
Enhancing System Utilization 
by Dynamic Reallocation of Computing 
Nodes 

Seungmin Lee, Hee Jin Jang, and Min Ah Kim 

Abstract The field has expanded as supercomputers deal with different char-
acteristics of workloads such as traditional scientific computing and data inten-
sive computing. A batch queue-based Parallel Batch System (PBS) scheduler that 
manages high performance computing (HPC) tasks and a Kubernetes platform for 
managing data intensive applications are applied. Computing nodes are currently 
divided into static partitions for each workload. However, it provides better overall 
resource utilization of supercomputer as dynamically reallocating computing nodes 
to partitions according to the number of waiting jobs. In this work, we propose an 
approach to dynamic resource reallocation of computing nodes. We distinguish our 
approach from previous works in that our approach provides isolation of software 
stack and reallocates resources with a bare-metal environment suitable for preventing 
conflicts between two heterogeneous platforms. We considered node level realloca-
tion which means that allocation is done to the partition in computing node level 
rather than sharing components of computing resources. A test scenario is used to 
demonstrate the process and feasibility of this approach and the result shows that it 
can improve system utilization. 

Keywords Dynamic reallocation · Heterogeneous platform · Supercomputer

S. Lee (B) · H. J. Jang · M. A. Kim 
Korea Institute of Science and Technology Information, Daejeon 34141, Republic of Korea 
e-mail: smlee76@kisti.re.kr 

H. J. Jang 
e-mail: jhj@kisti.re.kr 

M. A. Kim 
e-mail: petimina@kisti.re.kr 

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023 
J. S. Park et al. (eds.), Advances in Computer Science and Ubiquitous Computing, 
Lecture Notes in Electrical Engineering 1028, 
https://doi.org/10.1007/978-981-99-1252-0_24 

197

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-1252-0_24&domain=pdf
mailto:smlee76@kisti.re.kr
mailto:jhj@kisti.re.kr
mailto:petimina@kisti.re.kr
https://doi.org/10.1007/978-981-99-1252-0_24


198 S. Lee et al.

1 Introduction 

The field has expanded as supercomputers deal with different characteristics of work-
loads such as traditional scientific computing and data intensive computing. Data 
intensive computing uses a data parallel approach to process huge data sets with a 
great diversity of types so that it requires deferent data processing approaches. A 
batch queue-based Parallel Batch System (PBS) scheduler that manages high perfor-
mance computing (HPC) tasks for traditional scientific computing and a Kubernetes 
platform for managing data intensive applications, especially big data analysis, are 
applied in one of the largest supercomputer, NURION in KISTI [1]. 

Computing nodes are currently divided into static partitions to process HPC work-
loads and big data analytics workloads. However, computing nodes become idle 
when jobs are not enough for one partition, as a consequence waste resources if 
there are jobs waiting computing resources in another partition. It provides better 
overall resource utilization of supercomputer, therefore, as dynamically reallocating 
computing nodes to partitions according to the number of waiting jobs as shown in 
Fig. 1. 

There is a study that applied dynamic resource partitioning to the Athena develop-
ment system using Mesos [2] and reported experiences on mixed workload [3]. In our 
case, problems arise when frameworks using different software stacks are installed 
and used on the local disk of computing nodes. A machine oriented mini-server 
(MOM) daemon of PBS scheduler not only runs and manages jobs and monitors 
resource usage on each computing node but also prohibit user daemon from listening 
port. However, user daemon is inevitable to enforce the principle of least privilege 
in Jupyter notebook service that leverage big data tools [4]. 

In this paper, we propose an approach to dynamic resource reallocation of 
computing nodes. We distinguish our approach from previous solutions in that it 
provides isolation of software stack and reallocates resources with a bare-metal envi-
ronment suitable for preventing problems mentioned above. The remainder of this

Fig. 1 Dynamically redistributing computing nodes to HPC and DIC partition according to tasks 
waiting in the job queue 



Enhancing System Utilization by Dynamic Reallocation of Computing … 199

paper is organized as follows: Sect. 2 introduces the proposed approach. Section 3 
shows the experimental results and analysis. And Sect. 4 concludes this paper. 

2 Methodology 

In this section, we describe the key components and the reallocation process of 
computing nodes. Since HPC and DIC workloads have different characteristics, we 
first considered node level reallocation which means that allocation is done to the 
partition in computing node level rather than sharing components of computing 
resources (i.e., memory and network) so that each application can be executed 
according to its own characteristics without interruption. Second, the matching 
between tasks that request resources and available resources is determined by 
the number of CPUs. Last but not the least, the minimum resource of the parti-
tion managed by each scheduler is set as default (i.e., non-swappable and non-
reallocatable) to prevent starvation of tasks in one partition. We briefly describe 
main components of dynamic resource reallocation as follows:

• Task monitoring to gather information about waiting tasks periodically
• A computing node manager to add and delete computing nodes to and from 

partitions managed by the scheduler
• A database (DB) that stores information and status about computing nodes
• A dynamic node manager that determines the need for reallocation through 

the overall system situation and by combining decision method according to 
information about available resources 

Figure 2 the main components for dynamic resource reallocation and a sequence 
in the process shows a relation among main components and a sequence in the 
process. First, the dynamic node manager is a component that performs decision 
making, and collects information on waiting tasks and available resources through 
the local scheduler periodically. Then, it calculates the number of nodes required in 
each partition based on the collected information and decides whether to reallocate 
currently allocated computing nodes.

When a situation meets the resource reallocation policy, the suitable nodes are 
selected from the database, and the nodes are rebooted to the new disk image so that 
the selected computing nodes are allocated to a new partition. After assigned to a 
new partition, finally the database information is updated. 

3 Results and Discussion 

Figure 3 shows a testbed to demonstrate the feasibility of our approach. In order 
to manage heterogeneous platform-based task execution environments and services, 
bare-metal environment is advantageous in providing stable services. Though the



200 S. Lee et al.

Fig. 2 The main components for dynamic resource reallocation and a sequence in the process

Fig. 3 A testbed environment to demonstrate the feasibility of dynamic resource reallocation 

testbed was configured in a virtual machine, we can easily apply this environment 
to the real computing node of supercomputer by changing computing node manager 
from a hypervisor of VirtualBox to a MaaS (Metal as a Service) management tool. 

Figure 4 confirms that overall throughput is improved by dynamically reallocating 
resources for the test scenario. In the initial environment, the node managed by the 
PBS scheduler and the node managed by Kubernetes are 3 nodes respectively, and 
2 cpu processors per node. The High Performance LINPACK (HPL) benchmark 
requests 4 cpu resources per job, and the pbs-worker2 and pbs-worker3 nodes are 
assigned as shown in Fig. 4a. Among all idle resources, the resources allocated to the 
HPC partition are not sufficient to process the HPL job requiring 4 cores, so the jobs 
are waiting in the queue. At this time, based on the resource reallocation policy, the 
node of the DIC partition is reallocated (pbs-worker4) to the HPC partition. As in 
Fig. 4b, another job is allocated resources and executed, indicating that it is changed 
to the running state.

Two jobs using spark framework that request resources of DIC partition through 
Kubernetes are submitted in Fig. 4c. Each creates one driver and one work process, 
and each process requires 2 cores. Since there are 4 available cpu cores, 2 nodes with 
2 cores are available, so one job can be executed, but the driver process preempts 2



Enhancing System Utilization by Dynamic Reallocation of Computing … 201

Fig. 4 A sample scenario to show the improved throughput by applying dynamic reallocation of 
computing nodes to each partition

cores in each job with the Kubernetes scheduler as non-preemption, so the worker 
process cannot be allocated resources result in pending of the task. After making a 
decision about the resource reallocation, the pbs-worker3 node in the HPC partition 
is reassigned to the DIC partition and switched as k8s-worker3. And then the resource 
is allocated to another worker of the previous pending task in DIC partition and all 
task changed to running state (Fig. 4d). 

4 Conclusion 

This work enhances overall system utilization of supercomputer as dynamic reallo-
cating resources and solves the conflict problems between heterogeneous platforms 
executed on the same computing node by applying node level reallocation with a 
bare-metal environment. We implement a testbed and simulate a test scenario to 
demonstrate the feasibility of dynamic resource reallocation and the result shows 
that our approach can improve system utilization. 

Acknowledgements This work was supported by the National Research Council of Science & 
Technology (NST) grant by the Korea government (MSIT) (No. CRC21011). 

References 

1. Lee S, Park JW, Jeong K, Hahm J (2021) Implementation of a container-based interactive 
environment for big-data analysis on supercomputer. In: Park JJ, Fong SJ, Pan Y, Sung Y 
(eds) Advances in computer science and ubiquitous computing (Lecture notes in electrical 
engineering), vol 715. Springer, Singapore. https://doi.org/10.1007/978-981-15-9343-7_58

https://doi.org/10.1007/978-981-15-9343-7_58


202 S. Lee et al.

2. Hindman B, Konwinski A, Zaharia M, Ghodsi A, Joseph AD, Katz RH et al. (2011) Mesos: 
a platform for fine-grained resource sharing in the data center. In: USENIX Symposium on 
Networked Systems Design and Implementation (NSDI) 

3. Ayyalasomayajula, West K (2017) Experiences running different work load managers across 
cray platforms. In: Cray User Group conference (CUG’17) 

4. Jupyter Notebook. [Online] Available: https://jupyter.org

https://jupyter.org

	 Enhancing System Utilization by Dynamic Reallocation of Computing Nodes
	1 Introduction
	2 Methodology
	3 Results and Discussion
	4 Conclusion
	References




