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Abstract Antimicrobial resistance (AMR) is a severe problem in Malaysia and 
worldwide; the World Health Organization (WHO) ranks AMR among the top ten 
global threats to public health and development. Malaysia’s Antimicrobial Resistance 
Action Plan (MyAP-AMR) 2017–2021 describes AMR as a One Health concern 
requiring multidisciplinary collaboration across all sectors: humans, animals, plants, 
and the shared environment. Thus, it is vital to understand how it spreads in the 
environment and, concurrently, to discover feasible measures for reducing its spread. 
Among the environmental drivers of AMR is wastewater or sewage sludge. It is 
well established that exposure to sewage can promote the intake of AMR bacteria, 
resulting in the development of life-threatening infections such as sepsis in humans. 
As a result, prompt action is required to ensure the sludge is safe for human use. 
One possibility is to treat sludge with microbial fuel cell (MFC) technology, a bio-
electrical device that uses the natural metabolic activity of electrogenic bacteria (EB) 
to generate electricity. Current research in the laboratory focuses on the use of EB like 
Bacillus subtilis to catalyse the conversion of carbon sources in sludge to sustainable 
energy. However, no study has been conducted to determine the benefits of MFC 
technology in preventing the spread of AMR in the environment. Nonetheless, due 
to its potential to trigger the production of bacteriocins that can kill or deactivate 
AMR microorganisms, it is expected that MFC-treated sludge will reduce AMR 
transmission to the environment and eventually to humans. In general, this chapter

A. M. Ahmad Mokhtar (B) · C. S. Ngee · M. Z. A. Mohammed Alias · N. H. Salikin · 
F. N. I. Mohd Fadzil 
Bioprocess Technology Division, School of Industrial Technology, 
Universiti Sains Malaysia, 11800 Penang, Malaysia 

C. S. Ngee 
e-mail: anamasara@usm.my 

A. M. Ahmad Mokhtar 
Green Biopolymer Coating and Packaging Centre, School of Industrial Technology, 
Universiti Sains Malaysia, 11800 Penang, Malaysia 

N. A. Kamaruzaman 
National Poison Centre, Universiti Sains Malaysia, Penang, Malaysia 

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023 
M. Mohd Zaini Makhtar et al. (eds.), Microbial Fuel Cell (MFC) Applications 
for Sludge Valorization, Green Energy and Technology, 
https://doi.org/10.1007/978-981-99-1083-0_10 

179

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-1083-0_10&domain=pdf
mailto:anamasara@usm.my
https://doi.org/10.1007/978-981-99-1083-0_10


180 A. M. Ahmad Mokhtar et al.

will discuss the fundamentals of AMR and MFC and the additional benefits of MFC 
technology in reducing AMR transmission. 

Keywords Antimicrobial resistance ·Microbial Fuel cell · Infections 

1 Introduction 

Rapid urbanisation and industrialisation have contributed significantly to environ-
mental pollution and human dangers due to their hazardous contents, which include 
pathogens, irritants, carcinogens, flammable, explosive, and oxidising agents [1]. 
Thus, proper and efficient waste management should be a major priority today, as it 
has the potential to have a detrimental influence not only on the environment but also 
on our society [1]. Fortunately, current wastewater treatment appears to be one of 
the most effective methods for reducing environmental pollution and health hazard. 
Additionally, the treated sludge has also been regarded as a critical biological resource 
for managing successful agriculture by improving crop yields and benefiting society 
and the economy [2]. However, although the sludge has been sufficiently treated 
before being applied to the soil, it does not completely eliminate the pathogen, heavy 
metals, organic chemicals, or chemical irritants present in the sewage sludge. For 
example, while sewage treatment is known to reduce pathogens, some pathogens 
such as Clostridium perfringens and hepatitis A virus (HAV) persist in the treated 
sewage sludge for an extended length of time and are resistant to existing wastewater 
treatment methods [3–5]. 

Additionally, numerous studies have demonstrated the importance of wastew-
ater as an important reservoir of antimicrobial resistance (AMR), as it provides an 
excellent setting for the survival of AMR bacteria (ARBs) and AMR genes (ARGs). 
While the treatment process can assist in eliminating or reducing the ARB load, it 
has a negligible effect on ARGs. ARGs are not biodegradable and can be transferred 
through horizontal gene transfer to other bacteria, especially the Gram-negative 
bacteria [6]. Ultimately, it will promote the spreading of pathogenic AMR or ARBs 
to animals and humans via consumption of infected vegetables or water, inhala-
tion, or direct skin contact, negatively harming their health [7–9].  Thus, it is vital to  
develop novel strategies for limiting the spread of AMR or ARB to the environment, 
such as by the employment of viruses, bacteriocins, or predatory bacteria. Interest-
ingly, these alternatives can be applied using microbial fuel cell (MFC) technology, 
a bio-electrochemical system that employs microorganisms as catalysts to convert 
chemical energy stored in organic or inorganic substances to electrical energy [10, 
11]. Thus, the review will evaluate the adverse effects of ARB on humans and the 
potential for risk reduction through the application of MFC technology.
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2 Antimicrobial Resistance Microorganisms 
in the Environment and Its Implication to Humans 

AMR, often known as drug resistance, is widely recognised as a global threat to 
human health that demands immediate action in countries worldwide. AMR is a 
major concern because it could lead to a post-antibiotic era where antibiotics are 
no longer effective. AMR refers to resistance in a variety of microorganisms to 
various antimicrobials, including antibacterial, antiviral, antiparasitic, and antifungal 
medications [12]. It happens when bacteria, viruses, fungi, and parasites acquire 
resistance to most antimicrobials used to treat infections [13]. Antibiotics and other 
antimicrobial treatments become ineffective due to the formation and spread of drug-
resistant bacteria, resulting in antimicrobial resistance, which continues to undermine 
the ability to treat illnesses [14]. 

AMR is a natural occurrence aided by several variables: (a) Misuse and overuse 
of antimicrobials in clinics and animals’ healthcare; (b) poor access to clean water, 
sanitation, and hygiene for both humans and animals; (c) inadequate infection and 
disease prevention in healthcare facilities and farms; and (d) lack of awareness and 
knowledge of antimicrobials usage among the public are all driving factors in the 
development of antimicrobial-resistant pathogens [15, 16]. Increased antimicrobial 
resistance can lead to many issues: (a) some severe infections being more difficult 
to control; (b) remaining inside the body for long periods; and (c) more extended 
hospital stays, all of which significantly impact patients’ quality of life and place a 
strain on medical care, which is directly linked to high expenditures and high risk of 
infection-related mortality [17, 18]. 

3 Mechanism of Resistance 

AMR has multiple key mechanisms, including drug uptake restriction, drug 
target alteration, drug inactivation, and active efflux of a drug [19]. These processes 
can be classified as innate resistance and acquired resistance. Intrinsic resistance is the 
innate ability of bacteria to resist the efficacy of a certain antibiotic through inherent 
structural or functional characteristics, and the mechanisms involved are drug uptake 
limitation, drug inactivation, and active efflux of a drug [19, 20]. Whereas acquired 
resistance can be acquired through mutational alterations or horizontal gene transfer, 
the processes involved are drug target modification, drug inactivation, and active 
efflux of a drug [19, 21].
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3.1 Restricting drug’s Entry 

Antimicrobial chemicals must gain access to the bacterial cell to disrupt the bacteria’s 
regular functions. Microbes may acquire resistance mechanisms by restricting 
antimicrobial drug uptake [21] (Fig. 1). This method is frequent in gram-negative 
bacteria and involves changes in the outer membrane’s lipid composition, porin 
channel selectivity, and porin channel concentrations [19]. Lipopolysaccharide (LPS) 
is typically found in gram-negative bacteria to act as a barrier to particular compounds 
[19]. This layer gives inherent resistance to a subset of large antibacterial agents. 
However, the main pathway by which these antibiotics typically cross the Gram-
negative bacteria with large outer membranes is via porin channels [22]. Porin chan-
nels allow access to hydrophilic compounds such as β-lactam, tetracyclines, and 
certain fluoroquinolones in gram-negative bacteria [21]. However, porin alterations 
can impair drug uptake in two ways: decreased porin protein expression or mutations 
that alter the porin channel’s selectivity. For instance, gram-negative bacteria typi-
cally impede the uptake of certain antibiotics, such as aminoglycosides and ß-lactams, 
by altering porin channels’ frequency, size, and selectivity in the cell membrane [19]. 
Enterobacteriaceae and Pseudomonas aeruginosa develop resistance by altering the 
expression of the porin protein, whereas, in E. aerogenes, porin mutations were 
shown to alter the shape of the porin channel, imparting resistance to imipenem and 
some cephalosporins [19]. All these changes are necessary to prevent antibiotics from 
accessing the drug binding sites, such as ribosomes and penicillin-binding proteins 
(PBPs). 

3.2 Modification of Drug Targets 

Antimicrobial agents are typically directed against specific targets, and structural 
alterations might impair drug binding, rendering the drug ineffective. Certain resistant 
bacteria have the ability to change the antimicrobial drug’s target, hence conferring 
resistance. They may resist antimicrobials by reprogramming or concealing binding 
target sites to avoid detection. Additionally, bacteria have an evolutionary advan-
tage in that they can gain drug resistance due to spontaneous genes modification, 
promoting structural changes of these antimicrobial binding sites [22]. For example, 
genetic mutations will influence the active sites of PBPs, which are transpeptidases 
involved in the synthesis of peptidoglycan in the cell wall [19] (Fig. 1). As a result, 
this can impede the binding of β-lactam antibiotics and result in multidrug resis-
tance, which is frequently observed in gram-positive bacteria such as Streptococcus 
pneumoniae [19, 22]. 

On the contrary, Methicillin-resistant Staphylococcus aureus (MRSA) by gaining 
a new low-affinity PBP rather than structurally changing their existing PBPs [23]. 
Other examples of this type of resistance mechanism include alteration of peptido-
glycan subunit peptide chains, which confers resistance to glycopeptides; prevent
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drug interaction with the ribosome by affecting ribosomal subunits via ribosomal 
mutation or ribosomal protection, conferring resistance to macrolides, tetracyclines, 
and aminoglycosides; alteration in LPS structure of gram-negative bacteria, giving 
resistance to polymyxins; alterations in RNA polymerase, which provide resistance 
to fluoroquinolones; and alteration in metabolic enzymes, giving resistance to sulfa 
drugs, sulfones, and trimethoprim [19, 22]. As a result, the antimicrobial drugs’ 
capacity to bind to their target molecules will be diminished. 

3.3 Drug Inactivation 

Antimicrobial resistance genes or ARGs may encode enzymes capable of chemically 
altering or degrading the drug via hydrolysis (Fig. 1). Bacteria inactivate drugs in 
two ways: either by degrading the drug or by transferring a chemical group to the 
drug, so inactivating it. A common example is the hydrolytic deactivation of the 
ß-lactam ring in penicillins and cephalosporins by ß-lactamases, a drug hydrolysing 
enzyme [22]. When the ß-lactam bond is broken, the antimicrobial drug’s antibac-
terial activity is lost. On the contrary, drug inactivation via enzymatic transfer of a 
chemical group to the drug can result in drug inactivation by interrupting the drug’s 
interaction with its bacterial target. Acetyl, phosphoryl, and adenyl groups are the 
most common chemical groups implicated in this resistance mechanism [19, 22], 
with acetylation is the most diversely employed mechanism, and its efficacy against 
aminoglycosides, chloramphenicol, streptogramins, and fluoroquinolones have been 
demonstrated [19]. 

3.4 Active Efflux of a Drug 

Certain bacteria have membrane proteins that operate as an export or efflux pump 
for certain antimicrobials (Fig. 1), actively transporting the drug out of the cell and 
preventing the drug from building up in the cells to a level that would be harmful to the 
bacterium [19, 22]. This mechanism has been observed in E. coli and other Enterobac-
teriaceae against tetracyclines, Enterobacteriaceae against chloramphenicol, Staphy-
lococci against macrolides, and Staphylococcus aureus and Streptococcus pneumo-
niae against fluoroquinolones [19, 24]. There are five leading families of efflux 
pumps, classified according to their structure and energy source in bacteria. These 
five families are as follows: the ABC family; the multidrug and toxic compound extru-
sion (MATE) family; the small multidrug resistance (SMR) family; the major facil-
itator superfamily (MFS) family; and the resistance-nodulation-cell division (RND) 
family. Most of these efflux pump families are composed of a single component and 
function by transporting substrates through the cytoplasmic membrane [19]. 

The transfer of ARGs between bacteria has been described, and this process may 
contribute to the rapid spread of ARGs between bacteria [25, 26]. The majority
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Fig. 1 Possible mechanism of antimicrobial resistance. (A) Altered affinity or increased expression 
of efflux pump, (B) decreased membrane permeability through modified porins, (C) increased 
production of antimicrobial resistance genes (ARGs), (D) structural changes or mutations of PBPs, 
and (E) modification of drug targets may promote ABR among bacteria. Transfer of ARGs between 
bacteria can occur via conjugation, transduction, and transformation 

of ARGs are found on mobile genetic elements like plasmids or transposons, and 
they are transferred between bacteria via various mechanisms, including transfor-
mation, transduction, and conjugation [26–28] (Fig. 1). In transformation, bacteria 
acquire and incorporate an extracellular DNA segment, previously released into the 
environment by other organisms [29, 30]. Transduction involves the transmission 
of a DNA segment or plasmid harbouring ARGs between bacteria by a phage [31]. 
Finally, conjugation facilitates genetic exchange by elongating a pilus in Gram-
negative bacteria or producing sex pheromones in Gram-positive bacteria [32]. Once 
resistant, a bacterium can rapidly multiply and pass on the resistance determinants 
to its progeny [33]. 

4 Antimicrobial Resistance Transmission 
in the Environment Through Wastewater 

AMR has emerged as a significant global concern in recent years, affecting humans, 
animals, and the environment. The inappropriate and excessive use of antibiotics 
in a variety of sectors, including agriculture, veterinary medicine, and healthcare, 
is at the root of the global epidemic that has emerged in AMR transmission in the 
environment [34], implying that the environment serves as an AMR reservoir and is 
critical for transmitting AMR microorganisms with ARGs to animals and humans 
[34, 35]. AMR is facilitated by several factors, including antibiotics, antimicrobial 
genes, heavy metals, and biocides [34], and it can be transmitted to the environment
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in a variety of ways, including through wastewater from hospitals, healthcare-related 
companies, livestock farms, and agriculture [36]. 

Antibiotics are frequently used to treat human illnesses in the healthcare sector 
[37]. Antibiotic abuse and overuse in humans, on the other hand, may result in 
the selection of resistant strains [38]. Additionally, veterinary drugs used in animal 
husbandry were originally intended to prevent animal diseases but are now being 
inappropriately used for other purposes, such as feed additives and growth stimu-
lants [39]. As a result, humans and animals expel biologically active antibiotics in 
their urine and faeces, which are then discharged into wastewater treatment facilities 
(WWTPs) [40] (Fig. 2). Additionally, the pharmaceutical industry’s inappropriate 
disposal of unused or expired medicines may also contribute to the discharge of 
antibiotics and AMR microorganisms into the environment. Besides, antibiotics have 
a half-life of a few hours to hundreds of days, which means they will linger in wastew-
ater and be considered persistent pollutants in the environment [41]. To survive and 
grow in sewage, bacteria will develop resistance mechanisms to AMR drugs. Suscep-
tible bacteria will be killed, or their activity will be suppressed under the impact 
of these antibiotics. Meanwhile, bacteria that are intrinsically or acquired resistant 
to antibiotics have a better chance of survival and expansion [42]. The surviving 
AMR microorganisms with ARGSs will spread the genes to other microbes, thereby 
making wastewater a reservoir for AMR microorganisms. Besides, due to the antibi-
otic’s slow decomposition, it may find its way into groundwater or aquatic systems 
throughout the wastewater treatment process [35], where it can be disseminated to 
humans, animals, and the environment.

AMR microorganisms can be transmitted to the sewage system through infected 
human secretion, clinical or industrial settings. The ARBs will then transfer to the 
wastewater treatment plants (WWTPs) and eventually transmitted to sewage workers 
and residents who live near the WWTPs. This can be occurred either through drinking 
infected water, consume infected vegetables, or via recreational use 

Additionally, biocides are a factor in AMR. Biocides are antimicrobial chemical 
compounds frequently used in the home, industry, and healthcare to control infec-
tions and microbiological contamination [43]. Ethanol, formaldehyde, chlorhexi-
dine, triclosan, and quaterium ammonium compounds (QACs) are all examples 
of common biocides [34]. Improper biocide disposal in WWTPs can increase the 
number of biocides entering the environment, raising the likelihood of causing AMR 
in microorganisms residing in the WWTPs [40]. For example, chlorine resistance in 
Salmonella typhi demonstrates how improper biocide use can exert selective pressure 
on bacteria, which then respond by developing resistance mechanisms [43]. When 
mixed with other biocides such as QACs and chlorhexidine, triclosan has been proven 
to cause antibiotic resistance in microbes. Additionally, sub-lethal doses of biocides 
contribute to selecting mutations conferring antibiotic resistance [34]. 

Heavy metals are also a vector for AMR transmission in the environment. Heavy 
metals are non-antibiotic antimicrobial compounds that have been extensively used 
in agricultural and industrial applications for a variety of purposes [44]. Interest-
ingly, they can also act as a selector for ARGs, possibly by physically associ-
ated with plasmids or chromosomes containing ARGs [45]. For example, MRSA
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Fig. 2 Potential transmission of antimicrobial resistance microorganisms in the environment.

isolated from livestock possessed plasmids encoding resistance genes to Cu and Cd 
(copA, cadDX, and mco), as well as numerous antimicrobials such as Macrolides, 
Lincosamides, Streptogramin B, Tetracyclines, Aminoglycosides, and Trimethoprim 
(erm(T), tet(L), aadD, and dfrK) [46, 47]. Thus, incorrect disposal of heavy metals 
to WWTPs might increase metals entering the environment and the development of 
AMR microorganisms [40]. 

The environment is considered a route of transmission for ARBs to humans, 
facilitated by WWTPs. This finding is consistent with some studies demonstrating 
the occurrence of antibiotic-resistant bacteria such as E. coli against cephalexin, 
ciprofloxacin, and ampicillin in treated sewage produced by Penang WWTPs [36]. 
Additionally, humans may be exposed to these bacteria while participating in recre-
ational activities in contaminated surface water, ingesting contaminated drinking 
water, or consuming fresh fish products [48]. In agriculture, sludge is frequently 
applied as fertiliser due to its nutritional contents. However, this might also facilitate 
the spread of AMR microorganisms to animals or humans through the consumption 
of contaminated crops or direct skin contact [37]. Additionally, the leading cause of 
AMR emergence worldwide is the improper use of antimicrobial drugs by humans 
in hospitals to treat infections [13]. Although the primary purpose is to treat the 
infections caused by pathogenic microorganisms, these microorganisms continu-
ally mutate and evolve, enabling them to adapt to their environment and eventually 
develop resistance to specific antibiotic treatments. As a result, the antimicrobial-
resistant bacteria can spread from the infected patients to other people via unclean
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hands or contaminated objects. Patients who remain untreated for AMR bacteria will 
subsequently convey these resistant microorganisms to others, increasing the danger 
of disease spread, severe sickness, and even death. 

5 The Effect of Antimicrobial Resistance Microorganisms 
on Humans 

Usually, antibiotics, one of the antimicrobial agents, are prescribed to treat a wide 
range of illnesses and surgical procedures, including organ transplants, blood infec-
tions, pneumonia, and cancer treatment [13]. However, improper use of this drug 
may cause pathogenic microorganisms to evolve to become resistant to antimicro-
bial treatment, making infections more difficult to treat and raising the risk of disease 
spread, severe illness, and death [13]. In general, the more antibiotics used, the more 
bacteria adapt and develop new ways to survive, leading to antibiotic resistance. As 
a result, some bacteria live and multiply rather than being eradicated by antibiotics, 
causing significantly more harm and may impact patients’ quality of life, such as 
increased healthcare expenses, hospitalisation length, and mortality [49]. 

MRSA, one of the most well-known examples of AMR, has been linked to high 
mortality rates across the globe each year, rendering treatment ineffective [50]. 
Additionally, 4.1% of newly diagnosed tuberculosis cases are multidrug resistant. 
It is anticipated to grow dramatically by 2040, particularly in nations with a high 
prevalence of tuberculosis, such as India and the Philippines [49, 51]. Compared 
to non-resistant bacteria, resistant bacteria quadruple the likelihood of getting a 
severe medical issue and triple the possibility of dying. Naturally, these negative 
consequences will be magnified as the severity of resistant infections and the host’s 
sensitivity increase [52, 53]. This is consistent with the increased morbidity and 
fatality rates experienced by infected patients over time. It is estimated that if signif-
icant action against AMR is not taken by 2050, roughly ten million people will die 
[49, 54]. 

Additionally, AMR may result in inadequate treatment of sepsis, which is among 
the top cause of death in hospitals, with a mortality rate of 19.7 worldwide [55]. 
Sepsis is a potentially fatal organ dysfunction caused by an abnormal host response to 
infection [56]. This is a common complication seen in immunocompromised cancer 
patients and recipients of hematopoietic stem cell transplants [57]. As a result, the 
global spread of AMR microorganisms, particularly among immune-deregulated 
patients, may result in a delay in commencing effective empirical antibiotic therapy, 
potentially resulting in infection and hence sepsis [57]. Thus, it is vital to decrease 
AMR transmission in the environment, which can begin with appropriately managing 
sludge disposal and treatment; and ensuring that it is safe for human application.
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6 Microbial Fuel Cell (MFC) technology and Its 
Application in Minimising Antimicrobial Resistance 
Transmission in the Environment 

MFC technology is a relatively new biotechnology that can remediate wastewater 
while generating electricity. MFCs enhance electricity generation during wastew-
ater treatment by exploiting residual sludge substrates, such as acetate or glucose, 
using electrogenic bacteria’s (EB’s) enzymatic activity [58]. EB is a type of organism 
capable of transferring electrons extracellularly across the cell membrane to electron 
acceptors, such as electrodes and oxide minerals, both under anaerobic and microaer-
obic environments [59, 60]. These bacteria can utilise this extracellular electron 
transfer (EET) to get energy for development or facilitate cell-to-cell communication 
[61]. 

Under aerobic circumstances, microorganisms near the anode decompose organic 
materials, and the resulting electrons are either transported directly through cell 
components such as proteases or nanowires on the membrane surface or indirectly 
via the electron shuttle [62]. The cathode accepts electrons and protons from the anode 
and initiates a reduction process [63]. The equation below illustrates the reaction of 
a typical MFC at the anode and cathode when acetate is used [64]. 

Anode reaction : CH3COO
− + 2H2O −− > 2CO2 + 7H+ + 8e− 

Cathode reaction : O2 + 4e− + 4H+−− > 2H2O 

MFCs could generate energy from diverse substrates, from pure chemicals to 
complex mixtures of organic compounds present in wastewater. While substrates with 
a high concentration of complex organic matter could stimulate the growth of various 
active microorganisms, simpler substrates are believed to produce more immediate 
output. Acetate and glucose are often utilised as substrates in MFCs and power 
generation. Acetate is commonly used as a substrate for benchmarking novel MFC 
components, reactor designs, or operating conditions due to its inertness to alternative 
microbial conversions (fermentation and methanogenesis) at ambient temperature 
[65]. As for glucose, compared to anaerobic sludge with a limited substrate supply, 
the introduction of glucose can increase power output by up to 161 mW/m2 [66]. 

There are three basic reactor configurations: (a) uncoupled bioreactor MFC in a 
bioreactor followed by a chemical fuel cell, (b) integrated bioreactor MFC, and (c) 
MFC with bacteria-anode interaction (Fig. 3). In an uncoupled MFC, a biofuel, such 
as methane gas, is created in a bioreactor before a chemical fuel cell takes place. 
One of the major disadvantages of this configuration is mainly the low conversion 
efficiencies of the biological substrate to hydrogen and the requirement for high 
fuel cell temperatures to achieve sufficient hydrogen oxidation. The second design 
is identical to the first, except that the fermentation (mainly to hydrogen gas) occurs
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Fig. 3 Three basic reactor configurations: (A) uncoupled bioreactor MFC in a bioreactor followed 
by a chemical fuel cell, (B) integrated bioreactor MFC, and (C) MFC with bacteria-anode interaction. 
Adapted with permission from [58](CCBY) 

within the fuel cell. This type of MFC frequently employs catalysts to create the 
best environment for hydrogen gas conversion to electricity. The third configuration, 
dubbed the genuine MFC, involves direct electron transfer from the bacteria to the 
anode without an intermediate fermentation product [58]. 

MFC technology effectively displaces non-renewable fossil fuels such as natural 
gas and coal and reduces greenhouse gas emissions that contribute to global warming 
and climate change [67, 68]. However, despite its benefits in green energy produc-
tion, no study has been undertaken to determine its role in minimising the transmis-
sion of AMR bacteria found in sewage sludge to the environment. Yet, it has been 
demonstrated that several EB employed in MFC, such as Bacillus subtilis, release 
bacteriocin, which may substantially inhibit AMR transmission in the environment. 

6.1 The Application of Microbial Fuel Cells Technology 
in Reducing Antimicrobial Resistance in the Environment 

One possible alternative is to use MFC. As previously said, MFCs are well renowned 
for their ability to degrade pollutants while simultaneously generating significant 
amounts of electric energy. Notably, MFC is also known to break down antibiotics
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and ARGs, increasing the likelihood that it will help prevent AMR transmission in 
the environment. For example, MFC was demonstrated to remove 85.1% and 65.5% 
of sulfamethoxazole (SMX) and norfloxacin (NFLX), respectively [71, 72]. Addi-
tionally, the number of ARGs and integrons after MFC treatment was significantly 
less than that discovered in WWTPs. For example, the relative abundance of the intI1 
is between 63.11 and 652.00 copies/mL(g) in the MFC product, compared to 109 to 
1011 copies/mL in WWTPs [62, 73]. 

There are numerous approaches to increase the rate of AMR bacteria removal 
by MFC, which can be accomplished by adjusting the conditions that influence 
antibiotic removal: (a) raising the voltage, (b) selecting suitable substrates, and (c) 
including some additives into the system. For example, according to Yang et al. 
(2018), increasing the voltage from 0 to 1.5 V raised the degradation rate of sulfa-
diazine (SDZ) from 79.3 to 91.9% [74]. This increase in antibiotic removal may be 
because certain microbial communities, such as Methylococcus capsulatus, Dechlor-
monas, Byssovorax cruenta, and Longilinea arvoryzae are positively influenced by 
electrical stimulation, and this would promote their bacterial activity to accelerate 
biological metabolism [62, 75]. 

Additionally, the type of substrate may affect the rate of antibiotic clear-
ance. For example, the addition of acetate accelerates the breakdown of chloram-
phenicol by up to 96.53% [76]. Consistently, Zeshan and Ullah (2020) observed 
that acetate-fed MFCs generated maximum voltage and power densities faster than 
glucose- or sucrose-fed MFCs, implying that different types of substrates may affect 
MFCs performance and hence their potential to remove antibiotics [77]. Addi-
tionally, certain inorganic compounds, such as nitrite and copper aid in reducing 
ARGs. For example, it has been demonstrated that the addition of nitrite increases 
sludge’s hydrolysis rate and decreases the requirement for carbon sources, encour-
aging microorganism growth and metabolism and consequently improving MFC 
performance [78]. 

The presence of EB in MFC may potentially affect the antibiotic’s clearance 
rate. Bacillus species, for example, are capable of creating a variety of antimicrobial 
compounds (AMCs) that are useful in the food and pharmaceutical industries [79]. 
Additionally, strains of the Bacillus subtilis group have been recognised for decades 
to produce a vast array of secondary metabolites capable of mediating antibiosis. At 
least 4–5% of the genome of any strain of Bacillus subtilis is projected to be devoted 
to synthesising AMCs, which are primarily antimicrobial peptides (AMPs) [79]. 
AMPs are often cyclic and hydrophobic in structure, with unusual moieties such as 
D-amino acids (AA) or intramolecular thioether linkages. Along with AMPs, volatile 
metabolites are a wide class of antimicrobials that play a range of metabolic and func-
tional functions [79]. These peptides are referred to as “bacteriocins,” which are low 
molecular weight molecules that can inhibit the growth of bacteria closely related to 
the generating strain [80]. Alternatively, bacteriocins may operate as antimicrobial 
or lethal peptides, directly reducing competing strains or pathogens in the environ-
ment, such as Klebsiella sp., a capsulated bacterium, resulting in decreased AMR 
transmission/
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7 Malaysia’s Initiatives for Preventing the Spread 
of Antimicrobial Resistance in the Environment 

Antibiotic resistance is reaching alarmingly high levels all around the globe. New 
resistance mechanisms are evolving and spreading over the world, posing a danger to 
the health management to handle common ailments resulting from the AMR infec-
tion [81]. In addition to the escalating prevalence of debilitating diseases, augmenting 
cases of antibiotic resistance also cause major economic burden due to AMR contain-
ment and high cost of disease treatment [82]. Consequently, it is projected that AMR 
would put a total of 24 million people (particularly from the low-income countries) 
into extreme poverty by 2030 [83], further corroborating the urgency to combat the 
dissemination of AMR worldwide comprehensively. 

During an ASEAN meeting in 2017, it was recognised that anti-AMR efforts 
were still insufficient, and that multi-sectoral collaborations from different stake-
holders were required. During the summit, ASEAN leaders agree to tackle AMR 
using the One Health approach which is aimed to enhance the AMR containment 
activities, actively engage relevant stakeholders, develop defined objectives, and to 
implement monitoring and evaluation (M&E) systems [84]. In compliance with the 
declaration, Malaysia has implemented several actions to cut the AMR distribution by 
implementing different progressive approaches. These include the initiation of One 
Health concept involving pharmacist, physicians, patients, and other professionals 
that was established to allow effective communication among the communities thus 
achieving better public health outcomes for humans, animals, and the environment 
[85]. Malaysia government with the help from Ministry of Health (MOH) also initi-
ated the “National Surveillance of Antibiotic Resistance (NSAR)” [86] to monitor 
the occurrence of AMR in Malaysia as well as the protocol on Antimicrobial Stew-
ardship (AMS) Programme in the healthcare facilities to promote an appropriate 
utilisation of antibiotics in terms of right choice, route of administration, dosage, 
and duration for antibiotic prescription. 

Following the NSAR programme, the “National Surveillance on Antibiotic Utili-
sation (NSAU)” was also performed to assess the quantity and trajectory of antibiotic 
use in Malaysian hospitals of various settings and the potential links that contribute 
to specific antibiotic use. These statistics have aided local health workers in their 
clinical practice, particularly in the application of antimicrobial stewardship, at the 
hospital level [87]. In addition to those policies, the Malaysian Action Plan on 
Antimicrobial Resistance (MyAP-AMR) 2017–2021 has been conducted in collab-
oration with numbers of constituents and stakeholders including the Ministry of 
Health (MOH), Ministry of Agriculture and Agro-based Industry (MOA), Ministry 
of Higher Education (MoHE), Ministry of Defence (MINDEF), hospitals, profes-
sional organisations, the animal food industry, private healthcare facilities, commu-
nity pharmacists, academic institutions, the private sectors, international partners, 
NGOs, and civil society [88]. The action plan on antimicrobial resistance (MyAP-
AMR) is aimed to decelerate the emergence of AMR and prevent its dissemination via
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four priority areas: (i) public awareness and education, (ii) surveillance and research, 
(iii) infection prevention and control, and (iv) appropriate use of antimicrobials. 

While there is currently scarce or no report on the clinical assessment of the 
MFC function in reducing the AMR dissemination, its potential on the accomplish-
ment of AMR reduction is still promising. The inclusion of EB which simultane-
ously functioning as bacteriocin producer may antagonistically inhibit the resistant 
bacteria in the wastewater substrate hence attenuating the possibility of resistance 
genotype transmission among the microbial populations. This action will not only 
benefit the environment in terms of green renewable electricity generation, but it also 
represents as a contribution from the engineering sector (other than the healthcare 
organisation) to decelerate the AMR widespread as has been underlined in the MyAP-
AMR that promotes the involvement and collaboration from multiple stakeholders 
in combating this threatening circumstance. Indeed, restricting the AMR distribution 
in the community and environment via the function of MFC is interesting, however, 
an in-depth investigation is required to validate its potential in diminishing the AMR 
incidents. 

8 Conclusion 

Antimicrobial resistance (AMR) is a significant global public health problem, ranking 
among the top ten. This study covers the fundamentals of AMR and the possibility 
for wastewater to act as a carrier of AMR in the environment. Compared to other 
conventional wastewater treatment procedures, MFCs can help minimise AMR by 
boosting antibiotic removal rates. These antibiotics, which are frequently generated 
from hospitals, are greatly concentrated in sludge, favouring the growth of ARGs 
among the bacteria that live there. Additionally, this chapter discussed strategies to 
increase the performance of existing MFCs, primarily by increasing electrical stimu-
lation, selecting appropriate substrates, and incorporating some additives, all of which 
influence the microbial population and its metabolic activities. It is hypothesised that 
boosting antibiotics’ clearance efficiency may help prevent the creation of ARGs. 
Nonetheless, it is vital to improve the current design of MFCs and comprehend their 
operation, and by doing so will reduce AMR transmission in the environment. 
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