doi.org/10.1016/J.APSB.2016.04.004

https://doi.org/10.1088/1478-3975/6/2/025006
https://doi.org/10.1517/17460441.2016.1160886
https://doi.org/10.1021/JA9096303/SUPPL_FILE/JA9096303_SI_001.PDF
https://doi.org/10.1021/JA9096303/SUPPL_FILE/JA9096303_SI_001.PDF
https://doi.org/10.1063/1.476021
https://doi.org/10.1021/CR0780210/ASSET/CR0780210.FP.PNG_V03
https://doi.org/10.1021/CR0780210/ASSET/CR0780210.FP.PNG_V03
https://doi.org/10.1016/J.DRUDIS.2013.06.013
https://doi.org/10.1038/s41598-021-81729-z
https://doi.org/10.1021/CI5002026/SUPPL_FILE/CI5002026_SI_001.PDF
https://doi.org/10.1016/J.CHEMOLAB.2019.103850
https://doi.org/10.1038/NRD1032
https://doi.org/10.1146/ANNUREV.BIOPHYS.27.1.249
https://doi.org/10.1146/ANNUREV.BIOPHYS.27.1.249
https://doi.org/10.1021/CI049885E
https://doi.org/10.1021/CI049885E
https://doi.org/10.1111/CBDD.14038
https://doi.org/10.1093/abbs/gmt026
https://doi.org/10.1093/abbs/gmt026
https://doi.org/10.1155/2022/7759402
https://doi.org/10.1007/978-1-4939-6634-9_5
https://doi.org/10.1016/J.APSB.2012.10.004
https://doi.org/10.1016/J.APSB.2012.10.004
https://doi.org/10.1007/S11427-018-9342-2
https://doi.org/10.1016/J.APSB.2016.04.004


53

Chapter 3 
Informatics: Tools and Databases in Drug 
Discovery 

Jurnal Reang, Vivek Yadav, Vinita, Jaseela Majeed, 
Prabodh Chander Sharma, Rajiv Kumar Tonk, and Kalicharan Sharma 

3.1 Introduction 

Modern day drug development or drug discovery research is based on the informa-
tion or data gathered over many years correlated to studies on therapeutic contender. 
These information comprises data linked to chemical, generic, bio-chemical, phar-
macological, and physiological properties. Nowadays accessing and operating enor-
mous magnitudes of information are essential for the drug discovery process. The 
field informatics or information technology is providing the systematic organization, 
storage, and retrieval of data that required during the process of drug discovery. 
Information technology allows the researcher to easy access and analysis of data to 
yield profound understanding. Cheminformatics and bioinformatics are instances 
of growing acknowledgment of informatics in drug discovery (Gunjal 2003). 

3.1.1 Databases 

There is an inevitability of information ranging from basic to scientific in our daily 
life. To maintain the information, print and electronic files (books and journals) were 
established. Databases are organized depositories of information in the form of text, 
numerical, graphical, and structural details. Databases enable easy access of relevant 
information with the ease of up-to-date management. In the late 60s, database arise 
due to an emergent mandate among users of different organization for additional 
information to run the day-to-day function and also for future planning. The
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traditional database system is comprised of paper-based records, which necessitate 
hefty storage space with the risk of data repetition, astray or impairment of data, and 
also involving time intense pursuit. The modern computer-based databases were 
technologically advanced to tackle the issues linked traditional database system. It 
offers data integrity, data sharing, and data migration between systems, and security 
restriction with lessen data inconsistencies. Modern databases employ algorithms for 
the mining of information from the large pool (Fig. 3.1). It has become vital part of 
public health care, as it takes account of patient condition recording, observation of 
patient situation, and therapy which all cumulatively plays a vital role in drug design 
and discovery-linked procedures. MEDLINE, DrugBank, Protein Data Bank (PDB) 
and Binding Database (BD) are some of the examples of databases (Gunjal 2003).
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Fig. 3.1 The modern computer-based database 

Functions of Database:

• User-friendly: Database delivers easy to learn and use the information.
• Data independence: It permits modifications at any one level of the database 

without disturbing the further levels.
• Economy: Additional data at small budget as database provides protection and 

transformation of data economically.
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• Data Sharing: A database permits distribution of data under its supervision to 
several number of users.

• Accuracy and Integrity: Centralized control of the database helps in avoiding 
incorrect data as the unified controls distinguish data incorrectness where they 
arise. The correctness of a database safeguards that data feature and content stay 
persistent.

• Privacy and Security: Complete jurisdictions over the operational data prevent 
unauthorized access of data to sustain privacy.

• Concurrency control: Database allows rapid access to a database, while shielding 
information integrity.

• Performance: It stresses on retort time of investigations, making fit to use the 
information based on the type of user-database dialogue.

• Enforcement of Standards: In order to aid data interchange between systems, the 
concept of database facilitates regulation of stored data in particular desirable 
formats.

• Support: Database support complex file assembly and access route. 

3.1.2 Database Structure 

Data are organized as per the data model, where data are divided into a component 
based on the elements of data. For example, book information is a data structure 
comprising the data components such as author name, title, publisher’s name, ISBN, 
and year (Gunjal 2003). 

There are numerous diverse methods to evaluate the rational configuration of 
information in complicated databases. But there are three varieties of data structure, 

(a) List Structure 
(b) Tree/Hierarchical Structure 
(c) Network Structure 
(a) List Structure 

In this type of database structure, data are recorded basically based on the 
position of Nth record where the Nth is associated (N - 1) and (N - 2). This 
brings one-to-one correlation (Gunjal 2003). 

(b) Tree or Hierarchical Structure 
It is a multilevel and non-linear structure of data in which every node may be 

linked to N-nodes at some level lower it but to simply one node overhead it. The 
record is as of the topmost, and the course of examination is momentary down. 
Data traced at diverse stages alongside a specific division from the root are called 
the node. The foundation of a data tree or hierarchy is the root. This type of 
structure is useful for storing data in the form of parent–child connection (Gunjal 
2003). 

(c) Network Structure
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It is a different arrangement of hierarchical structure with broader arrange-
ment than a hierarchy model. Similar to the hierarchy method, the data are 
characterized by accounts and associations. This structure allows relationships 
among entities. It is a structure of database consists of a sum of distinct incidents 
record in which a certain node may have several quantities of underlings’ nodes. 
It is paralleled to a chart assembly and conveys many-to-many connection 
(Gunjal 2003). 

3.1.3 Database Management System (DBMS) 

Creating, modernizing, and erasing information are vital part of a database which 
help in gathering and administration of pertinent data in a database. The set of 
programs or software tools that implement these tasks is entitled as database 
management system (DBMS). DBMS offers a convenient and efficient setting for 
the retrieval and storing of information in database. Large amounts of data can be 
managed through DBMS. DBMS assists the physical accumulation of logically 
related records (data) and the retrieval procedure. It makes an effort to prevent 
physical data from being redundant and upholds data integrity and independence. 
DBMS offers conveniences for institution to retrieve and regulate (Gunjal 2003). 

Objectives of DBMS 
Main goal of DBMS is to offer a convenient setting for retrieving and storing 
information in database. It is supported for both single and multi-user scenario 
(Gunjal 2003).

• To organize the mass storing of pertinent information.
• Make it simple for consumers to access the information.
• Retort quickly to consumer demands for information.
• Remove the unnecessary data.
• Permit several users to be active at once.
• Guard the information from physical damage and unlawful access.
• Control over the accuracy, reliability, security, and consistency of the data.
• Allow the database system to expand.
• To avail most recent updates in database instantly accessible. 

Functions of DBMS 
Some of the major functions of DBMS are as follows (Gunjal 2003):

• Data Storage, Retrieval, and Update: Since numerous users may share a 
database, the DBMS must support several consumer observations and facilitate 
effective storing, recovery, and modernizing for entire consumers.

• Transaction Integrity: A transaction is a succession of activities that account a 
specific type of viable action. The DBMS must include tools for the consumer or 
application software to create operation restrictions, i.e., the rational start and
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expiration of trades, in order to assurance operation reliability. The DBMS should 
then approve alterations for trades that are successful and deny variations for 
those that fail.

• Recovery Services: In the incident of a system breakdown, the DBMS should be 
capable to recover the database. Operator error, disc head accidents, and program 
faults are all potential sources of system failure.

• Concurrency Control: As a database is shared by several consumers, it is 
possible for numerous users to crack to obtain the similar information at once.

• Security Mechanisms: Information should be safeguarded contrary to 
unauthorized or deliberate usage or diversion. The DBMS offers tools for limiting 
user access to data and outlining the activities they are permitted to perform.

• Data Communication Interface: Users frequently use remote terminals in a 
telecommunications network to access databases. The course of dealings and the 
distant terminations is processed by a telecommunication monitor. In order for the 
system to support the user rather than be a burden, the DBMS must have an 
interface with one or added telecommunication observers. This will ensure that all 
indispensable tasks are carried out.

• Integrity Services: Facilities that help users ensure the integrity of their data must 
be provided by the DBMS. The DBMS and its software interfaces can be 
configured with a variability to manage checks and reliability constraints. The 
data dictionary is usually used to administer these tests. 

3.1.4 Bioinformatics 

Bioinformatics is a branch of research that combines computer science, biology, and 
information technology. It includes all of the many approaches and techniques for 
examining and gleaning physiologically pertinent data from the exponentially 
expanding biological and crucial sequence databases. A bioinformatician’s prime 
possessions are the internet and computer tools. Anyone with internet connection 
and access to appropriate websites can now easily learn the makeup of biological 
fragments like nucleic acids and proteins through simple bioinformatics tools, from 
doctors to molecular biologists. Bioinformatics employ a selection of information 
bases, comprising raw DNA arrangements, protein arrangements, macromolecular 
assemblies, and genome sequencing (Bayat 2002; Diniz and Canduri 2017). 

Functions of Bioinformatics 
1. To examine gene expression and variation. 
2. To analyze and forecast the structure and functionality of genes and proteins. 
3. Estimation and discovery of gene directive systems. 
4. Providing model settings of whole-cell modeling.
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5. Intricate displaying of gene directing undercurrents and systems. 
6. Employed to visualize and study of biological pathways to comprehend gene– 

disease relationships. 

3.1.5 Cheminformatics 

A subject that organizes and coordinates the use of computers in chemistry is known 
as “cheminformatics,” a phrase that lexically combines the words “chemistry” and 
“informatics” (computer science). In the modern drug discovery process, 
cheminformatics has become an essential part (Gasteiger 2016). The functions of 
cheminformatics are (Gasteiger 2016): 

1. Databases 
Undoubtedly, one of cheminformatics’ most well-known functions is its 

ability to give users access to databases of chemical data on a scale that is 
unfeasible to reach by manually sifting through the chemical literature. Without 
databases, it would simply be unmanageable to get a summary of the identified 
chemistry given that there are currently 90 million known chemicals. Addition-
ally, chemists are able to connect with databases using their native tongue of 
graphical representations such as structure diagrams and reaction equations. 
Present chemical study would not be conceivable without the progressions in 
cheminformatics combined into database. 

2. Property Prediction 
For the property prediction of a chemical compound, numerous techniques 

have been established. In all of these techniques for a particular structure, 
descriptors are derived from a cheminformatic dataset, followed by data analysis 
or model building technique to establish the connection between the structural 
signifiers and the studied characteristic. Thus, cheminformatics are important for 
the property estimation of a particular structure. 

3. Drug Design 
The field of drug design has seen the vast majority of cheminformatics 

applications. It is used in lead discovery, lead optimization, and modeling of 
ADMET properties. Cheminformatics has significantly aided in the creation of 
numerous novel medications. All major pharmaceutical corporations now have 
cheminformatics departments, and virtually every medicine that has recently been 
produced has used cheminformatics procedures at some stage. 

4. Analytical Chemistry 
The majority of analytical chemistry tasks include a categorization issue, such 

placing a sample in a particular category. Early on, it was realized that compu-
tational approaches may substantially aid in the classification of analytical sam-
ples. This caused in the progression of chemometrics arena; which is a subfield of



cheminformatics. In chemometrics, maximum chemical information was 
acquired by analyzing chemical data from cheminformatics. 
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3.2 Drug Discovery Informatics 

Information on biology, chemistry, and literature are integrated with the aid of 
informatics (computer-based storage and retrieval of information). The design of 
molecules for therapeutic intervention is made easier by this technical progress. The 
processes for drug research and development are accelerated and strengthened by 
integrated technology (informatics). When medical researchers conduct investiga-
tion into treatments for definite ailments or for certain patient demographics, massive 
quantities of data are generated. Discovery informatics implicates the establishment 
of systems that can work more efficiently with such massive collections of data. In 
future, these technological advancements are anticipated to surge in both consistency 
and opportunity. Thus, the integration of new informatics with pharmaceutical 
sciences is becoming a crucial part of the drug discovery process. In future, these 
technical expansions are projected to nurture both in terms of their dependability and 
opportunity. Thus, the developing informatics combined with pharmaceutical sci-
ences is a crucial element of drug discovery (Yadav et al. 2020). 

The component of drug discovery informatics can be classified into two catego-
ries (Fig. 3.2):

• Information resources
• Software tool 

Fig. 3.2 The different component in classification of drug discovery informatics



MEDLINE is the name of the MEDLARS online version (MEDLARS online).
It is a well-known bio-medical database that contains information on more than
25 million citations. Medical data are accessible through this database (clinical
and therapeutic topics). Literature published between 1966 and the present is
included in MEDLINE, as is some older literature. PubMed is the exploration
contraption presented for pursuit against MEDLINE. The Literature Selection
Technical Review Committee (LSRTC) of NCBI recommends that the vast
majority of journals be added to MEDLINE. MEDLINE gives preference to the
fields of biology, behavioral sciences, chemical sciences, bioengineering, clinical
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3.2.1 Information Resources 

Drug development and discovery is an extremely complicated process that generates 
enormous volumes of data and information. Information resources include all the 
available data for an existing molecule including structural, graphical, physicochem-
ical, pharmacodynamics, and pharmacokinetics data. Information resources are 
classified into following categories;

• Literature databases
• Chemical databases
• Biological databases 

3.2.1.1 Literature Databases 

Past print and electronic indices continue to exert govern over the remarkable 
increase in the amount of circulated data (journals and books). Electronic files 
were created to help with information storage, retrieval, and dissemination. Database 
search engines can now be used to perform the literary searches and information 
retrieval that was hitherto the domain of librarians. These engines are used for 
information retrieval by researchers from academic research centers and research 
labs. Many literature databases (databases for information) are available on the 
internet, and these databases are helpful to both biological and pharmaceutical 
experts. 

Following are some of the example of literature databases. 

1. MEDLARS 
MEDLARS or Medical Literature Analysis and Retrieval System is a biblio-

graphic database. It is created by the National Library of Medicine (NLM), a 
division of the National Center for Biotechnology Information (NCBI) in the 
United States. MEDLARS revolutionized the process of searching for literature. 
It retains a medical science article index. Every day, the general public, scientists, 
librarians, and health professionals conduct about 350,000 MEDLINE searches 
over the World Wide Web (Dee 2007). 

2. MEDLINE



care, public health, and health policy development. Additionally, it discusses 
biophysics, marine biology, plant and animal science, and biology (Cross ). 2006
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3. EMBASE 
EMBASE or Excerpta Medica Database is a bibliographic database consists of 

biological and pharmacological published literature. EMBASE is created by 
Elsevier, extending coverage to publications from Europe and works authored 
in languages other than English. It offers access to journals as old as going back to 
1947. It includes MEDLINE titles and encompasses more than 32 million 
records. This database helps researchers understand drugs–disease association 
and drug–drug relations. It is highly helpful in finding pharmacological side 
effects (Lefebvre et al. 2008). 

4. International Pharmaceutical Abstract (IPA) 
The International Pharmaceutical Abstracts (IPA) database was molded by the 

American Society of Health-System Pharmacists (ASHP). It gives users access to 
a vast database of data on drug use. It includes the full range of drug therapy and 
pharmaceutical information, making it simple for researchers, toxicologists, 
cosmetic manufacturers, medical librarians, and healthcare professionals to find 
solutions to any drug-related issues they run into. 

5. Chemical Abstract Service (CAS) 
The Chemical Abstracts Service (CAS) is an arm of the American Chemical 

Society. For more than a century, it has offered the most complete record of 
research in chemistry and related fields. It includes scholarly publications such as 
books, conference proceedings, technical reports, patents, and dissertations. This 
database is highly helpful in the process of finding and developing new drugs 
(Efremenkova and Krukovskaya 2007). 

6. TOXLINE 
TOXLINE is a toxicity database and subset of the National Library of Med-

icine’s (NLM), which offered bibliographic data on the biochemical, pharmaco-
logical, physiological, and toxicological properties of medications and other 
compounds. References to TOXLINE were collected from a variety of sources 
and categorized into component sub files (Schultheisz 1981). 

3.2.1.2 Chemical Databases 

Chemical databases include encoded chemical configurations as well as molecular 
and atomic information. Most chemical databases contain two- (2D) and three-
dimensional (3D) essential simulations in various domains. The large number of 
fragments in chemical databases, as well as the supplementary information, neces-
sitates refined information structures. Present drug discovery processes demand the 
use of systems that can access and control enormous amounts of chemical data. 
Computer technologies improve the progression of storing and retrieving chemical 
information. It includes the design, organization, storage, management, retrieval, 
analysis, dissemination, visualization, and application of chemical data. Chemical 
database contains an extensive variety of data, which have vital input in the course of



rational drug design. Following are some of the important chemical database (Yadav 
et al. 2020). 
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1. ChemBank 
It was initially established by the Harvard Institute of Chemistry and Cell 

Biology as an open, web-based informatics. This database is currently kept up-
to-date by the Chemical Biology Program and the Chemical Biology Platform at 
Broad Institute of MIT and Harvard. This database is openly accessible and uses 
Daylight Chemical Information Systems. It contains information about bio-
chemical assays as well as molecular characteristics of small molecules. This 
database supports both text- and structure-based searches. The pursuit can be 
narrowed down to specific subsections (e.g., natural products; FDA permitted 
medications) (Seiler et al. 2008). 

2. Chemical Entities of Biological Interest (ChEBI) 
Chemical Entities of Biological Interest (ChEBI) is an open molecular object 

dictionary aiming on trivial chemical objects. It is a component of the European 
Bioinformatics Institute’s Open Biomedical Ontologies initiative. ChEBI 
includes an ontological arrangement and elucidates the connections among 
molecular objects and their parent or children. The molecular objects comprise 
atom, molecule, ion, radical, complex, and conformer (de Matos et al. 2010). 

3. Developmental Therapeutics Program (DTP) 
To aid in the finding and improvement of novel anticancer medicines, the 

National Cancer Institute’s (NCI’s) Developmental Therapeutics Program 
(DTP) offers support facilities and resources to academic and commercial 
research communities around the globe. The DTP maintains a stockpile of 
pure natural and synthetic chemicals that are being investigated as possible 
anticancer drugs. DTP assisted in the development of anti-cancer medicines 
such as paclitaxel, romidepsin, eribulin, sipuleucel-T, and dinutuximab (Monga 
and Sausville 2002). 

4. Comparative Toxicogenomics Database (CTD) 
This database was created by the National Institutes of Environmental Health 

Sciences (NIEHS) at North Carolina State University (NCSU). It sheds light on 
intricate networks of protein and chemical interactions. It explains the molecular 
processes underpinning disease susceptibility variation and environmental influ-
ences (Davis et al. 2021). 

5. DrugBank 
It is a web-based free database contains information on targets and drugs that 

is chemical, pharmaceutical, medical, and molecular biological. It includes 
chemical structures and more than 200 data fields for each drug. It includes 
FDA permitted small molecule medications and peptide, as well as 
nutraceuticals and experimental medications. DrugBank can be dug using both 
text- and structure-based approaches. There are presently 14,940 drug entries in 
DrugBank, including 2729 approved small molecule drugs. DrugBank data can 
help with target identification, biological activity screening, and drug break-
down estimations (Wishart et al. 2008).
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6. Carcinogenic Potency Database (CPDB) 
Lawrence Berkeley Laboratory and the University of California collaborated 

to create this database. It offers outcomes of persistent and longstanding animal 
cancer examinations that have been documented in published works (Gold et al. 
1991). 

7. Non-Redundant Database of Small Molecules (NRDBSM) 
It is suitable for virtual high-throughput screening of small molecules. Par-

ticular attention is paid to physicochemical characteristics and Lipinski’s rule of 
five (RO5). IIT Delhi’s Supercomputing Facility for Bioinformatics & Compu-
tational Biology is the source of this information. 

8. Cambridge Structural Database (CSD) 
A thorough and carefully curated chemical database. It comprises coordina-

tion compounds and small organic molecules with empirically established 
molecular structures that have been documented in the literature. Additionally, 
it also includes data that were avail straight through the CSD and are not 
accessible elsewhere (Groom et al. 2016). 

9. CrossFire Beilstein database 
The Beilstein Institute created the first database, which was based on the 

Beilstein handbook of organic chemistry. This database includes compounds 
prior to 1960. It includes arrangements, Beilstein and CAS registry records, 
titles, formulas, natural product separations, chemical analogues, and reference 
information dating back to 1771. It comprises Gmelin database as well as 
Elsevier’s patent chemistry database. It also offers spectral, thermodynamic, 
biological, and toxic property information, as well as their applications (Vanco 
2003). 

10. Therapeutic Target Database (TTD) 
It contains details on the prime targets and mechanism of action of the 

medications’. This database offers information on metabolic pathway connec-
tions, signal transduction, and metabolic response disruption. This database can 
be used to research the drug’s molecule’s affinity for the macromolecule (Zhu 
et al. 2009). 

11. Kyoto Encyclopedia of Genes and Genomes (KEGG) 
For the majority of species and chemical compounds, it covers genomic, 

chemical, and network/pathway data. This offers metabolic paths, gene nodding, 
protein connections, and metabolite structure information relevant to an organ-
ism (Kanehisa and Goto 2000). 

12. ZINC 
ZINC is an open database of small molecule that can be found on the market 

for use in virtual screening. The chemical in the database fulfills the Lipinski 
rule of five (RO5). ZINC provides capabilities for docking, examining sub-
structures, and procurement aspect of chemicals. The drug-like characteristics of 
molecular structures are interpreted in the ZINC. Molecular mass, log P, 
numeral of rotatable bonds, hydrogen bond donors and acceptors, chiral centers, 
desolvation energy, net charge, rigid fragments, and molecular function infor-
mation can all be used to search for molecules (Irwin and Shoichet 2005).
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13. PubChem 
The National Institutes of Health (NIH) created and maintain this open 

chemical database. It contains information on the small molecules structures, 
identifiers, chemical and physical characteristics, biological actions, patents, 
safety, health, and harmfulness ratings. It consists of nucleotides, carbohydrates, 
lipids, peptides, and macromolecules that have undergone chemical modifica-
tion. It ranks database molecules against a query compound using an 881-bit 
finger point (Kim et al. 2016). 

3.2.1.3 Biological Databases 

Biological databases house well-ordered and determined biological information. 
These databases are collections of organized biological data, such as DNA 
sequences, protein sequences, and molecular structures. The growing pool of bio-
logical information necessitated the creation of biological databases. The most 
significant biological datasets are generally categorized into: 

1. Sequence databases 
2. Structure databases 

Sequence Databases 

Each gene or protein is represented by its nucleotide and amino acid arrangement. 
The sequencing of genes and proteins has been aided by developments in molecular 
biology and related sciences. The following list includes some of the most important 
sequencing databases. 

1. GenBank 
GenBank is a genetic sequence database retained by the National Institutes of 

Health (NIH). It is a vast public database of protein and nucleotide sequences. 
The most rapidly expanding database of known genomic sequences is GenBank. 
GenBank files contain references, phylogenetic categorization, accession num-
bers, and gene names. More than 20 million distinct sequences make up the more 
than 27 billion nucleotide bases in GenBank. The GenBank database is antici-
pated to deliver and boost access to the most recent and broad DNA arrangement 
data in the scientific circle (Clark et al. 2016). 

2. European Molecular Biology Laboratory (EMBL) 
The European Molecular Biology Laboratory (EMBL) is a large database that 

contains DNA and RNA sequences. These information are gathered from patent 
applications and scientific literature. The crucial component of EMBL is the data 
exchange between GenBank and the DNA Database of Japan (DDBJ). About 
110 separate research and service teams working in the fields of molecular 
biology and bioinformatics undertake research at the EMBL (Patel et al. 2022).



PFAM-A: It comprises curated families with corresponding profile HMMs.
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3. DNA Data Bank of Japan (DDBJ) 
The DNA Data Bank of Japan (DDBJ) was founded by the Japanese National 

Institute of Genetics. It interchanges molecular data with GenBank at NCBI and 
EMBL of EBI. DDBJ generally takes data from Japanese researchers but also 
from other nations. For every entry, accession number is allocated by DDBJ 
(Mashima et al. 2017). 

4. SwissProt 
SwissProt is a curated protein sequence database, set up by the Swiss Institute 

of Bioinformatics (SIB), a section of the University of Geneva’s department of 
Medical Biochemistry, and the European Molecular Biology Laboratory 
(EMBL). The curated protein sequence database is called SwissProt. It offers 
extensive annotations, including those on roles, domain structures, and post-
transitional alterations (PTMs). The three distinctive criteria that set the 
SWISS-PROT database apart from other protein sequence databases are 
(i) annotations, (ii) low redundancy, and (iii) assimilation with other databases 
(Bairoch and Apweiler 2000). 

5. Protein Information Resource (PIR) 
Protein Information Resource (PIR) was found by the National Biochemical 

Research Foundation (NBRF). It aids in the study of computational biology, 
functional genomics, and molecular evolution. PIR was in association with 
Munich Information Center for Protein Sequences (MIPS) and Japan Information 
Database formed International Protein Sequence Database (PIR-PSD). GeneBank 
of NCBI, EMBL of EBI, DDBJ translations, published publications, and 
uninterrupted submissions to PIR are the main data sources for PIR-PSD 
(Wu et al. 2003). 

6. PFAM 
PFAM is an EMBL centered database of protein families that contain various 

sequence alignments and annotations created using Hidden Markov Models 
(HMM). With extensive protein coverage, it offers a thorough and accurate 
classification of protein families and domains. For enhanced homology detection, 
this database offers sequence arrangement for protein domains and preserved 
protein regions (Finn et al. 2016). It is divided into two sections: 

(a) 
(b) PFAM-B: It contains the group of sequence sections that PFAM-A does not. 

7. InterPro 
InterPro is a database for protein sequence functional enquiry that is based on 

the EMBL. Proteins are categorized at the superfamily, family, and subfamily 
stages. It provides estimated investigation of the existence of repeats and func-
tional domain (Blum et al. 2021). 

8. PROSITE 
PROSITE is a repository of biologically important sites, patterns, and profiles. 

It is responsible for defining the role of proteins transcribed from genomic or 
cDNA sequences. It contains a brief account of the protein family/domain as well 
as a summary of the pattern or profile’s development (Sigrist et al. 2010).



Class: Proteins can be grouped together according to how much secondary
structure they share. It speaks to the content of secondary structure.
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9. iProClass 
The iProClass database is an integrated classification database designed to 

serve as a central repository for annotated protein family information. It provides 
access to above 175 biological databases. Protein families, functions and path-
ways, interactions, structures and structural classifications, genes and genomes, 
ontologies, literature, and taxonomy are all covered. It aids in the annotation of 
protein sequences, as well as genomic and proteomic research (Huang et al. 
2003). 

Structure Databases 

The macromolecular characteristics cannot be fully explained by the 2D structures. 
The molecular framework in 3D is crucial for describing their roles. The 3D 
structures can provide a greater understanding of the structure. The 3D structures 
of macromolecules have been created using molecular biology and biophysical 
approaches such as X-ray crystallography and NMR spectroscopy. These 3D struc-
tures are stored in repositories known as structure databases. The list and description 
of the most significant structural databases are provided below. 

1. Protein Data Bank (PDB) 
Brookhaven National Laboratories created the Protein Data Bank (PDB), 

which is overseen by the Research Collaboratory for Structural Bioinformatics 
(RCSB). It manages the databases of ligands and macromolecules with their 3D 
experimentally confirmed structures. Access to sequence information, atomic 
coordinates, crystallization circumstances, 3D structure neighbors, calculate 
methods, geometric data, structural factor, 3D photos, are all made available in 
this database. Each protein is given a special PDB-ID or PDB code, which 
consists of four alphanumeric characters. By entering text-based search terms 
(keywords), the PDB-ID, and the author name, you can examine against 3D 
structure of the interest protein. Options for advanced searches are offered for 
more focused and effective search. PDB provides the following molecular 
sequence analysis tools: alignments of sequence and structure, protein symmetry, 
structural quality, and protein location in the genome (Berman et al. 2000). 

2. CATH 
The CATH database is an openly accessible internet tool that offers details on 

the interactions between protein domains across time. Protein domain structures 
are categorized hierarchically at four levels using the CATH system. The term 
CATH of the database stands for Class (C), Architecture (A), Topology (T), and 
Homologous superfamily (H). And these are the four primary levels in a hierar-
chical classification system, 

(a) 

(b) Architecture: Regardless of the topological connection type, it refers to the 
common layout of the secondary structural components.
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(c) Topology: It describes the topological connectivity and shape of structural 
parts. 

(d) Homologous Super Family: This shows how the various proteins have 
changed throughout time. 

TH is an important tool for scholars because proteins with even minor 
ngement resemblances are often organizationally and functionally correlated 
wson et al. 2017). 

3. Structural Classification of Proteins (SCOP) 
The crucial element in determining the evolutionary process of sequences is 

understanding the relationships between structural similarities. To define the 
structural and evolutionary link among the proteins, whose 3D assemblies have 
previously been determined, the structural grouping of proteins (SCOP) database 
was created. A variety of automatically generated visualization-focused software 
tools are used to build the database. It includes experimentally determined 
biomolecular structures of proteins, RNA, and DNA that are deposited in the 
Protein Data Bank (PDB). It provides bonds, ligands, literature, chemical graphs, 
3D domains, and explicit (Lo Conte et al. 2000). 

4. Molecular Modeling Database (MMDB) 
The National Center for Biotechnology Information (NCBI) hosts the Molec-

ular Modeling Database (MMDB), a collection of 3D bimolecular structures that 
have been identified through research. It is an essential component of the NCBI 
Entre information retrieval system. By entering a key word, accession number, 
author, and journal name, a protein structure can be searched in the MMDB. More 
than 28,000 structures can be found in MMDB, which is connected to the other 
NCBI databases for sequences, bibliographic references, taxonomic groupings, 
and sequences and structures neighbors (Madej et al. 2012). 

5. DNA Databank 
This database was created by the National Institutes of Health (NIH). DNA 

clones of many tissues, including liver, muscle, skin, hair, and saliva, are kept in 
the DNA Data Bank. Information from DNA databanks is helpful in genetic 
genealogy, paternity testing, criminal investigations (genetic fingerprinting), and 
illness screening for genetic disorders(Johnson et al. 2003). 

3.2.2 Software Tools Used in Drug Discovery 

There are numerous computer programs or tools with a variety of applications, 
accuracy, and approaches accessible globally for the drug development process. 
These computational tools or programs are used in the design and discovery of new 
medications for molecular modeling, docking, and protein conformation, ADMET 
predictions, pharmacophore mapping, visualization of docking postures, computa-
tion of force fields, homology modeling, generation of 3D structures, and 
pharmacophore searches. Computational techniques are crucial in the current drug



discovery system for lead optimization, lead identification, and pre-clinical in vitro 
assessment criteria for entering clinical development (Patel et al. 2022). Following 
are some of the widely used software tools used for the different purpose in drug 
development process. 
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3.2.2.1 Chemical Drawing Tools 

1. ChemDraw 
A molecular editor was developed by the cheminformatics company 
CambridgeSoft. The first iteration of the chemical editor, named ChemDraw, 
was developed by David A. Evans and Stewart Rubenstein in 1985. PerkinElmer 
bought the business in 2011. ChemDraw, Chem3D, and ChemFinder are all part 
of the ChemOffice software suite, which is accessible on both the Macintosh and 
Microsoft Windows operating systems. The recommended XML-based CDXML 
format as well as the binary CDX file format are the native file formats for 
ChemDraw. Additionally, ChemDraw supports MOL, SDF, and SKC chemical 
file formats for import and export. It is used to design chemical structures, swap 
chemical IUPAC names for structures, replicate NMR and mass spectral data, 
tidy up structures, convert 2D to 3D structures, and construct chemical structures 
using many different international journal-style templates (Patel et al. 2022). 

2. ChemSketch 
The ACD/Labs-developed molecule editor named ChemSketch. The tool is 

used for 2D and 3D structure drawing, optimization, and viewing. ChemSketch 
empowers molecules and molecular models presented in two and three dimen-
sions, to apprehend the arrangement of chemical bonds and the type of the 
functional groups. It also calculates molecular properties such as molecular 
weight, density, and molar refractivity. ChemSketch is suitable only for Windows 
operating systems (Patel et al. 2022). 

3.2.2.2 Molecular Modeling Tools 

1. CHARMM 
CHARMM stands for Chemistry at Harvard Macromolecular Mechanic, a pro-
gram for simulating molecules with a wide range of applications to many-particle 
systems, including support for multi-scale techniques like QM/MM (Quantum 
mechanics/Molecular mechanics), MM/CG (molecular mechanics/coarse-
grained), and a variety of implicit solvent models. CHARMM also finds exten-
sive uses for inorganic materials in material design. A big group of developers led 
by Martin Karplus regularly maintains CHARMM (Brooks et al. 2009). 

2. Amber 
Assisted Model Building with Energy Refinement, sometimes known as 

Amber, is a group of biomolecular simulation tools. Two things are stated by 
the label “Amber.” It is first a primary pool of molecular mechanical force fields



for the simulation of biomolecules. Second, it is a collection of applications for 
molecular simulation that contains source code and demonstrations (Patel et al. 
2022). 
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3.2.2.3 Homology Modeling Tools 

1. I-TASSER 
A hierarchical method to protein arrangement estimation and structure-based role 
annotation is I-TASSER (Iterative Threading ASSEmbly Refinement). It initiates 
by using the multiple threading tactic LOMETS to detect structural models from 
the PDB, and then iterative template-centered fragment assembly models are used 
to construct full-length atomic prototypes. By re-threading the 3D prototypes via 
the protein function database BioLiP, function insights of the target are obtained. 
The server is being actively developed with the aim of offering the most precise 
predictions of protein structure and function using cutting-edge algorithms. The 
server is generally available for non-commercial usage (Yang et al. 2015). 

2. SWISS-MODEL 
SWISS-MODEL is a web-based cohesive facility devoted to homology 

modeling of protein structural. It offers instructions for creating protein homology 
models at various levels of intricacy. The first completely automated protein 
homology modeling service was delivered by SWISS-MODEL. The modeling 
of homo and heteromeric complexes using the amino acid arrangements of the 
interaction partners as a starting point has recently been added to its modeling 
functionality. Other newly added qualities comprise the incorporation of a novel 
modeling engine, ProMod3, with improved precision of the created models and 
better local model quality estimation methodology. It is one of the extensively 
engaged structure modeling servers globally (Waterhouse et al. 2018). 

3.2.2.4 Binding Site Prediction Tools 

1. MED-SuMo 
The Protein Data Bank is an exclusive open cradle of macromolecular structures 
often with co-crystallized ligand(s). MED-SuMo software relates and superim-
poses any 3D interaction on molecule surface over the PDB. It offers medicinal 
chemists, molecular modelers, and crystallographers fresh possibilities for 
structure-based drug discovery. All PDB assemblies that are sharing a 3D system 
of intermolecular interactions, comprising as charges, H-bonds, hydrophobic and 
aromatic stacking, are recovered by MED-SuMo and sited onto binding spot of 
concern or a identified protein whole surface (Doppelt-Azeroual et al. 2009). 

2. CASTp 
An online tool entitled the Computed Atlas of Surface Topography of Proteins 

(CASTp) can be used to find, define, and measure hollow surface areas on 3D 
protein assemblies. These consist of cavities hidden inside proteins and compart-
ments on protein sides. The measurement takes into account the molecular



surface model (Connolly’s surface) and the solvent reachable surface model 
(Richards’ surface), both of which may be determined analytically, to determine 
the extent and dimensions of the pocket or void. Protein surface characteristics 
and functional areas can be studied using CASTp. A graphical user interface, 
configurable cooperative visualization, and on-the-fly calculation for handler 
uploaded assemblies are all features of CASTp (Tian et al. 2018). 
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3.2.2.5 Docking Tools 

1. AutoDock 
AutoDock is a useful docking software that calculates the affinity of a known 3D 
structure docked with a target protein. This docking score provides information 
on how a new molecule is fixed to the target’s active site. This can reveal a 
molecule’s predictive activity prior to actual production, which can readily save 
time, money, and resources. The AutoDock has found use in X-ray crystallogra-
phy, structure-based drug design, lead optimization, virtual screening (HTS), 
combinatorial library design, protein–protein docking, chemical mechanism 
investigations, and other fields (Patel et al. 2022). 

2. GEMDOCK 
GEMDOCK is a molecular docking software that uses a generic evolutionary 

algorithm and scoring function. GEMDOCK reduces the search space of ligand 
structure conformations by using an empirical scoring function similar to the 
AMBER-based energy function and a generic evolutionary strategy based on a 
novel rotamer-based mutation operator. GEMDOCK is an automatic system that 
creates all docking variables such as atom formal charge, atom type, and a 
protein’s ligand binding spot. The program was created by Jinn-Moon Yang, a 
professor at Institute of Bioinformatics, National Chiao Tung University (Patel 
et al. 2022). 

3.2.2.6 Pharmacophore Finding Tools 

1. AnchorQuery 
A program called AnchorQuery is utilized for interactive virtual screening of 
pharmacophore searches. It is an online tool for the rational plan of protein– 
protein interaction (PPI) inhibitors based on structural analysis. Rapid library 
screening for pharmacophore search of over 31 million synthesizable compounds 
are directed by customized plan to favorably target PPIs. Every chemical in the 
library has an anchor motif that is bioisosteric to an amino acid residue and is 
reachable over one-step multi-component reaction (MCR) chemistry. For con-
sumers to conduct online collaborative virtual screens of millions of chemicals, 
including pharmacophore explanation and exploration, as well as improvement 
analysis, AnchorQuery offers all the tools required (Koes et al. 2018).



SwissTarget Prediction is a web service that has been available since 2014 and
attempts to forecast the most likely protein targets of small compounds. Calcu-
lations are made using reverse screening and the similarity principle. The calcu-
lations are made by looking for similar molecules in 2D and 3D among a bigger
gathering of 376,342 compounds that have been experimentally shown to be
active on a larger set of 3068 macromolecular targets. The ability to interoperate
allows for the simple offer of any input or output molecule to other online
computer-aided drug design tools established by the Swiss Institute of
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2. Ligand Scout 
Ligand Scout is a computer program used to generate 3D pharmacophore 

simulations from the structural information of macromolecule-ligand complexes 
or from sets of organic compounds used for training and testing. It includes a 
thorough characterization of the 3D chemical properties that characterize the 
interaction between a bound small organic molecule (ligand) and the macromol-
ecule’s surrounding binding site, such as lipophilic regions, hydrogen bond 
donors, and acceptors (Wolber and Langer 2005). 

3.2.2.7 Screening Tools 

1. MedChem 
MedChem Studio is a comprehensive cheminformatics software suite that 
includes all of the capabilities needed for high-throughput screening analysis, 
lead discovery and prioritization, de novo design, scaffold hopping, and lead 
optimization. A license is not required for MedChem Studio’s “VIEWER” mode. 
It promotes association between scientists with various sets of expertise by 
enabling an unrestricted number of users to import structure files, including the 
exclusive file format of MedChem Studio. For instance, a medicinal chemist can 
see the outcomes of an analysis conducted by a computational chemist. A free 
molecular sketch tool called MedChem Designer is accessible through MedChem 
Studio. It can be employed to input or manage structures, explain structure 
disputes, envision metabolites, and much more (Patel et al. 2022). 

2. PLANTS 
PLANTS software is employed for lead optimization and virtual screening. 

This software is based on ant colony optimization (ACO) algorithm, which uses 
an artificial ant colony to identify the lowest energy conformation of the ligand in 
the protein’s binding region. ACO-based search engine, two scoring functions 
(PLANTSCHEMPLP and PLANTSPLP), rigid-body docking of multi conformer 
collections into rigid and flexible receptors, constraint system, docking with 
certain explicit, displaceable water molecules, fully automatic ligand setup, 
virtual screening, and rescoring capability are some of the features of this 
software (Patel et al. 2022). 

3.2.2.8 Target Prediction Tools 

1. Swiss Target Prediction



Bioinformatics (SIB). The new SwissTarget Prediction is completely free (Patel 
et al. ). 2022

The free energy of binding is accurately calculated using Lead Finder software
concurrently with ligand docking calculations. To determine the binding energy
of protein–ligand interactions, a different scoring function known as the dG-score
function is employed. In Lead Finder, an extensive library of 330 experimentally
described protein–ligand complexes with a wide range of ligand binding affinities
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2. SEA 
SEA (Similarity Ensemble Approach) is an online search tool that identifies 

proteins created on their ligands’ set-wise chemical resemblance. It can be 
employed to scan big compound databases quickly and create cross-target sim-
ilarity maps. It employs a pool of over 65,000 ligands annotated for pharmaco-
logical objects, with the majority of annotations containing hundreds of ligands. 
SEA shows both predicted and unexpected commonalities, which can be tested 
by investigating the ligands’ “off-target” activities. Only ligand chemistry was 
employed to generate these links, and such grouping is a promising aspect of this 
approach. 

3.2.2.9 Ligand Design Tools 

1. AutoT&T 
The Automatic Tailoring and Transplanting (AutoT&T) approach was created as 
a multipurpose computational tool for both automatic lead optimization and lead 
discovery in molecular-targeted drug discovery. This approach finds appropriate 
fragments on reference molecules and then transplants them onto the specified 
lead compound to create new ligand molecules. Binding affinities, synthesis 
feasibility, and drug-likeness features are also assessed in order to identify 
interesting contenders for additional attention (Li et al. 2016). 

2. Mcule 
Mcule is a drug discovery software that operates online. By offering the best 

downloadable compound databases and molecular modeling tools, it provides a 
distinctive solution for the pharmaceutical and biotechnology industries. A 
ligand-based strategy can be used to create novel scaffolds by drawing a reference 
structure followed by picturing the relationship between the demand and the 
discovered scaffold (Odhar et al. 2019). 

The following are some of the lead optimization tools employed by Mcule: 

1. 1-Click Docking 
2. 1-Click Scaffold Hop 
3. Property calculator 

3.2.2.10 Binding-Free Energy Estimation 

1. Lead Finder



and other physicochemical characteristics have been used to validate the accuracy 
of binding energy prediction. For a preset protein–ligand structure derived from 
experimental data or other molecular modeling research, binding energy calcu-
lations can be carried out either concurrently with ligand docking or separately. 
Lead Finder’s capability to precisely anticipate the free energy of ligand binding 
can be highly helpful in drug discovery investigations, simulating ADMET 
characteristics, researching enzyme specificity, and rationally designing enzymes 
(Patel et al. ). 2022

The SwissADMEweb tool is openly available, designed for comprehensible offer
and simple result inquiry, even for CADD novices. In comparison to the most
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2. BFEE (Binding-free energy estimator) 
Binding-free energy estimator (BFEE) is python-based software that auto-

mates total BFEE via molecular dynamics simulations using either the alchemical 
or geometric path. It employs generalized, best-fit-rotation-based geometric vari-
ables, making it theoretically accessible to several protein–ligand composite. The 
geometric course investigates the grades of liberty one by one using 1D free-
energy assessments. To safeguard the merging of the simulations, a thermody-
namic cycle in which the ligand and geometric restrictions are dissociated 
separately (Fu et al. 2018). 

3.2.2.11 QSAR Prediction Tools 

1. CDK 
A java-based open-source program called CDK (Chemistry Development Kit) is 
used to compute molecular descriptors for chemical structure. Structure–activity 
relationships and QSAR descriptor calculations both use these chemical descrip-
tors. Coordinate creation and rendering, canonical identifiers for quick accurate 
searching, substructure and SMARTS pattern searching, ECFP, Daylight, 
MACCS, and other fingerprint approaches for resemblance exploration are only 
a few of the important features it has. SMILES, SDF, InChI, Mol2, and CML are 
some of the file types that this program can read and write (Patel et al. 2022). 

2. QSAR-Co 
The abbreviation QSAR-Co stands for “QSAR with conditions,” an open 

source standalone tool made for building reliable classification-based QSAR 
models. This software’s prime purpose is to easily create classification-based 
QSAR models that can handle both types of instances, that is, situations with and 
without conditions. The software has two components, namely the Screen/Predict 
module and the Model Development module. For the building of models and 
screening queries on chemical databases, these modules offer a number of crucial 
functions (Patel et al. 2022). 

3.2.2.12 ADME Toxicity Prediction Tools 

1. SwissADME



advanced free web-based tools for ADME and pharmacokinetics (such as pkCSM 
and admetSAR) and aside from exclusive access to effective techniques (such as 
iLOGP16 or the BOILED-Egg and Bioavailability Radar), SwissADME’s solid 
facts comprise, but are not restricted to: a variety of input methods, computation 
for numerous molecules, and the capability to display, save, and share outcomes 
either per specific molecule or over global intuitive and interactive displays. 
Established and managed by the Molecular Modeling Group of the Swiss Insti-
tute of Bioinformatics (Daina et al. ). 2017
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2. pkCSM 
pkCSM is a free online tool that utilize graph-based marks to forecast phar-

macokinetic features. The improvement of predictive regression and classifica-
tion simulations by the pkCSM signatures was successful for each of the five key 
types of pharmacokinetic features. The 30 predictors built by the pkCSM, which 
is organized into five primary classes: absorption (seven predictors), distribution 
(four predictors), metabolism (seven predictors), excretion (two predictors), and 
toxicity (ten predictors), predict their pharmacokinetic and toxicological features. 
The pkCSM platform for predicting ADMET characteristics can be split into two 
categories of great analytical simulations: (a) 14 regression simulations that seek 
to calculate a numeric quantification of the pharmacokinetic or toxicological 
characteristics and (b) 16 groups simulations that divide the result into two classes 
(Pires et al. 2015). 

3.3 Conclusion and Future Perspectives 

Preclinical drug discovery research is a highly data demanding progression that can 
be significantly accelerated by easy retrieve to knowledge that has already been 
gathered by the public. Information technologists may easily take use of advance-
ments in database technologies made by a variety of disciplines as they create data 
management plans for the development of new drugs. Through the encoding of 
chemical cartridges that facilitate and normalize the storing and use of molecular 
data, chemical informaticians have been instrumental in this advancement. 

Given key new achievements in articulating molecular demonstrations that back 
much added effective and smart database enquiries exclusively in the space of 
chemical resemblance pursuits that are possibly essential for analoging and novel 
lead discovery, one can visualize the boundless aids that can be resulting from a 
conjugal between the remarkable supremacy of present databases and the abundant 
intellect being programed into novel chemical informatics approaches. 

This new effective and efficient method of building and using the understanding 
pyramid can be a crucial component of a developing formula for feat in the 
extremely difficult and competitive task of finding fresh leads with the ability to 
endure in the pharmaceutical industry. The structure, dynamics, surface character-
istics, and thermodynamics of inorganic, biological, and polymeric systems are 
increasingly often studied using computational software tools. A crucial element



of the roadmap for drug discovery involves computational software tools. It is 
frequently employed in the processes of structure-based drug design and rational 
drug design. 
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Through the assistance of software, we may create novel medications (ligands) by 
examining the receptor-drug binding affinity of 3D structures (protein, receptor, and 
enzymes). The creation of a novel chemical entity requires the design and discovery 
of drugs. Numerous computational tools are accessible for this procedure on a 
worldwide scale; these computational software tools are quick, free, and available 
online in abundance, and there are some computational tools which are paid, but 
more powerful and effective. 

Informatics tools and databases are slowly turning into the pillar of foundation in 
modern drug discovery research, as they can be easily, freely accessible and 
non-expert users can explore them and build complex queries. Shorter time to market 
for new treatments as a result of the use of these informatics tools and databases has 
had a huge impact on society, especially in times of national and international crises 
like the Zika and Wuhan virus epidemic. In the days to come with exposure to 
modern technologies, informatics tools and databases will grow exponentially and 
they will be integral part of public health care in finding new remedies. 
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Chapter 4 
Multi-Omics Approaches in Drug Discovery 

Gourav Rakshit, Komal, Pankaj Dagur, and Venkatesan Jayaprakash 

4.1 Introduction 

4.1.1 Definition of Multi-Omics 

Understanding human health and illnesses thoroughly requires assessing molecular 
diversity and complexity at various levels, including the genomes, epigenomes, 
transcriptomes, proteomes, and metabolomes (Manzoni et al. 2018). Since the 
development of sequencing technology, molecular biology has depended more and 
more on data produced at these levels, referred to as “multi-omics” data. The advent 
of multi-omics datasets has transformed the ways biology and medicine are studied 
by making integrated system-level approaches possible (Manzoni et al. 2018). 

In order to gain useful insights into how cells work, integrating clinical data with 
the analysis of multi-omics has become of prime importance to researchers 
(Subramanian et al. 2020). An integrative network of multi-omics data that provide 
insight into biomolecules from several layers appears to hold promise for a system-
atic and comprehensive understanding of complicated biology. To comprehend how 
molecules interact, integrated techniques incorporate various omics data in a con-
current or coherent way (Subramanian et al. 2020). They aid in evaluating the 
information flow from one omics level to the next and, in doing so, assist in bridging 
the morphophysiological gap. Since integrative approaches may assess biochemical 
pathways comprehensively, they have the potential to enhance prognostics and 
accuracy of the proposed disease phenotypes, which could eventually lead to better
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therapy and prevention (Subramanian et al. 2020). The different softwares used for 
multi-omics analysis are listed in Table 4.1 given below (Singh et al. 2017).
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Table 4.1 Different softwares used for multi-omics analysis 

Sl. No. Software Utility of the software 

1 Mothur Marker gene data analysis pipeline 

2 QIIME Marker gene data analysis pipeline 

3 RDPipeline Marker gene data analysis pipeline 

4 CloVR Marker gene data analysis pipeline 

5 PyroNoise Flowgram noise correction 

6 PyroTagger Flowgram noise correction 

7 Denoiser Flowgram noise correction 

8 AmpliconNoise Flowgram noise correction 

9 FlowgramFixer Flowgram noise correction 

10 Decipher Chimeric sequence detection 

11 ChimeraSlayer Chimeric sequence detection 

12 Perseus Chimeric sequence detection 

13 Uchime Chimeric sequence detection 

14 RDP classifier Taxonomic identification 

15 RTA X Taxonomic identification 

16 Muscle Multiple sequence alignment 

17 MAFFT Multiple sequence alignment 

18 Infernal Multiple sequence alignment 

19 PyNAST Multiple sequence alignment 

20 FastTree Multiple sequence alignment 

4.1.2 Different Omic Strategies of Multi-Omics Studies 

The multi-omics approach combines all omic fields as illustrated in Fig. 4.1. Com-
plicated syndromes and illnesses are a result of atmospheric change, climate change, 
and human evolution. Analysis of a single type of omics cannot provide a solution or 
cure for such disorders. Multi-omics strategy emerges as a hero in such situations 
(Hasin et al. 2017). The goal of multi-omics research is to combine several omic 
approaches to discover and treat a variety of complex diseases and allergies. The 
multi-omics approach makes use of all omic domains and aids in comprehending an 
organism’s original and altered states (Hasin et al. 2017).
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Fig. 4.1 A representation of different multi-omics fields 

4.2 Omics Data Types and Repositories 

4.2.1 Genomics 

The omics field with the most experience in genomics. Genomic research in med-
icine focuses on finding genetic variations linked to illness, treatment outcomes, or 
patient prognosis in the future. The GWAS approach has been effectively applied 
across multiple human populations to identify hundreds of genetic changes 
connected to complex illnesses. In these studies, hundreds of subjects have dozens 
of biomarkers genotyped, and significant variations in recessive allele frequencies 
between cases and controls are utilized as evidence of a relationship (Hasin et al. 
2017). Technologies & Methods Used Frequently: (i) Whole-genome, exome, and 
targeted sequencing are examples of NGS, and (ii) Microarrays. 

4.2.2 Epigenomics 

Through the study of epigenomics, the complete genome is examined for reversible 
changes to DNA or proteins associated with DNA, such as DNA methylation or 
histone acetylation. Modifications of DNA (covalent) and histones are important for 
the regulation of gene transcription and, subsequently, of cellular fate (Hasin et al. 
2017). These changes can be long-lasting, and occasionally heritable, and they can 
be impacted by both genetic and environmental influences. Numerous published 
epigenome-wide association studies demonstrate the significance of epigenetic alter-
ations in biological processes and the development of disease, despite the fact that



their role as mediators of transgenerational environmental impacts is still debatable 
(Weinhold 2006). Differentially methylated DNA regions could be used as markers 
of the disease state for metabolic syndromes, cardiovascular diseases, varied cancers, 
and many other pathophysiological disorders. 
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4.2.3 Transcriptomics 

Transcriptomics is used to examine RNA levels both qualitatively and numerically 
across the entire gene sequence. The fundamental idea of biology holds that RNA 
serves as a biochemical link between DNA and proteins, which are considered to be 
the main operating interpreters of DNA (Hasin et al. 2017). Numerous times, it has 
been assumed that RNA’s structural and regulatory functions, such as those in 
ribosome complexes and ChrX inactivation, are anomalous deviations from the 
normal. Large-scale transcriptome investigations that have emerged in the last ten 
years have demonstrated that up to 80% of the genome is transcribed, even though 
only around 3% of it encodes proteins (Hasin et al. 2017). Studies using RNA-Seq 
technology discovered thousands of novel isoforms and revealed the protein-coding 
transcriptome to be more complicated than was previously thought (Kukurba and 
Montgomery 2015). However, the advancement of the noncoding RNA field was 
these studies’ even more significant contribution (Hasin et al. 2017). 

4.2.4 Proteomics 

Quantifying peptide quantity, modification, and interaction is done using 
proteomics. MS-based approaches have revolutionized analysis and quantification 
of proteins, and these techniques have recently been improved to allow for high-
throughput examinations of tens of thousands of proteins in cells or bodily fluids 
(Tuli and Ressom 2009). Traditional unbiased techniques like yeast two-hybrid 
experiments and phage display can be used to find protein interactions. A single 
molecule is isolated using an immunoglobulin or a chromosomal identifier while 
employing affinity purification procedures. Any related proteins are then found using 
MS (Hasin et al. 2017). These affinity techniques have been used to study the overall 
interactions involving both the nucleic acids and proteins, sometimes in conjunction 
with chemical crosslinking (e.g., ChIP-Seq) (Tuli and Ressom 2009). 

4.2.5 Metabolomics 

The accepted definition of the emerging area of metabolomics is the comprehensive 
characterization of all substrates and low-weight molecules in a biological sample.



Because metabolomics tries to quantify molecules with different physical properties 
than genomic and proteomic approaches, it poses a considerable analytical difficulty 
(Eicher et al. 2020). As a result, as illustrated in Fig. 4.2, holistic metagenomic 
technology platforms typically employ the approach of fragmenting the metabolic 
profile into clusters of intermediates based on composite molecule polarization, and 
shared structural features to develop customized sample preparation and analytical 
techniques that are optimized for each. This leads to the quantification of the 
microbiome as a mosaic of results from several analysis tools. The methods used 
in metabolomics are constantly evolving and progressing as a field that is still in its 
infancy. This is, at least in part, due to the continual advancement of analytical 
equipments that have advanced capabilities every year (Clish 2015). 
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4.3 Multi-Omics Data Repositories 

Data from the epigenome, the transcriptome, the metabolome, and the proteome are 
all included in the category of “multi-omics data” in general (Martorell-Marugán 
et al. 2021). Other biological information like the lipidome, phosphoproteome, and 
glycol-proteome can be added to the omics spectrum. Multi-omics information 
obtained for the identical assortment of samples, further insights into the transmis-
sion of biomedical data at various levels may be provided, which can aid in the 
identification of the mechanisms behind the biological state of relevance 
(Subramanian et al. 2020). Several publicly accessible databases that offer patient-
diverse omics data sets are included in Table 4.2. 

Fig. 4.2 Analytical techniques optimized for each metabolomics cluster



Repository Types of omics datasets available
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Table 4.2 Publicly accessible databases that offer patient-diverse omics data sets (Martorell-
Marugán et al. 2021) 

Disease 
targeted 

The Cancer Genome Atlas 
(TCGA) 

Cancer RNA-Seq, DNA-Seq, miRNA-Seq, SNV, 
CNV, DNA methylation, and RPPA 

Clinical Proteomic Tumor Anal-
ysis Consortium (CPTAC) 

Cancer Proteomics data corresponding to TCGA 
cohorts 

International Cancer Genomics 
Consortium (ICGC) 

Cancer Whole-genome sequencing, genomic varia-
tions data 

Cancer Cell Line Encyclopedia 
(CCLE) 

Cancer cell 
line 

Gene expression, copy number, and 
sequencing data 

Omics Discovery Index Consolidated 
data sets 

Genomics, transcriptomics, proteomics, and 
metabolomics 

4.4 Strategies Toward Multi-Omics Studies 

4.4.1 Design of Omics Studies 

Researchers’ understanding of the information dissemination, from the fundamental 
cause of disease (genomic, ecological, or evolutionary) to the operational ramifica-
tions or relevant linkages, can be improved by multi-omics. The basic experimental 
conditions that should be taken into account while designing an omics investigation 
are covered in this section (Altmäe et al. 2014). 

4.4.1.1 Complexity of Diseases 

The type of the illness is a crucial factor in the design of a multi-omic investigation. 
Few etiological variables are involved in the formation of simple diseases, which 
result from single-gene mutations; nevertheless, “augmentation genes” or outside 
elements can affect the severity or development of many illnesses (Hasin et al. 
2017). For instance, a single chloride channel mutation is the most common factor 
that causes cystic fibrosis, allowing research on the illness to concentrate on one 
gene’s functionality. It is therefore expected that concentrated omics initiatives at 
certain durations, focusing on the instant molecular modifications brought on by the 
causal factor, will yield adequate information to increase knowledge of potential 
treatment methods (Hasin et al. 2017). 

4.4.1.2 Power, Sample Sizes, and Subsequent Analysis 

Omics techniques generate results to provide molecular insight based on mathemat-
ical interpretation from frequently large databases. As a result, effect size, back-
ground noise heterogeneity, and sample size all have a significant impact on the



ability to discover relationships or the flow of information, with the latter factor 
frequently being the only one that can be controlled by researchers (Hasin et al. 
2017). Because of this, the effectiveness of omics techniques to shed light on human 
illnesses is heavily reliant on the sizes of the samples that are available. An 
imbalanced research is frequently more prone to produce false-positive outcomes 
in addition to being a stab in the dark that overlooks significant indications (Hasin 
et al. 2017). 
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4.4.1.3 Human Study and Animal Model of Disease 

Omics research on both people and animal models offers crucial information about 
disease. Since humans are the primary target population for medical research, results 
from human studies have a higher potential for translation than those from studies 
using animal models. Many human-centric consortia, such as the Roadmap 
Epigenomics Project, have generated a sizable volume of epigenomics and 
transcriptomics data in many of the tissues. Even while it provides useful informa-
tion, human omics research has a number of limitations that, if the appropriate 
animal model of the illness is used, can only be addressed in animal experiments. 
Primary human cell lines have been broadly applied to analyze specific particular 
mechanistic approaches, supporting the claim that they are a good platform for 
disease exploration without the usage of animal models. However, their usage is 
constrained by the complexity and convergence of several cell types that underlie the 
majority of complicated illnesses. Reproducibility, environmental factor control, 
employing animal models have advantages such as availability of relevant tissues, 
precise phenotyping, availability of almost limitless numbers of identical biological 
duplicates, and the opportunity to experimentally verify theories (Hasin et al. 2017). 

4.4.2 Analysis and Network Methods 

Network techniques have been created and successfully used for any form of data or 
analytical technique. Table 4.3 lists the tools in alphabetical order by type (Yan et al. 
2018). However, most research to date focuses on a single omics layer and ignores 
the linkages across other omics levels. Despite the fact that route and network studies 
incorporate a variety of omics data types, their conclusions still predominantly 
depend on a single omics layer without truly merging them. But even with big 
discoveries that can be replicated, science cannot advance fully as none of the 
separate components can give sufficient context or information to provide a full 
analysis of a biological system, without merging the multi-omics data into a para-
digm. Another exciting area of integrated omics is the use of computational 
approaches to understand the molecular relationships between various omic layers 
(Picard et al. 2021).
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Table 4.3 Tools used for any forms of data or analytical techniques 

Epistasis Features 

PLINK Regression-based 

InterSNP Regression-based 

Parallelized PLINK (FastEpistasis) Regression-based 

BOOST Regression-based; high-performance tool 

SNPHarvester Regression-based; high-performance tool 

SIXPAC Contrast test-based 

EPIQ Contrast test-based 

MDR Data mining-based 

BEAM Bayesian-based 

Despite these advancements, the majority of studies still employ simple network 
methodologies and computational approaches in integrated omics are currently 
significantly explored less. Although simple network techniques are straightforward 
to use, care should be given because they have limitations that could generate bias, 
especially as the number of markers increase. Several leading organizations have 
been creating increasingly advanced computer approaches for integrative assessment 
in these systems since it is substantially easier to gather multi-omics data from 
straightforward model organisms (Yan et al. 2018). 

To extract the most important information from the multi-omics data sets, the 
need for integrated research tools is equally critical in addition to network 
approaches. One of the early methods for integrative analysis was PARADIGM 
that stands for Pathway Recognition Algorithm using Data Integration on Genomic 
Model (Dellinger et al. 2014). It can calculate the degree of pathway activation for 
each sample by merging gene expression data with copy number, which accounts for 
the use of a stochastic graphical for varied interactions across paths. 

4.4.3 Leveraging Multi-Omics Data for Actionable Insights 

To carry out intricate biological operations, genes, transcripts, proteins, metabolites, 
and other macro/micro molecules work in concert. Numerous studies have demon-
strated how the integration of multi-omics data sets can aid in the discovery of the 
underlying mechanisms at various omics levels. Here, we go into great detail about 
the tools and approaches that enable the fusion of multi-omics data sets to address 
the different issues surrounding disease and its mechanisms. The tools are arranged 
according to how well they can answer relevant biological questions (Subramanian 
et al. 2020). 

Each case study’s tools or methods can be broadly categorized into one or more 
namely: networks, Bayesian, fusions, similarity-based, correlation-based, and other 
multivariate methods. The integrative tools and methodologies are schematically 
depicted in Fig. 4.3 and are organized into groups based on the approaches used



(Edmondson et al. 2014). The combination of these approach types is used by a 
select few tools, such as PARADIGM, similarity network fusion (SNF), and others, 
as shown in Fig. 4.3. Each case study’s tools and techniques are organized into 
approach categories (Subramanian et al. 2020). 
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Fig. 4.3 The tools and approaches that enable the fusion of multi-omics data sets 

The data integration technologies must deal with the unavoidable existence of 
missing values in multi-omics data (Voillet et al. 2016). A small number of the tools 
discussed in this article can handle missing data using imputation techniques, but 
others need missing values to be handled or removed during preprocessing processes 
(Subramanian et al. 2020). 

4.5 Multi-Omics Approaches in Drug Discovery 

4.5.1 Target Identification 

In pharmaceutical research, the identification of new targets has been a key appli-
cation of omics technologies. Early on in the postgenomic age, differentially regu-
lated genes received a lot of attention with the goal of discovering new targets (Yan 
et al. 2015). This focus, however, failed to take into consideration the relatively poor 
correlation between gene and protein expression as well as the fact that many 
promising therapeutic targets do not exhibit differential expression. For the purpose 
of identifying critical nodes controlling significant disease pathways based on 
network topology, more recent methodologies aggregate gene expression data 
together with other information into networks (Hasin et al. 2017). 

A large-scale protein was assembled and DNA interaction network incorporating 
gene expression data, expression quantitative trait loci (eQTL) analysis, and molec-
ular interaction information were employed to identify potentially causal genes and



dysregulated pathways in an effort to discover novel targets for glioblastoma (van 
Dam et al. 2018). 
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To comprehend targets and disease pathways from a more comprehensive angle, 
a different strategy was adopted. In the Gene Expression Omnibus (GEO) database, 
it was discovered that illness-regulated genes by are associated with disease concepts 
and integrating this information with protein-protein interaction data. Known drug 
target genes were preferentially located in modules that were dysregulated in 
numerous diseases after functional modules, pathways, and complexes were 
assessed using disease-specific transcription data sets (Hasin et al. 2017). 

Despite these excellent efforts to identify new targets, one of the challenges 
confronting researchers studying drug development is that the majority of the targets 
they identify lack easily druggable active regions that can be inhibited by small 
molecule medicines. They may function as transcription factors, structural elements 
of important cellular complexes, or have unknown functions. This circumstance has 
rekindled interest in more straightforward drug development methods that involve 
screening chemical libraries using phenotypic tests. 

Systems biology methods, which were created to better understand cell signaling 
and pathway mechanisms, can now be used to help with the deconvolution of 
complex modes of action, in contrast to the pregenomic age (Chen and Thorner 
2005). 

4.5.2 Mechanism of Action and Cell Systems Biology 

Characterizing the mechanism of action is important for many pharmaceutical 
development decisions. Typically, the target through which a medicine exerts a 
pharmacologic effect is referred to as the mechanism of action (Mast et al. 2014). 

There are numerous instances where systems biology and omics methods have 
proven useful for identifying mechanisms of action. A compilation of gene expres-
sion profiles derived from a panel of yeast mutants was used in one of the earliest 
large-scale transcriptomics studies in yeast—to discover erg2, a yeast homolog of 
the sigma receptor, as a possible target of the topical anesthetic dyclonine. This study 
demonstrated the ability of transcriptomics analysis to produce testable hypotheses, 
despite the fact that it is doubtful that most pharmacological targets have yeast 
homologs (Mast et al. 2014). 

A particularly fascinating field of research is the analysis of drug combinations 
for both research and discovery unique combinations and new methods. There was 
also a demonstration of the coupled gene expression research and whole-genome 
methylation profiling to look into the drug combination’s mechanism of action of the 
histone deacetylase and the multitarget flavonoid genistein Vorinostat, an inhibitor 
of HDAC. 

Cell systems biology is a phenotypic drug discovery strategy that blends combi-
natorial design and the depth of human disease biology into the development of 
assays. Primary human cell-based assays known as BioMAP1 systems are created in



an efficient in vitro manner to represent complex human disease. Combinations of 
pathway activators are used to stimulate primary human cell types and cocultures in 
order to produce cell signaling networks that are more pertinent to human disease. 
By assessing the quantities of secreted and cell surface proteins and mediators, these 
cell culture systems are examined. A database that can be searched to find for 
functional similarities has different changes in protein readout levels caused by 
medication actions. In this method, it is discovered that inhibitors or activators of 
particular targets change the levels of numerous endpoints reproducibly, frequently 
in a predetermined pattern, allowing the resulting signatures to be connected to 
particular mechanisms of action (Butcher et al. 2004). 
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4.5.3 Phenotypic Drug Discovery 

Before the 1990s, the majority of drug discovery research was based on phenotypic 
drug discovery, which, in the absence of a clearly identified biological target, finds 
drugs using animal and cellular models of illness. But for a variety of reasons, 
targeted medication development has taken center stage in contemporary pharma-
ceutical research with the human genome project’s culmination. To investigate and 
comprehend the target function and pharmacological mechanisms of action at the 
molecular level, gene knockouts and transgenic systems can be used (Yan et al. 
2018). 

Despite the fact that target-based drug discovery has been successful in many 
fields, including biologics, targeted chemotherapeutics, and second-generation med-
ications, it is debatable whether it has yet to result in the expected rise in the number 
of new medications entering the market. In fact, attrition of compounds in late 
clinical development has actually risen in recent years. 

In addition to target-based initiatives, these worries have rekindled interest in 
phenotypic drug discovery. In fact, growing investment in phenotypic drug discov-
ery initiatives is being driven by systems biology advancements to better understand 
disease pathways, new tools for the deconvolution of target pathways and processes, 
and past achievements (Yan et al. 2018). 

4.6 Application of Multi-Omics Technologies in Tubercular 
Drug Discovery 

Multi-omics approaches are critical in the hunt for novel antituberculosis therapeu-
tics. To begin, in a discovery biology strategy, novel targets in druggable pathways 
are identified for target-based inquiry, progressing from target to lead molecule. 
Second, in a discovery chemistry method, determine the mode of action of lead 
compounds produced from high-throughput screens as they advance from molecule



to target. The benefit of multi-omics techniques in both of these contexts is that they 
are unregulated and unbiased to a preconceived preconception, making them helpful 
tools for confirming therapeutic action, revealing new insights into compound 
activity, and discovering new lines of investigation as shown in Fig. 4.4. 
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Fig. 4.4 Pathway for the use of omics technologies in the discovery of novel drugs for TB 

4.6.1 Genomics 

4.6.1.1 Target Identification 

The Mycobacterium tuberculosis (Mtb) H37Rv genome sequence represents the 
starting point for antitubercular drug discovery. As a result, the application of 
genomes to Mtb has offered a framework of prospective therapeutic targets. Manip-
ulation of gene function via gene inactivation techniques has contributed in the 
identification of pathways critical to Mtb in various microenvironments, identifying 
potential targets for drug discovery programs. The application of genomes to Mtb 
has offered a framework of prospective therapeutic targets. Manipulation of gene 
function via gene inactivation techniques has contributed in the identification of 
pathways critical to Mtb in various microenvironments, identifying potential for 
drug discovery programs (Hasin et al. 2017). 

Methods for generating unmarked single-gene knockout mutants have been used 
alongside global procedures that use transposons (Tn) to inactivate gene function. 
Mtb’s capacity to survive and multiply in phagocytes, evading phagosome-lysosome



fusion and adapting to an intracellular lifestyle, is a critical pathogenic characteristic 
(Sassetti et al. 2003). To establish intramacrophage survival pathways, Barczak et al. 
used high content imaging and multiplexed cytokine analyses on macrophages 
infected with Mtb Tn mutant libraries to map genes required for intracellular growth 
(Barczak et al. 2017). 
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CRISPRi (Clustered Regularly Interspaced Short Palindromic Repeats Interfer-
ence) has the potential to transform the field by allowing precise gene silencing to 
identify and validate therapeutic targets (Rock et al. 2017). A single-guide RNA 
directs the activity of a nuclease, dCas9, which has two mutations that eliminate its 
nuclease activity (sgRNA). When the dCas9-sgRNA combination binds to the target 
site, the DNA duplex destabilizes and inhibits gene transcription by preventing RNA 
polymerase promoter access. The gene silencing of folate metabolism revealed the 
potential of CRISPRi in target-based drug development (Tsai et al. 2015; Haeussler 
et al. 2016). 

4.6.1.2 Mode of Action 

Andries et al. used whole-genome sequencing (WGS) of M. smegmatis and Mtb 
bedaquiline-resistant mutants cultivated in vitro to show that this diarylquinoline 
targets the product of atpE, a subunit of the mycobacterial ATP synthase anchored in 
the mycobacterial membrane, in the discovery of bedaquiline (Andries et al. 2005). 
Kundu et al. refined this mechanism of action by demonstrating that bedaquiline 
binds to the epsilon subunit (Kundu et al. 2016). In addition, WGS has been 
employed to determine the mechanism of action of repurposed licensed medicines 
in Mtb. Rybniker et al. discovered lansoprazole from the Prestwick library of 1280 
FDA-approved medications to be protective to lung fibroblasts in an M tb intracel-
lular infection model. Through the large-scale sequencing of clinical isolates, WGS 
is also changing our understanding of pharmacological action and treatment resis-
tance (Rybniker et al. 2019). Drug-resistance conferring mutation mapping consor-
tiums have discovered novel mechanisms of resistance and probable novel modes of 
action of existing anti-Mtb medicines in patients. Melief et al. created a library of 
Mtb strains overexpressing single genes that could be examined in a high-throughput 
format to increase the approaches available for understanding drug mechanism of 
action. Each gene in the library was cloned downstream of a tetracycline-inducible 
promoter. The drug’s target Alr was overexpressed, resulting in a sevenfold rise in 
the lowest inhibitory concentration of D-cycloserine (Melief et al. 2018). 

4.6.2 Transcriptomics 

4.6.2.1 Target Identification 

In order to identify druggable pathways and bacterial responses to drug exposure, it 
is necessary to have an understanding of the mycobacterial transcriptome. In Mtb



reproducing intracellularly in macrophages and in expectorated Mtb in patient sputa, 
transcriptomics in a discovery biology context has revealed the stimulation of 
potentially druggable pathways involved in oxidation of fatty acids, the glyoxylate 
shunt, and cholesterol metabolism (Schnappinger et al. 2003; Rienksma et al. 2015). 
Cultivating the possibility of cidal therapeutic action by targeting pathways active 
in vivo, RNA profiles from animal models of TB infection and human tissue provide 
valuable information on the expression of targets in human disease (Rachman et al. 
2006). Given that the bactericidal or bacteriostatic suppression of a crucial target 
in vitro does not always predict in vivo therapeutic efficacy, this is useful evidence 
for drug discovery decision making. Integrating data on gene essentiality with 
transcriptome analysis provides a multi-omics approach to determining which path-
ways should be studied in depth first. 
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4.6.2.2 Mode of Action 

Since the mechanism of Mtb death is unknown, this unsupervised method is very 
helpful for interpreting the results of high-throughput screens’ lead compounds. 
Drugs now in phase I/II research or the clinic have had transcriptomics applied to 
it to determine their mechanism of action. Drug mode of action-specific reporters 
were chosen by Boot et al. by analyzing RNA-seq data for responses of Mtb and 
Mycobacterium marinum to subinhibitory doses of ciprofloxacin, ethambutol, iso-
niazid, streptomycin, and rifampicin (Boot et al. 2018). Screening a library of 
196 antimycobacterial compounds with the MMAR 4645-ciprofloxacin reporter 
and iniBAC-isoniazid reporter provided proof of concept that these drug reporters 
could hasten TB drug discovery by identifying the mode of action of hit compounds. 
The screening identified one molecule with a mode of action similar to ciprofloxacin, 
which could block DNA replication, and two others with a mode of action similar to 
isoniazid, both of which presumably target the mycobacterial cell wall. 

4.6.3 Proteomics 

The proteomics field has not yet expanded to the depths of genomes and 
transcriptomics (Bespyatykh et al. 2017). 

4.6.3.1 Target Identification 

Proteomics offers a unique and valuable insight of Mtb physiological responses and 
target expression, as seen by the discrepancy between protein abundance and related 
mRNA abundance. Several reports have confirmed the expression of proteins that 
could be druggable targets in Mtb, providing new perspectives on the intracellular 
and in vivo expression of this pathogen (Vogel and Marcotte 2012). There are two



main types of proteomics approaches; the first is a top-down technique, in which 
proteins are first separated from a biological sample and then sorted according to 
their physical and chemical properties using gel electrophoresis, before being iden-
tified using mass spectrometry (MS). This mapped the expression of efflux systems 
that might affect drug efficacy and brought to light the expression of potentially 
druggable proteins linked with transmembrane transport, supplementing genomics 
and transcriptomics techniques to validate existence of target protein (Bespyatykh 
et al. 2017). The second approach is the bottom-up method that involves proteolytic 
cleavage of a complete set of proteins into peptides, then high-performance liquid 
chromatography, and tandem mass spectrometry (LC-MS/MS) analysis. Although 
computational resolution of profiles and insufficient sensitivity currently limit pro-
teomics findings, this technique has the potential to measure many more proteins and 
follow a chosen group of proteins to better sensitivity (Bespyatykh et al. 2017). The 
field of proteomics has been used in in vitro infection models to identify novel 
protein targets for medication development. 
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4.6.3.2 Mode of Action 

Mtb reactions to drug exposure have been deconvoluted using proteomics, shedding 
light on the mechanisms of drug action and resistance (Sharma et al. 2018). Prote-
omics was recently used by Meneguello et al. to investigate the metabolic pathways 
involved in rifampicin’s action. Proteomics was used by Sarkar et al. to chart 
Mycobacterium tuberculosis’s response to sulfamethoxazole, and they found the 
drug-induced oxidative stress and electron transport chain pathways (Sarkar et al. 
2018). Proteomics has the potential to be used in the analysis of medication 
resistance. To determine which proteins are secreted by Mtb strains that are resistant 
to isoniazid and rifampicin, Putim et al. used a shotgun proteomics approach. Pro-
teins in bacterial culture filtrates were collected using low-binding protein-cellulose 
acetate membranes, separated using SDS-PAGE, digested in gel, and analyzed using 
liquid chromatography mass spectrometry (Putim et al. 2018). 

4.6.4 Metabolomics 

4.6.4.1 Target Identification 

The examination of the metabolite network inside a biological system is known as 
metabolomics, and it is a crucial omics tool for drug development since it reveals 
which cellular processes could be targeted by therapeutics. Through the use of 
metabolomics in a discovery biology context, the metabolic pathways utilized by 
Mtb in various niches have been identified. Similarly, Serafini et al. employed this 
method to determine how Mtb assimilates pyruvate and lactate. The authors showed 
a novel function for the methylcitrate cycle by highlighting that it could be reversed



for the biosynthesis of propionyl-CoA and the metabolism of pyruvate and lactate, 
which identifies new targets for drug discovery efforts despite the well-established 
fact that lipids are important carbon sources for Mtb during infection (Serafini et al. 
2019). This study is exemplary of a multi-omics strategy because it utilized 
transposon-directed insertion site sequencing in conjunction with RNAseq 
transcriptomics, proteomics, and metabolomics to provide a comprehensive func-
tional picture of the carbon metabolic network in Mtb. Amino acids are used by Mtb 
as a nitrogen source, and Agapova et al. combined stable isotope tracing of labeled 
amino acids with mass spectrometry to learn more about this. The scientists dem-
onstrated that utilizing several different amino acids as nitrogen sources did not 
result in enhanced development over using only one. The possibility for targeting 
specific pathways within the Mtb nitrogen metabolic network was elucidated by 
metabolomics (Agapova et al. 2019). 
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4.6.4.2 Mode of Action 

Studies elucidating the mechanism of action of new drugs show the value of 
metabolomics. The high-throughput metabolomics method used by Zampieri et al. 
involved analyzing the mass spectra of supernatants from Mtb cultures of 
M. smegmatis to characterize a collection of 212 antimycobacterial chemicals with 
unknown mode of action (Zampieri et al. 2018). Before evaluating the similarities 
between the reference and test compound profiles, the metabolomic signatures were 
created for 62 reference compounds with 17 identified targets. More than 70% of the 
212 compounds had a clear mechanism of action, and only 16% had metabolomic 
profiles that were significantly different from the reference compounds. Six of these 
16 substances showed a metabolomic response indicating they inhibited lipid and 
trehalose metabolism in a similar fashion. This method identified previously 
undetected druggable pathways in Mtb and, more crucially, enables drug develop-
ment programs to diversify target pathways, eliminating compounds that are 
expected to block targets of existing medicines. The M. smegmatis cultures treated 
with ampicillin, ethambutol, ethionamide, isoniazid, kanamycin, linezolid, rifampi-
cin, and streptomycin had a different metabolite profile than those treated with 
pretomanid. Pathway analysis of differentially abundant metabolites revealed a 
potential role for the buildup of the toxic metabolite methylglyoxal in pretomanid’s 
antibacterial action (Baptista et al. 2018; Wang et al. 2019). 

4.6.5 Lipidomics 

The exploration of this networking of cellular lipids within a biological system is 
widely classified as lipidomics, a branch of metabolomics that investigates lipid 
species present and how they interact with other lipids, metabolites, and proteins in 
a cell.
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4.6.5.1 Target Identification 

Lipidomics is based on mass spectroscopy, which measures the mass-to-charge ratio 
and abundance of gas-phase ions. It is further classified as gas chromatography 
(GC)-MS, liquid chromatography (LC)-MS, and direct infusion-MS (Wu et al. 
2014). Lipidomics has been used to identify potentially druggable lipid production 
pathways based on Mtb’s sensitivity to environmental changes. Raghunandanan 
et al. studied the pattern of Mtb lipid alterations during hypoxia-induced dormancy 
and resuscitation, discovering that lipid concentration dropped dramatically during 
dormancy and progressively increased after reaeration (Raghunandanan et al. 2019). 
Lipidomics is also a useful approach for identifying lipid biosynthesis pathway 
targets. The fatty acid synthase FAS-II multienzyme system is required for mycolic 
acid production and proper cell wall function in mycobacteria (Lefebvre et al. 2018). 
Because it is the target of various antimycobacterial agents, including isoniazid, it 
has further therapeutic promise. 

4.6.5.2 Mode of Action 

By mapping the impact of the natural antimycobacterial component vanillin in 
M. smegmatis, Sharma et al. proved the relevance of lipidomics in mechanism of 
action research. Vanillin, the authors discovered, alters the makeup of fatty acids, 
glycolipids, glycerophospholipids, and saccharolipids, disrupting cell membrane 
homeostasis (Sharma et al. 2020). Howard et al. found that rifampicin-resistant 
Mtb isolates with rpoB mutations had different lipid profiles depending on where 
the single-nucleotide polymorphisms (SNPs) were located (Howard et al. 2018). 
Lipidomics, coupled with genomes and transcriptomics, were used to determine the 
mode of action of HC2091, a new drug that appears to target MmpL3. SNPs in the 
mmpL3 gene were found in Mtb HC2091-resistant mutants, potentially conferring 
drug resistance (Li et al. 2016). As a result, lipidomics, which is frequently used in 
conjunction with other omics techniques, is an excellent tool, particularly in the 
investigation of cell wall biosynthesis pathways, which are a rich source of 
druggable Mtb targets. 

4.7 Conclusion and Future Perspectives 

The expanding application of omics technologies and the incorporation of these 
tools in the drug development process have brought to light a number of important 
concerns that can direct future study. Some of these are technological, such as the 
well-known computational difficulties brought on by the enormous datasets with 
numerous features but few samples. Missing data are a concern as well, and



published literature offers more details in well-known study fields where systemic 
bias is introduced (Paananen and Fortino 2020). 

96 G. Rakshit et al.

Another crucial challenge is comprehending and controlling the data’s fluctua-
tion. Inaccurate models can be produced by using inconsistent approaches and 
paying insufficient attention to experimental sources of variability. One significant 
drawback of network models is their tendency to disguise the ambiguities in the 
underlying data, which can lead to an illusion of comprehension. Both biological and 
technical factors can cause variation. Cost considerations frequently prevent exper-
imental repeats in large omics collections. Media components, cell passage number, 
and other culture variables can result in contradictory data sets with cell culture 
samples. Results for patient samples can be impacted by experimental variances, 
such as sample gathering methods, storage time, and temperature, in addition to 
usual variables like genetics, gender, age, stage of disease, and treatment history. 

The need for stronger terminology and more practical ontologies has been 
brought to light by efforts to connect omics data sets with other datasets. There 
has been some progress thanks to initiatives like the National Institutes of Health’s 
BioAssay Research Database (BARD) project and OpenBEL, a computational but 
human readable, semantically rich language for representing and describing causal 
relations between biological and scientific findings. 

Future research will be conducted in a number of areas, including better methods 
and procedures for data integration as well as the creation and sharing of networks. 
There are still new technological advancements happening. These include cutting-
edge proteomic techniques that provide maps of proteins within the cell that are 
spatially and temporally detailed. It will also be necessary to develop new compu-
tational techniques for assessing and integrating multiscale data. Longer timescale 
approaches to integrate computational disease models with cell signaling networks 
will be of special relevance (Butcher et al. 2004). 
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Chapter 5 
Computational Methods in Natural 
Products-Based Drug Discovery 

Pankaj Dagur, Shreya, Rahul Ghosh, Gaurav Rakshit, Abanish Biswas, 
and Manik Ghosh 

5.1 Introduction 

Drug discovery is an extensive, costing big-budget, time-consuming process with 
the low rate of success. The development of a drug from scratch to market value, 
maintaining its efficacy, takes around 13–15 years and costs billions of dollars on 
average and still counting. In comparison to that, the rate of the launching novel 
drugs in the market is less. It is estimated that about more than half of all the drugs 
approved in the last three decades were either NPs (Natural products) or their 
semisynthetic derivatives (Newman and Cragg 2016) (Patridge et al. 2016). 

The reason is their diversity in species and utilization for medicinal purposes 
since ancient civilizations. NPs possess comparatively greater molecular mass and a 
number of sp3 carbon atoms, H-bond acceptors and donors, more hydrophilic nature, 
and molecular rigidness than that of nonnatural compounds’ libraries (Atanasov 
et al. 2015) (Feher and Schmidt 2003). The structural upper hand can be advanta-
geous while tackling protein-protein interaction owing to the greater rigidity of NPs 
(Lawson et al. 2017). Despite not adhering to Lipinski’s rule of five, NPs are still a 
class that is used for therapeutic purposes, owing to their high molecular mass. 

Natural products, despite being an inspirational source for NP-based drug dis-
covery, pose disadvantages for the pipeline. NPs have diverse and complex molec-
ular structures which means a challenge for generating 3D molecular structures and 
their analogs while considering stereochemistry, force fields, and algorithm for 
predicting protein-bound conformations (Friedrich et al. 2019). Dereplication tools 
are required to circumvent the rediscovery of known compounds. Other challenges
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include procuring the materials, extraction, detection, and isolation of bioactive 
compounds and generating activity profiles are time-consuming and the success 
rate is less. Considering the facts, the prior prediction of activity using in silico 
methods can aid in simplifying the process.
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The capital needed for in silico experiments is comparatively less than the 
expenses (for example- scikit-learn, CDK) associated with experimental procedures 
of which software licensing costs alone, continue to be a significant cost component 
and have been steadily rising in recent years. Moreover, on site efficient computing 
center is no longer necessary as calculations can be performed affordably in the 
cloud at very large scales, with a low degree of complexity. Computational-based 
drug discovery has well-established techniques equipped with cheminformatics for 
easing the process, reducing the loss and comparatively less time-consuming. These 
techniques involve data mining on large data, dereplication, chemical space analysis, 
visualization and comparison, prediction of bioactivity, ADME and safety profiles’ 
natural products-inspired de novo design, and prediction of natural products prone to 
cause interference with biological assays (Chen and Kirchmair 2020). 

5.2 Natural Products’ Collections 

The definition of “natural products” is not universally agreed upon, with some 
authors limiting the term to small molecule secondary metabolites while others 
broadly accept that chemical substance produced by a living organism as NP. The 
latter one holds more diversity and hence the line separating the subclasses remains 
ill-defined. The therapeutic class of NP as per the definition can be classified into 
phytochemicals, fungal metabolites, toxins, antibodies, and NPs with limited activ-
ity. The NPs collection can also be categorized as physical and virtual collections for 
in silico technology. 

5.2.1 Physical Collection 

The importance of NPs in ailment curing can be dated back to ancient civilizations. 
In earlier decades, natural compounds and their structural analogs have significantly 
added to the therapeutic arsenal for curing numerous diseases, including cancer and 
infectious disorders. According to a survey, only 6% of the estimated four lakh plant 
species have undergone activity studies, while less than 20% have undergone 
phytochemical investigations (Fabricant and Farnsworth 2001). Phytochemicals 
being antioxidants and a source for many life-saving medicines form a broad class 
of NPs including polyphenols, terpenoids, and alkaloids. The fungal metabolites 
have been explored for their use as antidiabetic, antibacterial, antioxidant, antitumor, 
and even insecticidal agents (Daley et al. 2017). In most cases, chemotherapy 
medications are made from naturally occurring poisons produced by large clades



of organisms, such as plants, fungi, and bacteria. The next important therapeutic 
class is antibiotics with more than 60% of drugs approved and more than 500 in the 
developmental stage as per the survey in 2016 (Cragg et al. 1997). The common 
mechanism of action includes receptor blocking or downregulation and induction of 
target cell signaling which can be exploited for rheumatoid arthritis, non-Hodgkin 
lymphoma, multiple myeloma, and various other diseases (Carter and Lazar 2018). 
NPs such as biopolymers, spider silk are known for their activity in drug delivery 
systems rather than therapeutic value. 
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For virtual screening of NPs for in silico studies, the majority of compound 
suppliers across the world now freely offer information related to the structures 
and some other features of the compounds. According to a survey, of the total known 
NP compounds in virtual databases, only about 10% of them are available for 
experimental procedures (Chen et al. 2017). This lack of availability of NPs phys-
ically serves as a blockage in the path of drug discovery. However, the readily 
available ones have favorable physicochemical properties for the drug discovery 
pipeline. Moreover, more than half of them have a molecular weight of less than 
300 Da hence, providing many prospects for optimization (Chen et al. 2017). There 
are more than 100 commercial suppliers of purified NPs in the world, but only few of 
them supply more than 5000 NPs. 

The fact that the (abovementioned) 25 k easily accessible NPs encompass more 
than 5700 Murcko scaffolds is noteworthy in this respect. Additionally, these NPs 
including alkaloids, steroids, and flavonoids, provide a fair representation of all of 
the major NP classes (Chen et al. 2018). 

5.2.2 Virtual Collection 

The rapidly growing attention of NPs has led to steep growth in NP-based databases. 
The virtual collection (or databases) of NPs can be categorized into (i) the general-
ized NP-based databases, (ii) databases of traditional NPs, and (iii) specialized 
databases (Chen et al. 2019a). The second category includes databases for tradition-
ally used NP-based drugs whereas the third category includes databases focusing on 
some exclusive organisms belonging to a specific habitats, biological activities, or 
specific NP classes. A survey reported that since the 2000s, approximately 120 dif-
ferent databases and collections have been released and used in context with NPs 
(Sorokina and Steinbeck 2020). And of them, approximately 50 are open access, 
whereas 98 are still in some way accessible. These open -access databases include 
NP-based database collections published as supplementary material in scientific 
publications as well as those available in the ZINC database (Sterling and Irwin 
2015). The collection of NPs on ZINC database provides information about their 
structure and their origin but no other additional information. The databases could be 
open access or commercially available. Amongst free NP databases is Super Natural 
II, consisting of more than 325 k NPs (Banerjee et al. 2015). A chemistry-aware 
online interface can be used to query the database, although the bulk download is not
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officially supported. Universal Natural Products Database (UNPD) is another free 
database with more than 200 k NPs and downloadable resources (Gu et al. 2013). 
Unfortunately, UNPD database appears to be nonfunctional. These virtual databases 
are either specific to a particular geographical region (like databases only for Chinese 
herbals), or particular section of NPs (like database for only marine-based NPs), or 
could be generalized (COCONUT) (Sorokina et al. 2021). Some examples of 
functional databases are listed below in Table 5.1. 
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Table 5.1 Examples of some active databases 

Databases Size 

TCM database@Taiwan(Chen 2011) >60 k 

Natural Product Atlas (Van Santen et al. 2019) >25 k 

Collective Molecular Activities of Useful Plants (CMAUP) (Zeng et al. 2019) 47 k NPs 

Marine Natural Library (Bugni et al. 2008 

Some other examples include NuBBEDB (Pilon et al. 2017), KnapSack 
(Nakamura et al. 2013),CMAUP (Zeng et al. 2019), and smaller databases like 
FooDB. On the contrary, the data available on the therapeutic efficacy and protein-
bound conformations of NPs suffer from scarcity. Amongst the most relevant ones, 
the Marine Natural Library has special mention, as it allows the download of the full 
dataset of more than 14 k marine NPs (Bugni et al. 2008). NPs seem to have a slight 
upper hand over synthetic compounds, as their “libraries” already exist in nature. 
The generalized databases of chemical compounds (Li et al. 2010; Leach 2017) 
(such as PubChem and ChEMBL) also include databases related to NPs that are 
annotated by their class, while, more specific ones (such as ArachnoServer, 
VenomKB, and the Dictionary of Marine Natural Products) provide even more 
granular annotations for aggregating NP libraries with various characteristics of 
interest (Dona et al. 2017; Romano et al. 2018). 

5.3 Cheminformatics and Computational Approaches 
for NP-Based Drug Discovery 

5.3.1 Computational-Based Approaches 

Computer-based approaches being the broader term encloses within 
cheminformatics technology. Cheminformatics is the application of computational 
approaches to facilitate collection, storage, analysis of large databases addressing the 
major concern, drug discovery. Along with cheminformatics, other informatic 
approaches such as bioinformatics, semantic methods have also been reviewed 
(Romano and Tatonetti 2019). Computational techniques have long been regarded 
as an important part of drug development and discovery procedures. The various 
approaches it offers for drug discovery purpose are structural elucidation, analysis of 
the physicochemical and structural properties, in determining macromolecular



targets, prediction of ADME properties and safety profiles. Computational methods 
can be broadly classified into: structure-based and ligand-based for the 
abovementioned approaches (Podlogar et al. 2001). This classification is revolving 
around the level of structural information available in context with target to support 
the computational calculations. Structure-based methods operate on the availability 
of info regarding three-dimensional (3D) molecular target of interest, typically 
obtained from X-ray crystallography, nuclear magnetic resonance, or homology 
modeling (Cerqueira et al. 2015). Whereas ligand-based approaches focus on the 
availability of information in context with active ligands (and inactive compounds, 
when available) (Lill 2007). With the increasing need for prior virtual screening of 
NPs and maintaining of databases, cheminformatics has made its way through drug 
discovery process. The methods are generally classified as direct and indirect 
approaches, based on the type of properties they exploit. Direct approaches deal 
with chemical activity, their constants, reactive groups, ADME profiling, whereas 
indirect ones deal with structural specifications, compound category or other obser-
vations (Romano and Tatonetti 2019). 
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5.3.2 Cheminformatics and NP-Based Pipeline 

So far, cheminformatics and other related informatics approaches have been 
reviewed in drug discovery pipeline. Cheminformatics and other approaches have 
played important part in curating NP-based fragmented databases and analyzing the 
result. Cheminformatics and computational approaches share an important linkage, 
basically cheminformatics is the application of computational approaches as shown 
in Fig. 5.1. Cheminformatics techniques exclusive to NP-based drug discovery are 
NP-based QSAR analysis, Molecular Docking and Dynamics, Computational Muta-
genesis, and Library Construction. Numerous classes of NPs have been studied 
using QSAR, and the chemical descriptors used tend to be dictated by the particular 
classes (Huang et al. 2016). For example, small-molecule NPs include categorical 
variables suggesting their specific category of classification, species of origin. 
Similarly, in case of molecular docking, the specific classes of NPs decide the 
interaction of target and ligand. For example, if a macromolecular NP (belonging 
to specific class) is suspected of showing interactions with small-molecule metabo-
lites, docking simulations can be used for mining which metabolites could bind to 
that NP (Pithayanukul et al. 2009). Other aspects of molecular docking include 
protein preparation and flexibility, pose scoring in context with binding affinity. The 
generation of extensive libraries of compounds and its screening aids in prediction of 
potential drug candidates along with awareness of encountering small fraction of hits 
(Terrett et al. 1995). In case of NPs, their databases exist in nature way before 
synthetics. In this chapter, we are going to discuss different analytical methods used 
in computational approaches for NPs. Antibodies, despite of their large molecular 
weight, are relatively easy to screen for large numbers via docking, indicating their 
specificity in structural and binding properties that eventually reduces computational



complexity for simulations (Mann 2002). Additionally, noteworthy success stories 
have emerged from screening smaller NP-based databases against specific drug 
targets. For example, the compound ellagic acid, known to have both 
antiproliferative and antioxidants properties, was identified by Moro et al. by 
screening a proprietary database of 2000 NPs against the oncoprotein casein kinase 
2 (Cozza et al. 2006). 
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Fig. 5.1 Amalgamation of cheminformatics and computational approaches 

5.4 Computational Approaches Related to Natural 
Products 

5.4.1 Structural Elucidation 

For the extraction and isolation of NPs, the source of materials area is going to be 
highly priced and long-time taking and when everyone gained knowledge about the 
NPs, the discovering of novel compounds is decreasing. Of order to make the most 
of the available experimental resources, it is necessary to integrate analytical and 
computational approaches for early detection of both favorable and negative features 
in NPs (Pereira and Aires-de-Sousa 2018). Databases that provide measurable 
analytical statistics (such as bioactivities, chromatographic data, MS, NMR



spectroscopy, and FTIR data) for known NPs and their interrogation using compu-
tational methods play a crucial role in this interaction of technologies. However, 
even the biggest of these databases only include a small subset of the NPs that are 
considered. This is why NMR and MS fragmentation predictions are increasingly 
being made using computational methods, often in tandem with structure generators 
(Pereira and Aires-de-Sousa 2018). 
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In recent days, for the virtual screening of natural product (NP) candidates in both 
small datasets of isolated chemicals and huge databases, structure-based (SB) and 
ligand-based (LB) cheminformatics techniques have become indispensable tools. 
Quantitative structure-activity relationships (QSAR), assessment of drug similarity, 
forecasting surface assimilation, distribution, metabolism, excretion prediction, sim-
ilarity detection, and pharmacophore identification are the most often used LB 
approaches. Similar techniques used in SB methods include molecular dynamics, 
docking, and binding cavity analysis (Pereira and Aires-de-Sousa 2018). 

The potential of re-isolating well-known molecules has recently, however, put a 
hold on the drug development process from natural products. The process of 
dereplication, which automates the quick identification of previously isolated com-
pounds, directs researchers to fresh discoveries and cuts down on the time and effort 
needed to develop innovative medication leads. Dereplication uses processed exper-
imental data to identify compounds by comparing it to data from known compounds, 
hence it requires a variety of computing tools and resources to process and analyze 
compound data. The combination of analytical data analysis and multivariate data 
analysis is a key technique for computer-assisted dereplication (Chanana et al. 
2017). Dimensionality reduction methods like principal component analysis 
(PCA), cluster analysis, and/or discrimination assessment may be used to isolate 
interesting NPs from complicated mixtures, such as NPs in extracts that are specific 
to a certain organism of interest (Chanana et al. 2017; Abdelmohsen et al. 2014). 

By analyzing spectroscopic data, computer-assisted shape elucidation (CASE) 
systems aim to identify the optimal shape for an active molecule. Structures that are 
in agreement with experimental (spectroscopic) data are listed and ranked by CASE 
systems for greater precision. CASE structures ideally operate at low mistake rates 
and in a fully computerized form. The assignment of stereochemical attributes to NP 
structures can be done using sophisticated CASE systems because they also take 
stereospecific NMR data and/or calculations based on DFT (density functional 
theory) into account (Burns et al. 2019). 

NP dereplication is a topic that machine learning techniques find very appealing. 
Using 13C NMR spectroscopic data, for instance, a recent study once investigated 
the possibility of machine learning algorithms to assign NPs to eight NP classes 
(such as chromans) (Martínez-Treviño et al. 2020). It is used to take an XGBoost 
classifier to achieve the remarkable overall performance. More than 80% of a test 
set’s compounds were correctly assigned for the majority of NP classes. For the 
quick identification of novel NPs from a filamentous marine cyanobacterium, 
another discovery successfully applied a convolutional neural network-based 
method (Reher et al. 2020).
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One of the most up-to-date resources for managing MS/MS spectra and sharing 
the results of such analyses is the Global Natural Product Social Molecular Net-
working (GNPS). It enables researchers to investigate a dataset and compare its 
results to anything else that is publicly available. Online dereplication is made 
possible by GNPS’s usage of automated molecular networking analysis (Wang 
et al. 2016). 

5.4.2 Analysis of Physicochemical and Structural Properties 

By utilizing the physicochemical and structural characteristics of NPs, NPs have 
been characterized in a significant way by cheminformatics. The chemical space that 
NPs occupy is substantially larger than that of synthetic compounds, and they also 
occupy regions of the chemical space that are often inaccessible to synthetic 
molecules (Ertl and Schuffenhauer 2008) (Singh and Culberson 2009). 

Compared to synthetic pharmaceuticals and synthetic, drug-like substances, NPs 
are generally heavier and more hydrophobic (Chen et al. 2019b). In addition, their 
structural complexity is usually higher, particularly when it comes to stereochemis-
try (often measured by the number of chiral centers and the number of bridgehead 
atoms in ring systems) and three-dimensional molecular form (Henkel et al. 1999) 
(Lucas et al. 2015). 

The vast variety of ring systems displayed by NPs, particularly in aliphatic 
systems, is astounding (Ertl and Schuffenhauer 2008) (Grabowski and Schneider 
2007). Researchers found that commercially available screening databases lacked 
core ring scaffolds for 83% of NPs. The two characteristics of NPs that set them apart 
from synthetic compounds in terms of atom composition are their low variety of 
nitrogen atoms and their large number of oxygen atoms (Feher and Schmidt 2003; 
Wetzel et al. 2007; López-Vallejo et al. 2012). However, the vast majority of known 
NPs and, even more so, those found in actual NP libraries have pharmacological 
properties (Chen et al. 2018). 

Physicochemical and structural characteristics vary across NPs from various 
kingdoms. For instance, marine species are more likely to have macrocycle-
containing NPs or lengthy aliphatic chains than terrestrial species (El-Elimat et al. 
2012) (Muigg et al. 2013) (Saldivar-Gonzalez et al. 2018). Their NPs are distin-
guished by an excessive number of heteroatoms and, in conjunction with this, a wide 
range of functional groups (Pilkington 2019) (Shang et al. 2018) (Ertl and 
Schuhmann 2020) (Ertl and Schuhmann 2019). 

5.4.3 Structural Diversity Analysis 

In terms of structural variety, NPs are incomparable, and this is something that is also 
evident at the fragment level (Tran et al. 2020). Using the concept of molecular



scaffolds, some research compares natural products (NPs) to synthetic ones in order 
to evaluate the structural diversity of NPs (Bemis and Murcko 1996). Recent 
research contrasts the scaffolds that are unique to natural products (NPs) with 
those of synthetic chemicals and presents an intuitive depiction of them (Ertl and 
Schuhmann 2020). This then allows us to compare the scaffolds often seen in NPs 
derived from bacteria, plants, fungi, or mammals (Chen et al. 2018). 
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Scaffold Hunter is a potent java-based application for the intuitive, visual study of 
the structural variety of a set of chemicals (Schäfer et al. 2017; Lachance et al. 2012). 
The concept of molecular scaffolds being represented and categorized hierarchically 
forms the foundation of Scaffold Hunter. An early version of this tool was used to 
develop the structural categorization of NPs (SCONP), a technique for mapping the 
chemical space of NPs (Koch et al. 2005). 

Principal component analysis (PCA) is a common technique for mapping the 
chemical space since it transforms high-dimensional data into a low-dimensional 
space with little loss of information. The most useful result of principal components 
analysis (PCA) is the PCA scatter plot, which shows how the data points are 
distributed in a low-dimensional space (Saldívar-González et al. 2019; Shen et al. 
2012). 

A method called ChemGPS was created and updated for usage with NPs under 
the name ChemGPS-NP in order to prevent the need for the principal components to 
be recalculated as new compounds are added to the datasets. For mapping the 
chemical space of tiny compounds, predicting modes of action, and analyzing 
structure-activity connections, ChemGPS-NP has been employed in a number of 
research (Frédérick et al. 2012; Korinek et al. 2017; Muigg et al. 2013). 

The recently developed UMAP for Dimension Reduction method and t-SNE are 
two more reliable methods for dimensionality reduction. When various items are 
modeled by distant points and the same objects are generally close together, t-SNE 
creates plots. Although UMAP is quicker, it delivers results conceptually compara-
ble to those of t-SNE (Van der Maaten and Hinton 2008) (Burton 2020). 

Researchers recently developed Statistical-Based Database Fingerprint 
(SB-DFP), which is a new technique for representing the chemical space of com-
pound databases by a single fingerprint. In theory, any chemical fingerprint and any 
reference set might be used to derive the SB-DFP, which has a wide range of 
applicability. By contrasting the binomial distributions of the preferred molecular 
fingerprint features among the compounds in an interest dataset with those in a 
reference dataset, the SB-DFP is created (Sánchez-Cruz and Medina-Franco 2018). 

5.4.4 Natural Product-Likeness Assessment 

The NP-likeness of compounds can be quantified using computational techniques, 
which can also distinguish NPs and NP-like substances from manufactured com-
pounds with high accuracy. As a result, they are often used in the development of 
new compounds, the construction of libraries, the selection of NPs (and NP



derivatives and analogs) from collections of mixed compounds, and the prioritizing 
of compounds (Chen et al. 2022) (Yu 2011). 
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The NP-Likeness Score is one of the most well-known strategies (Ertl and 
Schuffenhauer 2008). This score assesses the NP-likeness of compounds using 
Bayesian statistics, mostly based on how similar their fragments are to those of 
recognized NPs. With certain changes, the NP-Likeness Score has been modified in 
several programs and platforms (Jayaseelan and Steinbeck 2014; Vanii Jayaseelan 
et al. 2012; Sorokina and Steinbeck 2019). Additionally, a rule-based strategy and a 
theoretically related method using extended connectivity fingerprints (ECFPs) are 
other options (Zaid et al. 2010). A more recent method for locating NPs and NP-like 
substances in vast sets of molecules is called NP-Scout (Chen et al. 2019b). 

In order to properly characterize the structural properties of NPs, a novel method 
known as the Natural Compound Molecular Fingerprint (NC-MFP) has been 
developed (Seo et al. 2020). 

5.4.5 Identification of Bioactive Natural Products 

With regard to identifying bioactive NPs, computational approaches have demon-
strated their effectiveness. For NP research, the full spectrum of virtual screening 
methods has been used, from straightforward, quick methods based solely on 2D 
molecular fingerprint similarity to more sophisticated, 3D methods largely based on 
similarity in molecular structure, pharmacophore models, molecular interaction 
fields, or docking. Machine learning techniques have recently become a cornerstone 
in virtual screening for bioactive NPs (Kirchweger and Rollinger 2018). 

The sparseness of the structural information that is now available will make it 
extremely difficult to attach NPs to the structures of macromolecules. This is due to 
the fact that docking algorithms and scoring criteria are particularly sensitive to even 
very small changes in 3D form, as those frequently brought on by ligand binding 
(including solvent effects). The careful employment of homology modeling tech-
niques, induced fit docking methods, and molecular dynamics simulations, however, 
can also aid to overcome this challenge. Docking toward a variety of representative 
protein structures may be an effective strategy when dealing with highly adaptable 
proteins (for binding mode prediction as well as virtual screening) (Amaro et al. 
2018; Grienke et al. 2010). 

In terms of binding mode prediction, docking algorithms frequently produce 
accurate results as opposed to virtual screening. It is possible to generate a suffi-
ciently accurate binding pose that offers crucial insights for the development of 
optimization techniques if the target NP is no longer excessively large or flexible, the 
ligand binding site is well-defined (i.e., not too shallow, not solvent-exposed), and 
the interaction between the binding companions consists of two or more directed 
interactions (Chen and Kirchmair 2020). Binding posture prediction is more practi-
cal than virtual screening because it completely ignores the most difficult part of 
docking—scoring compounds according to their binding affinity—and permits



researchers to focus their efforts on a single ligand-target combination. Importantly, 
docking makes it possible to clarify the stereoselectivity of ligand binding, especially 
in the context of NP research (and different processes, such as metabolism). It is 
impossible to exaggerate how important it is to employ the proper stereochemical 
data when using 3D techniques, particularly docking (Warren et al. 2006). 
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5.4.6 Determination of Macromolecular Targets 

When one, few, or even many compounds are tested against the broadest range of 
macromolecules, it may be said that in silico target prediction is a large-scale use of 
virtual screening (Grisoni et al. 2019). Numerous techniques including models have 
been described in recent years, and they are now recognized as crucial resources in 
the early stages of drug development. The majority of target prediction algorithms 
are ligand-based due to the difficulties associated with docking and structure-based 
approaches in general (specifically, the restricted representation of macromolecules 
through the available structural data) (Cereto-Massagué et al. 2015; Ezzat et al. 
2019; Sam and Athri 2019; Chaudhari et al. 2017). 

Ligand-based approaches span the whole spectrum, from simple similarity-based 
methods to sophisticated machine learning and network-based methods. Unexpect-
edly, despite the wide variety of computer approaches available today for target 
prediction, we still have a limited understanding of the importance of these tactics in 
practical situations. This is especially true given the (generally) expensive expenses 
associated in experimentally evaluating such models in a systematic, prospective 
manner. However, it is also true given the common use of partially inadequate, 
cursory retrospective validation techniques (Mathai et al. 2020; Mathai and 
Kirchmair 2020). To the best of our knowledge, the Similarity Ensemble Approach 
(SEA) is the only computational strategy for which consistent experimental valida-
tion has been documented (Keiser et al. 2007) (Keiser et al. 2009)(Lounkine et al. 
2012). 

In recent research comparing the effectiveness and scope of a similarity-based 
strategy and a machine learning technique toward determining the targets of small 
molecules, it was discovered that the structural similarity between both the com-
pounds of interest and the compounds reflected in the training set is a key factor in 
both methods’ predictability (or knowledge base). Given that target prediction 
models are essentially created for and trained on experimental measurements for 
synthetic chemicals, it is important to take this fact into consideration while working 
with NPs (Mathai et al. 2020). 

Surprisingly, in the same research, the similarity-based technique beat the 
machine learning strategy for the data at hand. The results imply that the basic 
similarity-based strategy is a realistic choice, in particular when taking into consid-
eration model interpretability. However, a direct comparison in between two 
approaches should be approached with extreme caution for a number of reasons.



Additionally, this is demonstrated by the successful operation of several well-
known, similarity-based approaches like SwissTargetPrediction (Gfeller et al. 2014). 
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In addition to 3D similarity-based methods, 3D pharmacophore-based 
approaches are extensively utilized in the field of NP research for target prediction. 
A profiling investigation, for example, evaluated secondary metabolites extracted 
from the medicinal plant Ruta graveolens against a battery of over 2000 
pharmacophore models covering over 280 targets (Rollinger et al. 2009). Arborinine 
was discovered to be an inhibitor of acetylcholinesterase (estimated IC50 = 35 M) as 
a result of this in silico search, among other potential bioactive NPs and interactions. 

Machine learning-based methods have undoubtedly sparked the most interest in 
NP target prediction in recent years. SPiDER, TIGER, and STarFish are a few 
notable examples (Reker et al. 2014b) (Schneider and Schneider 2017a) (Cockroft 
et al. 2019). 

With the use of “fuzzy” molecular descriptors, SPiDER employs self-organizing 
maps in an acronym that enables NPs to utilize it (Rodrigues et al. 2016b; Merk et al. 
2018). The mannequin helped identify the targets of the macrolide PPAR, archazolid 
A (Reker et al. 2014a), including 5-lipoxygenase, FXR, glucocorticoid receptor, as 
well as, prostaglandin E2 synthase 1. It also successfully predicted the target of the 
16-membered depsipeptide doliculide, which is prostanoid receptor 3 (Schneider 
et al. 2016). Numerous fragment-like NPs were also successfully recognized by 
SPIDER, including (i) sparteine, whose targets include the nicotinic receptors, 
muscarinic, p38 mitogen-activated protein kinase, and kappa opioid receptor 
(Rodrigues et al. 2016a), (ii) DL-goitrin, whose targets include the muscarinic M1 
receptor and the pregnane X receptor, (iii) Isomacroin, whose targets were experi-
mentally verified to be the adenosine A3 receptor and the platelet-derived growth 
factor receptor, and (iv) graveolinine, whose objectives were scientifically proven to 
be cyclooxygenase-2 and the serotonin 5-HT2B receptor (Rodrigues et al. 2015). 

SPiDER and TIGER have a similar conceptual framework. The projected targets 
are scored using a new methodology and updated CATS descriptions (taking into 
account ensemble similarity). The marine NP (+-)-marinopyrrole A (Schneider and 
Schneider 2017a) has been effectively discovered by TIGER as a target of chole-
cystokinin receptor, the orexin receptor, and glucocorticoid receptor. The model 
correctly identified the estrogen receptors and as targets of the stilbenoid resveratrol, 
among other proteins (Schneider and Schneider 2017b). 

A stacked ensemble target prediction approach called STarFish was developed 
using synthetic chemical data (Cockroft et al. 2019). 

Most recently, medical indication information was used to train multitask deep 
neural networks and use them to identify privileged chemical scaffolds in NPs 
(in this instance, scaffolds are used for which many NPs built within the same 
scaffold are active inside the same indication). A privileged scaffold dataset was 
created for 100 indications based on the predictions of these models, which may be 
used as the starting point for NP-based drug development (Lai et al. 2020).
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5.4.7 Prediction of ADME and Safety Profiles of NPs 

ADME and safety profiling has a major say in drug discovery. ADME failures 
contribute to around 40% of all the drug failures (Bhhatarai et al. 2019). So far, the in 
silico ADME techniques have seen significant progress as shown in Table 5.2. Drug 
toxicity is still a major concern despite the fact that pharmacokinetics (PK) failures 
have decreased as a result of preclinical ADME investigations. These failures at late 
phases of drug discovery pipeline causes huge loss of time and capital. The in silico 
models provide a prior prediction for optimization. Another concern is drug–drug 
interactions (DDI) which can result in toxicity and severe ADR, obscuring the whole 
process. Established and broadly applicable computational filters will serve the best 
for screening and synthesizing and optimizing the drug product (Ekins et al. 2000). 
In the 1960s, the early phase of ADME models was developed using Hansch’s 
conventional QSAR methods. As a result, comparative molecular field analysis 
(CoMFA), a type of molecular modeling software, was developed, in such a way 
that three-dimensional visualization became an important direction for QSAR. 

The different ADME properties that can be evaluated by computational approach 
are solubility, permeability, clearance, metabolic stability, drug–drug interactions, 
blood–brain barrier, and cardiotoxicity. 

The different software available for predicting ADME properties are MolCode 
toolbox, preADMET, MolCode toolbox, Discovery Studio,volsurfC, QikProp, 
ADMEWORKS Predictor C Chembench, and admetSAR (Shin et al. 2017). 

The major challenges addressed by NPs related to ADME profiling are off-target 
receptors such as—hERG channel, cytochrome P450 enzymes (suspected for drug-
drug interactions, and toxicity), and the P-glycoprotein (suspected for drug resis-
tance). A plethora of such models based on statistical, machine learning, 
pharmacophore address these and many other off-targets. Another major concern 
is most of the computational models are validated by synthetic origin drug product. 
Computational models such as FAME 3 have reportedly known to for their effec-
tiveness even when majority of compounds in the training set are again of synthetic 
origin (Šícho et al. 2019). 

Table 5.2 Progress in in silico ADME (Bhhatarai et al. 2019) 

Phase Progress 

1960s Classical QSAR methods with small datasets developed by Hansch (1972), introduction 
of use of octanol ±water log P 

1980s CoMFA was developed along with other membrane permeability and intestinal absorp-
tion models—CYP 3D-QSAR and 4D-QSAR modeling 

2010s More than 100,000 data for in vitro ADME properties in big pharma, open access data in 
thousands, growth of open projects (for example, eTOX, OpenTox, Tox21, ToxCast). 
wide variety of ML algorithms (RF, SVM, KNN, NB, DNN)
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5.4.8 Case Study 

Scientists have shown that five tropical plants—M. charantia, B. javanica, 
E. longifolia, T. divaricata, and G. mangostana—exhibit inhibitory effect against 
H5N1 neuraminidase. For the purposes of bioassays, different plant parts (leaves, 
roots, and fruits) were extracted, chromatographed, and fractionated. The anti-H5N1 
neuraminidase activity of the plant fractions and extracts ranged from excellent to 
moderate. At 250 g/ml, G. mangostana showed the maximum inhibition (82.95 
percent). Following this, pure chemicals were extracted from the five plants. The 
IC50 values of rubraxanthone, mangostin, and garcinone C ranged from 89.71 to 
95.49 M, making them stand out (Ikram et al. 2015). This process is depicted below 
(Fig. 5.2) and the docking results of the abovementioned plant derivative are 
mentioned in Fig. 5.3. 

Fig. 5.2 Strategies for novel neuraminidase inhibitors discovery of natural product (Ikram et al. 
2015)
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Fig. 5.3 (a) The superimposition of the docked and crystallographic oseltamivir poses (green and 
blue, respectively). The RMSD was 0.84 Å. (b) Predicted hydrogen bonds of Garcinone C in the 
active site of neuraminidase inhibitors. (c) Predicted cation-π interactions between R371, R292, 
R152, and the xanthone moiety of Garcinone C in the active site of neuraminidase inhibitors. (d) 
The crystallographic pose of oseltamivir, a potent inhibitor, shown for reference (PDB ID: 2HU4) 
(Ikram et al. 2015) 

5.5 Challenges to Computational Approaches 

The major challenges for NP-based drug discovery is management and representa-
tion of the data. Although ArachnoServer and ConoServer are rich and highly 
descriptive NP databases, but reserved only to specific clade of species producing 
toxins (Kaas et al. 2012). A partial solution for this is Tox-Prot manual annotation 
program within UniProtKB/Swiss-Prot which provides a more generalized and 
improved representation of databases for NPs (Jungo et al. 2012). However, this



does not seem to be the complete solution. Another concern associated with NPs is 
fragmentation of databases which means more scattered form of data to be 
maintained by smaller or larger organizations. The added difficulty is shortage of 
funding required for maintaining those databases which leads to mismanagement of 
data, ultimately disabling the function of that database. Examples of such databases 
include as follows (Table 5.3): 
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Table 5.3 List of databases discontinued in 2019 

Database Type of NPs Size 

3DMET (Maeda and Kondo 2013) General 18,248 

AfroDB (Ntie-Kang et al. 2013b) tm, plants, 
Africa 

954 

CamMedNP (Ntie-Kang et al. 2013a) tm, plants, 
Africa 

>2500 

Traditional Chinese Medicine Systems Pharmacology (TCMSP) 
(Ru et al. 2014) 

Chinese herbs 499 

Fig. 5.4 Pictorial 
representation of functional 
and defunct databases 

To have a clear view, a comparative data of functional and defunct databases have 
been depicted in Fig. 5.4. A fundamental obstacle to the experimental screening of



NPs is their propensity to interact with biological tests. This could be explained with 
the example of quercetin which has reportedly shown active in more than about 
800 unique bioassays. The most common mechanism followed for interference is 
aggregate formation, covalent binding, membrane disruption, metal chelation, inter-
ference with assay spectroscopy, and buffer decomposition buffers (Baell and 
Holloway 2010). These problems could be overcome by specific set of rules 
following statistical approach known as pan-assay interference compounds 
(PAINS) rule set (Baell and Nissink 2018). 
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5.6 Conclusion and Future Perspectives 

Between the 1980s and the 2010s, two-thirds of the medications were either featured 
NP pharmacophores (35%) or were analogs of NPs (5%). Modern computational 
techniques discussed above can significantly expedite and reduce the risk of 
NP-based drug development. The integration of computational approaches with 
cheminformatics and other informatics methods has led to ease the management, 
storage, and representation of vast NP-based databases. Computational tools offer 
assistance in structural elucidation of bioactive NPs, in prior prediction of various 
properties of NPs as discussed above which eases the procedure for drug discovery 
pipeline. However, the major challenge being availability of descriptive database, 
fragmented databases, and its maintenance along with physical availability of the 
particular NP. These challenges have been resolved partially with introduction of 
databases like COlleCtion of Open Natural prodUcTs (COCONUT) which provides 
a web interface to browse and download elucidated and predicted NPs collected 
from open sources. On a larger parameter, machine learning (ML) has been using 
computational methods in drug discovery. For instance, clustering techniques have 
enabled de novo molecular design, projected protein target druggability, and seg-
mented cell type imaging. The computational approach for NP-based drug discovery 
holds great future for NP-based drug discovery. The amalgamation of computational 
methods with advanced technologies in analytical domains can improvise the drug 
discovery pipeline for NPs. The advancement of higher-field NMR instruments and 
probe technology has made it possible to determine the structure of NPs from 
extremely small amounts hence, less wastage of hardly obtained product. Pauli 
and associates suggested conducting early, relatively sophisticated purity analyses 
on lead nanoparticles using quantitative NMR and LC–MS to avoid pointless 
downstream initiatives. Further advancement of metabolomics, genome mining, 
microbial culturing technique has added to the future scope of NP-based drug 
pipeline. In addition, antivirulence strategies may represent an alternative method 
for combating infections, for which NPs that target bacterial quorum sensing may be 
of interest. In silico Medicine, an American company, created an AI system called 
GENTRL (Generative Tensorial Reinforcement Learning) in 2019 that, in just 
46 days, successfully created six kinase inhibitors of the discoidin domain receptor 
1 linked to lung fibrosis. Cheminformatics, bioinformatics, and other related fields



have made significant contributions to NP-based drug discovery over the years. 
Recently, reviews of their successful applications and limitations were conducted. 

116 P. Dagur et al.

References 

Abdelmohsen UR, Cheng C, Viegelmann C et al (2014) Dereplication strategies for targeted 
isolation of new antitrypanosomal actinosporins A and B from a marine sponge associated-
Actinokineospora sp. EG49. Mar Drugs 12:1220–1244 

Amaro RE, Baudry J, Chodera J et al (2018) Ensemble docking in drug discovery. Biophys J 114: 
2271–2278 

Atanasov AG, Waltenberger B, Pferschy-Wenzig EM et al (2015) Discovery and resupply of 
pharmacologically active plant-derived natural products: a review. Biotechnol Adv 33:1582– 
1614. https://doi.org/10.1016/j.biotechadv.2015.08.001 

Baell JB, Holloway GA (2010) New substructure filters for removal of pan assay interference 
compounds (PAINS) from screening libraries and for their exclusion in bioassays. J Med Chem 
53:2719–2740 

Baell JB, Nissink JWM (2018) Seven-year itch: pan-assay interference compounds (PAINS) in 
2017—utility and limitations. ACS Chem Biol 13:36–44 

Banerjee P, Erehman J, Gohlke B-O et al (2015) Super Natural II—a database of natural products. 
Nucleic Acids Res 43:D935–D939 

Bemis GW, Murcko MA (1996) The properties of known drugs. 1. Molecular frameworks. J Med 
Chem 39:2887–2893 

Bhhatarai B, Walters WP, Hop CECA et al (2019) Opportunities and challenges using artificial 
intelligence in ADME/Tox. Nat Mater 18:418–422 

Bugni TS, Richards B, Bhoite L et al (2008) Marine natural product libraries for high-throughput 
screening and rapid drug discovery. J Nat Prod 71:1095–1098. https://doi.org/10.1021/ 
np800184g 

Burns DC, Mazzola EP, Reynolds WF (2019) The role of computer-assisted structure elucidation 
(CASE) programs in the structure elucidation of complex natural products. Nat Prod Rep 36: 
919–933 

Burton R (2020) Unsupervised learning techniques for malware characterization: understanding 
certain DNS-based DDoS attacks. Digit Threat Res Pract 1:1–26 

Carter PJ, Lazar GA (2018) Next generation antibody drugs: pursuit of the ‘high-hanging fruit’. Nat 
Rev Drug Discov 17:197–223 

Cereto-Massagué A, Ojeda MJ, Valls C et al (2015) Tools for in silico target fishing. Methods 71: 
98–103 

Cerqueira NM, Gesto D, Oliveira EF et al (2015) Receptor-based virtual screening protocol for drug 
discovery. Arch Biochem Biophys 582:56–67 

Chanana S, Thomas CS, Braun DR et al (2017) Natural product discovery using planes of principal 
component analysis in R (PoPCAR). Meta 7:34 

Chaudhari R, Tan Z, Huang B, Zhang S (2017) Computational polypharmacology: a new paradigm 
for drug discovery. Expert Opin Drug Discov 12:279–291. https://doi.org/10.1080/17460441. 
2017.1280024 

Chen CY-C (2011) TCM database@ Taiwan: the world’s largest traditional Chinese medicine 
database for drug screening in silico. PLoS One 6:e15939 

Chen Y, de Bruyn KC, Kirchmair J (2017) Data resources for the computer-guided discovery of 
bioactive natural products. J Chem Inf Model 57:2099–2111 

Chen Y, de Bruyn Kops C, Kirchmair J (2019a) Resources for chemical, biological, and structural 
data on natural products. Prog Chem Org Nat Prod 110:37–71

https://doi.org/10.1016/j.biotechadv.2015.08.001
https://doi.org/10.1021/np800184g
https://doi.org/10.1021/np800184g
https://doi.org/10.1080/17460441.2017.1280024
https://doi.org/10.1080/17460441.2017.1280024


5 Computational Methods in Natural Products-Based Drug Discovery 117

Chen Y, Garcia de Lomana M, Friedrich N-O, Kirchmair J (2018) Characterization of the chemical 
space of known and readily obtainable natural products. J Chem Inf Model 58:1518–1532 

Chen Y, Kirchmair J (2020) Cheminformatics in natural product-based drug discovery. Mol Inform 
39:e2000171 

Chen Y, Rosenkranz C, Hirte S, Kirchmair J (2022) Ring systems in natural products: structural 
diversity, physicochemical properties, and coverage by synthetic compounds. Nat Prod Rep 39: 
1544–1556 

Chen Y, Stork C, Hirte S, Kirchmair J (2019b) NP-Scout: machine learning approach for the 
quantification and visualization of the natural product-likeness of small molecules. Biomol Ther 
9:43 

Cockroft NT, Cheng X, Fuchs JR (2019) STarFish: a stacked ensemble target fishing approach and 
its application to natural products. J Chem Inf Model 59:4906–4920 

Cozza G, Bonvini P, Zorzi E et al (2006) Identification of ellagic acid as potent inhibitor of protein 
kinase CK2: a successful example of a virtual screening application. J Med Chem 49:2363– 
2366 

Cragg GM, Newman DJ, Snader KM (1997) Natural products in drug discovery and development. J 
Nat Prod 60:52–60 

Daley DK, Brown KJ, Badal S (2017) Fungal metabolites. In: Pharmacognosy: fundamentals, 
applications and strategy. Elsevier, London 

Dona MSI, Prendergast LA, Mathivanan S et al (2017) Powerful differential expression analysis 
incorporating network topology for next-generation sequencing data. Bioinformatics 33:1505– 
1513 

Ekins S, Waller CL, Swaan PW et al (2000) Progress in predicting human ADME parameters in 
silico. J Pharmacol Toxicol Methods 44:251–272 

El-Elimat T, Zhang X, Jarjoura D et al (2012) Chemical diversity of metabolites from fungi, 
cyanobacteria, and plants relative to FDA-approved anticancer agents. ACS Med Chem Lett 
3:645–649 

Ertl P, Schuffenhauer A (2008) Cheminformatics analysis of natural products: lessons from nature 
inspiring the design of new drugs. Prog drug Res 66(217):219–235. https://doi.org/10.1007/ 
978-3-7643-8595-8_4 

Ertl P, Schuhmann T (2019) A systematic cheminformatics analysis of functional groups occurring 
in natural products. J Nat Prod 82:1258–1263 

Ertl P, Schuhmann T (2020) Cheminformatics analysis of natural product scaffolds: comparison of 
scaffolds produced by animals, plants, fungi and bacteria. Mol Inform 39:2000017 

Ezzat A, Wu M, Li X-L, Kwoh C-K (2019) Computational prediction of drug–target interactions 
using chemogenomic approaches: an empirical survey. Brief Bioinform 20:1337–1357 

Fabricant DS, Farnsworth NR (2001) The value of plants used in traditional medicine for drug 
discovery. Environ Health Perspect 109:69–75. https://doi.org/10.1289/ehp.01109s169 

Feher M, Schmidt JM (2003) Property distributions: differences between drugs, natural products, 
and molecules from combinatorial chemistry. J Chem Inf Comput Sci 43:218–227 

Frédérick R, Bruyère C, Vancraeynest C et al (2012) Novel trisubstituted harmine derivatives with 
original in vitro anticancer activity. J Med Chem 55:6489–6501 

Friedrich N-O, Flachsenberg F, Meyder A et al (2019) Conformator: a novel method for the 
generation of conformer ensembles. J Chem Inf Model 59:731–742 

Gfeller D, Grosdidier A, Wirth M et al (2014) SwissTargetPrediction: a web server for target 
prediction of bioactive small molecules. Nucleic Acids Res 42:W32–W38. https://doi.org/10. 
1093/nar/gku293 

Grabowski K, Schneider G (2007) Properties and architecture of drugs and natural products 
revisited. Curr Chem Biol 1:115–127 

Grienke U, Schmidtke M, Kirchmair J et al (2010) Antiviral potential and molecular insight into 
neuraminidase inhibiting diarylheptanoids from Alpinia katsumadai. J Med Chem 53:778–786 

Grisoni F, Merk D, Friedrich L, Schneider G (2019) Design of natural-product-inspired multitarget 
ligands by machine learning. ChemMedChem 14:1129–1134

https://doi.org/10.1007/978-3-7643-8595-8_4
https://doi.org/10.1007/978-3-7643-8595-8_4
https://doi.org/10.1289/ehp.01109s169
https://doi.org/10.1093/nar/gku293
https://doi.org/10.1093/nar/gku293


118 P. Dagur et al.

Gu J, Gui Y, Chen L et al (2013) Use of natural products as chemical library for drug discovery and 
network pharmacology. PLoS One 8:e62839 

Henkel T, Brunne RM, Müller H, Reichel F (1999) Statistical investigation into the structural 
complementarity of natural products and synthetic compounds. Angew Chem Int Ed 38:643– 
647 

Huang P-S, Boyken SE, Baker D (2016) The coming of age of de novo protein design. Nature 537: 
320–327 

Ikram NKK, Durrant JD, Muchtaridi M et al (2015) A virtual screening approach for identifying 
plants with anti-H5N1 neuraminidase activity. J Chem Inf Model 55:308–316 

Jayaseelan KV, Steinbeck C (2014) Building blocks for automated elucidation of metabolites: 
natural product-likeness for candidate ranking. BMC Bioinform 15:1–9 

Jungo F, Bougueleret L, Xenarios I, Poux S (2012) The UniProtKB/Swiss-Prot Tox-Prot program: a 
central hub of integrated venom protein data. Toxicon 60:551–557 

Kaas Q, Yu R, Jin A-H et al (2012) ConoServer: updated content, knowledge, and discovery tools 
in the conopeptide database. Nucleic Acids Res 40:D325–D330 

Keiser MJ, Roth BL, Armbruster BN et al (2007) Relating protein pharmacology by ligand 
chemistry. Nat Biotechnol 25:197–206. https://doi.org/10.1038/nbt1284 

Keiser MJ, Setola V, Irwin JJ et al (2009) Predicting new molecular targets for known drugs. Nature 
462:175–181 

Kirchweger B, Rollinger JM (2018) Virtual screening for the discovery of active principles from 
natural products. In: Natural products as source of molecules with therapeutic potential. 
Springer, Cham, pp 333–364 

Koch MA, Schuffenhauer A, Scheck M et al (2005) Charting biologically relevant chemical space: 
a structural classification of natural products (SCONP). Proc Natl Acad Sci 102:17272–17277 

Korinek M, Tsai Y-H, El-Shazly M et al (2017) Anti-allergic hydroxy fatty acids from Typhonium 
blumei explored through ChemGPS-NP. Front Pharmacol 8:356 

Lachance H, Wetzel S, Kumar K, Waldmann H (2012) Charting, navigating, and populating natural 
product chemical space for drug discovery. J Med Chem 55:5989–6001 

Lai J, Hu J, Wang Y et al (2020) Privileged scaffold analysis of natural products with deep learning-
based indication prediction model. Mol Inform 39:2000057. https://doi.org/10.1002/minf. 
202000057 

Lawson ADG, MacCoss M, Heer JP (2017) Importance of rigidity in designing small molecule 
drugs to tackle protein–protein interactions (PPIs) through stabilization of desired conformers: 
miniperspective. J Med Chem 61:4283–4289 

Leach AR (2017) The ChEMBL database in. Nucleic Acids Res 45:D945–D954 
Li Q, Cheng T, Wang Y, Bryant SH (2010) PubChem as a public resource for drug discovery. Drug 

Discov Today 15:1052–1057 
Lill MA (2007) Multi-dimensional QSAR in drug discovery. Drug Discov Today 12:1013–1017 
López-Vallejo F, Giulianotti MA, Houghten RA, Medina-Franco JL (2012) Expanding the medic-

inally relevant chemical space with compound libraries. Drug Discov Today 17:718–726 
Lounkine E, Keiser MJ, Whitebread S et al (2012) Large-scale prediction and testing of drug 

activity on side-effect targets. Nature 486:361–367 
Lucas X, Grüning BA, Bleher S, Günther S (2015) The purchasable chemical space: a detailed 

picture. J Chem Inf Model 55:915–924 
Maeda MH, Kondo K (2013) Three-dimensional structure database of natural metabolites 

(3DMET): a novel database of curated 3D structures. J Chem Inf Model 53:527–533 
Mann J (2002) Natural products in cancer chemotherapy: past, present and future. Nat Rev Cancer 

2:143–148 
Martínez-Treviño SH, Uc-Cetina V, Fernández-Herrera MA, Merino G (2020) Prediction of natural 

product classes using machine learning and 13C NMR spectroscopic data. J Chem Inf Model 
60:3376–3386 

Mathai N, Chen Y, Kirchmair J (2020) Validation strategies for target prediction methods. Brief 
Bioinform 21:791–802. https://doi.org/10.1093/bib/bbz026

https://doi.org/10.1038/nbt1284
https://doi.org/10.1002/minf.202000057
https://doi.org/10.1002/minf.202000057
https://doi.org/10.1093/bib/bbz026


5 Computational Methods in Natural Products-Based Drug Discovery 119

Mathai N, Kirchmair J (2020) Similarity-based methods and machine learning approaches for target 
prediction in early drug discovery: performance and scope. Int J Mol Sci 21:3585 

Merk D, Grisoni F, Friedrich L et al (2018) Computer-assisted discovery of retinoid X receptor 
modulating natural products and isofunctional mimetics. J Med Chem 61:5442–5447 

Muigg P, Rosén J, Bohlin L, Backlund A (2013) In silico comparison of marine, terrestrial and 
synthetic compounds using ChemGPS-NP for navigating chemical space. Phytochem Rev 12: 
449–457 

Nakamura K, Shimura N, Otabe Y et al (2013) KNApSAcK-3D: a three-dimensional structure 
database of plant metabolites. Plant Cell Physiol 54:e4–e4 

Newman DJ, Cragg GM (2016) Natural products as sources of new drugs from 1981 to 2014. J Nat 
Prod 79:629–661. https://doi.org/10.1021/acs.jnatprod.5b01055 

Ntie-Kang F, Mbah JA, Mbaze LM et al (2013a) CamMedNP: building the Cameroonian 3D 
structural natural products database for virtual screening. BMC Complement Altern Med 13:1– 
10 

Ntie-Kang F, Zofou D, Babiaka SB et al (2013b) AfroDb: a select highly potent and diverse natural 
product library from African medicinal plants. PLoS One 8:e78085 

Patridge E, Gareiss P, Kinch MS, Hoyer D (2016) An analysis of FDA-approved drugs: natural 
products and their derivatives. Drug Discov Today 21:204–207 

Pereira F, Aires-de-Sousa J (2018) Computational methodologies in the exploration of marine 
natural product leads. Mar Drugs 16:236 

Pilkington LI (2019) A Chemometric analysis of deep-sea natural products. Molecules 24:3942 
Pilon AC, Valli M, Dametto AC et al (2017) NuBBEDB: an updated database to uncover chemical 

and biological information from Brazilian biodiversity. Sci Rep 7:1–12 
Pithayanukul P, Leanpolchareanchai J, Saparpakorn P (2009) Molecular docking studies and anti-

snake venom metalloproteinase activity of Thai mango seed kernel extract. Molecules 14:3198– 
3213 

Podlogar BL, Muegge I, Brice LJ (2001) Computational methods to estimate drug development 
parameters. Curr Opin Drug Discov Devel 4:102–109 

Reher R, Kim HW, Zhang C et al (2020) A convolutional neural network-based approach for the 
rapid annotation of molecularly diverse natural products. J Am Chem Soc 142:4114–4120 

Reker D, Perna AM, Rodrigues T et al (2014a) Revealing the macromolecular targets of complex 
natural products. Nat Chem 6:1072–1078 

Reker D, Rodrigues T, Schneider P, Schneider G (2014b) Identifying the macromolecular targets of 
de novo-designed chemical entities through self-organizing map consensus. Proc Natl Acad Sci 
111:4067–4072 

Rodrigues T, Reker D, Kunze J et al (2015) Revealing the macromolecular targets of fragment-like 
natural products. Angew Chem Int Ed 54:10516–10520 

Rodrigues T, Reker D, Schneider P, Schneider G (2016a) Counting on natural products for drug 
design. Nat Chem 8:531–541. https://doi.org/10.1038/nchem.2479 

Rodrigues T, Sieglitz F, Somovilla VJ et al (2016b) Unveiling (-)-Englerin A as a modulator of 
L-type calcium channels. Angew Chem Int Ed 55:11077–11081 

Rollinger JM, Schuster D, Danzl B et al (2009) In silico target fishing for rationalized ligand 
discovery exemplified on constituents of Ruta graveolens. Planta Med 75:195–204 

Romano JD, Nwankwo V, Tatonetti NP (2018) VenomKB v2. 0: a knowledge repository for 
computational toxinology. Sci Data 2:150065 

Romano JD, Tatonetti NP (2019) Informatics and computational methods in natural product drug 
discovery: a review and perspectives. Front Genet 10:368 

Ru J, Li P, Wang J et al (2014) TCMSP: a database of systems pharmacology for drug discovery 
from herbal medicines. J Cheminform 6:1–6 

Saldívar-González FI, Angélica Pilón-Jiménez B, Medina-Franco JL (2019) Phys Sci Rev 4: 
20180103 

Saldivar-Gonzalez FI, Valli M, Andricopulo AD et al (2018) Chemical space and diversity of the 
NuBBE database: a chemoinformatic characterization. J Chem Inf Model 59:74–85

https://doi.org/10.1021/acs.jnatprod.5b01055
https://doi.org/10.1038/nchem.2479


120 P. Dagur et al.

Sam E, Athri P (2019) Web-based drug repurposing tools: a survey. Brief Bioinform 20:299–316 
Sánchez-Cruz N, Medina-Franco JL (2018) Statistical-based database fingerprint: chemical space-

dependent representation of compound databases. J Cheminform 10:1–13 
Schäfer T, Kriege N, Humbeck L et al (2017) Scaffold Hunter: a comprehensive visual analytics 

framework for drug discovery. J Cheminform 9:1–18 
Schneider G, Reker D, Chen T et al (2016) Deorphaning the macromolecular targets of the natural 

anticancer compound doliculide. Angew Chem Int Ed 55:12408–12411 
Schneider P, Schneider G (2017a) De-orphaning the marine natural product (±)-marinopyrrole A 

by computational target prediction and biochemical validation. Chem Commun 53:2272–2274 
Schneider P, Schneider G (2017b) A computational method for unveiling the target promiscuity of 

pharmacologically active compounds. Angew Chem Int Ed 56:11520–11524 
Seo M, Shin HK, Myung Y et al (2020) Development of natural compound molecular fingerprint 

(NC-MFP) with the dictionary of natural products (DNP) for natural product-based drug 
development. J Cheminform 12:6. https://doi.org/10.1186/s13321-020-0410-3 

Shang J, Hu B, Wang J et al (2018) Cheminformatic insight into the differences between terrestrial 
and marine originated natural products. J Chem Inf Model 58:1182–1193 

Shen M, Tian S, Li Y et al (2012) Drug-likeness analysis of traditional Chinese medicines: 
1. Property distributions of drug-like compounds, non-drug-like compounds and natural com-
pounds from traditional Chinese medicines. J Cheminform 4:1–13 

Shin HK, Kang Y-M, No KT (2017) Predicting ADME properties of chemicals. In: Handbook of 
computational chemistry, vol 59. Springer, Cham, pp 2265–2301 

Šícho M, Stork C, Mazzolari A et al (2019) FAME 3: predicting the sites of metabolism in synthetic 
compounds and natural products for phase 1 and phase 2 metabolic enzymes. J Chem Inf Model 
59:3400–3412 

Singh SB, Culberson JC (2009) Chapter 2: Chemical space and the difference between natural 
products and synthetics. In: Natural product chemistry for drug discovery. The Royal Society of 
Chemistry, Cambridge, pp 28–43 

Sorokina M, Merseburger P, Rajan K et al (2021) COCONUT online: collection of open natural 
products database. J Cheminform 13:1–13 

Sorokina M, Steinbeck C (2019) NaPLeS: a natural products likeness scorer—web application and 
database. J Cheminform 11:1–7 

Sorokina M, Steinbeck C (2020) Review on natural products databases: where to find data in 2020. 
J Cheminform 12:1–51 

Sterling T, Irwin JJ (2015) ZINC 15–ligand discovery for everyone. J Chem Inf Model 55:2324– 
2337 

Terrett NK, Gardner M, Gordon DW et al (1995) Combinatorial synthesis—the design of com-
pound libraries and their application to drug discovery. Tetrahedron 51:8135–8173 

Tran TD, Ogbourne SM, Brooks PR et al (2020) Lessons from exploring chemical space and 
chemical diversity of propolis components. Int J Mol Sci 21:4988 

Van der Maaten L, Hinton G (2008) Visualizing data using t-SNE. J Mach Learn Res 9:2579 
Van Santen JA, Jacob G, Singh AL et al (2019) The natural products atlas: an open access 

knowledge base for microbial natural products discovery. ACS Cent Sci 5:1824–1833 
Vanii Jayaseelan K, Moreno P, Truszkowski A et al (2012) Natural product-likeness score revisited: 

an open-source, open-data implementation. BMC Bioinform 13:1–6 
Wang M, Carver JJ, Phelan VV et al (2016) Sharing and community curation of mass spectrometry 

data with global natural products social molecular networking. Nat Biotechnol 34:828–837 
Warren GL, Andrews CW, Capelli A-M et al (2006) A critical assessment of docking programs and 

scoring functions. J Med Chem 49:5912–5931

https://doi.org/10.1186/s13321-020-0410-3


5 Computational Methods in Natural Products-Based Drug Discovery 121

Wetzel S, Schuffenhauer A, Roggo S et al (2007) Cheminformatic analysis of natural products and 
their chemical space. Chim Int J Chem 61:355–360 

Yu MJ (2011) Natural product-like virtual libraries: recursive atom-based enumeration. J Chem Inf 
Model 51:541–557 

Zaid H, Raiyn J, Nasser A et al (2010) Physicochemical properties of natural based products versus 
synthetic chemicals. Open Nutraceuticals J 3:194 

Zeng X, Zhang P, Wang Y et al (2019) CMAUP: a database of collective molecular activities of 
useful plants. Nucleic Acids Res 47:D1118–D1127



123

Chapter 6 
Virtual Screening in Lead Discovery 

Vinita, Jurnal Reang, Vivek Yadav, Jaseela Majeed, 
Prabodh Chander Sharma, Kaalicharan Sharma, and Rajiv Kumar Tonk 

6.1 Introduction 

Drug discovery continues to be a major concern in biomedicine. The initial phase in 
the drug discovery process is typically identifying targets for a condition of interest. 
The next step is to undertake high-throughput screening (HTS) studies to find 
successes in the synthesized compound library or molecules with promising bioac-
tivity. The next phase is to refine the hit compounds to create molecules with more 
potent properties and other desired traits, such as solubility or the disappearance of 
negative side effects. After finishing the preclinical research, possible drug candi-
dates must successfully complete a chain of clinical studies to become licensed 
pharmaceuticals. A single drug takes between 10 and 15 years and more than 
2 billion dollars to create. Although HTS investigations are very effective, they are 
nonetheless time- and money-consuming since they need a huge amount of protein 
supply, hundreds of produced compounds, and established procedures for assessing 
bioactivity in the lab. Computational approaches have been extensively cast-off in 
the design process during the past three decades to rationalize and expedite drug 
development. A popular technique that has a strong chance of binding to an 
important target is Virtual Screening (VS) (Berdigaliyev and Aljofan 2020). When 
using low-cost platforms like ZINC or MolPORT, VS techniques can quickly scan 
millions of (commercially) accessible chemicals and prioritize which ones should be 
put through testing, internally synthesized, or purchased from outside vendors. 
Additionally, virtual compound libraries can be employed for screening (VS), 
which broadens the chemical space and is used to prioritize compounds from 
(ultra) huge compound libraries and a database comprising about two billion
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drug-like chemicals. Enamine REAL, which has over 17 billion make-on-demand 
compounds, is one of these libraries. The search area can be narrowed down to a few 
hundred compounds with the necessary characteristics for further research even 
though VS methods cannot always pinpoint the molecule that is the most active 
(Scior et al. 2012).
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Fig. 6.1 Schematic representation of virtual screening 

Technically, VS is any statistical or computational filtering tool that is used to 
choose molecules from a significant database. The obvious next step is to procure 
these chemicals and perform the experimental testing depicted in Fig. 6.1 after that. 
An operational definition of VS, which asserts that it is the exercise of ranking 
molecules by descending order of likelihood of relevant biological activity, encap-
sulates the essence of VS regardless of the method employed to rank molecules 
(Hawkins et al. 2007). Usually, the ranking algorithm is chosen based on the target’s 
known qualities, the substances active in the relevant biological assay, how distinct 
the desired ligands must be from well-known bioactive molecules, and what per-
centage of the ranked database would be picked for experimental testing. The 
ranking algorithm must be more effective to produce successful hits from VS 
when there are fewer compounds to test (Hert et al. 2005). 

The benefit of using computational methods is that they can deliver new medi-
cation candidates more quickly and inexpensively. In many stages of the discovery 
process, using complementing experimental and informatics methodologies raises 
the likelihood of success (Yadav et al. 2021).
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Some considerations are necessary for the practical deployment of virtual screen-
ing applications (Warren et al. 2006).

• The amount of time needed for computing can be very high, especially when 
dealing with big databases containing millions of chemical components.

• Particularly when using computationally straightforward procedures, the accu-
racy of the employed attributes is crucial.

• The techniques used for data analysis are crucial, especially in light of the 
enormous amount of data that high-performance modeling produces.

• For timely results, the gear and software being used must be appropriate. 

6.2 Virtual Screening Methods 

The methods of Virtual Screening can be largely categorized into following 
methods: 

1. Approach that ranks compounds according to their degree of resemblance to 
known actives, depending on the molecule’s 2D or 3D structure is known as 
Ligand-based Virtual Screening (LBVS) (Yadav et al. 2022) 

2. Technique that determines a pharmacophore which is a 3D arrangement of 
characteristics that enhance or inhibit binding and search for it in the database 
being searched is known as pharmacophore-based Virtual Screening (PBVS). 
This methodology focuses on the characteristics like hydrogen bond donors, 
acceptors, acidic or basic units, and hydrophobic fragments and makes it possible 
to find unexpected scaffolds with the ideal properties. 

3. Technique that makes use of the target’s structural information, which is often 
determined by protein crystallography, to find compounds that match the “bind-
ing site” through advantageous protein-ligand interactions is known as structure-
based Virtual Screening (SBVS). 

4. Technique that asks for the target’s 3D structure to be present is known as 
receptor-based Virtual Screening (RBVS). 

Depending on the facts at hand, the approach chosen may be aided or restricted. 
More than one active small compound is identified in the absence of target structural 
knowledge, LBVS or PHBVS are viable options. SBVS can be taken into account if 
there are no known active chemicals but there is an investigational or computational 
model of the protein assembly. Several suitable techniques can be used, or multiple 
techniques can be combined, if both active chemicals and the target structure are 
available. 

(a) Bench marking 
(b) Data base creation 
(c) Data base filtering
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Drug discovery now includes VS as a crucial component because in order to select 
potentially active chemicals, a hierarchical workflow is typically implemented that 
combines various techniques (either sequentially or concurrently) as filters as shown 
in Fig. 6.1 (Tang and Marshall 2011). 

6.2.1 Structure-Based Virtual Screening 

Target-based virtual screening (TBVS), often referred to as structure-based virtual 
screening (SBVS), seeks to predict the most efficient manner in which ligands would 
interact with a molecular target to produce a complex hence, the ligands are listed in 
ascending order of target affinity, with the most promising compounds at the top. 
The target protein’s 3D structure must be known for SBVS approaches to predict in 
silico, the interactions between the target protein and each chemical molecule. 
According to how strongly they bind to the receptor site, the chemicals are selected 
from a database and organized into groups in this technique. Molecular docking 
stands out among SBVS techniques due to its less computational expense and 
successful outcomes (Meng Zhang et al. 2011). 

This approach was developed and tested for the first time by developing a series 
of algorithms to analyze the geometrically possible arrangements of a ligand and 
target. Despite the method’s promise, it was not until the 1990s that this technique 
was popular, thanks to improvements in the techniques used, a jump in computing 
power, and simpler right to use to the basic data of the mark molecules (Kuntz et al. 
1982). Based on how strongly they attach to the receptor site, the evaluated mole-
cules are sorted throughout the SBVS procedure. As a result, it is possible to 
discover ligands that are more expected to act together pharmacologically with the 
molecular target. Score jobs are cast-off to confirm the possibility of a binding site 
affinity between the ligand and target; hence, a trustworthy scoring function is 
essential to the docking process in this approach (Leelananda and Lindert 2016). 

There are benefits and drawbacks to using SBVS. The following are a few 
benefits (Lionta et al. 2014):

• The time and money required for screening millions of tiny compounds have 
decreased.

• As the molecule need not physically exist, it can be computationally examined 
even before it is created.

• Various tools are available to help SBVS as mentioned in Table 6.1. 

The following are some examples of the drawbacks:

• Some tools are more effective in certain situations but not in others.
• The complicated nature of ligand-receptor binding interactions makes it difficult 

to parameterize as a result which the proper binding position and classification of 
molecules are not accurately forecast.

• It may provide erroneous results, both positive and negative.
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Table 6.1 Key features of widely used docking software 

Sl. 
No. 

Author Institution and 
website 

Parallel 
computing 

Operating 
system 

1 AutoDock Molecular Graphics 
Laboratory, The 
Scripps Research 
Institute, CA, 
USA http://autodock. 
scripps.edu 

Available Free 
noncommercial 
l use 

Not 
available 

Linux 
Windows 
SGI IRIX 
Solaris 
Mac OS X 

2 DOCK Kuntz Lab, University 
of California, San 
Francisco, USA http:// 
dock.compbio.ucsf. 
edu 

Available Free for aca-
demic 
institutions 

MPICH 
library 

Linux 
Windows 
Mac OS X 

3 FlexX BioSolveIT GmbH 
Sankt Augustin, Ger-
many http://www. 
biosolveit.de/FlexX 

Available Six-week eval-
uation license 

Virtual 
high-
throughput 
screening 
on cluster 
platforms 

Windows 
Linux 

4 Gold Cambridge Crystallo-
graphic Data Centre 
(CCDC), UK 
(in collaboration with 
University of Shef-
field and 
GlaxoSmithKline) 
http://www.ccdc.cam. 
ac.uk/ products/ 
life_sciences/gold 

Available Interactive Web 
Trial 

Grid 
Computing 

Windows 
Linux 
IRIX 

Despite the flaws mentioned above, several research involving SBVS have been 
produced recently, proving that despite these disadvantages, SBVS is still regularly 
because of time and money savings for developing new drugs (Nunes et al. 2019). 

Researchers can perform VS procedures more easily by using a variety of VS 
software tools that use different docking techniques because they are not required to 
have a thorough understanding of computer science to design the algorithms. VS 
software reduces the expenses by acting as filter to select compounds from thousands 
of databases that are more likely to show biological activity against the selected 
target. 

6.2.2 Ligand-Based Virtual Screening 

There are a few ligand-based approaches that are rather sophisticated scientifically, 
such quantitative structure-activity relationship (QSAR) modeling, molecular simi-
larity search, and ligand-based pharmacophores. As templates, LBVS starts with

http://dock.compbio.ucsf.edu
http://dock.compbio.ucsf.edu
http://dock.compbio.ucsf.edu
http://www.biosolveit.de/FlexX
http://www.biosolveit.de/FlexX
http://www.ccdc.cam.ac.uk/
http://www.ccdc.cam.ac.uk/


known active substances. The component of LBVS techniques such as computa-
tional descriptors of molecular structure, features, or pharmacophore aspects exam-
ines the correlations between active database or test compounds in a distinct 
chemical descriptor space (Bajorath 2001). The sophistication and complexity of 
these descriptors might differ significantly. If there are any “descriptor solutions” at 
all, finding them universally applicable or desirable is difficult. This is due to the fact 
that it might be difficult to accurately depict molecules using mathematical models 
and descriptors for LBVS calculations. Multiple descriptor types are frequently 
required by different search issues and methods, and different descriptor combina-
tions frequently produce results that are either extremely similar or quite divergent. 
Depending on specific methods and applications, descriptors of variable dimensions 
may also work (Bradley et al. 2000). It has also been found that, in some cases, even 
simple 2D descriptions of molecules can faithfully reproduce search results that were 
previously thought to be dependent on the usage of complex 3D descriptors (Xue 
et al. 2001). To enable objective and automatic choice of descriptors for definite 
applications, machine learning techniques or information theoretic methodologies 
need to be applied. Different methods generally produce divergent results depending 
on the features of the quest problem under investigation and multifaceted classes that 
are evaluated, which also reflects the large algorithmic range of approaches exploited 
for VS applications (Martin et al. 2002). 
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Sometimes, it is challenging to recognize level of estimated chemical similarity 
that correlates to biological similarity of test molecules, which complicates com-
pound selection techniques. Even with these challenges and possible downsides, 
LBVS has produced several prominent success stories, both in sovereign case 
studies and when used in combination with HTS. For instance, it has been confirmed 
in various autonomous studies that pairing LBVS with HTS in repetitive way can 
raise the success proportions by one to a factor of two. Despite the innate limits of 
computational procedures, it is acceptable to undertake that successful applications 
of VS are considerably more frequent than those published so far given the high-
class flora of the majority of discovery activities. Despite the fact that compound 
filtering has received a lot of attention, the most common (and challenging) use of 
LBVS may be the hunt for compounds that structurally differ from patterns but 
exhibit equivalent activity (Bajorath 2002). 

6.2.3 Pharmacophore-Based Virtual Screening 

The term “pharmacophore” has an extended and fruitful history in medicinal chem-
istry. Before crystal structures enabled for the observation of protein-ligand interac-
tion, chemists employed within a certain sequence would identify the portions of the 
fragment most involved with a desired biological function by trial and error (Van 
Drie 2007). Changes to the molecule’s other components could alter activity as long 
as the pharmacophore remained stable, but they frequently guaranteed that potency 
was maintained, with the exception of cases where extra molecular segments caused



significant disturbance. The two different kinds of compounds may have comparable 
biological processes if a pharmacophore is pleased by supplementary functional 
assemblies, analogous collections, or atoms organized in a spatially equivalent way 
on another scaffold. This idea can be applied more broadly. Even while 2D topology 
may not reveal a joint design of characteristics, the presence of necessary 
pharmacophoric features in the anticipated three-dimensional geometry is sufficient 
to produce meaningful biological action. These concepts were then established in 
order to quest a database of 3D assemblies for ligands that matched 3D 
pharmacophores. These techniques fall under the umbrella of “pharmacophore-
based VS” (Kurogi and Guner 2012). A “pharmacophore” is any representation of 
pharmacophore properties that eliminate 3D geometry and instead make use of a 
number of atoms or functional groups. The 3D pharmacophore’s most fundamental 
form is the geometric presence of several significant elements, frequently selected 
from aromatic rings, hydrophobic groups, hydrogen bond donors, and acceptors. In 
the lack of the three-dimensional (3D) structures of receptors complexed to ligands, 
the major biologically relevant metric that connected molecular structure to biolog-
ical activity was thought to be the pharmacophore. However, as can be shown as in 
Table 6.2, a set of tools that capture the unique characteristics, the charges, the 
hydrophobic nature, and the shape can easily characterize a 3D pharmacophore in 
greater detail. These descriptors were used into modeling and design as part of 3D 
QSAR, and VS tests were conducted utilizing a range of various methodologies, 
from multidimensional QSAR to a simple grouping of pharmacophoric-binding 
components. 
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6.2.4 Receptor Structure-Based Methods 

The availability of a target’s 3D structure is necessary for receptor-based virtual 
screening techniques, which are also known as structure-based techniques. These 
techniques require the obvious molecular docking of each ligand keen on the target’s 
binding site. This results in a projected binding mode for each chemical in the 
database and a measurement of the compound’s degree of fit in the target-binding 
site. The ligands that bind to the target protein strongly are then separated from those 
that do not use this information. In comparison to ligand-based techniques, receptor-
based approaches are more significant, particularly because target proteins’ 3D 
structures are revealed and made available which leads to more dependable and 
accurate outcomes. The Receptor-based Virtual Screening process consists of fol-
lowing computational steps, including: 

(a) Target selection and database preparation 
(b) Ligand selection 
(c) Docking 
(d) Postprocessing stage
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Table 6.2 Tools available for pharmacophore identification and ligand-based design (Cheeseright 
et al. 2008) 

Sl. 
No. 

1 GALAHALD Genetic algorithm with linear assignment for hypermolecular 
alignment of datasets (GALAHALD), Tripos, Inc. http:/www. 
tripos.com/data/SYBL/ GALAHALD_9-7-05.pdf 

2 DISCO and DISCO 
tech 

DIStance Comparison for multiple pharmacophores generations. 
Based on clique detection. The conformational search is sepa-
rated. 
Tripos, Inc.www.tripos.com/data/SYBL/DISCOTech-072505. 
pdf 

3 GASP Genetic algorithm Similarity Program. A flexible genetic algo-
rithm. The pharmacophoric features are defined by the SYBYL 
package. 
Tripos, Inc.www.tripos.com/data/SBYL/GASP-072505.pdf 

4 ROCS method A shape-based method developed by Open Eye (www.eyesopen. 
com) involves converting a single molecule in a potentially 
bioactive conformation into a series of Gaussian grid functions 
that represent shape or atomic character. This information is then 
compared to similar data from a precomputed database of stored 
conformations using a scaled similarity function that measures 
shape overlap or atomic character similarity. This approach 
stands out for its quickness, logical command-line interface, 
parallelization, and reliable performance with various ligand 
classes. 

5 Catalyst An integrated setting for managing databases and running queries 
for medicine distribution. It essentially functions as a VS tool 
against a database that has a precomputed conformational 
expansion for each ligand. Every chemical has several stored 
conformations, each of which can be used to create a 3D 
pharmacophore using hydrophobic, hydrogen bonding, and 
potentially positively and negatively ionizable functional groups. 
Software from Chemical Computing Group and Schrodinger for 
computational chemistry also offers useful variations of Catalyst-
like capabilities. 
www.accelrys.com/products/catalyst/catalystproducts/cathypo. 
html Accelrys, Inc. 

6 Surflex-Sim method An array of “observer” points that describe the local nature of the 
surface and any potential interactions surround each molecule. 
There will be a shared subset of comparable observer points 
between two related molecules. When the disparities in 
pharmacophore character and molecular surface between two 
molecules that may be deduced from observer points are mini-
mized, this is known as an ideal alignment. To speed up the 
algorithm, large molecules can be fragmented into parts which 
are then compared, and then tested for consistency. This feature 
also makes the method capable of identifying alignments when 
one molecule is much smaller than the other.

http://www.tripos.com/data/SYBL/
http://www.tripos.com/data/SYBL/
http://www.tripos.com/data/SYBL/DISCOTech-072505.pdf
http://www.tripos.com/data/SYBL/DISCOTech-072505.pdf
http://www.tripos.com/data/SBYL/GASP-072505.pdf
http://www.eyesopen.com
http://www.eyesopen.com
http://www.accelrys.com/products/catalyst/catalystproducts/cathypo.html
http://www.accelrys.com/products/catalyst/catalystproducts/cathypo.html


The virtual screening campaign’s first phase, target identification, is crucial
for the success of the drug development process. Polysaccharides, lipids, nucleic
acids, and proteins are the macromolecules which are targeted with small-
molecule compounds. Proteins, and within them enzymes, are always the pref-
erable one as they possess excellent binding pocket properties, which enable
high specificity, potency, and low toxicity. The Protein Data Bank is the
foremost source for experimentally verified 3D structures of large biological
molecules. So, the first step in acquiring a protein 3D structure for a VS
operation is to use this database. Once a protein’s 3D structure has been
established, its druggability score can be calculated. Druggability is the capacity
of a receptor to bind substances with drug-like properties. The determining factor
in this process is the ability of the molecule to interact well with a particular
pocket or cleft in the protein. Finding these binding sites is straightforward when
a ligand and the target protein have been explicitly co-crystallized. If this kind of
information is unavailable, it may be challenging to pinpoint the binding site’s

Tool Pharmacophore identification programs and resources
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Table 6.2 (continued)

Sl. 
No. 

7 UNITY package from 
Tripos Inc 

Additionally, the user must be able to recognize the spatial 
arrangement and pharmacophore properties. This can be used to 
concentrate on a small number of features or to omit a certain 
volume from the molecule when there are several chemicals 
present and biological activity is known. The database’s 
chemicals are then compared to the results of the Lead Discovery 
query, using a versatile-guided tweak method with the Virtual 
Screening 99 pharmacophore. To get a decent recall of actives, it 
is frequently required in practice to tune tolerances and charac-
teristics. Before doing a thorough database search, validation 
using known actives against a limited, diverse background of 
inactives is frequently advised. 

8 Ligand Scout 
from Inte:Ligand, 

An additional technique that extracts pharmacophores from a 
protein crystallographic complex (www.inteligand.com). 
Hydrophobes, normals to aromatic rings, hydrogen bond donors 
and acceptors (including extension points), and other limited 
pharmacophore characteristics are included in this method. In 
actual reality, the suspected or known binding sites have been 
transformed into pharmacophore search queries, and then the 
pharmacophore data have been transmitted to software like cat-
alyst or MOE. It successfully reproduces pertinent binding 
mechanisms in validation investigations. 

Figure 6.2 displays a typical schematic representation of receptor-based virtual 
screening. A variety of computational methods that will be thoroughly covered in 
the following sections must all be implemented correctly for this workflow’s many 
stages to function properly. (Budzik et al. 2010). 

(a) Target Selection and Database Preparation

http://www.inteligand.com
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Fig. 6.2 Schematic representation of receptor-based drug designing



position. Under these circumstances, it is possible to categorize potential binding 
locations using computational approaches. In order to find binding pockets, 
several computational methods, such as POCKET, LIGSITE, SURFNET, 
SPHGEN, FPOCKET, etc., primarily rely on geometric features. These algo-
rithms detect and rank probable binding sites based on the energy of probes 
interacting with those sites. Geometry-based algorithms are usually preferred 
because they are rapid and trustworthy in managing structural changes or 
missing atoms or residues in the input structure (Schmidtke and Barril ). 
Energy-based algorithms, on the other hand, are frequently more accurate and 
sensitive. Once the target has been identified and the most druggable binding site 
has been chosen, the target must be prepared for docking. Target preparation 
often involves withdrawing solvent and ligand molecules, introducing hydrogen 
atoms, establishing bond ordering and formal charges, capping chain termini, 
and defining the protonation states of amino acids (atom types). It might also be 
necessary to improve the crystallographic structure and identify the binding 
site’s flexible regions. Although it is commonly overlooked, target preparation 
may have a big impact on virtual screening enrichment (Kortagere and Ekins 

.2010)

2010
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(b) Ligand Selection 
A large number of compounds can be tested in a shorter amount of time 

because of virtual screening. The number of compounds that must be evaluated 
must be limited in some way because it is obviously impossible to quickly screen 
the entire chemical space for a single target. We need to filter out some 
molecules beforehand in order to create a workable library, which may be 
done using a variety of techniques. 

Assembling all the structures we want to evaluate is required before begin-
ning a new virtual screening campaign. Typically, a library of possible ligands 
must be constructed before docking; this library may have thousands of different 
compounds that will eventually be evaluated. Many databases of chemical 
structures have been created recently. These databases not only contain infor-
mation about these compounds’ structures, but also a plethora of pertinent 
chemical and biological data. ZINC is an example of such database which is 
free containing approximately 35 million buyable structures, including more 
than 4.5 million clean leads, is one of the most widely used compound databases. 
Other databases include PubChem, ChemDB, and ChemSpider, which together 
contain more than 32 million chemicals (63 million unique structures). Addi-
tionally, all significant pharmaceutical firms have internal corporate libraries that 
contain millions of chemicals (Abdo et al. 2010). 

Scientists have developed the idea of drug-likeness to determine whether a 
new molecule is a viable candidate to become a drug or not which means that a 
new molecule must possess some of the traits shared by the vast majority of 
medications in practice, traits that are connected to the compound’s bioavail-
ability after injection. Right now, there are a number of techniques available for 
determining how drug-like a certain molecule is, allowing us to narrow down our 
database. There are functional group filters and basic counting techniques 
among them.
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6.2.5 Counting Methods 

Counting techniques make it simple to narrow the search field. The partition 
coefficient (log P), molecular weight, and hydrogen bonding groups, which are all 
associated with bioavailability, are properties that are taken into account by counting 
techniques. The candidates which fulfill the above criteria have greater chances to 
pass clinical trials. One of the most famous counting methods is Rule of Five which 
represents a set of rules that can be used to assess the drug-likeliness of a compound, 
which are:

• Hydrogen bond donors ≥5
• Hydrogen bond acceptors ≥10
• Molecular weight > 500 Da
• Log P > 5 

The fact that all numbers are multiples of 5 is where the name “Rule of Five” comes 
from. The majority of these exceptions involve antibiotics, vitamins, antifungals, and 
cardiac glycosides, though there are seem to be quite a few circumstances in which 
they do not seem to apply. Veber et al. further suggested that to improve oral 
bioavailability, the number of rotatable 360 bonds should be less than 7 (Veber 
et al. 2002). 

6.3 Functional Group Filters 

Functional group filters are grounded on the notion that some functional assemblies 
are inappropriate for use in drugs because they are either poisonous to organisms or 
extremely reactive. Functional groups that are known to harm the organism, such as 
those that have teratogenic or mutagenesis potential, are frequently eliminated since 
the molecules they produce are typically also toxic. Furthermore, particular reactive 
groups, such as metals, alkyl-bromides, etc., can result in false positives. By 
concentrating just on compounds that are expected to be good leads, we can save 
our valuable time. 

6.4 Docking 

The next step of RBVS, i.e., molecular docking demands the most processing 
resources and time in the VS that is why it is observed as the core of most of virtual 
screening campaign. Molecular docking can begin once the target protein and a 
database of substances have been chosen. In this stage of the computational tech-
nique, it is possible to foretell the preferred posture and conformation of one 
molecule (a ligand) in relation to another when their binding results in the



development of a stable complex. The binding affinity between the receptor and 
ligand can then be predicted using the molecule’s preferred orientation in reference 
to the receptor. 
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The number of molecular docking applications available for use in virtual screen-
ing campaigns are now fairly considerable and growing. Each one of them involves 
looking for the ligand’s preferred alignments with the receptor. The search algorithm 
and the scoring function are two different sorts of algorithms that can be used to 
achieve these poses/conformations. The search method generates the many config-
urations and orientations that could be used to fit the ligand into the receptor’s 
binding pocket. The scoring function assigns a score to each of the many ligand 
postures and positions that the search algorithm produces. The best-scoring results 
correspond to a real-binding conformation which should be practically near to value 
which is observed experimentally. 

Postprocessing Stage This stage consists of choosing which compounds from the 
library database should move on to the experimental testing after they have all 
docked into the binding pocket of the drug target. The simplest method is to simply 
rank the compounds according to the values of the scoring function that is straight 
integrated into the docking algorithm, and then select the compounds with the 
highest scores for experimental testing (Cerqueira et al. 2015). 

6.5 Other Tools 

6.5.1 Fragment-Based Virtual Screening (FBVS) 

Many pharmaceutical researchers watched at a rival’s patent chemical and consid-
ered for leads that preserve the rival’s molecule’s action while still being sufficiently 
different not to overstep on the rival’s patent. It is common practice in these 
situations to substitute isosteric equivalents for molecular fragments. Only fragments 
and substructures are included in the scope of this FBVS discussion; fragments with 
a molecular weight of five atoms or less are excluded. Due to the demanding need of 
research and development in pharmaceutical world leads resulting from more than 
one chemical class for a given target, researchers sometimes put efforts to imitate 
their own compounds with suitably divergent scaffolds to assist as a standby in case 
of unpredicted letdown of the lead entrant in the clinic trials. Fragment-based drug 
development is not new because computational chemistry frequently involves com-
puting the properties of molecules using the attributes of their constituents. Strong 
evidence has emerged from recent studies supporting the notion that strong, ligand-
efficient binding fragments can be used to build larger, highly affine ligands from 
weaker, ligand-inefficient ones, as long as the additional fragments are carefully 
chosen to prevent noticeably impairing ligand efficiency (Congreve et al. 2008).
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6.5.2 Text-Mining Techniques 

All information about molecules can be discovered in publications that are mostly 
text-based, but for now, even the most sophisticated text-mining algorithm cannot 
find anything for us unless the molecular query is a basic phrase like glucose or 
pyrrolidine. This would seem to be an impossibility to a modern scientist if one did 
not stop to reflect that the question would have been difficult for the average layman 
to understand just 10 years ago. Text mining and natural language processing (NLP) 
were not what they are now 10 years ago. The bits and bytes used to hold molecular 
information adopt a format that is significantly different from regular language and 
cannot be quickly deciphered without appropriate notice, despite the fact that to a 
computer scientist VS appears to be just another type of text mining. Modern texts 
do contain some nonnative language content, but it is properly indicated and does 
not interfere with the NLP program’s functionality. The material to be searched, the 
algorithms used, and the retrieval procedures are all specialized for structure per-
ception and manipulation in the case of chemical structures, even though the 
information is still saved and processed as bits and bytes. This restriction results 
from the fact that molecular information is difficult to understand when expressed in 
natural language, and that when it is, as in patents, it is so cryptic that very few 
people attempt to read and decipher the chemical structure or composition by 
reading the IUPAC name detailed in a patent. Nowadays, everyone searches for 
the best software translator that can change a name into a recognized molecular 
structure. 

6.5.3 Other Techniques 

There are more methods for determining the interactions between a protein and its 
ligand; these methods use algebraic topology and are recorded in MathDL (Imrie 
et al. 2018) and TopologyNet (Cang and Wei 2017). MathDL uses sophisticated 
mathematical techniques (such as geometry, topology, and/or graph theory) to 
encode the representations of the physicochemical interactions into lower-
dimensional rotational and translational invariant representations. DeepBindRG 
(Meng Zhang, H. X., Mezei, M., & Cui, M. 2011) and DeepVS (Pereira et al. 
2016) focus on the complex’s interacting atom environments using atom pair and 
atom context encodings, with R between 0.5 and 0.6 and an RMSE for a particular 
protein ranging from 1.6 to 1.8.
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6.6 Role of Virtual Screening in Drug Discovery 

6.6.1 Case Study 1 

The study by Agrawal and colleagues illustrates crucial elements in carrying out 
SBVS. They investigated for E. coli DNA primase inhibitors. Three potential-
binding sites were found with the help of the GRID program. To extract the desired 
molecules from the database, a number of filters were applied, yielding roughly 
500,000 molecules. The top 2500 compounds were obtained using glide docking. 
There were 79 inhibitors on the short list, 68 of which could be bought. Of these, four 
inhibitors had an IC50 of less than 100 mM for inhibiting primase (Agrawal et al. 
2007). 

6.6.2 Case Study 2 

A study highlights the benefit of employing a pharmacophore isolated from a protein 
complex’s binding site. Tervo and colleagues developed two pharmacophore 
hypotheses based on the docking of three well-known sirtuin-2 histone deacetylase 
inhibitors using the UNITY software. The libraries of Maybridge and LeadQuest 
were flexible searched, yielding 34 compounds and by using the Volsurf permeabil-
ity model, these were condensed to 32 compounds. Eleven molecules were pur-
chased after more investigation followed by in vitro investigation. Out of 
11 molecules, four molecules showed IC50 inhibition of less than 200 μM (Tervo 
et al. 2006). 

6.7 Conclusion 

It is widely acknowledged that finding new drugs and developing them need time 
and resources. To speed up drug discovery, design, development, and optimization, 
there is a rising push to apply computational power to the combined chemical and 
biological domain. CADD is being used in the pharmaceutical business to speed up 
hit identification, hit-to-lead selection, improve the absorption, distribution, metab-
olism, excretion, and toxicity profile, and prevent safety concerns. It is no longer 
debatable how computational techniques like VS contribute to the development of 
new drugs. Computational design tools are used by all of the major pharmaceutical 
and biotechnology businesses in the world. CADD is currently predicted to make up 
10% of pharmaceutical R & D spending and will reach 20% by 2016. There are 
numerous successful studies where CADD, and especially VS, helped develop new 
drugs. The usefulness and influence of VS are still limited by significant scientific 
problems that have not yet been fully overcome, despite the commonly presented



extremely positive picture. First of all, there are problems with erroneous posture 
rating, binding energy estimations, and similarity-based compound rankings, all of 
which need for a time-consuming follow-up analysis in order to select possible leads 
based on knowledge or intuition. To make VS the main stage in drug development, it 
is still necessary to show that the components on which it depends are precise and 
reproducible. This can be done either by developing new virtual screening methods 
or by carefully validating existing methods in experiments. The interplay between 
computational modeling and experimental research is therefore a pivotal phase 
where the contributions from each of these domains are essential for their mutual 
progress. Despite these limitations, VS is still the most time- and resource-
consuming, cost-effective method for exploring a wide range of chemical possibil-
ities since it allows access to a large number of possible ligands, the bulk of which 
are easily accessible for purchase and subsequent testing. Because of the increasing 
number of targets identified by genome and proteomics as well as improved tech-
nique that can anticipate higher hit rates and better forecasts of geometries, VS 
methods will soon play an even more dominating role in drug design. 
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Chapter 7 
Target-Based Screening for Lead Discovery 

Monalisa Kesh and Sachin Goel 

7.1 Introduction 

7.1.1 Target-Based Drug Discovery Strategy 

Target-based drug discovery, also known as TBDD, has emerged as the primary 
strategy used by several pharmaceutical industries over the past few decades as a 
result of the tremendous advancements in molecular biology, recombinant technol-
ogy, and genomics. Despite growing investment from pharmaceutical firms, the 
strategy of target-based drug discovery has not resulted in any simultaneous rise in 
the number of novel molecular components and discovery of certain biological 
products, despite being beneficial in throughput and costs. A gene or a gene product 
or a molecular process that was able to be identified through genetic research or other 
biological research or investigations serves as the initial molecular target for TBDD 
(Hughes et al. 2011). It is customary to use genetic and molecular biology techniques 
to pinpoint the genes responsible for specific diseases, and with the advent of more 
affordable and rapid sequencing technologies, findings from wide-ranging enter-
prises have also been extensively used to increase the pool of the putative molecular 
targets. After that, genes are expressed via recombinant technology in less complex 
organisms like yeast, allowing high-throughput screening against massive chemical 
libraries to find “hits”—a small compound and/or a biologic that can have interac-
tions with the desired target. Target identification and selection, target verification, 
and assay development, followed by hit detection, lead optimization, and preclinical
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and clinical development, are all part of the process (Clark et al. 2010; Lindsay 
2003). It is crucial to find a target, which is “druggable.” Any target is said to be so if 
a therapy, either it is a small-molecule therapeutic or a biologic, may change its 
activity, function, or behavior. Some examples of biological targets include both 
proteins and nucleic acids. If a target is known to affect how a disease manifests or is 
implicated in its etiology, it can be regarded as a prospective pharmacological target. 
The 3D framework of a such target should be accessible to evaluate druggability, and 
also, the target’s expression should not be uniformly distributed throughout the 
body, but its toxicity profile should appear encouraging. Because the target is readily 
“assayable,” high-throughput screening is possible. Lastly, in application to phar-
maceutical firms, the status of the proposed target’s intellectual property (IP) should 
be good (Gashaw et al. 2011). Target-based drug discovery strategy inputs include 
the target biomolecules’ 3D structural data, interactions with ligands, inhibitors, 
and/or modulators, as well as the nature, characteristic properties, and shape and size 
of their binding pockets. The target protein, such as an enzyme, may be any number 
of biomolecules, such as cell surface or intracellular receptors, ion channels, pumps, 
and transcriptional regulators, each with a clearly defined role in the biological 
milieu. Designing novel compounds can benefit from the spatial information of 
different intermolecular interactions. Here, the end result of testing an idea in various 
procedures put together to suit the new needs of particular well-defined requirements 
of a mandate is a lead or potential therapeutic molecule. An unsolvable structure, a 
need for fresh proof-of-concept treatments, the exploration of new material and idea 
frontiers, or any other conundrum may be the mandate. The target-based drug 
discovery methods can actually be thought of as a collection of computational 
techniques, including visualization tools, put together to create decision support 
systems for the drug designing and discovery process (Anderson 2003). They are 
considered direct approaches because they include inputs from the target protein 
structure into the drug design/discovery process. The focus point or central idea of 
the adopted approaches in these investigations involves the 3D framework of the 
target. Numerous pharmaceutical research units have included them in their regular 
operating processes due to their resource and cost-effectiveness. The approach to be 
taken to accomplish the goal is determined by the task at hand and the amount of 
information available to the target/ligand. In light of this, suitable modeling and 
simulation tools are chosen to produce a result, such as a proposed protein or small-
molecule chemical structure, which might be used as an input to the subsequent stage 
of operation. For instance, a drug development process that begins with a study of 
disease genesis will go on to identify a target, determine that target’s 3D structure, 
find that target’s ligand-binding site, etc. Additionally, there are a ton of leads and 
potential medications from the virtual routes waiting to enter wet labs. Without bias, 
a lot of the tasks in target-based drug discovery can be accomplished even with low 
resources.
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7.1.2 Types of Drug Discovery Approaches 

The identification of more molecular targets has been made easier by developments 
in combinatorial chemistry and molecular biology, which has necessitated the 
creation of innovative screening techniques (Berg 2010). The following are a few 
of the several screening methods applied in the drug discovery procedure. It is 
crucial to consider the techniques’ key advancements and difficulties. 

7.1.2.1 High-Throughput Screening and High-Content Screening 

In the initial phases of drug development and designing, high-throughput screening 
or HTS is widely used. HTS is used to locate hit compounds displaying action averse 
to a chosen target, from large libraries of compounds that can comprise thousands of 
molecules (Hevener et al. 2018; Martis 2010). A hit molecule is confirmed and 
developed into a lead chemical compound with greater selectivity and potency when 
it is found. From there, more research can be done to identify a potential therapeutic 
candidate for preclinical testing. To locate, track, and measure the events in HTS, 
robotics, liquid/microplate handling devices, and microplate readers are utilized. In 
addition, specialized software is required for instrumentation control and data 
processing (Fernandes et al. 2009). HTS is an important tool; however, it may be 
difficult to evaluate drug attributes like toxicity and bioavailability. HTS is mostly 
used to support lead optimization; it can be thought of as a brief scan of biological 
organisms that enables the rapid exclusion of candidates with weak or negligible 
effects (Armstrong 1999). High-content screening (HCS), a method that was first 
created to support HTS, has become quite popular in recent years. HCS uses cellular 
imaging and high-throughput methods to efficiently gather quantitative data from 
intricate biological systems. The term “high-content screening” was first used to 
emphasize the complicated subcellular morphological and intensity-based readings 
that allow studying variations in a cell population as opposed to a single population-
averaged readout per perturbation in the 1990s, when high-throughput tests using 
multi-tier plates and automated fluorescence microscopy came together. Multiple 
characteristics of distinct cells or species can be explored simultaneously with HCS. 
Data are extracted from cell populations using a combination of automated micros-
copy, image processing, and visualization technologies. HCS typically involves 
high-throughput fluorescence imaging of the samples and generates quantitative 
data on a variety of details, including the geographical distribution of targets and 
the morphology of individual cells and organelles. Preclinical drug discovery 
throughput is increased through high-content screening. In contrast to biochemical 
assays, screening small molecules, various natural products, and genetic or autho-
rized medication libraries in a monolayer cell culture format enable the testing of 
hundreds of perturbations in a single experimental study while maintaining physio-
logical relevance. Currently, traditional or two-dimensional (2D) tissue culturing is 
used for the majority of HCS. However, research into 3D models of cell culture is



also ongoing. 3D models are poised to revolutionize the HCS space by boosting 
physiological relevance. Spheroids and organoids are used in 3D high-content 
screening, which enhances the physiological significance and frequently seeks to 
lower the high rate of attrition in drug development experiments. It is actually 
possible to screen up to approximately more than 9000 compounds every day by 
the use of HTS procedures. 
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7.1.2.2 Fragment-Based Drug Discovery 

Another well-known method for finding new drugs is called fragment-based drug 
discovery strategy or FBDD. This strategy of drug discovery makes use of smaller 
pools with hundreds of low-complexity compounds, or “fragments,” as opposed to 
HTS campaigns, which use larger libraries of complex compounds to be screened 
(Chen et al. 2017). Fragment-based drug discovery takes less money for research 
than HTS. By employing the fragments, the complexity of the substances being 
screened is decreased, enabling a deeper examination of the target’s binding site. A 
fantastic place to start when designing lead compounds with higher ligand efficiency 
is with a fragment-based drug discovery strategy. Thus, FBDD offers a bottom-up 
approach that enables the exploration of a greater area and the production of lead 
compounds with higher affinity and higher specificity. A variety of biophysical 
methods are used in FBDD for screening. The next step is to structurally characterize 
fragment binding using X-ray crystallography or even NMR spectroscopy. A high-
throughput process that uses X-ray crystallography to simultaneously screen indi-
vidually soaked fragments is the most recent advancement in the FBDD approach. It 
is believed that the use of AI, like that of deep learning, will speed up the increment 
of fragment hits. Artificial intelligence can optimize fragment hits while taking into 
account crucial elements like ADMET characteristics, solubility parameters, biolog-
ical activity, and synthetic viability. Different studies utilizing fragment-based 
screening have highlighted its relevance and importance (Lu et al. 2021). 

7.1.2.3 Virtual Screening 

A method used in silico to find potential bioactive drug candidates is called virtual 
screening or VS. Virtual screening methodologies employ computational techniques 
to automatically scan massive datasets of recognized 3D structures (Patrick Walters 
et al. 1998). Two basic strategies are used when using VS tool: One is based on 
protein and ligand interactions, and the other is centered on the molecular homology 
principle. For their applications, all that is required is a virtual compound database 
and a starting point, the protein structure of the receptor or target molecule and for 
the latter, at least one known active chemical. Because the system’s data are limited 
in these early stages of drug discovery, they are ideal instruments. According to 
reports, virtual screening procedures are a superior alternative to HTS because they 
increase the likelihood of locating the best outcome from a sizable virtual database.



Additionally, VS is seen as a more affordable way to identify compounds than 
physical alternatives that require screening enormous libraries of compounds. This is 
because it is a computer-based screening methodology. Only the best promising 
molecules are created after using virtual screening to discover the most promising 
hits that can bind to the target. VS can also be used to find hazardous substances or 
those with negative pharmacological and pharmacokinetic characteristics. Recent 
years have observed a significant spike in the number of new methods and software 
programs that can be used in this strategy. The most notable developments in this 
area are influenced by technological advancements. One would single out the 
techniques that mix structure and ligand-based approaches as being among the 
most significant innovations. A reasonable computational cost is added to the search 
process as a result. Additionally, given the explosive growth of big data, it is 
important to combine machine learning techniques with tried-and-true VS tactics. 
They have frequently demonstrated an effective method for dealing with crucial 
biological features from numerous compound databases for medication designers. 
Their findings must still be carefully examined though (Bhunia et al. 2021; Kim 
2016). 
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7.2 Structure-Based Drug Designing (SBDD) 

Drug design, often referred to as “rational drug design” or just rational design, is the 
process of developing innovative medications based on the knowledge of a target 
organism (Klebe 2000). One such example of a biomolecule whose activity is 
induced or hindered by the medication and assists the patient therapeutically is a 
protein. Designing compounds that engage with and attach to biomolecular targets 
complementing one another in terms of configuration and charge is the essence of 
drug design. Drug design often uses computer simulation techniques. It is also 
known as computer-aided drug design or CADD. Last but not least, drug design 
that depends on understanding the 3D framework of the desired macromolecular 
target is actually SBDD. 

Based on the above discussions, the steps involved in structure-based drug 
designing (SBDD) are as follows: 

1. Target structure preparation: The protein structure was produced by the addition 
of certain polar hydrogen atoms and the Kollman charge to it after water and 
heteroatoms were removed (Fig. 7.1). 

2. Recognition of the active site/binding site of the ligand. 
3. Preparation of the library of compounds. 
4. Molecular docking and scoring functions. 
5. Molecular dynamic (MD) simulations. 
6. Calculation of binding free energies.
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Fig. 7.1 3 D structure– 
BACE 1, having 
PDB ID: 6EJ2 

7.2.1 Homology Modeling 

This modeling technique is a computer approach for foretelling the 3D formation of 
a protein from its amino acid sequence (Cavasotto and Phatak 2009; Muhammed and 
Aki-Yalcin 2019) and is mostly accurate in doing so. It consists of several straight-
forward and basic stages. There are several software packages and services available 
that are utilized for homology modeling. A single modeling program or server 
cannot be said to be superior in every manner to others. Improving the grade of 
homology modeling is essential since the functioning of the model relies on the 
caliber of the created protein 3D structure. 

Numerous uses for homology modeling exist, including drug searching. Drug 
development depends on the 3D determination of protein structures since medica-
tions interact with receptors, which are primarily made up of proteins in their 
structure. As a result, using 3D structures of proteins created using homology 
modeling, protein interactions have been clarified. This aids in the discovery of 
fresh medication prospects. Homology modeling is crucial for accelerating, simpli-
fying, lowering the cost, and improving the utility of drug development (França 
2015). The following are the steps in homology modeling: 

1. Template recognition and initial alignment. 
2. Alignment correction/multiple sequence alignment. 
3. Generation of backbone. 
4. Loop modeling. 
5. Side-chain modeling. 
6. Optimization of the model. 
7. Validation of the model.
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7.2.2 Rational Drug Design (Role of SBDD) 

The technique of preparing innovative medications based on the knowledge of a 
target organism is referred to as rational drug design (e.g., protein and nucleic acid) 
(Reddy and Parrill 1999). By relying on a preexisting understanding of the structure, 
function, and mechanism of the target, it skips screening thousands of compounds at 
random (Mandal et al. 2009). CADD is crucial for supporting pharmaceutical 
chemists in the entire phases of developing a therapeutic candidate (Ramírez 2016). 

7.2.3 Approaches of SBDD 

SBDD depends on using methods like X-ray crystallography or NMR spectroscopy 
to ascertain the three-dimensional geometry of the biological target. If the experi-
mental framework of the target is unknown, one can still construct a comparative 
model of the desired target based on the theoretical protein structure that is similar to 
the target. Prospective medications that are anticipated to interact with the biological 
target with close connection along with selectivity can be made using associated 
resolution and perception. Numerous computer strategies are alternative approaches 
for generating prospective innovative medicine options. 

There are essentially three major categories that can be used to categorize current 
approaches to structure-based drug creation. The first technique involves finding 
novel ligands for a particular receptor by searching through massive databases of 
small-molecule 3D structures for those that match the binding pocket of the receptor 
using quick approximation docking algorithms. This method is known as virtual 
screening. A second category includes new ligands that are created from scratch. By 
piecemeal assembly, ligand molecules are generated in this technique inside the 
confines of the binding pocket. These fragments could be single atoms or bits of 
molecules. The main benefit of such a strategy is the ability to suggest novel 
structures that are not found in any database. The third technique involves improving 
existing ligands by testing potential analogs inside the binding cavity. Structure-
based drug design (SBDD) can be differentiated roughly into two types (Wilson and 
Lill 2011): 

1. Ligand-based drug design or database searching 
2. Receptor-based drug design 

7.2.3.1 Ligand-Based Drug Design 

Understanding the compounds attaching to the chosen targets has been necessary for 
indirect drug design, sometimes referred to as ligand-based drug design (Badalà et al. 
2008). With the help of these extra molecules, one pharmacophore model that details 
the essential structural conditions for such a molecule to attach to the target may be



Þ þ

developed. In the absence of 3D knowledge about the receptor, a method known as 
ligand-based drug design—which focuses on understanding molecules that interact 
with the specific biological target—is applied. Pharmacophore modeling and 3D 
quantitative structure–activity interactions are the most significant and often utilized 
techniques in ligand-based drug design (3D QSAR). They can offer forecasting 
analytics that is appropriate for lead optimization and lead discovery. 
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Quantitative Structure–Activity Relationship (QSAR) Models 

Quantitative structure–activity relationship models or QSAR models, often known 
as regression or classification models, are used in the domains of chemical, biolog-
ical, and engineering (Roy et al. 2015). While classification QSAR models connect a 
set of “predictor” variables (X) to the categorical value of the response variable (Y), 
QSAR regression approaches, like other regression models, relate a set of “predic-
tor” variables (X) to the intensity of the response variable (Y). 

The biological activity of a chemical might be the QSAR response variable; for 
QSAR modeling, the predictor is the substance’s physical–chemical characteristics 
or hypothetical molecular descriptors. First off, QSAR models summarize a chem-
ical data set’s purported link between chemical compositions and biological activity. 
Additionally, QSAR models project unique compound characteristics. 

For instance, the quantity of a chemical needed to produce a specific biological 
response might be used to express biological activity. Additionally, when physico-
chemical properties or structures are expressed in numerical form, a mathematical 
relationship—also known as a quantitative structure–activity relationship—can be 
discovered. The mathematical equation can then be used to predict the behavior of 
new chemical structures if it is well-validated. 

A QSAR has the form of a mathematical model: 

Activity= f physicochemical properties and=or structural propertiesð error: 

The error includes the model error (bias) and the observational variability, which is, 
even with an appropriate model, the observations that can tend to vary. 

Pharmacophore Modeling 

An abstracted description of a molecular property necessary for a biological macro-
molecule to identify a ligand is called a pharmacophore. According to IUPAC, a 
pharmacophore is “an assemblage of steric and electronic characteristics necessary 
to permit the optimal supramolecular interactions with such a given biological target 
and to activate (or obstruct) its biological response.” The ability of ligands with 
varied structural characteristics to adhere to a given receptor site is demonstrated 
using a pharmacophore model. Pharmacophore models may also be utilized to 
discover new ligands that will attach to the same receptor.
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7.2.3.2 Receptor-Based Drug Designing 

Constructing ligands fall within the topic of structure-based drug designing tech-
niques, which is known as RBDD. Here, ligands are generated via piecemeal 
assembly inside the boundaries of the binding pocket. These fragments might be 
single atoms or bits of molecules. The main benefit of such a strategy is the ability to 
suggest unique structures that are not found in any database. 

Docking 

Bringing two or even more molecules altogether, such as a drug and an enzyme or 
protein, is the subject of research of molecular docking. In order to predict how an 
enzyme or a protein will interact with small molecules, a technique known as 
docking uses molecular modeling (ligands). We used AutoDock4.2 program 
(Rizvi et al. 2013) for our work, with the following the below steps (Fig. 7.2): 

1. Retrieving the Target.pdb files from the major protein databases. 
2. Retrieving the Ligand.pdb files from the major ligand databases. 
3. Preparation of the Target.pdbqt file. 
4. Preparation of the Ligand.pdbqt file. 
5. Preparation of the Grid Parameter File. 
6. Preparation of the Docking Parameter File.

Fig. 7.2 Workflow diagram of drug discovery process
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7. Using Cygwin for Molecular Docking. 
8. Analyzing the results and retrieving the Ligand-Enzyme interaction complex.pdb.

7.3 Advantages, Applications, and Challenges 

7.3.1 Advantages of Target-Based Approaches 

One benefit of target-based strategies is that they are often quicker, simpler, and less 
expensive to design and implement than other methods (Zheng et al. 2013). They 
also commonly work with the understanding of a drug’s molecular processes from 
an earlier stage. Drug discovery efforts can employ crystallography, computer 
modeling, biochemistry, binding molecular pharmacology, kinetics, genomics, and 
mutational analysis to illustrate how a drug interacts with a target once the target has 
been discovered. This paves the way for the development of effective biomarkers 
and the identification of new drug classes that act at the target in the future. Target-
based drug development has, by some standards, been exceedingly successful. 70% 
of the 113 first-in-class medications approved by the US FDA between 1999 and 
2013 were found via target-based drug discovery (Eder et al. 2014). The strategy is 
not just for finding small-molecule drugs. Target-based techniques are typically used 
to find antibody medicines and other protein biologics and gene therapy and also 
nucleic acid-based treatments are intrinsically target-based, as known. A target-
based strategy has proven to be particularly effective with some target classes. 
Protein kinases are increasingly being targeted by a growing number of medications, 
particularly in cancer (Moffat et al. 2014), despite once being considered to be 
extremely difficult to execute. Over 30% of licensed medications target G-protein-
coupled receptors or GPCRs, making them the most popular class of pharmacolog-
ical target. Older GPCR-targeting medications were frequently phenotypically found 
based on pharmacological reactions, while target-based GPCR drug development 
made possible by genetics and recombinant technologies have produced better next-
generation therapies. For instance, the chemical genomic characterization of previ-
ous neuropsychiatric drugs revealed the 5-HT2a serotonin receptor to be a prominent 
target implicated in psychosis. After that, the FDA in 2016 authorized pimavanserin, 
a 5-HT2a receptor inverse agonist, for the target-based therapy of Parkinson’s 
disease psychosis (Vanover et al. 2006). The majority of peptide therapies have 
well-established targets, like the GLP-1 receptor, which is the target of exenatide, or 
the V1a vasopressin receptor, which is the target of selepressin in sepsis (Laporte 
et al. 2011). Phenotypic studies in tissues and animals can help assure translation to 
the clinic and identify unanticipated pharmacology, such as the discovery in target-
based assays that selepressin reduces vascular leak in addition to vasoconstriction 
(Maybauer et al. 2014). Human genetics is one of the most effective methods for 
locating therapeutic targets. A medicine that targets a human gene or a gene product 
has a good likelihood of being successful when that gene or the gene product is



strongly associated with a disease. Enzyme replacement therapy has been successful 
in treating rare hereditary illnesses including lysosomal storage diseases, which 
occasionally have molecular targets discovered through genetics. Additionally, 
pharmacological targets for more widespread illnesses may be revealed by rare 
genetic conditions. Humans with gain-of-function mutations in the PCSK9 gene 
have unusually elevated blood LDL cholesterol and elevated chance of evolving 
heart disorders (Abifadel et al. 2003). From there, PCSK9-blocking therapeutic 
antibodies were discovered, and the FDA authorized alirocumab and evolucumab 
in 2015. 
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7.3.2 Challenges of Target-Based Approaches 

Target-based drug discovery has certain downsides, one of which is the overuse of 
simple testing. Artificial recombinant cell-based assays frequently fail to represent 
the nuances of the physiological milieu of a whole organism. In reality, due to major 
improvements in phenotypic screening technologies including induced pluripotent 
stem cells, organ-on-a-chip systems, organoids, various high-content imaging tech-
niques, and CRISPR-Cas, TBDD has experienced a setback in the pharmaceutical 
sector. Even when a pharmacological target is known and the mechanism is outlined, 
target-based drug discovery faces a hurdle since sometimes the full picture is not 
revealed. Drugs may target several targets, and the observed efficacy may not 
necessarily be attributable to the expected mechanisms. Selective serotonin reuptake 
inhibitors or SSRIs appear to have a more sophisticated mechanism of action than, 
for instance, simply increasing serotonin in synapses (Walker 2013). The clinical 
reaction to Sildenafil in erectile dysfunction instead of its impact on cardiovascular 
disease is an example of an unanticipated pharmacological effect that can occur with 
drugs. The complexity of life can astound one. Recombinant systems have the 
potential to mislead scientists into working on projects and compounds that do not 
produce positive clinical outcomes, which is another issue with target-based strate-
gies. Because targets created for streamlined cell-based assays may not always act 
the same way as in the complex environment of entire organisms, findings from gene 
engineering in model animals might not even be applicable to the patients. The 
biology of intact animals and people is extremely complicated, and a recombinant 
system that is overly simplified may be unable to represent this complexity. Pheno-
typic assays examine substances in undamaged biological systems like cells, tissues, 
or animals with the goal of enhancing the translation of the medication discovery to 
the clinic by only causing the presence of disease-relevant traits. A biological 
system’s ability to forecast how medications will affect human disease will, ideally, 
increase with reduced perturbation. The fact that medicines may affect several 
targets and that the reported treatment success may not necessarily be attributable 
to the recognized molecular mechanism presents a real difficulty for target-based 
drug discovery. For instance, by controlling inflammation, selective serotonin 
reuptake inhibitors may potentially be used to treat depression. Another rather



well-known example of the same is Sildenafil or Viagra, initially developed for 
heart illness but unintentionally developed pharmacological properties that also 
helped to treat erectile dysfunction. It will be difficult to pinpoint a single biological 
target for widespread disorders with significant socioeconomic repercussions like 
obesity and depression because they are frequently complex. The therapeutic advan-
tage of reducing only one in several risk variables might not offset the adverse 
impact in situations where there may be unfavorable side effects. 
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7.3.3 Promising Examples of TBDD 

The key advantage of this strategy over the phenotypic strategy is the ease of 
implementation. It is usually quicker and less expensive as well. Furthermore, 
after a molecular target has been discovered, drug discovery researchers may 
completely comprehend how a drug interacts with its target using cutting-edge 
methods like crystallography, computer modeling, genomics, and mutational anal-
ysis. They may be able to increase their medications’ biodistribution or optimize the 
structural–activity connection as a result. Dr. Cassandra Kennedy and her colleagues 
at the Francis Crick Institute have created a new photoaffinity alkyne-tagged probe 
to bind to MCC950, a strong small chemical inhibitor of the NLR family 
inflammasome pyrin domain containing 3 (NLRP3) protein that has been found to 
decrease inflammation in the animal models. They published their work in 2021 
(Kennedy et al. 2021). According to this research, MCC950 could bind to targets 
that have not yet been discovered in addition to those for which it was designed to 
attach. If unintended disruptions to other biological pathways occur as a result of 
these off-target interactions, harm may result. The research team used photoaffinity 
labeling (PAL) and thermal protein profiling (TPP) with proteomics to identify and 
confirm carbonic anhydrase 2 or CA2 as a non-target protein for MCC950 at 
biologically relevant doses. MCC950 is a strong NLRP3 inhibitor. Through this 
study, the team emphasized the usefulness of proteomics and molecular biology 
methods in identifying and validating target molecules. The ability of these inhibi-
tors to attach with human hedgehog acyltransferase (HHAT), a representative of the 
mammalian membrane-bound O-acyl-transferase (MBOAT) superfamily thought to 
be involved in diseases like cancer and obesity, is another promising example of a 
target-based drug discovery approach. A photochemical probe was recently created 
by Dr. Lanyon-Hogg, a principal scientist at the University of Oxford, and his 
colleagues. Their research was published in 2021 (Lanyon-Hogg et al. 2021). To 
create biologically active small compounds, the Lanyon-Hogg group uses synthetic 
chemistry and biology techniques. Small-molecule HHAT inhibitors are still poorly 
understood in terms of their chemical processes and binding location. The most 
effective HHAT inhibitor known to date, IMP-1575, was shown to be a single-
enantiomer inhibitor in this study by making use of medicinal chemistry and a new 
assay for the HHAT lipid transferase activity (Acyl-cLIP), according to Lanyon-
Hogg. Since HHAT has a small-molecule binding domain and its cryo-EM structure



has been solved, it is now actually possible to use structure-guided methods to speed 
up the development of inhibitors. As these molecules are further improved, there 
may be a lot of follow-up research in medicinal chemistry investigations of HHAT 
inhibitors. By assisting in the creation and development of tools and molecules for 
target validation in the in vivo models, structure-guided medicinal chemistry may be 
a key step in validating HHAT as a therapeutic target in cancer, says the principal 
scientist Lanyon-Hogg. The abovementioned probes are examples of recently devel-
oped techniques that offer a reliable way to confirm drug–target interactions. Under-
standing this interaction allows for further tuning of the chemical using medicinal 
chemistry methods to boost specificity and affinities to the drug target. A drawback 
of the phenotypic screening strategy is that it can be difficult to further enhance the 
drug’s properties in the absence of knowledge about a drug–target interaction. In 
other words, by improving medication design, target-based drug discovery enables 
the researcher team to identify an issue and effectively solve it. Additionally, TBDD 
is particularly helpful when a gene and a disease have a well-established, strong 
association; this is valid for both uncommon illnesses and monogenic diseases. For 
instance, it was shown that a gain-of-function mutation in the PCSK9 gene raised 
blood levels of low-density lipoproteins (LDLs), commonly referred to as “bad 
cholesterol.” Due to this finding in 2015, the FDA finally authorized the drugs 
alirocumab and evolucumab. Both medications act by inhibiting PCSK9, which 
lowers LDL cholesterol and lowers the risk of developing heart diseases (Duan et al. 
2022; Guo et al. 2014; Singh et al. 2022). Phenotypic test technology is frequently 
cutting edge, although the methodology itself is not. There were not many alterna-
tives available before the development of cloned molecular targets. The effective-
ness of a target-based strategy grows along with our understanding of a disease’s 
molecular basis. When a popular drug target idea fails, for example, a new strategy 
utilizing phenotypic drug discovery may be necessary. 
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7.3.4 Molecular Docking 

Putting several molecules together is the subject of research of molecular docking 
(Meng Zhang et al. 2011). In order to predict how much an enzyme or protein will 
interact with small molecules (ligands), a technique known as docking is performed 
(Berry et al. 2015). The capacity of a protein (or enzyme) and nucleic acid to bind 
with small molecules to create a supramolecular complex has a significant impact on 
the dynamics of a protein, which may either enhance or impede its biological 
activity. Small molecules’ behavior in target proteins’ binding sites can be explained 
by molecular docking. The technique seeks to determine the proper positions of 
ligands in a protein’s binding pocket and to forecast their affinities (Ferreira et al. 
2015). Based on the types of ligands, docking can be classified as follows:



Compound 2D structure Molecular interactions
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Table 7.1 Molecular docking analysis of anticancer compounds against BACE 1 

Sl. 
No. 

Binding energy 
(kcal/mol) 

1. Cedronolactone D -9.5 Conventional Hydro-
gen bond 
THR481, TRP485 
Pi-Alkyl 
PHE517 
Pi-Sigma 
TYR480 
Van der Waals 
ASP441, GLY443, 
SER444, VAL478, 
ILE527, ARG537, 
TYR607, 
ASP637, GLY639, 
THR640, THR738 

1. Protein–small-molecule (ligand) type docking. 
2. Protein–nucleic acid-type docking. 
3. Protein–protein type docking. 

The example of protein–small-molecule (ligand) docking is discussed below in 
Tables 7.1 and 7.2 and Fig. 7.3. 

7.3.4.1 Molecular Docking Approaches 

Some techniques were specifically beloved by the docking society (Dar and Mir 
2017). One of those uses a match process to represent the protein and the ligand as 
harmonizing surfaces. The other one computes paired interaction effects between the 
two, while simulating that actual docking process. Both approaches offer several 
advantages and some disadvantages. 

Shape Complementarity Approach 

The ligand and target’s surface structure properties are employed in this strategy to 
determine how their molecules will interact. In this instance, the molecular interface 
of the ligand is portrayed in relation to the target’s accessible surface area of the 
solvent. The complementarity between two surfaces based on form matching illus-
tration makes it simpler to search the complementary channel for ligand on the target 
surface. For instance, the hydrophobicity of the target molecules can be analyzed by 
the bend numbers in the main chain. This approach rapidly scans hundreds of ligands 
swiftly to assess their putative binding capacity on the target surface.
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Fig. 7.3 2-D interaction of cedronolactone D with BACE 1 

Simulation Approach 

Here, after “specified durations of movements” in the target’s conformational space, 
the ligand is allowed to attach to the groove after the target and ligand have been 
physically separated. The movements entail either internal (rotations of the torsional 
angle) or exterior (changes to the structure of the ligand) alterations (rotations and 
translations). “Total energy” is generated each time the ligand moves inside the 
conformational limit. This tactic is better since it is more willing to accommodate 
ligand flexibility. Evaluating the molecular interactions between both the ligand and 
the target is also more precise. The best docked crystallographic prediction using this 
technique takes longer since each conformation involves a large energy loss. This 
disadvantage has recently been significantly modernized to make the simulation 
technique more user-friendly via quick optimization methods and grid-based tools. 

7.3.4.2 Docking—Its Mechanisms 

Before performing docking, the target protein’s structure is required. The structure 
has traditionally been determined using a biophysical technique like X-ray crystal-
lography, NMR spectroscopy, or cryo-electron microscopy (cryo-EM); however, 
homology modeling construction can also be employed to do so. This protein 
structure together with a database of potential ligands serves as inputs to a docking 
algorithm. Two elements that affect a docking program’s success are the algorithm-
based and the scoring scheme.
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7.3.5 Molecular Dynamics 

The real atomic and molecular motions are examined using any computer simulation 
method known as molecular dynamics (MD) (Hollingsworth and Dror 2018). The 
molecules and atoms communicate for some time period, revealing information on 
dynamic “evolution” of the system. The most popular approach is computationally 
resolving Newton’s motion equations for a system of interacting particles. Forces 
between the particles and their potential energies are typically computed using 
interatomic potentials for molecular mechanic force fields. By using this technique, 
atoms’ and molecules’ paths may be determined. The technique is mostly employed 
in chemical physics, materials science, and biophysics. 

Drug development is a particularly intriguing example of an area where simula-
tions may have an impact on research. Recent structural biology findings have 
identified several crucial targets for the creation of novel neural medicines (e.g., 
GPCRs, ion channels, and transporters). To fully make use of the promise of 
structure-based drug design for this and other targets, it is necessary to take into 
account the dynamic properties of these proteins. 

MD modeling is very helpful when modifying a ligand to improve its effective-
ness or other aspects, such as other qualities and lead optimization. On a qualitative 
level, simulations can provide a range of information to guide the ligand optimiza-
tion process, including the ability to identify the key interactions a ligand has with 
the ligand-binding pocket, predict how a ligand will reorganize the binding pocket, 
and test and enhance potential ligand poses. The binding location and stance of a 
ligand can occasionally be seen in simulations of the full ligand-binding process. 
When compared to other computational techniques like docking, simulation-based 
approaches provide far more accurate estimates of ligand-binding constants (free 
energies). Some methods require a lot of computation and are only precise when 
determining the relative binding energies of ligands that share a scaffold. While 
using MD simulation, the molecular mechanics/generalized born surface area or 
MM/GBSA and molecular mechanics/Poisson–Boltzmann surface area or 
MM/PBSA approaches are both noticeably quicker but less accurate because they 
rely on continuum solvent models rather than an explicit description of water. 

MD may also be used in virtual screening, which selects a beginning set of 
ligands predicted to bind a target. Docking tools and a particular target protein 
structure are used for conventional virtual screening. A subset of binders may only 
be found by docking to a particular structure since the binding pocket may really be 
somewhat flexible. The variety of binding ligands discovered can be increased by 
taking into account multiple potential structures discovered through simulation.
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7.4 Target-Based Screening Versus Phenotypic Screening 

7.4.1 What Does Each Screening Approach Involve? 

Empirical drug discovery has experienced a resurgence, and it has been formalized 
under the name “phenotypic drug discovery” or PDD, following an analysis of the 
discovery processes for novel molecular entities authorized by the US Food and 
Drug Administration (FDA) between the years 1999 and 2008 (Swinney and 
Anthony 2011). This statistic shows that most first-in-class small-molecule drugs 
were discovered by experimental means, but the vast majority of those that came 
after were found through target-based drug discovery or TDD. This work came to the 
conclusion that it is frequently difficult to find a roadmap for the discovery of first-in-
class medications using the mechanistic information that is available at the time a 
program is started. This requires understanding not just the anticipated drug target 
but also how that target corresponds to a particular, therapeutically advantageous 
phenotype, the molecular mechanism of action (Gilbert 2013; Kaminski et al. 2017; 
Swinney 2013). In biological research, drug designing discovery, and development, 
phenotypic screening is a screening strategy used to find certain compounds includ-
ing small molecules, proteins, peptides, or RNAi that has the potential to change or 
alter the phenotypic characteristic of a cell or a certain organism in a desirable way 
(Childers et al. 2020; Kotz 2012). These compounds can be identified by analyzing 
both cell-based tests and animal model studies. A molecule has frequently been 
examined to see if it has the intended impact in cells, isolated tissues, and organs and 
even in animals. Often and sometimes for many long years, the precise mechanism 
by which the medicine exerts its effects, that is, its target, was not discovered. 
Target-based screening has historically produced more best-in-class medications, 
but on the other hand, phenotypic screening had a minor edge in discovering first-in-
class treatments (Swinney 2013). This has been ascribed to the lack of prejudice 
when determining the mechanism of action of a medicine. However, phenotypic 
tests are also more suited to detecting chemicals that are active in cells, according to 
Professor Elizabeth Sharlow, a researcher at the University of Virginia School of 
Medicine in Virginia, USA. She explains this in simple words. According to her, due 
to the requirement for frequently complex downstream target deconvolution pro-
cedures, phenotypic tests are often difficult and challenging. Additionally, they can 
take longer to deploy in some cases, which could eventually affect the performance. 
Furthermore, the entire screening paradigm and screening strategy cost need to 
consider all of this into account. For many years, drug companies and academia 
have adopted a “target-first” strategy, in which a molecule known to be significant in 
a disease procedure is often implemented to screen large compound libraries in 
search of a “hit”—a candidate drug (Frearson and Wyatt 2010; Herrera-Acevedo 
et al. 2022). This lack of throughput, coupled with the revolution in the area of 
genomics studies, has led to this strategy’s adoption. One benefit of this strategy is 
that one may screen millions of molecules that resemble drugs while being certain 
that, in the event of a hit, he already has a candidate that has the makings of a viable



medication (Verma and Prabhakar 2015). Target-based assays can be implemented 
more quickly in general, but they can occasionally run into problems with common 
readouts like enzyme activity, as noted by several researchers. Additionally, there 
are more comparatively complex target-based assays, such as those based on 
protein–protein interactions, which are much more difficult to execute despite 
being more physiologically intriguing. Both screening procedures are valuable and 
required for the identification of the chemical probes and/or the drugs, and typically, 
the screening strategy that one chooses will ultimately rely on the resources at his 
disposal. Both of these strategies have their proponents and opponents as well as 
their merits and shortcomings. Although phenotypic approaches employ semi-
empirical techniques that do not need a comprehension of the mechanism, they do 
call upon their biology knowledge for human disease-related certain markers to be 
identified. Furthermore, it might be challenging to take the risk of integrating a 
chemical into the development without a working knowledge of the mechanism that 
would guide the evaluation of dose–response relationships. The effectiveness in a 
translational phenotypic test reduces the early risk in the phenotypic method. Of 
course, both strategies need to have their prediction power for human biology 
investigated and confirmed. The development of the therapeutic candidate may be 
slowed by the absence of mechanism knowledge because further research will need 
to be empirical. Target-based techniques should actually make it possible to quickly 
and methodically go for clinical trials, albeit which would be essential for testing a 
number of putative targets and the molecular mechanisms of action before selecting 
the best one. Because several hypotheses must be evaluated, it is probable that a 
TBDD strategy might increase the expenditure of designing. It is interesting to note 
that the amount of mechanistic understanding necessary to advance a molecule is the 
key aspect of any method in talks about contemporary drug research, although 
regulatory clearance does not need to be understood from a mechanistic perspective. 
However, at this point of time, it can be stated that phenotypic screening is making a 
minor comeback from the perspective of drug development. 
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7.4.2 Combination Approaches 

For bridging the gap in between target-based approaches, phenotypic approaches, 
and other relevant drug discovery approaches, the gray area between the same has to 
be marked. Integrating the greatest qualities from different drug discovery method-
ologies is the perfect way for successfully developing a medication. In actuality, the 
majority of effective drug development initiatives combine an understanding of a 
molecular target with physiologically pertinent cellular experiments. This is benefi-
cial since there is a higher likelihood of successfully marking a medicine when 
employing an integrated procedure as technologies for various drug discovery 
methodologies advance. Drug discovery techniques that were established in chem-
ical biology include phenotypic and target-based approaches. Between proponents 
of phenotypic and target-focused screening, a heated debate had developed over



which strategy offers the best chance of successful drug development. After pheno-
typic screenings, effective target deconvolution (TD) offers a chance to harmonize 
these two methods. However, despite the variety of in vitro TD techniques that are 
currently accessible, it is still difficult to match a phenotypically active drug with a 
biomolecular target (Heilker et al. 2019). In the discipline of toxicology, they are 
also used as an adverse outcome pathway framework (Allen et al. 2014; Ankley et al. 
2010). The phenotypic approach is an experimental method for assessing the 
phenotypic responses of cells or tissues to chemical substances. It uses techniques 
like cell-based and in vivo assays and tests. These tests are used in the drug 
development process to look for active substances that cause phenotypic responses 
that help cells or tissues in diseased states. Multi-parameter molecular profiling has 
proved invaluable in this situation. A system-level knowledge of biological 
processes and how they respond to small-molecule treatments are provided by 
small-molecule multi-parameter phenotypic profiling. As a result, it warrants more 
attention in the preliminary phase of the process of drug discovery. The mRNA-, 
protein-, and imaging-based multi-parameter profiling methods are being employed 
for phenotypic profiling in the context of medication development. Early phenotypic 
profiling technology integration together with effective experimental and in silico 
target identification approaches can boost the success rates of lead selection and 
optimization in the drug development process (Feng et al. 2009; Moffat et al. 2017). 
The target-based approach, on the other hand, is a logical method for evaluating drug 
candidates that target a disease-causing biomolecule (Croston 2017). With the 
development of high-throughput experimental technology in recent years, the 
target-based strategy has seen a significant increase in usage for drug discovery 
(Zheng et al. 2013). In this topic, Sams-Dodd has tried to analyze target-based drug 
discovery in detail. He discussed the pharmaceutical industry’s consistent produc-
tivity reduction during the last 10 years. A startling finding in this context is that the 
emergence of target-based medication discovery corresponded with this reduction. 
He highlighted how the procedure of target validation is difficult and fraught with 
ambiguity. In light of this paradigm’s supremacy and its ability to create rational 
drug discovery programs and its screening capabilities, he carefully examined these 
aspects to see if any flaws that might account for why it has not helped to spike yield 
over the conventional in vivo approach (Sams-Dodd 2005). Many other studies have 
tried to explain this phenomenon on different approaches of drug designing and 
development (Hajduk and Greer 2007; Rubin et al. 2006). Target deconvolution and 
polypharmacology, two significant issues in drug discovery, cannot be resolved by 
phenotypic or target-based methods. The multi-targeted activity of substances is 
referred to as polypharmacology. The use of many disease-relevant targets in 
polypharmacology can improve treatment effectiveness, prevent drug resistance, or 
reduce adverse effects associated with therapeutic targets. Unintentional 
polypharmacology can have negative effects. The interrelated features of 
polypharmacology are crucial here. It is important to consider the importance of 
polypharmacology for drug safety, risk mitigation, and methods for identifying 
polypharmacological molecules early in the drug discovery procedure. It is also 
noteworthy to consider the benefits of polypharmacology in treating multigenic
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diseases and infections, as well as possibilities for drug discovery, and its develop-
ment, followed by repurposing (Antolin et al. 2016; Anighoro et al. 2014; Peters 
2013; Ravikumar and Aittokallio 2018; Zhang et al. 2016). To pinpoint a target 
biomolecule in charge of a phenotypic response, target deconvolution is performed. 
In the phenotypic approach, it is impossible to determine the desired target molecule 
on which the active drug directly works and the relationship here between the target 
biomolecule and the phenotype, even if we are successful in identifying an active 
compound that changes a target phenotype. The target-based method, which is used 
to hunt for and scan for medications, cannot be employed if the target biomolecule is 
uncertain since it focuses precisely and operates effectively on a known target 
biomolecule. Target deconvolution is thus one of the main obstacles to drug devel-
opment in phenotypic and target-based techniques. Advanced molecular and chem-
ical genetics have created a number of experimental strategies to address this 
problem. Swimney et al. discussed the development of novel pharmaceuticals 
(Swinney and Anthony 2011). To identify potential therapeutic candidates, several 
preclinical techniques are utilized. The team examined the molecular mechanisms of 
action (MMOA) and discovery strategies for new molecules and biologics that were 
endorsed by the FDA between 1999 and 2008 to determine whether some 
approaches were more effective compared to others, in the development of novel 
drugs. Out of the 259 compounds that received approval, 75 were first-in-class 
medications with novel MMOAs, 50 (about 67%) of these were small molecules, 
and about 25 (about 33%) were biologics. The results also show that, with 28 and 
17 of these medications, respectively, phenotypic screening significantly contributed 
more to the creation of first-in-class small-molecule therapeutics than target-based 
techniques during a period when target-based approaches garnered the majority of 
the focus. The authors hypothesized that a target-centric approach for first-in-class 
pharmaceuticals without consideration of an ideal MMOA may be to blame for the 
existing high turnover rates and poor performance in pharmaceutical research and 
development. An important argument in favor of an integrated approach is the notion 
that fundamental human disease biology is still poorly known (therefore, molecular 
targets) and that existing disease models do not effectively represent actual illnesses 
(therefore, insufficiency of the phenotypic drug discovery approach). The majority 
of animal preclinical models are unable to adequately simulate a complex tissue 
microenvironment, such as that encountered in late-stage solid tumors, where there 
is high patient heterogeneity in cell content and mutations. The lack of quantitative 
test outputs that mechanistically match a causative disease biomarker and accurately 
estimate animal models strengthens the need for an integrated method. 
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7.4.3 How Can These Screenings Be Taken to the Next Level? 

From the time of product development to the time of product approval and com-
mercialization, medication development typically takes 12 years. Target-based drug 
designing has been demonstrated to be a potent method to select and validate a



therapeutic target by taking advantage of understanding of particular chemical 
pathways, despite its limitations. A better mechanistic understanding of the biology 
of human diseases will be made possible by ongoing advancements in molecular 
biology and genomics, and machine learning can further improve techniques such as 
high-content imaging and different computational modeling strategies to enhance 
lead optimization. In fact, phenotypic and target-based drug discovery methods may 
work together, despite frequently being described as opposing approaches, and 
combining them may increase the likelihood of successfully generating a medicine. 
Integration of different screening techniques will ultimately ease the path of suc-
cessful design and discovery of a drug. Various studies and research have been 
conducted till date on combination approaches to strengthen and pave the future of 
various drug designing and discovery processes. A work recently published in 2020 
by Kawamura et al. talks about how the identification of targets after the identifica-
tion of small-molecule elicitors of various phenotypic modifications typically leads 
to new knowledge of cellular processes (Kawamura et al. 2020). The study team 
used comprehensive profiling and modifications for screening the compounds. By 
doing so, they were able to discover an indane derivative, namely NPD9055 that 
differed mechanistically from the reference substances with pre-established mecha-
nisms of action. Later, they used a chemical proteomics technique to show that 
NPD9055 binds parts of the heterotrimeric G-protein Gi. An in vitro study revealed 
that NPD9055 reduced GDP/GTP exchange on a Gi subunit activated by a G-
protein-coupled receptor protagonist, but not on a different G-protein from the Gs 
family [35S]GTP-S-binding experiment. Following its separation from Gi, 
NPD9055 increased intracellular ERK/MAP and Ca2+ level K phosphorylation in 
intact HeLa cells, both of which are controlled by G. Based on the study findings of 
the group, it was suggested that NPD9055 modulates G-dependent cellular functions 
by targeting Gi, most likely via triggering the separation of G from Gi. Another 
application of combination therapy was brought into limelight recently by Ye et al. 
in 2021 when they published their original research work on “ScaffComb” (Ye et al. 
2021). Combination therapy has long been utilized in the treatment of cancer to 
overcome medication resistance brought on by monotherapy as well as the swift 
development of deep learning methods and the increase in pharmacological data 
have made it possible to build models that can predict and evaluate drug pairings. 
The problem arises when the drug libraries can only include a few hundred to 
thousands of chemicals, nevertheless. Here, in this article, the ScaffComb frame-
work has been suggested by the research team as a way to fill in the gaps in large-
scale databases’ drug pair scannings. In ScaffComb, phenotypic information is 
incorporated into molecular scaffolds that can be utilized to screen the drug library 
and identify potent drug combinations. ScaffComb was created as a motivation for 
phenotype-based drug design. First, some known pharmacological combinations are 
successfully reidentified by using US Food and Drug Administration information to 
validate ScaffComb. Following that, the ZINC and ChEMBL databases are then 
screened using ScaffComb, yielding unique medication combinations, and demon-
strating the capability to find new synergistic pathways. This research team indicates 
that ScaffComb is the first method to use phenotype-based virtual screening of drug
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combinations in huge chemical data sets. In another study, recently in 2021, Wilke 
et al. published a study report highlighting an example of combination approaches in 
drug discovery (Wilke et al. 2021). To identify and determine the appropriate 
molecular targets, affinity-based chemical proteomics is frequently paired with a 
phenotypic screening strategy for bioactive small compounds. Although target 
identification frequently necessitates chemical derivatization of the identified com-
pound, such assays and the studied bioactivity are skewed toward the observed 
phenotype. When a drug is perturbed, unbiased cellular profiling tools, on the other 
hand, record about hundreds of parameters in order to map the bioactivity in 
comparatively a larger biological context. These approaches may also be able to 
connect a profile to a target molecule or its mode of action. In this study, the research 
team presented “Cell-Painting” assessment in conjunction with thermal proteome 
profiling to identify the diaminopyrimidine DP68 as a sigma 1 (σ1) receptor antag-
onist. Their findings demonstrate how the combination of complementary profiling 
techniques may help identify small chemical targets and detect bioactivity. A review 
article published by Isgut et al. in 2017 (Isgut et al. 2018) portrayed the benefits and 
application of combination approaches for the identification and discovery of certain 
combination drugs based on natural products. These authors explained how the 
foundation for a greater emphasis on natural products in drug discovery and devel-
opment is laid by studies on the advantages of medication combinations. Natural 
products are made up of a wide range of components that might interact with a wide 
range of bodily targets to cause pharmacodynamic reactions that could together 
result in an additive or a synergistic therapeutic effect. Natural compounds can serve 
as a beginning point for the development of powerful combination therapies even 
though they cannot be patentable. Phenotypic screening can be used to discover the 
ideal combination of bioactive components in natural goods. Due to the low success 
rates and rising development costs of modern drug discovery efforts pharmaceutical 
scientists have been looking for novel ways to focus on drug discovery, network 
pharmacology or NP was considered to be a solution to the issue, which focuses on 
many targets and pharmacological combinations for the treatment of diseases. With 
the development of the disciplines of systems biology and metabolomics, it has just 
lately begun to emerge and the fact that combinatorial drug screening is gaining 
popularity and importance is emphasized through this article. In another study 
published by Malyutina et al. in 2019 (Malyutina et al. 2019), the authors discussed 
how finding new therapeutic combinations for oncology can be facilitated by high-
throughput drug screening. A thorough matrix design has been applied in several 
recent research studies to describe how different medication combinations affect 
cancer cells. However, the full matrix layout may not be the optimum choice because 
a drug pairing must be linked at various doses in a factorial design. Additionally, a 
lot of computational methods simply evaluate the synergy of drug combinations 
rather than their sensitivity, which could result in misleading positive findings. In 
order to more efficiently and synchronously examine the sensitivity and synergy of 
medication combinations, the study team devised a drug combination sensitivity 
score, or CSS, to measure the sensitivity of a drug pair. They also proposed a unique 
cross-design. In order to validate its usage as a reliable metric, they also showed that

7 Target-Based Screening for Lead Discovery 163



the combination sensitivity score is highly repeatable between replicates. The 
researchers also showed how CSS might be forecasted using machine learning 
methods that determined the most crucial pharmaco-features for classifying cancer 
cell lines according to their medication combination sensitivity patterns and behav-
iors. A S-synergy score, which was used to assess the degree of drug interactions that 
use the cross-design, was created by comparing the dose–response profiles for the 
medicine combination and the individual drug. They also showed that the S score 
has an accuracy-level equivalent to the complete matrix design for identifying actual 
antagonistic and synergistic drug combinations. Another article written by 
Swamidass et al. and published in 2014 discusses the combined analysis of target-
based and phenotypic drug screening methods (Swamidass et al. 2014). The research 
group carried out a thorough analysis of the small-molecule data in drug develop-
ment by constructing test networks and linking experimental studies if they had 
involved non-promiscuous chemicals. Such a network incorporates innovative 
polypharmacology, recapitulates current biology, and identifies different screening 
types. Target-based screens that link phenotypic and biochemical information can 
provide the facility to repurpose biologic and small-molecule medicines. ALOX15 is 
associated with efforts to find drugs that can halt cell death brought on by a mutant 
version of superoxide dismutase. The prospect that ALOX15 inhibitors might be 
utilized medically to address amyotrophic lateral sclerosis is suggested by this 
connection. They also emphasized the interactive version of this network’s website. 
In this context, a number of additional studies on various drug discovery screening 
techniques merit mentioning include those by Clark et al. 2015, Forsberg et al. 2014, 
Kaur et al. 2016, Matlock et al. 2013, O’Reilly et al. 2014, Sidders et al. 2018, and 
Tran-Nguyen and Rognan 2020. 
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7.5 Case Studies and Examples 

7.5.1 Case Study 1 

Global fatality rates have grown since SARS-CoV-2’s rapid spread (Choudhury 
et al. 2022; Satyam et al. 2020). The unregulated increase in COVID-19 infection 
cases, which affected different communities of several countries, prompted concerns 
about world health. Another study recently examined the virus’s current state of 
knowledge. SARS is recognized as the severe acute respiratory syndrome associated 
with coronavirus. These are all members of the order Nidovirales and family 
Coronaviridae. An RNA virus contains positive strands, and the SARS coronavirus 
is contagious. According to reports, coronaviruses have the largest genomes of all 
other RNA viruses, having average sizes between 27 and 32 kilobytes. 

Molecular Docking The molecular docking approach to identify therapeutic tar-
gets is one of the most used methods for ligand-based computer-aided drug devel-
opment (LB-CADD). With the use of this technique, enormous amounts of data from



drug catalogs may be swiftly analyzed and annotated, reducing the amount of effort, 
time, and money spent on CADD. Finding appropriate therapeutic targets is crucial 
since the COVID-19 virus presently lacks effective therapeutics. We employed a 
molecular modeling technique incorporating molecular docking and MD simulation 
to identify putative phytochemicals effective against the Mpro protein of COVID-19 
(Gurung et al. 2021). These observed organic compounds may pave the way for the 
development of COVID-19 antiviral drugs. Based on AutoDock binding affinity, 
carvacrol, oleanolic acid, and ursolic acid have all shown sufficient associations with 
active site residues. According to research, the binding energies of these substances 
are 4.0 kcal/mol, 6.0 kcal/mol, and 5.9 kcal/mol, accordingly (Kumar et al. 2021). 
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MD Simulation MD simulation is one of the tried-and-true in silico methods for 
collecting data in real time with atomic spatial precision and picosecond or greater 
temporal resolution. Carvacrol, ursolic acid, and oleanolic acid are the principal 
phytochemical compounds docked with proteases. Simulation research was 
conducted over a simulation time of 50 ns to examine the durability of these 
compounds in the binding domain of Mpro. 

Summary of the Case Study 
1. It has been established that a key and extremely effective target for the suppres-

sion of new COVID-19 is the Mpro protein. Three natural substances—ursolic 
acid, carvacrol, and oleanolic acid—have been identified by this investigation as 
possible inhibitors of Mpro. 

2. According to molecular docking research, carvacrol has lower binding energy 
than oleanolic acid and ursolic acid. 

3. It was discovered that the binding form of interaction was fairly effective. 
According to MD simulations, all three docking complexes exhibited stability 
at about 50 ns. These inhibitors further meet Lipinski’s rule of five and the ADME 
requirements. 

4. For additional in vivo/in vitro validations, each of the presented substances is both 
natural and commercially available. Future research on further phytochemical-
based therapies against COVID-19 may make use of the knowledge obtained 
from this work. 

7.6 Future Roadmap 

Any progress in technology and science is promptly put to use in the fields of 
medical, pharmacy, and drug development. The more effectively a specific drug 
candidate is created during the experimental stage, the less probable it is that the 
medicine will fail in the late phases, where the experimental studies are more 
expensive, particularly in clinical trials. The COVID-19 epidemic made us 
reevaluate ways to quicken the processes of medication and vaccine discovery and 
development. There has been a significant amount of interest in artificial intelligence



(AI) in recent years as a way to accelerate early-stage drug discovery and lower the 
cost of bringing novel medications to market. New AI-driven biotech startups have 
received a number of sizable funding. Most of these businesses use artificial intel-
ligence (AI) to help make sense of the massive body of scientific literature and the 
expanding patient genomic, proteomic, and transcriptomic datasets, synthesizing 
these data to provide new therapeutic targets (Burki 2020). A recent instance of this 
was a partnership between Imperial College London and Benevolent AI to quickly 
find repositionable medications to assist in treating COVID-19. Artificial intelli-
gence has the ability to offer new, efficient, and more affordable approaches to drug 
discovery (Richardson et al. 2020). In a short amount of time, AI can acquire and 
analyze massive amounts of data, choose suitable targets and complementary 
ligands, plan experiments, and carry them out. Biologicals are frequently used in 
novel medication therapies, which are also far more expensive than currently 
available options. As part of the aging process and the ability of emerging nations 
to pay for medical care rises, there is a parallel increase in the demand for pharma-
ceuticals. The strongest risk factor for illnesses is age. The potential to use biologics 
to treat more uncommon ailments directs the business, supports its expansion, and 
draws more individuals under the pharmaceutical umbrella. The biotech business 
was where these were primarily created, allowing for the treatment of more rare 
ailments. Big Pharma acquired the pioneering biotechs to join the biological revo-
lutions somewhat later. Small compounds taken orally are now being used to 
develop new medicines. The advancements in the treatment of conditions like 
rheumatoid arthritis and multiple sclerosis show and provide light on the direction 
of progress. In the last 50 years, the field of drug research and development has made 
impressive strides. Professor Ross King, a specialist in artificial intelligence and 
machine learning at Chalmers University of Technology in Sweden, claims that 
“The entire drug design process, from target selection to screening to QSAR learning 
to new compound synthesis, will be almost entirely automated in 10–15 years. This 
will occur because machines are considerably more adept than people at making 
these kinds of decisions, and the ensuing procedure will be much quicker and more 
efficient.” King is well known for his work on the robot scientists “Adam and Eve,” 
which serves as an example of how high-throughput robots are. They automate the 
early stages of drug design with Eve. Eve had the ability to automate the assays for 
synthetic biology for many substances. Eve began testing substances from the library 
until she found a sufficient number of hits, at which point she halted and began 
performing more illuminating assays on the hits. Eve chose additional substances 
from its library that were intended to best enhance the statistical models using 
“active” machine learning. They further established that this method of drug testing 
is typically more affordable than screening the entire library (Williams et al. 2015). 
By 2040, one might anticipate that many diseases will be more successfully identi-
fied, avoided, treated, or even managed in some cases using nonpharmacological 
interventions if we take into consideration new information about disease pathogen-
esis, the application of cutting-edge technologies, and all-encompassing strategies. 
One can only hope that the vision is realized. Clinicians and researchers will 
continue to work very hard and make significant contributions to enhancing
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human health and well-being (Villoutreix 2021). Theoretically, discovering effective 
targets for antivirals is simpler than doing the same for targets for more difficult 
diseases like Alzheimer’s or cancer, where the molecular background is less well 
understood. Given the tiny genome size of viruses, one may usually focus their 
efforts either on viral entrance or replication. Because of the considerable sequence 
homology, especially between the active regions of polymerases from various 
coronavirus strains, the goal is to precisely block viral reproduction by targeting 
the polymerase. A strong inhibitor against a strain should have a decent crossover 
into potential new strains, and we should be able to say with some degree of 
assurance. The end goal of futuristic drug designing is to be able to develop a 
unique, safe, efficient, and patient-tailored medication over the course of a few 
hours. This objective is totally attainable in the near future, although it seems 
amazing right now. 
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7.7 Learning Outcomes 

After reading this book chapter, readers should be in a position to understand the 
principles underlying target identification, validation, and strategies used in different 
target and drug discovery. They shall further be able to explain various drug target 
classes and demonstrate specific techniques and strategies used for target identifica-
tion and validation. Understanding the principles underlying target-screening strat-
egies, assays, and approaches used in lead identification and optimization during the 
preclinical development of drugs should be easy for the reader. They will be able to 
analyze and appreciate the evolution of target identification from past to present and 
future strategies. However, the following points are important to remember when it 
comes to drug screening, designing, and discovery: 

(i) The goal of a preclinical drug discovery program is to generate one or more 
clinical candidate molecules that provide sufficient evidence of biological 
action at a disease-relevant target, adequate safety, and sufficient drug-like 
properties to be studied in people. 

(ii) Effective drug design depends on determining and preserving the clinical 
spectrum of the disease and the exact function that a potential therapeutic target 
plays in the disease. A pharmacological target is a biological object (typically a 
protein or gene) that reacts with and has its function changed by a 
particular drug. 

(iii) A suitable drug target should be modifiable for therapeutic purposes and 
pertinent to the illness phenotype. A strong therapeutic window is also required 
to guarantee that no treatment modality employed to treat the target interferes 
with the target’s physiological role in healthy tissue, which might result in 
unexpected effects. 

(iv) Promising therapeutic targets should have the following characteristics: The 
target should either be disease-modifying or should have a known function in
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the pathophysiology of a particular disease, to evaluate the druggability of the 
target, the 3D structure of it should be available, high-throughput screening 
should be made possible by the target’s simple “assayability,” the toxicity 
profile of the target should be promising and phenotypic information should 
be used to anticipate any potential negative consequences, and the proposed 
target should have an advantageous standing for its intellectual property. 

(v) The phenotypic approach to drug discovery, which falls under the category of 
target deconvolution, exposes cells, separated tissues, or animal models to 
small molecules in order to determine whether a particular candidate molecule 
enforces the desired effect, which is indicated by a change in phenotype. For the 
characterization of tiny compounds and small-scale drug screening methodol-
ogies, mammalian cells are typically selected over other animal models given 
that they are more suitable for high-throughput screening (HTS) and have better 
physiological relevance. Instead of focusing only on particular proteins or 
nucleic acids, the phenotypic technique considers the investigation of whole 
signaling networks. The drug’s action is established before the specific biolog-
ical (drug) targets responsible for the observed phenotypic characteristics are 
found. 
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Chapter 8 
Fragment-Based Drug Design in Lead 
Discovery 

André M. Oliveira and Mithun Rudrapal 

8.1 Introduction 

The principle that underlies fragment-based drug design (FBDD) is the construction 
of bioactive structures capable of interacting specifically with a given biological 
target (like an enzyme), from the junction of several fragment hits that are chosen 
separately based on their ability to interact with the site (Kirsch et al. 2019). The 
criteria for choosing the fragments are based on different approaches, both compu-
tational and experimental, and represent an excellent starting point for the construc-
tion of new chemical entities (NCEs). Rational drug design uses several approaches, 
which involve, in a different, but not necessarily independent way: (1) the structure 
and properties of the ligand; (2) the structure of the macromolecular target; and 
(3) combinations of both. FBDD methods would fall into the latter category, as they 
enable the construction of ligands from carefully chosen fragments based on the 
structure of the target. Increasing research on FBDD approaches has been observed 
worldwide, considering that 3642 publications in this field showed up between 1953 
and 2016 (Romasanta et al. 2018). 

The overall process of designing a new drug demands huge costs and a long time, 
requiring the expertise of countless scientific and technical skills and thousands of 
professionals, associated with the pharmaceutical industry, research institutes and 
universities. Notwithstanding, the new paradigm of drug discovery based on the
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search for a large number of targets and ligands, which came out alongside the 
advent of genomic sciences, rapid DNA sequencing, combinatorial chemistry, cell-
based assays and automated high-throughput screening (HTS), does not convince 
much of the chemists and biologists (Drews 2000). The main drawback of this 
approach is that a new promising “hit” arising from this search usually gives birth to 
new leads who will not eventually lead to a safe drug for clinical use. It is a fact, 
however, that the more promising leads one can achieve throughout the process, the 
more compounds to be tested in vitro and in vivo will be available.
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The foundation of FBDD has been attributed to Jencks (Jencks 1981) and 
supported by Nakamura and Abeles (Nakamura and Abeles 1985), who treated 
drug-like molecules as the combination of several binding epitopes or fragments. 

According to Feyfant et al. (2011), FBDD presents over HTS screening methods 
the advantage that fragment libraries can cover more chemical space than HTS 
screening libraries and the fact that it works with the concept of ligand efficiency, 
i.e. the average contribution of each atom of the molecule to the binding affinity. 

Once the discovery of biological targets underlies the FBDD, diverse computa-
tional resources to acquire such targets have been developed, such as (Katsila et al. 
2016): structure similarity searching, data mining/machine learning, panel docking 
and bioactivity spectra-based algorithms. Further improvements are as follows: 
network-based drug discovery and matching fields like genomics, transcriptomics, 
proteomics, metabolomics, microbiome and pharmacogenomics (Wang et al. 2012). 

An issue that underlies the proposal of suitable fragments is the increasing 
molecular complexity of the models. It has been proposed that the probability of 
binding decreases rapidly as the complexity of the ligand increases (Leach and Hann 
2011); once as the complexity of the ligand increases, the more probable is to find a 
match, other than a mismatch. The probability of finding a unique binding mode 
where the ligand can match the receptor in just one way reaches a maximum 
alongside complexity increasing, and this probability decreases henceforth. The 
exploitation of all possible topologies for a limited number of heavy atoms has led 
to libraries with millions of compounds, as researchers from UCSF have a pursuit by 
screening approximately AmpC β-lactamase and D4 dopamine receptor inhibitors, 
finding 30 compounds with sub-micromolar activity (Lyu et al. 2019). 

The overall process normally starts from databases of low molecular weight 
fragments, which are tested onto the X-ray crystallographic structure (or a structure 
obtained by other techniques, such as nuclear magnetic resonance or surface 
plasmon resonance). A link database is also used in order to establish larger 
structures containing the best-selected fragments through a grow–link–optimize 
protocol. The procedure is oriented by the improvement of affinity constant (Kd or 
Ki) or interaction energy. 

The site of interaction can be predicted from the three-dimensional structure of 
the enzyme, obtained experimentally. Figure 8.1 shows how complementary tech-
niques such as high-throughput screening (HTS) alongside FBDD work together 
with crystallographic methods to obtain a suitable drug. 

Whereas well-known structure databases such as the CSD (Groom et al. 2016) 
have thousands of complete structures with diverse molecular weights, fragment



databases gather small but extremely versatile plenty of small substructures, which 
combined properly can generate countless candidate ligands (Fig. 8.1). A consider-
able computational cost may be required for this task, which often requires the use of 
stochastic statistical techniques to filter the most promising results and avoid redun-
dancies (Zsoldos 2011). 
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Fig. 8.1 Fundamental steps of HTS/FBDD to new hits proposition. Experimental methods, such as 
X-ray diffraction, are important to gather the necessary information for the correct dimensioning of 
the interaction site. Reproduced, by permission (CC BY-NC-ND 4.0), from Atobe (2020) 

8.2 Fragment Finding 

The process of obtaining the fragments that fit the enzyme’s interaction sites (called 
hot spots) involves building the library from which the fragments will be taken, 
identifying the enzyme’s hot spots and calculating the interactions. 

8.2.1 Library Building 

Fragment libraries should contain substructures with low molecular weight (up to 
about 300 Da). Structural diversity is important, and there must be guarantees that a 
minimum of 500–1000 congeners are available. Each fragment must have fewer than 
20 heavy atoms and low molecular complexity (Schuffenhauer et al. 2005; 
Jacquemard and Kellenberger 2019).
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The structural diversity of the fragment database can be achieved using a 
pharmacophoric model as a basis (Xue et al. 2017). It usually employs fragments 
derived from naturally occurring compounds, as proposed by Liu and Quinn (2019). 

Taking into account the huge repertoire of structures that meet the above require-
ments, other criteria are needed that can ensure the statistical variability of the 
physicochemical properties, which can be done by applying the so-called rule of 
three, RO3 (Brown 2016; Kirsch et al. 2019):

• Required features: 

– Molecular weight ≤ 300 Da; 
– Number of hydrogen bond donors ≤3; 
– Number of hydrogen bond acceptors ≤3; 
– log P ≤ 3.

• Desired features: 

– Number of rotatable bonds (NROT) ≤ 3; 
– Polar surface area (PSA) ≤ 60.The RO3 keeps a close resemblance with 
Lipinski’s rule of five (RO5) for oral availability of drugs: molecular 
weight ≤ 500 Da, number of hydrogen bond donors ≤5, number of hydrogen 
bond acceptors ≤10 and log P ≤ 5. 
Although it is known that the properties of fragments are directly related to their 

structure, a study focusing on the latter aspect as an independent entity of the former 
can be done with some success. 

Hajduk and co-workers proposed that some “privileged” scaffolds are more 
frequent in successful fragment screening procedures (Hajduk 2006). Using 
known drugs as a source for common features and scaffolds is also an option 
(Bemis and Murcko 1996). Further comprehension can arise from the search of an 
optimal molecular complexity, as discussed by Hann and co-workers (Hann et al. 
2001). In this case, an equilibrium between too few chemical features (which would 
enlarge prohibitively the fragment dataset) and too many features (that would restrict 
the dataset to an overwhelming specificity) is desirable. 

An important aspect of this study is the synthetic feasibility, which was investi-
gated by Schuffenhauer and co-workers (Schuffenhauer et al. 2005). Structural 
features that are known to hinder the synthesis of compounds (absence of reactive 
functional groups, presence of many condensed rings, excess of chiral centres) can 
be avoided in the design of FBDD fragments. This concern must also be considered 
taking into account the need for functional groups that can potentially interact with 
the proposed molecular targets. 

The synthetic complexity of a generated compound can be estimated by several 
functions, like synthetic accessibility (SA) score, which takes into account the 
occurrence of non-standard structural features (large rings, non-standard ring 
fusions, number of chiral centres and molecule size) and synthetic complexity 
(SC) score, based on 12 million reactions from the Reaxys database to impose an 
inequality constraint to ensure that reaction products are more synthetically complex 
than the starting reactants (Coley et al. 2018).
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8.2.2 Protein Hot Spots Identification 

Once the fragment base is ready, the next step is to identify cavities and pockets in 
the protein structure. These pockets are possible candidates for sites of interaction 
with the fragments, and their determination is done by different methods, generally 
of a geometric and spatial nature. An example of a tool that makes it possible to 
determine these pockets is CASTp (Tian et al. 2018), which uses the mathematical 
methodologies of Delaunay triangulation, alpha shape and discrete flow 
(Edelsbrunner 1995; Facello 1995; Edelsbrunner and Shah 1996). 

Pockets are empty hollows in the protein structure that give access to solvent 
molecules (represented by a spherical probe of radius 1.4 Å), but with openings 
(mouths) smaller than the respective concavities. Thus, a shallow depression in the 
macromolecular structure does not characterize a pocket. A cavity, on the other hand, 
is an empty space inside the structure with no external opening (i.e. no access to the 
solvent). 

The CASTp method is based on a complex triangulation algorithm, which unites 
the centres of each atom situated on the walls of a concavity, represented by spheres 
of radius equal to the Van der Waals radii, rVDW, forming polyhedra whose areas, 
volumes and openings are calculated (Tian et al. 2018). These will correspond to the 
areas, volumes and openings of the respective concavities and pockets. Thus, the 
method allows, through a base purely geometric, to determine all the concavities of 
the molecule. An output file containing the residues that are part of each pocket, as 
well as how area, volume and crevice size information is then obtained. 

There are many further methods for determining possible sites of interaction, as 
summarized in Table 8.1 (Bartolowits and Davisson 2016). 

Experimental methods for determining the structure of macromolecules (such as 
NMR and X-ray diffraction) do not always allow the identification of possible 
interaction sites, which makes the aforementioned approaches very useful. However, 
some experimental information may be useful, such as the use of known ligands, 
which can be isotopically labelled, allowing the determination of their location in the 
structure by means of NMR. The underlying principle is that the interaction affects 
the distribution of charges around the surrounding region, affecting the chemical 
shifts of neighbouring groups. 

Another useful way is using sequence-based computational approaches for 
predicting protein–ligand binding sites, as described by Ding, Tang and Guo 
(2017). Computational methods that treat sequences of residues in protein structures 
generally use matrix algebra in sequence alignment and comparison. This work 
proposes the use of a mathematical procedure that extracts its feature from the matrix 
of residues, using the surface accessible to the solvent as the weight to determine the 
most exposed regions of the protein, which are potential sites of interaction with 
ligands.
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Table 8.1 Methods for determining protein interaction sites 

Method Description Reference/URL 

CatSld Searches for matches between catalytic sites and 
proteins 

Kirshner et al. 
(2013) 

DoGSiteScorer Detects protein subpockets and predicts site 
druggability 

https://bio.tools/ 
dogsitescorer 

HOMOLOBIND Identifies residues that are similar to structurally char-
acterized binding sites 

http://fredpdavis. 
com/homolobind/ 

Med-SuMo Locates similar regions on protein surfaces that are 
linked to certain chemical function 

http://www. 
medit.fr 

PrISE Predicts interface residues using local surface structural 
similarity 

Jordan et al. (2012) 

SiteComp Compares binding sites, evaluates residue contribution 
to binding and identifies subsites with distinct molecu-
lar interaction properties 

Lin et al. (2012) 

DeepPocket Utilizes 3D convolutional neural networks for the 
rescoring of pockets identified by an auxiliary software 

Aggarwal et al. 
(2021) 

3DLigandSite Candidate binding sites in proteins are inferred using 
known binding sites in related protein structures as 
templates 

McGreig et al. 
(2022) 

SURFNET Generates molecular surfaces and gaps between sur-
faces from 3D coordinates supplied in a PDB format 
file 

McGreig et al. 
(2022) 

Q-SiteFinder Uses the interaction energy between the protein and a 
simple van der Waals probe to locate energetically 
favourable binding sites 

Laurie and Jackson 
(2005) 

SITEHOUND-
web 

Identify regions of the protein characterized by 
favourable interactions with a probe molecule. 

Hernandez et al. 
(2009) 

P2Rank Based on the prediction of ligandability of local chem-
ical neighbourhoods that are centred on points placed 
on the solvent-accessible surface of a protein. 

Krivák and Hoksza 
(2018) 

8.2.3 Computational Prediction 

Once we have obtained the fragment library and determined the active site, the next 
step is to build up ligands from the connection between the fragments. This con-
nection process can be done through several strategies: fragment evolution, fragment 
linking, fragment self-assembly and fragment optimization (Ress et al. 2004). 

In fragment evolution, an initial fragment is optimized by adding functionality to 
bind to adjacent regions of the active site (Fig. 8.2a and b). 

Fejzo et al. (1999) proposed some p38 kinase inhibitors from fragment evolution, 
using distribution constants estimated from NMR diffusion measurements 
(Fig. 8.2c). A 106 times-fold increment in affinity is observed throughout the 
fragment evolution process.

https://bio.tools/dogsitescorer
https://bio.tools/dogsitescorer
http://fredpdavis.com/homolobind/
http://fredpdavis.com/homolobind/
http://www.medit.fr
http://www.medit.fr
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Fig. 8.2 Fragment evolution. (a) Fragment 1 binds to the receptor at one site. (b) The lead molecule 
is evolved by building away from the starting fragment and making good contact with the upper 
surface and then by growing into a second pocket. Reproduced, by permission, from Ress et al. 
2004. (c) An example of fragment evolution: p38 kinase inhibitor design (Fejzo et al. 1999) 

Fragment linking is done when two (or more) fragments, which bind to proximal 
parts of the active site, are joined together to give a larger, higher affinity binding 
molecule (Fig. 8.3a–c). 

An example of fragment linking that employs an adequate spacer group is 
described by Pang et al. (1996), illustrated in Fig. 8.3d. The THA ligand binds to 
different acetylcholinesterase sites, and a new ligand can be designed by connecting 
both with an aliphatic chain of a size compatible with the site. 

In fragment self-assembly, fragments with complementary functional groups are 
allowed to react together in the presence of the protein target and the most potent



larger molecule is detected (Fig. 8.4a and b). This includes approaches usually called 
dynamic combinatorial chemistry (Frei et al. 2019). 
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Fig. 8.3 Fragment linking. (a) Fragment 1 binds to the receptor at one site. (b) Fragment 2 binds to 
the receptor at an adjacent site. (c) Fragments are joined together by a linking group that allows the 
lead molecule to span both sites. (d) An example of fragment linking: design based on the catalytic 
and peripheral sites of THA in AChE. Reproduced, by permission, from Pang et al. 1996 and Ress 
et al. 2004 

Figure 8.4c illustrates this approach: the design of a ligand to cyclin-dependent 
kinase 2 (CDK2) from the chemical junction by means of a Schiff base condensation 
of two ligands specific to different sites (Congreve et al. 2003). 

With fragment optimization, fragment approaches are used to optimize drug-like 
properties of a lead other than just binding affinity (Fig. 8.5a and b).
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Fig. 8.4 Fragment self-assembly. (a) Fragments 1 and 2 bind to receptor sites simultaneously with 
reacting groups positioned within conformational reach of each other, increasing the effective 
molarity of reacting groups. (b) A lead molecule formed in the active site. Reproduced, by 
permission, from Ress et al. 2004. (c) An example of fragment self-assembly: both ligands can 
be mounted as one through a Schiff base-type condensation 

Urokinase inhibitor shown in Fig. 8.5c can be optimized by introducing a 
hydroxyl group (Hajduk et al. 2000). That optimization covers both from a pharma-
codynamic and pharmacokinetic point of view, once hydroxyl increases the water 
solubility, diminishing its side effects.
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Fig. 8.5 Lead progression via fragment optimization. (a) Existing lead molecule discovered by 
fragment-based approach. (b) Lead molecule re-engineered to address optimization of a particular 
property (e.g. selectivity, cell-based activity, oral activity or efficacy). Reproduced, by permission, 
from Ress et al. 2004. (c) Example of lead progression via fragment optimization: urokinase 
inhibitor design 

8.3 Experimental Identification of Fragments 

Computational methods used in drug design, to be validated, must be supported by 
experimental techniques that are capable of measuring the strength and location of 
ligand–receptor interactions. Among these techniques, we can mention nuclear 
magnetic resonance, surface plasmon resonance and X-ray crystallography. 

8.3.1 Nuclear Magnetic Resonance 

The most common is the use of 1D-NMR, through which changes in the chemical 
environments of the protein’s active site are monitored with the insertion of the 
ligand. The most used NMR techniques for this purpose are relaxation edited 1D 
NMR, water ligand observed via gradient spectroscopy (WaterLOGSY) and satura-
tion transfer difference (STD) spectroscopy (Joseph-McCarthy et al. 2014). 

In relaxation-edited 1D NMR, ligand binding to a macromolecule is accompanied 
by shortened relaxation properties of the complexed relative to the free ligand, and 
T1ρ (longitudinal relaxation) or T2 (transverse relaxation) filter is applied to the pulse 
sequence. Fragments that bind to the target exhibit a loss in signal intensity in the 
NMR spectrum, relative to fragments that do not (Hajduk et al. 1997).
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The use of NMR to predict binding ability can be explained by the fact that certain 
NMR observable parameters (P), such as transverse and longitudinal relaxation rates 
(R1 and R2), the nuclear Overhauser effect (NOE) and the diffusion coefficient, vary 
according to molecular size and shape and depend on the interactions with larger 
molecules. Considering the balance between the free ligand (L ) and the free protein 
(E) and in its bound form (E-L ), 

E þ L ⇄ 
k1 

K2 
E- L ð8:1Þ 

The dissociation constant is given by Kd = k2/k1; ligands with strong binding present 
k2 small values, whereas ligands that bind weakly present higher k2 values. The 
magnitude of the binding will depend on the observable parameter (Pobs), which in 
its turn derives from the free and bound states parameter values (Ni 1994): 

Pobs = 1- pbð ÞPfree þ pb Pboundð Þ 8:2Þ 

In Eq. (8.2), pb is the fraction of the ligand in the bound state. If the ligand 
concentration is much smaller than the enzyme’s one, there will be slow exchange 
on the NMR time scale and pb is nearby 1 and Pobs ~ Pbound. On the other hand, 
ligands with fast exchange shall cause pb small and Pobs ~ Pfree. In this last case, 
parameters will be closer to the free ligand’s ones. 

NMR gradient spectroscopy (WaterLOGSY) makes use of the interactions 
between the target and the ligand that are mediated by water molecules, which 
cause a change in the profile of the relaxation times related to the interactions 
between ligand and water in the bound state or in the free state (Dalvit et al. 
2001). The cross-relaxation rate of dipole–dipole interaction between water and 
ligand is positive for free ligands and negative for bound ligands nearby water 
molecules associated with the protein. 

The saturation transfer difference NMR (STD-NMR) technique is based on the 
nuclear Overhauser effect (NOE) and is used for measuring through-space distances. 
The protein target is irradiated by a radiofrequency field specific for the protein 
nuclei and removes their magnetic polarization, generating an on-resonance (ISAT) 
spectrum. The fast exchange between the free and protein-bound form causes a 
saturation transfer through the protein to the bound ligand and that saturation is 
carried on to the free ligand where it is detected. A magnetization saturation of the 
target takes place, which in its turn is transferred to the bound ligand, and not to the 
free one. A “difference spectrum” is then obtained by subtracting the spectrum 
obtained with the magnetization saturated target from the spectrum obtained with 
the non-irradiated target. A deuterated solvent is required, and a shorter selectivity is 
obtained, when compared to the other techniques (Feyfant et al. 2011; Joseph-
McCarthy et al. 2014). 

Alongside edited 1D NMR, WaterLOGSY and STD, there are some further 
methods involving solution NMR that are applicable to the study of protein-binding



interaction and are useful as a means of validating FBDD studies, according to 
Becker et al. (2018). In chemical shift mapping, the ligand bind promotes changes in 
the local electron density and hydrophobicity at the interaction site, which can be 
measured through the NMR of the chemical shifts (Williamson 2013). Those 
changes in chemical shifts are also induced by proximity magnetic susceptibility 
anisotropic groups, like aromatic rings. This approach is called chemical shift 
mapping (CSM), chemical shift perturbation (CSP) or complexation-induced 
changes in chemical shifts (CIS). It is common to use isotopically labelled proteins, 
as in the 15 N-heteronuclear single quantum correlation (HSQC) method, which uses 
proteins uniformly labelled with 15 N, produced from genetically engineered E. coli. 
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Hydrogen exchange is a method that uses residue-specific information about the 
solvent accessibility in a protein that may derive from exchange rates of backbone 
amide hydrogen with bulk water. Amide hydrogen protected from bulk water by the 
ligand exhibit reduced exchange rates, measured by monitoring signal intensity 
changes of amide protons upon dissolving the protein in deuterated water. Only 
slowly exchanging amide protons can be measured, as done by Paterson 
et al. (1990). 

Finally, solvent paramagnetic relaxation enhancement (sPRE) is a method based 
upon the addition of an inert and freely soluble paramagnetic agent to a protein 
solution, which causes an increase in the relaxation of protein nuclei (Pintacuda and 
Otting 2002; Respondek et al. 2007). The relaxation enhancement shall depend on 
the distance between the observed nucleus and the paramagnetic probes nearby, 
proportional to 1/r6 (r is the distance between the paramagnetic centre and the 
observed nucleus). Nuclei closer to the site show lower sPREs than more solvent-
exposed ones. 

Cross-saturation/transferred cross-saturation (CS) is a technique, related to 
STD, for mapping the binding area between two proteins, requiring specific isotopic 
labelling of one protein, namely with 2 D and 15 N, whereas the other protein is 
unlabelled and a solvent 10% H2O and 90% D2O mixture is used. The complex is 
irradiated at a frequency, which only affects the unlabelled protein II (Takahashi 
et al. 2000). Proton–proton NOEs are small and positive for small molecules and 
large and negative for large molecules, and this behaviour is exploited in transferred 
NOE (trNOE) experiments. A small ligand experiences a rapid exchange between its 
free and bound forms, with a positive NOE for the first situation and a negative NOE 
for the second, which can be observed in spectra with an adequate resolution (Clore 
and Gronenborn 1983;  Ni  1994). 

Paramagnetic tags are also useful for the sake, when a paramagnetic centre in a 
protein can be used to probe ligand binding around the interaction site. Unpaired 
electrons of paramagnetic probes augment relaxation rates of nuclei up to a distance 
of about 20 Å, in a phenomenon known as paramagnetic relaxation enhancement 
(PRE), causing a line broadening in the spectra. Organic radicals and paramagnetic 
lanthanide compounds (such as Dy3+ , Tb3+ and Tm3+ , and more moderately, Er3+ , 
Ho3+ and Yb3+ ) are specially used for this purpose (Reuben and Leigh 1972; Saio 
et al. 2011).
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8.3.2 Surface Plasmon Resonance 

Surface plasmon resonance (SPR) is a technique that can be used to measure the 
binding affinity, specificity and kinetic parameters of the interactions between 
macromolecules and ligands (Tiwari et al. 2021; Yesudasu et al. 2021). The SPR 
technique has the advantage of being non-destructive and does not require elaborate 
sample preparation and can be applied to the study of noncovalent interactions of 
great interest in biochemistry, pharmacology and other areas (Bakhtiar 2013). 

The target protein is immobilized on a gold or silver sensor surface, and a solution 
of probe flows over the target surface and induces an increase in the refractive index 
when binding takes place. Studies using SPR involving vaccines (Hearty et al. 
2010), drug–DNA interaction (Wolf et al. 2007), antigen–antibody (Ramakrishnan 
et al. 2009), carbohydrate–nucleic acids (Greenberg et al. 1999), protein–carbohy-
drate (Smith et al. 2003) and protein–ligand (Sabban 2011), conformational changes 
in enzymes (Salamon et al. 1994) and in vesicular phospholipids (Salamon et al. 
1994) have also been described. From the moment in which the interaction occurs, a 
change in the refractive index causes the total reflection of the light beam, which is 
detected, with the angle of reflection being correlated with the interaction parameters 
(such as inhibition constants). 

The immobilization of the sample and preparation of the metallic surface can be 
done, essentially, in three ways: (1) a direct immobilization in which the ligand or 
binding molecule is covalently attached to the sensor gold surface using one of 
several established functional moieties, like amines, thiols, maleimide or aldehyde 
moieties (Kuroki and Maenaka 2011); (2) indirect noncovalent coupling via a high-
affinity capture molecule, which must present sufficient binding to avoid ligand 
dissociation, such as monoclonal antibodies, avidin-biotin via biotinylation or 
histidine-tagged recombinant proteins (Jason-Moller et al. 2006); (3) use of mem-
brane protein anchoring agents, such as adsorption of lipids from liposomes or 
micelles to the sensor chip or assembling a bilayer attachment involving 
on-surface binding of intact membranes (Vikholm et al. 1996; Jung et al. 2000). A 
surface-bound vesicle can also be used (a so-called on-surface reconstitution, OSR). 

8.3.3 X-Ray Crystallography 

Obtaining crystallographic structures of macromolecules represented important pro-
gress in the development of new drugs. Banks of X-ray structures have become 
popular, providing information at an increasing level of accuracy, such as the 
Brookhaven Protein Database, PDB (Berman et al. 2000). Crystals can be obtained 
by using the co-crystallization method (the ligand is added to the mixture before 
crystal formation starts) or the soaking technique (the ligand is added directly to a 
mixture with pre-existing crystals). An example of such an approach was shown in 
Fig. 8.1 (in which the target protein is represented by its X-ray diffraction structure).
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The crystallographic structures of molecular targets related to a given disease, 
widely available in databases such as PDB, must be chosen considering some 
criteria, such as resolution, the organism from which the protein was extracted, the 
completeness of the structure and the presence of small molecules complexed during 
the crystallization process, which can serve as a reference for possible sites of 
interaction (McPherson and Cudney 2014). 

X-ray diffraction structures are more abundant in the databases than structures 
determined by other methods, such as NMR and theoretical study, although those 
obtained by NMR have the advantage of being composed of different conformations 
in equilibrium in the aqueous phase, which represents a more realistic system 
(Puthenveetil and Vinogradova 2019). 

An advantage of X-ray diffraction, however, is the possibility of including the 
water molecules present in the interaction sites in the process of building ligands 
from fragments with better interaction, which the literature has shown to be impor-
tant in molecular recognition (Sun et al. 2014; Rudling et al. 2018; Matricon et al. 
2021). 

A comparison between the determination of structures from X-ray diffraction and 
structures obtained by nuclear magnetic resonance can be made. X-ray diffraction 
presents the following advantages:

• It allows direct mathematical reconstruction of the image of the molecule (elec-
tron density map).

• It is applicable to large molecules and complexes.
• Data processing is highly automated.
• Presents analysis quality indicators available are well evaluated (R factor, 

resolution).
• It enables the inclusion of water molecules; in general, it has high accuracy. 

Some advantages of X-ray diffraction are as follows:

• There is a need for the formation of stable crystals.
• Crystallization techniques are quite empirical.
• Measurements are performed in a solid state (not physiological).
• There is a need to use radiation ionizing, capable of causing damage to the 

structure.
• It is difficult to distinguish between static and dynamic disorders.
• Loss of dynamic and trend information occurs to “freeze” flexible regions within 

the crystal lattice. 

NMR, on the other hand, has the following advantages against X-ray diffraction:

• It is applicable in solution, which makes the technique more relevant from a 
biological point of view).

• It is more informative regarding the dynamics of molecule; it can be applied to 
isolated domains or large protein “modules”.

• Physiological conditions can be altered (pH, temperature, etc.). 

NMR limitations concerning our comparison with X-ray diffraction are as follows:
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• In general, the accuracy of the coordinates atomic is smaller; there is a limit to the 
size of the structures that can be studied (up to 20,000 Da).

• It is difficult to determine the orientation of domains in a structure with more than 
one domain or modular proteins.

• There is no direct parameter analogous to the resolution of a crystalline system 
(as in X-ray), which allows the assessment of accuracy; it requires concentrated 
solutions (not physiological). 

Congreve et al. (2003) explain how dynamic combinatorial chemistry (DCC) allows 
specific members of a combinatorial library to be selected and amplified with the use 
of a template. The reaction connecting the building blocks is reversible, and an 
interchange between the different members of the dynamic combinatorial library 
takes place (Seneci 2000). The authors report an approach in which ligands are 
observed directly by X-ray crystallography from their electron density maps from 
crystals exposed to a dynamic combinatorial library mixture. 

8.3.4 Thermal Shift Assay 

Thermal shift assay (TSA) is a technique that monitors the changes undergone by a 
protein when it interacts with another molecule by measuring its denaturation 
temperature. Protein stability depends on a number of factors: pH, ionic strength 
of the medium, presence of cofactors, mutations, etc. Correlated experimental 
parameters that are related to structural stability and that are sensitive to a temper-
ature gradient, such as differential scanning fluorimetry (DSF), can be used to 
measure the ligand–macromolecule interaction (Senisterra et al. 2012). The fluores-
cence of a protein solution depends on a temperature gradient, and the addition of 
fluorescence dye exhibits a low fluorescence signal in a polar environment and high 
signal in a non-polar environment (Lo et al. 2004). The interaction of the protein 
with the ligand causes exposure of polar regions previously solvated by water 
molecules that are dispersed with the entry of the ligand, at the same time that it 
unbalances the distribution of non-polar zones. 

This same principle also applies to nucleic acids: the temperature of double-
stranded and G-quadruplexes DNA denaturation has been used, for example, to 
study the interaction of ligands to the minor groove (Record et al. 2003; Senisterra 
et al. 2012) or as intercalators (Morita et al. 2021). TSA has gained relevance as a 
validation technique for FBDD studies alongside the years (Romasanta et al. 2018), 
due to its reproducibility and the possibility of the evaluation of important thermo-
dynamic effects, such as solvation effects (Magsumov et al. 2020). 

Fragments containing strong nucleophile ends (like –SH) are expected to lead to 
compounds capable of establishing covalent bonds with the target, and the thermal 
shift measured shall be larger than that observed with irreversible ones. Covalent 
ligands are usual in anticancer chemotherapies (like cisplatin), which in their turn are 
interesting candidates for drug repositioning (Lotfi Shahreza et al. 2020). The



Þ ð

corresponding temperature curves obtained in those cases must present higher 
denaturation temperatures, once the covalent bonds require high-energy gains to 
disrupt the tridimensional protein structure. 
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8.3.5 Isothermal Titration Calorimetry 

Isothermal titration calorimetry (ITC) allows the measuring of thermodynamic 
parameters such as enthalpy changes (ΔH ) and Gibbs free energy (ΔG), which in 
its turn allows for the calculation of the binding affinity (Leavitt and Freire 2001), as 
well as stoichiometry n in one single experiment (Damian 2013). 

Each ligand injection (i) releases or absorbs a certain amount of heat (qi) 
proportional to the amount (in moles) of ligand that binds to the protein, which is 
given by v × ΔLi (v is the volume of ligand, and ΔLi is the increment in ligand 
concentration) and the characteristic binding enthalpy (ΔH) for the reaction: 

qi = v×ΔH ×ΔLi ð8:3Þ 

By repeating the experiment in several temperatures, it is possible to obtain the heat 
capacity (ΔCp) associated with binding: 

ΔCp = 
∂ΔH 
∂T

ð8:4Þ 

The ITC instrument has two cells, a reference cell as a buffered control and a sample 
cell containing the macromolecule and the ligand, which is titrated into the mixture 
(Wiseman et al. 1989). Modern ITC instruments operate on the heat compensation 
principle, when the measured signal is expressed as microcalories per second and is 
the necessary power to maintain constant the temperature difference between the 
reaction and reference cells (Leavitt and Freire 2001). 

The main advantage of this method is the discrimination it allows between 
enthalpic and entropic contributions to the binding. It is usual to calculate the 
enthalpic efficacy index (EE), to designate the enthalpic contribution to the binding. 
Polar interactions are more easily determined, which represents a limitation of the 
use of this method in FBDD, which employs many non-polar fragments, with weak 
interactions (Rees 2016). Another disadvantage is a large amount of protein required 
(Kirsch et al. 2019). 

EE= 
ΔH 
Q 

Q= number of heavy atomsð 8:5Þ 

A drawback in enthalpic estimations by ITC is the difficulty to determine the 
energies required to bring protein and ligand from free to bound conformations. 
The effective binding free energy (ΔGbind) must be
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ΔGbind =ΔGo 
bind þ ΔGconf ð8:6Þ 

In Eq. (8.6), ΔGo 
bind is the free energy calculated under the assumption that free and 

bound conformations are exactly the same, and ΔGconf is the free energy of chance 
from free to bound conformations (Luque and Freire 2000).An example of the 
application of ITC in FBDD is given by Drinkwater et al. (2010), with the investi-
gation of phenylethanolamine N-methyltransferase inhibitors, important to the cen-
tral nervous system essential synthesis of adrenaline. Mashalidis et al. (2013) also 
describe a screening of a library of low molecular weight compounds (fragments) 
which combines diverse experimental techniques: a preliminary screening using 
differential scanning fluorimetry (DSF), followed by NMR spectroscopy validation 
and the characterization of binding fragments by isothermal titration calorimetry 
(ITC) and X-ray crystallography. 

8.3.6 Mass Spectrometry 

Mass spectrometry (MS) is a technique widely used in the structural determination of 
organic compounds. It is based on the fragmentation of a molecule (e.g. through 
collision with a beam of high-energy electrons) and the determination of the 
structure that generated such fragments from the systematic comparison of their 
masses. Many mass spectrometers are coupled to other instruments, such as gas 
chromatographs. 

MS provides advantages over their counterpart techniques for allowing weak 
binding detection due to its high sensitivity. Besides, few sample amount is required, 
no modifications or labelling of the protein target is needed, and direct visualization 
of all species in solution alongside the binding process is feasible (Chan et al. 2017; 
Vu et al. 2018). The use of milder ionization techniques, such as non-denaturing 
electrospray ionization (ESI), is always more interesting because it preserves the 
structural integrity of the protein:ligand complex. An example of this application is 
described by Liu and Quinn (2019): 643 natural products from fragment-sized 
library with low molecular weight were screened against 62 potential protein targets 
for malaria, which led to 96 low molecular natural products capable of binding and 
79 fragments that could inhibit the growth of malaria parasites in vitro. Another 
worth-citing case is the discovery of a benzimidazole moiety with high affinity to a 
29-mer RNA model, identified from an 18,0000 fragment library using MS-based 
screening methods (Seth et al. 2005).
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8.4 FBDD Strategies 

Some FBDD strategies can be pointed out, whose choice is done according to the 
information available or needed. 

8.4.1 Chemical Biology Exploration of Biological Targets 

This approach is based on the search for possible sites of interaction in the structure 
of the target molecule and the library fragments. One way to perform this procedure 
is called MSCS (multiple solvent crystal structures), which uses solvent molecules as 
bridges between the site and the ligands (Allen et al. 1996). Although water is most 
commonly used for this sake, organic solvents can also be employed, such as 
acetonitrile, as described by Fitzpatrick et al. (1993). Another way to use the target 
structure in the selection of the best fragments is the use of the druggability of the 
site, using for this purpose properties such as polar and apolar surface area, surface 
complexity and pocket dimensions, determined from NMR data, as reported by 
Hajduk et al. (2005). 

8.4.2 FBDD as HTS Complimentary 

Since the process of developing a new drug depends a lot on the appropriate choice 
of leads, the methods comprised by FBDD play an important role due to their ability 
to propose leads of high quality and specificity for the target studied. There is a 
growing interest in methods that combine FBDD with high-throughput screening 
(HTS), due to the possibility of covering a wider set of structures. In addition, 
fragments exhibit the advantage over collections of compounds of presenting better 
values of ligand efficiency (LE): 

LE= -
ΔG 
N 

= -
RT ln Kdð Þ  

N
≈ -

RT ln IC50ð Þ  
N 

, ð8:7Þ 

where ΔG is the binding free energy, N is the number of heavy atoms in the ligand, 
Kd is the dissociation constant, and IC50 is half of the maximum inhibitory concen-
tration, usually expressed by its negative logarithm, pIC50 (Hopkins et al. 2004; Ress 
et al. 2004). Additional criteria may be used, like lipophilic LiPE (Ryckmans et al. 
2009), 

LiPE= pIC50 - log P, ð8:8Þ 

as well as Lipinski’s rule of five parameters, as discussed above in this chapter.
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Grädler et al. (2019) describe an FBDD/HTS combination protocol to build a 
chemically diverse hit database of peptidyl-prolyl isomerase cyclophilin D (CypD) 
ligands, obtaining three different series with either urea, oxalyl or amide linkers with 
millimolar affinities. 

8.4.3 Build-Up Core FBDD for Drug Discovery 

Building new hits from “pure” fragments is always an interesting option when there 
are no likely candidates. Several programs for this purpose are known, including 
CAVEAT (Lauri and Bartlett 1994), HOOK (Eisen et al. 1994) and SEED (March-
and and Caflisch 2018). CAVEAT is based on an algorithm that searches for the 
fragment options that best fit the site, using pairs of vectors. HOOK, in its turn, 
derives functional group sites with defined positions and orientations from known 
ligand structures or the multicopy simulation search (MCSS) method (Miranker and 
Karplus 1991), placing molecular “skeletons” from a database into the protein-
binding region and connecting them. At last, SEED uses a docking protocol devel-
oped for fragment docking and binding energy evaluation by a force field with 
implicit solvent. 

Fragment design using docking methodology must face the common challenges 
involved in such tasks: (1) the choice of the search algorithms and (2) the scoring 
functions (Torres et al. 2019). Search algorithms based on systematic search often 
have to deal with a combinatorial explosion of conformations, which can be 
remediated by the use of protein and ligand pharmacophore. Stochastic search 
algorithms (such as Monte Carlo and evolutionary algorithms) perform random 
changes in the ligand’s degrees of freedom, but there is no warranty of convergence 
to the best solution, which usually requires an iterative process. Finally, determin-
istic search employs the orientation and conformation of the ligand in each iteration 
from the previous state, which may demand a large computational cost. 

Common scoring functions may include the following: binding energy, free 
energy or interaction energies. Modern force fields group their scoring functions in 
force field, empirical and knowledge-based (Guedes et al. 2014). 

8.5 Case Studies 

8.5.1 Case 1: Pseudo-Natural Products 

Liu and Quinn (2019) describe the search of novel anti-parasitic drugs from FBDD 
strategies, designing “pseudo-natural products” obtained by the modification of 
native natural products, matching some requirements, such as smaller structures 
with less reactive sites and more chiral sp3 centres, molecular weight between 
150 and 300 Da, clogP <3. The fragments were derived from well-known drugs



like FK 506 (tacrolima), sanglifehrin, cytochalasin, massarigenin, renieramycin and 
sparteine. 
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A synthetic combination of unrelated natural product fragment types was also 
used in the design of pseudo-natural products. An attempt to combine fragments 
accessible compounds via classical biosynthetic routes into novel fragments that 
could be obtained via new artificial biosynthetic pathways, as reported by Klein 
et al. 2014. 

The construction of libraries of fragments that mimic natural products must take 
into account the set of requirements of Lipinski’s rules and the preservation of 
scaffolds that are essential for biological activity. Several databases of natural 
products can be used as starting points, such as the Dictionary of Natural Products 
(Harborne 1995). The authors divided it into 64,650 fragment-sized 
(MW 100–300 Da) and 145,623 natural products with an MW > 300 and employed 
Spider software (Reker et al. 2014) to predict the targets of 23,340 (36%) of the low 
MW natural products. Non-flat (C sp3-rich) and 2-ring-sized fragments were 
privileged, accounting for 643 compounds out of the former 23,340 ones. 

FBDD-HTS combination comprising pseudo-natural products was used to find 
novel dengue virus helicase (NS3 DENV Hel) inhibitors and dengue virus 
methyltransferase (NS5 DENV MTase), with good results, confirmed by thermal 
shift assays (Coutard et al. 2014; Benmansour et al. 2017). A combination of 
homology modelling, fragment docking, chemical similarity and structural filters 
allowed the authors to identify hits against a homology model of DENV NS2B-NS3 
protease, generated from five WNV and DENV protease template structures 
(Knehans et al. 2011). Additional filtering to avoid chemically infeasible molecules 
and to include compounds containing a terminal cationic or basic moiety to favour 
interactions with the S2 pocket in DENV NS2B-NS3 protease resulted in 18,803 
hits. A further search for compounds capable of interacting with both S1 and S2 
pockets and some additional criteria based on docking resulted in 23 promising 
candidates, submitted to in vitro assays. 

8.5.2 Case 2: SARS-CoV-2 Main Protease Inhibitors 

The COVID-19 pandemic has posed enormous challenges for the development of 
specific drugs, and many researches involving rational drug planning methods have 
been described in the literature. Although greater emphasis has been given to 
immunological treatments, pharmacotherapy still plays an important role in com-
bating this disease. 

Some FDA-approved drugs obtained from in silico approaches are remdesivir, 
saquinavir and darunavir. Some flavone and coumarin derivatives act as potential 
inhibitors of human SARS-CoV-2 main protease (Khan et al. 2021). Some drugs 
have been tested against SARS-CoV-2, like chloroquine, lopinavir, nafamostat, 
hydroxychloroquine, ritonavir, camostat, corticosteroids and sarilumab (Shaffer 
2020).
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Andola and co-workers (Andola et al. 2022) describe the search of suitable 
inhibitors for the main protease in SARS-CoV-2 using FBDD. The authors used a 
fragment database derived from Auto Core Fragment in silico Screening (ACFIS) 
2.0 web server (Hao et al. 2016). The structures obtained were docked against the 
enzyme using PyRx (Dallakyan and Olson 2015) and AutoDock (Morris et al. 2009), 
combining the results with a property prediction protocol using SwissADME server 
(Daina et al. 2017) and a molecular dynamics performed by GROMACS (Hess et al. 
2008). A SARS-CoV-2 main protease complexed with 3WL molecule was used, 
which was defragmented into its chromene and phenyl rings. ADME properties 
taken into account in the choice of the best compounds were as follows: total polar 
surface area (Ertl et al. 2000), water solubility, lipophilicity (log P), skin permeation 
(Potts and Guy 1992) and synthetic accessibility (in a 1–10 scale). 

Considering the binding free energies and the ADME properties, four-hit mole-
cules were chosen containing 1H-benzo[d]imidazol-5-yl, 3H-indol-3-yl, isoxazol-5-
ylmethyl and 6-fluoro-1,2,3,4-tetrahydronaphthalen-2-yl formate groups as 
fragments. 

8.5.3 Case 3: p38 Mitogen-Activated Protein Kinases 

p38 mitogen-activated protein kinases belong to the mitogen-activated protein 
kinases (MAPKs) group, are responsive to stress stimuli and are involved in cell 
differentiation, apoptosis and autophagy. Activation of the p38 MAPK pathway in 
muscle satellite cells due to ageing in a continuous way impairs muscle regeneration 
(Cosgrove et al. 2014; Segalés et al. 2016). 

Fejzo et al. (1999) used an NMR approach to distinguish between binding and 
non-binding modes of a library of soluble, low molecular weight compounds, 
against p39 MAPK targets—called “SHAPE”. The fragments collection is based 
on the Comprehensive Medicinal Chemistry (CMC) database. Thirty-two different 
frameworks, or “shapes”, describing ~50% of all known drugs, were yielded from 
this effort. The inclusion of atom type and bond order in the analysis yielded 2506 
complex frameworks describing 5120 entries and 41 frameworks describing 24% of 
all drugs. 

A subsequent search taking into account the synthetic complexity or the absence 
of sufficiently soluble analogues led to a small, but efficient, dataset of fragments 
within MW 68–341 Da (average 194 Da), containing 6–22 heavy atoms, and a 
calculated log P of -2.2 to 5.5. 

The one-dimensional (1D NMR) spectra of two small-molecule compounds 
(nicotinic acid and 2-phenoxybenzoic acid) in the presence and absence of p38 
(ligand:protein = 5:1) exhibited line-broadening effects and attenuation of fine 
structure for 2-phenoxybenzoic acid (Kd ~ 70 μM), which indicates binding. A slight 
relationship between the peak heights and the affinity was also observed.
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An additional 2D NMR analysis was a pursuit with this system (two-dimensional 
transferred NOE experiment—tNOE or tNOESY), allowing to distinguish between a 
pair of compounds competing for the same targets. 

8.6 Conclusion and Future Perspectives 

Modern analytical techniques serve as a counterpoint and validation method for the 
process of generating new bioactive chemical entities, and their steady progress 
positively affects the quality of use of the fragments. 

Recent advances in analytical techniques such as surface plasmon resonance 
(SPR), discussed in this chapter, allow the addressing of protein interaction sites in 
a non-destructive and highly specific basis, which can also be applied to nucleic 
acids, membrane receptors and ion channels (Tiwari et al. 2021; Yesudasu et al. 
2021). NMR WaterLOGSY (Bataille et al. 2020) also provides a deeper insight into 
the nature of the locales and driving forces of the fragment–target interactions. 

Dynamic combinatorial chemistry (DCC) is also an interesting approach to 
generate directed ligand libraries for macromolecular targets, taking into account 
its ability to reversibly react with building blocks and reach a stable thermodynamic 
equilibrium. An extension of the technique is called target-directed DCC (tdDCC), 
which identifies potent ligands for pharmacologically relevant targets (Frei et al. 
2019). 

A natural evolution of FBDD is its combination with the capabilities of three-
dimensional quantitative structure–activity relationships (3D QSAR). While classic 
QSAR correlates (by means of statistical methods of multivariate regression) the 
physicochemical properties of a series of compounds with their biological activity 
(Oliveira 2022), 3D QSAR correlates the values of electronic and steric energy 
calculated for specific probes, posed around the molecules within a grid of dots, with 
their biological activity. Such effort yields three-dimensional maps that indicate 
where positive or negative groups favour interaction with the target and where 
small or large groups do so. 

A method that became popular between the 1990s and 2000s was drug design by 
the de novo approach using the LeapFrog (LF) program (Durdagi et al. 2008), 
available in the Sybyl package (Sybyl 2001). LF performs molecular evolution or 
electronic screening through a systematic structural change screening, weighting the 
results according to the target structure, when available (using the Cavity protocol). 
If there is no target structure, 3D QSAR maps provide a pharmacophoric model as an 
adequate portrait of its profile. Three alternative modes can be used for this purpose: 
OPTIMIZE mode suggests improvement to existing leads; DREAM mode proposes 
new molecules expected to have good binding, and GUIDE mode supports interac-
tive design by performing and evaluating user modifications (Makhija et al. 2004). 
Binding energy was calculated encompassing three major components: steric and 
electrostatic enthalpies; cavity desolvation energy; and ligand desolvation energy.
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Holistic methodologies, such as integrated biophysical approach proposed by 
Silvestre et al. (2013), using combined techniques (thermal shift, 1D NMR, ITC and 
X-ray diffraction) open up a wide scenario of exploitation of new library portraits 
with a more robust experimental scaffold, underlying the choice of the best ligands. 

Another interesting challenge is to establish a rationale about druggability and 
molecular shape, as has been studied in the 1990s by Bemis and Murcko (1996) and 
remains open to investigation. Although this work dealt only with topological 
features of 2D fragments, a limited number of graph portraits seem to lead to 
potential drugs. This concept may be useful in the construction of specific fragment 
libraries with topological constraints. 

The possibilities of FBDD depend on the development of higher computational 
processing capabilities, as well as the availability of specific fragment libraries for 
specific diseases and conditions. The COVID pandemic issue brought out new 
demands, mainly concerning drug repurposing, including toxicity studies. Notwith-
standing, this field offers a low-cost route to novel chemical entities to be synthe-
sized and submitted to in vitro and in vivo tests, when compared to traditional 
combinatorial screening as done by pharmaceutical companies. 
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Chapter 9 
Artificial Intelligence and Machine 
Learning in Drug Discovery 

Vivek Yadav, Jurnal Reang, Vinita, and Rajiv Kumar Tonk 

9.1 Introduction 

An average of $1.3 billion is spent on research and development for individual 
medicine (Kolluri et al. 2022). For non-oncology drugs, the median period from 
conception to approval spans from 5.9 to 7.2 years, whereas for oncology drugs, the 
median time is 13.1 with 13.8% overall probability of success for drug-development 
(DiMasi et al. 2016). Hence, lowering the success rate and overall costs resulting to 
lengthy timelines for the modern medication R & D process is a significant issue for 
both business and academics. Furthermore, the ongoing attrition of drug candidates 
is the cause of the modern pharmaceutical industry’s excessive expenditure. Recent 
data indicate that animal toxicity (11%), poor pharmacokinetics (39%), and ineffec-
tiveness (30%) account for 80% of the causes of attrition of the drug development 
process. Unpredictably, the issues raised above are directly connected to the discov-
ery of drugs prior to clinical trials, showing that there is space for improvement 
(Wong et al. 2019). Since it is practically impossible to synthesis and evaluates all 
the potential compounds through tests. However, the overall procedure is typically 
decided by knowledge-based judgments, which might be highly prejudiced. 

In the past 10 years, machine learning (ML) and artificial intelligence 
(AI) techniques have been well-known, thanks to the significant developments in 
computer technology. Artificial intelligence has the tendency to gather and process 
massive amounts of data required for research purposes. This helps in finding broad 
patterns of illness targets using a data-driven method which is a difficult task to 
recognize due to the complexity of the disease mechanism. In this area, a number of 
innovative researches have demonstrated the potential use of AI and ML techniques
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in drug-target identification as well as their capacity to learn and uncover disease 
patterns with the corresponding targets without relying on biological proficiency.
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Fig. 9.1 Drug discovery process guided through AI and ML 

The process of finding a medication lead starts with identifying the target of a 
certain disease, followed by hit identification, and lead optimization (Fig. 9.1). 
However, the traditional approaches to drug discovery required a lot of human 
labor, money, and time over an extended period of time. Additionally, research 
cannot be done with absolute certainty regarding the possibility that a given drug 
candidate’s trial will be successful. The stages of drug discovery where AI is 
effectively cost-reducible start with the target identification and then identification 
of the lead or hit molecules through hit identification; furthermore, it helps in lead 
optimization and even aids in post-marketing surveillance reports. 

AI/ML and deep learning systems have the potential to upsurge the probability of 
accomplishment ratio in drug development process. Moreover, these techniques 
provide significant progress in a number of R & D fields that includes novel target 
identification, deep learning and understanding of the target’s role in the disease, 
insights protein structures prediction, and the molecular compound design and 
optimization. AI further extends their support into the discovery of small molecule 
by involving in different field deals with new biology, better or distinctive chemistry, 
and in vivo and in vitro study with higher chances of success and less time making it 
less expensive as well. In this chapter, artificial intelligence, machine learning, and 
deep learning in the drug development process with its application will be discussed.
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9.2 Artificial Intelligence 

9.2.1 Concept of Modernization 

The use of computers and computational techniques in research and engineering 
could be considerably improved with the development of modern artificial intelli-
gence (AI). By assessing clinically pertinent data that directs the discovery of new 
potential targets, applications of artificial intelligence (AI) in data and chemical 
synthesis process are directly involved in drug development optimization. The 
creation and improvement of potential medications’ molecular structures can be 
done using an AI in drug design. Additionally, medication design methodologies 
comprehend how proteins’ specific forms impact their activities in health and 
malfunction in sickness. 

AI is commonly combined with better patient monitoring process performed 
during clinical trials and medical devices that access specific patient data and advise 
medical decisions in the organization, optimization, and operation and acquire 
crucial patient’s data for clinical studies (Zhavoronkov et al. 2020). Additionally, 
it is increasingly feasible to utilize AI approaches to enhance healthcare research and 
services. However, one such application is risk-based guidance with deep-learning 
models used to anticipate preventable hospital readmissions (Farghali et al. 2021). 

9.2.2 Models 

9.2.2.1 AI-Guided Target Identification 

A very popular and effective approach to finding new drugs is target-based drug 
discovery. For the treatment of any particular diseases, one should identify the target 
responsible for the agonist or antagonist actions. However, because of the choice of 
targets that are weakly related to the disease or have an unsupported theory, many 
therapeutic candidates in clinical trials have poor efficacy or elevated toxicity (Kim 
et al. 2020). Consequently, choosing appropriate targets requires a clearly distinct 
model for the relationship between the ailment and biological components. To 
interpret the connections, a variety of omics data types including genomics, prote-
omics, and metabolomics are required for better results. 

The three kinds of conventional target identification techniques include machine 
learning, network-based models, and statistical analysis (Brown 2007). The most 
common and traditional methods for target identification have been statistical ana-
lyses of omics data for many years. These techniques were developed using the 
genome-wide study of associations (GWAS) and its emphases on finding genetic 
differences between samples from healthy and diseased people. By using association 
tests for the disease’s gene expression, such as the Chi-squared test, Fisher’s exact 
test, or t-test, it is possible to pinpoint potential target genes. Numerous study used



different types of data such as for the tumor samples from the Gene Expression 
Omnibus (GEO) project, miRNA expression data from NCI-60 cancer cell lines, and 
TNBC and non-TNBC data from the Cancer Cell Line Encyclopedia (CCLE) project 
to identify three kinase (PKC, CDK6, and MET) targets for triple-negative breast 
cancer (TNBC) (Chen and Butte 2016). They performed a two-stage bioinformatics 
investigation that involved a patient-based Kaplan Meier survival test and cell-based 
gene expression analysis. The disease-related genetic variations can be found using 
GWAS (Zhu et al. 2016). In order to find the genes linked to a complex human 
feature, Zhu et al. introduced a technique called Summary data-based Mendelian 
Randomization (SMR). 
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9.2.2.2 Network-Based Approaches 

Network-based approaches are frequently employed to depict the intricate relation-
ships between the many biological components. Networks are made up of nodes, 
which stand in biological components, and edges, which show how the nodes 
interact. Furthermore, this method uses a heterogeneous network to manage the 
various omics data types. Consequently, a network-based method to target identifi-
cation is used in numerous investigations. 

This network identifies gene sets linked to disease pathways by capturing genes 
with identical biological process function. Network analysis was utilized by Petyuk 
et al. to pinpoint a late-onset Alzheimer’s target; to determine the gene-protein 
expression association contours, they built a co-expression network using peptide 
and transcript data (Petyuk et al. 2018; Mohamed et al. 2020). To add order or path 
towards network edges, they also created causal predictive networks. 

Recently, target identification has also been accomplished using the knowledge 
graph. Entities, relations, and semantic data are represented in knowledge graphs as a 
machine-interpretable graph. Based on tensor factorization, a knowledge graph’s 
entity and relationship are encoded into three embedding vectors and efficient 
through learning by decreasing wrong facts and maximizing accurate facts. 

9.2.2.3 Machine Learning-Based Approaches 

Finding broad spectrum of illness targets using a data-driven method remains 
difficult due to the complexity of the disease mechanism. Using the classifiers, we 
can determine whether a gene is associated with the therapeutic target or not. 
Through gene-disease association data, Open Targets platform that can be classified 
into four types such as Random Forest (RF), Support vector machine (SVM), Neural 
Net, and Gradient Boosting Machine (GBM) (Ferrero et al. 2017). When the four 
classifiers are performed similarly, the results will be an AUC of 0.75 and an 
accuracy of about 70%. By combining these regression models with gene expression 
data from GEO and Array Express, Mamoshina and co-workers created an age 
prediction system. They used feature importance analysis to determine which



genes were most closely connected with age prediction, and found that five well-
known medication targets among the top 20 genes (Mamoshina et al. 2018). 
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9.2.2.4 AI-Guided Hit Identification 

The important milestone in preclinical drug discovery is the identification of drug-
target interactions. The molecular interaction among the drug and the chosen target 
determines the desired effects of the treatment, but unwanted interactions that were 
not specifically targeted during drug development might also result in side effects 
and the need to reposition the drug (Keiser et al. 2009). In order to maximize the 
effectiveness of the initial phases of drug development, numerous computational 
models are used to detect drug-target interaction and estimate binding affinities, 
which also has the benefit of delivering unique drug candidates (Ballester and 
Mitchell 2012; Stepniewska-Dziubinska et al. 2018). There are three basic types of 
hit identification computational approaches: the first focuses on the structure of the 
protein, the second on the structure of the ligand, and the third on the chemogenomic 
methods that describe similarity and feature-based methods (Fig. 9.2). 

9.2.2.5 Structure-Based Approaches 

The target protein’s 3D structures, which are produced by X-ray crystallography 
(XRC) and proton nuclear magnetic resonance spectroscopy (protein NMR), are 
utilized by structure-based approaches. A key strategy in structure-based techniques 
is a molecular docking simulation, which is carried out in two parts (Imrie et al. 
2018). The first phase is the search for ligands in conformational space, which 
thoroughly simulates potential binding poses. Following a conformational search, 
a scoring function ranks potential ligand poses on the targeted protein structure and 
calculates binding affinity in the second phase. The evaluation of docking simula-
tions is influenced by the scoring function’s quality. Traditionally, binding affinity 
posture is predicted using empirical or knowledge-based scoring systems. 

Fig. 9.2 AI guided hit identification methods in drug discovery
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Data-driven machine learning scoring functions (MLSF) are created by 
employing support vector machines (SVM) and a random forest score (RF-Score) 
towards correcting the bias of classical scoring systems. In order to evaluate binding 
affinity, numerous deep learning-based scoring functions (DLSF) have recently been 
created. They have used a variety of deep learning approaches with the given pose, 
including a 3D convolutional neural network (3D-CNN) and a graph convolutional 
network (GCN). Each voxel has features that describe internal characteristics 
including ionization, hydrophobicity, aromaticity, and hydrogen bonds, among 
others. Deep learning today uses the convolutional neural network (CNN) as a key 
tool for pattern recognition. 3D-CNN is considered to find a three-dimensional 
spatial feature, binding pose, and affinity patterns for 3D voxel-based approaches. 
The potential net performed better than the RF-Score using GCN for the 
non-covalent (O’Boyle et al. 2011; Ma et al. 2015). Additionally, a number of recent 
researches recommended an examination of feature weights, which helped to better 
expand the compound’s design. 

9.2.2.6 Ligand-Based Approaches 

The foundation of ligand-based approaches is the idea that molecules with compa-
rable structural characteristics would interact with the same target. The main strat-
egies in ligand-based methodologies are the quantitative structure-activity 
relationship (QSAR) models, three-dimensional QSAR, two-dimensional study 
fingerprint regions for the arrangement of the atoms (2D-QSAR), and estimation 
of quantitative associations (weights) between structure and its bioactivity (Yadav 
et al. 2020). A compound’s structural and physicochemical characteristics have 
several connections to its biological activity, for instance, the partition coefficient 
is closely connected to the hydrophobic effect, which results towards receptor 
affinity. Many quantitative representations of a chemical can be utilized for predic-
tion, ranging from a straightforward atom count to the Lipinski rule of five (Yadav 
et al. 2022). In order to develop quantitative molecular descriptors of chemicals, 
there are numerous tools available. To produce molecular descriptors for bioinfor-
matics and cheminformatics, there are three open-source programs: RDKit, 
OpenBabel, and chemical development kit (CDK). QSAR creates a model to predict 
the bioactivity of compounds based on the quantitative descriptors that are gener-
ated. On-target bioactivities and ADME attributes were included in the benchmark 
datasets (Kaggle datasets) for QSAR prediction that is Merck Molecular Activity 
Challenge (MMAC) issued in 2012. Deep learning-based QSAR calculations have 
done better than earlier RF QSAR predictions as an advanced deep learning tech-
nique methodology.
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9.2.2.7 Chemogenomic Approaches 

Target proteins and chemicals are both used in chemogenomic techniques. The 
excellence and variety of chemogenomic techniques are taken advantage of by the 
exponential growth of data on proteins, compounds, and drug-target interactions 
(DTI). Chemogenomic techniques are often divided into two groups: similarity 
methods and feature-based techniques. 

(a) Similarity-Based Approaches 
In order to predict DTIs, similarity-based approaches focus on resemblances 

between the obtained protein and chemical structures. To develop most suitable 
similarity index between the proteins and chemicals, a variety of methods can be 
used such as the topological similarity in graphs and networks, normalized 
Smith-Waterman scores, Tanimoto coefficient, and pretense distance between 
protein domains. The bipartite local model (BLM) is a noteworthy study that 
makes use of the graph-based approach (Bleakley and Yamanishi 2009; Ding 
et al. 2013). BLM creates a bipartite graph connecting medications and targets, 
which expects the drug target interactions, and then aggregates both to get a final 
prediction. 

(b) Feature-Based Approaches 
Target and compound feature vectors, which are fixed-length vectors describ-

ing significant physicochemical qualities, are used in feature-based approaches. 
Drug and target vectors are concatenated, and machine learning models are 
trained to categorize DTIs using feature vectors of interaction and labels. 
Moreover, the drug-target characteristics features can be analyzed by protein-
protein and drug-drug interaction networks to improve prediction performance 
(Li et al. 2016; Lee and Nam 2018). Furthermore, applying a deep learning 
model to feature-based methods has been suggested in numerous papers as a way 
to improve the results for drug design. However, feature-based approaches have 
a number of drawbacks, one of which is the information that is lost during 
feature engineering. 

9.2.2.8 AI-Guided ADMET Prediction 

Optimizing pharmacokinetic parameters with absorption, distribution, metabolism, 
excretion, and toxicity is one of the crucial parts in the drug discovery process 
(ADMET). In order to effectively direct the stages of drug discovery, it is necessary 
to examine compound’s ADMET properties for the detailed understanding of 
complex biological mechanism (Gola et al. 2006). AI helps in understanding this 
complex human biological process to determine the results in a faster way with 
accuracy. The collection of bioactivity and data as well as sophisticated machine 
learning techniques, the pharmaceutical industries, as well as academic institutions 
have been drawn to in silico ADMET property predictions.
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9.2.2.9 AI-Guided Lead Optimization 

The phrase “finding a needle in a haystack” is used to describe the process of 
identifying a molecule that provides the appropriate pharmacological characteristics 
or has activity against biological targets. Researchers believe that there are roughly 
1030–1060 chemical possibilities in the space of synthesizable compounds, 
although there are now only about 160 million chemicals listed in Chemical 
Abstracts Service. Too many resources and computational resources would be 
needed to fully count this enormous expanse. 

These methods make use of deep learning techniques that have shown measur-
able effectiveness in the fields of machine translation and synthetic image synthesis. 
Knowledge of the chemical space distribution and performing targeted optimization 
to get the desired pharmacophore features are key aspects of performing deep 
generative models in the lead optimization areas (Brown et al. 2019). Although 
every method has its particular unique advantages, however the AI-guided methods 
provide number of advantages over other conventional approaches such as it is 
entirely data-driven and it can decrease human bias. Furthermore, using gradient-
based optimization, the chemical space is explicitly modeled as a continuous func-
tion (Noorbakhsh-Sabet et al. 2019). 

9.3 Applications 

Healthcare professionals ought to be prepared for the approaching era of artificial 
intelligence and welcome the new capabilities that will enable more effective and 
efficient care. In this article, we examine machine learning’s uses, difficulties, ethical 
issues, and viewpoints in the fields of medicine, translational research, and public 
health. 

9.3.1 Disease Prediction and Diagnosis 

Although artificial intelligence is increasingly being used in healthcare, research still 
mostly focuses on cardiovascular, nervous system, and cancer related as these are the 
major causes for the ill health and death. Early diagnosis of a variety of diseases can 
now be accomplished by refining the extraction of clinical understandings and 
performing these from the well-trained and verified system. For instance, the Food 
and Drug Administration (FDA) of the United States has approved the use of 
diagnostic software intended to find wrist fractures in adult patients. More over, 
6% of the adult population in the United States suffers from depression. Image 
heatmap pattern recognition was 74% accurate at predicting severe depressive 
illness.
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Artificial intelligence has the ability to provide prompt and accurate disease 
diagnosis, according to several researches. For the classification of complicated 
and multifactorial diseases, supervised approaches are useful tools for capturing 
nonlinear interactions. Abedi V. et al. discovered in a research involving 260 indi-
viduals that the model can identify acute cerebral ischemia more accurately than 
skilled emergency medical peoples (Abedi et al. 2017). However, the noisy data and 
experimental constraints diminish the therapeutic value of the models; deep learning 
methods can solve these constraints by lowering the dimensionality of the data by 
layered auto-encoding analyses. 

9.3.2 Clinical Trials and In Silico-Based Prediction 

With the AI method, researchers can partially replace animals or people in a clinical 
trial and create virtual patients with particular traits to improve the results of such 
investigations. 

The deep learning techniques can be used in pharmacokinetics and pharmacody-
namics from the initial preclinical stage to the later post-marketing analysis, and they 
are especially useful for pediatric or orphan disease trials. In one study, researchers 
created a sizable in silico randomized, placebo-controlled Phase III clinical trial 
study in which they treated artificial Crohn’s disease patients using virtual therapies. 
However, with variable drug efficacy results revealed a favorable association 
between the baseline disease activity score and the decline in disease activity 
score. The investigational medicine GED-0301 did not receive a high score from 
the model, and this prediction was confirmed when the business that was conducting 
the phase III study on GED-0301 halted it after failing to pass an interim futility 
review. The design and discovery stages of a biomedical product, the identification 
of biomarkers, the optimization of dose, or the length of the proposed intervention 
can all benefit significantly from AI-guided in silico clinical trials. 

9.3.3 Drug Discovery and Repurposing 

Around 25% of altogether medications have been found as a result of unintentional 
bringing together of various areas. Due to the factors such as high costs of drug 
research, low success rates in clinical trials, the application of AI and ML is growing 
significantly and three-dimensional structural data that can aid in the characterization 
of pharmacological targets, and are used in the drug discovery process. The AI in 
drug repurposing process not only provides the new targets for the existing drugs but 
also reduces the expenditure cost. 

For example, the DSP-1181 is the first AI-created medication to enter in clinical 
trials; it is a long-acting, powerful serotonin 5-HT1A receptor agonist. Exscientia is 
the biotech company which discovered DSP-1181 in collaboration with Sumitomo



Dainippon Pharma of Japan, which noted that the time from screening to the 
conclusion of preclinical testing was less than 12 months as compared to 4 years 
utilizing conventional procedures. Researchers at the Massachusetts Institute of 
Technology (MIT) discovered the medication halicin, which is effective against 
bacterial type (Escherichia coli), using a machine learning algorithm (Stokes et al. 
2020). 
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Moreover, artificial intelligence is used in deep learning of the mechanism of 
medication toxicity, for example, terbinafine toxicity. The antifungal terbinafine may 
cause liver damage in some patients, which has very negative health effects. In 
another example, the machine learning method was performed to determine potential 
biochemical routes of the terbinafine drug to identify the biotransformation mecha-
nism by the liver. The student discovered that the terbinafine metabolism is a 
two-step process through the AI/ML algorithm data. 

In other examples, sildenafil, a drug first created in 1989 to treat angina, was later 
discovered to be effective in treating erectile dysfunction and was given the name 
Viagra. Thalidomide was initially created to treat morning sickness, but it caused 
serious birth problems, including limb deformity, and was removed off the market. A 
few years later, scientists learned that thalidomide has an anti-angiogenesis effect 
and began using it to treat leprosy and multiple myeloma. 

To advance the knowledge of understudied biological systems, AlphaFold AI 
technique revealed the possible predictions of five SARS-CoV-2 targets in 2020, 
including the SARS-CoV-2’s membrane protein, Nsp2, Nsp4, Nsp6, and papain-like 
proteinase (C terminal domain). The antiviral medications such as atazanavir, 
remdesivir, efavirenz, ritonavir, and dolutegravir were computationally identified 
by the MT-DTI technique. 

9.4 Machine Learning 

Machine learning, a well-known branch of artificial intelligence, used a large 
number of databases to identify different patterns of variable interactions. The ML 
can generate novel ideas, uncover previously unknown relationships, and be found 
to be helpful in obtaining a fruitful path for the drug development and research. 
Many fields, including data production and analytics, have adopted machine learning 
(ML). Algorithm-based approaches, like ML, have a strong mathematics and com-
putational theory foundation. Many potential technologies have made use of ML 
models, including support vector machine-based improved search engines, deep 
learning (DL) assisted driverless automobiles, and advanced dialogue recognition 
technology. 

Deep learning is a branch of machine learning that creates automated predictions 
from training datasets by simulating the functioning of the human intellect with 
numerous layers of artificial neuronal networks (Patel et al. 2020). Deep learning-
based models frequently have several parameters and layers; as a result, model over-
fitting may result in subpar prediction accuracy. Over fitting can be avoided by



enlarging the training sample, reducing the number of hidden layers to obtain the 
balanced data. The example of the deep neural network application is to reduce the 
time it took to diagnose new outpatient cerebral hemorrhages by 96% with an 
accuracy of 84%. 

9 Artificial Intelligence and Machine Learning in Drug Discovery 215

9.4.1 Classifications 

The machine learning methods are categorized into two types such as supervised and 
unsupervised methods (Table 9.1). In supervised learning, labels for fresh samples 
are determined using training examples with established labels. The regression and 
classification are useful applications of supervised learning. Examples of applica-
tions for supervised learning techniques include the identification of lung nodules 
from chest X-rays, risk estimation models for anticoagulation therapy, automated 
defibrillator implantation in cardiomyopathy, categorization of stroke and stroke 
mimics, identification of arrhythmia in electrocardiograms, and the designing of the 
in silico clinical trials. In addition to processing labeled input in supervised learning, 
generative deep neural networks (DNNs) can also be used to analyze unlabeled data. 
One of the most popular generative network topologies for unsupervised learning is 
the deep auto-encoder network (DEAN). 

Unsupervised learning does not require labeled data and can find unseen patterns 
in the data that are frequently used for data exploration and the production of 
innovative ideas. Prior to recognizing patterns in high-dimensional data, the data 
are typically translated into a lower dimension using unsupervised learning methods. 
The unsupervised learning utilized to review failed clinical trials with drugs such as 
spironolactone, enalapril, and sildenafil versus placebo to revisit patients with 
heterogeneous conditions who had heart failure. The examination was done with 
three different studies to determine the patient’s recovery without any human 
intervention (Carracedo-Reboredo et al. 2021). 

Table 9.1 Components of artificial intelligence 

Terms Description 

Supervised Usage of a previously labeled database to predict outcomes of future events 

Unsupervised Identification of previously uncategorized database to predict peculiar relation 
between the dataset 

Re-enforcement Interaction of a machine with its environment using sensors, camera, GPS 
(global positioning system) and robotic interventions 

Artificial neural Computing system that analyses and processes information in a similar way 
compared to the human brain 

Convolutional 
neural 

Performs analyses of visual images 

Recurrent neural Functions by developing connections between nodes from a directed graph 
along a dynamic temporal sequence
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The reinforcement learning method uses trial-and-error to increase accuracy 
while combining supervised and unsupervised learning. In all stage of the drug 
discovery process, large amounts of data are essential for the creation, development, 
and feasibility of efficacious ML algorithms. In precision medicine and therapies 
within drug discovery, the dependence on large, high-quality datasets and recog-
nized, well-defined training sets is very crucial for the study. 

Apart from these classifications, other model classifications frequently used are 
binary, multiclass, multi-label, and imbalanced. The binary is a two-label classifica-
tion that employs algorithms like logistic regression, k-nearest neighbors, choices 
trees, support vector machines, and naive Bayes, while the multiclass involves more 
than two labels using techniques such choices trees, support vector machines, naive 
Bayes, random forests, and gradient boosting. In contrast to multiclass, which pre-
dicts a single class label for each example, multi-label classifies jobs that have more 
than two labels. The imbalanced classification model is used to classify the class 
labels with unevenly distributed jobs. 

The deep learning (DL) is a type of machine learning algorithms which is known 
for using higher level characteristics such as neural networks that are developed from 
a model of the human brain to enable computers to read, create, and learn compli-
cated hierarchical representations. The input data are transformed into a more 
compounded output data as a result of this process. There are various kinds of DL 
architectures, and depending on how the training set is organized, each one may 
recognize patterns and extract high-level features in a particular way. In this chapter, 
we briefly discuss on the common architectures, such as the CNN, RNN, and 
generative networks. 

Convolutional neural network (CNN) is one of the most widely used DL designs 
in various industries, including natural language processing, image and speech 
identification, and many other natural language processing (NLP). Another sample 
type of DL architecture is the recurrent neural network (RNN), which was specifi-
cally designed to handle sequence data, and has been successfully applied to NLP. 

9.4.2 ML Algorithms Used in Drug Discovery 

The use of multiple ML algorithms in drug discovery has considerably benefited 
pharmaceutical businesses. There are different types of ML algorithms models 
available for forecasting the chemical, biological, and physical properties of mole-
cules in drug advancement method. All phases from the drug identification to the 
market surveillances of the drug discovery process can benefit from the use of ML 
algorithms. As an illustration, ML algorithms have been applied to discover novel 
therapeutic uses, forecast drug-protein interactions, identify medication efficacy, 
assure the presence of safety biomarkers, and enhance the bioactivity of molecules.
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9.4.2.1 Naive Bayes 

Machine learning algorithms seek out the most promising theory from a set of 
relevant data, in particular, for the class of an unknown data sample. According on 
the description provided by the vector values of each sample’s variables, Bayesian 
classifiers assign each sample to the most likely class. The technique assumes that 
the variables are independent in its most basic form, making it easier to apply Bayes’ 
Theorem (Madhukar et al. 2019). While the assumption that not all variables are 
equally significant is impractical, this family of classifiers known as NB (Naive 
Bayes) that comes from it achieves excellent results, despite the fact that sometimes 
their set of characteristics exhibits high interdependence. This algorithm provides a 
straightforward method which is quick and efficient that can handle noisy data. 
Although it provides better results even though the data volume is very high in terms 
of the number of samples because of the tiny datasets. It responds each variable as a 
definite one and employs frequency tables to extract information. However, it is not 
the best technique for large dimensional issues with many features and requires some 
kind of transformation when dealing with numerical variables. 

9.4.2.2 Naive Bayes in Drug Discovery 

The identification of potential drug targets has been done using this approach in drug 
discovery. They specifically created a Bayesian model that incorporates many data 
sources, such as data of known side effects or gene expression, and they achieved a 
model with 90% accuracy on more than 2000 compounds. There are reports that 
used an experimental approach on machine learning and molecular docking study to 
identify the potential inhibitors of DNA topoisomerase I enzyme of mycobacterium 
tuberculosis (MtTOP1) species and evaluated in vitro confirmation of their compu-
tational findings (Ekins et al. 2017). The AUC values for these predictions were 
74%. In this, the drug prediction models are used in accordance with the ATM 
(Anatomical Therapeutic Chemical) system using the datasets from STITCH and 
ChEMB. The different types of molecular descriptors were analyzed for the struc-
tural information, and interactions with similar targets are displayed with an accu-
racy of 65%. 

9.4.2.3 Support Vector Machines 

Support Vector Machines (SVM) were first presented by Vapnik in the late 1970s. 
Due to the robustness and capacity to generalize in high-dimensional domains, 
particularly in bioinformatics, these are among the most extensively utilized 
approaches (Fernandez-Lozano et al. 2014). Sets of points in a particular space are 
used in machine learning to figure out how to handle brand new observations. These



points are used by kernel-based approaches to determine how comparable the new 
observations are and to reach a conclusion. 
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9.4.2.4 Support Vector Machines in Drug Discovery 

The SVM is one of the most often used models in bioinformatics because of its 
capacity to handle challenging issues that are complicated, nonlinear, high dimen-
sional, and noisy. They have been utilized to classify pharmaceuticals based on their 
KEGG categorization, with an accuracy score of 83.9%. A brand new method for 
predicting intricate drug-target interaction networks using interaction matrices with 
function values of 80% was put forward. Additionally, by calculating several 
molecular descriptors and chemical indices using ChEMBL datasets with values 
near 70% in validation, it is able to predict the stability in human liver microsomes. 
The method used in expression data is an intriguing new method to anticipate a 
drug’s impact on a tumor line by learning more about the genes involved in the 
drug’s response in various tumor types (GEO). 

For the prediction of HDAC1 inhibitors, SVMs were also applied to 3D-QSAR 
descriptors using a feature selection strategy described (Hu et al. 2016). The 
2D-QSAR used to predict the compounds that inhibit the P-gp membrane protein 
target in the cancer study and wrapper feature selection models along with 
metaheuristic as a genetic algorithm produced promising results that were later 
confirmed by molecular docking approaches. Multiple Kernel Learning (MKL), 
which generates various linear combinations of SVMs with various parameters or 
kernels in an effort solve the problems, is an illustration of a sophisticated applica-
tion of SVMs. Additionally, this enables the integration of many heterogeneous data 
sources, although at the expense of raising the computing cost. 

9.4.2.5 Tree-Based Models 

A decision tree is a hierarchical structure made up of nodes and the connections 
between them or branches. The method employed for classification issues is distin-
guished among methods for other sorts of problems, such as regression, survival, or 
outlier’s detection. In this, the root nodes, internal nodes, and terminal nodes were 
found within a decision tree’s hierarchical structure. The root node is found at the top 
of the tree model with one or more branches emerging from it but no branches 
reaching towards it. Regarding internal nodes, two or more branches originate from 
them and reach the next level of the hierarchy. There is no branches originating from 
the terminal nodes since they are located at the bottom of the hierarchy. 

The out of bag error is equivalent to the error that the algorithm would make when 
the cross-validation is performed. The bagging approach in which the random forest 
(RF) divides the dataset into one-third part for validation and two-third part for 
training sets and analyzes to determine generalization error internally from each 
individual decision tree. Finally, because each decision tree is trained using various



samples and characteristics, it is easy to estimate the importance of each attribute, 
while ignoring the others and lowering the problem’s dimensionality. Because of 
this, issues with very high dimensionality and noise are particularly well-suited for 
this technique. 
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9.4.2.6 Random Forest in Drug Discovery 

When it comes to greater performance, speed, and generalizability, the RF model is 
the greatest among all other models. This model is deemed to be more suited and 
offers protein interactions with greater than 90% accuracy. They made use of the 
Open Babel descriptors and the GO and KEGG protein enrichment scores for the 
validation. 

9.4.2.7 Artificial Neural Networks 

The artificial neuron is a useful component of the network that accepts input from 
other components and processes it in some way to provide an output that can be 
processed by other components before talking about ANN. The artificial neurons 
may communicate with one another, just like natural neurons, and their connections 
are represented by weights, which are merely values that attempt to capture the 
synaptic force of a connection between two neurons. The net value, which sums 
together all the forces received by an artificial neuron or processing element, is 
considered first. The output of the processing element is determined by applying a 
trigger function after the net value calculation. The network of neurons can be 
created where the outputs of one neuron are used as the input for other neurons. It 
is important to realize that ANNs require input nodes, or neurons that receive data 
from the external world; these neurons are referred to as the network’s input layer. 
Additionally, the network involves output nodes, which are located in the hidden 
layer and transmit ANN results. The network’s hidden nodes, which transport data 
between neurons, are arranged into one or more hidden layers. 

9.4.2.8 ANN in Drug Discovery 

ACD (Available Chemicals Directory) and CMC (Comprehensive Medicinal Chem-
istry) data were used to train ANN and tree-based algorithms for drugs and 
non-drugs, respectively. The 2D descriptors provide the detailed information of 
the functional groups availability inside the molecules structures. However, 1D 
descriptors provide the information regarding the molecule’s molecular weight and 
hydrogen bond numbers for each available compound. An ANN with both 1D and 
2D descriptors produced the greatest results, with an accuracy of 89%. 

To forecast the initial carcinogenesis of substances suggested to be medications 
includes the calculation of six distinct types of descriptors with a deep learning



model and an accuracy of 86% using 1003 chemicals from the Carcinogenic Potency 
Database. AUC of 76% can be achieved by beginning an experimental phase in the 
lab, generating a set of 2130 compounds of potential novel medications of interest 
for cardiotoxicity, computing each compound’s DRAGON 3456 descriptors, and 
including the analysis in a feature selection procedure. 
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9.4.2.9 De novo Molecular Design 

Recent developments in ML have greatly improved the field of de novo or inverse 
molecular design. In a very short period of time, many intriguing strategies have 
been proposed. Recurrent neural networks (RNNs), generative adversarial networks 
(GANs), and auto-encoders, in particular, have been applied to the optimization of 
devices and the rational design of organic and inorganic materials. ReLeaSE is a 
deep reinforcement learning-based technology that produces chemical compounds 
and focuses on chemical collections with anticipated physical, chemical, and/or 
bioactivity features (RL). Both generating (G) and predictive (P) neural networks 
are used in the ReLeaSE method’s main workflow. The generative model G serves as 
an agent in this system by creating new, chemically viable compounds, whereas the 
predictive model P serves as a critic. P assigns a numerical reward (or penalty) to 
each created molecule in order to estimate the agent’s behavior. 

9.4.2.10 Synthesis Planning 

Recent advances in research, synthesis planning have made use of ML-based 
methodologies. Without human support, full syntheses of crucial chemicals for 
medicine were planned using the computer application Chematica. In order to 
identify the successful synthetic paths, the reaction guidelines are merged into 
graphs that connect lots of potential molecules with the chemical reaction knowl-
edge. Retrosynthetic paths can be found using Monte Carlo tree search and symbolic 
AI without the aid of human expert rules and widely used today in the research 
organizations. Practically, all organic chemistry-related reported reactions were used 
to train this neural network. However, the synthetic chemists judged computer-
generated pathways to be comparable to approaches described in the literature and 
with practical results. 

9.5 Applications 

9.5.1 CNS Disorder 

Futuristic CNS drug discovery study will increasingly rely on AI/ML, mostly in the 
fields such as patient subtyping, identification of crucial disease drivers, estimation



of cell type-specific drug response, sovereign novel drugs design, and with better 
BBB (blood brain barrier) permeability tests. The role of AI/ML is now being 
constrained by structural limitations in data and algorithms. However, in the long 
run, we will be able to create CNS disease treatments that are more potent because of 
ongoing and new breakthroughs in AI/ML approaches to neuropharmacology (Car-
penter and Huang 2018). 
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9.5.2 Discovering Novel Antimicrobial Agents 

Several reported works showed how ML may be used in the context of antibiotic 
discovery to learn small molecule structural properties from screenings that contain 
prevailing antimicrobial activity to advance novel antimicrobials. By first creating a 
genetic library of hypomorph knockdowns for these crucial genes and then screening 
50,000 chemical compounds against these hypomorphs, Johnson et al. done a 
screening for finding biochemical inhibitors of key genes in M. tuberculosis. 

The supervised ML classification evaluates the novel classes of chemical inhib-
itors for existing drug targets and recent discovered targets, validated in wild-type 
cells against standard antibiotics. A deep learning ML model used screening of 
several molecules with different structural features for antimicrobial activity against 
E. coli in order to predict antimicrobial functions. To predict the inhibition of 
Escherichia coli growth, the scientists used a training set of 2335 molecules for a 
DNN model. The model was then run on more than 107 million molecules from 
various chemical libraries. 

9.5.3 Epidemic COVID 

In order to find effective medications for 65 human proteins (targets) that had shown 
to interact with SARS-CoV-2 proteins, Kowalewski and Ray created machine 
learning (ML) models (Kowalewski and Ray 2020). They infer it from inhalation 
treatments to directly target the injured cells because the virus is known to target the 
respiratory tract, including nose epithelial cells, upper airway, and lungs. In order to 
rank the chemicals and identify medications that share the identical chemical space, 
they gathered 14 million compounds from ZINC databases and used machine 
learning algorithms to obtain vapor pressure and mammalian toxicity. The objective 
of the study was to create a short- and long-term pipeline for use in the future. They 
also developed models that might forecast drug efficacy using SVM and RF.
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9.6 Drug Discovery Process 

9.6.1 AI and Machine Learning in Precision Drug Discovery 

A new approach to disease prevention and treatment called precision medicine 
considers a person’s unique gene, lifestyle, and environmental variations. Based 
on the genetic profiles of the patients, this technique aids scientists and medical 
professionals in more precisely preventing and treating disease. Powerful supercom-
puter infrastructure and innovative algorithms that can autonomously learn in an 
unheard of fashion from the trained set of data are needed to make the strategy more 
comprehensive. Medical professionals’ cognitive abilities and biomedical data are 
used by artificial intelligence to achieve results. 

With technological advancements, the future of healthcare will change as a result 
of the creation of large digital datasets obtained through next-generation sequencing 
(NGS), use of image processing algorithms, patient-related health records, and data 
resulting from significant clinical trials. Oncology can benefit greatly from machine 
learning, which is frequently used in precision medicine. Complex neural networks 
are used to generate diagnostic images and genetic data, which are then used to 
forecast the likelihood of disease and treatment outcomes (Dlamini et al. 2020). In 
radiomic field of machines that produces diagnostic images to discover malignant 
tumors that are undetectable by the human sight, the implementation of AI and ML 
technologies in healthcare is done to enhance illness management and deliver high-
quality medical care (Fig. 9.3). 

By highlighting diverse uses of AI in oncology healthcare, such as next-
generation sequencing (NGS), advancements in medical imaging, digital pathology, 
and drug discovery, we present information on AI and precision oncology towards 
clinical environment for cancer management. 

Fig. 9.3 Application of artificial intelligence and machine learning in the drug discovery



9 Artificial Intelligence and Machine Learning in Drug Discovery 223

9.6.1.1 NGS and Molecular Profiling 

The NGS technique utilizes RNA sequencing to discover novel RNA variants and 
splice sites, or quantify mRNAs for gene expression analysis. Genomic profiling is 
conceivable and offers promise for the future of precision oncology to the imple-
mentation of NGS, which is quickly evolving the field of genomic sequencing for 
clinical use. Advanced NGS methods can sequence DNA and RNA on a wide scale 
with high-throughput data and at a lower cost. Numerous sequencing techniques, 
such as whole-genome, whole-exome, RNA, target, and whole-transcriptome shot-
gun sequencing, as well as methylation sequencing, are made possible by NGS. 
DNA or RNA samples from blood samples, tumor samples, cell lines, formalin-fixed 
paraffin-embedded (FFPE) blocks, and liquid biopsies can all be used for sequenc-
ing. As part of the Human Genome Project, the first whole-genome sequencing was 
carried out at significant expense and over a lengthy period of time. To detect 
changes in the cellular transcriptome and changed molecular pathways, RNA 
sequencing is frequently employed in cancer research and diagnosis (Jiang et al. 
2017). 

The advantages of RNA profiling of cancer models for treatment results have 
been demonstrated in clinical studies that sequence RNA using precise oncology 
protocols. RNA profiling is applied to RNA extracted from blood or a tumor sample. 
According to a study, RNA profiling should be a standard of care for oncology 
patients because it may have potential clinical benefits, particularly for cancers that 
are challenging to treat in children and young adults. The study also illustrates the 
impact of precision oncology. According to the study’s findings, about 70% of the 
gene expression data acquired from RNA sequencing may have clinical applications. 

Identification of gene expression signatures to decipher the underlying molecular 
pathways of cancer and the detection of RNA mutations with implications for 
alternative splicing are the two most significant and often used applications of 
RNA sequencing. However, many NGS approaches have drawbacks such as 
labor-intensiveness, the introduction of sequencing coverage mistakes, and expense. 
Acquiring pertinent data from NGS datasets is becoming more and more time-
effective because of the developments in AI and computational approaches, with 
some platforms enabling real-time viewing. 

9.6.1.2 Biomarkers 

Molecular biomarkers are often used in the cancer diagnostics in the early detection 
of the diseases. Different biomarkers are used, for example, circulating cancer 
antigen is used to detect ovarian cancer at early stage, carcinoembryonic antigen is 
used to monitor relapse of colorectal cancer, and estrogen receptor 1 (ESR1) is used 
for the prognosis prediction and treatment outcomes in breast cancer. Cancer 
management can be improved by locating biomarkers in the early disease prevention 
and prognosis prediction for successful treatment. By locating germline DNA



alterations and doing full transcriptome analyses by RNA sequencing, novel molec-
ular biomarkers for various malignancies can be uncovered and utilized to detect the 
diseases. The potential of RNA sequencing in the development of biomarkers for 
diagnosis and as a prognostic predictor has been demonstrated in large consortia 
studies like the Cancer Genome Atlas (TCGA). Aside from pathogenic mutations 
and changed expression or activity of proteins that regulate significant cellular 
complexes, these investigations also clarified predicted biomarkers that fuel trans-
formation. Additionally, Shallow full genome sequencing was used to identify copy 
number variants (CNV) in breast cancer utilizing FFPE samples to diagnoses for 
breast cancer, lung cancer, and neuroblastoma. 
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9.6.1.3 Medical Imaging 

Applications of AI in radiology are essential for many modalities with enhanced 
quality, including X-rays, ultrasounds, computed tomography (CT/CAT), magnetic 
resonance imaging (MRI), positron-emission tomography (PET), and digital pathol-
ogy. Images are analyzed quickly and accurately using highly specialized algo-
rithms. Accurate diagnosis depends in large part on the ability to distinguish 
between normal and aberrant medical images. Early cancer detection is extremely 
important because it will result in a better prognosis and treatments. The future of AI 
in medical imaging will be focused on increasing speed and lowering costs. AI has 
already contributed to medical imaging by improving image quality, computer-aided 
image interpretation, and radiomics (Lewis et al. 2019). The main advancements and 
breakthroughs of artificial intelligence in healthcare have been widely used for 
clinical purposes in medical imaging. 

9.6.1.4 Radiographic Imaging 

In order to accurately diagnose and treat patients, which can take time and be subject 
to human error and variability, it is necessary to extract pertinent quantitative data 
from medical images, such as size, symmetry, location, volume, and form. For 
routine clinical treatment, automated medical imaging analysis is highly necessary. 
The radiographic imaging includes three stages: the first one is the image segmen-
tation, which detects the image of interest and defines its boundaries; the second one 
is the image registration, which establishes the spatial three-dimensional relationship 
between images; and image visualization, which displays pertinent information for 
precise interpretation, is necessary to analyze the medical images accurately. How-
ever, despite of the advancement in the medical imaging, there are still some 
complications with data complexity, object complexity, and validation issues. 

The deep learning-based algorithms for an automated detection system for chest 
radiography are the recent advancement. However, the chest radiograph analyses for 
thoracic disease are difficult and error-prone, and the highly skilled radiographers are



required to analyze the images. These AI methods were created to differentiate 
between common thoracic disorders, including pulmonary malignant tumors. 
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Imaging in medicine using AI extends beyond radiology. The advent of digital 
pathology will soon revolutionize pathology laboratories. The gold standard for 
pathology for many years has been microscopic examination of stained cells and 
tissues. By reducing labor-intensive microscopic tasks, boosting efficiency, and 
maintaining the quality for better clinical treatment, technological and AI advance-
ments will transform pathology. Digital pathology that incorporates AI improves 
workflow, enables doctors to analyze images for precise interpretation, and lowers 
subjectivity by standardizing processes. Additionally, digital pathology enables 
reduced fluctuation in color information and larger-scale image viewing. This 
makes it possible to successfully find distinctive markers linked to disease-specific 
biomarkers for diagnosis, prognosis, and treatment (Bera et al. 2019). 

9.6.2 Repurposed Drug/Drug Discovery by AI/ML Approach 

About 25% of all medications have been found as a result of unintentional bringing 
of various areas. Pharmaceutical companies prefer targeted drug discovery over 
conventional blind screening because it has a clear mechanism and a better success 
rate and is less expensive. Due to the following factors such as high costs of drug 
research, growing accessibility of three-dimensional structural data that can aid in 
the characterization of pharmacological targets, and shockingly low success rates in 
clinical trials, machine learning is currently used in the drug discovery process. 
Cross-domain linkage can be accomplished using machine learning as a bridge. By 
identifying contextual cues like a discussion of a drug’s indication or side effects, it 
may recognize a newly approved drug. 

Despite these innovative methods for drug development, there are still significant 
obstacles, such as data access and the fact that various datasets are typically kept in a 
number of separate repositories. Additionally, clinical trial raw data and other 
preclinical study raw data are often unavailable. The utilization of pharmacological 
information to gain knowledge into mechanism of action by employing methods like 
similarity metrics across all diseases to uncover shared pathways is just one example 
of how artificial intelligence has been successful when applied to available data. 
Another illustration is the use of NLP to find hidden or unexpected relationships that 
may be significant in the identification of probable pharmacological side effects 
based on scholarly articles. 

Few organizations have started to make use of these developments to accelerate 
the release of COVID-19 medications and better understand how the immune system 
combats the illness. Pharmaceutical companies GlaxoSmithKline (GSK) and Vir 
Biotechnology teamed together at the beginning of April to accelerate coronavirus 
treatment development using CRISPR and artificial intelligence. Additionally, in the 
academic world, the Human Immunomics Initiative, launched recently by the 
Harvard T. Chan School of Public Health and the Human Vaccines Project, employs



artificial intelligence to accelerate the production of antibodies for a variety of 
illnesses, including COVID-19. A team from Southern Illinois University (SIU) 
recently developed an information visualization tool that shows users the locations 
of known COVID-19 instances using GPS data. A contact following application 
powered by Bluetooth technology has also been developed in cooperation between 
Google and Apple. These techniques might be successful in collecting a lot of 
precise data. Businesses that have developed wellness profiles for people based on 
a fundamental understanding of the infection are conducting research into various 
medicine delivery methods that have been successfully licensed. The two most well-
known examples of this in relation to COVID-19 to date are hydroxychloroquine 
(recommended for the treatment of malaria) and remdesivir (for the treatment of 
Ebola). The effectiveness dataset for these drugs may therefore be a decent input for 
an AI model. The businesses using artificial intelligence (AI) to repurpose currently 
available drugs for COVID-19 are listed in Table 9.2. 
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Table 9.2 List of repurposed drugs for COVID-19 through AI 

Sl. No. Drug Original used Company 

1. Baricitinib Rheumatoid joint pain BenevolentAI 

2. Hydroxychloroquine and Remdesivir Antimalarial Innoplexus 

3. Atazanavir Antiretroviral HIV/AIDS Deargen 

4. Niclosamide and Nitazoxanide Viral infections Gero 

9.7 Limitations of AI/ML Approaches 

The use of routine clinical NGS sequencing for cancer diagnosis and management 
faces significant challenges with data interpretation. Large servers and knowledge-
able bioinformaticians are needed for the management and interpretation of big data. 
The provided datasets for diagnosis contain details on variants that can be classified 
as benign, likely benign, variant of unknown importance, likely pathogenic, and 
pathogenic variants. It is crucial to classify all variations into groups and understand 
their clinical importance. Data acquired can be helpful for cancer management in 
addition to diagnosis. 

However, the drawbacks of whole-genome and exome sequencing include high 
costs, a heavy computing burden, and challenging data interpretation. In the follow-
ing 10 years, further development of NGS platforms may result in cost reductions 
without a reduction in quality. 

Despite the advantages of AI, there are still several obstacles to its implementa-
tion in the healthcare industry. Big data and costs are on the rise as a result of 
automated computation. Due to their reliance on specialized computational require-
ments for rapid data processing, AI systems can be costly. Additional quality pro-
cedures are also necessary for these systems. The targeted users must receive training 
and gain a knowledge of the technology in order to implement AI-based solutions for



everyday clinical practice. Rigby emphasized the moral dilemma presented by AI in 
healthcare. It is crucial to resolve the ethical problem of using patient data without 
authorization or justification in light of the big data boom. Additionally, in order to 
safeguard patient privacy and safety, ethical norms and guidelines are necessary. 
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Despite appearing to be effective and acceptable in the de novo lead creation 
approach, the connecting mechanism has some drawbacks. The first restriction is 
that for proper linking: the linking fragments must be precisely positioned in the 
cavity. De novo design is additionally assumed to be totally automated, but still 
requires some arduous manual labor. Furthermore, it is not always simple to 
manufacture the chemicals created using this method in a lab. Thus, new software 
that includes de novo compound design and considers synthesis parameters is 
required. 

Although the connecting approach in the de novo lead generation method appears 
to be effective and acceptable, there are certain restrictions. The first restriction is 
that for proper linking, the linking fragments must be precisely positioned in the 
cavity. De novo design is additionally assumed to be totally automated, but still 
requires some arduous manual labor. Furthermore, it is not always simple to 
manufacture the chemicals created using this method in a lab. Thus, new software 
that includes de novo compound design and considers synthesis parameters is 
required. 

Overall, the complexity of small molecule drug discovery will increase. DL ought 
should be able to manage that complexity since it was made for complicated 
simulation. Additionally, using DL techniques, we should not limit ourselves to 
making the conventional predictions about biological activities, ADMET properties, 
or pharmacokinetic simulations. Instead, it might be possible to systematically 
integrate all the data and information and reach a new level of AI in drug discovery. 

9.8 Conclusions and Future Perspectives 

The ultimate goal of machine learning is to create algorithms that can learn contin-
ually from fresh information and data in order to find solutions to a wide range of 
problems. Complex algorithms have appealing prospects for precision medicine, but 
they also present computing difficulties. To realize this potential, unique solutions 
are needed for at least three technical problems: 

1. The quantity and size of data inputs, outputs, and attributes. This problem can be 
partially solved by leveraging CPU clusters, data sharing systems, cloud com-
puting, and deep learning techniques. 

2. Variety—diverse types of data (picture, video, and text). This problem can be 
partially solved by integrating data from many sources using novel deep learning 
techniques. 

3. Velocity—the pace of streaming data. To solve this problem, online learning 
techniques can be developed.
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Machine learning techniques used nowadays are very similar to real-world situa-
tions. As a result of the quick improvements in technology, algorithms will take on 
duties that were previously the domain of humans. Radiologists and anatomical 
pathologists will lose a lot of their jobs as a result of machine learning’s capacity to 
turn data into insight. Clinical medicine, however, has always required physicians to 
manage enormous amounts of data, from the history and physical examination to the 
laboratory and imaging examinations, as well as the more recent genetic data. 
Effective medical professionals have always been able to handle this complexity. 

We anticipate that as more scientists become aware of its potential, the usage of 
ML in VS for drug discovery will continue to expand in the search of new drugs. 
Drug discovery will undoubtedly become more effective and less expensive, thanks 
to the combined efforts of computer science and medicinal chemistry. 
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Chapter 10 
Network Pharmacology and Systems 
Biology in Drug Discovery 

Ashish Shah, Vaishali Patel, Manav Jain, and Ghanshyam Parmar 

10.1 Introduction 

Combating the primary issues the globe has been facing that is related to global 
health difficulties has become urgently necessary (Noor et al. 2022). Researchers are 
interested in complex disorders like cancer and diabetes because they typically result 
from a malfunction of an entire regulatory network rather than a gene mutation or 
malfunction (Wang et al. 2021; Zuo et al. 2021). In order to combat complex 
diseases, it is crucial to understand the molecular mechanisms that control disease 
prognosis (Noor et al. 2021). Currently, natural products make up a sizable compo-
nent of modern pharmaceutical agents, especially when it comes to the treatment of 
diseases (Pal and Shukla 2003). Natural products have historically been a vast 
repository of powerful resources for humanity (Rehman et al. 2022). In order to 
screen the pharmacological efficacy of herbal remedies in the drug discovery 
process, high-throughput approaches have been developed (Tan et al. 2020). This 
chapter provides a comprehensive overview of the methodology, significance, and 
application of network pharmacology to cure a wide spectrum of complex disease. 
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10.1.1 Drug Discovery and Development Process 

Drugs are chemicals that aid in disease prevention or provide instructions for 
regaining normal health. The scientific field of medicinal chemistry is responsible 
for either the discovery or the creation of these medications. The traditional medi-
cations were generally created through chemical alterations of natural compounds or 
from natural sources. Technologies aid in a more detailed understanding of disease. 
The deliberate design, manufacturing, and evaluation of therapeutic candidate mol-
ecules are becoming more common as science-based tools help us better understand 
the nature of disease, how cells function, and how medications affect these pro-
cesses. In the past, finding new medications was done using only randomized search 
strategies. Such techniques relied heavily on the skill and good fortune of medicinal 
chemists. The number of chemical compounds increased daily, rendering the ran-
domized approach useless. This strategy required too much time, offered too little 
assurance of success, and was too expensive. Due to the low likelihood of discov-
ering a novel agent—less than 1 in 10,000—new medication research expenditures 
have increased. A new rational and scientific approach that shortens the drug 
development process’s time and cost was required to solve this issue. Drug design 
is a new rational and scientific strategy to finding novel drugs that has been made 
possible by scientific evolution. When John Langley proposed the receptor theory in 
1906, the process of discovering new drugs had just begun. Paul Ehrlich and 
Sacachiro developed the first logical pharmaceutical. In 1910, they create arsphen-
amine by using the structure-activity connection technique from atoxyl. Syphilis and 
the symptoms of sleeping sickness could be treated with atoxyl (Berdigaliyev and 
Aljofan 2020; Mohs and Greig 2017). 

Drug development and discovery are two distinct processes. Finding therapeuti-
cally effective chemicals that can be used to treat a variety of ailments is the process 
of drug discovery. The goal of the drug discovery process is typically to pinpoint a 
biological target that is essential to the progression of the disease or originates from a 
molecule with intriguing biological properties. Target validation, lead compound 
identification, lead compound validation, synthesis, characterization, screening, and 
therapeutic efficacy assays are all steps in the drug discovery process. Drug devel-
opment begins once a molecule has demonstrated therapeutic value in tests; this 
occurs before clinical trials. With an average cost per drug development of between 
US$897 million and US$1.9 billion, the drug research and development process are 
both exceedingly expensive and time-consuming. One medicine will take 10 to 
15 years to reach the market. Most of the medications have historically been found 
either through the identification of the active component in conventional treatments 
or through accidental discovery. In the current technological era, new techniques to 
drug development have been created to target certain molecules based on an 
understanding of how disease and infection are controlled at the molecular and 
physiological level (Hughes et al. 2011).



10 Network Pharmacology and Systems Biology in Drug Discovery 233

10.1.2 Role of Computational Methods in Drug Discovery 

Numerous improvements in computer-aided drug design (CADD) techniques have 
been discovered over the past few decades. Structure-based (SBDD) and ligand-
based (LBDD) computational approaches are the two primary categories. Both 
approaches are helpful at different stages of the drug development process. These 
techniques can be used to design molecules (molecular modeling), predict interac-
tions between proteins or ligands (docking), predict biological activity (QSAR), 
predict toxicity, and more. In many instances, the compounds that are improved and 
tested using different CADD approaches have demonstrated good potential in 
in vitro or in vivo studies. With the development of several in silico technologies, 
it is now possible to screen millions of chemicals every day using a variety of 
techniques. The outcomes of computer approaches assist scientists make decisions 
on which molecules should be rejected or modified or taken into consideration for 
further research. In fact, the drug discovery and development processes are greatly 
sped up and cost-effective, thanks to these computational tools. Applications of 
computational methods have been documented in great numbers, and they are 
growing daily. Despite these developments and applications, there are still very 
few practical uses for these techniques (Gupta et al. 2021; Romano and Tatonetti 
2019). 

10.1.3 Concept and Significance of Network Pharmacology 

Network pharmacology (NP), a brand new field, aims to comprehend the actions and 
interactions of drugs with a variety of targets. The systematic cataloguing of a drug 
molecule’s molecular interactions in a living cell makes use of computing capability. 
NP emerged as a key tool for comprehending the intricate connections between plant 
remedies and the entire body. The systematic cataloguing of a drug molecule’s 
molecular interactions within a living cell makes use of computing capability. NP 
emerged as a key tool for comprehending the intricate connections between plant 
remedies and the entire body. To choose the appropriate targets and fresh therapeutic 
molecule scaffolds, these efforts need some direction. Traditional knowledge can be 
quite useful in the process of formulating new pharmaceuticals and reusing those 
that already exist. The next generation of promiscuous drugs can be intelligently 
created by fusing systems biology and NP advancements (Yang et al. 2022; Zhang 
et al. 2019).
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10.1.4 Systems Biology 

It is well accepted that rather than working alone, biomolecules interact with one 
another to complete their varied jobs in the form of the so-called biomolecular 
networks. For example, a disease rarely arises as a result of an abnormality in a 
single gene, but rather reflects disruptions or dysfunctions of the complex biological 
networks that link the systems of tissues and organs. The genes that make up the 
“disease module” are those that are most likely to interact and show themselves 
similarly in individuals with similar diseases. Molecular-molecular interactions, cell-
cell contact, unipartite networks, bipartite networks (like drug-target interactions), 
and even tripartite networks can all be used to define the term “network biology” 
(e.g., drug–disease–protein interaction) (Muzio et al. 2021). Given that biological 
entities are involved in intricate relationships, learning about biology from network 
concepts is extremely important. Benefiting from advancements in network science 
and high-throughput biomedical technology, network biology research has gained a 
lot of attention recently. Networks, in the form of linkage maps between genes, 
phenotypes, and the relevant environmental factors, have long been crucial to our 
understanding of biological systems. A theoretical paradigm called network biology 
uses a graphical representation of the biological structure to show how functional 
information flows through it. If we could grasp and model the network structure, we 
would be better able to accept the dynamical and functional properties of the 
network, as well as better comprehend the network’s evolutionary mechanisms 
(Fatima Noor et al. 2022a). In this study, we will cover a number of typical features 
found in the topology of biological networks as well as their metrics. 

10.2 Network Pharmacology: Practical Guide 

10.2.1 Common Network Pharmacology Databases 

Network pharmacology can have an impact on the drug development process’ two 
primary techniques. One is to create a practical network model and anticipate the 
drug target using data from open databases or previously published studies. The 
network equilibrium principle should then be examined through the functional 
drug’s mechanism. The alternative strategy involves combining bioinformatics 
techniques and high-throughput screen (HTS) technology to reconstruct a “drug 
target disease” network prediction model. In this method, the interaction between the 
drug and the model was compared in order to investigate the mechanism of phar-
maceuticals in the biological network (Zhang et al. 2013). Numerous cases of 
network pharmacology’s use in drug development have been documented in the 
literature. Li et al. [1] discovered that multilayer networks may underlie the com-
bined processes of herbal formulas by using Liuwei Dihuang pill (a CHM recipe) to 
anticipate the appropriate network targets in disease treatment (Li et al. 2010). In
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addition, nine ingredients in the Fufang Danshen formula were tested based on 
network pharmacology and found to affect 42 cardiovascular-related genes (Sun 
and Yang 2019). Additionally, it was shown that salvianolic acid B was appropriate 
and practical for the treatment of cardiovascular illness (Wang et al. 2013) b  
combining the abovementioned study approaches. 
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Multiple databases being utilized for TCM analysis are Super Natural II31, 
TCM@taiwan32, ChEMBL33, and TCMID34 TCM compounds, whereas 
STITCH35, STRING36, and OMIM37 are for protein-disease connections. 
OMIM37 and GAD38 are for compound-protein interactions. However, several 
features of the current databases are constraints on network pharmacology analysis. 
For instance, a database like TCMID, whose molecules are far fewer than STITCH, 
is insufficient. To increase the effectiveness of the database, a sizable amount of 
redundancy from databases like OMIM and STITCH must also be removed (Zhang 
et al. 2017) (Table 10.1). 

Numerous databases have been proposed in recent years, many of which, despite 
having distinct data sources, perform many of the same tasks. Input patterns vary 
from database to database for most databases. For instance, in TCMSP, “chenpi” or 
“Citrus reticulata” must be used to search for the herb “Dried Tangerine Peel”; 
however in TCMID, “chen pi” or “Citri reticulatae pericarpium” must be used 
(Zhang et al. 2019). Additionally, many substances and proteins have different 
aliases in various databases (e.g., proteins: protein name, gene symbol, node ID, 
target ID, target drug bank ID; compounds: chemical name, CID number, STITCH 
ID, CAS number, PubChem CID, EC number, UNII). The current databases would 
become more succinct because of the uniform input and output formats, and 
researchers would be able to take. 

The data structure and content of diverse databases should be properly 
comprehended by such a platform. Additionally, it should facilitate the conversion 
of various herb, chemical, or protein formats to fill the gap between the existing 
databases for TCM research. Currently, one database can directly use the output of 
another database as an input. Most databases include related web services; as a 
result, the converting platform that might transfer data from one database to another 
can be offered to users as web services that are linked to various databases or to a 
browser plug-in. The integration of many databases, in addition to database unifi-
cation, is quite important. Currently, more than 10,000 herbs have been reported as 
being utilized in more than 100,000 herbal formulations (Zhou et al. 2020). 

10.2.2 Research Approaches of Network Pharmacology 

Network pharmacology can have an impact on the drug development process’ two 
primary techniques. One is to create a practical network model and anticipate the 
drug target using data from open databases or previously published studies. The 
alternative strategy involves combining bioinformatics techniques and high-
throughput screen (HTS) technology to reconstruct a “drug target disease” network



Name Description

prediction model. This method compared the interactions of the drug and the model 
to investigate the mechanism of drugs in the biological network. Finding genes 
associated with substances and diseases, building a protein-protein interaction (PPI) 
network, and then analyzing and visualizing the network are the main steps in 
network pharmacology research (Huang et al. 2014). A straightforward beginning
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Table 10.1 Software and databases related to network pharmacology 

Type of 
databases 

TCM-related 
databases 

TCM-mesh Network pharmacology investigation of TCM formula-
tions using a data-mining technology 

HIT A thorough and meticulously managed library to supple-
ment existing sources on potential therapeutic targets for 
proteins as well as the probable precursor substances 

TCM 
Database@Taiwan 

The largest and most complete free tiny molecular data-
base on TCM available anywhere in the globe for virtual 
screening 

TCMSP TCMs have a distinctive systems pharmacology platform 
that captures the connections between treatments, targets, 
and illnesses 

TCMID A thorough informational resource that explains every-
thing and connects TCM with contemporary life sciences 

Drug-related 
databases 

STITCH A database of known and anticipated chemical-protein 
interactions 

ChEMBL An open data repository with binding, functional, and 
ADMET details for numerous bioactive compounds with 
drug-like properties 

PubChem A system for analyzing small molecule bioactivities that is 
accessible to the public 

Target-related 
databases 

STRING A database of known and predicted protein-protein 
interactions 

MINT A database that emphasis on experimentally verified 
protein-protein interactions mined from the scientific 
literature 

ntAct Open-source database system and analysis tool for 
molecular interaction data 

Reactome A free, open-source, curated, and peer-reviewed pathway 
database 

HAPPI A comprehensive online library of anticipated and anno-
tated protein interactions for humans 

Disease-
related 
databases 

OMIM A complete, reliable reference work on human genes and 
genetic characteristics 

GAD A database of genetic association data from complex 
diseases and disorders 

Software Cytoscape A software environment for integrated models of biomo-
lecular interaction networks 

Pajek For complex network analysis



is the creation of molecular networks from big databases. Key nodes are then 
discovered and important biological pathways are anticipated using network analy-
sis. To successfully validate the interaction between highly active constituents and 
their potential targets, further network validation is carried out. Modernization of 
medicinal plants is greatly influenced by advancements in systems biology and 
bioinformatics, which alter our understanding of the treatment and diagnosis of 
diseases using medicinal plants from a network pharmacology perspective 
(Fig. 10.1) (Silverman et al. 2020).
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Fig. 10.1 Process for performing network pharmacology 

10.2.3 Data Collection and Validation 

The efficacy and safety of a proposed medicine and their potent combinations are 
optimized by network pharmacology. These two steps are also the most crucial in 
every experimental study. The selection of original data from the trials to construct a 
biological network is the initial stage in network pharmacology. The experimental 
verification of the projected network model comes second. Numerous integrated



techniques, such as genomics, proteomics, metabolomics, and HTS/high-content 
screening (HCS) technologies, can be used to quantify the validated data (Noor et al. 
2022b). 
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HTS/HCS technologies can quickly identify chemicals, detect millions of data 
samples, influence a specific biochemical pathway, or change the phenotypic of a 
cell. These have a lot of attractive characteristics, including visualization, real-time 
dynamic monitoring, and homogenous multidimensional phenotypic detection 
(Szymański et al. 2012). Additionally, the network data from the trials may be 
collected using this dual high-throughput technology, which can also confirm the 
network model. Another method that confirms the network pharmacology approach, 
discloses the mechanisms behind drug activity, and verifies the drug network or 
anticipated model is molecular interaction validation technology (Nguyen et al. 
2015). High-throughput, high-precision, label-free, and real-time detection are all 
aspects of these methods (Pe’er and Hacohen 2011). 

For locating disease and chemical targets that overlap, Venn diagrams are 
preferred. This process primarily tries to forecast the genes associated with diseases 
and then find the genes shared by diseases and substances. The initial measuring 
sticks for subsequent screening are the common genes. To better understand how 
medicinal plants heal diseases, network analysis is used (Chen et al. 2015). Due to 
their high selectivity, adaptability, and versatility, protein-protein interactions (PPI) 
are of utmost importance. Databases that give information on the functional con-
nections between important targets are used to create the PPI network of key targets 
(common genes). Later, the hub genes with the highest degree of linkage are 
predicted using network analysis (Li et al. 2019). 

How to extract critical information from networks is the crucial point. By 
identifying targets, network analysis attempts to reveal significant targets, active 
substances, and their related pathways. There are many approaches used in network 
analysis, but network functional analysis is the most used one. It has been found that 
biological networks have a modular structure, and many helpful medications operate 
therapeutically by influencing multiple proteins rather than just one. Topological 
study has revealed several subnetworks with specific roles and topologies in big and 
complex networks. By examining the related pathways, GO enrichment analysis and 
KEGG pathway analysis give unique important target properties at the functional 
level (Mlecnik et al. 2018; Reimand et al. 2019). 

10.2.4 Network Analysis and Visualization 

Using relevant technology, network analysis concentrates on an existing network 
and extracts beneficial data that is valuable for further research. There are three 
different kinds of network analysis. In the first, when specific network data has been 
extracted and maximally conserved as hidden information within the network, the 
topological structure and statistical parameters of the network are calculated. Sec-
ond, by generating suitable modulation, random networks are generated and



compared to existing networks to assess their dependability. Finally, the network is 
hierarchically clustered, an algorithm is used to predigest the complex network, and 
potential network information is expected. 
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Utilizing visualization technologies, network visualization is used to separate the 
interaction information from inter-association data and switch it into a visual net-
work. There are two steps in this process: (1) enhancing network properties, adding 
nodes, and boosting network connectivity and (2) defining the network and using a 
variety of tools to describe the architectural characteristic that accurately and per-
ceptually depicts the network. Currently, the majority of network pharmacology 
visualization is done using specialized programs like Cytoscape, GUESS, and Pajek. 
It is possible to validate the effectiveness of projected molecular targets using a 
variety of techniques. Although in vitro and in vivo procedures are typically seen to 
be the most effective, they take a long time and cost a lot of money to complete. 
However, as high-throughput technologies have developed and the genomic era has 
advanced, several in silico techniques have been developed, offering a useful 
platform for the validation of results. Finally, it is possible to validate the projected 
outcomes using both experimental and virtual methods (Wu et al. 2011; Zhang et al. 
2013). 

To forecast the docking locations of active components and important targets 
determined from network pharmacology, receptor-ligand molecular docking is used. 
By effectively bridging the gap between western medicine and herbal medicine, 
network pharmacology and molecular docking also considerably enhance mecha-
nistic investigations on the synergistic effects of herbal medications. The most useful 
strategy in the drug development toolbox, molecular docking, has emerged as a 
lightning rod. The interaction that binds ligands to their corresponding proteins in a 
bound state can be predicted using molecular docking. For constituent screening, 
docking score and binding energy are mostly regarded as important factors. Numer-
ous research has shown the value of using molecular docking as a network 
validation tool. 

10.3 Applications of Network Pharmacology in Drug 
Discovery 

The creation and use of network pharmacology has given rise to new ideas for 
investigating the mechanisms of diverse natural products and formulations. These 
ideas also assist in the discovery of new medications, components, targets, and 
disease-treating pathways. The study of the compatibility of traditional medicine 
with modern medicine, the development of novel indications, the confirmation of the 
mechanism of pharmacological action, and other areas of traditional medicine 
research are all made possible by network pharmacology technology (Fig. 10.2).



240 A. Shah et al.

Fig. 10.2 Applications of network pharmacology 

10.3.1 Applications of Network Pharmacology 
for Plant-Based Drug Discovery 

10.3.1.1 Case Study I: Network Pharmacology-Based Virtual Screening 
of Active Constituents of Prunella vulgaris L. Against Breast 
Cancer (Zhang et al. 2020b) 

Prunella vulgaris L. is the scientific name for a perennial herbaceous plant in the 
Prunella genus. It is a traditional Chinese drug that is widely used to treat headaches, 
eye pain, cancer, and inflammation. Recent pharmacological studies suggest that 
Prunella vulgaris L. may possess antiviral, antibacterial, anti-inflammatory, immu-
noregulatory, antioxidative, and antitumor effects. 

Screening of Phytochemicals 
In addition to using the phrase “Prunellae Spica” in the TCMSP search, literature 
was also searched for on Google Scholar, Pubmed, and the CNKI database. The 
chemical structures were located using PubChem (https://pubchem.ncbi.nlm.nih. 
gov/) and ChemSpider (https://www.chemspider.com/). For structures that were not 
in the database, references from TCMSP and original research articles were used. DL 
is available on the molsof website (https://www.molsof.com/mprop/) for use in 
calculating potential components. DL-0.18 was used as the benchmark for detecting 
act active components. Selected compounds (DL 0.18), which were imported using 
PreADMET (https://preadmet.bmdrc.kr/), were evaluated by Caco-2, HIA, and PPB. 
Even though they do not meet this criterion, active substances that unmistakably 
have biological effects were taken into account. With favonoids, triterpenes, and 
phenolic acids being the most biologically active compounds, the screening results

https://pubchem.ncbi.nlm.nih.gov/
https://pubchem.ncbi.nlm.nih.gov/
https://www.chemspider.com/
https://www.molsof.com/mprop/
https://preadmet.bmdrc.kr/


showed that 31 constituents were expected to be physiologically active in vivo. 
These results were consistent with the previously identified anticancer active com-
ponents of Prunella vulgaris L. 
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Screening of Breast Cancer Targets 
The STITCH (https://stitch.embl.de/) and Swiss Target Prediction (https://www. 
swisstargetprediction.ch/) databases were used to find the gene targets for active 
compounds. To do this, Homosapiens was selected as the species, the screened 
components were uploaded to the STITCH database, and the targets were gathered 
with a combined score of 0.7. The smiles numbers for each component were sent to 
the Swiss Target Prediction online site. The structural similarity of the target was 
predicted using reverse pharmacophore matching, and a target with probability of 
0.7 was selected. 

Network Analysis 
According to GO functional analysis, the main targets of Prunella vulgaris L. are 
largely involved in estrogen receptor binding, steroid hormone receptor binding, 
steroid hormone receptor activity, etc. Using KEGG pathway analysis, relevant 
signaling pathways linked to Prunella vulgaris L.’s anti-breast cancer impact were 
found. The processes with the highest gene content were proteoglycans in cancer, 
endocrine resistance, human cytomegalovirus infection, microRNAs in cancer, 
breast cancer, and Kaposi sarcoma-associated herpesvirus infection. The 
20 KEGG signaling pathway results showed that the following genes were signif-
icantly enriched: EGF, AKT1, EGFR, ERBB2, SRC, MTOR, MYC, BCL2, JUN, 
VEGFA, MMP9, and CTNNB1. 

PPI Network Analysis 
Thirty one target genes associated with antibreast cancer action were incorporated 
into the STRING database using network design. The interactions that took place 
when breast cancer first appeared are represented by the nodes in the PPI network. 
AKT1, ESR1, MYC, JUN, SRC, CASP3, and VEGFA showed higher degrees when 
the PPI diagram was analyzed using Cytoscape’s analysis tool. 

10.3.1.2 Case Study II: A Network Pharmacology Approach 
to Investigate the Anticancer Mechanism and Potential Active 
Ingredients of Rheum palmatum L. Against Lung Cancer 
(Zhang et al. 2020a) 

Rheum palmatum L. (RPL) is a well-known herbal remedy in traditional Chinese 
medicine with the capabilities of “heat-clearing and damp-drying.” Although it has 
been demonstrated in the past that it can combat lung cancer, little is known about 
the original methods and substances that enable it to function. 

Screening of Phytochemicals 
Searches in databases and libraries turned up 1380 compounds in RPL. Based on the 
screening results for OB and DL, the OB and DL values of 16 compounds were

https://stitch.embl.de/
https://www.swisstargetprediction.ch/
https://www.swisstargetprediction.ch/


judged to be “Qualified,” indicating that these 16 compounds were potentially active 
components of RPL in the treatment of lung cancer. In addition, certain important 
substances with low OB and OL features in RPL and alleged anti-lung cancer tumor 
properties were also added, such as emodin, resveratrol, chrysophanol, and 
physcion. Finally, the investigation included 20 substances. 
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Screening of Targets 
A total of 22,418 lung cancer-related targets and 817 potential targets for the 20 RPL 
medicines were acquired from the OMIM, DisGeNET, TTD, and GeneCards data-
bases. 761 potential anti-lung cancer targets were discovered by the combination of 
common targets. It is interesting to see that the majority of the 761 targets are shared 
by the 20 active compounds in RPL. 

Network Analysis 
The cytoscape program was used to illustrate the protein interaction, employing 
761 nodes and 6840 edges, in line with the String’s predictions and findings. The top 
20 hub genes (INS, AKT1, TP53, ALB, IL6, EGFR, VEGFA, MYC, SRC, TNF, 
CASP3, HSP90AA1, STAT3, ESR1, MAPK8, CTNNB1, MTOR, CCND1, 
ERBB2, and APP) were eliminated based on the number of nodes. The genes with 
the highest node degrees are INS, AKT1, TP53, and ALB. Three main targets—INS, 
AKT1, TP53, and ALB—have been suggested as the focus of RPL’s anticancer 
action against lung cancer. 

KEGG Pathway Enrichment Analysis 
The results showed that 46 pathways finally had substantial correlations with the 
target genes, and a total of 533 genes were implicated in the enrichment (P 0.05). 
The top 20 pathways are shown, with apoptosis, PI3K-Akt signaling, apoptosis-
multiple species, MAPK signaling, and p53 signaling pathways being prominently 
displayed. These signaling pathways are either intimately linked to the mechanism 
of RPL’s anticancer effects in this illness or directly or indirectly associated to the 
occurrence and progression of lung cancer. 

10.3.1.3 Case Study III: Network Pharmacology-Based Virtual 
Screening of Active Constituents of Cnidium monnieri 
in Treating Hepatocellular Carcinoma (HCC) (Khan and Lee 
2022) 

Cnidium monnieri is a Chinese herbal remedy that has been used for over 
2000 years. Cnidium monnieri has historically been used to treat female vaginal 
problems, male impotence, and skin ailments. In contemporary TCM therapeutic 
practice, water decoctions and tinctures of Cnidium monnieri are often used alone or 
in conjunction with other Chinese medicinal herbs to treat persistent skin itch, 
superficial fungal infections, and atopic dermatitis. Cnidium monnieri extracts and 
components have been found in pharmacological investigations to possess



antibacterial, anticancer, antitumor, and anti-inflammatory properties which may be 
used to prevent and cure liver infections caused by hepatitis and HCC. 
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Screening of Phytochemicals 
The SwissTargetPrediction database was employed for determining potential protein 
targets for the active phytochemicals in Cnidium monnieri. A total of 1387 potential 
protein targets were obtained with a probability score > 0. After the removal of 
redundancies, 532 potential protein targets of active phytochemicals in Cnidium 
monnieri were investigated further. 

HCC-Related Genes 
A total of 564 HCC-related genes were recovered from OncoDB.HCC (http:// 
oncodb.hcc.ibms.sinica.edu.tw) and Liverome (http://liverome.kobic.re.kr/index. 
php). Intersecting targets were recognized between the HCC-related genes and 
potential protein targets of active phytochemicals using the VENNY 2.1.0. online 
system. A total of 67 intersecting targets were identified between them. 

Network Construction and PPI Analysis 
The PPI network was constructed by importing the 67 intersecting targets to the 
STRING database. The PPI network contained 67 nodes and 528 edges. The average 
PPI enrichment p-value, average local clustering coefficient, and average node 
degree were p < 0.00001, 0.609, and 15.8, respectively. The STRING PPI results 
were further analyzed by exporting them in a simple textual data format (.tsv) file to 
Cytoscape software (version 3.9.0). The results showed that the PPI network 
involved 65 nodes and 1056 edges. The characteristic path length between all 
node pairs was 2.045. The PPI network radius, diameter, heterogeneity, and density 
were 3, 5, 0.682, and 0.254, respectively. 25 nodes that achieved the degree 
centrality (DC) criterion with an average value greater than 32.49 were further 
extracted and classified as potential anti-HCC core targets. The top six potential 
anti-HCC core targets, i.e., EGFR, CASP3, ESR1, MAPK3, ERBB2, and CCND1, 
were chosen. 

10.3.2 Applications of Network Pharmacology 
for Phytoconstituents 

10.3.2.1 Case Study I: Network Pharmacology-Based Virtual Screening 
of Resveratrol Which Can Alleviate (Xiao et al. 2021) 

COVID-19-related Hyperinflammation 
Resveratrol, an antioxidant phytoalexin with possible chemopreventive qualities, 
may be isolated from grapes and a variety of other plants (PubChem CID is 445154). 
By controlling immune cells and preventing the production of pro-inflammatory 
cytokines, resveratrol has anti-inflammatory properties. Additionally, resveratrol 
functions as an antiviral drug via a variety of ways. Numerous viruses, including

http://oncodb.hcc.ibms.sinica.edu.tw
http://oncodb.hcc.ibms.sinica.edu.tw
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http://liverome.kobic.re.kr/index.php


the human meta pneumonia virus, respiratory syncytial virus, influenza virus, 
Epstein-Barr virus, enterovirus, and HIV, have been shown to be inhibited by 
resveratrol. 
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Screening of Phytochemicals 
PubChem (https://pubchem.ncbi.nlm.nih.gov/) was searched for the phrase “Res-
veratrol,” and the PubChem CID (445154) of Resveratrol was found. Target Net 
(http://targetnet.scbdd.com), an open web server used for netting or predicting the 
binding of multiple targets for any given molecule, and Comparative Toxicogenomic 
Database (CTD, http://ctdbase.org/about/), a substantial publicly accessible database 
that offers manually curated information about chemical-gene/protein interactions 
and chemical-disease and gene disease relationships, were used to predict potential 
targets for resveratrol. The names of the targets were provided using the official 
symbol format from the UniProt Knowledgebase (UniProtKB, http://www.uniprot. 
org/), because to the non-standard naming. 

Screening of SARS-CoV2-Related Gene Targets 
The GSE147507 dataset containing the host transcriptional response to SARS-CoV-
2 was downloaded from GEO. We selected the NHBE transcriptional data for study. 
R packages of “impute” and “limma” provided by the Bioconductor project (http:// 
www.bioconductor.org/packages/release/bioc/html/affy.html) were applied to 
assess the transcriptional results of NHBE. Quantile normalization and log 
2-transformation were used to create a robust multiarray average (RMA). Adjusted 
original p values were obtained via the Benjamini-Hochberg method; the false 
discovery rate (FDR) procedure was used to calculate fold changes (FC). Gene 
expression values of jlog 2 FCj >1 and p value <0.05 were used as a threshold to 
filter differentially expressed genes (DEGs). 

PPI Network Construction 
Intersecting target genes of resveratrol and DEGs associated to SARS-CoV-2 were 
obtained. The resveratrol-related targets and SARS-CoV-2 DEGs were uploaded to 
String (https://string-db.org/) with species set as “Homo sapiens,” a confidence 
score > 0:9 to construct PPI networks, and then, the 2 PPI networks were combined 
and displayed using Cytoscape 3.7.2 (http://www.cytoscape.org). 

PPI Network Analysis 
Resveratrol and SARS-CoV-2 DEG targets that overlapped each other were 
MMP13, PRKCB, PLAT, KCNH2, ICAM1, PDGFRB, TNF, ITGB3, CSF1R, 
BCL2A1, and MMP9. The systematic visualization and quantification of a given 
protein’s function in a cell was done using a PPI network. The PPI network of 
SARS-CoV-2 DEGs and resveratrol-related targets was created, and the shared 
targets were found. Resveratrol’s potential therapeutic targets on COVID-19, 
which include MMP13, PRKCB, PLAT, KCNH2, ICAM1, PDGFRB, TNF, 
ITGB3, CSF1R, BCL2A1, and MMP9, may be represented by the targets that it 
shares with the SARS-CoV-2 DEGs. The IL-17 signaling route, the NF-B signaling 
pathway, and the TNF signaling pathway are the three main ones affected by these. 
These pathways become more active, which increases the release of cytokines,

https://pubchem.ncbi.nlm.nih.gov/
http://targetnet.scbdd.com
http://ctdbase.org/about/
http://www.uniprot.org/
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which have been proven to be crucial in viral infection. We hypothesize that 
resveratrol can prevent the activation of these pathways, hence reducing cytokine 
expression levels and reducing hyperinflammation in COVID-19. 

10 Network Pharmacology and Systems Biology in Drug Discovery 245

10.3.2.2 Case Study II: Network Pharmacology-Based Virtual 
Screening of Curcumin against Triple-Negative Breast Cancer 
(TNBC) (Deng et al. 2022) 

An active component of turmeric called curcumin (CUR) has been shown to be able 
to stop different cancer cells from proliferating, invading, and metastasizing. It was 
discovered that CUR may be able to stop the development and spread of head and 
neck cancer cells. CUR can prevent FIC133 cells from migrating and invading 
(a human thyroid cancer cell line). 

Screening of Phytochemicals 
Potential CUR-related targets were obtained from the Swiss Target Prediction 
database (http://www.swisstargetprediction.ch/) and the Encyclopedia of Traditional 
Chinese Medicine (ETCM) database (http://www.tcmip.cn/ETCM/index.php/ 
Home/). In the Swiss Target Prediction database, potential CUR-related targets 
were retrieved by the structure of CUR, and species were limited to “Homo sapiens.” 
In the ETCM database, potential CUR-related targets were searched directly using 
the keyword of “CUR.” All targets obtained in both the Swiss Target Prediction 
database and ETCM were selected as potential CUR-related targets. 

Screening of Targets of CUR Against TNBC 
Using the keywords “triple negative breast cancer/carcinoma,” targets associated to 
TNBC were found in the Therapeutic Target Database (TTD, http://db.idrblab.net/ 
ttd/), Online Mendelian Inheritance in Man (OMIM, https://omim.org/), and 
DisGeNET databases. The common targets of CUR and TNBC that were identified 
as prospective targets of CUR against TNBC were subsequently screened using 
Venny 2.1.0 (https://bioinfogp.cnb.csic.es/tools/venny/index.html). 

GO and KEGG Pathway Enrichment Analysis 
GO and KEGG pathway enrichment of the common targets of CUR and TNBC were 
analyzed on the Metascape website (https://metascape.org/). Molecular function 
(MF), cell component (CC), and biological process (BP) were included in the GO 
analysis. The analyses were carried out using a p value of less than 0.01. The top 
10 items of GO and the top 20 items of the KEGG pathway were selected and 
visualized on the Bioinformatics website (http://www.bioinformatics.com.cn/). 

PPI Network Analysis 
A PPI network was acquired by STRING to illustrate the relationships between the 
40 common targets of CUR and TNBC. The PPI network has 40 nodes and 
223 edges, and the average node degree of the constructed network is 11.2; the 
PPI enrichment p value is less than 1.0 e-16, and the local clustering coefficient is 
0.64. Subsequently, the constructed network was further investigated to screen the

http://www.swisstargetprediction.ch/
http://www.tcmip.cn/ETCM/index.php/Home/
http://www.tcmip.cn/ETCM/index.php/Home/
http://db.idrblab.net/ttd/
http://db.idrblab.net/ttd/
https://omim.org/
https://bioinfogp.cnb.csic.es/tools/venny/index.html
https://metascape.org/
http://www.bioinformatics.com.cn/


top 10 targets by MCC scores. The higher the MCC score, the more essential role the 
protein plays. According to the MCC scores, the top 10 targets are STAT3, AKT1, 
TNF, PTGS2, MMP9, EGFR, PPARG, NFE2L2, EP300, and GSK3B, which may 
play important roles in the constructed PPI network of potential targets of CUR 
against TNBC. 
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Systems Biology 
The developments in biological science have produced a vast amount of data in the 
fields of metabolomics, transcriptomics, and genomics. Studying the organization 
of biological entities, their interactions, and the dynamic changes in the behavior of 
these entities under external circumstances is vital for a better understanding of 
biosystems. To examine the structure and dynamics of cells, tissues, and organisms 
functioning as a system, the concept of systems biology evolved. Systems biology 
involves the computational modeling of biological systems (Breitling 2010; Kitano 
2002). The main issues with drug development are the rising attrition rate brought on 
by toxicity, the emergence of drug resistance, and the inconsistent efficacy of 
medications in various people due to diverse therapeutic responses (Hopkins 
2008). Additionally, many prospective medications fail in clinical trials because it 
is unclear how they work. Most pharmaceutical corporations use reductionist 
methods in their medical research, which only provide a limited understanding of 
complicated diseases such as cancer, cardiovascular disease (CVD), and 
neurogenerative diseases (Zimmermann et al. 2007). Large, integrated signaling 
networks control various systemic disorders, and many of these signaling pathways 
contribute to the development of the illness (Breitkreutz et al. 2012; Heineke and 
Molkentin 2006). Therefore, a more comprehensive knowledge of the illness process 
and treatment response requires a systemic, integrative approach. Studying physio-
logical and pathological circumstances at the level of regulatory networks, signaling 
pathways, cells, tissues, organs, and ultimately the entire organism is the goal of 
systems biology (Butcher et al. 2004). Numerous methods and models used in 
systems biology help understand the biological complexity of diverse diseases. It 
offers a platform for combining a lot of reductionist information from genomes, 
proteomics, and/or metabolomics research to create a network model for analyzing 
disease and creating new treatments for it. 

10.4 Computational Approaches in System Biology 

The study of interactions between all system components rather than the features of 
individual components is a key component of systems biology. Systems biology 
relies on a combination of experimental research that produces information on the 
biological components of a system and computational methods that help with the 
analysis of multiple datasets. Systems biology employs two main computational 
paradigms: data-driven (top-down approach) and hypothesis-driven (bottom-up 
approach) (Faratian et al. 2009).
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10.4.1 Top-Down Approach 

The top-down method involves gathering enormous quantities of omics data and 
using statistical modeling approaches to assess these datasets (Faratian et al. 2009). 
One of the most popular data-driven techniques is network modeling (Ma’ayan 
2011), which explains how various biological systems’ components interact with 
one another. Analysis of network models reveals the network’s topological charac-
teristics, which aid in comprehending the key components and characteristics of the 
network (Ma’ayan 2011). The fundamental procedures in network modeling and 
analysis are as follows (Rai et al. 2018): 

1. Data mining, which entails extracting interaction information for genes, proteins, 
metabolites, medicines, etc. from interaction databases 

2. Building an interaction network utilizing the retrieved data 
3. Verification of the interaction network through comparison to random networks 
4. Analysis of the interaction network for topological characteristics, overrepre-

sented pathways, potential disease genes, biomarkers, therapeutic targets, etc. 

10.4.2 Bottom-up Approach 

On the other hand, smaller systems with comparatively fewer interacting compo-
nents are studied using the bottom-up method. Since the quantitative aspects of the 
interactions are unknown, a significant flaw in the bottom-up technique is that it 
necessitates the formulation of pertinent equations to accurately estimate the values 
of the parameters connected to the interactions. To quantify relationships between 
molecular elements and behavior resulting from their interactions, dynamic model-
ing is the most popular hypothesis-driven method (Faratian et al. 2009). The 
following steps must be taken to construct a dynamic model (Rai et al. 2018). 

1. Create a connectivity diagram that shows each element of a biological process 
and their connections. 

2. Use connectivity diagrams to create mathematical equations. 
3. Using a predetermined set of parameters and an initial concentration, the model is 

calibrated to estimate unknown kinetic parameter values. 
4. Model validation through experimental testing of simulation outcomes. 

10.4.3 System Biology Application in Drug Discovery 

The development of a new therapeutic formulation against any disease requires a 
thorough understanding of the disease process. As the reductionist approach links a 
single gene to a single disease, it offers little information on disease mechanisms 
(Butcher et al. 2004). Systems biology takes into account every element of a system,



their connections with one another, and how various signaling pathways interact to 
help us better comprehend complex disorders (Rai et al. 2018). Systems biology is 
therefore frequently utilized in the drug discovery process. The creation of high-
throughput datasets of system components (omics data), experimental methods of 
analysis and data integration, the creation and use of network methodologies, and 
computationally produced models are all included in systems biology research. 
Models of cell signaling, pathway, and disease networks are built using omics data 
sets collected from genomes, transcriptomics, proteomics, and metabolomics, and 
they are merged to help find new targets and better understand and predict drug 
action in vivo (Butcher et al. 2004). 
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10.4.3.1 Target Identification 

For identifying critical nodes controlling significant disease pathways based on 
network topology, recent methodologies aggregate gene expression data together 
with other information into networks. This is evident from various studies which use 
system biology for target identification. Kim et al. (2012) constructed a large-scale 
protein and DNA interaction network using gene expression data, expression quan-
titative trait loci analyses, and molecular interaction data to discover probable 
causative genes and dysregulated pathways to identify newer targets in glioblastoma. 
To integrate many heterogeneous data sources and build a gene network to find 
possible treatment targets for breast, colon, and lung cancer, an ensemble framework 
approach based on relevance vector machines (RVM) was used (Wu et al. 2012). A 
study to better understand lung cancer in female non-smokers combined data from 
various high-throughput sequencing experiments, with data on gene expression 
profiling and DNA copy number variation (Kim et al. 2013). Despite the attempts 
to identify new targets, one of the challenges in this process is that most targets 
remain undruggable. 

10.4.3.2 Mechanism of Action 

A lot of decisions about drug development depend on understanding the mechanism 
of action. Understanding the pathways and biological processes that a pharmaco-
logical substance affects is also referred to as the mechanism of action. For example, 
the network of interactions between genes, miRNA, and proteins offered an effective 
model for researching cancer’s aggressive sensitivity to decitabine (Radpour et al. 
2011). Similarly, the capacity to categorize substances according to known mecha-
nisms has been demonstrated with the use of the connection map technique and 
query signatures using sets of genes that have previously been identified as 
coregulated or predictive of specific processes (Zhang and Chan 2010). Systems 
biology approaches are also used to research pharmacological combinations to both 
understand how they work and discover new combinations (Butcher et al. 2004).
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10.4.3.3 Biomarkers Identification 

Due to the large number of patients needed to establish and assess biomarker 
performance, developing biomarkers is difficult. Novel clinical biomarker develop-
ment has been transformed by omics technology, and systems biology approaches 
are now having an impact on this field’s advancements. Multiple analytes-based 
biomarker panel Oncotype DX (Paik 2007) for stratification of breast cancer patients 
with ER-positive subtype and ova1-based classification (Zhang and Chan 2010) of  
ovarian cancer patients in a high or low-risk group are some of the examples in this 
field. 

10.5 Conclusion and Future Prospects 

Systems biology methods could revolutionize drug development and discovery. 
Results from quantitative and systems pharmacology approach to translational 
medicine are just now becoming apparent to researchers. Future studies will focus 
on several areas which include better process and data integration methods, devel-
opment and sharing of network and newer computational methods to analyze and 
integrate multiscale information, cell signaling methods combined with computa-
tional disease models, and a combination of drug target and drug information 
approach including drug safety information (Butcher et al. 2004). 

In cases where there is no effective treatment available, medicinal plants offer a 
fresh alternative. Humans have used herbal medicines to treat a variety of illnesses 
for a very long time. The adverse consequences of synthetic drugs have necessitated 
advancements in the use of natural remedies for disease management. Future 
application of developing technologies must be supported by study if astounding 
benefits are to be made. The majority of commercially available medications come 
from plants. The network pharmacology technique lays the most recent scientific 
groundwork for evaluating the effectiveness of multicomponent, multi-target drug 
formulations and investigating the disease treatment of multiple therapeutic targets. 
In conclusion, developments in bioinformatics and systems biology will cause an 
operational change away from reductionism and toward network pharmacology. 
They will surely result in a paradigm shift in drug research and help modernize and 
expand the use of natural medicines around the world. Another trend might be the 
use of various dynamic networks and quantitative networks, and as network phar-
macology technology is increasingly employed, costs will drop significantly in the 
future.
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Chapter 11 
In Silico Pharmacology and Drug 
Repurposing Approaches 

Ghanshyam Parmar, Jay Mukesh Chudasama, Ashish Shah, 
and Ashish Patel 

11.1 Introduction 

11.1.1 Introduction to Drug Repurposing 

Reusing already-approved drugs for new indications is an efficient and creative way 
to increase the available drug pool. However, it is challenging to find new protein 
targets for existing drugs. Even though novel strategies for drug repurposing have 
been developed, there is universal agreement that there is room for development. 
The COVID-19 pandemic recently swept the globe. So, SARS-CoV-2 (or COVID-
19) has spread over the world and become a major health concern for people 
everywhere. Finding new vaccines and developing new chemicals is a labor- and 
time-intensive procedure. Drug repurposing refers to the process of selecting poten-
tially medicinal compounds from an existing chemical library. 

Drug repositioning (DR) is a term that encompasses a wide range of practices, 
including drug re-tasking, drug reprofiling, drug rescue, drug recycling, drug redi-
rection, and therapeutic switching. It is the practice of treating disorders for which 
the original therapeutic use of a medicine was not intended by discovering and 
developing new pharmacological indications for previously marketed, 
FDA-approved treatments. It comprises finding new medical uses for well-known 
pharmaceuticals that have already been approved, shelved, abandoned, or tested 
(Ashburn and Thor 2004; Dey 2019; Rudrapal et al. 2020). 
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Several reasons have contributed to the recent uptick in focus on drug 
repositioning. It has been estimated that, on average, it costs wealthy countries 
$1.24 billion to bring a new medicine to market (Kaitin 2010). 

Drug repositioning often referred to as “repurposing” has emerged as a significant 
source of revenue development in the pharmaceutical sector (Ashburn and Thor 
2004). It is easy to see why repurposing medications is appealing, as even unsuc-
cessful drugs have typically undergone extensive preclinical and early human 
clinical studies and been shown to be safe in a wide range of settings. Repositioning 
drugs is an attractive strategy to reverse productivity declines (Tobinick 2009). 
Especially in cases when safety was not the major concern, it may be possible to 
learn from past mistakes by investigating what went wrong with a compound. This 
chapter explores some typical instances of drug repositioning. 

11.1.2 Conventional/Current Drug Discovery Process 
Vs. Drug Repurposing, an Old Weapon for New 
Battle? 

There are currently five phases in the medicine development process, which are 
discovery and preclinical, safety review, clinical research, FDA review, and FDA 
post-market safety monitoring. It is an inefficient method that will set you back both 
time and money (Hughes et al. 2011). Drug repositioning, on the other hand, entails 
only four steps: locating an appropriate compound, acquiring that compound, 
developing the drug, and finally monitoring its safety after it has been released to 
the public by the FDA (Rudrapal and Chetia 2016) (Figs. 11.1 and 11.2). Medication 
repositioning has considerably shortened the time and expense of drug development 
while lowering the probability of failure, thanks to the advent of bioinformatics/ 
chemoinformatics tools and the availability of enormous biological and structural 
database. In recent years, the drug purposing process has been sped up even further 
by the use of in silico methods, structure-based drug design (SBDD), and artificial 
intelligence (AI) technology (Agrawal 2018; Kalita et al. 2020). However, 
repositioning, or the practice of applying already-approved treatments to unantici-
pated therapeutic purposes, has proven effective. Benefits to using this method to 
find new drugs are clearly illustrated in comparison to the standard drug develop-
ment process. Sildenafil (Viagra) is a phosphodiesterase-5 (PDE5) inhibitor that was 
originally developed to treat coronary artery disease (angina). It could have 
a positive effect on both development time and cost. Metformin (Glucophage), an 
oral antidiabetic medication commonly used in treating type 2 diabetes mellitus, is 
currently undergoing phase II/phase III clinical trials as a cancer therapeutic 
(Ashburn and Thor 2004; Ferreira and Andricopulo 2016). Pharmaceutical 
repositioning has several benefits over conventional drug discovery strategies. 
Research and development time is drastically cut as compared to the current 
medication research program. Current methods indicate that it will take



10–16 years to develop a new drug, while DR predicts that it will take only 
3–12 years. Drug repositioning allows for new drug development at a cost of $1.6 
billion, far less than the current drug development strategy’s estimated $12 billion. 
Additionally, the time it takes to find new pharmacological targets is only 1–2 years, 
and the time it takes to create a repositioned medicine is around 8 years (Cha et al. 
2018; Vickers 2017). Repositioned medicines bypass the first 6–9 years of research 
typically required for new therapies under the current paradigm and go straight to
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Fig. 11.1 Conventional/current drug discovery process 

Fig. 11.2 Drug repurposing process



preclinical testing and clinical trials, reducing total risk, time, and cost. It is said that 
the licensing process for repurposed pharmaceuticals can take anywhere from 3 to 
12 years at the Food and Drug Administration (FDA) or the European Medicines 
Agency (EMA). Since the candidate drug has already gone through the structural 
optimization, preclinical, and/or clinical trial stages of drug development, and since 
the candidate drug may already be an approved drug with its clinical efficacy and 
safety profile, a variety of preclinical (pharmacological, toxicological, etc.) and 
clinical efficacy and safety information is already available at the start of a 
repositioning project. Consequently, the high risks associated with failures in the 
early stages of development are mitigated, along with the costs, and the likelihood of 
greater clinical safety and thus a high success rate is increased (Allarakhia 2013; Jin 
and Wong 2014).
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The benefits of drug repurposing over conventional drug discovery methods 
include shorter development times, lower development costs, and reduced risks of 
failure in preclinical studies, thanks to the availability of pharmacokinetic, toxico-
logical, clinical, and safety data at the outset of a repurposing development project 
(Cha et al. 2018). Developing a relocated medicine is expected to take between 3 and 
12 years (as opposed to 10 to 17 years in a normal discovery process), saving the 
repositioning company a substantial amount of time and money. In comparison to 
the $1.24 billion required to bring a new medicine to market through the standard 
drug development approach, the cost of drug repurposing is just about $600 million 
(Parvathaneni and Gupta 2020). What follows are a few more benefits. Unlike the 
drug repositioning approach, which focuses on developing drugs for rapidly emerg-
ing and re-emerging infectious diseases, difficult-to-treat diseases, and neglected 
diseases (NTDs), the traditional drug discovery program primarily focuses on 
discovering drugs to treat chronic and complex diseases. Because of advances in 
bioinformatics and cheminformatics, as well as the availability of large amounts of 
data from various “omics” (proteomics, transcriptomics, metabolomics, genomics, 
etc.), researchers can now use disease-targeted repositioning strategies to learn more 
about the previously undiscovered mechanisms of action (e.g., drug targets, drug-
drug similarities, new biomarkers for diseases, etc.) of currently marketed medica-
tions (Allarakhia 2013). 

11.1.3 Fundamentals of Drug Repurposing 

Drug candidates go through three stages of testing: discovery, where they are 
screened and identified; preclinical, where they are evaluated in vitro and in animal 
models; and clinical, when they are examined in humans as part of clinical trials 
(Fisher Wilson 2006). There are many steps in the discovery process, including 
finding and validating targets, finding leads using high-throughput screening, and 
optimizing those leads (development of the most druggable compounds from the 
lead compounds). Pharmacological effectiveness studies, toxicological assessments, 
and studies of potential medication interactions are all part of the preclinical



investigation process (Dueñas-González et al. 2008). The utility of even a good 
chemical in humans is never entirely clear, as preclinical research cannot always 
account for the physiological differences between people and animals. This means 
that two of the most common reasons for a drug not making it to market are serious 
adverse effects and declining efficacy in people throughout clinical trials (Fisher 
Wilson 2006). Thus, the high-risk/high-reward trade-off in drug research and devel-
opment is a major problem in the legalization and commercialization of novel 
medicines. 

11 In Silico Pharmacology and Drug Repurposing Approaches 257

One alternate approach to drug development is to investigate existing drugs that 
have either been licensed for use in the treatment of other diseases or have previously 
had their targets discovered (Dueñas-González et al. 2008). Repositioning, redirec-
tion, repurposing, and reprofiling refer to the process of finding new uses for 
currently available pharmaceuticals (marketed treatments as well as unsuccessful 
or idle substances) that are not covered by the original indication (Ashburn and Thor 
2004). The number of successful repositionings of existing pharmaceuticals is 
increasing as more pharmaceutical firms look to the pharmacopoeia for repositioning 
opportunities. The benefits of drug repositioning are compared to those of starting 
from scratch with a new drug discovery and development process, and the methods 
used to identify potential repositioning candidates are outlined, as are the common 
difficulties encountered during the repositioning process, and finally, repositioning 
initiatives in India are described. 

In the event when a temporary or permanent cure for a certain disease condition is 
discovered early on, drug repurposing is favorable. Medication repurposing is 
crucial in treating diseases like the COVID-19 pandemic where no vaccines are 
available. 

Today, in vitro or computer modeling studies are used in drug repurposing to 
prove that the drug may effectively manage disease. Since this reduces the effort and 
cost needed to find a new therapeutic chemical, it is helpful for researchers. In silico 
docking is utilized in the repurposing of drugs by comparing the docking score with 
the outcomes of the interaction between the ligand (drug/chemical) and the receptor 
(protein molecule). 

11.1.4 Advantages of Drug Repurposing Over Typical Drug 
Development Process 

A number of factors have contributed to the recent uptick in focus on drug 
repositioning. Costs associated with bringing a single new drug to market in high-
income nations have been estimated at over USD1.24 billion (Kaitin 2010). Another 
key issue that worries pharmaceutical firms is their high rates of employee turnover. 
A study conducted by the Tufts Centre for the Report of Drug Development found 
that just 16% of medications that began clinical development between 1999 and 
2004 really made it to market. Current pharmaceutical R&D productivity is



obviously inadequate, with regulatory bodies in affluent nations only authorizing 
18–20 new medications per year despite annual spending in the pharmaceutical 
business of more than USD50 billion (Ashburn and Thor 2004; Kaitin 2010). It is 
estimated that just 30% of new goods will bring in enough money to cover their 
research and development costs. In order to recoup research and development 
expenditures as quickly as possible, pharmaceutical companies are increasingly 
focused on drugs to treat chronic and complicated indications like cardiovascular, 
endocrine, mental, and neurological illnesses and cancers (Kaitin 2010). The current 
drug discovery paradigm is therefore unprepared to combat rapidly emerging and 
re-emerging infectious diseases such as mutated influenza strains, drug-resistant 
microorganisms, and neglected tropical diseases (NTDs), which appear to have a 
narrower capital system but are crucial to public health (Aronson 2007). Many 
pharmaceutical firms have had to get creative in their search for new applications 
for current pharmaceuticals as a result of the productivity problem, price pressures 
around the world, generic competition, and ever-increasing regulatory obstacles 
(Ashburn and Thor 2004). 
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Many pharmaceutical firms have had to get inventive in their pursuit of new uses 
for existing drugs because of this productivity problem, as well as worldwide price 
pressures, generic competition, and ever-increasing regulatory restrictions. Since 
pharmacokinetic, toxicological, and safety data for current medications is already 
available, the development process for repositioned drugs is quicker and more cost-
effective than conventional drug discovery (Tobinick 2009). More stringent regula-
tions have been put in place over the past few years, making it harder and harder for a 
new drug to access the market under the old standards. There has been a significant 
increase in both the length of time and total cost associated with creating new 
pharmaceuticals as a direct result of the stricter regulations (Kaitin 2010). Time 
and money savings for the repositioning sector are anticipated to be substantial, with 
the development of a repositioned medicine taking anywhere from 3 to 12 years at 
significantly reduced costs. Due to the availability of clinical safety data, pharma-
cokinetics, and a workable dose range at the outset of a repositioned pharmaceutical 
development project, the risks associated with clinical development are greatly 
minimized, and fewer failures occur in the later stages of the project (Sleigh and 
Barton 2012). Despite the challenges of developing new drugs from scratch, this 
allows pharmaceutical companies, non-profits (such as research institutions, gov-
ernment labs, and organizations representing the interests of patients in both devel-
oped and developing countries), and regulators to respond rapidly and effectively to 
unmet medical needs (Sleigh and Barton 2012).
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11.2 Drug Repurposing Strategies 

11.2.1 Knowledge-Based Repurposing 

Models are created to predict unidentified targets, biomarkers, or disease mecha-
nisms in this repurposing strategy using drug-related information, including drug 
targets, chemical structures, pathways, adverse effects, etc. (Emig et al. 2013). This 
tactic entails drug repurposing that is target, pathway, and target mechanism-based. 

With the aid of bioinformatics or chemoinformatics techniques, knowledge-based 
drug repositioning techniques assemble information on medicines, drug-target net-
works, signaling or metabolic pathways, clinical trial data, and other pertinent drug 
phenotypic data. The prediction accuracy for the drug repositioning process is 
significantly increased when using knowledge-based methods because they incor-
porate a lot of current data. 

Understanding the structural resemblance of protein-binding sites can aid in the 
identification of new therapeutic targets. Numerous proteins have identical binding 
sites, according to studies. For instance, staurosporine and celecoxib have compa-
rable binding pockets when they bind to carbonic anhydrases and synapsin, respec-
tively (Defranchi et al. 2010; Weber et al. 2004). Therefore, it is most likely that 
proteins with identical binding sites will bind to the same ligands. 

For medication repositioning, certain knowledge-based computational methods 
create disease-specific pathways from gene expression profiles (Jadamba and Shin 
2016; Li and Lu 2013). These techniques are based on the idea that important 
elements (proteins) in disease pathways could potentially be used as therapeutic 
targets (Li and Agarwal 2009; Strittmatter 2012). Li and Lu (2013) created a 
computational technique to relate medications to diseases through target- and 
gene-involved pathways. The technique found novel uses for existing medications 
and gave important information for therapeutic repositioning, including the possible 
re-use of numerous Crohn’s disease drugs. 

Computational drug-repositioning approaches now use phenotypic data. Clinical 
phenotypic information mirrors a drug’s human phenotypic screen because it is 
created from patient data. Systematic analyses show phenotypic screening beats 
target-based techniques for finding new indications (Swinney and Anthony 2011). 

11.2.2 Target-Based Drug Repurposing 

Drugs have affinity for extra proteins known as off-targets in addition to their 
therapeutic target proteins with which they interact. These off-target interactions 
are mostly to blame for pharmacological side effects. These additional interactions, 
nevertheless, are not always bad for an organism; in certain cases, they may even be 
advantageous for brand new therapeutic uses. For instance, sildenafil (Viagra) was 
first created to treat angina but was subsequently modified to address erectile



dysfunction. This rebuilding was carried out when it was discovered that sildenafil 
interacts with PDE5, the enzyme responsible for the erectile response. Figure 11.3 
depicts the conceptual diagram of target-based medication repositioning. 
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Fig. 11.3 Drug repositioning concept diagram. To cure disease X, a drug molecule interacts with 
Protein A. Protein A may cause disease Y. The drug may also bind well to off-target Protein B. A 
drug reported for disease X may treat diseases Y and Z 

Target-based drug repositioning makes advantage of receptor or ligand structure. 
These drug-repositioning systems carry out high-throughput in silico screening of 
chemical libraries using docking and/or pharmacophore models. VS efforts have 
used computational models successfully, according to the literature (Akhoon et al. 
2016; Matter and Sotriffer 2011; Mehra et al. 2016; Xu et al. 2018). These programs 
rely on small molecule libraries like Pubchem, ZINC, etc. and the target’s binding 
site. Because they can screen nearly all drugs in a matter of days, pharmaceutical 
corporations choose in silico, target-based drug repositioning methods. 

Inhibitors for TGF-1 receptor kinase are one example of in silico target-based 
methods’ potential. Biogen Idec’s computational work reproduced Eli Lilly’s 
wet-lab results and found an identical, promising lead compound for the TGF-1 
receptor (Shekhar 2008). Such advancements demonstrate the effectiveness of 
computational methods to screen compounds without synthesis, which is necessary 
for wet-lab assays, thereby minimizing effort, expense, and time. 

Target selection is the first VS step. Proteins are given top priority because of their 
high specificity, potency, and low toxicity. Targetable biomolecules include poly-
saccharides, lipids, and nucleic acids. We need the 3D protein structure once one is



chosen. The Protein Data Bank stores 3D structures discovered by X-ray crystallog-
raphy, NMR spectroscopy, or cryo-electron microscopy (PDB) (Swamidass 2011). 
In silico affinity prediction is key in target-centered drug repositioning. Molecular 
docking places a small molecule in a receptor’s binding pocket to estimate its 
affinity. Docking involves sampling and scoring. Sampling generates different 
drug poses in the target active site; scoring evaluates the target-ligand complex’s 
binding strength. Various scoring functions can predict the Gibbs free energy of 
binding of ligands and rank them by their binding energies (Doman et al. 2002). 
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11.2.3 Pathway-Based Drug Repurposing 

Predicting the similarity or relationship between disease and drug is the goal of 
pathway-based drug repurposing, which makes use of information about metabolic 
pathways, signaling pathways, and protein interaction networks. For instance, 
disease-specific pathways are recreated utilizing omics data extracted from human 
patients or animals to serve as new targets for repositioned medications (Jadamba 
and Shin 2016). These techniques are useful because they can reduce complex 
signaling networks involving many proteins to a more manageable set using fewer 
proteins (or target molecules). 

Pharmacological manipulation of many physiological and cellular pathways can 
have a significant impact on the majority of illnesses. Further, many nodes or 
molecular targets may exist inside each pathway to control the pharmacological 
effect. As a chemical is put through its paces in an array of in vivo models of 
different disease states, many different pathways and targets within those pathways 
are tested all at once. Drug activities and pharmacological responses that are the 
result of simultaneous modulation of multiple targets and pathways, and activities 
that are driven by modulation of complex biological networks, can be discovered 
through screening drugs through an intact in vivo system, which is not the case when 
testing drugs in vitro or in cell-based systems. 

11.2.4 Target Mechanism-Based Drug Repurposing 

To identify novel therapeutic mechanisms of action, target mechanism-based 
repurposing incorporates knowledge of signaling pathways, treatment omics data, 
and protein interaction networks. Such drug-repurposing strategies are driven by the 
growing importance of precision medicine. These repurposing strategies have the 
potential to uncover pathways associated to not only diseases or medications but also 
drug treatments for individual diseases. Determining disease targets and their related 
mechanisms of action is crucial to the target mechanism-based drug repurposing 
method, which in turn leads to the discovery of novel therapeutic applications. To 
better understand the mode of action and diseases linked with medicinal substances,



this method integrates a computational biological system with the research of 
biological pathways. Systems pharmacology is another useful tool for identifying 
potential new uses for existing drugs based on their underlying mechanisms of 
action. One medication for several targets is the foundation of systems pharmacol-
ogy, which bridges the gap between systems biology and traditional pharmacology. 
The chemical–protein, protein–protein, genetic, signaling, and physiological inter-
actions in a biological system can all be predicted with this method (Jin et al. 2012). 
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The biological system is an example of an emergent property, which is a property 
of the system as a whole that cannot be explained by looking at the pieces in 
isolation. Systems biology is an emerging field that provides an all-encompassing 
setting for investigating the dynamic functional interactions across biological sys-
tems throughout time and opening up novel avenues for target mechanism-based 
medication repurposing. Researchers are now able to undertake multiscale modeling 
of biological networks, i.e., networks of networks, thanks to the development of 
systems biology, which has also changed the field of drug discovery. Systems 
biology uses quantitative mathematical network models in conjunction with network 
models to determine the dynamic behavior of biological systems. Target 
mechanism-based medication repurposing approaches are found on the idea that 
these networks can be mined for information about new therapeutic targets and the 
unique processes associated with them. 

This strategy has considerable applicability for repurposing with a specific 
mechanism as the target. Pathway analysis is a stepping stone toward accurate 
systems biology-based target mechanism prediction. Genomic, epigenomic, proteo-
mic, and metabolomics data are all examples of high-throughput “omics” data that 
can be integrated into pathway analyses to shed light on previously unknown 
connections across pathways that play a role in both healthy and pathological states. 
Drug repurposing based on previously unknown mechanisms of action has benefited 
greatly from the identification of relationships between previously unrelated com-
plicated biological networks. Therapeutic medication repurposing that takes advan-
tage of a medicine’s original target mechanism can also be useful in the fight against 
treatment-resistant patients. Understanding the entire route during drug resistance 
will be helpful in developing a new medication therapy for diseases like tuberculosis, 
where resistance to existing drugs is a leading cause of patient mortality (Wu et al. 
2016). 

Target mechanism-based approaches to drug repurposing are distinct from other 
predictive methods in that they make full use of millions of compound–protein 
interactions to investigate the drug candidate’s entire target space, rather than just 
the subset that shares chemical structure similarities or phenotypic effects with 
known drugs. To further precision medicine, it is useful to incorporate phenotypic 
similarities during drug repurposing research.
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11.2.5 Signature-Based Repurposing 

In signature-based repurposing, gene signatures information obtained from disease 
omics data (Haeberle et al. 2012) is used to discover new off-targets or mechanisms 
of disease. This approach searches inverse drug-disease relationships by comparing 
gene expression profiles between drug and disease. In the work by Dudley et al. 
(2011) potential drug–disease pairs were investigated for inflammatory bowel dis-
ease (IBD), where gene expression profiles obtained from the gene expression 
omnibus database (Barrett et al. 2005) were compared with gene expression profiles 
comprising 164 drug compounds obtained from the connectivity map (Lamb et al. 
2006). As a result, unknown drug–disease pairs were discovered, with one pair 
validated in preclinical models. 

A gene signature, sometimes called a gene expression signature, is a particular 
pattern of gene expression that can be traced back to a certain cause or situation. 
Determining the biological and functional significance of genes in the human 
genome has accelerated the drug-discovery process, according to the Human 
Genome Project (HGP). One way to get a better grasp on how biological systems 
work is to examine the cellular gene expression pattern of hundreds of genes 
simultaneously. High-throughput gene-expression data has allowed for in-depth 
tracking of transcriptional responses related to a wide range of disease states and 
therapeutic interventions. Signature-based drug-repositioning approaches build on 
this information by using it to decipher the gene signatures of different diseases and 
drugs. Genome-wide expression profiles play a crucial role in drug repurposing 
because they shed light on how a medication interacts with different cellular 
processes. Better understanding of drug indications is made possible by signature-
based approaches, which reveal hitherto unknown mechanisms of action for many 
medications. To develop a signature of a disease, it is useful to compare the sets of 
genes that are either unregulated or downregulated in diseased and healthy states. 
When performing expression profiling in the presence of a pharmacological mole-
cule, disease signatures are also useful for deciphering the molecular foundation of 
the drug’s mechanism of action. 

Microarray and next-generation sequencing (NGS) technology are two examples 
of cutting-edge gene sequencing methodologies that are widely utilized to obtain 
high-throughput gene-expression data quickly and cheaply. DNA microarray 
methods are commonly used for gene signature detection. DNA microarray allows 
us to examine the expression of hundreds of genes in individual cells. Traditional 
drug discovery and development methods have been completely upended by the use 
of microarray technology. Target discovery, validation, and lead optimization are all 
greatly aided by DNA microarray. By comparing the gene expression profiles of the 
diseased and healthy states, one can hypothesize the complex disease pathways 
using the microarray technique. New possibilities for drug repurposing are becoming 
available to DNA microarray technology. Although off-target indications are not 
taken into account during the drug design process that uses traditional structure, they 
can be easily measured using microarray techniques. The expression of microarrays



is a non-biased method for detecting both on-target and off-target impacts of 
substances. 

264 G. Parmar et al.

In in silico molecular docking and gene expression investigations to repurpose 
various FDA-approved medicines against seven targets involved in Alzheimer’s 
disease (AD). Cell-based microarray experiments from this dataset were deposited 
in the cMap database, and screening of 1553 FDA-approved medications yielded 
74 compounds with low binding energy (less than 10 kcal/mol for all seven targets) 
(Lamb et al. 2006). Due to this research, four medicines (risperidone, droperidol, 
glimepiride, and glipizide) were reformulated for use in AD. 

The advantage of these approaches is that they identify new mechanisms of action 
for drugs. Also, unlike knowledge-based methods, more molecular and/or genetic-
level mechanisms are involved in these methods. 

11.2.6 Phenotype-Based Repurposing 

The phenotypic information has become available as a new source of drug 
repositioning. In recent years, this type of information has been increasingly used 
by systems approaches to detect genetic traits associated with human diseases 
(Hebbring 2014). Natural language processing skills applied to electronic health 
records (EHRs) can reveal additional adverse drug events which were not observed 
during drug development (Luo et al. 2017). For example, mining EHRs helped in 
identifying that metformin can be repurposed for cancer treatment (Xu et al. 2015). 

For medications that can bring about the desired change in a disease’s phenotype, 
researchers use a screening method known as phenotypic approach, or blinded drug 
repurposing (Swinney and Anthony 2011). Using a disease-associated trait as a 
basis, researchers may create a cell-based test in which a large number of chemicals 
are screened for their ability to reverse the disease phenotype. Several rare illnesses 
without effective therapy might benefit from this strategy since it is more effective 
for diseases in which particular therapeutic targets have not been found or validated. 
However, the phenotypic method is limited in its ability to provide light on the 
disease’s mechanism and the drug’s particular targets/actions since it relies only on 
information about the phenotype (Jin and Wong 2014). 

11.3 Methods for Computational Drug Repurposing 

11.3.1 Machine Learning 

Over from early attempts to evaluate medications, which often relied on a single 
source of biological or biomedical data, computational drug repurposing has evolved 
over the past two decades to become a cutting-edge application domain for machine



learning techniques. To expose the underlying correlations between biological and 
biomedical entities, computational drug repurposing models need to be trained on a 
vast quantity of data, much like machine learning models in other fields. This data is 
then used to develop strong decision rules. Massive efforts have been made to 
develop, study, and apply machine learning methods for discovering novel drug-
disease associations and drug repurposing applications, and this has been aided by 
the enormous increase in the volume of publicly available biological and biomedical 
data as well as the valuable advancements resulting from machine learning models in 
other disciplines. 
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Logistic regression and k-nearest neighbors are two examples of the machine 
learning (ML) approaches that have been used in medication repositioning (kNN) 
(Shen et al. 2003), random forest (Susnow and Dixon 2003), support vector 
machines (SVM) (Meng et al. 2004), deep neural network (NN), and deep learning 
(DL) for binary/multiclass values prediction (Chen et al. 2018). Among the best 
logistic regression-based ML methods is PREDICT, which combines drug–drug and 
disease–disease similarity to reveal integrated similarity values for the prediction of 
a single drug’s effect on a single disease (Gottlieb et al. 2011). Among the best 
logistic regression-based ML methods is PREDICT, which combines drug–drug and 
disease–disease similarity to reveal integrated similarity values for the prediction of 
a single drug’s effect on a single disease (Liu et al. 2015). A support vector machine 
(SVM)-based ML technique, on the other hand, combines molecular target, drug 
chemical structure, and gene expression similarity in a single similarity matrix to 
predict therapeutic class (Napolitano et al. 2013). By analyzing the genomic and 
structural fingerprints of cancer cell lines with random forest regression, the neuronal 
network [NN]-based ML model is optimal for predicting response to anticancer 
drugs in cancer cell lines (Menden et al. 2013). 

However, the deep learning (DL) method is a helpful drug development tool 
through the discovery of latent and complex structures in a large database, as well as 
connected weight adjustment, such as the analysis of complex gene expression data 
for the prediction of therapeutic categories of drugs with the prediction of toxicity 
(Aliper et al. 2016; LeCun et al. 2015; Mayr et al. 2016). 

11.3.2 Network Models 

It is possible to learn a great deal about drug mechanisms of action and indications, 
drug targets and how they function, therapeutic potential, and drug repurposing 
applications from analyzing networks. For this reason, it has found widespread 
application in computational drug repurposing. Biological and medical entities, 
along with their interactions and relationships, are well-represented in network 
models. 

Using ideas from graph theory, statistical analysis, and computational models, 
network models can be used to unearth useful connections. The nodes in these 
network-based models are biological entities like drugs, diseases, gene products,



and so on, while the edges represent relationships between these entities, such as 
their shared functions or mechanisms of action. Unknown drug–targets, drug– 
diseases, disease–disease, protein–protein interactions, transcriptional and signaling 
networks, and so on are also represented by nodes and edges integrated from 
heterogeneous data using the “guilt-by-association” principle (Azuaje 2013; Iorio 
et al. 2013). The interpretation of drug–target association and the identification of 
new drug repurposing molecules, such as novel anticancer drugs, are facilitated by 
network analysis-based computational drug repurposing approaches (Haeberle et al. 
2012). 
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11.3.3 Text Mining and Semantic Inference 

There is a mountain of drug and disease data in the biomedical and pharmaceutical 
literature, and it is up to us to sift through it all to find new uses for old drugs. It is 
common practice in computational drug repurposing to use text mining to locate data 
pertaining to a given gene, disease, or drug and then to classify the relevant entities 
or knowledge from the retrieved data using either natural language processing or the 
co-occurrence of the relevant entities (Tari and Patel 2014). 

An additional link between drug A and disease C may have been discovered, for 
instance, if drug A is associated with gene B and gene B is associated with disease 
C. There are typically four stages to text mining: There are four major types of data 
analysis: (1) IR, (2) NER, (3) IE, and (4) KBD (knowledge base development) (Zhu 
et al. 2013). 

Semantic technologies have made it simple to aggregate data from various 
sources in order to forecast therapeutic potentials and new indications for currently 
available drugs. Therefore, semantic inference technology-based topic modeling 
aids in the discovery of drug indications by integrating multiple data sources. 

For instance, Latent Dirichlet Allocation-based drug repurposing topic model is 
used to process the phenome information for drug side effects and also identify the 
relationship of existing approved breast cancer drugs with their associated genes and 
pathway through the integration of ontology-based knowledge tools (Bisgin et al. 
2014; Zhu et al. 2014). Moreover, a semantic linked network-based approach is used 
to assess drug–target associations, which comprised drugs, protein targets, chemical 
compounds, diseases, pathways, side effects, and their relations through the identi-
fication of the drug and drug-target location in the subgraph (Karthik et al. 2014). 

11.4 Validation for Computational Repurposing 

When compared to the traditional drug discovery and development process, com-
putational drug repurposing is preferable because it saves both time and money. The 
problem is that specific validation models may be inaccurate. As a result, the success



of the proposed computational models relies heavily on the understanding and 
selection of appropriate validation models. Because of factors like high cost, high 
level of toxicity, and reduced bioavailability, as well as the fact that some drugs have 
been abandoned or are not preferred by physicians or biologists, selecting the right 
set of drug repurposing candidates for validation is crucial. Different studies use 
different validation/evaluation models, and these models may depend, at least in 
part, on the type of results that are sought. Each model is supported by either 
(1) in vitro experiments, (2) in vivo experiments, (3) electronic health records, 
(4) leave-one-out and cross-validation, or (5) benchmarking against previously 
developed models. Case studies, a literature synthesis, and advice from an expert 
in the field are all steps 6–8. 
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Drug repurposing candidates have often been validated using in vitro and in vivo 
experimental validation models, despite the fact that these approaches have a number 
of well-known limitations (Lim et al. 2016). 

Furthermore, PubMed articles as a model for medical literature cross-referencing 
are used to verify the efficacy of the computational approach to drug repurposing. 
Recently, however, there has been an explosion in the use of literature-based 
validation models as literature mining techniques become more widespread in 
scientific research (Ozsoy et al. 2018). 

11.5 Success Stories of Drug Repurposing 

As mentioned above, there are many success stories; here some more recently 
discovered success stories for drug repurposing are enlisted: 

11.5.1 Pimozide (Antipsychotic Drug) 

Pimozide is an antipsychotic medication that has been shown in vitro to suppress cell 
growth in HCC cell lines by inducing apoptosis at the G0/G1 phase. Furthermore, 
pimozide inhibited HCC stem-like cells, particularly the CD133-positive cell side 
population. Pimozide was discovered to target STAT3 expression using luciferase 
assay activity, as well as the transcription levels of downstream oncogenes for 
STAT3 signaling. Pimozide’s anticancer efficacy was confirmed in vivo in hairless 
mice (Chen et al. 2017). 

11.5.2 Valproate (Antiepileptic Drugs) 

Valproic acid (VPA) is a widely used antiepileptic medicine that is a potent and 
selective inhibitor of histone deacetylase (HDAC). As a definable target with a



known molecular signature, HDAC has been recognized for its critical role in the 
progression of numerous forms of cancer. The mono- and adjuvant therapeutic 
in vitro actions of VPA and doxorubicin (DOX) against the HepG2 cell line were 
reported to be selective, efficient, and antiproliferative in a synergistic manner. At 
the molecular level, activation of caspase-3 and poly (ADP-ribose) polymerase 
(PARP) facilitated the synergism induced by VPA and DOX to induce apoptosis. 
The combination of VPA and DOX therapy increased reactive oxygen species levels 
(ROS) (Saha et al. 2017). 

268 G. Parmar et al.

11.5.3 Amiodarone (Antiarrhythmic Drug) 

Amiodarone, a class III antiarrhythmic and powerful mTOR inhibitor, was reported 
to reduce liver tumor development in the rat orthotropic model and the mouse 
xenograft model by inducing autophagy activity. Furthermore, a big data analysis 
of 32,625 case-control data from Taiwan’s National Health Insurance program 
demonstrated that long-term regular amiodarone use reduces the incidence of HCC 
considerably. Amiodarone, as a repurposed medication, has anticancer potential by 
inducing autophagy activity and thereby suppressing liver tumor development and 
preventing HCC incidence (Attia et al. 2020). 

11.5.4 Sildenafi 

Viagra® (sildenafil), a phosphodiesterase 5 (PDE5) inhibitor that was under devel-
opment for the treatment of angina in the 1990s, is the most commonly quoted 
example involving drug repurposing. Clinical trials for the medicine were halted 
because it was discovered that the compound’s PK properties were incompatible 
with the long-term treatment of angina in patients (Ghofrani et al. 2006). However, 
during these trials, researchers discovered a startling side effect that assisted in the 
definition of a new disorder: erectile dysfunction (ED). The compound’s weak PK 
qualities, which rendered it unsuitable as an anti-angina therapy, were ideal for a 
medication given for ED. PDE5 inhibitors have been explored in a range of 
additional indications after being used for ED and shown to be beneficial in 
pulmonary arterial hypertension (PAH) (Ghofrani et al. 2006) which sildenafil citrate 
is now authorized and marketed under the brand name REVATIO® . 

11.5.5 Pertuzumab 

Pertuzumab, a first-in-class monoclonal antibody that functions as a “HER dimer-
ization inhibitor” and was expected to be the successor to Herceptin® , is another



recent example from Genentech. Pertuzumab Phase II clinical trials in prostate, 
breast, and ovarian malignancies were unsuccessful in 2005 (Menendez and Lupu 
2007). When taken in combination with other chemotherapeutic treatments, 
pertuzumab caused tumors to vanish in 49% of newly diagnosed early-stage 
HER-2-positive breast cancer patients, compared to 29% of patients receiving 
Herceptin® and chemotherapy. 
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11.5.6 Thalidomide 

Thalidomide, introduced by Gr ü nenthal in 1957, was discovered to be an efficient 
tranquilizer and painkiller (Matthews and McCoy 2003). It was also discovered to be 
an efficient antiemetic and to reduce morning sickness during pregnancy. Soon after 
its introduction, hundreds of children were born with severe developmental abnor-
malities of the limbs and face (phocomelia) as a result of thalidomide use. The 
medication was taken off the market in 1962. Subsequent research indicated that the 
substance was an enantiomer and that only one of the two optical isomers was 
responsible for the teratogenic consequences (Fabro et al. 1967). Unfortunately, 
because the two isomers interconvert in humans, separating the risk from the benefit 
in women of reproductive age is impossible. Despite its disastrous effects on the 
developing fetus, thalidomide has since been used successfully in the treatment of 
ENL, a painful leprosy complication, and tuberculosis. According to molecular 
investigations, the efficacy found may be attributable to its potential to block 
tumor necrosis factor (TNF) alpha signaling. Further research has been conducted 
to determine the possibility of thalidomide in Kaposi’s syndrome (an AIDS conse-
quence) and multiple myeloma (Matthews and McCoy 2003; Ng et al. 2002). In 
2008, Celgene earned $550 million from thalidomide sales. As a result, there is 
increasing interest in thalidomide and its derivatives, and a recent literature search by 
these authors (Thomson Reuters Integrity database) uncovered research on its usage 
in more than 30 different indications. 

11.5.7 Repurposing in Malaria 

11.5.7.1 Dapsone 

The development and eventual failure of dapsone as a potential treatment for 
uncomplicated malaria demonstrate how recognized side effects can derail a medi-
cation repurposing endeavor. Clinical studies must be designed to detect rare, albeit 
significant, known problems of existing medications in order to ensure safety 
(Guragain et al. 2017). This is especially true in developing countries, where 
conducting Phase IV post-marketing monitoring studies is almost impossible due 
to a lack of infrastructure. One prominent consequence that emerged from several of



these trials was the development of anemia in G6PD-deficient patients, which has 
been related to hemolysis caused by dapsone. Dapsone is known to produce dose-
dependent hemolytic anemia in up to 20% of leprosy patients, and this side effect in 
G6PD patients has been documented since 1966. Dapsone’s N-hydroxy metabolite 
is hypothesized to contribute to lipid peroxidation and the formation of reactive 
oxygen species. Patients with G6PD deficiency are more vulnerable to oxidative 
stress because they have lower amounts of glutathione, which is regenerated from 
glutathione disulfide utilizing nicotinamide adenine dinucleotide phosphate 
(NADPH), which is created by G6PD action on glucose-6-phosphate. G6PD defi-
ciency is thought to protect against malaria, which has a prevalence of 4% to 28% in 
Africa. Although some of the studies were insufficiently powered to identify unfa-
vorable outcomes in G6PD-deficient patients, the frequency of this side effect in 
numerous trials led to GlaxoSmithKline withdrawing hlorproguanil/dapsone in 2008 
(Karadsheh et al. 2021). 
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11.5.7.2 Drug Repurposing in COVID-19 

Several studies are being conducted to combat the potentially fatal corona virus 
infection using antiviral medication therapy. HIV protease inhibitors have been 
proposed as one possible treatment for COVID-19. Docking tests were carried out 
on 61 compounds with known antiviral properties in this study. Many HIV protease 
inhibitors demonstrated outstanding binding affinities with COVID-19 enzymes in 
this investigation (Shah et al. 2020). Lopinavir, asunaprevir, indinavir, and ritonavir 
are four protease inhibitors that have been found to be effective. Remdesivir, which 
acts on viral RNA polymerase, also improves activity in silico. Along with them, 
novel COVID-19 inhibitors such as methisazone, ABT450 (Paritaprevir), and 
CGP42112A have been developed (Frediansyah et al. 2021; Sharma et al. 2020) 
(Table 11.1). 

11.6 Opportunities and Limitations of In Silico Drug 
Repurposing 

Drug repurposing has become increasingly important in the pharmaceutical industry 
in recent years, with roughly one-third of approvals corresponding to repurposed 
medications, some of which have even attained blockbuster status. The stories of 
successful medication repurposing have paved the path for new kinds of public– 
private sector cooperation, a virtuous relationship that has not yet achieved its 
pinnacle. Governmental organizations and agencies are equipped to provide ways 
to get over some of the commercial and legal obstacles that medication repurposing 
programs encounter. Pharmaceutical firms, on the other hand, own the priceless 
(albeit occasionally underutilized) capital of their proprietary chemical libraries,



(continued)
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Table 11.1 Some repositioned drugs 

Drug Original indication New indication References 

Allopurinol Cancer Gout Yasuda et al. (2008) 

Aspirin Inflammation, pain Antiplatelet Ahmad et al. (2017), 
Qorri et al. (2022) 

Bromocriptine Parkinson’s disease Diabetes mellitus Padhy and Gupta (2011) 

Bupropion Depression Smoking cessation Ashburn et al. (2004) 

Duloxetine Depression Stress urinary 
incontinence 

Li and Jones (2012), 
Maund et al. (2017) 

Finasteride Benign prostatic 
hyperplasia 

Hair loss McClellan and Markham 
(1999) 

Gabapentin Epilepsy Neuropathic pain Karmarkar et al. (2011) 

Gemcitabine Antiviral Cancer Qorri et al. (2022), Toschi 
et al. (2005) 

Methotrexate Cancer Rheumatoid arthri-
tis, Parkinson’s 

Padhy and Gupta (2011) 

Propranolol Hypertension Migraine headache Bidabadi and Mashouf 
(2010) 

Raloxifene Osteoporosis Breast cancer Agrawal (2018) 

Sildenafil Angina Erectile 
dysfunction 

Roundtable on Translat-
ing Genomic-Based 
Research for et al. (2014) 

Thalidomide Sedation, morning 
sickness 

Leprosy, multiple 
myeloma 

Amare et al. (2021), 
Laffitte and Revuz (2004) 

Zidovudine Cancer AIDS Ashburn et al. (2004) 

Amantadine Influenza Parkinson’s disease Padhy and Gupta (2011) 

Atomoxetine Antidepressant Attention deficit 
hyperactivity 
disorder 

Shaughnessy (2011), 
Upadhyaya et al. (2013) 

Colchicine Gout Recurrent 
pericarditis 

Shaughnessy (2011) 

Retinoic acid Acne Acute 
promyelocytic 
leukemia 

Avvisati and Tallman 
(2003), Tallman et al. 
(1997) 

Auranofin Rheumatoid arthritis Malaria Roder and Thomson 
(2015), Sannella et al. 
(2008) 

Bimatoprost Glaucoma Promoting eye 
lashes growth 

Monaghan and Murphy 
(2021) 

Clofazimine Leprosy Tuberculosis Zhang et al. (2006) 

Dapson Leprosy Malaria Tiono et al. (2009) 

Statins Hyperlipidemia Inflammatory and 
autoimmune 
disease 

Smaldone et al. (2009) 

Zileuton Astham Acne Zouboulis (2009) 

Nortriptine Depression Neuronal pain Derry et al. (2015)
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Table 11.1 (continued)

Drug Original indication New indication References 

Amphotericin B 
(AMB) 

Fungal infections Leishmaniasis Machado et al. (2015), 
Mondal et al. (2010) 

Favipiravir Influenza COVID-19 Furuta et al. (2013), 
Singh et al. (2020) 

Hydroxychloroquine Malaria, RA COVID-19 Infante et al. (2021), 
Rameshrad et al. (2020) 

Ivermectin, 
anthelmintic 

Scabies, river, blind-
ness, helminthiasis 

COVID-19 Shirazi et al. (2022) 

Lopinavir/ritonavir, HIV/AIDS COVID-19 Singh et al. (2020) 

Remdesivir Influenza, Ebola 
(failed in clinical trial) 

COVID-19 Babadaei et al. (2021), 
Rosa and Santos (2020) 

Orlistat Obesity Cancer Schcolnik-Cabrera et al. 
(2018), Turanli et al. 
(2018) 

Tocilizumab Rheumatoid arthritis COVID-19 Perrone et al. (2020), 
Sultana et al. (2020) 

Crizotinib Lymphoma NSCLC (non-small 
cell lung carci-
noma), Leukaemia 

Boulos et al. (2021), 
MotieGhader et al. (2022) 

Daunorubicin Antibiotic Breast cancer Agrawal (2018), Correia 
et al. (2021) 

Dimethyl fumarate Psoriasis Multiple sclerosis Thomas et al. (2022) 

Digoxin CVDs such as heart 
failure 

Prostate cancer Bahmad et al. (2022) 

Everolimus Immune suppressant Pancreatic neuroen-
docrine tumors 

Yao et al. (2011) 

Fluorouracil Cancer Breast cancer Aggarwal et al. (2021), 
Correia et al. (2021) 

Fluoxetine Depression Premenstrual 
dysphoria 

Romano et al. (1999), 
Steiner et al. (1995) 

Galantamine Neuromuscular 
paralysis 

Alzheimer’s 
disease 

Kumar et al. (2017) 

Ibudilast Asthma Neuropathic pain Hama et al. (2012), 
Sisignano et al. (2022) 

Isoniazid Tuberculosis Certain types of 
tumor 

Lv et al. (2018) 

Milnacipram Depression Fibromyalgia English et al. (2010) 

Miltefosine Cancer Leishmaniasis, 
amoeba infection 

Latifi (2020), Sunyoto 
et al. (2018) 

Mifepristone Termination of preg-
nancy in combination 
with misoprostol 

Cushing’s 
syndrome 

Johanssen and Allolio 
(2007), Morgan and 
Laufgraben (2013) 

Minoxidil Hypertension Androgenic 
alopecia 

Badria et al. (2020), 
Suchonwanit et al. (2019) 

Nelfinavir HIV/AIDS Breast cancer Koltai (2015), Subeha 
and Telleria (2020)



which includes unsuccessful and shelved drug ideas that may be saved to meet 
unmet medical needs (prominently, rare and neglected conditions).
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Table 11.1 (continued)

Drug Original indication New indication References 

Simvastatin CVDs Lung cancer Marciano et al. (2022) 

Sunitinib Imatinib-resistant Pancreatic neuroen-
docrine tumors 

Delbaldo et al. (2012), 
Raymond et al. (2011) 

Topiramate Fungal infections Inflammatory 
bowel disease 

Dudley et al. (2011) 

Valsartan Hypertension, heart 
attack 

Alzheimer’s 
disease 

Kim (2015) 

Additionally, pharmaceutical sponsors, governmental organizations, and other 
stakeholders have access to sensitive information from clinical trials that, if made 
public, could result in a quality improvement for the drug discovery community. As 
drug rescue offers excellent, affordable opportunities to commercially exploit aban-
doned drug projects and maximize the advantages of pharmaceutical companies’ 
portfolios, it is possible that open collaboration models bridging academia with 
private partners (non-profit organizations and industry) will continue to expand. 
Drug repurposing has frequently been promoted as an intriguing method to inves-
tigate new pharmacological treatments for uncommon and untreated disorders 
(in reality, many of the accessible therapies for these conditions can be viewed as 
repurposed drugs). Even though it may not be particularly profitable in terms of pure 
economics, the pursuit of pharmaceutical treatments for uncommon and undertreated 
disorders does imply other forms of value, such as corporate social responsibility and 
the resulting raised social awareness of and perception of pharmaceutical companies. 
Government organizations also have the ability to support such programs through a 
variety of financial incentives; thus it is crucial to raise awareness of the fact that the 
cost of treating neglected and uncommon diseases far outweighs the expenditure 
needed to create novel therapeutic approaches. It is possible that the two sectors with 
the best promise for drug repurposing are systems and precision medicine. 

11.7 Conclusion 

Historically, the discovery of new drug compounds has come about through the 
process of dug repurposing, with an emphasis on serendipitous findings. This has 
paved the way, in recent years, for the development of new therapeutics based on 
licensed medications that are already on the market. Strategic drug repositioning has 
sparked innovation as pharmacological compounds with unidentified therapeutic 
indications have been discovered. As a result of their ability to drastically reduce 
R&D costs, increase success rates, shorten research time, and decrease investment 
risk, drug repositioning strategies are gaining in popularity. The adoption of novel



repositioning strategy techniques in the drug discovery program for nearly all human 
diseases is made possible by these benefits, which are beneficial to researchers, 
consumers, and pharmaceutical corporations. Drug repurposing is an integral part of 
the drug discovery process, and it can be sped up with the help of in silico methods, 
SBDD, pharmacophore modeling tools, and AI technologies. In the era of precision 
medicine, drug repositioning has proven to be incredibly useful through the study of 
novel disease, metabolic, and signaling pathways, off-targets and target-specific 
processes, genetic expression profiles, and even genetic diseases. Advances in 
genomics have enabled us to access massive amounts of genomic and transcriptomic 
data through the use of methods like next-generation sequencing, microarray data, 
and transcriptomics, among others. There may be additional benefits from using 
network biology and systems biology methods to uncover such novel mechanisms of 
action. 
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Chapter 12 
CADD Approaches in Anticancer Drug 
Discovery 

Abanish Biswas and Venkatesan Jayaprakash 

12.1 Introduction 

In the majority of the world’s nations, cancer is currently the main cause of 
premature death or a close second. Due to the considerable impact of demographic 
changes, such as population growth and aging, on the disparate patterns in cancer 
incidence in different locations, it is anticipated that there will be an increase in the 
number of cancer patients worldwide during the next 50 years. By 2070, the 
incidence of all malignancies combined is expected to double compared to 2020, 
if that recent incidence patterns for the major cancer types continue. The expected 
increases in the national burden decrease with higher levels of national Human 
Development Index (HDI), with the largest increases predicted in lower-resource 
settings and in nations that are currently given a low HDI. Therefore, in order for 
national cancer control programs to produce the anticipated public health and 
economic benefits in the twenty-first century, countries must launch them quickly 
(Soerjomataram and Bray 2021). 

Recent research on the immune system and cancer has resulted in the creation of 
novel drugs that boost the immune system to target cancer cells. There are medicines 
available that make use of certain signals to halt the multiplication of cancer cells, 
and there are additional medications now under research that target cancer cells 
specifically and kill them off directly. The process of finding new treatments for 
complex illnesses may be sped up by using machine learning algorithms to the 
investigation of these ailments. The analysis of cancer genomes and the identifica-
tion of the treatment protocols that are the most effective for various subtypes of the
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disease are two fields of medicine that might stand to gain a great deal from the use of 
machine learning techniques. Unfortunately, the creation of a whole new medication 
is an endeavor that is not only expensive but also time-consuming and fraught with 
risk. When adopting the conventional approach, the process of developing new 
pharmaceuticals may take up to 15 years and cost more than 1 billion dollars. As a 
result, computer-aided drug design, also known as CADD, has developed as a 
successful and promising strategy for the production of safer, more cost-effective, 
and more rapidly usable therapeutic prototypes. Numerous drug discovery programs 
currently make use of cutting-edge technology and methodologies, both of which 
have been developed in recent years to improve the analytical processes involved in 
drug development and the overall effectiveness of the process. The preclinical 
screening of candidate compounds is an essential part of the process of discovering 
novel treatments. The procedures of compound selection have substantially 
improved, thanks to the introduction of animal testing and in vitro drug screening. 
The process of finding new drugs requires several steps, one of which is the 
re-clinical screening of candidate molecules. Through the use of animals as test 
subjects and in vitro drug screening, the procedures for selecting compounds have 
been significantly improved and optimized. However, the exploratory tests used for 
small molecule analysis in cancer treatment discovery are frequently expensive and 
time-consuming. Therefore, improved methods for creating conventional medica-
tions are required (Rosenblum et al. 2018).
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Finding new applications for already-approved drugs is significantly less expen-
sive than looking for brand new cancer treatments. Using obtained multi-omics data, 
anticancer therapy efficacy can be predicted based on drug repositioning. One of the 
biggest challenges in modern cancer treatment is coping with patient heterogeneity. 
Since more than 50 years ago, it has been understood that people with different 
forms of cancer will react to the same treatment in quite diverse ways. Cancer 
patients frequently receive combination therapy, which combines several different 
drugs for better clinical outcomes. Over monotherapy, combination therapies and 
medications have many benefits. We look at how these methods have been used in 
assisted separation to good effect (Yap et al. 2013). Innovative anticancer therapies 
may be developed by combining in silico drug design with improvements in cancer 
research, which have been shown to be effective in the past (Li et al. 2019a). 

12.1.1 Structure-Based Computer-Aided Drug Design 
(SB-CADD) Approach 

Structure-based computer-aided drug design, made possible as a result of the 
sequencing of the human genome, has had a major impact on the procedure of 
creating novel pharmaceuticals. Possible targets for cancer treatment and new 
understandings of the illness might be uncovered with its help. SB-CADD should 
be utilized to identify anticancer drugs with a wide range of shapes, taking use of



cutting-edge technologies such the 3D architectures of cancer-related proteins that 
are crucial to therapy. The binding site interaction and other variables contributing to 
specificity may be studied in order to achieve this goal. Protein-centric and ligand-
centric structure-based approaches are the two most common types. These two 
classes should not be overlooked. Studying the structural information of complex 
ligands may help advance SB-CADD in the quest for novel therapeutics. The main 
interaction between the target protein and ligand may be extracted from the protein-
ligand complex, which may provide information on the protein’s activity or the 
ligand’s inhibitory effects. If the protein-ligand approach is not feasible, the protein-
based approach might be used to interpret the quality of the relevant protein binding 
data into pharmacophoric features (Ferreira et al. 2015). 
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12.1.2 Ligand-Based Computer-Aided Drug Design 
(LB-CADD) Approach 

LB-CADD methods make predictions about new bioactive molecules with compa-
rable biological effects based on prior knowledge about active medications, like their 
structural and physiochemical characteristics. Drug compound prediction is based on 
the similarities of features (such as aromaticity, hydrogen-bond acceptors (HBA), 
hydrogen-bond donors (HBD), surface charge, anion, and cation residues), with the 
underlying premise that compounds with high physicochemical and structural sim-
ilarity seem to be more likely to share similar biological activity (Martin et al. 2002). 
When the target protein’s 3D structure is unknown, LB-CADD is generally used. 
When the data regarding the structure of protein is very limited, Quantitative 
Structure-Activity Relationship (QSAR) models and Pharmacophore models yield 
constructive data regarding the interaction between ligand and protein (Prada-Gracia 
et al. 2016). There are a variety of freely accessible compound libraries for 
virtualized chemical compound screening (Table 12.1) and for target prediction 
(Table 12.2). One should remember that SB-CADD and LB-CADD techniques are 
not contradictory incompatible to each other; sometimes combination techniques are 
required for screening of large libraries. A comprehensive flowchart for CADD 
process is shown in Fig. 12.1. 

12.2 Computational Approaches for Anticancer Drug 
Discovery 

12.2.1 Anticancer Small Organic Molecules Design 

The use of cytotoxic drugs is the foundation of conventional chemotherapy. How-
ever, these drugs frequently fail to localize preferentially in the microenvironment of



Name of the server URL of the server References

the tumor, which can result in damage to healthy tissue as well as the need to increase 
the dosage in order to achieve the desired therapeutic effect. Researchers have a 
tough time increasing selectivity in oncology to lessen off-target damage caused by 
traditional cancer treatment due to the high degree of similarity that exists between 
cancer cells and normal cells. Small molecule drug conjugates, also known as SMC, 
are a promising technique for targeted treatment. These drug conjugates enable small 
molecules to release a powerful cytotoxic agent particularly in the microenvironment 
of a tumor, which increases the therapeutic potential of anticancer drugs. 
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Table 12.1 List of online available compound database 

Database URL References 

ChEMBL https://www.ebi.ac.uk/ 
chembl/ 

Wishart et al. (2008), Kim et al. 
(2019) 

DrugBank https://go.drugbank.com/ Wishart et al. (2008) 

Therapeutic Target 
Database 

http://db.idrblab.net/ttd/ Wang et al. (2019b) 

TCM http://tcm.cmu.edu.tw/ Chen (2011) 

ZINC https://zinc.docking.org/ Irwin et al. (2020) 

CTD http://ctdbase.org/ Davis et al. (2021) 

ChemSpider http://www.chemspider.com/ Pence and Williams (2010) 

T3DB http://www.t3db.ca/ Wishart et al. (2015) 

PubChem https://pubchem.ncbi.nlm.nih. 
gov/ 

Kim et al. (2021) 

Table 12.2 Available virtual library for target prediction 

Sl. 
No 

1 DisGenNET https://www.disgenet.org/ Piñero et al. (2019) 

2 Harmonizome https://maayanlab.cloud/ 
Harmonizome/ 

Rouillard et al. (2016) 

3 MolTarPred http://moltarpred.marseille. 
inserm.fr 

Peón et al. (2019) 

4 Open targets platform https://platform.opentargets.org/ Ochoa et al. (2021) 

5 PPB http://gdbtools.unibe.ch:8080/ 
PPB/ 

Awale and Reymond 
(2017) 

6 SuperPred https://prediction.charite.de/ Dunkel et al. (2008) 

7 SwissTargetPrediction http://www.swisstargetprediction. 
ch/ 

Gfeller et al. (2014) 

They are preferable than antibody drug conjugates because of their 
non-immunogenic nature, reduced molecular weight, and regulated synthesis, 
which make them particularly effective for penetrating cancer cells. The SMCs 
were developed using a concept that is comparable to that of antibody drug conju-
gates. Numerous products manufactured by SMC are now participating in clinical 
research and testing, one of which is 177Lu-DOTATATE, which is already in use in 
medical facilities. According to this point of view, the numerous SMC design

https://www.ebi.ac.uk/chembl/
https://www.ebi.ac.uk/chembl/
https://go.drugbank.com/
http://db.idrblab.net/ttd/
http://tcm.cmu.edu.tw/
https://zinc.docking.org/
http://ctdbase.org/
http://www.chemspider.com/
http://www.t3db.ca/
https://pubchem.ncbi.nlm.nih.gov/
https://pubchem.ncbi.nlm.nih.gov/
https://www.disgenet.org/
https://maayanlab.cloud/Harmonizome/
https://maayanlab.cloud/Harmonizome/
http://moltarpred.marseille.inserm.fr
http://moltarpred.marseille.inserm.fr
https://platform.opentargets.org/
http://gdbtools.unibe.ch:8080/PPB/
http://gdbtools.unibe.ch:8080/PPB/
https://prediction.charite.de/
http://www.swisstargetprediction.ch/
http://www.swisstargetprediction.ch/


components, which include therapeutic payloads, targeting ligands, linkers, spacers, 
and cleavable bridges, have attracted a considerable amount of attention. There is 
also discussion of the many different types of SMCs, the possible mechanisms of 
action and therapeutic uses of these SMCs, and a few more SMCs that are now 
undergoing clinical investigation against a variety of tumours (Patel et al. 2021). 
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Fig. 12.1 Comprehensive workflow for computer aided drug design process 

12.2.2 Anticancer Peptide Design 

Peptides were long seen as a fringe industry with dim future prospects. This was 
principally caused by these molecules’ inability to traverse the plasma membrane, 
physiological instability, limited or no oral absorption, and the critical functions that 
the amino acid chain plays in hormone signaling (Henninot et al. 2018). They can 
potentially replace natural agonists and can specifically target interactions between 
protein molecules, among their many other benefits. These drawbacks have been 
addressed using a variety of strategies, including the use of synthetic amino acids, 
framework modifications, and innovative formulations, leading to a notable rise in 
the manufacture of peptide drugs. It is preferable to use a structure-based approach 
while designing computational peptides.
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Structural protein-protein complexes are indeed the major causes of protein 
sequences for therapeutic peptide engineering. However, this sort of information is 
rarely accessible, and computational chemistry may thus play a crucial role in this. 
Initially, it is indeed essential to construct a precise marker of the ligand-protein 
complex, if feasible, or perhaps more biologically active chains of amino acids from 
arbitrary repositories or legitimate sources when even a basic model is inaccessible 
when conducting a computer-aided analysis to develop an amino acid chains the 
specificity and affinity for a specific target. Consolidated docking approaches are 
frequently used in drug discovery because peptides probe a broader conformational 
area than low molecular weight compounds. 

These, meanwhile, are unsuitable for this kind of study. Alternatively, where 
appropriate, contemporary docking methods in conjunction with experimental con-
straints may help in the identification of the appropriate structure (Salmaso et al. 
2017; Ciemny et al. 2018). Once a model of the complex is created, molecular 
dynamics simulations study predicted that such a technique could be used to help 
make alterations in peptide structure to increase affinity and specificity (Lammi et al. 
2019). 

The capacity of the peptide to bind BTLA was supported by ten-nanosecond 
simulations of MD, which initially backed this notion. The amino acid chain was 
found to be a highly effective inhibitor of interactions between protein components 
through experiments. A covalent link between BTLA and the protein may have 
formed instead of a molecule with the same structure as that shown in the X-ray 
experiments, however, as this influence is predominantly caused by the appearance 
of an accessible cysteine residue in the amino acid chain. 

12.2.3 QSAR Modeling 

One further ligand-based strategy, QSAR (Quantitative Structure Activity Relation-
ship), examines pharmacological biological activities by comparing their unique 
molecular descriptors (MDs) or fingerprints (FPs). With the evolution of ML 
algorithms, interaction descriptors can also be used to generate QSAR predictive 
model using python notebook (Jupyter notebook, google colab), R-Studio. Like its 
moniker indicates, it uses statistical techniques to establish a quantitative relation-
ship between the experimentally observed biological activity of a molecule and its 
physiochemical features. The resulting quantitative equation may be used to foretell 
the bioactivity of a custom-built molecular structure. Several tools are available 
online (Table 12.3) for building a robust QSAR model. 

Several machine learning and deep learning (DL) methods, such as Support 
Vector Machine (SVM), Random Forest (RF), Polynomial Regression (PR), Multi 
Linear Regression (MLR), and Artificial Neural Network (ANN), have been used in 
the process of developing QSAR models (Mendenhall and Meiler 2016). In addition 
to its use in drug discovery, QSAR has been put to use in a wide variety of other



URL References

areas of molecular design, including the prediction of novel molecule analogue 
activity, the optimization of lead, and the prediction of new structural leads. 
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Table 12.3 List of online both server and single application file used for QSAR modeling 

Sl. 
No 

Name of the 
tool 

1 QSAR-Co https://sites.google.com/view/qsar-co Ambure et al. (2019) 

2 Open3DQSAR http://open3dqsar.sourceforge.net/ Tosco and Balle (2011) 

3 SYBYL-X https://chemweb.ir/downloads/sybyl-x-
suite/ 

Jing et al. (2014) 

4 QSAR ToolBox https://qsartoolbox.org/ Dimitrov et al. (2016) 

5 McQSAR http://users.abo.fi/mivainio/mcqsar/index. 
php 

Vainio and Johnson 
(2005) 

In the traditional 2D-QSAR methodologies, the bioactivity of molecule is linked 
to their physiochemical characteristics, such as their steric, electronic, and hydro-
phobic properties, and the statistical equations that describe the relationships 
between these factors are used to describe the connections (Hansch and Fujita 
1964). Calculations of the force fields are the foundation of more sophisticated 
3D-QSAR methods, such as comparative molecular field analysis (Cramer et al. 
1988) and molecular similarity indexes in a comparative analysis (Klebe et al. 1994). 
Both of these approaches were published in 1988 and 1994, respectively. The data 
on the structures of the compounds is required, and the derived predictive models 
must be represented as three-dimensional contour maps in order to make visualiza-
tion and understanding easier. 

12.2.4 Pharmacophore Mapping 

One of the most crucial methods for the efficient virtual screening of databases 
containing millions of chemicals is 3D pharmacophore-based methodologies. Vir-
tual screening with such three-dimensional geometric models remains a substantial 
computational and conceptual problem, despite the fact that their effectiveness is 
mostly reliant on intuitive interpretation and invention. Most existing systems 
prioritize rapid screening speed above precision. In this overview, we will compare 
and contrast the approaches used by several existing pharmacophore mapping 
(PM) systems to do 3D pharmacophore searches. The price of creating new medi-
cines for medical use is high. To begin, compounds in current chemical libraries are 
screened to see whether they are active against a target. This calls for a substantial 
investment of time and energy. Consequently, it is now normal practice to conduct a 
virtual screening, where computers are used to anticipate the activity of very huge 
libraries of molecules, in order to determine which ones have the greatest promise for 
subsequent laboratory studies. The expense of scientific investigations in the fields 
of medicine and biology may be greatly reduced by using simulation software rather

https://sites.google.com/view/qsar-co
http://open3dqsar.sourceforge.net/
https://chemweb.ir/downloads/sybyl-x-suite/
https://chemweb.ir/downloads/sybyl-x-suite/
https://qsartoolbox.org/
http://users.abo.fi/mivainio/mcqsar/index.php
http://users.abo.fi/mivainio/mcqsar/index.php


than actual experiments. In this research, we discuss methods that may rapidly search 
large databases for compounds that are structurally similar to a given sample 
compound (Brown et al. 2021). 
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The field of pharmacophore mapping (PM), which is widely acknowledged to be 
one of the most valuable tools, has seen a substantial amount of development 
throughout the course of history. These advancements may be attributed to the 
efforts of several researchers. This factor has been taken into consideration at a 
number of different junctures during the process of producing new pharmaceuticals 
over the course of the last several years. The modeling of pharmacophores has 
previously been accomplished by using a wide variety of structure-based techniques. 
It has been shown that the use of PM is advantageous in a number of contexts, 
including virtual screening, de novo design, and the maximization of lead potential 
(Yang 2010). The process of finding the protein’s active-binding pocket and 
establishing the critical receptor-ligand interactions may be made a great deal 
simpler by using a technique that is known as the target-ligand complex approach. 
Additional examples are “Ligandscout” (Wolber et al. 2007), “pocket v.2” (Chen 
and Lai 2006), and “GBPM” (Piotrowska et al. 2018). It is very important to keep in 
mind that ligands cannot be used in contexts in which the identities of the ligands are 
unknown. The protein that was used in Discovery Studio (Lu et al. 2018), but did not 
apply a strategy that was based on ligands, gives a real-world example of a method 
that does not rely on ligands or interactions between receptors and ligands. This 
method was described as “ligand-independent.” This technique does not use any 
ligand-based approaches in any way. Characterizing the pharmacological properties 
of the interactions that take place inside the binding site is the job of the piece of 
software known as LUDI (Yuriev et al. 2015). The produced interaction maps often 
include a number of unprioritized interactive features, despite the fact that using this 
rigorous SBP approach to characterize the overall interaction potential of a binding 
pocket does provide a few advantages. 

12.2.5 Simulation of Molecular Docking and Molecular 
Dynamics of Small Molecules 

By analyzing and predicting the sequences and contact interactions between ligands 
and receptor proteins, molecular docking has become a basic structure-based tool in 
rational drug design (Ferreira et al. 2015). Rigid molecular docking (RMD) and 
flexible molecular docking (FMD) are two types of docking studies that are defined 
by the flexibility or lack thereof of the ligands used in the computational technique 
(Halperin et al. 2002; Dias and de Azevedo 2008). The rigid docking technique, also 
known as a critical approach, emphasizes rigidity and the lack of flexibility in the 
induced-fit theory (Salmaso and Moro 2018) in favor of a focus on fixed geometry 
and structural and chemical reciprocity between ligands and targeted proteins. Rigid 
docking is widely used in the process of drug discovery because of its speed and



URL References

efficiency, and it is implemented by a wide variety of tiny molecular databases. Such 
data, however, would be more specific and nuanced under a flexible docking 
strategy. List of various molecular docking tools are shown Table 12.4. 
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Table 12.4 List of molecular docking software 

Sl. 
No. 

Name if the 
tool 

1 GOLD https://www.ccdc.cam.ac.uk/solutions/csd-dis 
covery/components/gold/ 

Joy et al. (2006) 

2 Glide https://www.schrodinger.com/products/glide Friesner et al. (2004) 

3 FlexX docking https://www.biosolveit.de/SeeSAR/#FlexX Kramer et al. (1999) 

4 UCSF DOCK https://dock.compbio.ucsf.edu/ Kuntz et al. (1982) 

5 AutoDock 
Vina 

https://vina.scripps.edu/ Trott and Olson 
(2010) 

6 MGL tools https://ccsb.scripps.edu/mgltools/ Morris et al. (2009) 

7 HADDOCK https://wenmr.science.uu.nl/haddock2.4/ Dominguez et al. 
(2003) 

8 Surflex https://www.biopharmics.com/ Jain (2007) 

9 pyDockWEB https://life.bsc.es/pid/pydockweb/ Cheng et al. (2007) 

10 GEMDOCK http://gemdock.life.nctu.edu.tw/dock/ Yang and Chen 
(2004) 

11 PATCHDOCK https://bioinfo3d.cs.tau.ac.il/PatchDock/ Schneidman-
Duhovny et al. (2005) 

12 ClusPro https://cluspro.bu.edu/publications.php Kozakov et al. (2017) 

The molecular docking process may be broken down into three distinct steps 
(Fig. 12.2). Small molecule and target protein structures must be established ini-
tially. The second use is predicting ligand binding site conformations, orientations, 
and positional spaces. Conformational search algorithms achieve this aim by com-
bining the methods of systematic and stochastic searching to anticipate the confor-
mations of binary compounds. Exhaustive search, fragmentation, and 
conformational ensemble are the three main categories of systematic search tech-
niques. However, a number of other stochastic techniques exist, such as (1) the use 
of a Monte Carlo (MC) algorithm, (2) the use of a tabu search strategy, (3) the use of 
an evolutionary algorithm, and (4) the use of a swarm optimization (SO) algorithm. 
Finally, the scoring function and the potential binding free energy are evaluated by 
these algorithms to determine which molecules have the greatest binding potential to 
their targets during molecular docking. Among the many possible scoring functions 
are the function for consensus scoring, empirical scoring functions, scoring functions 
based on prior knowledge, and scoring functions based on a theoretical force field 
(Cui et al. 2020; Kong et al. 2022). Currently, with the evolution of hardware 
accelerated molecular docking software such as AutoDock-GPU, docking process 
can be done using Google Colab which provides GPU-enabled local host runtime 
(Solis-Vasquez et al. 2022).

https://www.ccdc.cam.ac.uk/solutions/csd-discovery/components/gold/
https://www.ccdc.cam.ac.uk/solutions/csd-discovery/components/gold/
https://www.schrodinger.com/products/glide
https://www.biosolveit.de/SeeSAR/#FlexX
https://dock.compbio.ucsf.edu/
https://vina.scripps.edu/
https://ccsb.scripps.edu/mgltools/
https://wenmr.science.uu.nl/haddock2.4/
https://www.biopharmics.com/
https://life.bsc.es/pid/pydockweb/
http://gemdock.life.nctu.edu.tw/dock/
https://bioinfo3d.cs.tau.ac.il/PatchDock/
https://cluspro.bu.edu/publications.php
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Fig. 12.2 Stepwise 
workflow for molecular 
docking process 

Molecular Dynamic Simulation 
However, because of the complicated atomic interactions between the target protein 
and ligand molecule, predicting the movements of active binding sites and ligands is 
computationally expensive. This shortcoming was initially addressed with the 
advent of molecular dynamics (MD) simulation in the 1970s. Simulation of atomic 
movements is achieved by solving Newtonian motion, which also helps to simplify 
the calculations required (McCammon et al. 1977; Hansson et al. 2002). The 
capacity to virtual screening and get insight into the structural characteristics of 
proteins and the stability of protein-ligand complexes is a major benefit of M  
simulations for the drug development process. The discovery of new binding sites, 
such as allosteric sites, aids in the development of more potent pharmaceutical drugs 
(Grant et al. 2011; Nair et al. 2012). In computational drug development, MD 
simulations are often used to verify the binding stability of the best pose of the 
complexes. For the sake of brevity, we will assume that AMBER or CharmGUI 
(Pearlman et al. 1995) is used to construct protein and ligand topologies using



default values. AMBER (Pearlman et al. 1995), CHARMM (Jo et al. 2008), and 
GROMOS (Christen et al. 2005) are all simulation tools that use force fields to model 
the dynamics (atomic movement) of the complex. In order to evaluate complex 
stability, scientists often look at the root mean square fluctuation, the RMSD, the 
radius of gyration, and the presence of hydrogen bonding structures. Molecular 
mechanics/Poisson-Boltzmann surface area (MM/PBSA) and molecular mechan-
ics/generalized born surface area (MM/GBSA) are two methods for calculating the 
binding free energy of ligand-protein complexes that are both more accurate than 
most molecular docking scoring functions and require less computational effort 
(Rastelli et al. 2009; Wang et al. 2019a, b). These strategies may enhance molecular 
docking outcomes because they effectively duplicate experimental data. The 
MMPBSA.py module in the AMBER package may be used to compute the binding 
free energy, which incorporates numerous electrostatic energies such as the van der 
Waals energy, the internal energy accumulated from molecular mechanics, and the 
polar contribution toward solvation energy. A more precise molecular force field is 
needed to mimic the motion of atoms in target proteins and ligands in order to further 
enhance MD simulations. The potential increase in processing complexity, however, 
prevents simulations lasting more than a microsecond (Chodera et al. 2011). 
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12.2.6 Discovery of New Binding Sites Aided by Molecular 
Dynamics 

Understanding the numerous protein–ligand interrelationships at play in essential 
biological processes requires extensive knowledge. It is necessary to identify and 
characterize LBP in order to get an understanding of the mechanism of action of both 
endogenous ligands and synthesized therapeutic compounds. Targeting G-protein 
coupled receptor (GPCR) is common practice when it comes to the creation of novel 
medications (Kinney et al. 2005). A recent research demonstrated that ligands are 
attached to multiple allosteric sites other than the intended binding sites, in addition 
to orthosteric points (DeVree et al. 2016). This discovery was made possible by the 
fact that orthosteric points are involved. In a recent review, primary computational 
approaches for predicting functional regions such as 3D ligand sites and others were 
described. These methods include ligand site prediction and protein structure pre-
diction. Nevertheless, these reporting methods usually provide a large number of 
possible ligand binding sites, which makes it difficult for the user to evaluate which 
active pocket of the structure is appropriate for the binding of a chemical or 
medicine. In recent years, methods based on molecular dynamics (MD) have been 
utilized to get around this constraint. For example, supervised MD is an excellent 
approach for ligand-binding site identification as well as accurate sampling 
(Sabbadin and Moro 2014; Cuzzolin et al. 2016). The MD simulations uncovered 
an additional sodium ion in the vicinity of the orthosteric binding site (Chan et al. 
2020). This information might be put to use to discover allosteric sites in protein



kinases, Ras proteins, and Staphylococcus aureus sortase, among other enzymes 
(Tong and Seeliger 2015). 
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12.3 Recent Advances in Computational Approaches 
for Anticancer Drug Discovery 

12.3.1 Use of Machine Learning (ML) Algorithms 

Each and every machine learning method helps with predictive modeling by 
uncovering previously unseen connections and patterns in data. We may classify 
methods used in machine learning as either reinforcement, supervised, unsupervised, 
or semi-supervised. The primary difference between these strategies is in the amount 
of data used to train the model. In the fight against cancer, chemists have made 
substantial use of machine learning, particularly supervised learning (Alberi et al. 
2019). In order to train the input data and make approximations about the output, 
supervised machine learning algorithms require target labels. Conventional super-
vised learning techniques that employ input space transformation to create a new 
feature space include artificial neural networks (ANNs) and kernel approaches 
(Sheng et al. 2015; Rupp et al. 2018). For ANNs, feature modification through 
many input layers is a crucial component. These approaches, on the other hand, are 
useful for spotting nonlinear connections in the data. A kernel function is used in 
kernel-based approaches to conduct nonlinear data changes that may then be used 
with linear algorithms. Both ANNs and DL algorithms are used extensively in the 
biomedical and pharmaceutical industries. Microarray and gene expression data are 
utilized to train machine learning algorithms used to discover new cancer treatments 
and identify biomarkers. Genetic data-driven research was bolstered by the realiza-
tion that genes have a role in a variety of cancers. Cancers of different sorts are 
notoriously difficult to diagnose and cure because of their complex microenviron-
ment. When treated with the same medicine, people with the same kind of tumor 
might have widely variable results (Sheng et al. 2015). There has been an increase in 
the popularity of deep learning algorithms, despite the fact that standard machine 
learning methods are also extremely useful for creating biological computational 
models. The widespread availability of biological and pharmacogenomic datasets 
(Barretina et al. 2012; Yang et al. 2012) and high computing devices for parallel 
processing, such as GPUs, is largely responsible for this dramatic shift. 

12.3.2 Drug Repurposing (DR) for Anticancer Drug 
Discovery 

Drug repurposing is a method that consists of discovering new indications for 
previously recognized marketed medications that are used in a variety of therapeutic



contexts or extensively defined compounds, despite the fact that these treatments 
may have failed in the past. Recently, it has become as an alternative method for 
quick discovery of novel medicines for a wide variety of uncommon and difficult 
illnesses that currently do not have any medication therapies that are shown to be 
successful. In recent years, the success rate of the pharmaceuticals repurposing 
strategy has been responsible for roughly 30% of the newly authorized medications 
and vaccines by the FDA. In this review, the state of the repurposing method for 
different illnesses, such as skin disorders, infectious diseases, inflammatory diseases, 
cancer, and neurodegenerative diseases, is the primary emphasis. There have been 
efforts made to offer the structural characteristics of medications as well as their 
modes of activities. 
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Here are structures (Fig. 12.3) and summary of some drugs which have already 
been repurposed for cancer therapy (Pillaiyar et al. 2020):

• Acetylsalicylic acid, better known by its chemical name aspirin (Fig. 12.3(i)), is a 
kind of nonsteroidal anti-inflammatory medication (NSAID) used for pain relief, 
fever reduction, and prevention of cardiovascular disease. It was initially reported 
by Gasic and colleagues that aspirin could be useful in treating cancer. 
Antiplatelet activity of 20 was shown to be related with a 50% decrease in lung 
metastasis in tumor-bearing animals (Elwood et al. 2018). A recent research 
showed that those who took medication (Fig. 12.3(i)) (75 mg) daily saw a strong 
protective benefit against developing cancers of the digestive tract, esophagus, 
pancreas, brain, prostate, and lung. Aspirin’s mechanism of action is said to 
include modulating a large number of molecules that are involved in carcinogen-
esis (Elwood et al. 2009). When activity of cyclooxygenase enzyme is inhibited, 
it induces cancer via the manufacture of prostaglandins (PGE2) (Simmons et al. 
2004) and has been linked to drug 20’s anticancer potential in preclinical inves-
tigations. As an added bonus, medication (Fig. 12.3(i)) was shown to block the 
activation of the apoptosis-related transcription factor NF-kB (Takada et al. 
2004). Compound (i) was shown to decrease proliferations and accelerate death 
of cancer cells, as well as delay and overcome acquired resistance to targeted 
treatment, according to a research published by Li Ling and team. Increased 
cancer and increased nuclear factor kappa-light-chain-enhancer of activated B 
cell (NF-kB) signaling in tumors may account for aspirin’s ability to inhibit 
proliferation, apoptosis, and cancer stemness in resistant tumors to a greater 
extent than in parental, sensitive cells. However, at the same dosages employed 
on lung and breast cancer cells, aspirin had no impact on the growth of normal 
lung and mammary epithelial cells. Consequently, aspirin may be considered for 
use in chemoradiation treatments for lung and breast cancer (Yu et al. 2019). 
Despite strong evidence linking medication 20’s anticancer properties to benefits 
such as reduced gastrointestinal and renal toxicity, the medicine’s overall useful-
ness remains limited. Accordingly, it is not advised that the general populace all 
take compound (i). Nonetheless, numerous studies found that those aged 40–85 
would benefit more from adopting 20 as a main cancer prevention measure. 
Therefore, according to the US Preventive Services Task Force (USPSTF),
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Fig. 12.3 Structures of few drugs that are repurposed as anticancer drugs

people over the age of 40 who have an elevated risk of cardiovascular disease and 
colorectal cancer should consume 20 mg of folic acid daily.

• The nonsteroidal anti-inflammatory drug family includes celecoxib (Fig. 12.3 
(ii)), which has been used to treat rheumatoid arthritis and osteoarthritis pain and 
inflammation. Celecoxib is a reversible inhibitor of cyclooxygenase-2 (COX-2), a
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recognized inflammatory cancer target. It was authorized by the FDA in 1999. 
Due to its COX-2 inhibitory effect, medication 3(ii)’s anticancer activities have 
been widely examined, and it has been proven to have chemopreventive proper-
ties against several cancer types. In addition to the cyclooxygenase-2 (COX-2) 
family, celecoxib inhibits the β-catenin, nuclear factor κB (NF-κB), AKT8, and 
B-cell lymphoma (Bcl-2) families (Jendrossek 2013). Drug 3(ii) (400 mg) was 
shown to dramatically lower the incidence of colorectal adenomas in patients with 
familial adenomatous polyposis (FAP). This chemical has been shown to be 
effective in reducing polyps in the colon and rectal areas in persons with familial 
adenomatous polyposis (Lynch et al. 2016). On the other hand, it has certain 
negative side effects, such as on the gut, kidneys, and heart.

• There is a nonsteroidal anti-inflammatory drug (NSAID) called ibuprofen 
(Fig. 12.3(iii)). Ibuprofen inhibits COX, an enzyme necessary for the production 
of prostaglandin, at the molecular level. However, it does not discriminate 
between COX isoforms. Both the United Kingdom (1969) and the United States 
(1971) promoted the medicine for the treatment of rheumatoid arthritis. Drug’s 
anticancer potential has been studied in a wide range of cancer cell lines. Several 
studies have shown that ibuprofen may reduce the proliferation of prostate cancer 
cells (Costea et al. 2019). Drug 3(iii) displayed anticancer effects in gastric 
adenocarcinoma cells, and these effects were mediated by its ability to inhibit 
angiogenesis, induce apoptosis, and slow cell proliferation. Drug 3(iii) causes cell 
death in melanoma cell lines that have spread throughout the body. Ibuprofen has 
been shown to reduce heat shock protein 70 s (Hsp70s) levels in lung cancer cells, 
which in turn increases their susceptibility to the chemotherapeutic agent cis-
platin. Hsp70s have been linked to apoptosis resistance (Endo et al. 2014) and 
played a crucial role in the cell’s protein folding mechanism. Therefore, because 
ibuprofen inhibits Hsp70s, it makes cisplatin more effective in inducing 
apoptosis.

• Immunomodulatory medication thalidomide (Fig. 12.3(iv)) was first created as a 
sedative-hypnotic to alleviate morning sickness in pregnant women. Since it 
caused birth defects, however, it was taken off the market. The drug’s anti-
angiogenic properties were tested to see whether it may be utilized to treat 
patients with refractory myeloma. The FDA has given the drug 3(iv) the go 
light to treat multiple myeloma, after positive clinical trials. Acute myeloid 
leukemia, myelodysplasia, and myelodysplastic syndrome were only a few of 
the cancers that drug 3(iv) proved effective against (Hiramatsu et al. 2018). The 
transcription factors Ikaros and Aiolos are rapidly ubiquitinated and degraded by 
the proteasomal pathway after thalidomide binds to cereblon and forms an E3 
ubiquitin ligase complex (Stewart 2014).

• To manage type 2 diabetes, many people turn to metformin (Fig. 12.3(v)), a 
medicine that may be taken orally. Metformin works by stimulating the enzyme 
adenosine monophosphate-induced protein kinase, which plays a crucial role in 
cellular metabolism. Cancer cell survival is affected by the gene rapamycin 
(mTOR), which is adversely controlled by AMPK. Additionally, metformin 
may lower mTOR signaling by blocking Rag-mediated mTOR activation
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(Kalender et al. 2010). In addition to the higher risk of other cancers, women 
patients with diabetes have >20% chance of acquiring breast cancer. Drug 3 
(v) has been linked in many studies to anticancer effects. Patients with diabetes 
had a lower chance of developing gastroesophageal cancer when taking 3(v) at a 
daily dosage of 250–500 mg (Yu et al. 2019). Taking drug 3(v) was linked to a 
lower risk of death from any cause among diabetic patients, according to a meta-
analysis and a number of studies (Noto et al. 2012). According to a recent meta-
analysis comparing many diabetes medications, people using drug 3(v) had a 
14% lower risk of cancer and a 30% lower death rate. However, there was a 
correlation between insulin usage and an elevated risk of cancer and death.

• The enzyme dihydrofolate reductase (DHFR) is essential in the production of 
DNA, RNA, thymidylates, and proteins, and methotrexate (Fig. 12.3(vi)) acts as a 
competitive inhibitor of DHFR. Drug’s anti-leukemia effects may be attributed to 
its ability to suppress hydrofolate action. In 1988, the Food and Drug Adminis-
tration (FDA) authorized this chemical for the treatment of osteosarcoma, breast 
cancer, acute lymphoblastic leukemia, and Hodgkin lymphoma. Methotrexate’s 
anticancer effect may be attributable, at least in part, to the fact that it blocks 
inflammatory pathways, as has been shown by several studies. For instance, 
methotrexate has been shown to inhibit NF-kB in cancer cells by causing the 
release of adenosine (Tabas and Glass 2013).

• The antifungal drug rapamycin (Fig. 12.3(vii)), now more well-known by its 
generic name sirolimus. However, drug 3(vii) was taken off the market because of 
its strong anticancer and immunosuppressive properties. Inhibiting mTOR, a 
protein that is significantly elevated in many tumor cells, is the drug’s mechanism 
of action for suppressing T cells and B cells by making them less sensitive to 
IL-2. Allograft rejection may be avoided using rapamycin, which the FDA 
authorized for this purpose in 1999. Since then, this compound’s potential 
cancer-fighting effects have been studied. Patients with acute myeloid leukemia 
have had less colony formation of leukemia progenitor cells when drug 3(vii) was 
administered (Alvarado et al. 2011). Moreover, drug 3(vii) demonstrated efficacy 
in patients with imatinib-resistant chronic myelogenous leukemia by reducing 
VEGF mRNA levels in leukemia cells while causing minimal adverse effects.

• The acetic acid derivative diclofenac (Fig. 12.3(viii)) belongs to the nonsteroidal 
anti-inflammatory drug (NSAID) family and has been used to treat pain and 
inflammatory illnesses including gout. Some researchers hypothesized that by 
blocking both COX-1 and COX-2, it would reduce prostaglandin synthesis. In 
1988, drug 3(viii) was first prescribed in the United States. Several forms of 
cancer, including hepatoma, colon, fibrosarcoma, pancreatic, and ovarian, have 
been shown to respond to drug 3(viii)’s anticancer properties. The development 
rate and degree of vascularization of fibrosarcoma and hepatoma models in rats 
were dramatically decreased by the drug 3(viii) (Pantziarka et al. 2016). Human 
colon cancer cell lines were shown to benefit from the antiproliferative effects of 
the drug 3(viii). Drug 3(viii)’s tumor-inhibiting efficacy was also shown in a 
model of ovarian cancer (Valle et al. 2013). Diclofenac causes increased reactive 
oxygen species and so triggers apoptosis by blocking the antioxidant superoxide
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dismutase 2 (SOD 2) (Brinkhuizen et al. 2016). Diclofenac was shown to be 
extremely successful in tumor regression with 64% in a recent Phase II clinical 
trial research for the treatment of basal cell carcinoma.

• Naproxen (Fig. 12.3(ix)), a nonsteroidal anti-inflammatory drug (NSAID) that 
belongs to the propionic acid family and is used to treat pain, inflammation, fever, 
and conditions including rheumatoid arthritis. This medication blocks prostaglan-
din formation by nonselectively inhibiting cyclooxygenase-1 and -2 enzymes. 
Drug 3(ix) was first commercialized in the United States for therapeutic use in 
1976. Inhibiting cell growth, inducing apoptosis, and suppressing metastasis in 
several kinds of cancer cells have led to drug 3(ix)’s recent repurposing for its 
anticancer activities. Drug 3(ix) inhibits PI3K and promotes cell-cycle arrest and 
death in human urinary bladder cancer cell lines (Kim et al. 2014). When given 
together, atorvastatin and naproxen dramatically reduced colonic adenocarci-
nomas in vivo in rats (Suh et al. 2011). For recurrent prostate cancer, it has 
been studied in a phase II clinical study in conjunction with calcitriol. The 
findings demonstrated that the combination was safe and well-accepted by the 
patients. Drugs belonging to the statin-family reduce cholesterol levels by 
blocking the enzyme 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) 
reductase. Statins are routinely recommended to people with a high risk of 
cardiovascular disease in order to decrease cholesterol production. In addition, 
statins block the production of the compounds mevalonate, farnesyl, and geranyl 
pyrophosphate, which are all used in cholesterol synthesis. Statins are attractive 
prospects as cancer therapies because of their ability to inhibit the activity of these 
molecules, which are essential for cell cycle progression and cell proliferation. 
Simvastatin (Fig. 12.3(x)), along with other natural statins such as mevastatin 
(Fig. 12.3(xi)), lovastatin (Fig. 12.3(xii)), and pravastatin (Fig. 12.3(xiii)), 
showed TNF-induced apoptosis in chronic myeloid leukemia cells through the 
downregulation of NF-kB-mediated antiapoptotic gene products (Aggarwal et al. 
2019). Statins have been studied for their potential anticancer effects, and these 
effects have been confirmed in animal tests (Li et al. 2019b). Multiple observa-
tional studies and a meta-analysis confirm a link between statin use and a 
decreased risk of cancer in people. Patients using statins had a lower chance of 
developing gastric cancer (Broughton et al. 2012), esophageal cancer (Ibáñez-
Sanz et al. 2019), and hepatocarcinoma (Sehdev et al. 2014), according to meta-
analyses. Drug 3(x) substantially decreased the incidence of colorectal cancer in a 
case-control research when administered at a dose of 40 mg/day for 2–5 years 
(Broughton et al. 2012).

• Valproic acid, also known as depakine (Fig. 12.3(xiv)), is a short-chain free fatty 
acid used in first-line treatment of epilepsy, bipolar disorder, and migraine 
headaches. Blocking voltage-gated sodium channels and elevating gamma 
aminobutyric acid (GABA) levels are thought to be responsible for its anticon-
vulsant effect. Drug 3(xiv) was first demonstrated to inhibit histone deacetylase 
(HDAC) (Rocha et al. 2019), which paved the way for its validation as an 
anticancer agent in leukemia cells. Researchers have discovered that depakine 
may inhibit cytokine production and alter the dynamics of the inflammatory
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signaling cascade. Human glioma and leukemia cells were treated with drug 3 
(xiv), and the results showed a reduction in IL-6 and TNF-a production 
(Soria-Castro et al. 2019). By downregulating NF-kB activity, drug 3(xiv) 
blocked IL-6 production in prostate cancer cells (Martin et al. 2015).

• Recently, it was reported (Abdullah et al. 2019) that pitavastatin (Fig. 12.3(xv)) 
may be useful in the treatment of ovarian cancer, but only if geranylgeraniol 
intake in the diet is limited. Myopathy is the most prevalent side effect of statins, 
yet rather large dosages are needed to trigger apoptosis in cancer cells. Since this 
is problematic, it is important to find alternatives to pitavastatin that might lessen 
the drug’s side effects. An approach based on re-categorizing existing drugs was 
used to find promising leads. Prednisolone (Fig. 12.3(xvi)) was the most signif-
icant result when a library of 100 off-patent were screened (Astual paper) for 
synergistic action with pitavastatin. Several experiments evaluating proliferation, 
survival, or apoptosis in different ovarian cancer cell lines found that predniso-
lone enhanced the efficacy of pitavastatin. Pitavastatin suppressed the develop-
ment of the examined cell lines with an IC50 of 1.1 to 4.8 mM. So, testing the 
combination of prednisolone and pitavastatin in patients with ovarian cancer may 
be necessary. Clofazimine (Fig. 12.3(xvii)), an anti-leprosy medication, has 
recently been shown to be effective against triple-negative breast cancer 
(TNBC) (Ahmed et al. 2019), thanks to a large body of preclinical data compiled 
by Ahmed and team. The canonical Wnt signaling pathway is selectively 
inhibited by clofazimine in an in vitro panel of TNBC cells. In HEK293T and 
BT-20 cells, for instance, the IC50 was 6 mM and 7 mM. Clofazimine inhibits the 
Wnt pathway in tumors in vivo, and its efficacy in suppressing tumor develop-
ment has been shown in many mice xenograft models of TNBC. Clofazimine’s 
addition to doxorubicin has been shown to have a synergistic impact on tumor 
growth reduction without causing any unwanted side effects. Clofazimine’s new 
molecular method of action, together with its good and well-characterized phar-
macokinetics profile, makes it an attractive candidate for the repositioning clinical 
trials. The incurable hematological malignancy known as multiple myeloma 
(MM, also known as plasma cell myeloma, is a cancer of plasma cells) is caused 
by a number of mutations and epigenetic changes.

• Hydroxychloroquine (Fig. 12.3(xviii)), a chloroquine derivative and anti-malarial 
drug also known as an autophagy inhibitor, was recently shown to have antitumor 
potential, as reported by Raffaella and his research group. New treatment tech-
niques are required to increase survival rates for patients with acute myeloid 
leukemia (AML) due to the lack of considerable progress in the field over the last 
few decades (Ferrara and Schiffer 2013).

• Bromocriptine (Fig. 12.3(xix)), a dopamine agonist derived from ergoline, is now 
being utilized to treat diabetes mellitus (Murteira et al. 2013). Bromocriptine has 
been found to be a powerful anticancer medication that primarily targets leukemia 
stem cells according to a repurposing technique conducted by Lara-Castillo and 
coworkers (Lara-Castillo et al. 2016). Myeloid differentiation was induced by 
treatment with drug 3(xix), and the apoptotic program was activated, resulting in 
a decrease in the viability of AML cells. Additionally, the percentage of primitive
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AML cells enriched in LSCs was more responsive to bromocriptine. Indeed, 
bromocriptine inhibited the ability of AML cells to form clones. Interestingly, 
normal blood cells and hematopoietic stem/progenitor cells show almost little 
change. 

12.3.3 Pseudoreceptor Modeling 

The SB-CADD and LB-CADD modeling approaches may be combined in 
pseudoreceptor models by employing surrogate three-dimensional receptor struc-
tures. These architectures change the form and volume of the binding region, as well 
as the essential interaction parameters between the ligand and the receptor. In order 
to guarantee correct binding, it is necessary to do research into both aspects of the 
interaction between the receptor and the ligand. Experimentation, in the form of 
things like mutation studies, has to be done in order to effectively include the 
bioactive conformation of these medications into the models. Tanrikulu’s review 
(Tanrikulu and Schneider 2008; Wilson and Lill 2011) discusses a broad variety of 
methodologies, such as those that are based on partitions, grids, peptides, 
isosurfaces, atomic levels, fragment levels, and more. A significant number of 
computer studies relating to cancer have incorporated pseudoreceptor modeling. 
For illustration purposes, Rodl and coworkers developed a model of a 
5-lipoxygenase (5-LO) pseudoreceptor by using reference structures that were 
obtained from molecules that were discovered by use similarity search algorithms. 
Experiments using VS showed promising inhibitors that did not have an effect on 
cell viability, and these compounds have the potential to serve as the basis for 
additional work to optimize lead compounds. This allowed for the binding interac-
tion pattern to be established (Pei et al. 2001; Peng et al. 2003; Rödl et al. 2011; Lee 
et al. 2012). It is also important to keep in mind that pseudoreceptors may not always 
have a binding pocket that is an exact match for the anticipated receptor. This is 
something that must be taken into consideration. Because this framework is built on 
a collection of reference molecules, it is probable that it will favor compounds that 
have the same structure as other molecules (Basith et al. 2018). 

12.3.4 Proteochemometric Modeling 

Lapinsh and coworkers used the word “proteochemometrics” to describe the meth-
odology they had recently established for analyzing data on interactions between 
receptors and ligands. Chimeric ligands and receptors have been studied for their 
binding characteristics (Lapinsh et al. 2001). This capability, in contrast to 
portraying the key linkages between a single ligand and a single receptor, may be 
utilized concurrently to depict the interactive relation of a number of ligands with a 
number of proteins. It is useful for explaining the interplay between receptors and



their ligands. As a result, this method may be used to infer relationships between 
related QSAR datasets. In addition, the created proteochemometric modeling 
may be used to other related series (van Westen et al. 2011). For example, Wu 
and coworkers’ used proteochemometric modeling to screen selective histone 
deacetylase inhibitors as a prototypical example for the use of this approach in the 
search for cancer medicines. The inhibitory effects of each HDAC inhibitor could be 
correctly predicted using the fit and robust model used for design. The isoform of the 
drug might also be assessed, which can get us to the identification of leads with fewer 
negative side effects (Wu et al. 2012). Recent research has connected COX-2 to 
colorectal cancer, suggesting its inhibition as a strategy for developing anticancer 
drugs (Eberhart et al. 1994; Wang and DuBois 2010; Xu et al. 2014). 
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Case Study
• In the work that Wu and colleagues published in 2012 (Wu et al. 2012), they 

made use of proteochemometric modeling to test a large number of chemicals to 
see whether or not they were able to selectively block histone deacetylase 
(HDAC). During the course of that investigation, multiplication cross-terms 
were constructed.

• During the course of that study, a total of 18 different proteochemometric models 
were developed to make predictions about protein-protein interactions using the 
data from the training set. All of the models exhibited goodness-of-fits (R2 ) that 
were more than 0.9619 and cross-validation coefficients (Q2 

cv) that ranged from 
0.573 to 0.7162. The model that was created utilizing P1 and GD had the best 
predictive performance (Q2 

cv = 0.7162 and Q2 
test = 0.7542), respectively. The 

ensuing study was conducted in a manner that was consistent with the P1-GD 
model.

• The HDACs were characterized in this study by employing three different types 
of protein descriptors: the sequence similarity descriptor (P0), the structural 
similarity descriptor (P1), and the geometry descriptor (P2). The sequence iden-
tities of HDACs are used as the basis for the sequence similarity descriptor, while 
the structure similarity descriptor and the geometry descriptor use HDACs’ three-
dimensional structures as the basis for their definitions. Proteins are characterized 
by descriptors that are distinct from those used to describe ligands because 
proteins have more intricate molecular structures.

• Across the board, the predictive performance of the models that were based on the 
geometry descriptor was the worst. This was determined by using the Q2 

test. The 
General Descriptor (GD) and the Drug-Like Index (DLI) are both examples of 
typical ligand descriptors that were used here. These are similar to the descriptors 
used for proteins. According to the findings of our paired t-test, there is not a 
statistically significant difference between the Q2 values predicted by models 
constructed using GD and DLI and shown by a p-value that is more than 0.1. Both 
the ligand’s physical characteristics and its topological indices are taken into 
consideration while describing it. In our dataset, the predictive ability of these two 
ligand descriptors did not vary in a way that was statistically significant from one 
another.
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• Their models made use of a multiplied cross-term and revealed the ineffective-
ness of this method non-terms of boosting the PCM models’ ability to predict 
outcomes. Models that included cross-terms performed worse on the Q2 

test in 
every category than models that did not include them.

• During the course of that study, a total of 18 different proteochemometric models 
were developed by making use of the training data in order to make predictions 
about protein-protein interactions. All of the models exhibited goodness-of-fits 
(R2 ) that were more than 0.9619 and cross-validation coefficients (Q2 

cv) that 
ranged from 0.573 to 0.7162. The model that was created utilizing P1 and GD 
had the best predictive performance (Q2 

cv = 0.7162 and Q2 
test = 0.7542), respec-

tively. The inquiry that followed was conducted in a manner consistent with the 
P1-GD paradigm. 

Conclusion
• There have been an increasing number of discoveries of HDAC inhibitors; 

nonetheless, there is still a scarcity of inhibitors that are selective for a particular 
class or isoform. In light of this, it was very important to locate particular 
inhibitors that have the potential to be used as medications for the treatment of 
tumors that have a low level of toxicity. They used proteochemometric models in 
order to analyze the inhibitory impact that 1275 different compounds had on 
5 different HDAC isoforms.

• The P1-GD model beats the others because of its exceptional predictive strength 
(Q2 

test = 0.7542), as well as its strong ability to distinguish selective HDAC 
inhibitors from pan inhibitors. Proteochemometric modeling may thus be used to 
predict how inhibitors will interact with the various isoforms of HDAC. The 
study group also uncovered evidence that the optimal model that they established 
might potentially be used to construct anticancer pharmaceutical candidates with 
the capacity to precisely target a single HDAC or a set of HDAC isoforms. This 
ability was discovered by the research team. 

12.4 Conclusion and Future Perspectives 

The spread of cancer is dangerous to people’s health. Annually, 9.6 million individ-
uals are afflicted by this illness. Cancer is becoming the leading cause of mortality, 
surpassing even heart disease. It now takes 12 years and $2.7 billion for modern 
anticancer medicines. Inadequate knowledge of cancer pathways has made it chal-
lenging to discover new, effective therapies for cancer. The creation of a new drug 
takes a long time and a lot of money. Protein-association network analysis, drug 
target prediction, restriction site prediction, and virtual screening are only some of 
the potential uses of computational methods in drug development. These methods 
have the potential to aid in the development of more efficient cancer treatments. AI 
has made retro-manufactured routine arrangement, medicine framework age, and



medication controlling fondness expectancies more important. Technology and 
computational models may help find new cancer therapies more quickly. How to 
find drugs that can combat cancer was just discussed. Predictions about the efficacy 
of different medication combinations, optimal drug placement, and targeted cancer 
therapy were all considered. Multi-omics data give great prospects for precise and 
inexpensive anticancer medication development. There are still issues in the actual 
world, despite progress in constructing prediction algorithms. PPI networks and 
biological pathways are common subjects of the many computerized studies that 
have already been conducted. Sparse data hampers the reliability and precision of 
algorithmic forecasts. Context-specific medicine response prediction therapies 
require greater investigation. Prediction models are built on pan-cancer data studies, 
which do not take into account the specifics of the disease being studied or the 
treatment being administered. Predictions of cancer outcomes are heavily influenced 
by the fact that different tumor types have distinctive molecular profiles of cancer 
cell lines. Transcriptome profiles, which are molecular profiles, are used in most 
predictive drug development methods for cancer cell lines. In humans, cancer cell 
lines cannot recapitulate underlying molecular defects. For therapeutically relevant 
research, bioinformaticians should be familiar with cell line boundaries. If you 
choose a sparser data type, like CMap-based models, where data is only accessible 
for a small number of cell lines across a limited set of tissue types, your model will 
be less scalable and less useful in clinical settings. There is a lack of appropriate cell 
lines for modeling response in certain malignancies, and the use of cell lines that do 
not adequately mimic tumor biology is a major contributor to the failure of compu-
tational drug development. The following methods may be used to get around the 
limitations of computational drug discovery. The clinical usefulness of computer 
prediction models may be improved by using data formats similar to in vitro patients. 
Combining diverse information may construct more accurate forecasting models. 
Clinical data and therapeutically relevant animal models should be used to validate 
models. Having a doctor involved in the process of using clinical data to predict 
cancer drugs for therapeutic purposes may improve the chances of success. 
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Chapter 13 
CADD Approaches and Antiviral Drug 
Discovery 

Mohammad Yasir, Alok Shiomurti Tripathi, Manish Kumar Tripathi, 
Prashant Shukla, and Rahul Kumar Maurya 

13.1 Introduction 

In the beginning, computational techniques were limited as a toolbox for academic 
researchers interested in the correlation of computed mathematical values denoting 
the nature of chemical structure to the observed physical properties of the molecules. 
This situation was due to the lack of computer machines with high calculative 
powers, and their application to molecular docking (MD) and receptor structure 
optimization was not practically possible. 

The development of CADD techniques and advancements in computer hardware 
has played an efficient and timely design of drug molecules for novel drug targets 
(Kapetanovic 2008). The role is further fueled by giving the highest computing 
power at disposal to computational chemists and biologists, enabling very complex 
calculations involved in the optimization of novel targets and ligands very rapidly 
(Sliwoski et al. 2014). It takes around 15 years for a medicine to make it through the 
existing drug approval process. Between 5000 and 10,000 molecules are created 
each year, yet only one new medicine makes it to market. The pharmaceutical sector
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faces difficulties related to lowering research expenses and speeding up the devel-
opment procedures of new medication discoveries.
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Fig. 13.1 Drug discovery and development timeline of computers in the process of drug discovery 

CADD and other computational methods have had a major influence on the 
development of new medications in recent years. DD may be made quicker, cheaper, 
and more effective with CADD’s help, and the field has already yielded useful ideas 
for treatment (Fig. 13.1). 

Viral diseases have haunted the mankind from very early days; the most notorious 
viral diseases include Spanish flu, HIV, and COVID-19 diseases (Roychoudhury 
et al. 2020). Although vaccines were able to tame some of the diseases caused by 
virus infection, diseases like HIV and Hepatitis C infection still possess a significant 
challenge as they have been proven to be intractable by utilization if vaccine 
approach. During the early days as viral infection was proved to be dependent 
upon utilization of cellular machinery for replication, many scientists thought that 
targeting cellular machinery may lead to certain toxic side effects. 

However, as the novel viral proteins involved in replication and interaction with 
the cells were discovered and their role in the pathogenesis of viral infection was 
established, the search for agents for targeting those viruses specific molecules led to 
the fruitful development of some of the most widely used antiviral drugs, e.g., drugs 
like oselamivir as anti-influenza drugs inhibiting viral neuraminidase and ribavirin as 
an inhibitor of IMP dehydrogenase (Yin et al. 2021). 

13.2 Methodology for CADD 

13.2.1 Structure-Based Drug Design (SBDD) 

SBDD is related to bioinformatics, concerned with applying mathematics, statistic, 
and computer science to the study molecular biology. Bioinformatics has been 
crucial to our knowledge of biochemical and biological processes. Structure-based



screening is a new method of molecular composite docking that uses the receptor’s 
three-dimensional structure to automatically pair small molecules from the com-
pound database at the binding site and anticipate their binding mode in order to get a 
composite energy ranking. The exclusive set of molecular modeling techniques in 
SBDD includes methods like MD, homology modeling, structure-based virtual 
screening, and many more (Fig. 13.2). Furthermore, SBDD is an iterative procedure 
that involves numerous cycles before advancing a refined drug candidate to clinical 
trials. 
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Fig. 13.2 Steps involved in creating a medicine using structure-based design (SBDD) 

A drug discovery process typically consists of four stages: discovery, develop-
ment, clinical trial, and registry. The first phase involves the identification of a 
prospective therapeutic target as well as active ligands. To develop effective ligands, 
current SBDD approaches take into account the main properties of the therapeutic 
target’s binding cavity (Anderson 2003). Moreover, the SBDD is most effective 
when used as part of a larger drug lead discovery strategy. DD achievable crystal 
structure of protein commonly ranges from few amino acid to 998 kDa, which 
provides suitable structural information (Nissen et al. 2000). Diffraction amplitude 
resolution (also known as resolution), reliability (R) factors, inaccuracy in coordi-
nates, temperature effects, and chemical “correctness” are all important metrics to 
consider when evaluating a crystal structure. There are two specific reasons like high 
data to parameter ratio and the obvious position of residues in the electron density 
map for crystal structures obtained with data (exceeding: 2.5) are generally suitable 
for design of drug applications. R factor and Rfree values given for a model are 
indicators of how well it matches up to experimental data (Holton et al. 2014). The 
Rfree value must be <28% and < 25%, and the R factor must be much <25% for the 
structure to be used in drug design (DD). It is possible to proceed with DD, if 
structure for a target does not meet the R factor or resolution requirements, but the



outcomes must be assessed with caution (Anderson 2003). The top-ranked com-
pounds with strong affinity for selective regulation of the target protein are evaluated 
in vitro in biochemical experiments in the second phase. 
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Hepatitis C (HC) is a liver-damaging infectious illness, caused by the infection of 
HC virus (HCV), belongs to genus Hepacivirus (Flaviviridae). One of the feasible 
strategies for identifying leads for target is structure-based inhibitor creation (Batool 
et al. 2019). Furthermore, replication of HCV require serine protease, which is an 
important target to cease the HCV infection. In order to find a potential HCV NS5B 
inhibitor, the researchers examined the HCV NS5B template-primer complex model 
proposed for viral thumb domain rearrangement and replication in response to RNA 
binding (Bressanelli et al. 1999). 

Presently, no licensed antiviral available for dengue, as attachment and fusion of 
dengue virus, occurs with envelope glycoprotein (EG); it is a prospective target for 
therapeutic research (Anasir et al. 2020). Understanding about the dengue virus EG 
has prompted researchers to investigate structural-based medication development of 
antiviral chemicals and peptides against dengue virus infections. 

The influenza A virus produces an acute respiratory viral illness that threatens 
worldwide human health leading to economical loss. Anti-influenza medications 
remain the most effective therapy due to new virus strains. Viral proteins are 
required for the growth of influenza A virus, used for the design of its medicine 
(Crocker et al. 2021). 

13.2.2 Ligand-Based Drug Design (LBDD) 

LBDD is a method for identifying active compounds against drug targets and 
forecasting possible active chemical targets. However, this technique has inherent 
flaws caused by factors such as variable protein conformations with widely varying 
binding sites or a lack of real target proteins in the database (Yang et al. 2021). 
LBDD tools provide detailed structure (3D) of target and interaction between ligand 
and target, which allows for lead discovery and its optimization (Acharya et al. 
2011). Furthermore, known compound data for structure activity is used to develop 
pharmacophore model in the absence of 3D structure of protein (Schuster et al. 
2011b). The simplicity of interpretation and customization of pharmacophore 
models enables to incorporate information about a given binding mode into a 
straightforward (Murgueitio et al. 2012; Noha et al. 2012). Compound library 
commercially available was used to develop and screen 3D pharmacophore model 
of HCV NS5 (NNI site IV). The best chemical among the 18 tested hits has an EC50 
value (Murgueitio et al. 2012). 3D space on which chemical feature markers placed 
carefully to observe molecules that have right interactions, is the ways to use 
VS. This has led to many successes in explaining ligand affinity in the past and



designing new ligands for the future (Schuster et al. 2011a). LigandScout is a 
software that extracts accurate hybridization states, analyze ligand geometries, 
protein-ligand complexes and uses a set of criteria to classify possible protein–ligand 
interactions (Wolber et al. 2007; Wolber and Langer 2005). Quantitative structure-
activity relationship (QSAR) (Achary 2020) is based on molecule shape and other 
specialized approaches. The best research approach is determined by the amount of 
information accessible (Bassetto et al. 2017). The more exact the information, the 
more dependable the results (Fig. 13.3). 
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Fig. 13.3 Workflow of LBDD 

The shared pharmacophore of chloroquine and remdesivir predicted that 
interacting residues would have a significant role in corona therapy (Yang et al. 
2021). According to Dushyant et al., it has been revealed that the spike proteins of 
the new coronavirus COVID-19 interact with angiotensin-converting enzyme 
(ACE). Chloroquine therapy alleviates the clinical symptoms of corona. Yanqing 
et al. introduced D3Similarity, a ligand-based technique for predicting active drugs 
against SARS-CoV-2 and identifying potential bioactive molecules which are prob-
able to target proteins in unavailability of 3D structure of proteins (Yang et al. 2021). 

Medication used for the management of AIDS develops by targeting reverse 
transcriptase (RT) of HIV-1. A study reported on the high-throughput docking of 
NCI database of 2800 compounds; based on docking score, top 6 hits were tested 
biologically and 4 of them shown suppression of RT (Bustanji et al. 2009). Another 
HIV treatment technique is to impede viral DNA integration by targeting HIV-1 
Integrase (IN) in the host cell. A database was used to search target-based 
pharmacophore, out of with biological research was performed on 10 hit molecules. 
One drug demonstrated high inhibitory activity against IN and modest inhibition of 
HIV-1 proliferation (Rajamaki et al. 2009).
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13.2.3 Machine Learning (ML) 

ML has transformed the field of computational drug discovery in recent decades. ML 
approaches are ideally suited for problem domains characterized by large amounts of 
data. ML technique emphasizes two major approaches, i.e., Support Vector Machine 
(SVM) and Artificial Neural Networks (ANN) are the computational techniques 
used for the process of drug discovery. ANN commonly known as “Neural Net-
work” (NN) is a learning algorithm of functional and structural aspect of biological 
neural networks (Ge et al. 2020). In other words, ANN is an emulation of a 
biological neural system. Modern neural networks observe pattern in data, relation-
ship between input and output, and probability of observed variable with linear 
statistical data modeling tools (Paul et al. 2021). SVM is a regression and classifi-
cation prediction tool that maximizes predictive accuracy by using theory of ML and 
avoids over-fit to the data automatically (Shahid et al. 2019). 

Data preprocessing, learning model, and evaluation are the steps involved in 
ML-based prediction model. We prepare the data via discretization and 
standardization-based methods in data preprocessing steps. In the model learning 
phase, ML algorithms were implemented (Tripathi et al. 2021a). Finally, the perfor-
mance of build models was accessed by the sensitivity and accuracy parameters. The 
ML algorithms have to be evaluated critically for their performance, which is crucial 
for the algorithm’s outcome (Sharma et al. 2023). 

Accuracy of ML methods is evaluated using various parameters, which included 
the following: 

Accuracy: It correctly predicts the positive sample percentage. 

Accuracy= 
TPþ TN 

TPþ FPþ TNþ FN × 100 

Sensitivity: It correctly predicts the negative sample percentage. 

Sensitivity= 
TP 

TP þ FN × 100 

Specificity: It correctly predicts the positive and negative samples. 

Specificity= 
TN 

TNþ FP 
× 100 

Many platforms based on ML methods are available nowadays, which provides 
simple graphical interface for the development of learning model. WEKA is widely 
used nowadays and is a java-based ML platform containing algorithms for regres-
sion and classification. Some other platforms are also present and widely used for 
drug discovery purposes, such as Rattle, H2O, SciKit-learn, etc. 

ML methods, namely support boosting, vector machine, and random forest are 
used to predict the interaction between protein and ligand. With increasing data size



and the exponential growth of databases, ML algorithms have become indispensable 
to handling these extensive databases without compromising speed and accuracy 
(Abiodun et al. 2019; Chan et al. 2019; Tang et al. 2019). The ML has an essential 
application in the early stages of computational drug discovery, proven a valuable 
tool. The ML helps predict new compounds, including not simply the physicochem-
ical properties but also various biological activities such as drug efficacy, ligand 
binding, and adverse effects of the identified compounds. 
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13.2.4 Deep Learning (DL) 

Drug discovery is a complex process which takes enormous cost and time. Thus, 
there is a need for the DL method to accelerate the drug discovery process and 
identify promising drugs against the desired target. In the training step, the ML 
algorithm analyzes the massive datasets of experimentally determined data to build a 
predictive model for gaining information from the dataset (Tripathi et al. 2021b). In 
the ML method, the loss of relevant information during the feature extraction poses a 
shortcoming of this technique. Thus, DL methods have evolved, which solves the 
failure of the feature extraction process in ML (Carpenter et al. 2018; Di Gangi et al. 
2018). DL methods authorize the automatic generation of higher-level hierarchical 
abstraction from massive datasets and reduce the demesne for feature generation 
from ML methods. DL is a branch of ML that uses elaborate neural networks with 
numerous layers to extract hidden insights from raw experimental data. It has been 
increasingly used in recent years for computational drug development. 

Compared with ML methods, the DL algorithm is efficient and has a process of 
automatic feature extraction. DL methods such as recursive neural networks (RNN) 
and convolutional neural networks (CNN) are extensively applied in drug discovery. 
The DL neural network architecture consists of more than two hidden layers. 
Successful training of DL neural networks requires a large amount of data, as the 
parameters are quite large. With the enormously increasing volume of data, DL plays 
an essential role in mining the huge dataset for identifying drug molecules. The CNN 
has been widely used in virtual screening (VS) as it implements the feature. DL 
neural networks are now also commonly used in de de-novo molecule design. The 
other prominent method of DL includes RNNs (DiPietro and Hager 2020), varia-
tional autoencoders (Simidjievski et al. 2019), and generative adversarial networks 
(Kazeminia et al. 2020). The benefit of DLNN is that it learns new higher-order 
representations from the data (Di Gangi et al. 2018). Apart from this, vanishing 
gradient problem is the disadvantage of traditional NNs (Hochreiter 1998), in which 
there is difficulty in the weight optimization process as the number of layers (depth 
of the network) increases.
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13.2.5 Virtual Screening (VS) 

Previously, the pharmaceutical industry identified novel lead molecules by adopting 
the experimental screening of large chemical libraries. This high-throughput-based 
screening process faces drawbacks such as high cost and time to process the desired 
certainty and mechanism of action of the identified lead molecules. Thus, the 
advancements in computing resources and the growth of targets in public databases 
led to the use of computational tools as a screening process to identify novel lead 
molecules against target. Thus, the SBDD with computational methods is used for 
drug discovery by pharmaceutical industries (Tripathi et al. 2022). 

In computer-aided drug discovery, VS is an essential tool for identifying novel 
molecules. It can be categorized into two types: structure-based virtual screening 
(SBVS) and ligand-based virtual screening (LBVS) (Tripathi et al. 2019). In the 
SBVS, the target structure of the target protein is used, while in LBVS, the 
information of known inhibitors were used for the VS. The features of VS include 
(1) filtering large compound libraries into the small sets of active compounds, 
(2) optimizing the identified lead compounds to increase their affinity, and (3) giving 
a scaffold to develop novel compounds. 

In SBVS, the widely used method is docking which predicts the binding mode 
and orientation of one molecule and helps to understand the mechanism of drug-
protein interaction. The docking method has two main components: a search algo-
rithm and a scoring function used to quantify the binding strength of the drug 
molecule in the target active site. Algorithms such as Monte Carlo, genetic algo-
rithm, systematic search, simulated annealing, etc. are widely used by different 
softwares for this purpose (Shrivastava et al. 2016; Tripathi et al. 2015, 2016). 

The LBVS depends on the dataset of the active and inactive molecules. This 
method predicts the active ligand with higher activity based on the physiochemical 
analysis and spatial similarities between the active ligands. This method is used to 
identify the active ligand when the target structure is unknown, or the structural 
accuracy is low. Pharmacophore modeling is the most widely used method for the 
LBVS. ML-based methods also help in identifying the predicted hits by minimizing 
the rate of false hits prediction. 

In silico VS describes macromolecule-ligand interactions using computer models. 
There are several ways available for this goal, which may be divided into two 
categories: 2D and 3D approaches. Descriptor-based approaches (2D methods) 
focus on calculating and comparing scalar molecular qualities to find molecules 
that are comparable in terms of their derived molecular attributes (Murgueitio et al. 
2012). However, most computational efforts for antiviral drug discovery have 
recently relied on 3D methodologies, which try to characterize the steric and 
chemical complementarity of the 3D conformations of a macromolecular target 
and the binding ligand. In MD-based VS procedures, protein-ligand complexes are 
awarded a score that corresponds with the expected binding affinity, which can be 
estimated using a physics-based, empirical, or knowledge-based potential function 
(Sohraby et al. 2019). AutoDock (Morris et al. 2009), AutoDock Vina (Trott and



Olson 2009), MOE (Vilar et al. 2008), GLIDE (Friesner et al. 2004), Discovery 
Studio (SYSTÈMES 2016), and other VS tools are commonly utilized. In VS, small-
molecule databases are docked into the area of interest, and their anticipated 
interactions with the site are graded, whereas in de novo method, molecules are 
constructed by placing building blocks at the specific location, scoring them, and 
linking them virtually. After the connected fragments are generated in silico, the final 
molecules must be synthesized in a laboratory. The VS and de novo generation 
labels coincide in several cases. 
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Furthermore, PAINS-Remover is an Internet service that is intended for screening 
libraries (Baell and Holloway 2010). Online, the Swiss ADME website forecasts the 
physicochemical description of chemicals (Daina et al. 2017). These VS and com-
pound optimization filtering technologies are required to increase the success rate of 
medication development and lessen the problem of lost costs in the latter phases of 
drug research. 

Novel NS5B polymerase inhibitors found using VS were reported, and their 
inhibitory effects were evaluated in vitro. A VS of compounds that fit this binding 
pocket from the existing chemical library of 3.5 million compounds was undertaken 
on the basis of a newly found binding pocket of NS5B, separate from the nucleotide 
binding site but highly conserved among diverse HCV strains (Ryu et al. 2009). A 
recent study by Zhang et al. utilized this strategy to screen the inhibitor against the 
PA endonuclease and its variant. Bilobetin was shown to be capable of competitively 
inhibiting the PA endonuclease after initial in vitro and in silico screening (Zhang 
and Wang 2021). Zhang et al. used 3D-QSAR modeling and a docking-based VS 
technique to identify a raltegravir derivative as a possible new PA endonuclease 
inhibitor (Zhang et al. 2021a). Ferro et al. also created a three-dimensional 
pharmacophore model and acquired three “hit drugs” via VS. The MD approach 
and enzymatic analysis with recombinant PA endonuclease were used to study the 
binding poses of these hit compounds (Ferro et al. 2018). Pala et al. proved in silico 
findings through PA enzymatic testing and antiviral activity in the low micromolar 
range in a cell-based influenza virus assay (Pala et al. 2015). 

The influenza hemagglutinin (HA) A virus is a homotrimer that is frequently 
separated into head and stem regions and is required for viral entrance and uncoating 
(Harrison 2008). Endocytosis transports influenza virus particles to the endosome 
once they bind to the host receptor. Proton entrance causes the pH of the endosome 
to fall (Carr et al. 1997). Bodian et al. discovered efficient HA fusion inhibitors 
(Bodian et al. 1993). Waldmann et al. use in silico design, chemical synthesis, and 
binding studies to report a trivalent glycopeptide mimic, a nanomolar multivalent 
ligand that binds to avian influenza hemagglutinin H5 (Waldmann et al. 2014). 
Another possible therapeutic target in the Flaviviridae family is the protease/helicase 
NS3. Takaya’s novel induced-fit docking tool (GENIUS) was utilized to uncover 
13 new HCV NS3 protease inhibitors in research targeting this protein (Takaya et al. 
2011). Shiryaev used the NCI database compounds to dock into the NS2B cofactor 
binding site of the WNV NS3 protease crystal structure, yielding one physiologically 
verified inhibitor with nanomolar activity (Murgueitio et al. 2012).
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While in silico VS has been developed for several useful applications, it still has a 
number of significant disadvantages. To provide just one example, the docking score 
is not a reliable indicator of pharmaceutical effectiveness since most docking 
methods only consider binding affinity and ignore other properties. It is also 
important to remember that MD-based VS has a high false-positive rate. 

13.3 Host and Viral Proteins as Target 

13.3.1 Chemokine Receptors 

Chemokines are small proteins, which signal through its receptors, i.e., G-coupled 
protein receptor (GPCRs). It is chemoattractant cytokines responsible for migration 
of leukocytes towards the infectious and injured tissue. GPCRs present on the 
surface of target cells interact with chemokines for it signaling, autoimmunity, and 
inflammation and occur due to its dysregulation. There are 19 different types of 
chemokine receptors, and 50 types of chemokine ligands were identified, which can 
bind to more than a single receptor (Hauser et al. 2017). 

Viral infections are pathogenic conditions, altering the response of acquired and 
innate immunity of infected host. It is evident that chemokine receptors and chemo-
kine ligands are encoded on DNA viruses like HIV, poxviruses, and herpesviruses 
and secrete chemokine binding proteins (CKBPs). Details of virus-encoded chemo-
kine modulators are given further, which are involved in the development of 
pathogenesis. 

13.3.2 Viral Chemokine Receptors 

Viral chemokine receptors like US28 and ORF74 are present on the surface of 
cytomegalovirus and human herpesvirus 8 (HHV8), respectively (Pontejo and 
Murphy 2017). Kaposi sarcoma (KS) lesions were reported to be developed due to 
infection of HHV8, characterized by infiltrates of inflammation, angiogenesis, and 
spindle-shaped cells. There are 100 open reading frames (ORFs) present on the 
genome of HHV8. Literature suggests that ORF74-encoded chemokine receptor 
contributes to the development of angioproliferative lesions, which activates several 
pathways includes NF-kB to affect biology of lymphatic and vascular endothelium 
(T. Liu et al. 2017). Moreover, ORF74 activates AP-1, NF-kB, and MEK with the 
help of phosphatase SHP. 

It is also observed that the increased expression of Notch signaling in KS, vGCPR 
on vascular endothelial cells enhances the expression of several components of 
Notch and ERK signaling pathway such as the ligand Notch and Jagged1 and the 
receptor Notch2 downstream targets such as Hey1 (R. Liu et al. 2010). Moreover, 
promotion of Notch signaling by Notch4 occurs due to DLL4 (Notch ligand)



interaction, which upregulates viral GPCR on lymphatic endothelial cells. HHV8 
upregulates DLL4-stimulated signaling and alters the cellular components of 
uninfected neighboring cells which affect cellular plasticity and quiescence 
(Emuss et al. 2009). 
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Cancer and HCMV have a common molecular connection, that is, US28; study 
reveals that NIH-3 T3 cells transfect US28 that originates in tumor of nude mice 
(Maussang et al. 2006). COX-2 expression is highly upregulated in several forms of 
cancer. Celecoxib is reported to delay the formation of US28-transfected tumor cells 
in nude mice (Baryawno et al. 2011). 

13.3.3 Viral Chemokine Ligand 

There are number of chemokine ligands encoded on several viruses which contribute 
in the development of pathogenic conditions. HHV-8 is encoded with three chemo-
kine ligands such as vCCL1, vCCL22, and vCCL3: CCR8 interacts with its agonist 
vCCL1; CCR1, CCR2, CCR5, CX3CR1, and CXCR4 interact with its antagonist 
vCCL2; and XCR1 receptor interacts with its agonist vCCL3 (Alcami and Lira 
2010). Virus spread is reported to be facilitated by vCCL1 and vCCL3 as it regulates 
the influx. Moreover, replication of virus contributes in the development of patho-
genesis of KS, which is facilitated by vCCL1 and vCCL2 (Greene et al. 2007). 

There are two CXC ligands (UL146 and UL147) encoded on HCMV, vCXCL1 
protein encodes gene UL146, which act as agonist of vCXCR1 and CXCR2; 
however it has low affinity and potency (Lüttichau 2010). 

13.3.4 Viral CKBPs 

Proteins secreted by viruses which regulate the chemokine activity during infection 
are commonly called chemokine binding proteins. There are several CKBPs identi-
fied, which are encoded by ticks. 

The first CKBP was identified on gamma herpesvirus 68 (MHV-68) known as 
M3 protein. There are two binding sites for chemokines on M3 protein, which binds 
to broad range of chemokines. Intracellular signaling and cellular receptor interac-
tion with chemokine are prevented by viral CKBPs. Moreover, alpha herpesviruses 
contain two CKBP (MHV-68 gG and M3), which alters the chemokine interaction 
with GAGs and chemokine receptors. M3 chemokine complex was responsible for 
inhibition of chemokine-GAG interaction (Parry et al. 2000).
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13.3.5 Glycoproteins 

Viruses on its outermost surface consist of glycoprotein, and thus pathogenic viruses 
commonly interact with glycoproteins, i.e., glycan receptor. Glycoprotein plays an 
important role on virulence capacity, entry, and infectivity of virus. 

13.3.6 Glycoprotein of Virus 

Glycoprotein present on the enveloped viruses contributes to entry of virus in the cell 
by interacting with the receptors present on the cell. Human immunodeficiency virus 
1 (HIV-1) on its surface contains gp41 transmembrane protein and gp120 surface 
protein. Chemokine receptors (CCR5) and CD4 bind HIV-1 through gp120 to 
facilitate the entry of virus in target cells. However, Ebola virus (EBOV) entry 
was enhanced by removing N-glycan from envelope glycoprotein. 

Influenza A virus consists of two different surface glycoproteins such as neur-
aminidase (NA) and hemagglutinin (HA). HA protein of influenza virus interacts 
with glycoprotein (terminal sialic acid [SA]) of host cell and SA residues of 
glycoproteins cleaved by NA of enveloped virus, which promotes the infectivity 
of virus (Kosik and Yewdell 2019). 

Glycoproteins present on the surface of virus alter the virulence capacity of virus 
by antigenic property and stimulation of immune response and modulate the binding 
of host receptor with virus. Rabies viruses (RABVs) contain several proteins like 
large transcriptase protein, GP, matrix protein, phosphoprotein, and nucleoprotein. 
There are two N-glycosylation sites (Asn37 and Asn319) of GP present on RABVs 
(Mebatsion et al. 1999). Propagation of virus enhances due to Asn37 and pathoge-
nicity of it reduces. Moreover, higher number of HA glycosylation sites contributes 
to reduction in virulence capacity of H1N1. 

13.3.7 Glycoprotein of Host 

Viral infection occurs due to binding of host receptor with virus; viral glycoprotein 
has major responsibility for the viral infection. However, viral glycoprotein binds to 
the host receptor, and thus host receptor is also important for the cellular entry of 
virus (Maginnis 2018). Host receptors contribute in entry of virus and promotion of 
viral infection. Viral receptor is separated into two different categories according to 
their functions such as attachment factor and entry receptor. Virus can bind to entry 
receptors present on the host cell surface which concentrate virus on the surface of 
cell-like HIV can bind to CD4 (Checkley et al. 2011).
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13.3.8 Kinases 

Tyrosine kinase receptors are present on the cellular membrane, which contribute in 
the cellular response against virus by alteration of survival of cells, proliferation, 
differentiation, and migration. Tyrosine kinase receptors having single helix protein 
with ligand binding site at the extracellular region. Kinases were found to be 
500 types present in human proteome. Multiple virus life cycles interpretation and 
propagation of virus are regulated by protein kinase during viral infection (Pillaiyar 
and Laufer 2022). 

Viral infection results in physiological regulation of majority of host protein 
kinases; multiple viruses used different kinases which targets host signaling cas-
cades. Moreover, cellular protein kinase inhibitors are used to assess the antiviral 
property as it blocks the viral replication in the cellular culture. It alters the several 
steps involved in the life cycle of viruses (Pillaiyar and Laufer 2022). There are 
several kinases targeted for the development of antiviral drugs, which are given 
further. 

13.3.9 Lipid Kinase 

Lipid kinases are responsible for the phosphorylation of cellular lipids, contributing 
in maintenance of cellular functions and lipid homeostasis. Lipid kinases are present 
in several substrate forms such as phosphatidylinositol kinases, sphingosine kinases, 
and diacylglycerol kinases. Lipid kinase inhibitors targeted to the host cell are used 
for antitumor, antidiabetic, anti-inflammatory, etc. activity. Kinases are reported to 
be activated during the viral infection; thus kinase is a potential therapeutic target for 
the management of viral infection. Kinase inhibitors are used for the antiviral 
property (Merida et al. 2019). 

13.3.10 Numb-Associated Kinases (NAKs) 

NAKs belong to Ser/Thr kinase family; serine/threonine kinase 16 (STK16), BMP-2 
inducible kinase (BIKE/BMP2K), cyclin G-associated kinase (GAK), and adaptor-
associated kinase 1 (AAK1) are the four different members that come under NAK. 
All these kinases are involved in the development of neurodegenerative disorders 
and cancer. Cellular process endocytosis involves GAK and AAK1, which also 
occur in viral infection (Sorrell et al. 2016). 

Endocytosis is required for the cellular penetration of virus responsible for 
infection. There are several enveloped RNA viruses that use the adaptor protein 
for the process of infection. Moreover, clathrin-mediated endocytosis process con-
tributes in the other process of viral growth (entry, replication, assembly, reverse



transcription, and DNA synthesis) and infection. Thus, kinase (GAK and AAK1) 
involved in the process of infection is used for the screening of broad-spectrum 
antiviral drugs (Yángüez et al. 2018). 
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13.3.11 Receptor Tyrosine Kinases (RTKs) 

Cell cycle and its metabolism are regulated with a receptor present on the cell surface 
commonly known as RTK. Approximately 58 types of RTKs have been identified; 
dysregulation of these receptors relates to diseases including inflammation, diabetes, 
and cancer. Human papilloma viruses contain viral E5 gene product with epidermal 
growth factor receptor which stimulates viral replication by activating EGFR path-
way. Inhibitors of EGFR tyrosine kinase are reported to possess antiviral property 
(Lemmon and Schlessinger 2010). 

13.3.12 Mitogen-Activated Protein Kinases (MAPKs) 

Cellular response to the external stimuli was also regulated with the help of signaling 
cascade MAPK, as it is responsible for the growth receptor’s interaction. Three 
different kinases such as p38, JNKs, and ERKs of MAPK family get activated which 
produces key molecule responsible for cellular activities like differentiation, apo-
ptosis, survival, motility, metabolism, and mitosis (Cargnello and Roux 2011). 

MAPK cascade is reported to be induced in infected cells by a few RNA and 
DNA viruses. Moreover, influenza A virus activity is observed to be decreased by 
reducing its proliferation with the inhibition of ERK signaling. Japanese encephalitis 
occurs due to infection of Japanese encephalitis virus (JEV) and JNK-1 inhibitor 
found to be effective against JEV by reducing inflammatory cytokines (Ashraf et al. 
2021). 

13.3.13 Src Kinases 

Src’s kinases play a role in several cellular processes like survival, progression of 
cell, differentiation, and motility. There are 11 different types of Srcs kinase iden-
tified, which are non-receptor tyrosine kinase. Srcs inhibitors are used for the 
management of cancer, and several US FDA-approved medicines are available for 
it (Sen and Johnson 2011). 

Src inhibitors are also observed to possess antiviral activity; a drug dasatinib 
reduces the viral infection in a dose-dependent manner against DENV infection. 
Moreover, dasatinib is also used against HIV-1, as it reduces the T-cell activation



which reduces AP-1 and NF-kB leads to decline in viral replication shows potential 
benefit of it against HIV-1 infection (Chu and Yang 2007). 
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13.3.14 Cyclin-Dependent Kinases (CDKs) 

CDKs control the cell cycle process by phosphorylation of Ser/Thr residues, as it 
binds with the ATP (Ding et al. 2020). CDK inhibitors are used for the treatment of 
cancer. Moreover, CDK inhibitors were targeted against SARS-CoV-2 in an in vitro 
study, and 16 molecules were observed to effect against it. CMV infection is also 
ameliorated by treating with CDK inhibitors (Zhang et al. 2021b). However, its 
molecular effect is yet to be understood clearly, which need to be focused by 
researchers. There are several other kinases available which can be targeted for the 
development of antiviral drugs (García-Cárceles et al. 2022). 

13.3.15 Other Proteins 

There are some proteins apart from already explained one, which are involved in the 
interaction with viral genome or protein and inhibit viral life cycle like virus 
replication, assembly, and egress. It involves in the development or control of 
viral infection. These proteins are explained in detail as follows: 

13.3.16 Cytoskeleton Protein (Actin) 

Cytoskeleton network present in the host cell involves transportation of viral com-
ponents, entry, and exit in the cells. Expression of viral gene of RNA viruses requires 
actin- and tubulin-like cytoskeleton proteins. Cytoskeleton protein like actin is 
required for the entry of influenza virus inside the cells and facilitates the budding 
of filamentous virus particles (Ploubidou and Way 2001). There are several viruses 
like SV40 and herpes which produce disassembly of microfilament containing actin. 
Viral infection disturbs the cytoskeleton for growth to produce infection, but still 
exact mechanism involved in it not proved (Wu et al. 2019). However, targeting 
microfilament actin could be used for the development of antiviral drugs. 

13.3.17 Annexins 

Annexin is a cellular protein present on the surface; and in the cytoplasm, it is also 
found in the influenza virus. There are several members of annexins available,



annexin 2 is involved in the interaction with several virus to promote the infection. 
Annexin 2 promotes the binding and fusion of HCMV and also the assembly of 
HIV-1 (Ryzhova et al. 2006). 
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There are several other cellular proteins such as tetraspanins, Cyclophilin A, 
CD59, and glycolytic enzymes which could be used for the development of antiviral 
drugs. 

13.4 Conclusion and Future Perspectives 

Antiviral medications tend to be successful in limiting seasonal pandemics, partic-
ularly in the early phases of fast transmission. The viral proteins play important roles 
in virus’s life cycle and might be used as therapeutic targets for treating the disease. 
The creation of anti-flu medications has been greatly aided by CADD, the most 
important technology in modern drug research and development. 

Different CADD approaches to creating small-molecule virus inhibitors are 
shown. VS, 3D-QSAR, molecular dynamics, pharmacokinetic calculations, etc. are 
all examples that pertain to SBDD or LBDD in small-molecule inhibitor 
development. 

The Food and Drug Administration has authorized the sale of numerous very 
effective medications, but the spread of drug-resistant viruses has rendered these 
treatments ineffective. This means that new mechanisms and strategies to attack the 
viruses, which are constantly adapting, are desperately needed. 

In silico VS is another important technology that has been developed for many 
useful applications, although it still has several obvious drawbacks. For instance, the 
docking score is not a helpful indication of therapeutic effectiveness since most 
docking approaches focus only on binding affinity and disregard other factors. There 
has been an urgent need for intriguing development in structural informatics that 
promises to hasten our progress toward a deeper understanding of how protein 
structure affects human health and medicine. 

CADD technology is a vital resource for locating promising new lead com-
pounds, which speeds up the discovery of effective new antiviral medicines. We 
anticipate a revolution in the discovery of novel drugs in the near future as CADD 
tools powered by AI become more sophisticated and comprehensive in their cover-
age of the whole process. 
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Chapter 14 
CADD Approaches in Anti-inflammatory 
Drug Discovery 

Nigam Jyoti Maiti and Nisha Kumari Singh 

14.1 Introduction 

Biology depends on chemistry because it offers a technique for examining and 
comprehending the chemicals that makeup cells (Kore et al. 2012). When it comes 
to the density, acidity, size, and shapes of atoms, scientists investigate the different 
matter, whereas biologists are interested in how living creatures react in its sur-
roundings. To comprehend the hidden language of processes taking place in living 
creatures, a variety of essential sciences, including math, statistics, biology, chem-
istry, and physics must collaborate with the most recent advancements in research 
and innovation. Comprehensive overview of the procedures involved in the creation 
and finding of drugs, sizeable molecular information libraries about illnesses, DNA, 
RNA, proteins, and tiny molecules are generated using this technology (Ajith and 
Nair 2017). Computational design technologies are employed by all of the major 
pharmaceutical and biotechnology sectors (Kore et al. 2012). The contributions, at 
the simplest basic level, reflect the substitution of crude technique with structural 
representations that seem to be a far more realistic depiction of chemical truth and 
also can demonstrate motion and solvent effects (Kore et al. 2012). Moreover, 
estimates based on theoretical frameworks make it possible to estimate binding 
free energies and other relevant biological features. Empirical quantum mechanics, 
statistical mechanics, and molecular mechanics are some of the theoretical tools 
available. This most recent innovation has made it possible to incorporate explicit 
solvent effects. The availability of top-notch computer graphics, which are princi-
pally supported by workstations, is the foundation for this entire effort. 
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14.2 Drug Development Strategy and CADD Ideas 

Inside the present era of medication research, a molecular approach is used, in which 
the process underlying sickness or illness is described depending on the incorrect. 
Based on recent knowledge, computational models of molecular targets linked to 
particular pathogenic infection candidates are projected. Their interaction is explored 
using molecular mechanics and dynamics principles to determine the amount of 
energy linked to the molecules. To determine the optimum forecasting models, the 
actual mechanisms involved are significantly complicated and include a variety of 
mathematical, statistical, and data-analyzing techniques. Additionally, as the con-
clusions are simply descriptive, appropriate methodologies must be used to confirm 
and validate them (Ajith and Nair 2017). The newest technique employed in the 
medical field to solve the challenge of managing health and illness using computa-
tional simulation is called computer-aided drug discovery (CADD). According to the 
amount of molecular data known about the target (enzyme/receptor) and the ligands, 
several CADD strategies are used. The two main modeling techniques utilized for 
the drug design process are “direct” and “indirect” design. Creation in an indirect 
manner is based upon a comparison between characteristics of established com-
pounds. Enzyme’s characteristics are immediately considered indirect design. 

Scientists might encounter little or no structure-related data in the initial stages of 
a drug discovery procedure. The high-throughput screening (HTS) group must now 
start developing and evaluating assays right away (Oldenburg 1998), and chemists 
must focus on filtered results or other early pieces of data right now. The molecules 
filtered might be naturally occurring substances, commonly available molecules, 
groups of internally generated molecules, or molecules originating from combina-
torial libraries. However, researchers have to assist in selecting the molecules for 
HTS. Finding leads can be accomplished by choosing a group of molecules that 
exhibit variation in their physicochemical qualities instead of undertaking additional 
screening. Such techniques seek to examine and choose fewer compounds while 
learning from the data set (Moos et al. 1993). Any decrease in the count of molecules 
intended to be examined could have a targeted impact on the effectiveness of the 
investigation and the associated expenses (Ooma 2000), provided that it merely 
reduces redundancy within a database and does not introduce unwanted spaces. 
Two-dimensional fingerprints were employed in the experiments as molecular data 
with the effectiveness of rational selection approaches vs. a randomized technique 
was examined (Halliday et al. 1992; Moos et al. 1993; Martin 1998; Oldenburg 
1998; Reigner and Blesch 2002). The initial step in generating a fresh lead, also 
known as a secondary lead, was generated based on the stereo-electronic character-
istic of primary leads. The main leads ought to be chosen from a group of substances 
with a broad range of chemical compositions interacting with the same target 
through the same binding interaction. A pharmacophore is determined through 
analysis of the stereoelectronic characteristics of principal leads. A pharmacophore 
model is a modeling approach of elements or groups of elements that are assumed to 
be responsible for pharmacological action (Kubinyi 1993). The remaining molecular



components act as a skeleton in this method to keep the groups in their proper 
positions. The produced pharmacophores typically include 3–5 components spaced 
at regular intervals. 
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The Biomedical Information Science and Technology Initiative (BISTI) was 
established by the National Institutes of Health (NIH) a few years ago to assess 
the condition of bioinformatics in the country at the time. The bioinformatics 
procedure explained by BISTI included its application to scientific research, partic-
ularly for initiatives aimed at medication creation. Bioinformatics was viewed as an 
emerging method for locating medications, advancing those through clinical studies, 
and ultimately releasing those to the public (Bernard et al. 2005). A specialized field 
called computer-aided drug design (CADD) uses computational tools to investigate 
drug-receptor interactions. IT databases, software applications, and computing 
resources construct the framework for bioinformatics. CADD approaches are highly 
dependent on bioinformatics tools and applications. Bioinformatics techniques are 
heavily used in biological sciences, genomics, proteomics, other developing fields 
(including metabolomics and transcriptomics), and CADD research on the scientific 
side of the hub. In a number of crucial areas, bioinformatics aids CADD research. 

Most CADD work focuses on proteins as targets with tiny compounds acting as 
ligands or leads, primarily because proteins have a significant structural impact. 

CADD can be classified into two categories based on the strategy adopted: 

1. Structure-based method 
2. Ligand-based methods 

The most widely used approach, structure-based CADD, depends on the target 
protein’s structure. This method selects the lead compounds from a broad chemical 
space that best matches a certain target. The use of computer-aided methodologies is 
crucial in several of the group’s efforts involving rational drug development. Studies 
into the atomic-level molecular pathways of ligand-target identification can be 
conducted using NMR spectroscopy in addition to molecular modeling and other 
spectral methodology techniques (Scherer et al. 2000). The development of innova-
tive treatments and the foretelling of drug interactions with targets require this 
information. The group has also researched the specifics of ligand binding to 
DNA’s minor groove using compounds like Hoechst 33,258 or tRNA (Irwin et al. 
2002). The team also employs NMR techniques to investigate how proteins react 
with their ligands. The team has made this known to 500 MHz high-field instruments 
installed at the Chemistry Department as well as 300 MHz instrumentation available 
within the institution. The team works closely with Professor Gareth Morris, the 
creator and forerunner of numerous contemporary NMR methodologies, applying 
cutting-edge methods to complex biological issues (Taft 2008). 

The QSAR models used in the ligand-based technique are based on the chemical 
search for structural analogs (Ajith and Nair 2017). This strategy is used when the 
target structure is known, and lead compounds are selected based on how closely 
they resemble existing ligands that are effective against particular therapeutic 
actions.
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The structure may be created using CADD tools and protein sequence data. 
Comparative protein modeling, also known as template modeling, is the process of 
determining an unknown protein structure by comparing sequence data to a known 
protein structure known as the “template.” This includes 

(i) Homology modeling, where the template is chosen based on the highest degree 
of sequence similarity 

(ii) Threading, wherein more than one template is chosen for the entire range of 
protein sequences 

Now a days search for a therapeutic molecule that binds to the body’s protein of 
interest was carried out with the advanced approaches of CADD (Balaban et al. 
1994). CADD and in silico drug design are nearly synonymous. Almost all stages of 
the drug development process, from target selection to lead identification, from best 
optimization to preclinical or clinical trials, are now covered by computer-aided drug 
design (CADD) platforms. This is especially true in the post-genomic era. 

The Three-Step In Silico Drug Discovery Process 

(a) Stage 1: Entails selecting a pharmacological target and creating a diverse 
collection of small molecules to be evaluated against it. The creation of a high-
throughput screening technique comes next, which is initially started by either 
dock small molecules from the data source or creating these structures in the 
active site using de novo design techniques. 

(b) Stage 2: These selected picks are docked at known drug target binding sites to 
test their selectivity. 

(c) Stage 3: The molecules that pass these detailed in silico ADMET assessment 
investigations on these chosen hits are called leads. 

Docking is the in silico simulation of a molecular interaction achieved by interacting 
the target protein with a ligand (Müller 1994). This interaction provides several 
conformations from which the protein-ligand complex with the lowest energy is 
considered. Rigid body docking occurs when the docking is done without the 
molecules changing their conformation, whereas flexible docking allows the mole-
cules to vary their shape to find the optimal match (Williams and Spector 2009). 

The protein and the ligand molecules are cleaned and prepared before the docking 
procedure to remove unwanted atoms, ligands, and charges, finally reducing the 
energy of the ligands. When a large dataset of ligands is involved, virtual screening 
is processed for filtering or screening ligand molecules to locate target compounds 
with the highest affinity for a therapeutic target. The best druggable compounds will 
be the leads chosen (NAIR et al. 2017) (Fig. 14.1). 

Its first crucial step in the pipeline for discovering new drugs is the selection and 
confirmation of targets. Nevertheless, selecting and validating drug-able targets from 
among the tens of thousands of potential macromolecules remains a difficult chal-
lenge. Currently, many techniques have already been created to address the aims. 
Target detection systems that use proteomic and genomic methodologies are among 
the most common. A proteomic technique, for instance, compares the protein



expression profiles of a specific cell or tissue in the presence or absence of a given 
small chemical to find binding proteins for that cell or tissue. 
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Fig. 14.1 Classification of computer-aided drug discovery (Aparoy et al. 2012) 

The use of computational methods to forecast drug safety during drug creation 
and research is increasingly popular. Late-stage clinical trials or post-marketing 
significant unfavorable toxicological results for medicine might result in significant 
financial losses and put patients in danger. It is preferable if such compounds are 
discovered and the drug discovery process is stopped as soon as possible. 

Metabolic drug-drug interactions (MDDI) have already brought up certain high-
profile issues in the creation of new drugs, leading to their limited use, removal, or 
denial by regulatory agencies. In vitro methods are now frequently used in the 
medication planning process to assess the possibility of MDDI. However, in the 
absence of a comprehensive strategy, their interpretation and worth remain up for 
debate, and the critical distinction between a helpful “simulation” and an accurate 
“prediction” is not frequently understood. There is already a variety of in silico 
software that can simulate MDDI. SIMCYP is one of these programs (Ajith and Nair 
2017). 

Chosen lead compounds are docked against the biological target during virtual 
screening. The grading pattern comes next. For this, a variety of software is offered. 
A few are freely usable, while others are offered for sale. 

14.3 Inflammation and Its Mechanisms 

Inflammation is a protective response involving immune cells, blood vessels, and 
chemical mediators that play a critical role in the intricate biological response of 
human tissues to potentially harmful stimuli, such as pathogens, damaged cells, or



irritants. WBC of your body releases substances during inflammation to defend the 
human system against foreign intruders. As a result, the area of injury or illness 
receives increased blood flow. Burning and swelling may result from it. Some 
chemicals lead to edema in human cells by causing fluid flow into them. This 
defense mechanism may irritate the neurons and hurt them. Increased levels of 
white blood cells along with substances produced within the joints throughout 
time irritate the joint lining, create inflammation, and lead to joint damage (the 
cushioning at the ends of bones). The systems may become inflamed as a result of an 
inflammatory illness. The afflicted organs will determine the symptoms. For 
instance: 
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Myocarditis, an inflammation of the heart, can result in edema or breathing 
difficulties. 

The tiny tubes that carry air to your lungs may become inflamed and result in 
breathing difficulties. 

Nephritis, an inflammation of the kidneys, can result in kidney failure or elevated 
blood pressure. 

Since many organs lack pain-sensitive receptors, people may not even experience 
discomfort when they have an inflammatory condition (Ahmed 2011). It is charac-
terized by flushed skin at the site of the injury, pain or tenderness, joint pain, 
abdominal pain, fatigue, fever, swelling, chest pain, etc. There are two types of 
inflammation (Ansar and Ghosh 2016): 

(i) Acute inflammation: The reaction to an immediate physical injury, like cutting 
your finger, and the body sends inflammatory cells to the wound to speed up 
healing. Finally, the healing process is proceeded by these cells (Bensman 
2020). 

(ii) Chronic inflammation: Even when there is no threat from the outside, the body 
keeps releasing inflammatory cells. For instance, in rheumatoid arthritis, inflam-
matory cells and chemicals assault the joint tissues, causing an intermittent 
inflammation that can seriously harm joints and result in pain and deformity 
(Dagvadorj et al. 2008). 

One of the most frequent causes of chronic inflammation is autoimmune diseases, 
where the system assaults healthy tissue, including lupus. 

Certain lifestyle variables also influence inflammation in the body. Chronic 
inflammation may be more likely to occur when someone abuse alcohol, except if 
muscular; have a high body mass index (BMI) that falls within the boundaries for 
overweight, if one do not workout sufficiently or regularly at utmost effort; and have 
persistent tension, smoke (Kore et al. 2012). 

Numerous medications can reduce pain, edema, and inflammation. Additionally, 
they might lessen or stop the inflammatory condition. Physicians frequently recom-
mend more than one. The drugs consist of medications that are non-steroidal anti-
inflammatory (NSAIDs, such as naproxen, aspirin, or ibuprofen), corticosteroids 
(such as prednisone) (such as prednisone), antibiotics for malaria (such as 
hydroxychloroquine), and various other medications, including sulfasalazine, cyclo-
phosphamide, leflunomide, methotrexate, and azathioprine.

https://my.clevelandclinic.org/health/symptoms/17752-joint-pain
https://my.clevelandclinic.org/health/symptoms/4167-abdominal-pain
https://my.clevelandclinic.org/health/symptoms/21206-fatigue
https://my.clevelandclinic.org/health/symptoms/10880-fever
https://my.clevelandclinic.org/health/diseases/8630-urticaria-hives-and-angioedema
https://my.clevelandclinic.org/health/symptoms/21209-chest-pain
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Tocilizumab, adalimumab, certolizumab, etanercept, infliximab, golimumab, 
rituximab, and abatacept are examples of biological medications (Ahmed 2011). 

By adopting healthy lifestyles, people can lower their risk of chronic inflamma-
tion. These practices include getting to and maintaining a healthy weight, limiting or 
stopping smoking, physical workout at a minimum of three to four times a week 
(daily exercise is best), reducing your alcohol intake (maximum 2 ounces per day), 
and reducing stress using beneficial techniques like journaling or yoga (Kore et al. 
2012). 

14.3.1 Mechanism of Inflammation (Muzamil et al. 2021) 

The mechanism of inflammation is expressed in Fig. 14.2. 

14.3.2 Molecular Process of Inflammation 

Pattern recognition receptors (PRRs) are explained by cells of both the adaptive and 
innate immune systems, with unique intracellular receptors that the host cells use to 
first recognize inflammatory stimuli. PRRs are germline-encoded receptors that 
detect the occurrence of cell injury in addition to the existence of infectious 
microbes. Researchers achieve it by recognizing endogenous chemicals caused by 
internal damage, known as danger-associated molecular patterns (DAMPs), with

Fig. 14.2 Mechanism of inflammation



pathogen-associated molecular patterns (PAMPs), which are traits retained in 
microbes (DAMPs). So far, several PRRs have been discovered, including C-type 
lectin receptors (CLRs), NOD-like receptors, RIG-1-like receptors (RLRs), and Toll-
like receptors (TLRs). Such PRRs have the specific ability to detect DAMPs, 
PAMPs, or both (NLRs). When such receptors connect with specific stimuli, signals 
are sent to the nucleus, where transcriptional and posttranscriptional mechanisms use 
them to activate a specific group of genes. The results of these genes specifically 
regulate the expression of proinflammatory cytokines like IL-1, IL-6, and TNF in 
response to bacterial effect. The production of IL-1’s mRNA, or pro-IL-1 in the first 
stage, is started by the TLR-dependent expression of the IL-1 zymogen. The second 
phase is the generation of IL-1 by the caspase-1-mediated cleavage of pro-IL-1. This 
procedure necessitates a high molecular weight complex known as the 
inflammasome that “caspase-1-activates” caspase-1. NLRs are one of the scaffold 
proteins used in the oligomerization process to construct inflammasomes. When a 
virus is present, type-1 interferons trigger the phosphorylation and nuclear translo-
cation of a complex known as interferon-stimulated gene factor 3 (ISGF3), which 
is made up of STAT1 and STAT2 as well as an interferon-regulatory factor 
(IRF) 3. The antiviral gene’s protein kinase R (PKR) and 2′,5′-ISGF3 activate 
oligoadenylate synthase in turn (OAS). PKR inhibits the growth of virus-infected 
cells, whereas OAS prevents viral replication by cleaving viral nucleotides. The 
synthesis of proinflammatory cytokines and chemokines is regulated by a similar set 
of signaling pathways that are activated by signal transductions from PRRs. Identi-
fying transcription factors and DNA motifs on their target genes occupied a signif-
icant portion of earlier investigations. The selected transcription factor with 
sequence-specific DNA binding activity that the right stimulus can only activate is 
NKB. One of the most researched transcriptional regulators, NK-B, has shed light on 
the complex control system that allows for the targeted activation of a particular 
subset of gene expressions. The mammalian NKB family comprises some specific 
proteins. The Rel homology region (RHR), which promotes the development of 
permanent homodimers and heterodimers, is a structural homology region that now 
the members of the NK-κB family share with the retroviral oncoprotein v-Rel in their 
N terminus. I-B proteins with ankyrin repeats are responsible for keeping the 
majority of NK-κB proteins in the cytoplasm of unstimulated cells. The precursor 
proteins p105 and p100, which have an I-B-like ankyrin repeat domain at their C 
termini, are the building blocks for p50 and p52. To trigger specific gene expressions 
in response to stimulation, NK-κB dimers in the cytoplasm are liberated from I-B 
and translocated to the nucleus. Both the phosphorylation of I- κB, which results in 
its ubiquitylation and proteosome-mediated destruction and the inducible proteolytic 
cleavage of the p100:RelB heterodimer’s ankyrin-repeat domain can be used to 
separate NK-κB dimers from I-κB. In addition to NK-κB, different transcription 
factors are essential for the targeted stimulation of inflammatory genes. To name a 
few, these are the activator protein-1 (AP-1), a heterodimer of the basic leucine 
zipper proteins c-Jun and c-Fos, cyclic AMP (cAMP) response element binding 
protein (CREB), a cAMP-induced factor E2F, a transcription factor activated by the 
adenovirus E1A protein in adenovirus-infected cells serum responses factor (SRF),
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and the associated term. Numerous posttranslational mechanisms, including the 
phosphorylation or dephosphorylation of these transcription factors or their inhibi-
tors, are required to stimulate these signaling pathways in reaction to inflammatory 
stimuli. A rising body of research indicates that a variety of epigenetic processes 
tightly regulate the regulation of inflammation. Since the acetylation of histones is 
linked to chromatin configurations that are relaxed and allow transcription, it appears 
to be essential for the stimulation of numerous inflammatory genes. For instance, it 
has been shown that acetylation of histone H3 at the promoter region of numerous 
inflammatory genes causes an increase in the recruitment of NF-B to these promoters 
during inflammation. It is widely acknowledged that numerous inflammatory genes 
are activated by histone acetylation, whereas histone deacetylase (HDAC) activity 
represses these genes. By retaining chromatin in a flexible or compacted condition, 
however, histone methylation, on the other hand, can either activate or repress gene 
transcription (Ahmed 2011).
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14.4 Anti-inflammatory Drugs and Their Classification 
and Mechanism of Action (MOA) 

COX-1 and COX-2 are the two cyclooxygenase isoenzymes. In the body, COX-1 is 
constitutively produced and is involved in maintaining the lining of the gastrointes-
tinal tract, renal function, and platelet aggregation. The body does not express 
COX-2 constitutively; rather, it is induced to do so during an inflammatory reaction. 
The major NSAIDs are nonselective COX-1 and COX-2 inhibitors. The adverse 
effect profile of COX-2-selective NSAIDs, such as celecoxib, is distinct since they 
solely target COX-2. Importantly, COX-2-selective NSAIDs should offer the anti-
inflammatory treatment without harming the gastric mucosa because COX-2 is 
primarily involved in inflammation, and COX-1 is the primary mediator for 
maintaining gastric mucosal integrity. 

Patients with rheumatoid arthritis have a concentration of a PGE2-like chemical 
in their synovial fluid of about 20 ng/ml. Aspirin users saw a drop in this value to 
zero, confirming the drug’s clinically proven impact on PG synthesis (Higgs et al. 
1974). Rats were given s.c. implants of polyester sponges filled with carrageenan to 
cause artificial inflammation (Simmons et al. 1983). The concentration of PGE2 
grew over the course of the 24-hour trial, according to the periodic assessment of the 
inflammatory exudate present inside the sponges. TXA2 and LTB4 output also 
increased, peaked around 4–6 h, and then decreased throughout the duration of the 
experiment. Vasodilatation and hyperalgesia are brought on by PGE2, and polymor-
phonuclear leukocytes are likely drawn to the area by LTB4’s chemotactic properties 
(Ford-Hutchinson et al. 1984). TXA2’s function in the inflammatory response is not 
fully understood, though. Carrageenan was used to cause inflammation in the rat 
paw, providing proof that PGs play a part in the inflammatory response. Aspirin 
stopped the release of endogenous PGs, and when low dosages of exogenous PGE2



(1.0 ng) or prostacyclin (10 ng) were administered, the edema increased (Moncada 
et al. 1973). 
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Fig. 14.3 Classification of NSAIDs 

Experimentally, it was determined that aspirin-like medications had no effect on 
the release of histamine or bradykinin, and more research was conducted to demon-
strate a correlation between the anti-enzyme action of aspirin-like medications and 
their anti-inflammatory properties. Tomlinson et al. (1972) compared the effects of 
naproxen’s two optical isomers and found that the one with anti-inflammatory 
effects (in adjuvant arthritis and carrageenan edema) was also a strong inhibitor of 
PGE2 generation. In every test, the other isomer was significantly less active. Even 
after accounting for protein binding, peak plasma concentrations of a wide variety of 
NSAIDs at therapeutic doses were more than enough to prevent PG production in a 
solitary enzyme preparation (Flower 1974). It was important to find out whether an 
analogous mechanism underpins the side effect profile of aspirin once it was 
established that the anti-inflammatory actions of NSAIDs are mediated by the 
inhibition of PG production. Aspirin’s potential to cause ulcers has been discussed, 
and it is now known that prostacyclin is a crucial cytoprotective substance produced 
by the gastric mucosa. Experimental stomach ulcers can be reversed or prevented by 
administering various PGs, and some recently produced PG compounds are now 
accessible for clinical usage. On the other hand, the ability of certain NSAIDs to 
erode the stomach mucosa is correlated with their anti-enzyme activity. NSAIDs 
inhibit the development of mucosal PG in the clinic. Salicylate has a very low 
erosion index, but it also reduces PG concentration in inflammatory exudate without 
compromising stomach mucosa formation (Whittle et al. 1980). Salicylate differs 
from other aspirin-like medications in this way for unknown reasons (Fig. 14.3). 

MOA of Steroidal Drugs in Inflammation 
The action of phospholipase A2, which is required for the releasing of AA, is 
inhibited by corticosteroids. Corticosteroids finally prevent the development of 
PGs, TX, and LTs. By causing the production of an antagonistic protein, anti-
inflammatory steroids inversely block phospholipase A2. There have been reports



of molecules as large as 15, 30, and 40 kDa for this substance, which has also been 
referred to as macrocortin, lipomodulin, or renocortin. A pure, copied form of 
lipocortin, known by the name agreed upon (Flower 1986) and recently made 
accessible, is said to be a strong anti-inflammatory drug (Wallner et al. 1986). 
Since lipocortins and calpactins seem to have the same mechanism of action, there 
is now some debate regarding this mechanism. It has been proposed that the ability 
of calpactins to link calcium and phospholipid, instead of directly inhibiting phos-
pholipase A2, is what causes the decrease in eicosanoid production (Davidson et al. 
1987). 
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14.5 Anti-inflammatory Drug Discovery Using CADD 

Biologically potent substances including prostaglandins (PGs), leukotrienes (LTs), 
and epoxyeicosatrienoic acids (EETs), usually considered as eicosanoids, are pro-
duced through the cyclooxygenase, lipoxygenase, and epoxygenase pathways. The 
production of prostaglandins (PGs) from the substrate AA is catalyzed by cycloox-
ygenase (COX), known as prostaglandin H2 synthase (PGHS). Prostaglandin (PG), 
thromboxane, and prostacyclin biosynthesis’s first two steps are catalyzed by the 
membrane-bound enzyme COX. The first step involves oxygenating polyunsatu-
rated fatty acids to produce hydroperoxy endoperoxide-PGG2 (cyclooxygenase 
activity), whereas the next step involves reducing PGG2 to hydroxy endoperoxide-
PGH2 (cyclooxygenase activity) (peroxidase activity). 

Whereas the cyclooxygenase (COX) enzyme is present until now. It is thought to 
be in control of catalyzing the conversion of AA to PGG2. It is recently known that 
this enzyme exhibits with two different isoforms as COX-1 and COX-2. Specifically, 
COX-2 was found to be an inducible variant that regulates inflammation and other 
progressive illnesses, including cancer, while COX-1 is a constitutive cytoprotective 
enzyme. Specialized prostaglandins made by the COX-1 enzyme in the stomach 
protect the lining’s natural saliva production. Stomach cavity classic NSAIDs 
include medications like aspirin and ibuprofen. Naproxen inhibits both COX-1 and 
COX-2 isoenzymes. Consistent use, therefore, results in ulcerogenic side effects. On 
the other hand, the new generation of COX-2-selective NSAIDs has no such 
gastrointestinal adverse effects (Ahmed 2011). 

14.6 Anti-inflammatory Drugs Discovered Using CADD 
Approaches: An Update 

Fares et al. (2019) reported N-(2-(2-(4-chlorophenoxy)acetamido)phenyl (com-
pound 1), a novel indole acetamide. The chemicals N-(2-aminophenyl)-2-
(4-chlorophenoxy)acetamide and 1H-indole-2-carboxylic acid were stirred in dry



dichloromethane (DCM), followed by the addition of lutidine, and N,N,N′,N′-O-
(benzotriazole-1-yl)-tetramethyluronium tetrafluoroborate (TBTU) in spectroscopic 
analyses was used to describe the resulting chemical (MS, FT-IR, 1H NMR, 13C 
NMR, UV-visible, and elemental). The in silico modeling study, which targets the 
cyclooxygenase COX-1 and COX-2 domains, verified the anti-inflammatory activ-
ity. With the use of single-crystal X-ray diffraction analyses, the three-dimensional 
structure was identified. Density functional theory computations using the B3LYP 
hybrid functional basis set were used to optimize the compound’s geometry. It was 
discovered through a vibrational examination of the substance that the optimal 
structure is not in an excited state. To comprehend the electrical charge transfer 
within the molecule, the highest occupied molecular orbital (HOMO) and lowest 
unoccupied molecular orbital (LUMO) were examined. Hirshfeld surface analysis 
was used to examine the crystal’s intermolecular interactions. Energy frameworks 
were built to look at the compound’s stability. The various intramolecular interac-
tions were verified using atom-in-molecule (AIM) computations (Al-Ostoot et al. 
2020). 
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Compound 1 

Compound 1 

Mardia et al. (2018) reported novel heterocyclic compounds with antipyrine and 
pyrazolone moieties included have been devised and synthesized as part of a focused 
program for the development of new active drugs. Novel Mannich base derivatives 
have been developed beginning with the 4-arylidene-3-methyl-1-phenyl-5-
pyrazolone derivative compound 2. For their ability to reduce inflammation, they 
were produced and biologically tested. Additionally, these substances’ effectiveness 
as COX-1 and COX-2 inhibitors has been curiously investigated. Elemental analy-
sis, IR, 1H NMR, 13C NMR, and mass spectrometry techniques were used to 
determine the structure of the produced compounds. For both COX-1 and COX-2, 
the high inhibition values were reported. The results acquired in vitro and in vivo 
have been validated using a molecular modeling technique. The findings can be 
applied to the development of more active agents in the future (el Sayed et al. 2018).
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Compound 2 

Compound 2 

David et al. (2018) reported the in vivo anti-inflammatory, analgesic, and ulcero-
genic effects of 12 novel benzothiazole compounds carrying benzenesulphonamide 
and carboxamide were studied. The synthesized compounds displayed excellent 
binding interactions with the receptors, with compound 3 displaying the highest 
binding energy (-12.50 kcal/mol). At 1 h, 2 h, and 3 h, respectively, compound 
3 reduced carrageenan-induced rat paw edema at 72, 76, and 80%. In the analgesic 
activity trial, compound 3 had ED50 (mM/kg) values of 96, after 0.5 h; 102, 1 h; and 
89 mM/kg after 2 h, respectively. These values were comparable to celecoxib’s 
values of 156, 72, and 70 mM/kg. The ulcerogenic index for the most potent 
derivative, compound 3, was 0.82 compared to celecoxib’s 0.92. The novel deriv-
atives’ physicochemical investigations demonstrated that oral bioavailability issues 
would not be an issue (Ugwu et al. 2018). 

Compound 3 

Compound 3 

Kishore et al. (2016) reported new 1,4-disubstituted 1,2,3-triazole-containing 
compounds based on ibuprofen have been made using click chemistry, which has 
proven to be an effective method. When these substances were tested for their in vivo 
anti-inflammatory (AI) activity, compound 4 was found to have a more potent 
impact than the reference AI medication ibuprofen at the same dose (10 mg/kg 
body weight). There was noticeable AI activity in the compounds 4. The bactericidal



profile of these triazole compounds was also examined. Gram-positive and gram-
negative organisms were both significantly resistant to the bactericidal effects of the 
compound. Additionally, in order to forecast the affinity and orientation of these 
novel drugs, molecular docking studies were also conducted on the cyclooxygenase-
2 active site (Angajala et al. 2016). 
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Compound 4 

Compound 4 

Mohammed et al. (2014) reported the vital intermediary in the creation of novel 
hydrazones and pyrazole derivatives was 2-hydrazinyl-N-(4-sulfamoylphenyl)acet-
amide. All substances underwent tests to see how well they inhibited PGE2 synthesis 
in rat serum samples and had anti-inflammatory effects in vivo. The most effective 
drugs’ in vitro IC50 values for inhibiting COX-1 and COX-2 enzymes were 
established, and the drugs were also examined for their ulcerogenic potential. To 
determine their manner of binding to the amino acids, molecular docking was used 
on the COX-2 active site. The majority of the produced compounds had strong anti-
inflammatory action, particularly compound 5 which outperformed diclofenac as the 
reference medication. Compound 5 was less ulcerogenic than the reference medica-
tion indomethacin. In a molecular docking analysis, the majority of the produced 
compounds interacted with Tyr 385 and Ser 530, with compound 5 forming an extra 
hydrogen bond. In vitro, compound 5 had a high selectivity index value of 11.1 for 
COX1/COX-2 inhibition (Mohammed and Nissan 2014). 

Compound 5 

Compound 5
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14.7 Case Study (Omar et al. 2018) 

Conventional nonsteroidal anti-inflammatory drugs (NSAIDs) such as diclofenac, 
indomethacin, and aspirin are both COX inhibitors, i.e., COX-1 and COX-2 drugs 
reduce inflammation but increase the risk of kidney damage and stomach ulcers 
when used for a prolonged period of time. The removal of rofecoxib occurred in 
2004 due to recent research linked with cardiovascular complications (Sibbald 
2004). 

In light of this, we think that selective inhibition of COX-2 and 15-LOX may be 
beneficial for lowering inflammatory diseases while limiting side effects with pro-
spective application. The developed compound IV (Geronikaki et al. 2008) 
containing thiazole and 4-thiazolidinedione rings was demonstrated to be a strong 
COX-1 and 15-LOX inhibitor using CADD, while COX-2 was not inhibited until 
200 M. A similar molecule, V, with a methoxyphenyl group on 4-thiazolidinedione 
was independently described and had superior 15-LOX inhibitory action 
(IC50 = 17.11 M) compared to quercetin. So focusing our target on COX-2 and 
15-LOX, we designed a novel class of molecules comprising both 
4-thiazolidinedione and 1,3,4-thiadiazole. 

14.7.1 Design 

Based on the examples of novel pharmacophores 1,3,4-thiadiazole and 
4-thiazolidinone, we hypothesized the design of novel pharmacophores 1,3,4-
thiadiazole and 4-thiazolidinone within the molecular framework may exhibit potent 
anti-inflammatory activity with fewer side effects. This hypothesis is consistent with 
our goal of developing thiazolidinone hybrids (Mahdavi et al. 2017) and anti-
inflammatory drugs with COX-2 and LOX inhibitory effects (El-Nagar et al. 
2018). It was anticipated that the two scaffolds combined would inhibit COX-2 
(1,3,4-thiadiazole) and LOX (4-thiazolidinone) and give better level of selectivity 
for COX-2 over COX-1 enzyme. Because of their enormous bulk, they cannot fit in  
the small COX-1 pocket for binding (Blobaum and Marnett 2007). Compounds 1, 3, 
and 6a have been synthesized to test these theories. The molecular volume, potency, 
and selectivity of the new hybrid drug, which contains both 1,3,4-thiadiazole 6a and 
4-thiazolidinone, were compared to those of its component molecules, 1,3,4-
thiadiazole (3) and 4-thiazolidinone (1), against the COX-2 and 15-LOX enzymes. 

14.7.2 Chemistry 

Compound 1 (5Z), the compound 5-benzylidene-2-(4-hydroxyanilino)-1,3-thiazol-4 
(5H)-one, is synthesized by utilizing a method that has already been described. With



a 50% total yield, the new intermediate compound 5 was created in four phases as 
per the designed scheme. In order to synthesize the compound, 2, 4-acetoxybenzoyl 
chloride was first treated with thiosemicarbazide in dry THF. When this product was 
then refluxed with phosphorus oxychloride, it was deacetylated and cyclized to 
create compound 3. This was verified by the IR spectra upon cyclization to produce 
compound 3. By carefully adding chloroacetyl chloride over the course of 5 h, 
compound 3 was chloroacetylated, resulting in compound 4. By refluxing compound 
4 with ammonium thiocyanate in ethanol, heterocyclization to give compound 5 was 
accomplished. The effectively synthesizing intermediate compound 5 facilitated our 
study of the variety of aldehydes and the active methylene of the 4-thiazolidinone 
ring undergoing Knoevenagel condensation reactions as per the scheme. Addition of 
piperidine and the corresponding aldehyde to an ethanolic solution of compound 
5 catalyzed this reaction, resulting in the formation of ylidene derivatives 6–9 in  
reasonably good yields of 50–83%. By analyzing with several spectral data, all 
products were identified. 
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14.7.3 Biology 

In Vitro Studies of Cyclooxygenase Lipoxygenase Inhibitory Activity 
Each compound showed that inhibiting capacity against both human recombinant 
COX-2 and ovine COX-1 was examined. Selection index (COX-1 IC50/COX-2 
IC50) and the concentration of the investigated drugs that caused 50% inhibition 
(IC50, M) were computed. In comparison to analogs containing each scaffold 
separately, the hybrid 6a had superior selectivity and efficacy. It targeted both 
COX-2 and 15-LOX (compounds 1 and 3). Selection index of 54 for the COX-2 
enzyme (SI of 3 = 27) and the COX-2 IC50 of 6a are both 0.085 M (IC50 of 
3 = 0.33 M). IC50 for 15-LOX in 6a is 5.74 M (IC50 for 1 is 8.24 M). We were 
encouraged by these minute variations and hypothesized that further modifying the 
arylidene moiety of 6a might allow us to fine-tune the activity of hybrids towards the 
COX-2 and 15-LOX enzymes. 

In Vitro Lipoxygenase Inhibitory Activity 
All substances underwent testing for the soybean 15-LOX enzyme. The newly 
created compounds are more effective against the 15-LOX enzyme than the refer-
ence medication zileuton. Substance 5, which does not have an arylidene moiety, 
was the most active. The IC50 for compound 5 is 3.11 M. The most effective 
derivative of arylidene-containing compounds was 6a, which had an unsubstituted 
phenyl ring (IC50 of 5.74 M). 

In Vivo Anti-inflammatory Activity 
Rats were utilized to choose compounds (6a, 6f, 6i, 6 l, 6 m, and 9) for in vivo 
research using the carrageenan-induced paw edema method at a dose of 28 mol/kg. 
Diclofenac sodium and celecoxib were employed as benchmark medications. The 
data as edema inhibition percentage at 1-, 2-, 3-, and 4-h intervals was carried out.



All substances that were put to the test showed a progressive rise in anti-
inflammatory activity that peaked after 3 h. The most potent derivatives were 
compounds (6a, 6 l, and 9), which also showed similar inhibitory action to the 
reference medicines (Fig. 14.4). 
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Fig. 14.4 Percentage of studied drugs’ ability to reduce edema compared to celecoxib (6a, 6 l, and 
9) (Omar et al. 2018) 

14.7.4 Molecular Modeling 

Using the human COX-2 enzyme (5KIR), a docking study was conducted on 
COX-2 C, and MOE 2016.09 software was used to calculate volume, logP, and 
docking scores. The docking scores were between 7.018 and 7.948, and they roughly 
correlated with the produced drugs’ IC50 values. The three compounds (6 l, 9, 6i), in 
terms of binding and interaction, explore good binding scores with the COX-2 
enzyme. Compound 6 l, for example, forms three hydrogen bonds with Arg 
513 (2.62), Phe 518 (2.05), and Ile 517 (2.42), as well as one hydrophobic interaction 
with Ala 527. Additionally, the hydrogen atoms Arg513 and he518 create two 
hydrogen connections with atom 9. Finally, 6i interacts hydrophobically with 
Ser353 and generates a pair of hydrogen bonds with Arg513 (2.79) and Leu352 
(1.92). 

Study of docking on 15-LOX. For the docking study, the human 15-LOX enzyme 
(4NRE) was employed. The docking scores, which ranged from 3.672 to 5.542, 
roughly correlated with the produced drugs’ IC50 values. The molecular volume and 
IC50 of the produced compounds show a strong association, with smaller molecules



having higher potency than bigger ones. The three most effective chemicals (5, 6a, 
and 8) bind to and interact with Glu 613 by forming a hydrogen bond at a distance of 
2.26, 2.25, and 2.28, respectively. Lys 612 and compound 8 create an extra hydrogen 
bond (2.36). 
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14.8 Conclusion and Future Scope 

Based on merging the pharmacophores of COX inhibitor 2-amino-1,3,4-thiadiazole 
and a 15-LOX inhibitor 4-thiazolodine into a single component, the recent research 
established a unique, rational design as dual COX-2 and 15-LOX inhibitors. The 
experimental data clearly proved that the hybrids are significantly more potent and 
specific than the components of COX-2 and 15-LOX individually. Additionally, 
compounds 6a, 6f, 6i, 6 l, 6 m, and 9 demonstrated anti-inflammatory action that was 
on par with or even superior to celecoxib (Abdelall and Kamel 2016). Cyclooxy-
genase inhibitors are appealing and promising candidates for different inflammatory 
and cancerous diseases in humans. The COX-2 crystal structure could serve as a 
model for comparing human COX-1, 2, and 3 models to improve the understanding 
of the active sites involved in the protein-inhibitor binding mechanism. Currently, 
using the structure to be complex, multiple crystal structures of COX-2 complexes 
with inhibitors are readily available, allowing for employing methods for developing 
drugs that are based on structural knowledge of the targeted and powerful inhibitors. 
The technique focused on the structure to using docking studies; new COX-2 
inhibitors can be created in addition to displaying active site-ligand interactions. 
Several methods and CADD approaches have been developed and are now being 
improved to exploit structural information for the design of analogs, which is 
becoming increasingly helpful. Comparing the predicted and experimental relative 
binding affinities for COX2 inhibitors with similar structural make-ups revealed 
qualitative, semi-quantitative, and quantitative agreement with experimental results 
for the molecular mechanic’s techniques, QSAR, and FEP. These results unmistak-
ably demonstrate that one can predict relative binding affinities using these CADD 
techniques prior to the production and biochemical testing of new analogs, acceler-
ating, and lowering the cost of the drug development process. 
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Chapter 15 
Drug Repurposing and Computational 
Drug Discovery for Viral Infections 
and COVID-19 

M. V. Manohar, Amogha G. Paladhi, Bhoomika Inamdar, 
Kotthapalli Prashanth, Sugumari Vallinayagam, and Mithun Rudrapal 

15.1 Introduction 

In 2019, the world saw an outbreak of severe acute respiratory disorder causing virus 
called coronavirus that is pathogenic in humans. It is found that the virus also has an 
outbreak of pandemic in 2003. In 2012, the outbreak of the same virus termed as 
middle east respiratory syndrome-related coronavirus (MERS-CoV) had a higher 
mortality rate compared to that of SARS-CoV-2 of 2003 (Mohamed et al. 2020). The 
novel coronavirus disease (COVID-19) was emerged from Wuhan where it caused 
infections in Hubei Province, China in March 2020. WHO (World Health Organi-
zation) considered it as a pandemic and termed the virus as SARS-CoV-2 which had 
higher potential of spreading the infection (Hanaei and Rezaei 2020). 
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Afterwards, variants of this virus were created through mutations, resulting in the 
manipulation of the transmission path of coronavirus and to more potential in 
spreading and duplication. Humans play an important role in the mutation of 
coronavirus as their major host to complete and replicate especially in the cells of 
respiratory zone of humans. Thus, governments of respective countries and WHO 
worked up few regulations for the citizens to prevent the infection and the transmis-
sion of the virus, the so-called COVID appropriate rules. It was the duty of civilians 
to bind to such rules to avoid the transmission. The regulations included social 
distancing, self-quarantine, use of sanitizers and frequent hand washing, and 
maintaining a hygienic environment because the transmission of virus took place 
due to droplets that come out of sneezing by infected persons (Rezaei 2020a, b). In 
spite of having preventive actions, the negligence and lack of education among 
people result in the widespread of the virus, failing the efforts of regulation. The 
origin, diagnosis, treatment, and management of transmission of coronavirus are 
challenges that still exist in healthcare system due to failure in abiding the regula-
tions (Basiri et al. 2021; Moazzami et al. 2020). 

15.2 Viral Infections and COVID-19 

Viral infections in human are common all the time, but, in 2019, a new strain of 
pathogenic virus that is harmful to humans was found with the potential of causing a 
pandemic creating an emergency. The breakout of CoV-2 was found to be initiated 
in Wuhan Virology lab. Later, the citizens of the region who visited the sea food 
market noticed the abrupt deaths leading to interest on the cause of death. It was 
found that a virus that infects bats and other civets to complete its lifecycle had 
entered humans making them an important host. Mutations happened such that it 
gave rise to the potential of human to human transmission through droplets or 
aerosols caused by the spray of sneeze or cough. Coronavirus is a pneumonia 
causing class of virus. It contains spike proteins that are responsible for the patho-
genicity of these viruses in host. 

Classification of the virus responsible for current pandemic (2019–till date) is 
found to be Order Nidovirales, Family Coronaviridae, Subfamily 
Orthocoronavirinae, Genus Betacoronavirus, and subgenus sarbecovirus. The 
spike proteins attached to ACE2 receptor in humans are present in the respiratory 
tract. The structure of coronavirus typically contains genetic material, a protein coat 
with spike proteins that are present on the membrane of protein coat. These spike 
proteins (S protein) are found to adhere to ACE2 receptors that lead to the infection 
of virus in the host body, where the generic material of the virus is pushed inside the 
host cell and this material attaches itself to the DNA or genetic material of the host. 
Basically raw materials of the genome are prepared and produced and later the same 
codes are used for membrane proteins. Thus, all the components needed for each 
virus are prepared, and later it combines together in an appropriate manner.
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15.3 Drug Repurposing 

Repurposing or repositioning of drugs is defined as the therapy research of existen-
tial drugs. The aim of this method is to identify and connect the trinity of drugs, 
targets, and diseases. Over 400 human targets are used for current drugs, and these 
targets have been chosen from the genes within the human genome (Oprea and 
Overington 2015). Repurposing takes already approved therapy and screens for 
disease. This implies that novel therapies for diseases are created after an under-
standing of the underlying disease process. The advantage is that rectifying drugs is 
faster and more cost-effective option for diseases than conventional drug develop-
ment methods (Scherman and Fetro 2020; Mahdian et al. 2020). 

15.3.1 Drug Repurposing for COVID-19 

The Food and Drug Administration (FDA) approves drugs for global release, and 
these drugs are then repurposed to develop disease therapies. Remdesivir, 
favipiravir, and ribavirin are drugs which are nucleotide analogue inhibitors used 
to treat COVID-19 viral infection (Beigel et al. 2020). These drugs work by 
interfering with the activity of RdRp (RNA dependent RNA polymerase), which 
prevents viral replication by inducing mutations. Fluorouracil and acyclovir are two 
additional drugs that are used to treat the disease (Dong et al. 2020). 

15.3.1.1 Favipiravir 

Favipiravir is an antiviral drug that was originally developed for influenza research 
and is now being used to treat COVID-19 infections. This is a pro-drug used in 
producing intracellularly phosphoribosylated active metabolite. This metabolite 
inhibits a broad array of RNA viruses, including Arenavirus, Bunyavirus, Flavivirus, 
and Filoviruses that cause hemorrhagic fever (Du and Chen 2020). This drug is taken 
orally and acts by suppressing RdRp of RNA viruses. By inducing mutations in 
nascent viral RNA, this drug contributes in the chain termination process. The 
metabolite acts as a mutagen after this mutation, blocking the coronavirus repair 
mechanism. This blockage may aid in decline of viral replication and infectious viral 
RNA particles (Joshi et al. 2021; Furuta et al. 2017). One research study looked at 
two groups, one with standard therapy and the other with favipiravir, and found that 
the group receiving favipiravir had a powerful impact against the infection and 
showed progressive clinical recovery (Sheahan et al. 2020). Another report looks 
at two groups of people—experimental and control—and found that the drug had a 
stronger antiviral effect than other drugs like lopinavir (Chu et al. 2004).
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15.3.1.2 Remdesivir 

Remdesivir, an RdRp inhibitor and antiviral drug, induces RNA mutation in SARS-
CoV-2, making it a potential therapy option for COVID-19 disease. Remdesivir is a 
pro-drug, also known as a pro-tide drug that functions as a drug inhibiting viral 
replication in the host by converting to an active form (Saqrane et al. 2021). 
Remdesivir’s metabolite (remdesivir triphosphate) interacts with adenosine triphos-
phate in terminating the RNA chain. Before terminating the developing RNA chain, 
Remdesivir inserts three additional nucleotides inhibiting exonuclease activities 
resulting in lack of resistance (Byléhn et al. 2021). Remdesivir is a drug that treats 
Ebola virus disease (EVD) and coronavirus infections including Middle-East respi-
ratory syndrome (MERS) and severe acute respiratory syndrome (SARS) (Dyall 
et al. 2014). After failing to eradicate EVD, this drug was repurposed to treat SARS-
CoV-2 infection (Tchesnokov et al. 2019). Some animal studies support the use of 
repurposed remdesivir in the treatment of the disease, as well as the drug’s efficacy 
against coronaviruses (Sheahan et al. 2017; de Wit et al. 2020). In a new analysis, it 
was discovered that compassionate use of remdesivir improved clinical outcomes in 
70% of severe COVID-19 patients in a cohort trial (Grein et al. 2020). Another trial 
found that remdesivir was better to placebo in reducing the time to recuperation in 
adult COVID-19 patients hospitalized (Wang et al. 2020a). Remdesivir is only 
administered intravenously in severe cases of infection, not in moderate cases, 
because it has side effects that the patient cannot tolerate, such as nausea and abrupt 
respiratory failure (Singh et al. 2020; Goldman et al. 2020). 

15.3.1.3 Ribavirin 

Ribavirin is an antiviral medication used to treat severe respiratory failure. Ribavirin 
is an RdRp inhibitor that suppresses viral replication and is useful in treating 
coronavirus infection. Ribavirin is a guanosine analog that interacts with DNA and 
RNA replication and interferes with RNA capping, limiting RNA degradation 
(Khalili et al. 2020). Several therapeutic interventions are implemented during a 
coronavirus disease epidemic, and repurposed drugs have also been found to have 
in vitro action against related subjects of SARS-CoV-2, a beta-coronavirus. Ribavi-
rin and interferon-α are administered intravenously to individuals at high risk of 
disease development, and it is indicated in the treatment protocol for immediate use 
(Ali et al. 2020). This drug has the adverse effect of developing anemia and did not 
result in any recovery when administered during the SARS and MERS outbreaks, 
but it was progressively modified and repurposed for use during the COVID-19 
outbreak. Ribavirin has a beneficial impact in treating coronavirus infection when 
administered prior to the onset of symptoms of pneumonia and organ failure. This 
drug was originally developed to treat Hepatitis C virus infection; however, it has 
now been repurposed to treat COVID-19 infection (Li et al. 2021). In a cohort trial, 
ribavirin was provided along with a combination of intravenous corticosteroids and



oral prednisolone, which had a favorable impact on the infection while omitting the 
antibiotic medication that had previously been used to diagnose the virus, and this 
study has not come across any adverse effects (Wang et al. 2020b). Another research 
was undertaken with a higher dose of the drug, which revealed certain adverse 
effects such as hemolysis in more than 70% of the trial participants, as well as 
liver toxicities based on increased transaminases. By monitoring the consequences, 
this therapy was promptly halted (Tong et al. 2020). 
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15.3.1.4 Darunavir 

Although this medication is an HIV protease inhibitor and is not currently used to 
treat respiratory syndrome, its repurposing might be beneficial in the treatment of the 
condition. Despite the fact that it is ineffective in the therapy, it is coupled with a 
lower dose of ritonavir and lopinavir, a pharmacoenhancer. Despite being combined 
with ritonavir, lopinavir, or cobicistat, there is no conclusive proof or study that 
Darunavir is utilized in viral diseases other than HIV. 

15.3.1.5 Ritonavir 

In the treatment of respiratory syndrome, this antiviral medication ritonavir should 
be used in conjunction with lopinavir. Basically, lopinavir is an HIV-1 protease 
inhibitor that is also a SARS-COV protease inhibitor when used in combination. 
This medication administration resulted in a lower chance of infection, as well as a 
lower risk of adverse clinical outcomes and viral load. 

15.3.1.6 Arbidol 

Arbidol is now being used to treat influenza A and B viruses, as well as hepatitis C 
virus (HCV). ARB may inhibit virus interaction and penetration into host cells by 
preventing the lipid coat of virus from fusing with the cell membrane. ARB has been 
found to suppress COVID-19 infection. 

15.3.1.7 Chloroquine and Hydroxychloroquine 

For COVID infection, chloroquine was first suggested, followed by 
hydroxychloroquine. The combination of chloroquine and hydroxychloroquine pro-
motes glycosylation of the ACE-2 receptor, to which the SARS-COV-2 binds, 
rendering the cells resistant to infection. Both drugs have immunomodulatory 
effects, and HCQ is currently widely used in the treatment of autoimmune disorders. 
They may be useful in treating the COVID infection and decreasing its severity by 
suppressing the immunological response to SARS-COV-2.
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15.3.1.8 Tocilizumab 

Tocilizumab is an immunosuppressive medication that is used to treat COVID-19 
patients who are hospitalized with symptoms of pneumonia. Clinical studies for this 
drug, however, have had mixed results in COVID-19 disease. Fever had decreased 
substantially after treatment of this drug and symptoms such as cough and pulmo-
nary inflammation had decreased with or without favipiravir combination. 

15.3.1.9 Oseltamivir 

Oseltamivir is a first-line antiviral medication, particularly in primary care settings. 
However, with continuing coronavirus disease 2019 (COVID-19), oseltamivir has 
been utilized by the majority of symptomatic COVID-19 patients. Oseltamivir must 
be evaluated in the treatment of COVID-19 due to its widespread use and critical role 
as an antiviral drug. This drug is neuraminidase inhibitor approved by FDA. 

15.3.1.10 REGN-COV2 

This is an antibody cocktail used in the treatment of COVID infection that has 
demonstrated to decrease viral load. REGN-COV2 is composed of two human 
immunoglobulins that target the receptor-binding region of the SARS-CoV-2 spike 
protein, preventing viral entry into human cells through the use of the angiotensin-
converting enzyme 2 (ACE-2) receptor (Table 15.1). 

15.4 Computational Methods 

Considering the fact that discovery of the new drug is time consuming and expen-
sive, various approaches have been made to treat the current outbreak of coronavirus 
in which drugs have been reused to treat the symptoms due to its positive results, 
analysis were made regarding the computational approach where different present 
day drugs that are used to treat other viral infections were repurposed by formulating 
them in such a manner that can possibly control or reduce the infection of corona-
virus (Wang and Guan 2021). 

15.4.1 Molecular Docking Methods 

Molecular docking methods are the techniques used as desired approaches in drug 
repurposing due to its property of binding of ligands to proteins that have 
multidimensional structures. These are very helpful in approaching higher proteins 
(Masoudi-Sobhanzadeh et al. 2019).
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Table 15.1 Drugs repurposed by computational approaches for antiviral therapies 

Target proteins Drug administered References 

SARS-CoV-2 main protease (Mpro or 
3CLpro) 

Darunavir, mitoxantrone, nelfinavir, 
moexipril, daunorubicin, rosuvastatin, 
saquinavir, metamizole, bepotastine, 
benzonatate, atovaquone 

Mittal et al. 
(2021) 

SARS-CoV-2 main protease (Mpro or 
3CLpro) 

Leupeptin, hemisulfate, pepstatin A, 
nelfinavir, birinapant, lypressin, 
octreotide 

Mittal et al. 
(2021) 

RdRp Ribavirin, remdesivir, sofosbuvir, 
galidesivir, tenofovir, 
hydroxychloroquine, cefuroxime, 
favipiravir, setrobuvir, YAK, IDX-184 

Elfiky 
(2020) 

SARS-CoV-2 main protease (Mpro or 
3CLpro) 

Ritonavir, emetine, lopinavir, indinavir 
(only listed part of the results) 

Das et al. 
(2021) 

SARS-CoV-2 main protease (Mpro or 
3CLpro), human transmembrane prote-
ase serine 2 (TMPRSS2) 

Talampicillin, lurasidone, rubitecan, 
loprazolam (only listed part of the 
results) 

Elmezayen 
et al. 
(2020) 

SARS-CoV-2 main protease (Mpro or 
3CLpro) 

Perampanel, carprofen, celecoxib, 
alprazolam, trovafloxacin, sarafloxacin, 
ethyl biscoumacetate 

Gimeno 
et al. 
(2020) 

SARS-CoV-2 main protease (Mpro or 
3CLpro), RdRp, Helicase, 3′–5′ exo-
nuclease, endoRNAse, 2′-O-ribose 
methyltransferase 

Atazanavir, ganciclovir, lopinavir, rito-
navir, darunavir, and so forth (only 
listed part of the results) 

Beck et al. 
(2020) 

SARS-CoV-2 main protease (Mpro or 
3CLpro), Spike (S) protein 

Cangrelor, NADH, flavin adenine 
dinucleotide (FAD) adeflavin, 
comeprol, Coenzyme A, tiludronate, 
zanamivir, bortezomib, saquinavir, 
cangrelor, carfilzomib, indinavir, 
remdesivir 

Hall and Ji 
(2020) 

SARS-CoV-2 envelope (E) protein Belachinal, macaflavanone E, vibsanol 
B 

Gupta et al. 
(2021) 

Spike (S) protein Suramin sodium, 5-hydroxytrytophan, 
dihydroergocristine mesylate, 
quinupristin, nilotinib, dexamethasone-
21-sulfobenzoate, tirilazad, selamectin, 
acetyldigitoxin, doramectin 

de Oliveira 
et al. 
(2021) 

Spike (S) protein or Spike (S) protein– 
ACE2 interface complex 

Pemirolast, sulfamethoxazole, 
valaciclovir, sulfamerazine, 
tazobactam, nitrofurantoin 

Batra et al. 
(2020) 

Spike (S) protein CR3022 human antibody, F26G19 
mouse antibody, D12 mouse antibody 

Park et al. 
(2020)
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15.4.2 Network-Based Techniques 

The network-based techniques are designed in such a way that they are usually not 
used to treat unique or rare diseases for which the metabolic pathway of the disease is 
known where the approach of molecules using the particular drug that is repurposed 
can be known by investigating the metabolic pathways. Because the metabolism of 
rare or unknown disease is not known, it is difficult for the designing of drugs to 
repurpose and also it risks the success rate of treatment (Masoudi-Sobhanzadeh et al. 
2019). 

15.4.3 Connectivity-MAP (CMAP) Methods 

The technique includes relationship between the diseases and genes where it requires 
a large amount of genomic data. Connectivity-MAP method cannot be used in 
conditions where the subject are different cell lines or platforms where the data is 
not similar. Repurposing of the drugs in such cases does not concern the treatment 
and lacks success (Masoudi-Sobhanzadeh et al. 2019). 

15.4.4 Data for Specific Goal 

Obtaining data from various sources by different procedures such as machine 
learning and data mining is an important way to obtain the knowledge of novel 
drug uses which helps in repurposing specific drugs and also helps compute the 
drugs to a particular rare, unknown, or new disease based on the available data about 
those drugs. The repositioning or repurposing increases the chances of success in the 
use of computational drug therapies (Masoudi-Sobhanzadeh et al. 2019). 

15.5 Summary and Conclusion 

Techniques like repurposing drugs and computing them to treat a disease with less 
known or unknown data hinder the success rate of the treatment due to the failure of 
blocking molecules that causes pathogenicity in the host. Methods like network-
based techniques and metabolic pathway-based methods are designed in such a way 
that the treatment works only if the metabolic pathway of the particular disease is 
well known. Also, C-MAP and data-specific treatment also depend on genetic 
information and the available data of the disease; enhancing the efficiency of disease 
approach can be done by monitoring the structure of the drugs used. There might be 
limitations due to the lack of data which can be corrected by the use of technology



and software engineering techniques and skills. The investigator or analyst that 
designed the repurposing of drugs should be aware of the cost effectiveness and 
time consumption. 
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From the above, we can conclude that repurposing of the drugs for computational 
drug therapy is one of the best ways of approach to treat diseases like COVID-19 and 
other viral issues. The method of synthesis of desired drug takes a longer time and 
also demands more economical support. Repurposing of drugs is done as per the 
available data due to which the efficiency of the prepared computational drug is 
pre-known and the data present helps in mapping medicine for viral infections and 
corona. Researchers must use the known data to engineer drugs in a sequence after 
repurposing. 
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