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Abstract. In this paper, we investigate a deep Q-network (DQN)-based
method for applying a dynamic spectrum access model to device-to-
device (D2D) communications underlying cellular networks. Dynamic
spectrum access (DSA) devices have two critical concerns, namely avoid-
ing interference to primary users (PUs) and interference coordination
with other secondary users (SUs). We consider that the issues faced by
DSA users are also applicable to the D2D communication underlying
cellular network. Therefore, we propose a distributed dynamic spectrum
access scheme based on deep reinforcement learning (DRL). It enables
each D2D user to learn a reliable spectrum access policy through imper-
fect spectrum sensing without knowledge of system prior information,
avoiding collisions with cellular users and other D2D users and maximiz-
ing system throughput. Finally, the simulation results demonstrate the
effectiveness of our proposed dynamic spectrum access scheme.

Keywords: Device-to-device (D2D) communication · Distributed
dynamic spectrum access (DSA) · Deep reinforcement learning (DRL)

1 Introduction

Radio spectrum resources are an essential resource. According to a white paper
published by Cisco on global mobile data traffic forecasts for 2017–2022, global
mobile data traffic will grow sevenfold between 2017 and 2022 [1]. However,
related studies have revealed a phenomenon that many spectrum resources are
not used effectively [2,3]. D2D communication technology is considered a feasi-
ble solution to the problem of poor spectrum resources, with the advantages of
improved spectrum efficiency and reduced communication delays [4,5]. Further-
more, considering the limitations of traditional static spectrum allocation poli-
cies, dynamic spectrum access techniques have also been proposed to improve
spectrum efficiency [6]. In D2D communication technology, cellular users are
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subject to severe interference when D2D users share the same spectrum as cel-
lular users and strong interference between D2D users can also seriously affect
the quality of communication [4,7,8]. Similarly, dynamic spectrum access also
faces two fundamental problems, namely interference coordination between DSA
users and interference suppression for primary users [9].

Previous research has proposed a number of schemes for spectrum allocation
between D2D users and cellular users [10,11]. These studies investigated the
reuse of cellular user resources by D2D communication users in a non-orthogonal
spectrum allocation. In [10], the authors proposed a distributed Q-learning-based
spectrum allocation scheme to maximize D2D user system throughput and main-
tain the QoS requirements for cellular users. In [11], the authors proposed a
distributed DRL-based spectrum allocation scheme to address the issue of inter-
ference and resource allocation between D2D and cellular users, with the aim of
maximizing system throughput. However, little existing research has considered
the use of distributed spectrum access schemes to avoid conflicts between D2D
communication users and cellular users as well as other D2D users.

In this paper, we consider an uplink scenario of a D2D underlying cellular
communication network, and to address the collision problem between DUEs and
CUEs, we propose a DRL-based distributed dynamic spectrum access scheme. In
particular, we introduce the concept of a “reusable area” [12], where D2D users
can choose the number of reusable CUEs based on the range of “reusable areas”.
According to the DRL theory, we enable each agent to learn the optimal access
policy only through imperfect spectrum sensing without knowing the system a
priori information, increasing the system throughput while avoiding collisions
with other DUEs and CUEs.

2 System Model

We consider a dynamic spectrum access scenario in the uplink of a D2D under-
lying cellular network. As shown in Fig. 1, the system model includes N cellular
users (CUEs) denoted by N = {1, 2, . . . , N} and K pairs of D2D users denoted
by K = {1, 2, . . . ,K}, each D2D pair consists of a set of transmitters (DTx) and
receivers (DRx). dii denotes the distance between DTx and DRx, djk denotes the
distance between the CUEs and the BS, and dik denotes the distance between
DTx and the BS. We assume that the system has N channels and that each
CUE transmits on a unique channel, thus avoiding interference between CUEs.

2.1 Channel Model

We adopt the WINNER II channel model to calculate the path loss generated by
the signal propagation in space [15], which is described as a distance-dependent
function

PL (d, fc) = PL + B log10(d[m]) + C log10

(
fc (GHz)

5

)
, (1)
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Fig. 1. Uplink scenario for D2D communications underlying cellular networks.

where fc denotes the carrier frequency, PL, B and C denote the unit distance
loss reference, the path loss exponent and the path loss frequency dependence,
respectively. For simplicity, we assume the existence of a strong line of sight
(LOS) path between the signal transmission links. Therefore, our model can use
the Rician channel model for channel modeling [13], which can be expressed as

h =
√

κ

κ + 1
σejθ +

√
1

κ + 1
CN

(
0, σ2

)
(2)

where σ2 = 10− PL+B·log10(d[m])+C·log10( fc[GHz]
5 )

10 is determined by path loss, κ
means the κ − factor, defined as the power ratio of the LOS component to
the scattering component, θ denotes the phase and takes the value of a uniform
distribution between 0 and 1, CN (·) denotes a circularly symmetric complex
Gaussian random variable.

2.2 Uplink Signal Model

For the uplink scenario, when DUEs and CUEs transmit in the same time slot,
DUEs can cause harmful interference to CUEs. Hence, the instantaneous signal
to interference plus noise ratio (SINR) received by the BS from the CUEs can
be expressed as

SINRj =
Pc · |hjk|2

Pd · |hik|2 + B · N0

(3)

where Pc and Pd represent the transmit power of the CUE and the DTx, respec-
tively. |hjk|2 denotes the channel gain of the cellular link, and |hik|2 denotes the
channel gain from the ith D2D transmitter to the BS, , which can be derived
according to (2). B and N0 represent the channel bandwidth and noise spectral
density, respectively. Furthermore, we assume in this model that each channel
can be used by at most one D2D pair.
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Fig. 2. Dynamic spectrum access framework based on D2D underlying cellular net-
works.

3 DRL-based Dynamic Spectrum Access Scheme

3.1 Deep Reinforcement Learning

A reinforcement learning model contains three components: possible states in
the environment, possible actions that the agent may take based on a policy π,
and a feedback reward function that the agent receives after making an action.
These three components are defined as st, at, and rt+1. The goal of the agent
is to learn an optimal policy π∗ to maximize the cumulative discount reward
Rt =

∑∞
i=0 γirt+1+i, where γ ∈ [0, 1] represents the discount factor. Q-values

are updated with the following rules:

Q (st, at) =Q (st, at) +

α
(
rt+1 + γ max

a
Q (st+1, a) − Q (st, at)

)
,

(4)

where α ∈ (0, 1] is the learning rate. Furthermore, the policy function π is
updated by means of the ε-greedy algorithm.

DRL uses deep neural network (DNN) to approximate Q values (DQN),
i.e. Q(st, at;θ) ≈ Q(st, at), where θ is the network weights. In DQN, the TD
algorithm is mostly used to calculate the loss function,

Loss(θ) = E[(yt − Q(st, at;θ))2] (5)

where yt represents the target Q-value and is defined as

yt = rt+1 + γ max
a

Q (st+1, a;θ) (6)

After that, the agent can minimize the loss function by the gradient descent
algorithm as follows:

θt+1 = θt + αE [(yt − Q (st, at;θ)) ∇Q (st, at;θ)] (7)

where α is the learning rate.
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3.2 Uplink Dynamic Spectrum Access Framework

In our proposed scheme, as shown in Fig. 2, we have designed the distributed
dynamic spectrum access as a deep reinforcement learning model. In Sect. 2, we
show that the system model consists of N channels and K D2D users, where
each channel is occupied by a CUE. Therefore, we describe the channel states
as Active and Inactive, denoted by 0 and 1 respectively, where Active indicates
that the channel is occupied by a CUE and Inactive indicates that the channel is
not occupied by a CUE. In addition, the detailed definitions of “state”, “action”
and “reward” are as follows.
State: At the beginning of each time slot, each D2D pair will sense the channel
state in the environment, which may contain errors. Subsequently, the agent uses
the sensed results as input data for the neural network to be trained. Therefore,
the state space Sk(t) of each D2D pair is defined as Sk(t) = [sk

1(t), . . . , s
k
n(t)],

where Sk(t) denotes an N -dimensional vector, k denotes the kth D2D pair, n
denotes the number of channels and sk

n(t) denotes the state of the channel (Active
or Inactive).
Action: The agent decides whether to access and which wireless channel to
access based on the spectrum access policy. Hence, the action space A can be
defined as A ∈ {0, 1, . . . , N}, where at = 0 means that the agent does not access
the channel and at = N means that the agent accesses the nth channel.
Rewards: According to the situations that the agent may face after making an
action choice, the following reward function setting scheme is developed.

1. The D2D pair collides with the CUE. This indicates that the D2D pair
accesses the channel where the CUE is located when the cellular link resources
cannot be reused. In Sect. 2, we mention the concept of warning signals.
Therefore, we give a penalty value of −4 as the result of a warning signal
being received by the agent. For convenience, we define this case as C.

2. A collision between D2D users. This case indicates that different D2D users
are accessing the same channel. We set the reward value for this case to 0
and define this case as D.

3. The D2D pairs do not access any channel. We set the reward value for this
case to 1. Similarly, we define this case as I.

4. The D2D pair successfully accesses the channel. The reward value for this case
should be set to the maximum. We considered the normalized ˆSINRj and
applied it to our reward function setting, described as 1 + log2(1 + ˆSINRj).
We define this case as S.

In summary, the reward function for the kth D2D pair on the nth channel can
be described as

rk
t+1 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−4, Case C

0, Case D

1, Case I

1 + log2(1 + ˆSINRj), Case S

(8)
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Fig. 3. Performance evaluation in non-orthogonal scenarios (P = 1
2
R).

Fig. 4. Performance evaluation in non-orthogonal scenarios (P = R).

4 Performance Evaluation

In this section, we evaluate the performance of the algorithmic framework pro-
posed in the scheme. Specifically, we compare the algorithm used in the scheme
with the Myopic algorithm [14] based on a priori information about the system
and the DQN+ESN [13] to verify the performance.

In our scheme, we consider a cellular cell scenario with a radius of 100m.
The locations of the D2D pair and the CUE in this cell are randomly generated
and we specify that the communication distance between the transmitter and
the receiver of the D2D pair is randomly generated in the range of 20 m and
40 m. Therefore, the location of the CUE may fall within the “reusable area”
that we have defined. We express the percentage of the reusable area in the cell
by P = π·L2

th

π·R2 , where the choice of the threshold distance Lth is determined by
the value of P . The specific simulation parameters are shown in Table 1.
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Table 1. Simulation parameters

Parameter Value

Cell radius 100 m

Carrier frequency 2 GHz

Bandwidth 2 MHz

D2D transmit power Pd 23 dBm

CUE transmit power PC 23 dBm

Noise power density N0 −174 dBm/Hz

Path loss reference PL 41

Path loss exponent B 22.7

Path loss frequency dependencer C 20

κ factor 8

Learning rate α 0.01

Discount factor γ 0.5

Exploration ε 0.7 −→ 0

Spectrum sensing error probability (0, 0.2)

In this scenario, we set the number of D2D users to 4 and the number of
CUEs to 2. The positions of the CUEs are randomly generated, and by calculat-
ing the distances from the CUEs to the BS, we can obtain the distances to be
95.75 m and 30.36 m. Therefore, we first consider the case of P = 1

2R, after which
we can calculate the corresponding threshold distance Lth of 50

√
2 m. According

to the range of reusable zones corresponding to the threshold distance, the D2D
pair can reuse one CUE resource. The simulation results are shown in Fig. 3,
where the performance obtained using the DQN-based method is significantly
better than using the Myopic algorithm. In particular, the Myopic algorithm
selects the action with the greatest immediate reward and therefore it performs
well in avoiding collisions with the CUE. However, simulation results show that
using the DQN-based method after training also maximizes throughput while
achieving collision avoidance. In this scenario, our scheme performs approxi-
mately the same as DQN+ESN. Additionally, we consider the non-orthogonal
access scenario when P = R. In this scenario, the reusable area covers the entire
cellular cell. Therefore, all CUEs in the cell can be reused by the D2D pair. The
simulation result is shown in Fig. 4, which shows that our scheme achieves the
theoretical maximum success rate and has better throughput.

5 Conclusion

In this paper, we investigated the case of dynamic spectrum access in the uplink
of a D2D underlying cellular network. Specifically, we proposed a distributed
dynamic spectrum access scheme under imperfect spectrum sensing conditions,
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which aims to allow D2D users to learn an optimal spectrum access policy to
maximize throughput without knowing a priori information. Besides, we intro-
duced the concept of a reusable area, where the D2D user can choose the number
of reusable CUEs based on the coverage of that area. Simulation results show
that our scheme can avoid collisions while maximizing the system throughput.
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