
Extracting Low-Power Code Pattern
Method Through Power Measurement
of Software Code

Bo Kyung Park and Su Nam Choi

Abstract In the 4th Industrial Revolution, embedded systems were composed of
high specification hardware for high performance and low power consumption. The
software operating in such an environment should be capable of stable operation in
an environment where resources are limited, such as limited hardware and memory,
while maintaining original performance. This increase in power consumption leads
to a reduction in the available time and an increase in heat generation. Software
using high-end hardware increases the power consumption of the device. Even-
tually, these problems lead to SW/HW errors and shortened device life. This paper
proposes a method to minimize power consumption through low power consumption
code patterns in the core control structures (loop, branch, modulization, parameter
passing). To make this possible, we define some low power code patterns. We can
optimize the core code’s performance and power efficiency by improving the most
complex areas of the software code.

Keywords Low power consumption · Low-power code pattern · Performance

1 Introduction

The use of smart embedded devices has been rapidly spreading in the 4th Industrial
Revolution fields such as drones, autonomous robots, and smartphones. The software
operating on these embedded systems must maintain the original high performance
developed in the existing development environment. Furthermore, software must
perform reliable behavior even in environments with limited hardware resources,
such as limited power and memory [1]. This increase in power consumption leads

B. K. Park (B) · S. N. Choi
Chinju National University of Education, Jinju 52673, Gyeongnam, Korea
e-mail: parkse@cue.ac.kr

S. N. Choi
e-mail: csnpower@cue.ac.kr

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
J. S. Park et al. (eds.), Advances in Computer Science and Ubiquitous Computing,
Lecture Notes in Electrical Engineering 1028,
https://doi.org/10.1007/978-981-99-1252-0_89

661

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-1252-0_89&domain=pdf
mailto:parkse@cue.ac.kr
mailto:csnpower@cue.ac.kr
https://doi.org/10.1007/978-981-99-1252-0_89

662 B. K. Park and S. N. Choi

to a reduction in the available time and an increase in heat generation. Eventually,
these problems lead to malfunctioning the device and shortened life.

In order to solve the problem of stable operation of the embedded system, studies
are conducted to lower the amount of power consumed and increase the efficiency of
energy use. In particular, there are many studies on low-power systems. Research on
low-power software design techniques, such as operating systems and application
programs, which consume as little power as possible and maintain performance
quality, has been conducted in the recent years. However, the design and development
of low-power software depend on the developer’s skill and intuition without software
quality standards [2].

To solve this problem, this paper proposes a method for minimizing power
consumption through the power measurement of the software code. This method
measures the power used by each code in the high-level step. Then we extract a
low-power code pattern that can reduce power. We apply this improved code with
the newly defined low power pattern in this paper to reduce the amount of power
consumed by the software code.

The composition of this paper is as follows. Section 2 introduces code-based
low-power research. Section 3 explains the newly defined low-power code pattern
through power measurement experiments. Finally, Sect. 4 describes the conclusions
of this study and future research directions.

2 Related Works

Software optimization research for low power has techniques to reduce power
consumption at the code level. Researchers define it as Energy Bug or Energy Code
Smell. This coding technique can reduce power consumption by analyzing codes
constituting program logic.

The Energy Code Smell is a pattern that is likely to reduce power consumption
[3]. This pattern is classified into nine different patterns (Parameter by value, Self-
Assignment, Mutual exclusion OR, Switch Redundant assignment, Dead local store,
Repeated conditionals, Non-short circuit, Useless control flow). These classified
patterns reduce power consumption through refactoring. This method can reduce
energy consumption, but it can increase the opposite. Therefore, all patterns are not
effective at low power. Table 1 gives Energy Bad Smell [4] defined in other research
that makes up for defects.

Extracting Low-Power Code Pattern Method Through Power … 663

Table 1 Energy bad smell

Energy Bad Smells Definition Pattern and definition

Complex expression Code containing very complex
expressions

if((a = = b) && (b = = c) || (a +
d > = 0)){
//Statement
}else if(!(a = = b) && (b = = c)
|| (a + d < 0)){
//Statement
}else{ //Statement}

Common sub-expression Multiple codes containing the
same task

or (If Statement){
a = x + y + 1;
b = (x + y) + z;}

Tail recursion Code that is called recursively int decrease(int a){
if(a > 0){
return decrease(a – 1);
}else{ return 0;}}

Loop structure A loop that can be optimized by
adjusting the structure

– Multiple Index Variable
– Double-loop structure
– Declaration of global variable
in loop

Dead code Code that does not run under
any conditions

Codes that are not used in entire
execution

3 Low-Power Code Pattern to Minimize Power
Consumption

We mention about low-power software code patterns to minimize power consump-
tion. In order to propose a method of minimizing power consumption through source
code power measurement, we measure the power consumption of code patterns within
the basic control structures using ARM’s ULINK Plus module [5]. We then classify
the patterns based on the language paradigm to present a low-power code pattern.

3.1 Low-Power Pattern

➀ First, we configure the environment for source code power measurement. To do
that, we use ARM’s ULINK Plus module and Keil MCU Eval Board to measure
the power of the source code [6]. ➁ After building the source code measurement
environment, we run the Keil uVision5 IDE to create a new project. Keil uVision5
IDE is software that supports code measurement of software. ➂ Enter the source
code to measure power in Keil uVision5. ➃ When the environment is configured, run
the project. Projects are executed in the order of Build, Run, and Debug. ➄ When
entering the debugging mode, the power consumption of the input source code can

664 B. K. Park and S. N. Choi

Fig. 1 Procedure of the low power pattern extraction through the power measurement of the source
code

be measured. Finally, ➅ Define the low power pattern by referring to the measured
power value and graph (Fig. 1).

3.2 Power Measurement Environment

We mention how to provide a power measurement environment. Connecting the
ULINK plus module to the MCBSTM32F200 Board makes software development
possible with the Keil tool, and the code result can be checked on the LCD screen.
Keil is power measurement software provided by ARM. The connection method is as
follows. First, connect the 25 mA module to the ULINK plus module, then connect to
the 3V3uC pin of the MCBSTM32F200 Board. Then, power is supplied through the
ground. It is connected to the USB port of the PC to supply power. Finally, connect
the board and module to the PC and create a new project in the Keil uVision5 IDE.
When everything is done, create a c file. We can measure power consumption by
writing code (or loading code) and running in debugging mode (Fig. 2).

In ➀, it indicates the start and end points of the program. To measure the power
during program execution, we must measure the current used up to this start and
end point. In ➁, the voltage is constantly supplied with 3.3 V. Actually, there is

Fig. 2 Graph of the measurement results

Extracting Low-Power Code Pattern Method Through Power … 665

a difference on the graph, but it is measured at 3.3 V because the difference is a
small amount that changes in 1/1,000,000 units. When we click the start point with a
mouse, a green line appears. When we place the cursor on the desired point, various
information is displayed as shown on the right. The data of ➂ shows the current
amount, the delta current amount between the start point (green line) and the end
point (red line), the average current amperage amount, and the cumulative current
amperage amount from the start point to the end point. By substituting this into Eq.
(1), the amount of power can be measured. Equation (1) is the power formula.

P = V × I (1)

3.3 Low-Power Code Pattern Definition

To measure the power of software code, we analyze the code power pattern of the
procedural language paradigm. Even the code that prints the same result is written
differently depending on the developer’s coding tendency. For example, multiple
conditions can be added at one time by using the AND or OR operator on one
condition in a grade program. On the other hand, we can write code using multiple if
statements. Alternatively, we can use if ~ then ~ else and switch statements. In this
case, power consumption may be reduced or increased depending on the conditional
statement. Through these comparisons, this study defined a total of four procedural
code patterns and measured power. Each pattern measures power at least 50 times
and averages it (Table 2).

“Double if control statements (➀)” uses two if statements to operate on two
conditional statements. && operation (➁) is performed in the conditional state-
ment. The current average value of ➀ is 1.591362 mA. The current average value
of ➀ is 1.591362 mA. Equation (1) is used for power consumption. Then, the
power consumption of ➀ is 5.2514946 mW. Since the average current value of ➁
is 1.584462 mA, the power consumption of ➁ is 5.2287246 mW. Therefore, it is
possible to reduce power consumption by using the && operator in one conditional
expression rather than multiple if statements.

In ➂ Multiple if the else, we judge various conditions with one variable. In
➃ Switch ~ Case, we judge various conditions as switch case statements like
➂. The current average value of ➂ is 1.802542 mA. ➂’s power consumption is
5.9483886 mW. The average value of ➃ is 1.725534 mA, so the power consumption
is 5.6942622 mW. Therefore, it is possible to reduce power consumption using a
switch case statement rather than multiple if-then-else.

“Loop Down Count (➄)” outputs A while i decreases from 100 to 0 by one.
“Loop Up Count (➅)” outputs A 100 times as i increases from 0 to 100 by one.
The average current value of ➄ is 1.594938 mA, so the power consumption is
5.2632954 mW. The current average value of ➅ is 1.598812 mA, so the power

666 B. K. Park and S. N. Choi

Ta
bl
e
2

M
ea
su
re
m
en
t r
es
ul
ts
 o
f
lo
w
-p
ow

er
 c
od
e
pa
tte
rn

It
em

Pa
tte

rn
 n
am

e

C
od
e
pa
tte
rn

1)
 D
ou
bl
e
if
 c
on
tr
ol
 s
ta
te
m
en
ts

2)
 if
 s
ta
te
m
en
t t
ha
t i
nc
lu
de
s
&
&
 o
pe
ra
tio

n

in
t m

ai
n(
){

Sy
st
em

C
lo
ck
_C

on
fig

()
;

in
t a
 =

 80
, b

 =
 90

;
if
 (
 a
 >
 =

 80
)
{

if
 (
 b
 >
 9
0)
 {

G
L
C
D
_D

ra
w
St
ri
ng
(0
,0
,“
A
”)
;}
}

re
tu
rn
 0
;}

in
t m

ai
n(
)
{

Sy
st
em

C
lo
ck
_C

on
fig

()
;

in
t a
 =

 80
, b

 =
 90

;
if
 (
a
>
 =

 80
 &

&
 b
 >
 9
0)
 {

G
L
C
D
_D

ra
w
St
ri
ng
(0
,0
,“
A
”)
;}

re
tu
rn
 0
;}

M
ea
su
re
d
va
lu
e

A
ve
ra
ge
 v
al
ue
: 1

.5
91
36
2
(m

A
)

A
ve
ra
ge
 v
al
ue
: 1

.5
84
46
2(
m
A
)

It
em

3)
 M

ul
tip

le
 if
 th

e
el
se

4)
 S
w
itc

h
~
C
as
e

C
od
e
pa
tte
rn

in
t m

ai
n(
){

Sy
st
em

C
lo
ck
_C

on
fig

()
;

in
t a
 =

 80
;

if
 (
a
=

=
 80
)
{

G
L
C
D
_D

ra
w
St
ri
ng
(0
,0
,“
A
”)
;

}e
ls
e
if
 (
a
=

=
 70
){

G
L
C
D
_D

ra
w
St
ri
ng
(0
,0
,“
B
”)
;

}e
ls
e
if
 (
a
=

=
 90
){

G
L
C
D
_D

ra
w
St
ri
ng
 (
0,
0,
“C

”)
;

}e
ls
e
if
 (
a
=

=
 60
){

G
L
C
D
_D

ra
w
St
ri
ng
 (
0,
0,
“D

”)
;}
 r
et
ur
n
0;
}

in
t m

ai
n(
)
{

Sy
st
em

C
lo
ck
_C

on
fig

()
;

in
t a
 =

 80
;

sw
itc

h
(a
){

ca
se
 8
0:

G
L
C
D
_D

ra
w
St
ri
ng
 (
0,
0,
“A

”)
; b

re
ak
:

ca
se
 7
0:

G
L
C
D
_D

ra
w
St
ri
ng
 (
0,
0,
“A

”)
; b

re
ak
:

ca
se
 9
0:

G
L
C
D
_D

ra
w
St
ri
ng
(0
,0
,“
A
”)
;

br
ea
k:

ca
se
 6
0:

G
L
C
D
_D

ra
w
St
ri
ng
(0
,0
,“
A
”)
;

br
ea
k:
}

re
tu
rn
 0
;}

M
ea
su
re
d
va
lu
e

A
ve
ra
ge
 v
al
ue
: 1

.8
02
54
2
(m

A
)

A
ve
ra
ge
 v
al
ue
: 1

.7
25
53
4
(m

A
)

It
em

5)
 L
oo
p
do
w
n
co
un
t

6)
 L
oo
p
up
 c
ou
nt

(c
on
tin

ue
d)

Extracting Low-Power Code Pattern Method Through Power … 667

Ta
bl
e
2

(c
on
tin

ue
d)

It
em

Pa
tte

rn
na
m
e

C
od
e
pa
tte
rn

in
t m

ai
n(
){

Sy
st
em

C
lo
ck
_C

on
fig

()
;

in
t i
;

fo
r
(i
 =

 10
0;
 i
>
 0
; i
–)
{

G
L
C
D
_D

ra
w
St
ri
ng
(1
6
*
i,0

,”
A
”)
;}

re
tu
rn
 0
;}

in
t m

ai
n(
){

Sy
st
em

C
lo
ck
_C

on
fig

()
;

in
t i
;

fo
r
(i
 =

 0;
 i
<
 1
00
; i
+
+
)
{

G
L
C
D
_D

ra
w
St
ri
ng
(1
6
*
i,0

,”
A
”)
;}

re
tu
rn
 0
;}

M
ea
su
re
d
va
lu
e

A
ve
ra
ge
 v
al
ue
: 1

.5
94
93
8
(m

A
)

A
ve
ra
ge
 v
al
ue
: 1

.5
98
81
2
(m

A
)

It
em

7)
 F
or
 lo

op
8)
 W

hi
le
 lo

op
9)
 D
o-
W
hi
le
 lo

op

C
od
e
pa
tte
rn

in
t m

ai
n(
){

Sy
st
em

C
lo
ck
_C

on
fig

()
;

in
t i
 =

 0;

fo
r
(i
 =

 0;
 i
<
 1
00
;i+

+
)
{

G
L
C
D
_D

ra
w
St
ri
ng
 (
16
 *

I,
0,
”A

”)
;

}
re
tu
rn

0;

}

in
t m

ai
n(
){

Sy
st
em

C
lo
ck
_C

on
fig

()
;

in
t i
 =

 0;

w
hi
le
(i
 <
 1
00
){

G
L
C
D
_D

ra
w
St
ri
ng
 (
16
 *
 I
,0
,”
A
”)
;

i+
+
 ;

}r
et
ur
n
0;
}

in
t m

ai
n(
)
{

Sy
st
em

C
lo
ck
_C

on
fig

()
;

in
t i
 =

 0;

do
 {

G
L
C
D
_D

ra
w
St
ri
ng
 (
16
 *
 I
,0
,”
A
”)
;

i+
+
 ;

}
w
hi
le
(i
 <
 1
00
);

re
tu
rn
 0
;}

M
ea
su
re
d
va
lu
e

A
ve
ra
ge
 v
al
ue
: 1

.8
02
54
2

(m
A
)

A
ve
ra
ge
 v
al
ue
: 1

.7
25
53
4
(m

A
)

A
ve
ra
ge
 v
al
ue
: 1

.7
40
03
6
(m

A
)

668 B. K. Park and S. N. Choi

consumption is 5.2760796 mW. Therefore, the use of Loop Down Count can reduce
power consumption.

The power consumption of “For Loop (➆)” is 5.2741656 mW. The power
consumption of “While Loop (➇)” is 5.2287246 mW. The power consumption of
“Do-While Loop (➈)” is 5.2587678 mW. Using the Do-While statement can consume
the least amount of power, but the use of the While statement is recommended because
the statement must be executed first due to the nature of the Do-While statement.

4 Conclusion

In this study, we propose a method to minimize power consumption through low
power consumption code patterns in key control structures (loop, branch, modula-
tion, parameter passing) to develop high quality software. We presented a code that
consumes high power consumption through power measurement of high-level codes.
However, the difference in power measurement values is insufficient. Therefore, we
will measure the power of more complex and larger codes. We will also need to
produce reliable results through various experimental data, systematic experimental
scenarios.

References

1. Hyun Sik A, Bo Kyung P, Chul RY, Kim, Du K, Kim (2020) Code visualization approach for low
level power improvement via identifying performance dissipation. KIPS Trans. Comp. Comm.
Sys. 9(10), 213–220

2. Bo Kyung P, Byungkook J, Kim RYC (2019) Improvement practices in the performance of a
CPS multiple-joint robotics simulator. Appl Sci 10, 185–198

3. Vetro V, Ardito L, Procaccianti G, Morisio M (2013) Definition, implementation and validation
of energy code smells: an exploratory study on an embedded system. In: The third international
conference on smart grids, pp 33–39

4. Jae-Wuk L, Doohwan K, Jang-Eui H (2016) Code refactoring techniques based on energy bad
smells for reducing energy consumption. KIPS Tr. Software Data Eng 5(5):209–220

5. ARM ULINK Plus. http://www.emthink.com/ulink/plus
6. ARM Keil MCU Eval Board. http://www.emthink.com/mcb

http://www.emthink.com/ulink/plus
http://www.emthink.com/mcb

	 Extracting Low-Power Code Pattern Method Through Power Measurement of Software Code
	1 Introduction
	2 Related Works
	3 Low-Power Code Pattern to Minimize Power Consumption
	3.1 Low-Power Pattern
	3.2 Power Measurement Environment
	3.3 Low-Power Code Pattern Definition

	4 Conclusion
	References

