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FMN Flavin mononucleotide 
NADH Nicotinamide adenine dinucleotide 
NADPH Nicotinamide adenine dinucleotide phosphate 

1 Introduction 

Due to human interventions, huge loads of pollutants enter into aquatic environment 
through various sources like dumping and disposal, increased industrialization, and 
direct discharge. Various studies on cytochrome P450 (CYP) have revealed its use as 
a biomarker for aquatic contamination (Lee et al. 2005). Molecular biomarkers such 
as CYP have been shown to be very useful for the detection of fatal disturbances in 
fish (Bucheli and Fent 1995). They respond to a wide variety of xenobiotics and 
therefore detect the presence of both known and unknown pollutants relevant for 
organisms (Lemaire et al. 2010). CYP enzymes help in the transformation of 
environmental contaminants like harmful drugs and carcinogens and in the disinte-
gration of endogenous substrates like prostanoids, steroids, vitamins, and fatty acids 
(Havelkova et al. 2007). 

Cytochrome P450 was first explained by Klingenberg in 1948, and since then, 
this enzyme system has been studied intensively. In fishes, the first CYP gene was 
first isolated from rainbow trout followed by some other fishes in the late 1980s 
(Stegeman 1989; Winston et al. 1988; Uno et al. 2012). Cytochromes are generally 
most prevalent in the endoplasmic reticulum or mitochondria of the liver which 
accounts for 1 to 2% mass of hepatocytes (Kilemade et al. 2009). However, 
cytochromes are also present in other organs like the olfactory system, heart, gonads, 
kidney, gills, brain, alimentary canal, and placenta (Arukwe 2002; Arellano et al. 
2009; Siroka and Dratichova 2004). Cytochrome was discovered as a pigment with 
maximum absorption at 450 nm, thus got its name as cytochrome P450; however, 
the inactive form of CYP has maximum absorption at 420 nm, same as other 
hemoproteins (Schenkman and Jansson 1998). 

Based on the transfer of NADPH electrons to the catalytic site, P450 enzymes are 
classified into four classes (Table 1) (Werck-Reichhart and Feyereisen 2000). 

The cytochrome P450 Standardized Nomenclature Committee suggested catego-
rization based on the degree of similarity between amino acid sequences and has 
classified P450 genes as isoforms, families, and subfamilies (Nelson 1999). A CYP 
gene is granted in a subfamily when the homology percentage is greater than 55% 
and in a family when it is greater than 40% (Nelson 1999). But this type of 
classification has been argued due to the new sequences that are being described. 
At the VII P450 International Symposium, a different classification based on bio-
logical P450 functions was recommended (Kelly et al. 2006). So far, 18 CYP 
families are identified in fishes, viz., CYP1, CYP2, CYP3, CYP4, CYP5, CYP7, 
CYP8, CYP11, CYP17, CYP19, CYP20, CYP21, CYP24, CYP26, CYP27, CYP39,



CYP46, and CYP51, out of which only 8 families are studied in detail, i.e., CYP1, 
CYP2, CYP3, CYP4, CYP11, CYP17, CYP19, and CYP26. 
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Table 1 Classification of CYP 

Class I Flavin adenine dinucleotide reductase (FAD) and ferric redoxin sulfur are required 
Commonly found in eukaryotes 
Helps in detoxification 

Class II Need flavin mononucleotide (FMN) 
Commonly found in eukaryotes 
Helps in detoxification 

Class III There is no requirement for any electron donors 

Class IV Accepts electrons from NADPH (nicotinamide adenine dinucleotide phosphate) 

The main functions of different CYP families along with the respective species in 
which they are found are summarized in Table 2. 

CYP has been identified from fresh, marine, and brackish-water fish. Some 
freshwater fish include Atlantic salmon, rainbow trout, catfish, zebrafish, carp, 
Chinook salmon, crucian carp, pufferfish, rohu, catla, mrigal carp, medaka, Japanese 
medaka, common whitefish, toad fish, tilapia, killifish, stripey sea perch, winter 
flounder, mummichog, fathead minnow, bluegill, blue gourami, and guppy. Some 
marine water fish include Atlantic croaker, mangrove killifish, European sea bass, 
marine flatfish, southern stingray, and dogfish shark, while Japanese pufferfish and 
rita are some examples of brackish-water fish. 

All CYP families are found in the liver of respective fish species except CYP11. 
The sites of induction of different CYP families and subfamilies are summarized in 
Table 3. 

NADPH (nicotinamide adenine dinucleotide phosphate)-cytochrome P450 reduc-
tase and the phospholipid membrane fraction are the two key factors influencing 
CYP activity. The general monooxygenase reaction mediated by CYP manifests as: 

RHþ O2 þ NADPHþ Hþ Cytochrome P450 →ROHþ H2Oþ NADPþ 

In the above monooxygenase reaction, due to the insertion of an oxygen atom, 
one molecule becomes more polar than the other. In actual, the entire reaction is 
much more complicated because the cytochrome may utilize oxygen from peroxides 
in addition to molecular oxygen and NADH may also supply electrons (Shalan et al. 
2018). 

As depicted in the above reaction, NADPH reductase and membrane phospho-
lipids are also required. The function of NADPH reductase is to transfer electrons on 
cytochrome P450 with the help of FAD (flavin adenine dinucleotide) and FMN 
(flavin mononucleotide) prosthetic groups. The detailed schematic representation of 
this reaction is illustrated in Fig. 1.



(continued)
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Table 2 Functions of CYP families in the respective fish species 

Family Functions Species References 

CYP 1 Hydroxylation of pregnen-
olone, metabolism of 
xenobiotics, probable regu-
lator of gas and fluids in 
gills 
Helps in embryogenesis, 
detoxification, and 
excretion 

Atlantic salmon (Salmo 
salar), Atlantic croaker 
(Micropogonias 
undulatus), Japanese 
pufferfish (Takifugu 
rubripes), rainbow trout 
(Oncorhynchus mykiss), 
catfish (Ancistrus 
multispinis), zebrafish 
(Danio rerio), carp 
(Cyprinus carpio), 
pufferfish (Takifugu 
obscures), Chinook salmon 
(Oncorhynchus 
tshawytscha), Rita (Rita 
rita), crucian carp (hybrid-
ized Prussian carp), man-
grove killifish (Rivulus 
marmoratus), European sea 
bass (Dicentrarchus 
labrax) 

Lee et al. (2005), Klemz 
et al. (2010), Tuan et al. 
(2014), Rahman and 
Thomas (2012), Sakamoto 
et al. (2003), Zanette et al. 
(2009), Meyer et al. 
(2002), Brammell et al. 
(2010), Jung et al. (2011), 
Stien et al. (1998), 
Arukwe (2002) and Kim 
et al. (2004, 2008) 

CYP 2 Metabolism of 
nitrosodialkylamines 
Metabolism of xenobiotic 
Hydroxylation of lauric 
acid 
Epoxylation of arachidonic 
acid 

Rainbow trout 
(Oncorhynchus mykiss), 
Japanese pufferfish 
(Takifugu rubripes), striped 
sea perch (Lutjanus 
carponotatus), threadfin 
butterfly (Chaetodon 
auriga), atoll butterfly 
(Chaetodon mertensii), 
zebrafish (Danio rerio), 
graysby sea bass 
(Cephalopholis cruentata), 
tomtate grunt (Haemulon 
aurolineatum), channel 
catfish (Ictalurus 
punctatus), rohu (Labeo 
rohita), Catla catla, mrigal 
carp (Cirrhinus mrigala) 

Ruus et al. (2002), Kaplan 
et al. (1999), Yang et al. 
(2000), Wang-Buhler et al. 
(2005), Haasch (2002), 
Oleksiak et al. (2000, 
2003), Schlenk et al. 
(2002), Buhler et al. 
(1994) and Yang et al. 
(1998) 

CYP 3 Metabolism of xenobiotics 
Hydroxylation of 
testosterone 

Japanese pufferfish 
(Takifugu rubripes), toad 
fish (Opsanus tau), 
zebrafish (Danio rerio), 
rohu (Labeo rohita), Catla 
catla, mrigal carp 
(Cirrhinus mrigala), rain-
bow trout (Oncorhynchus 
mykiss), European sea bass 
(Dicentrarchus labrax), 
medaka (Oryzias latipes), 

Lee et al. (2001), Lee and 
Buhler (2003), Nelson 
(2003), Barber et al. 
(2007), Christen et al. 
(2010), Kullman and 
Hinton (2001) and 
Kashiwada et al. (2005)



fathead minnow
(Pimephales promelas)

(continued)
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Table 2 (continued)

Family Functions Species References 

CYP 4 Metabolism of free fatty 
acids 
Hydroxylation of lauric 
acid 

Toad fish (Opsanus tau), 
zebrafish (Danio rerio), 
rare minnow (Gobiocypris 
rarus) 
Rainbow trout 
(Oncorhynchus mykiss) 
Japanese pufferfish 
(Takifugu rubripes) 
European sea bass 
(Dicentrarchus labrax) 
Bluegill (Lepomis 
macrochirus) 

Simpson (1997), Ibabe 
et al. (2002) and Falckh 
et al. (1997) 

CYP 5 Biosynthesis of 
thromboxane 

Japanese pufferfish 
(Takifugu rubripes) 
Zebrafish (Danio rerio) 

Arellano et al. (2009), 
Siroka and Dratichova 
(2004) and Uno et al. 
(2012) 

CYP 7 Steroid metabolism Japanese pufferfish 
(Takifugu rubripes) 
Zebrafish (Danio rerio) 

Arellano et al. (2009), 
Siroka and Dratichova 
(2004) and Uno et al. 
(2012) 

CYP 8 Biosynthesis of 
prostacycline 

Japanese pufferfish 
(Takifugu rubripes) 
Zebrafish (Danio rerio) 

Arellano et al. (2009), 
Siroka and Dratichova 
(2004) and Uno et al. 
(2012) 

CYP 
11 

Steroid biosynthesis and 
cholesterol hydroxylation 

Rainbow trout 
(Oncorhynchus mykiss), 
Japanese eel (Anguilla 
japonica), European sea 
bass (Dicentrarchus 
labrax), Nile tilapia 
(Oreochromis niloticus), 
Japanese pufferfish 
(Takifugu rubripes), 
zebrafish (Danio rerio), 
southern stingray (Dasyatis 
americana), Black porgy 
fish (Acanthopagrus 
schlegelii), Atlantic salmon 
(Salmo salar), Medaka 
(Oryzias latipes) 

Nunez and Trant (1997), 
Hsu et al. (2002), Nelson 
(2003) and Socorro et al. 
(2007) 

CYP 
17 

Steroid biosynthesis 
Hydroxylation of pregnen-
olone, progesterone, and 
corticosteroids 

Rainbow trout 
(Oncorhynchus mykiss), 
Japanese pufferfish 
(Takifugu rubripes), 
zebrafish (Danio rerio), 
fathead minnow 
(Pimephales promelas) 

Filby et al. (2007), Wang 
and Ge (2004), Wang-
Buhler et al. (2005) and 
Yu et al. (2003)



Dogfish shark (Squalus
acanthias), European perch
(Perca fluviatilis)
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Table 2 (continued)

Family Functions Species References 

CYP 
19 

Steroid biosynthesis 
Aromatization of andro-
gens and testosterone 

Rare minnow (Gobiocypris 
rarus), rainbow trout 
(Oncorhynchus mykiss), 
carp (Cyprinus carpio), 
channel catfish (Ictalurus 
punctatus), zebrafish 
(Danio rerio), catfish 
(Clarias gariepinus), Nile 
tilapia (Oreochromis 
niloticus), guppy (Poecilia 
reticulate), rice field eel 
(Monopterus albus) 

Simpson et al. (1994), 
Chang et al. (1997) and 
Barney et al. (2008) 

CYP 
20 

Unknown Zebrafish (Danio rerio), 
Japanese pufferfish 
(Takifugu rubripes) 

Arellano et al. (2009), 
Siroka and Dratichova 
(2004) and Uno et al. 
(2012) 

CYP 
21 

Steroid biosynthesis Zebrafish (Danio rerio), 
Japanese pufferfish 
(Takifugu rubripes) 

Arellano et al. (2009), 
Siroka and Dratichova 
(2004) and Uno et al. 
(2012) 

CYP 
24 

Vitamin D metabolism Zebrafish (Danio rerio), 
Japanese pufferfish 
(Takifugu rubripes) 

Arellano et al. (2009), 
Siroka and Dratichova 
(2004) and Uno et al. 
(2012) 

CYP 
26 

Retinoid metabolism 
Hydroxylation of retinoic 
acid 

Japanese pufferfish 
(Takifugu rubripes), 
zebrafish (Danio rerio) 

Gu et al. (2005), Zhao 
et al. (2005), Nelson 
(2003) and Kudoh et al. 
(2002) 

CYP 
27 

Bile acid biosynthesis Zebrafish (Danio rerio), 
Japanese pufferfish 
(Takifugu rubripes) 

Arellano et al. (2009), 
Siroka and Dratichova 
(2004) and Uno et al. 
(2012) 

CYP 
39 

Steroid biosynthesis Zebrafish (Danio rerio) Arellano et al. (2009), 
Siroka and Dratichova 
(2004) and Uno et al. 
(2012) 

CYP 
46 

Steroid biosynthesis Zebrafish (Danio rerio), 
Japanese pufferfish 
(Takifugu rubripes) 

Arellano et al. (2009), 
Siroka and Dratichova 
(2004) and Uno et al. 
(2012) 

CYP 
51 

Fungal isoforms Zebrafish (Danio rerio), 
Japanese pufferfish 
(Takifugu rubripes) 

Arellano et al. (2009), 
Siroka and Dratichova 
(2004) and Uno et al. 
(2012)
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Fig. 1 Metabolic pathway of cytochrome P450. (Fe iron atom in P450 heme, RH substrate, ROH 
oxidized product) 

2 Cytochrome P450 Metabolism 

Cytochrome P450 (CYP 450) is recognized to perform a substantial role in the 
oxidative metabolism/biotransformation of an enormous arraying together the 
endogenous and exogenous compounds and is thought to be one of the most 
significant phase I biotransformation enzymes (Siroka and Dratichova 2004). 
CYP1 to CYP3 are regarded as the most important families of CYP that are 
accountable for the xenobiotic metabolism and to lesser extent CYP4, while cyto-
chrome P450 enzymes metabolize endogenous substrates (Ioannides and Lewis 
2004). Quantifiable reactions to an organism being exposed to xenobiotics are 
known as biochemical markers. They can react to a set of either similar or extremely 
diverse xenobiotics because they react to the mechanism of toxic activity rather than 
the presence of a specific xenobiotic. Biochemical indicators indicate the type of 
toxicity; for some of them, the strength of the reaction is correlated with the pollution 
level (Siroka and Dratichova 2004).
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P450 enzymes are found mostly in the endoplasmic reticulum of hepatocytes, but 
their production can also be triggered in organs such as the lungs, colon, kidney, 
heart, skin, gonads, brain, and placental tissue (Van der Oost et al. 2003). During 
phase I metabolism, these enzymes regulate oxidation, reduction, and hydrolysis 
processes, and their function is to biosynthesize substances such as steroids, fatty 
acids, and prostaglandins (Groves 2005). In fish, CYP1A subfamily plays a signif-
icant role in the metabolism and activation of carcinogenesis and is used as a 
biomarker to estimate contamination of the aquatic environment (Brammell et al. 
2010; Jung et al. 2011). Various authors (Rabergh et al. 2000; Morrison et al. 1998; 
Arukwe 2002; Kim et al. 2004, 2008; Fu et al. 2011) isolated cDNAs encoding 
CYP1A enzymes from several fish species [rainbow trout (Oncorhynchus mykiss), 
mummichog (Fundulus heteroclitus), Atlantic salmon (Salmo salar), medaka 
(Oryzias latipes), yellow catfish (Pelteobagrus fulvidraco), yellow catfish 
(Pelteobagrus fulvidraco)], respectively, and also from hermaphroditic fish, man-
grove killifish (Rivulus marmoratus) (Lee et al. 2005). 7-ethoxyresorufin, estradiol, 
and benzopyrene are all metabolized by CYP1A expressed from zebrafish (Danio 
rerio) cDNA (Scornaienchi et al. 2010). E. coli transformed with CYP1A9 cDNA 
from Japanese eel (Anguilla japonica) bioconverts estradiol and flavanone (Uno 
et al. 2008). Each isoform is involved in the metabolism of a wide variety of 
substances, and many cytochrome isoforms can metabolize the same substrate. But 
nearly every isoform has a unique substrate that may be utilized to recognize it 
(Lewis 2001). However, P450 isoforms are highly substrate-specific in bacterial and 
mitochondrial cytochrome (Lewis 2001). 

3 Effects of Environmental Pollutants on Cytochrome P450 
(CYP1A) 

Fish CYP1A is induced by a variety of environmental pollutants, and CYP1A has 
been recognized as a biomarker for the assessment of aquatic pollution. Furthermore, 
induction of CYP1A has been associated with detrimental outcomes in exposed fish, 
such as embryonic death and programmed cell death (apoptosis) (Dong et al. 2002). 
As a result, pharmaceutical substance interactions with the CYP1A enzyme are 
considered to be toxicologically substantial in fish. By measuring CYP1A mRNA 
levels, it is possible to track the transcriptional response to the CYP1A induction 
response caused by pollutants (Rees and Li 2004). There is limited documentation 
on the toxicity of ATR (atrazine) and CPF (chlorpyrifos) in freshwater fish. It is 
unclear how CYP1A affects the biotransformation of CPF (chlorpyrifos) and ATR 
(atrazine) in fish. According to Chang et al. (2005), common carp exposure to 7-ppb 
ATR (atrazine) could induce CYP1A1 mRNA level after 4 days. According to Xing 
et al. (2014), CYP1A, which is essential for fish liver antidotal function, was induced 
in the mRNA expression patterns and EROD activity in carp liver by ATR, CPF, and 
ATR/CPF combination. Salaberria et al. (2009) revealed a dose-dependent rise in



vitellogenin (Vtg) as well as a decrease in CYP1A. Additionally, CYP1A varied in a 
hormetic manner with testosterone (T) concentrations and was negatively correlated 
with liver CAT (catalase activity) and 17 beta-estradiol (E2). These results showed 
the potential for ATR to alter hepatic metabolism, produce estrogenic effects, and 
induce oxidative stress in vivo, as well as the relationship between these effects. In a 
previous investigation, a significant alteration in glutathione S-transferase and anti-
oxidant enzymes was found in the liver of the same carp (Xing et al. 2012a, b). These 
studies (CYP1A, glutathione S-transferase, and antioxidant enzymes) revealed that 
ATR and CPF, both alone and together, affect the liver of carp. Liver microsomal 
EROD activity is often used to assess fish CYP1A induction. According to Torre 
et al. (2011), the effects of musk xylene on EROD activity and CYP1A mRNA 
levels in PLHC-1 and RTG-2 fish cell lines were distinct. The highest concentration 
of pesticides used increased EROD activity by about twofold. At the same time, the 
amount of CYP1A mRNA rose sixfold to sevenfold, as we are all aware that protein 
is what gives enzymes their chemical makeup. The process of transforming RNA 
into protein is known as translation, and it can be hampered by a number of reasons. 
As a result, fluctuations in mRNA levels and enzyme activity are often inconsistent. 
The results show that pesticides (ATR and CPF) can boost CYP1A expression. 
However, more research is needed to see if the CYP1A induction has a direct effect 
on the overall CYP rise. 
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Cytochrome P450s (CYPs) and heat-shock proteins (HSPs) are key predictors for 
determining contamination levels in the aquatic system (Yamashita et al. 2004; Alak 
et al. 2017). Planar constituents of numerous polycyclic aromatic hydrocarbons 
(PAH), polychlorinated naphthalenes, polychlorinated dibenzodioxins and dibenzo-
furans (PCDD, PCDF), polychlorinated biphenyls (PCB), and others induce 
CYP-1A in organisms exposed to a wide spectrum of environmental contaminants 
(Fent 2001). When a foreign substance binds to a cellular receptor, CYP-1A may be 
induced (Perdew and Poland 1988). This binding stimulates the CYP-1A gene to 
express, which enhances RNA transcription (Okey et al. 1994), and thus boost 
CYP-1A synthesis (Hassanain et al. 2007). As a result, CYP-1A induction is used 
as a biomarker in fish and fish cell systems to indicate exposure to such contami-
nants. CYP-1A induction has also been utilized as a biomarker of exposure to 
different contaminants in a range of vertebrate species, including mammals, in 
various studies (White et al. 1994), fish (Woodin et al. 1997), reptiles (Rie et al. 
2000), and birds (Sanderson et al. 1994). According to previous research, 
deltamethrin inhibits antioxidant enzymes, increases the expression of heat-shock 
protein 70, and has negative effects on the expression of IGF-I, IGF-II, and GH 
(Ceyhun et al. 2010; Aksakal et al. 2010). In fish, cytochrome P450 is essential for 
the metabolization of a variety of contaminants. In rainbow trout, deltamethrin 
exposure dramatically increased CYP1A gene expression in a time-dependent 
way. When a sublethal dose of deltamethrin was used, the pesticide’s toxic metab-
olism was shown to be rapid than in the other groups (Guardiola et al. 2014). The 
proportion of pesticide or its brain-accumulated metabolites was found to be related 
to the potential for CYP1A induction to signify neurological toxicity (Johri et al.



2006). Several pyrethroids, particularly DLM, have previously been demonstrated to 
boost CYP1A activity (Johri et al. 2006; Alak et al. 2017). 
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It is presently well-established that the activation of xenobiotic metabolism in fish 
by CYPs is a viable technique for ecotoxicology investigations and environmental 
pollution biomonitoring (Dong et al. 2009). In recent years, ATR (atrazine) has been 
related to the induction of CYP isozyme activity in Chironomus tentans larvae 
(Miota et al. 2000). In zebra fish, 3,3,4,4,5-pentachlorobiphenyl can stimulate the 
expression of cytochrome P4501A, 1B, and 1C genes (Jonsson et al. 2007). Fish 
have proven to be reliable experimental paradigms for determining how well aquatic 
ecosystems are doing after being exposed to pollution and biochemical changes. 
Several research demonstrating the detrimental effects of ATR (atrazine) and CPF 
(chlorpyrifos) on fish have just recently been published (Wiegand et al. 2001; 
Kavitha and Venkateswara Rao 2008; De Silva and Samayawardhena 2005). Exper-
iments have demonstrated that exposure to ATR (atrazine), CPF (chlorpyrifos), and 
mixtures can affect a number of organs, including the liver, kidney, brain, gills, and 
muscle (Xing et al. 2012a, b; Wang et al. 2011). Because CYPs are the essential 
enzymes that catalyze the oxidative metabolism of toxicants, including crucial 
environmental substances, their activity or content is typically altered when the 
tissues of organisms are damaged by an exogenous toxicant. The gills are involved 
in gas exchange and come into direct contact with external aquatic chemicals. 
Furthermore, preliminary studies have shown that benzo(a)pyrene (Bap), indigo, 
and polyaromatic hydrocarbon (PAH) induction in the gills is more sensitive than 
that in the liver (Jonsson et al. 2006; Abrahamson et al. 2007). 

4 Conclusion 

Cytochrome P450 is a biomarker which aids in detoxification in fishes. The maxi-
mum expression of this enzyme has been found in the liver. Cytochrome P450 has 
been identified from many fish families like Salmonidae, Sciaenidae, 
Tetraodontidae, Siluridae, Cyprinidae, Bagridae, Rivulidae, Moronidae, Fundulidae, 
Sparidae, Pleuronectidae, Gasterosteidae, Adrianichthyidae, Poeciliidae, Cichlidae, 
Chaetodontidae, Serranidae, Haemulidae, Centrarchidae, Dasyatidae, 
Adrianichthyidae, and Squalidae. Several environmental chemicals can inhibit the 
P450 activity in fish. The list of chemicals comprises chlorinated aromatics (PCB 
77, PCB 169), heterocyclic compounds (e.g., piperonyl butoxide), metals (Cd), 
aromatic hydrocarbons (e.g., benzo[a]pyrene, naphthalene, benzene), and 
alkylmetals (tributyltin). This system either undergoes direct reduction of molecular 
dioxygen through peroxide pathway or utilizes electrons from NADPH in order to 
activate the CYP catalytic pathway.
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