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Preface 

Orchids comprise the most exotic and multi-colored group of flowering plants, 
classified in the family Orchidaceae. The multi-faceted attributes and promising 
socio-economic applications in the present era have commercialized orchid cultiva-
tion and global trade, substantially improved via the advances in high-throughput 
technologies, omics biology, and metabolic engineering approaches. Widely culti-
vated for ornamental purposes as the cut flower and artificially propagated varieties, 
the present decade has witnessed the popularity of orchids on a global level, with 
researchers investigating the multi-faceted attributes and applications of orchids in 
the food sector, healthcare, and industries. Novel and high-value varieties of orchids 
are being developed via substantial contributions in advanced plant tissue culture 
techniques, plant breeding, and more recently, the genetic manipulation studies in 
orchids for plant trait improvement and value addition. 

Orchids include approximately 30,000–35,000 species, which are found in 
diverse habitats across the world. The very first report suggested that the Chinese 
were the pioneers in the cultivation and description of orchids, with the description 
of Bletilla striata and Dendrobium species in the book, Materia Medica of the 
twenty-eighth-century BC by a Chinese legend. In addition, traditional medicine 
systems, like Ayurveda also reports the extensive usage of orchid species for 
therapeutic purposes. Some distinct characteristics of the orchid—adaptive mecha-
nisms, mycorrhiza-dependent germination, perennial nature, and absence of woody 
structures and the flowers include bilateral symmetry (zygomorphism), resupinate 
flowers, fused stamen and carpels, and highly modified petals (labellum). Further-
more, orchids exhibit monopodial (stem grows from a single bud, with the growth of 
new leaves on the apex every season) and sympodial growth (adjacent shoots are 
produced, grow to a certain size, bloom, and then replaced), growing laterally and 
following the surface for support. The orchids usually flower in the spring season 
and some of the key species that are grown as ornamentals include Renanthera, 
Paphiopedilum, Cattleya, Phragmipedium, Dendrobium, and Vanilla sp. 

The cultivation and demand of exotic orchid varieties have witnessed a tremen-
dous upsurge, attributed to the improved understanding and knowledge in areas of
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orchid biology, classification, phytochemistry, and cultivation strategies, among 
other areas. Plant tissue culture and traditional plant breeding approaches form the 
basis of orchid cultivation, contributing immensely to the cultivation of exotic orchid 
varieties, however, multiple challenges including slow growth, complex orchid 
genomes, and poor efficiency of transformation are major limitations. The classical 
plant breeding approaches comprising crossbreeding and mutational breeding, 
molecular marker-assisted breeding, in vitro orchid propagation, and cryopreserva-
tion have addressed these challenges to a considerable extent. These traditional 
approaches also provided a sound platform for introducing genetic manipulation of 
novel orchid varieties for trait improvement. The last decade has witnessed the 
extensive application of plant tissue culture techniques for the propagation and 
conservation of orchids, via utilizing different approaches and explants, namely 
shoot nodes, stems, flower stalks, root tips, etc. facilitating the translational success 
of several varieties. Conventional breeding approaches in orchid propagation and 
conservation have witnessed key translational success in the development of novel 
varieties as well as conservation of the species with novel attributes. 
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In this direction, efforts were also made to understand the molecular mechanisms 
of orchid mycorrhizal symbiosis for elucidating genetic information. While the 
plant–fungal interactions are key to orchid development, the association of fungal 
endophytes and their prospects in the production of antimicrobials highlight key 
prospects in the discovery and development of novel antimicrobials. Another inter-
esting contribution aims to discuss the societal impact of some medicinal orchids, 
providing valuable insights into the history and ethnomedicinal uses and the pros-
pects of socio-economic applications in healthcare. Catasetum genus consists of 
showy epiphytic orchids, defines novel attributes, and is highly prioritized in horti-
culture; however, most of the species are difficult to cultivate without a greenhouse. 
The conservation of members in the Catasetum genus, therefore, requires immediate 
attention and conservation via biotechnological strategies, as discussed in a key 
literature contribution. 

In recent times, genetic engineering approaches have focused on trait improve-
ment by creating novel hybrids of genera, for example, Oncidium, Vanda, Phalae-
nopsis, Cymbidium, and Dendrobium, among others. Agrobacterium-mediated 
transformation of orchids has been the most successful technique to date creating 
novel transgenics in orchid genera like Oncidium, Vanda, Dendrobium, and Phal-
aenopsis. In addition, to overexpression of key genes in heterologous systems for 
desired traits, gene silencing studies have also been attempted in orchids like 
Oncidium and Dendrobium species. The biotechnological interventions in different 
orchid varieties have focused on the alteration of flower fragrance, color, disease 
resistance, and shelf-life, aiming for improved plant traits and varieties. A few key 
examples of transgenic orchid varieties include RNAi-based gene silencing in 
Phalaenopsis equestris for flower color, gene overexpression in Dendrobium 
Sonia for altering orchid morphology, and organogenesis and in vitro development 
via permanent magnetic fields in Phalaenopsis species, among others. The scientific 
approaches have made remarkable contributions to the development of exotic



varieties displaying multi-faceted attributes, namely novel plant traits, different color 
patterns, and disease resistance, among others. 

Preface vii

In the present era, orchid cultivation has witnessed a tremendous upsurge attrib-
uted to their recognition as food ingredients, floriculture, and/in healthcare. More-
over, omics and computational approaches have significantly improved our 
understanding of different concepts in orchid biology via better insights into the 
metabolic pathways and their roles in the biosynthesis of diverse metabolites and 
physiological mechanisms in orchid biology. While proteome analysis of orchid 
species focused on flower development and micropropagation methods, while the 
omics approaches have identified the developmental stages in orchid biology and 
improved orchid breeding, conservation, and commercialization of novel varieties. 
With the emerging importance and multi-faceted role of orchids in floriculture, the 
food sector, and healthcare, the respective book aims to discuss the recent advances/ 
developments in orchid biology, biotechnology, and omics approaches. The book 
provides further insights into the progress and the prospects in orchid breeding, the 
importance of key medicinal orchids and their societal impact, and how the associ-
ation of the fungal endophytes with members of Orchidaceae defines key prospects 
as antimicrobials in drug discovery, an interesting yet less-explored area of investi-
gation in orchids. Some prospective chapters discuss specific examples in detail 
including ethnomedicinal, phytochemistry, and biotechnological strategies for the 
conservation of Orchids in the Catasetum genus, and some terrestrial orchids. The 
book provides valuable insights and contributions from renowned experts in orchid 
biology and biotechnology from all over the world, with 9 chapters discussing 
different sub-themes of wider significance and applications in orchid biology. 

This book provides comprehensive insights into the existing and emerging trends 
in orchid biology and discusses the advances/contribution of omics, plant breeding, 
and biotechnological approaches in this interesting field. In addition, it aims to 
bridge the gaps in knowledge deficiencies and provide a combined platform 
discussing multi-faceted areas of orchid biology and biotechnology in a single 
book. With the development of high-throughput approaches and omics interven-
tions, orchids have gained enormous popularity in socio-economic applications and 
witnessed a global demand for exotic varieties. Therefore, the respective book will 
play a key role in providing an excellent basis for graduate, and post-graduate 
students, Ph.D. scholars, and researchers, to improve and widen their scientific 
knowledge in the field of orchid biology, updates on biotechnological/omics 
approaches in orchid cultivation and how these developments project to remarkably 
impact orchid industry and commercialization on a global platform. With this aim, 
the book brings together high-quality chapters from eminent researchers/experts 
across the world and hopes to serve as a platform of literature for future initiatives 
in orchid biology. Finally, the editors would like to thank the effort of all authors for 
organizing their chapters and the assistance and instructions from the editorial office 
of the publisher are much appreciated. 

Gyeongbuk, Republic of Korea Pragya Tiwari 
Kaohsiung, Taiwan Jen-Tsung Chen
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Understanding the Molecular Mechanisms 
of Orchid Mycorrhizal Symbiosis from 
Genetic Information 

Chihiro Miura , Galih Chersy Pujasatria , and Hironori Kaminaka 

1 Introduction 

Mycorrhiza, the oldest plant–microbe holobiont ever described, is an intricate plant– 
fungus relationship (Frank 2005; Selosse et al. 2017). The fungus enters the plant’s 
root system and forms specialized structures depending on the mycorrhizal types. 
The earliest-to-evolve type, arbuscular mycorrhiza, is found in almost all flowering 
plants (Delaux et al. 2013) and is mainly characterized by the formation of tree-like 
hyphal structures (arbuscules), although other structures, such as vesicles, are also 
formed. The second type is ectomycorrhiza (ECM), which is found in several tree 
species, such as Pinaceae, Fagaceae, and Betulaceae (Smith and Read 2008). The 
third type, which is the main topic of this chapter, is orchid mycorrhiza (OM). Orchid 
mycorrhizal fungi penetrate orchid seeds or roots through the suspensor (Peterson 
and Currah 1990; Richardson et al. 1992; Rasmussen and Rasmussen 2009) o  
epidermal hairs (Williamson and Hadley 1970) and then form dense mycelium 
coils known as pelotons. Although other mycorrhizal symbioses exhibit mutualism, 
OM symbiosis is known as parasitism: Other mycorrhizal plants obtain minerals 
from fungi instead of supplying photosynthetic products to the fungi, whereas 
orchids depend on carbon, nitrogen, and phosphorus sources provided by OM 
fungi (Cameron et al. 2006, 2007; Kuga et al. 2014), at least during their 
germination—a characteristic classified as initial mycoheterotrophy (Merckx 
2013). Most orchids indicate the dual (photosynthetic and mycoheterotrophic) 
carbon acquisition strategy for growth and development—a phenomenon known 
as partial mycoheterotrophy (Gebauer and Meyer 2003; Merckx 2013)—whereas
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The two main methods for genomic DNA extraction include solvent extrac-
tion, such as a modified cetyltrimethylammonium bromide protocol (Murray 
and Thompson ; Inglis et al. ; Hu et al. ), or column extraction, 
such as DNeasy Plant Mini Kit protocol (Qiagen) and DNAsecure Plant Kit

201920181980

others have even evolved to be fully mycoheterotrophic and rely completely on 
mycorrhizal fungi. Such orchids are commonly leafless or achlorophyllous 
(Lallemand et al. 2019; Li et al. 2022).

2 C. Miura et al.

OM fungi are mainly represented by filamentous basal orders of 
Agaricomycotina: Sebacinales and Cantharellales (Weiß et al. 2016; Miyauchi 
et al. 2020). Some of the members of these orders resemble Rhizoctonia, a famous 
plant pathogen, necessitating the name “Rhizoctonia-like fungi.” Regardless of the 
taxonomical disputes, the members of this group are Ceratobasidium, Sebacina, 
Serendipita, and Tulasnella. However, some orchids—especially fully 
mycoheterotrophic ones—evolve to associate with ECM fungi or even ascomyce-
tous fungi (Taylor and Bruns 1997; Sisti et al. 2019). They can also indirectly obtain 
carbon from dead wood, in which their mycorrhizal fungi grow, or simply form a 
mycorrhizal network with nearby living trees (Suetsugu et al. 2020). Interestingly, 
some orchids can even switch their mycorrhizal fungi across development stages 
(Umata et al. 2013; Chen et al. 2019), and OM fungi may turn parasitic against 
orchid seeds (Adamo et al. 2020). Thus, OM symbiosis indicates a remarkable 
physiological diversity among all kinds of mycorrhiza to date. 

Along with traditional studies, molecular studies of OM have been advancing in 
recent decades, ranging from mycorrhizal diversity to physiological omics, such as 
transcriptomics, proteomics, and genomics. Their use is advantageous because they 
can reveal even the innermost physiological phenomena that are easily overlooked 
when using in vivo assays. However, guidelines for OM symbiosis analysis using 
these omics techniques are unavailable. In this chapter, the tentative methods of 
orchids’ whole-genome sequencing (WGS) and transcriptome analysis will be 
introduced as well as their applications and prospects. 

2 Methodology of the Genomics and Transcriptomics 
of Orchids 

2.1 Sample Preparation, Sequencing, and Bioinformatics 
for Orchid Genome Sequencing 

Whole-genome sequencing generally involves five steps: DNA extraction and iso-
lation, genomic DNA library construction, sequencing, de novo assembly, and 
annotation (Fig. 1). Because some choices or options exist in these steps, researchers 
need to select suitable methods for their samples. Here, we introduce the methodol-
ogies used by researchers for orchid WGS. 

(i) DNA extraction and isolation



(TIANGEN). In any case, high-purity genomic DNA above a certain amount is
necessary for obtaining high-quality sequence data. Leaves, shoots, and flowers
tend to be used for DNA extraction, whereas roots, rhizomes, or bulbs are not
used because these parts potentially include symbionts, except for an aseptic
culture.

The two main ways to obtain WGS are short- and long-read sequencing
(Goodwin et al. ). Regarding orchid WGS performed to date, the first 
method is Illumina sequence technology, and the latter is the PacBio sequel 
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Fig. 1 Schematic overview 
of a whole-genome 
sequence analysis. The 
illustrations were modified 
and/or created with images 
from TogoTV (©2016 
DBCLS TogoTV/CC-
BY-4.0)

(ii) Genomic DNA library construction and sequencing



system or Oxford Nanopore Technologies. Orchid WGS is often assembled 
using both short and long reads. Combining short- and long-read data improves 
genome assemblies of orchids whose genomes reveal a high content of repet-
itive elements that encompass ~82% (Li et al. ). How is sequencing depth 
achieved using these sequence technologies to produce high-quality assembled 
genomes? Notably, some short and long reads frequently contain sequence 
errors (Sims et al. ), which can be overcome by increasing the number of 
sequencing reads. A high-quality assembly of a eukaryote genome can gener-
ally be achieved based on more than ×70 sequence depths from hybrid 
approaches that combine short- and long-read sequencing technologies (Faino 
and Thomma . For orchids, many studies have a coverage depth of 
approximately 240-fold, with at least 54-fold sequence coverage generating 
high-quality reference genomes (Table ). The sequence coverage is calculated 
based on the estimated genome size. Although several methods exist for 
measuring genome size, two have mainly been conducted in the orchid WGS: 
flow cytometric and k-mer analyses. In the former analysis, the content of 
relative DNA extracted from leaves and stained with a fluorescent dye is 
compared between query and reference samples using flow cytometry 
(Sliwinska . In the latter analysis, the genome size is estimated based 
on sequence data using the k-mer method (Simpson In this method, the 
read sequences are fragmented by approximately 17–31 base pieces in this 
manner, and the same sequence fragments are counted. The genome size is 
estimated based on the count distribution of these fragments (see details in 
Simpson )). Genome size data are important for evaluating the assembled 
sequence quality, ploidy, and heterozygosity levels. 

(2014

2014). 
2018)

1

2014)

2014

2022

4 C. Miura et al.

(iii) Assembly and annotation
De novo genome assembly tools include velvet (Zerbino and Birney 2008), 

SOAPdenovo (Luo et al. 2012), Abyss (Simpson et al. 2009; Jackman et al. 
2017), Platanus (Kajitani et al. 2014), ALLPATHS-LG (Gnerre et al. 2011), 
and MaSuRCA (Zimin et al. 2013). Collected reads from orchids can be 
assembled using three main software tools: velvet, SOAPdenovo, and Platanus. 
Recently developed software, such as Canu, can enable long-read assembly, 
contributing to WGS accuracy (Koren et al. 2017). Repetitive element accu-
mulation could make orchid genomic assembly challenging. Whole-genome 
sequencing analysis showed that repetitive elements generally occupy approx-
imately 68% of orchid genomes or even 82% of the Platanthera 
guangdongenesis genome (Li et al. 2022). Some software tools for the analysis 
of repetitive elements, such as RepeatModeler/RepeatMasker (https://www. 
repeatmasker.org/), RepeatScout (https://github.com/mmcco/RepeatScout), 
and LTR_FINDER (Xu and Wang 2007), are beneficial. To improve sequenc-
ing accuracy, researchers need to select better tools according to the sequencing 
method and genome features.

https://www.repeatmasker.org/
https://www.repeatmasker.org/
https://github.com/mmcco/RepeatScout
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RNA is often extracted using a column method, such as the RNeasy Plant
Mini Kit (Qiagen), or an organic solvent method, such as TRIzol reagent
(Invitrogen). In any case, RNA-seq requires a sufficient amount of high-quality
RNA. Because RNA is more unstable than DNA and environmental conditions
can easily affect expression patterns, sampling methods should effectively be

8 C. Miura et al.

2.2 Sample Preparation, Sequencing, and Bioinformatics 
for Transcriptome Analysis of OM Symbiosis 

RNA-seq-based transcriptome analyses generally involve four steps: RNA extrac-
tion and purification, cDNA library preparation, RNA sequencing, and data analysis 
(Fig. 2). In this section, we introduce the methodologies where some choices exist 
for transcriptome analysis of OM associations. 

(i) RNA extraction and purification

Fig. 2 Schematic overview 
of an RNA-sequencing 
analysis. The illustrations 
were modified and/or 
created with images from 
TogoTV (©2016 DBCLS 
TogoTV/CC-BY-4.0)



considered when collecting samples in situ. For example, naturally collected
tissue samples should be soaked in an RNA preservation solution, such as
RNAlater (Qiagen), and processed for RNA extraction as soon as possible.

Understanding the Molecular Mechanisms of Orchid Mycorrhizal. . . 9

(ii) cDNA library preparation and sequencing 
Transcriptome analyses of OM roots or protocorms have mainly been 

performed using Illumina short-read sequencing platforms (Yeh et al. 2019). 
The cDNA libraries are prepared using commercially available kits according 
to the objectives of analysis: The various types of library prep kits are available, 
for example, the kits for strand-specific RNA-seq, for removing ribosomal 
RNA, and for small RNA-seq. Our primary concerns in RNA-seq experiments 
are the number of biological replicates and the sequencing depth required for 
each sample. Unfortunately, there is no clear answer to this issue (Sims et al. 
2014). Lamarre et al. (2018) recommended at least four biological replicates per 
condition and 20-M reads per sample to be almost sure of obtaining approxi-
mately 1000 differentially expressed genes (DEGs) if they exist, according to 
the meta-analysis with 16 RNA-seq projects involving the tomato fruit model 
(Solanum lycopersicum). One may reason that a higher number of biological 
replications and sequence reads are more accurate and more sensitive to 
detecting DEGs, but this is often difficult to achieve, especially in the analysis 
of orchids in nature. Although only a few RNA-seq studies exist for mycorrhi-
zal symbiosis using wild orchids, Suetsugu et al. (2017) and Valadares et al. 
(2020) performed RNA-seq analysis with three biological replicates of 
Epipactis helleborine and Oeceoclades maculata, respectively. 

(iii) Data analysis
The bioinformatics pipelines vary depending on the available reference 

genome sequence. When reference genome sequences are available, data 
analysis is divided into the following parts: mapping and counting of reads 
and downstream analyses, such as differential expression, clustering, and 
pathway analyses. In addition to these steps, the pooled reads need to be aligned 
themselves to generate a de novo reference assembly when reference genome 
information is unavailable. The extracted RNA from symbiotic roots or 
protocorms contains plants and fungal RNAs. How to analyze multispecies 
transcriptome analysis remains controversial. Because most aligners are opti-
mized for a single organism rather than multispecies datasets (Chung et al. 
2021), the de novo assembled sequences are preferably divided into single 
species. Previous studies have often applied BLAST searches of the de novo 
assembly data against the NCBI nonredundant protein (nr) database to predict 
the origins of the contigs (Perotto et al. 2014; Suetsugu et al. 2017; Valadares 
et al. 2020, 2021). Perotto et al. (2014) examined the transcriptome of Serapias 
vomeracea protocorms inoculated with Tulasnella calospora. The de novo 
assembled transcriptomes were either compared with the NCBI-nr database 
using the BLSTX algorithm on the Blast2Go program (Conesa et al. 2005) with 
a cutoff E value <1.0e-10 or analyzed with an EST3 classifier, which deter-
mines the origin of sequences in mixed sequence sets by codon frequencies 
(Emmersen et al. 2007). Although the T. calospora genome has been



sequenced (Kohler et al. 2015) as a part of a DOE JGI Community Sequencing 
Program coordinated by F. Martin (INRA, Nancy, France), only 79 sequences 
(0.84%) matched T. calospora genes with an E value <1.0e-10 in Perotto’s 
study (2014). This result reflected an extremely high degree of variability in the 
ribosomal DNA sequences of Tulasnella (Moncalvo et al. 2006; Suárez et al. 
2006; Taylor and McCormick 2008; Cruz et al. 2011; Fuji et al. 2020). The 
transcriptome study of symbiotic Bletilla striata protocorms by Miura et al. 
(2018) utilized the assembled genome scaffolds provided from pure cultures of 
Tulasnella sp. The plant-derived sequences were confirmed by subtracting the 
result of a BLAST search of the assembled Tulasnella genome from the de 
novo reference assembly of the transcriptome of symbiotic protocorms. Several 
issues are being discussed, such as how to define an E value threshold for the 
BLAST search and how to handle unannotated sequences other than plant and 
fungi. 

10 C. Miura et al.

3 New Insights into the Molecular Mechanisms of OM 
Symbiosis 

3.1 Orchid Genome Summary 

The whole-genome sequences of orchids have been deposited in the NCBI (https:// 
www.ncbi.nlm.nih.gov/data-hub/genome/?taxon=4747) or the Chinese National 
Genomics Data Center Genome Sequence Archive (https://ngdc.cncb.ac.cn/gsa/) 
for 12 species at the chromosome level and 11 species of draft genomes. These 
analyses estimate that the haploid genomes are 0.35–4.3 Gb, which contain approx-
imately 25,000 protein-coding genes (Table 1). The assembled average genome size 
of 1.7 Gb is 4.5 and 14.2 times larger than that of rice (Oryza sativa cv. Nipponbare) 
and Arabidopsis (Arabidopsis thaliana col-0 ecotype), respectively, and approxi-
mately the same as that of tree cotton of 1.7 Gb (Gossypium arboreum) (Fig. 3). The 
orchid genomes contain a large number of repetitive sequences; that of Platanthera 
guangdongensis comprises 82% repetitive elements (Li et al. 2022), making it the 
most significant proportion of the orchid genome to date. The ratio is similar to Zea 
mays (approximately 85%). Although the biological function of repetitive DNA 
sequences remains largely unknown, these sequences are important in the regulation 
of mammalian gene expression (Faulkner et al. 2009). In plant species, transposable 
elements are important for epigenome alterations under stress (Ragupathy et al. 
2013). According to RNA-seq analysis by Vangelisti et al. (2019), AM fungi induce 
the expression of specific retrotransposons in sunflower roots (Helianthus annuus 
L.), implying a function for retrotransposons during symbiotic interaction. Thus, a 
large number of repetitive sequences in orchid genomes may be involved in regu-
lating symbiosis.

https://www.ncbi.nlm.nih.gov/data-hub/genome/?taxon=4747
https://www.ncbi.nlm.nih.gov/data-hub/genome/?taxon=4747
https://ngdc.cncb.ac.cn/gsa/
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Fig. 3 Overview of plant genome sizes. The genome size ranges were estimated using the Kew 
Garden C-value database (https://cvalues.science.kew.org/). Flow cytometry was selected as the 
estimation method. The genome sizes of each plant species were based on the assembled genome 
size by whole-genome sequencing 

Most studies of orchid WGS detected at least two whole-genome duplications 
(WGDs) events in Orchidaceae (Zhang et al. 2017; Xu et al. 2021, 2022; Jiang et al. 
2022). Most monocots are likely to share older WGD, and younger WGD might 
represent an independent event specific to the Orchidaceae lineage (Zhang et al. 
2017). One may infer that WGD events have driven gene family extension, thereby 
expanding the evolutionary potential for functional diversification. For example, 
a comparative genome analysis of the Venus flytrap (Dionaea muscipula) and its 
close relatives revealed that a common WGD is the source of gene recruitment to 
carnivory-related functions of carnivorous plants (Palfalvi et al. 2020). Orchidaceae 
is one of the most diverse groups of flowering plants, comprising approximately 
25,000 species (Dressler 1993; Cribb et al. 2003; Chase et al. 2015). Unlike most 
plants, almost all orchid species are heterotrophic in their early life stages (Leake 
1994). Future studies should determine whether WGD events contribute to the 
evolution characterizing the orchid species, such as mycoheterotrophy. However, 
orchids have lost some gene families, such as photosynthesis-related genes and a part 
of the MADS-box genes from their genomes. According to WGS analysis of leafless 
orchid Gastrodia elata and P. guangdongensis, the number of missing gene families 
was higher in the fully mycoheterotrophic orchids than in most photosynthetic 
plants, and many of the lost genes were involved in photosynthesis, corroborating 
their inability to perform photosynthesis (Yuan et al. 2018; Li et al. 2022). Most 
orchids lack the type I M-beta MADS-box genes involved in endosperm develop-
ment initiation (Masiero et al. 2011). Almost all orchids are initially 
mycoheterotrophic: They produce tiny, endosperm-free seeds dependent on

https://cvalues.science.kew.org/


mycorrhizal fungi for nutrient uptake during seed germination. The absence of 
M-beta genes is thought to be related to endosperm deficiency (Zhang et al. 2017). 
However, some orchid species undergo double fertilization and form a rudimentary 
endosperm (Pace 1907; Sood and Mohana Rao 1988), and the loss of M-beta may 
not be directly related to the loss of endosperm formation in orchids (Qiu and Köhler 
2022). 

12 C. Miura et al.

3.2 Nutritional Mode or Nutrition Transport 

Almost all orchids depend on carbon and other nutrients provided by mycorrhizal 
fungi during seed germination and subsequent early growth, which is classified as 
initial mycoheterotrophy. Some orchids completely depend on fungal carbon during 
their entire life cycle (“full mycoheterotrophy”) or combine autotrophy and 
mycoheterotrophy at maturity (“partial mycoheterotrophy” or “mixotrophy”). The 
orchid genome architecture reflects their lifestyle. Fully mycoheterotrophic species, 
such as P. guangdongensis, G. elata, and Gastrodia menghaiensis, lost some 
photosynthesis-related genes from their nucleus genomes (Chen et al. 2020b; Jiang 
et al. 2022). These genes might be under “relaxed selection,” where environmental 
change often eliminates or weakens a selection source that was formerly important 
for maintaining a particular trait (Lahti et al. 2009). A positive correlation may exist 
between the degree of heterotrophy in plants and the frequency of nonsynonymous 
mutations in the genes responsible for the photosynthetic process and plastid and 
leave functions (Chen et al. 2020b). 

How do orchids acquire nutrients from symbionts under the relaxed selection of 
photosynthetic-related genes? On the genomic side, several studies have shown the 
expansion of trehalase genes in Gastrodia orchids, Platanthera orchids, 
Dendrobium catenatum, and Phalaenopsis aphrodite (Li et al. 2022; Jiang et al. 
2022). The experiments using 14 C-labeled glucose by Smith (1967) suggested that 
orchids synthesize sucrose from fungal-derived trehalose. Ponert et al. (2021) 
reported that the trehalose analog validamycin A, which has a strong inhibitory 
effect on trehalases, reduced the growth of symbiotically germinated Dactylorhiza 
majalis (Ponert et al. 2021). Additionally, trehalase activity was increased in sym-
biotic protocorms (Ponert et al. 2021). They proposed that orchids metabolize and 
utilize fungal-derived trehalose as a carbon source, corroborating Smith’s hypothe-
sis. In transcriptomic studies, high expression of the genes encoding sugar trans-
porters (SWEET) was detected in vitro symbiotic protocorms of S. vomeracea 
inoculated T. calospora AL13 (Perotto et al. 2014) and B. striata inoculated 
Tulasnella sp. HR1–1 (Miura et al. 2018) and in situ symbiotic roots of Epipactis 
helleborine (Suetsugu et al. 2017) and Limodorum abortivum (Valadares et al. 
2021). A Medicago truncatula SWEET1b transporter contributes to arbuscule 
maintenance during arbuscular mycorrhizal (AM) symbiosis (An et al. 2019). 
Additionally, the SWEET11 gene was highly expressed in M. truncatula root 
nodules (Kryvoruchko et al. 2016). Thus, in addition to the role of nutrient transport



in mycoheterotrophic orchids, SWEET transporters might be involved in 
maintaining OM symbiotic systems. 
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In addition to organic carbon, nitrogen is probably a major nutrient transferred to 
the plant from fungi (Gebauer and Meyer 2003; Hynson et al. 2013; Stöckel et al. 
2014; Fochi et al. 2016), but the mechanisms remain largely unknown. According to 
Li et al. (2022), Platanthera zijinensis and G. elata lost a nitrate reductase (NIA) 
gene and a nitrite reductase (NIR) gene and P. guangdongensis lacked the NIA gene 
and exhibited low expression of the NIR gene. This suggests that these plants may 
not directly utilize nitrate from soil. Considering the genome’s gene repertoire, 
nitrate compounds acquired from fungi may be glutamine or ammonium (Li et al. 
2022). Gene expression profiles supported the hypothesis that organic nitrogen flows 
between plants and fungi during symbiosis (Zhao et al. 2014; Valadares et al. 2020, 
2021). The transcriptome analysis of S. vomeraceae protocorms infected with 
T. calospora by Fochi et al. (2016) revealed that plant and fungal amino acids and 
peptide transporters were highly expressed during symbiosis establishment. Addi-
tionally, the high expression of genes associated with plant and fungal ammonia 
permeases and the glutamine synthetase-glutamate synthase assimilation pathway 
were detected in the symbiotic protocorms. The authors suggest that organic nitro-
gen is mainly transferred to the plant and that ammonium might be taken up by the 
intracellular fungus from the apoplastic symbiotic interface. Although the reason 
why fungi infect seeds and protocorms or, in other words, whether there are any 
merits for colonizing fungi is under debate, Dearnaley and Cameron (2017) pro-
posed a model for bidirectional nutrient transport in OM across intact membranes. 
The transcriptome analysis of symbiotic protocorms of G. elata inoculated with 
Mycena dendrobii revealed significant expression of plant genes involved in 
clathrin-mediated endocytosis during symbiotic seed germination (Zhang et al. 
2017). Future studies should fully elucidate the mechanisms of nutrient transport 
across interfaces in orchid mycorrhizae. 

3.3 Defense System 

A delicate balance between plants and fungi creates unstable OM symbiosis. The 
lady’s slipper orchid Cypripedium macranthos var. rebunense produces antifungal 
compounds in seedlings to restrict fungal growth (Shimura et al. 2007). Orchid 
mycorrhizal fungi act as pathogens to the B. striata seeds from which the seed coat 
had been removed (Miura et al. 2019). These findings have led to the hypothesis that 
plant defense reactions occur during OM symbiosis and that the fine-tuning of the 
defense response is essential for maintaining the plant–fungus relationship. In G. 
elata, Gastrodia antifungal protein (hereafter GAFP) or also known as gastrodianin 
genes encoding the monocot mannose-binding lectin antifungal proteins are 
expanded, and more than 80% of the GAFP genes are highly expressed in 
protocorms and juvenile tubers harvested from Xiaocaoba in Yunnan Province 
(Yuan et al. 2018). Additionally, G. elata is likely to reduce the number of genes



related to plant pathogen resistance, particularly in salicylic acid (SA) receptor 
genes, such as NPR3 and NPR4, and SA signaling genes, such as EDS1, PAD4, 
ALD1, and FMO1 (Yuan et al. 2018; Xu et al. 2021). Elevated SA-mediated defense 
responses are generally effective against biotrophic pathogens (Pieterse et al. 2012). 
Owing to the loss of these genes involved in SA biosynthesis and signaling from the 
parasitic plant Cuscuta australis genome (Xu et al. 2021), a common life strategy 
may exist for heterotrophic plants. 
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Moreover, what defense mechanisms are involved in OM symbiosis? Many 
transcriptome studies of OM symbioses have reported that protocorms and mature 
roots highly express genes related to reactive oxygen species detoxification during 
symbiosis (Zhao et al. 2014; Chen et al. 2017; Suetsugu et al. 2017; Gao et al. 2022). 
These genes play an important role in defense responses against biotic stresses and 
may be linked to peloton digestion (Blakeman et al. 1976; Suetsugu et al. 2017). The 
transcriptome analyses further supported the possibility of plant cell–wall 
remodeling or modification in OM fungal infections, as well as in AM and pathogen 
colonization (Zhao et al. 2014; Valadares et al. 2021; Balestrini et al. 2022). Orchids, 
in essence, control these defense responses to the extent that they do not eliminate 
symbiotic fungi, which Perotto et al. (2014) referred to as “a friendly plant–fungus 
relationship.” 

3.4 Phytohormones 

Phytohormones play a crucial role in almost every aspect of plant biology, including 
growth, development, pathogen defense, and microbial symbiosis. For example, 
exogenous gibberellins (GAs) reduce hyphal colonization and arbuscule formation 
during AM symbiosis in Pisum sativum, rice (O. sativa), and Lotus japonicus roots, 
which form typical Arum-type arbuscules (El Ghachtouli et al. 1996; Yu et al. 2014; 
Takeda et al. 2015). However, GA promotes fungal entry and colonization during 
Paris-type AM in Eustoma grandiflorum inoculated with Rhizophagus irregularis 
(Tominaga et al. 2020). Interestingly, Paris-type colonization is typical of forest 
floor herbaceous and long-lived, woody, and evergreen plants (Dickson et al. 2007), 
and some of them are mycoheterotrophic plants (Hynson et al. 2013; Imhof et al. 
2013; Giesemann et al. 2020). The symbiotic germination experiment of 
Dendrobium officinale inoculated with Tulasnella sp. S6 showed that exogenous 
GA3 treatment inhibited fungal colonization in the protocorms and seed germination 
but did not significantly affect asymbiotic germination in the 4-week-old protocorms 
(Chen et al. 2020a). Transcriptomic studies have reported high expression of genes 
related to GA biosynthesis (GA 3-oxidase (ox) and GA20ox) and the GA-GID1-
DELLA signaling module in the protocorms of Cymbidium hybridum inoculated 
with Epulorhiza repens ML01 and Anoectochilus roxburghii inoculated with 
unknown fungal species, respectively (Zhao et al. 2014; Liu et al. 2015). These 
findings suggest that GAs play a key role in OM symbiosis.
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After recognizing symbiotic factors in each other, the symbiotic process between 
plants and fungi begins. Strigolactone (SL) is one of the key phytohormones in AM 
symbiosis initiation. In the rhizosphere, SLs released from plant roots stimulate the 
hyphal branching of AM fungi, which increases the chances of an encounter with a 
host plant (Kretzschmar et al. 2012). Yuan et al. (2018) confirmed that SL had 
similar branch-inducing effects in the OM fungus Armillaria mellea. The whole-
genome sequences of orchid species have demonstrated the expansion of the genes 
encoding SL synthesis enzymes and receptors in G. elata, G. menghaiensis, and D. 
officinale (Wang et al. 2018; Chen et al. 2020b; Jiang et al. 2022). Because the 
ancestral function of SLs as rhizosphere signaling molecules was already present in 
the bryophyte Marchantia paleacea (Kodama et al. 2022), further studies will 
determine the role of orchid SLs in OM symbiosis. 

Abscisic acid (ABA) is essential for seed dormancy and adaptation to environ-
mental stress (Seki et al. 2007; Miransari and Smith 2014). Herrera-Medina et al. 
(2007) reported that tomato mutants with reduced ABA concentrations were less 
susceptible to AM fungus than wild-type plants, suggesting that ABA contributes to 
the development of the complete arbuscule and its functionality. During the seed 
germination of D. officinale, the ABA concentration was lower in symbiotic 
protocorms inoculated with Tulasnella sp. than in asymbiotic protocorms (Wang 
et al. 2018), revealing ABA involvement in OM symbiosis. The transcriptome 
analysis of Cymbidium hybridum inoculated with Epulorhiza repens ML01 revealed 
lower expression of 9-cis-epoxycarotenoid dioxygenase (NCED) and zeaxanthin 
epoxidase (ZEP) genes, which are related to ABA biosynthesis, in symbiotic roots 
than in mock-inoculated controls (Zhao et al. 2014). Collaboratively, ZEP and 
NCED significantly decreased in the early germination stage of symbiotic Cremastra 
appendiculata inoculated with Coprinellus disseminatus compared with those of the 
C. appendiculata seeds at the start of the experiment (Gao et al. 2022). In contrast, 
Gao et al. (2022) reported that the ABA receptor pyrabactin resistance 1-like genes 
were upregulated within the same period. Given that three events, germination, 
symbiotic process, and defense response, could happen simultaneously in symbiotic 
germination, the network complexity of these events is expected. 

3.5 Common Symbiosis Pathway 

The first land plants to colonize Earth, possibly cryptophytes, appeared in the 
Ordovician (approximately 450 million years ago), as confirmed using fossil records 
(Kenrick and Crane 1997). Fossilized fungal hyphae and spores that resemble 
modern AM fungi (Glomerales) were found in fossils of the same age (Redecker 
et al. 2000). Although evidence that these Ordovician fossil fungi were associated 
with plants is unavailable, the symbiotic association formed with AM-like fungi is 
thought to support plant terrestrialization (Rensing 2018). Following this founding 
event, alternative or additional symbioses emerged accompanied by plant diversifi-
cation (van der Linde et al. 2018; Radhakrishnan et al. 2020). Because AM fungi



were detected in Borya mirabilis roots, which belongs to the same order as orchids, 
Asparagales, (Reiter et al. 2013), and the mycorrhizal fungi of Apostasia species, 
members of the earliest-diverging clade of Orchidaceae, belong to families 
Botryobasidiaceae and Ceratobasidiaceae (Yukawa et al. 2009), symbiont switching 
and trophic mode shifts are thought to correlate with the evolutionary success of 
Orchidaceae (Wang et al. 2021). This section will focus on the common symbiotic 
pathway (CSP), a putative signal transduction pathway shared by AM and the 
rhizobium–legume symbiosis, to discuss the mechanisms of OM symbiosis and 
how the symbiosis has evolved. The transcriptome analysis of symbiotic protocorms 
of B. striata inoculated with Tulasnella sp. HR1–1 revealed that the expression 
patterns of genes related to the signaling pathway of AM symbiosis are partially 
conserved in B. striata (Miura et al. 2018). Additionally, the authors tested whether 
one of the CSP genes calcium- and calmodulin-dependent protein kinase (CCaMK) 
gene in B. striata is functional, by performing a cross-species gene complementation 
assay using the Lotus japonicus ccamk-3 mutant (Tirichine et al. 2006). This analysis 
showed that the B. striata CCaMK gene retains the functional characteristics of that 
in AM-forming plants (Miura et al. 2018). These findings and other studies suggest 
that orchids possess, at least partly, the molecular mechanisms common to 
AM-forming plants (Perotto et al. 2014; Suetsugu et al. 2017; Miura et al. 2018). 
Consistent with this suggestion, the CSP genes, such as symbiosis receptor-like 
kinase SymRK, CCaMK, and calcium signal decoding protein CYCLOPS, are present 
in orchid species (Radhakrishnan et al. 2020; Xu et al. 2021). However, the genes 
encoding the GRAS transcription factor REQUIRED FOR ARBUSCULE DEVEL-
OPMENT 1 and the half-ATP-binding cassette transporters STUNTED 
ARBUSCULE (STR) and STR2, which could be involved in the lipid transfer in 
AM symbiosis, are missing from orchid genomes (Radhakrishnan et al. 2020; Xu  
et al. 2021). Similarly, the three genes SymRK, CCaMK, and CYCLOPS were found 
but RAD1, STR, and STR2 were not detected in the transcriptome of Ericaceae plants 
that form ericoid mycorrhiza (Radhakrishnan et al. 2020). Molecular studies of 
various types of mycorrhizae will help understand mycorrhizal symbiotic evolution. 
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4 Prospects for Conserving Wild Orchids 

Many orchid species are widely known to be endangered. Globally, biodiversity 
hotspots are facing threats from land conversions, logging, and so on. These changes 
affect both orchids and other plant species. However, orchids are most likely facing 
greater threats than other plants if the other organisms they interact with (e.g., 
pollinators and mycorrhizal fungus) are also affected (Besi et al. 2019; Kolanowska 
et al. 2021). At a glance, orchid conservation seems to simply preserve the existence 
of a species, but in fact, orchid conservation requires extensive, complex approaches 
that should meet their survival requirements, especially during reintroduction into 
natural habitats. Conservationists and horticulturists worldwide are struggling with 
this problem, looking for new strategies involving both conventional and modern



biotechnology. Although traditional methods, including symbiotic germination and 
meristem culture, are commonly preferred for mass seedling production (Knudson 
1922; Arditti and Krikorian 1996), reintroduction of seedlings produced from these 
methods directly into natural habitats could be even more challenging. The difficulty 
is due to the nature of orchids: Establishing a symbiotic association with appropriate 
fungi is crucial for orchids, and plant robustness depends on the encounter with the 
fungal partners. 
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Consequently, the transplantation of symbiotic seedlings seems to be better in situ 
growth than asymbiotically grown seedlings. However, only a few orchid species 
have been successfully cultured in symbiotic environments since Noel Bernard 
discovered OM symbiosis in 1899. Rapidly developing next- and third-generation 
sequencing technologies have the potential to make a breakthrough in biodiversity 
conservation because these sequencers overcome the technological hurdles of ana-
lyzing nonmodel plants at the molecular level. In AM symbiosis, the unculturability 
of AM fungi without plant hosts has been an issue for a long time but is now allowed 
for their asymbiotic cultures based on past findings and the latest fungal genome 
information (Kameoka et al. 2019; Sugiura et al. 2020; Tanaka et al. 2022). A former 
study reported that the cocultivation of the AM fungus R. irregularis with bacterial 
strains of Paenibacillus validus induced secondary infective spores without host 
plants (Hildebrandt et al. 2005). The genomes of AM fungi lack genes encoding type 
I fatty acid synthases in their genomes but have enzymatic machinery for fatty acid 
modifications (Tisserant et al. 2013; Tang et al. 2016; Maeda et al. 2018; Kobayashi 
et al. 2018). Kameoka et al. (2019) corroborated these findings: AM fungi produce 
spores on palmitoleic acid which is one of the fatty acids containing media. 
According to Tanaka et al. (2022), the base media containing fatty acids were 
available for another AM fungus Rhizophagus clarus, which lacks type I fatty acid 
synthase as well as R. irregularis (Kobayashi et al. 2018). Tanaka et al. (2022) also 
suggest that the comparative genome analysis of Rhizophagus species can provide 
essential contributions to establishing custom-made culture methods and identifying 
key genes involved in fungal diversity (Tanaka et al. 2022). Recent findings in OM 
symbiosis, such as nitrogen transport, phytohormone signaling, and defense/symbi-
otic components, will contribute to efficient symbiotic/asymbiotic seed germination 
and plant growth handling. 

Transcriptome and genome analyses provide large datasets and important impli-
cations but require additional confirmation. In orchids, obtaining further evidence to 
support omics data is often difficult owing to the lack of methods for in vitro 
propagation and gene transfer, a requirement of specific materials and technology 
to analyze, such as radioisotope and stable-isotope measurements, and some han-
dling problems due to tiny seeds. Advanced technologies and novel ideas from 
researchers in various fields are required to address these challenges. Orchid species 
have a huge demand as horticultural and raw materials for Chinese herbal medicines. 
In addition to the studies of flower formation and asymbiotic mass production of 
orchids, research on the molecular mechanisms of OM symbiosis is a fascinating 
subject in that it reveals the symbiotic evolution process and develops a novel 
in vitro/ex vivo culture system or even in situ transplantation. The application of



information obtained from omics analyses may be unlike untying the Gordian knot: 
It cannot be directly and completely used to solve challenges in orchid conservation. 
However, omics information can be used to determine which orchid–fungus pair 
yields the best outcome for seedling vigor during reintroduction into natural habitats 
by taking the role of phytohormone/metabolite production. Molecular studies on 
OM fungi are expected to be implemented in a broader range of orchids, including 
those of nonmodels. 
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Breeding of Orchids Using Conventional 
and Biotechnological Methods: Advances 
and Future Prospects 

Jean Carlos Cardoso, Joe Abdul Vilcherrez-Atoche, Carla Midori Iiyama, 
Maria Antonieta Germanà, and Wagner A. Vendrame 

1 Introduction to the Family Orchidaceae and Main 
Commercial Groups Used in the Flower Market 

The family Orchidaceae is considered one of the largest groups among angiosperms 
(along with Asteraceae) in a number of species, with more than 28,000 species 
distributed in more than 850 genera according to data from World Flora Online and 
Kew Botanical Garden (WFO 2022; Kew 2022). It is also one of the groups with the 
widest geographic distribution, with representatives on almost all continents of 
Planet Earth, including species with epiphytic, terrestrial, and lithophytic growth 
habits, of which approximately 70% of all epiphytic flora in the world are orchids 
(Zotz and Winkler 2013). 
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In addition to its great ecological importance, diversity, and a high degree of 
speciation in different regions of the world (Givnish et al. 2015; Pérez-Escobar et al. 
2017), this group has been economically exploited worldwide, especially for the 
purpose of cultivation of ornamental plants. This is mostly due to the high diversity 
and number of species with inflorescences and flowers with different architectures, 
colors, and shapes that attract the consumer public in general and move billions of 
dollars in the world flower market. 

A part of this trade can be considered illegal, especially for the exploitation of 
native species taken from their natural habitat and placed for direct commercializa-
tion among collectors of rare species and even commercial cultivation nurseries, 
reaching high unit economic values for the use of rare species and those at risk of 
extinction, and which has taken on greater proportions with the online trade, which 
still has limited capacity to trace the origin and destination of the trade in orchids and 
other rare species of interest in botanical collecting (Hinsley et al. 2017; Cardoso and 
Vendrame, 2022). 

However, most of the use of orchids as ornamentals has been used legally, using 
moderate to high technology, and based on the exploitation of native genetic 
material to obtain hybrid cultivars, the latter including characteristics of horticultural 
and ornamental interest, in a single plant. In this context of commercial use, it is 
expected that a cultivar with high potential for use on a large scale will contain as its 
main characteristics its suitability for large-scale production, which basically 
requires: (1) rapid flowering that can be controlled under artificial conditions in 
order to accelerate and facilitate the production that requires flowering plants at 
different times of the year; (2) uniformity of vegetative and reproductive develop-
ment, allowing its commercialization to be programmed and delivered in lots 
(3) compact size plants, a consumer market demand that also allows for an increase 
in the number of plants per square meter of cultivated area, which is currently 
expensive to implement and maintain; (4) resilient plants that need less inputs, 
such as water, fertilizers, and pesticides, especially due to the increase in production 
costs and the current demands associated with the concept of sustainability; (5) mar-
ket novelties, which attract the consumer and feed a market marked by innovations 
and rapid changes in the end consumer’s desire. These requirements are of a general 
order demanded by practically all commercial groups of orchids. However, more 
specific objectives can be efficient strategies in the development of new cultivars and 
vary according to the commercial group cultivated. 

Since the first artificial orchid hybrid, registered between Calanthe 
masuca × C. furcata (De Chandra et al. 2014), there are currently at least a hundred 
thousand hybrids generated worldwide by collectors and by commercial companies 
specialized in the development of cultivars and trade of seedlings, also known as 
“Breeders.” Based on this, there are commercial groups of orchids of greater 
relevance for cultivation as ornamental plants, and from which the genetic improve-
ment for the market of ornamental flowers and plants is quite advanced, being these 
associated with the genera Phalaenopsis, Dendrobium, Cymbidium, Oncidium, 
Vanda, and Cattleya (Fig. 1). The term associated is not by chance, because in the 
case of Cattleya and Oncidium, most hybrids used as ornamentals are multigeneric, 
therefore, originating from crosses containing multiple genera in a single plant. In
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Fig. 1 Most important commercial orchids groups used in industrial and trade floriculture



the case of Cattleya, crosses compatible with other orchid genera are common, such 
as Brassavola, Guarianthe, Hoffmanseggella, Ryncholaelia, Sophronitis, and more 
recently with the genus Encyclia. In  Oncidiinae subtribe, crosses between Oncidium 
and species of the genera Brassia, Gomesa, Miltonia, Odontoglosssum, and more 
recently with the inclusion of other genera, such as Ionopsis (Cardoso et al. 2016) 
and Rodriguezia are more conventionally used. These intergeneric Oncidiinae 
hybrids are commercially called Cambria orchids.
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In the other commercial groups, interspecific hybrids prevail, with some com-
mercially relevant intergeneric hybrids, such as Ascocenda (Ascocentrum × Vanda), 
which allowed the miniaturization of commercial varieties of Vanda. Also, using the 
genus Rynchonopsis (Rhynchostylis × Phalaenopsis) is currently used to achieve the 
natural blue color in Phalaenopsis flowers (Wu et al. 2022). 

In contrast, in Phalaenopsis, the genus with the greatest commercial importance 
as an ornamental plant in the world, the greatest consistency is from hybrids obtained 
within the genus. Due to a large number of Phalaenopsis hybrids, the com-
mercial groups or types are divided by the characteristics of their flowers or 
inflorescences into: standard cultivars, containing inflorescences with a good num-
ber of white flowers of medium to large size; multi-flora, characterized by small-
sized hybrids or also called mini-phalaenopsis and with multiple, compact and small 
sized inflorescences; and market novelties, with yellow and red flowers and also the 
so-called spotted; and the biggest recent novelty called “Harlequins,” which present 
coloration containing the fusion of spots resembling intense and large red spots. In a 
recent work developed by Lee et al. (2020), it is possible to see different types of 
cultivars of each of the described Phalaenopsis commercial groups. Also, more 
valued in the market are genotypes capable of synchronously producing two or three 
inflorescences, which may belong to any commercial group described above. 

Also, biotechnological methods have been used more frequently and more 
effectively in the last decade, contributing to the development of cultivars with 
specific characteristics, especially using transgenics (Hsieh et al. 2020; Liang et al. 
2020). In this context, the advance in knowledge and increase in the efficiency of 
in vitro regeneration systems, especially through the formation of Protocorm-Like 
Bodies (PLBs), the increase in the number of sequenced orchid species, and 
advances in molecular techniques, have resulted in the growing use of these tech-
niques in orchids and other species of ornamental use. Even so, in many countries, 
the strict regulation related to the release of transgenic cultivars keeps the transgenic 
cultivars in the field of research by public and private companies and continues to be 
the main obstacle for these cultivars to reach the final consumer. 

2 Basis of Reproductive Biology and Its Application 
in Conventional Orchid Breeding 

Despite the high diversity of species in Orchidaceae, some characteristics are 
striking and definitive of this group of plants, such as its flowers, which in general 
consist of three sepals and three petals; one petal is modified and known as lip. In



addition, the reproductive structure is fused into a columnar structure, known as a 
gynostemium, in which the stigmatic cavity and the pollinia are located, the latter 
consisting of a mass with millions of pollen grains (Wu et al. 2009). 
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Most orchid species have hermaphroditic flowers, that is, they contain the female 
and male reproductive organs in the same flower and fused in the column or 
gynostemium. 

However, there are monoecious species, which therefore produce female flowers 
separately from male flowers (rarely hermaphroditic), which occur especially in the 
subtribe Catasetinae (Machnicki-Reis et al. 2015). In this subtribe, there are impor-
tant genera of orchids used by collectors, such as the genus Catasetum, and from 
which there are important advances in breeding and obtaining hybrid cultivars with 
exotic colors and hardly found in other orchids subtribes. However, the greatest 
difficulty in this genus for the expansion of the market aiming at large-scale 
floriculture has been the long dormancy period of these plants, which lose their 
leaves in fall-winter, keeping only their pseudobulbs, producing new shoots only in 
the spring and blooming in spring-summer. In this case, the dormancy of 
pseudobulbs can be broken by favorable climatic conditions of climatized green-
houses, which would make this group of plants good potential for innovation in the 
market of flowers and ornamental plants. 

However, all the most commercially important groups mentioned have a column 
containing functional pollinia and stigmatic cavities. Although these structures 
contribute little to the ornamental aspect, they are essential in conventional breeding, 
aiming to combine different genomes towards the development of new cultivars of 
commercial interest. 

The process of fertilization in orchids begins with pollination, a process by which 
pollinia are positioned/inserted in the stigmatic cavity of the flowers. From the 
pollinia, millions of pollen tubes can emerge containing nuclei that will fertilize 
the ovules, also in large numbers, and that will give rise to seeds. Embryo develop-
ment, a process known as embryogenesis, can take from 3 to 18 months depending 
on the species and type of cross. Even within the same genus, there can be large 
variations in the period of seed development. 

As an example, in Dendrobium, one of the genera with the largest number of 
species, there are two main commercial groups, mostly of hybrid origin, known as 
Nobile and Den-phal. In the Nobile group, the main species with the greatest 
genomic contribution to the development of cultivars is Dendrobium nobile, and 
the main characteristic of this group of cultivars is the presence of long pseudobulbs 
containing short inflorescences with one to four flowers distributed along the 
pseudobulb (Floricultura 2021). In this group, fruits have a very slow development, 
and the physiological maturity of seeds, as well as the dehiscence of fruits, occurs 
from 8 to 14 months after pollination. In the case of the Den-phal group (Fig. 1), 
Den. phalaenopsis and Den. bigibbum seem to have the greatest contribution, 
especially because they have large and round flowers. Despite this, some orchids 
are classified in the Den-phal group, but in some cases do not have the genome of 
these two species in their origin. Unlike the previous group, Den-phal orchids are 
characterized by one or more inflorescences, usually containing numerous flowers,



which arise from the apical region of the pseudobulbs (Cardoso 2012; Fig. 1). In this 
group of orchids, seed and fruit development is faster, with fruit dehiscence occur-
ring between 4 and 6 months after pollination. 

32 J. C. Cardoso et al.

Cattleya and Vanda have fruit and seed development time from 8 to 12 months. In 
the genus Phalaenopsis, fruit development, from pollination to natural dehiscence, 
takes 6–12 months after pollination, like what occurs in Oncidium. 

Orchid seeds also represent an exclusive characteristic of this family of plants, 
and the embryos develop in a limited way until the moment of fruit dehiscence and, 
consequently, their dispersal. Embryos are also devoid of reserves, such as the 
endosperm and cotyledons, and for effective natural germination, it is necessary 
the symbiotic association of embryos with mycorrhizal fungi or other 
microorganisms. 

Most likely, partly, or entirely because seeds do not have nutritional reserves for 
the embryo, this is considered one of the families with the greatest capacity for 
interspecific hybridization, including multigeneric hybrids, that is, obtained from 
multiple and successive crosses between different genera and which, in the end, 
generate fertile hybrids capable of new hybridizations. 

An example of this high cross ability is found in the subtribe Laellinae, whose 
main commercial representative is the genus Cattleya and in which, however, most 
of the cultivars produced and marketed as ornamentals come from interspecific and 
intergeneric hybrids. In this way, it is possible to cross the genus Cattleya with 
species of the genera Brassavola (Ex: Brassocattleya Binosa), Hoffmansegella 
(ex Laelia) (e.g., Laeliocattleya Brazilian Girl, Cardoso 2010; Laeliocattleya 
Nobiles Confetti, Fig. 1), Sophronitis (Sophrocattleya), Epidendrum (e.g., 
Epicattleya “Renne Marques”), Encyclia (Catyclia), Broughtonia (Cattleytonia), 
Caularthron (Caulocattleya), Rhincholaelia (Rhincholaeliocattleya), among other 
multiple combinations of these hybrids. 

Thus, if, on the one hand, this high diversity of crosses allows great segregation of 
traits for breeding, this is a highly complex family in genomic terms. Due to the 
multiple possible combinations, it can result in a great complexity for molecular and 
cytogenetic analysis aimed at the identification and origin of chromosomes and 
genes from these multiple possible combinations, which now difficulty programs 
to use molecular assisted breeding. 

Also, for this reason, and the easy crosses, with good fruit set and seed develop-
ment, conventional breeding has been used for decades aiming at the improvement 
of orchids and until today it has been the main method for use in professional 
programs for breeding and development of new orchid cultivars. 

3 Main Methods Used in Conventional Orchid Breeding 

Conventional orchid breeding methods are still today, in the era of omics and genetic 
editing, the main method of orchid breeding aiming at the production of new 
cultivars.
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The prevalence of these methods is currently due to the numerous species 
diversity and high capacity for interspecific and intergeneric combinations in 
orchids. Thus, allow the breeder to seek, in a conventional way, genotypes that 
add different traits to be inserted in commercial cultivars, only using controlled hand 
pollination to the development of fruit/seeds containing the hybrid progeny. 

The other step of this process is the in vitro germination, which has been done 
through in vitro cultivation techniques, in which seeds, after fruit and seed devel-
opment, undergo asepsis procedures to eliminate the present microbiota, being 
placed to germinate in a suitable culture medium containing a carbon source to 
support the development of embryos into seedlings. After the period of cultivation 
and in vitro development of the progeny, seedlings are acclimatized in a greenhouse 
and later selected in a cultivation environment like the one in which they will be 
grown. Genotypes with desired traits are selected, cloned using micropropagation 
techniques, and tested on a commercial scale to evaluate clonal stability and cultivar 
performance under cultivation conditions. 

3.1 Creation of Germplasm Banks and Their Relationship 
with the Objectives of the Breeding Program 

Germplasm banks are the main source used to start orchid breeding programs and 
consist of collections of species, hybrids, or even different genotypes of the same 
species with characteristics of interest to be inserted and developed in future new 
cultivars. Most private and public companies with programs for breeding orchids 
and other ornamental plants have their germplasm bank, and are made up of species 
from different geographic regions where they naturally occur; the ex situ conserva-
tion in protected cultivation is the main method used by breeding companies. That is, 
species and genotypes of different species of interest are kept outside their natural 
habitat, in cultivation conditions that simulate this environment and that may involve 
the use of temperature control technologies (heating and cooling), increase in 
relative humidity, irrigation, and artificial light. Undoubtedly, the largest orchid 
breeding programs developed by private companies are in The Netherlands, Taiwan, 
and Thailand, these are known as “Breeders,” and they are responsible for the 
maintenance of germplasm banks, development, and commercialization of new 
cultivars, in addition to the production and commercialization of seedlings of these 
cultivars. Most companies are known as “Breeders” work specifically in the market 
for cultivars and plantlets production, providing the genetic material for the world 
flower market. In this way, flower growers who use the technology of these 
companies, pay as costs the value of the production of plantlets, but also the 
technology used and associated with the cultivar, also called as royalties. Currently, 
the plantlets + royalties’ has been the most relevant cost among all costs associated 
with the production of flowers, exceeding in recent years, the cost of labor for 
cultivation. Thus, to reduce the production costs of these plantlets, large companies 
have developed production areas and plantlet cultivation systems (owned or



outsourced) within the country where the plantlets are marketed, reducing risks 
associated with currency fluctuations, high costs and bureaucracy of importing 
plant material. 
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In this way, germplasm banks are the main genetic source of traits in these 
companies, and the collection of species, genotypes, and hybrids is the one that 
maintains a frequency of production of new cultivars based on diverse and controlled 
crosses to target-specific traits. 

The main characteristics desired and placed as objectives in the current orchid 
breeding programs can be divided according to the vegetative and reproductive 
stages of the plants. At the vegetative stage, the main objectives, in general, are 
compact, rapid, and vigorous vegetative development, good rooting in pot and 
substrate conditions, and resistance to pests and diseases of the roots and shoots. 
At the reproductive stage, the most general objectives covering most commercial 
groups are high adaptability to already established cultivation systems that respond 
uniformly to the flowering control process; high flowering uniformity and homoge-
neity of cultivation lots; reduction of the juvenile period and, consequently, faster 
flowering; natural flowering at different times of the year, therefore, less dependent 
on specific climatic conditions (Cardoso et al. 2016); the greater number of inflo-
rescences at the same time, which has resulted in higher market value; compact and 
flexible inflorescence that allows adequate staking; large and round-shaped flowers, 
and when small, they should be numerous for greater visual filling; novelties about 
colors and shapes of flowers and inflorescences. 

However, specific features must be highlighted, especially for the genus Phalae-
nopsis, which differs in growth habit (monopodial) from most other commercial 
groups (sympodial). In this case, early flowering is not desired for some reasons: 
flowering in Phalaenopsis occurs after 12–18 months from seedling or plantlet 
acclimatization in a greenhouse; although it is possible to observe early flowering 
in some plants, this generally results in reduced inflorescence size and a number of 
flowers, not being marketed; the early emergence of this inflorescence results in the 
need for additional management aiming at its elimination, as it delays vegetative 
development and delays commercial flowering. Regarding the presence of more 
flexible floral stems to support staking, in Phalaenopsis there is also a different 
demand for inflorescences with high lignification degree and that do not need 
additional staking, as this would result in reduced plant management. Further, 
inflorescence lignification is a hereditary trait associated with the type of inflores-
cence architecture (Pramanik et al. 2022). Also, in Phalaenopsis, one of the fungi 
with the greatest impact on cultivation is the genus Botrytis, which causes spots and 
necrotic spots mainly on flowers. Although this fungus is a problem in all orchids, 
Phalaenopsis seem to have a greater susceptibility and, consequently, the genus in 
which there is greater damage due to their symptoms reducing the quality and 
durability of flowers. Thus, the search for more resistant cultivars or sources of 
resistance should be included in breeding programs, either by conventional crosses, 
or even biotechnological methods. 

In Dendrobium, especially in the Nobile group, in addition to innovations in the 
color of the flowers, above all, plants that flower in almost all nodes of the



pseudobulb are sought, as most cultivars have flowering nodes only in the middle 
and upper third, and no flowers in the basal third of the elongated pseudobulb. In the 
Den-phal group, among the objectives are: innovation in relation to colors (Cardoso 
2012); increased flowering synchronization, as most cultivars available on the 
market still have time-dispersed flowering, with less than 60% clonal individuals 
in a lot with synchronized flowering; production of compact plants with multiple 
terminal inflorescences or compact plants with 1–5 terminal flowers of large diam-
eter and rounded shape. Due to a large number of species in Dendrobium, there is a 
good potential for the release of new commercial groups, such as those with pendant 
inflorescences, especially hybrids with Den. densiflorum, Den. thyrsiflorum, and 
others from the same group (Teixeira da Silva et al. 2016). 
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In Oncidium and its multigeneric hybrids, the search has been for large plants 
with multiple inflorescences containing medium- to large-sized flowers and, in the 
opposite direction, for compact plants with short inflorescences and medium-to-
large-sized flowers. Color innovation is one of the central objectives, as most 
cultivars are between yellow and brown, based on the two groups of great commer-
cial relevance worldwide, which are the groups called “Golden Rains,” yellow in 
color and without fragrance, like Onc. Aloha and Onc. Sweet Sugar, and the Onc. 
“Sharry Baby,” with brown tone flowers with intense fragrance, which resembles the 
smell of chocolate (Cardoso et al. 2016). Another group that has gained commercial 
importance is commonly called Cambrias and is grouped by different intergeneric 
hybrids, such as Colmanara, a multigeneric hybrid (Oncidium × Odontoglos-
sum × Miltonia), Vuylstekeara (Cochlioda × Miltonia × Odontoglossum), Beallara 
(Cochlioda × Miltonia × Oncidium × Odontoglossum) and which results in multiple 
inflorescences with a good number, size, and color of the flowers. One of the 
successful examples of this hybrid and cultivated worldwide is Colmanara “Wild 
Cat,” with yellow flowers and brown spots, and Beallara “Tahoma Glacier,” with 
compact inflorescence, large and star-shape white flowers with red spots (Fig. 1). 

In Oncidium and Dendrobium, as well as their hybrids, high-impact rust has 
emerged more recently, causing spots on pseudobulbs and leaves, these spots are 
also called shotgun blasts, as they are characterized by several necrotic spots and 
which together have a more or less circular shape. The causal agent of the disease is 
not yet fully elucidated, but it is probably due to phytopathogenic fungi of the 
Cercospora and Alternaria genera. However, for all genera, the main pathogenic 
fungus actually is from the genus Botrytis, which causes numerous brown color 
spots in the petals and sepals, which reduces the quality and impedes their 
commercialization. 

In the genus Cattleya and its hybrids, the main problem associated with cultiva-
tion are the time from cultivation to the first flowering, which often exceeds 
3–5 years, putting these plants at a disadvantage in relation to the other genera 
mentioned above, which normally flower at 18–24 months of cultivation; the low 
shelf life of its flowers, which rarely exceeds 20 days in the best hybrids, and; the 
high sensitivity of flower buds to stresses caused by handling, transport, and change 
of environment. These characteristics put this plant at a disadvantage in relation to 
other genera used as ornamentals, such as Phalaenopsis, Dendrobium, and



Oncidium, since in these plants, the time from cultivation to commercial flowering is 
18–24 months, with a shelf life of around 30 days or more, with Phalaenopsis 
hybrids that can last longer than 60 days of shelflife, with good resistance to handling 
and transport. 
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3.2 Crosses by Controlled and Directed Pollination 

After the creation of the germplasm bank based on the objectives of the breeding 
program, the process of directed crosses begins, in which pollinia of one genotype 
are taken to the stigmatic cavity of the other. In this process, in addition to the choice 
of parents for the purpose of breeding, there is also a strong influence on orchids in 
the choice of the plant to be used as a parent. In crosses carried out with different 
genotypes by our research group and breeding program with Cattleya, we have 
observed a vegetative development (e.g., type and intensity of rooting, type of leaves 
and pseudobulbs of the progenies) with a greater genetic inheritance of traits from 
the mother parent. 

Preferably, pollinia taken from the paternal parent should be removed and 
immediately brought to the stigma for pollination. Nevertheless, due to the difficul-
ties of synchrony in flowering or even obtaining plants with different flowering times 
from the parents, it is possible to store pollinia. Pollinia lose their viability very 
quickly after they are removed from the flowers at room temperature, but they can be 
stored for a few weeks or even a few months at low temperatures, ranging from -
20 °C to  8  °C (Yuan et al. 2018). 

After pollination, the germination of pollen grains in the stigma and the long way 
to the inferior ovary and eggs for fertilization begins, which usually takes a few days 
to occur. After fertilization, the process of zygote development begins and culmi-
nates in embryogenesis, which, as previously mentioned, can take from 90 to more 
than 360 days depending on the genus and species of orchids used in the crosses. 

Problems related to incorrect pollination and/or non-occurrence of fertilization 
can result in flower abortion, early fruit abortion after a period of development, or 
even in the formation of seeds without embryos. These anomalies related to repro-
duction may be associated with the non-viability of pollinia caused by different 
factors, the incompatibility in the crossing, and as observed in our studies, the 
genetic factors contained in different genotypes, which result in different degrees 
of fruit and seed production in orchids. 

Interestingly in the case of orchids, most commercial hybrids, even after succes-
sive generations of interspecific hybridization, maintain different levels of fertility. 
Crosses, therefore, can be species × species, hybrid × hybrid, or hybrid × species, 
mostly with success in obtaining progenies. 

After 24–48 h of pollination, senescence of flowers due to pollination can be 
observed, with important changes such as wilting and forward bending of petals, 
sepals, and lip (Fig. 2a, b), as if they were protecting the reproductive organ, until the 
moment they dry completely and are detached from the gynostemium/ovary. At the
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Fig. 2 (a) Intergeneric cultivar from Cattleya hybrid group (Potinara Free Spirit) within one 
pollinated flower (p-f) showing the closing of petals and sepals and the green and swelling of the 
inferior ovary. (b) Pollinated flowers of Den-phal hybrid showing the swelling of its ovaries. (c) 
Green fruit (g-f) and fruit starting dehiscence (fsd) and yellowish color, with 8 months after 
pollination. (d) Fruits and seeds of Oncidium orchid 8 months after pollination. (e) In vitro culture 
of F1 hybrid progeny of Cattleya orchids. (f) Greenhouse cultivation of different F1 progenies 
seedlings of Cattleya intergeneric orchid



same time, there is a clear increase in the green color and swelling of the ovary 
(Fig. 2a, b). This process of fruit swelling continues throughout fruit development, 
until the moment of dehiscence or natural opening of the fruit (Fig. 2c), at which time 
the three infertile valves detach from the fertile valves of the capsule (Dirks-Mulder 
et al. 2019) with seed dispersal by wind.
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Fruit from the directed crossing, also called capsules, can be harvested shortly 
before (unripe fruits) or at the beginning of the dehiscence, also called ripe fruits 
(Fig. 2c, d). Harvesting unripe fruits require care, especially regarding knowledge 
about the seed maturation time, which is very variable in orchids and is subject to the 
risk of an early harvest, which results in abortion and non-germination of most seeds 
obtained from the cross. When ripe, part of the seeds is loose inside the fruits and this 
coincides with the maturation and dehiscence of the capsule. 

After being removed from the capsule, seeds are ready to be placed for germina-
tion. As a standard procedure performed at the Laboratory of Plant Physiology and 
Tissue Culture of the Federal University of São Carlos, fruit from directed crosses 
are harvested at the beginning of the dehiscence, when capsules change from green 
to yellowish-green, or even when it is noticed the beginning of the dehiscence, which 
starts in the distal region of the fruit, close to the column (Fig. 2c). After harvesting, 
fruits are opened, and seeds are exposed and kept to dry for at least 24 h (Fig. 2d), 
followed by removing all the seeds with the aid of a brush. Seeds are then stored in 
plastic tubes under a low temperature (8 °C). In this way, it is possible to store the 
seeds, with good viability for at least 6 months. This is extremely valid when 
working with many crosses and there is a need for reseeding due to 
non-germination or other problems that arise from the first seeding attempt. 

3.3 Asymbiotic Cultivation as the Main Means for Obtaining 
Progenies 

Germination of orchid seeds under natural conditions, due to the limited or 
abscence of nutrient reserves associated with seeds, is dependent on relationships 
with microorganisms that make a symbiotic association with orchids, especially 
mycorrhizal fungi and rhizobacteria (Tsavkelova et al. 2016; Chen and Nargar 
2020). Although it is possible to isolate, cultivate and, later, subculture these 
microorganisms together with orchid seeds to promote germination, a technique 
known as “seed baiting,” this is a tiring technique, of more difficult implementation, 
which requires care with the microorganism, with the seed and with the interaction of 
the two organisms. These characteristics hardly meet the objectives of a breeding 
program, in which the main objective is to germinate many progenies to select new 
cultivars with superior characteristics. Symbiotic cultivation has shown good appli-
cability in projects to understand the interaction microbiota and orchid species, in 
orchid species in which symbiotic germination does not seem to result in success as 
with terrestrial species, and in conservation and restoration projects with orchid 
species (Yang et al. 2020).
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Thus, the studies that began with Knudson (1922) greatly helped the breeding 
programs, by developing a technique for cultivating and germinating orchid seeds in 
an asymbiotic way, that is, without the need for microorganisms. This technique uses 
a culture medium containing a nutrient solution, a source of sugar and agar. Culture 
media such as those of Knudson (1922) or Murashige and Skoog (1962) containing 
half the concentration of macronutrients (MS1/2) have been the most used culture 
media for germination of seeds of different orchid genera and meet the need to obtain 
high germination rates (Teixeira da Silva et al. 2015; Chen and Nargar 2020). A 
critical point for culture media to promote high germination rates is that the pH of the 
media should be adjusted to values between 5.5 and 6.0. 

Asymbiotic germination under in vitro conditions can allow germination above 
90% and allows the germination of seedlings that would hardly germinate or survive 
the stresses associated with the natural environment, in which less than 1% of the 
seeds germinate. At the same time, in a breeding program looking for 
high-performance plants, the objective is to obtain a large number of plants for 
post-germination selection of plants with interesting horticultural and ornamental 
characteristics, under conditions very different from those in nature, using technol-
ogies such as environmental thermal control, availability of water and fertilizers 
based on balanced irrigation and nutrition programs available throughout the life of 
the plant. That is, the cultivation conditions of a new cultivar, including the plant 
selection process, take place in a very different environment from the natural one, in 
which plants are evaluated and selected according to their performance under 
artificial cultivation, similar to the conditions in the which large-scale flowering 
plants are produced. 

After in vitro germination, not infrequently, several hundred seedlings are ger-
minated in a single cultivation flask, which requires a process of subcultures and 
plant selection from the beginning. In hybrids of the genus Cattleya, Cardoso et al. 
(2016) developed a methodology for the systematic selection of seedlings, which 
starts from in vitro cultivation and ends at the time of the second flowering. This 
process consists of, at each subculture and from the first in vitro subculture, initiating 
the selection of seedlings with better vegetative performance. Soon after the germi-
nation of orchid seeds, the so-called protocorms are formed, globular structures from 
the multiple cell divisions of the embryo placed for in vitro germination. It is notable 
for most asymbiotically germinated progenies, the production of two types of 
structures, one of which remains as protocorms and another group of progenies 
directly originates or evolves to the formation of seedlings, containing leaves, roots 
and sometimes, pseudobulbs. In this first selection, which occurs after 90–120 days 
of cultivation, only seedlings are selected. These seedlings are then transferred to 
subculture 1, from which after 90–120 days of cultivation, there is a second selection 
based on plants with a good shoot and root development. It is possible that some 
genotypes still need a third subculture before reaching 3–8 cm in length (Fig. 2e), 
when the seedlings selected in vitro are taken to the acclimatization process, with the 
removal of the plants from the in vitro conditions with cultivation in culture medium 
to ex vitro environment with cultivation in a substrate. 

Acclimatization can last for 90 to 180 days and is carried out in trays with the 
adequate substrate under greenhouse conditions. As the most common substrates,



sphagnum, peat moss, and coconut fiber are used, but different mixtures prepared by 
specialized companies can be found. Here, fertigation programs also begin, in which 
fertilization or plant nutrition is offered together with irrigation. After this period of 
cultivation, a new round of selection of superior plants is carried out, with a selection 
of plants with vigorous vegetative development and absence of symptoms of pests 
and diseases, excluding those with inferior development. These selected plants are 
transplanted into an intermediate pot size (Cattleya and Oncidium), with 6–9 cm  in  
diameter (Fig. 2f), or even into the definitive and large pot size (Oncidium, Phalae-
nopsis, Dendrobium, Vanda), with 9, 12, or 15 cm in diameter, depending on plant 
size and cultivation objective, and in which plants are finally selected for faster 
flowering characteristics and ornamental attributes (Cardoso et al. 2016). This 
methodology has been used effectively in different commercial genera of orchids 
and new cultivars have already been obtained in the commercial groups of Cattleya 
(Cardoso 2009; Cardoso et al. 2016), Denphal, a Dendrobium-type orchid (Cardoso 
2012) and Oncidium (Cardoso 2017). 
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Importantly, in this case, the selection of plants occurs more for characteristics of 
horticultural interest, to the detriment of the ornamental aspect, aiming at the 
selection of plants with rapid development and early flowering. Ornamental traits 
are selected from only those plants that flower the fastest. Although this seems to be 
a limitation of the technique, the choice of parents is an important step towards the 
selection of plants that include rapid development and abundant flowering and with a 
shape/color of interest to the market. 

4 Biotechnological Approaches Used for Breeding Orchids 

Although conventional breeding prevails over other methods in the development of 
new orchid cultivars, in the last decade there has been an important growth in the 
contribution of biotechnological techniques that resulted in the development of new 
groups of orchid cultivars. The advancement of research in the areas of sequencing, 
omics, and genetic engineering has currently allowed advances in the application of 
biotechnological tools for breeding ornamental plants, including orchids. The most 
relevant cases with the greatest commercial impact have occurred in genera used as 
ornamental plants and of greater commercial importance, such as Cymbidium and 
Phalaenopsis (Balilashaki et al. 2022; Cai et al. 2015 Yang et al. 2021a, b), and have 
made possible the identification of genes correlated to pathways of great relevance 
for breeding orchids, such as the floral scent in Cymbidium goeringii (Ramya et al. 
2019) and the color of the flowers in Phal. equestris and Phal. aphrodite (Hsu et al. 
2022). 

The most used techniques for this purpose include the induction and selection of 
somaclonal variants from in vitro culture, in vitro polyploidization using mutagens, 
transgenics, and the isolation and fusion of protoplasts. The main biotechnological 
tools used for orchid breeding, as well as the target traits achieved for each tech-
nique, are resumed in Fig. 3.
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4.1 Induction of In Vitro Somaclonal Variations 

In vitro somaclonal variation consists of genotypic and phenotypic variation that 
occurs in in vitro tissues. Somaclonal variations are more frequently observed in 
Protocorm-Like Bodies (PLBs), which are globular structures similar to protocorms 
but of somatic-origin in orchids. The PLBs are used for large-scale clonal propaga-
tion of different orchids genera. However, this technique of propagation, also called 
Induction, Proliferation, and Regeneration of Protocorm-Like Bodies (IPR-PLBs) is 
a source of in vitro somaclonal variation in orchids, such as in Phalaenopsis, 
Dendrobium, and Oncidium (Cardoso et al. 2020). 

Otherwise, somaclonal variation can be a genetic variation source of new traits of 
interest such as biotic and abiotic stress resistance, and morphological and physio-
logical variations in flowers (Wang et al. 2019). The occurrence of punctual genetic 
mutation derived from PLBs is interesting in ornamental breeding because the 
cultivar maintains the main characteristics of originals with changes in one or a 
few traits. Therefore, somaclonal variation can be strategically applied to meet the 
demand for novelties in the orchid flower market, not requiring a long period of 
hybridization and progeny selection. 

As an example, one of the most actual, interesting, and commercial novelty in 
orchids are the Harlequin-type cultivars of Phalaenopsis, attractive for the color of 
their flowers with red or magenta-black fused spots, initially obtained and derived 
from an in vitro SV from the clonal system for propagation of Phalaenopsis Golden 
Peoker “Brother” (Hsu et al. 2019; Lee et al. 2020). Currently, the Harlequin-type 
cultivars represent an innovative and attractive cultivar group used as a new source 
of genes for the color of flowers, due to the heredity of this characteristic in crossings 
with other Phalaenopsis groups (Lee and Chung 2021). 

However, somaclonal variation is random and spontaneous and can result in 
morphological abnormalities of plants, for example, the occurrence of creased leaves 
(Tokuhara and Mii 2001) or the occurrence of deformity in flower structures, such as 
the absence of the labellum (Cardoso et al. 2020), which are not desired for clonal 
mass propagation or breeding purposes. 

Some of the factors that can affect the frequency of somaclonal variation (SV) in 
orchids are the species or genotype used, the type and concentration of 
phytorregulators in the culture medium, the origin of explant and the system used 
for regeneration, the age of the in vitro culture, and also the number and environ-
mental conditions of subcultures (Chin et al. 2019; Cardoso et al. 2020). 

Long-term cultures are one of the main factors leading to somaclonal variation in 
orchids. In vitro somaclonal variation was observed in Doritis pulcherrima derived 
from PLBs after 2 years of in vitro culture. The main changes observed between the 
original and SV-derived were the color of leaves, purple in the somaclones, and 
green in the original-type plantlets, in addition to differences observed in the size and 
content of chlorophylls, which were higher in the original-type ones (Thipwong et al. 
2022). Long-term subculture also resulted in the presence of somaclonal variation in



Oncidium “Milliongolds,” which was detected by SLAF-seq in PLBs-derived clones 
after 10 years of in vitro culture (Wang et al. 2019). 
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Among phytoregulators, most reports point to cytokinins as the main cause of 
SVs in orchids. Somaclonal variation was reported in PLBs of Dendrobium “Sabin 
Blue” cultured for 2 years in a medium containing kinetin as phytoregulator, and 
detected by ISSR and DAMD molecular markers (Chin et al. 2019) and in PLBs of 
Dendrobium nobile cultured in medium containing thidiazuron (Bhattacharyya et al. 
2016), a cytokinin-like component. 

Besides PLBs, the use of indirect organogenesis by callus proliferation resulted in 
increased somaclonal variation frequency in Vanilla planifolia Jacks, producing 
chlorophyll-variegated plantlets regenerated from callus (Ramírez-Mosqueda and 
Iglesias-Andreu 2015). 

The presence of SVs in orchids can be detected by molecular markers, such as 
ISSR (Inter Simple Sequence Repeats), RAPD (Random Amplified Polymorphic 
DNA), SCoT (Start Codon Targeted), DAMD (Direct Amplification of Minisatellite 
DNA region), SLAF-seq (Specific-Locus Amplified Fragment Sequencing) 
(Cardoso et al. 2020; Li et al. 2021a), or using morphological of adult plants until 
their flowering (Zanello and Cardoso 2019). 

4.2 Transgeny 

Transgenic technology is an efficient breeding technique that allows the transference 
of foreign new genes into a plant genome (Belarmino and Mii 2000). For orchids, 
two methods have been employed: the particle bombardment or biolistic consists of 
a physical and direct approach to transfer exogenous genes into plant tissues 
delivered by microparticles of gold or tungsten, which penetrate plant cell wall; 
the Agrobacterium tumefaciens-mediated transformation, which is a biological 
method based on the infection of plant tissue with specific strains of Agrobacterium 
tumefaciens, a soil bacterium, that has the capacity of transferring genes into the host 
plant (Mii and Chin 2018). 

Although Agrobacterium-mediated transformation was considered a method only 
for dicotyledonous plants, since monocots are not a natural host of Agrobacterium, 
monocots as orchids have been successfully transformed (Mirzaee et al. 2022). The 
particle bombardment has as its advantage the independence of hostage limitation. 
However, Agrobacterium-mediated system is preferred for the ease and high-
repeatability of the technique. 

In the family Orchidaceae, genetic transformation has been established in all main 
commercial orchid genera (Li et al. 2021a; Zhang et al. 2022), and some factors are 
important to achieve a successful genetic transformation system. Agrobacterium-
mediated transformation requires bacteria strains with an efficient infection of orchid 
cells, followed by the later regeneration of cells and tissues under in vitro culture. 
Thus, the use of super virulent strains, such as EHA101 and EHA105 (Subramaniam 
and Rathinam 2010; Mirzaee et al. 2022) has contributed to improving the



transformation efficiency. Strain EHA101 is the most used in Phalaenopsis, Cat-
tleya, Cymbidium, Dendrobium, and Vanda orchids. Strain EHA101 is more fre-
quently reported in Phalaenopsis, but recent studies involving genetic 
transformation in this genus only used strain EHA105. In addition, EHA105 was 
also the most used strain in Oncidium and Erycina (Mii and Chin 2018). The target 
explant used for Agrobacterium transformation is also high important, and most 
studies focused on PLBs or protocorms. 
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After the infection of plants using Agrobacterium, it is important to eliminate 
bacteria from plant cells and tissues by using antibiotics. The main antibiotics for this 
purpose are hygromycin, kanamycin, cefotaxime, and meropenem. Some antibiotics 
are also helpful to select the transformants, when a marker gene was used for 
transformation. Usually, antibiotic-resistance genes are used to certify the occur-
rence of transgeny and to select transformants from the non-transformed tissues and 
individuals. Thus, transformants containing the antibiotic-resistance gene will sur-
vive when exposed to antibiotics while the non-transformants will be eliminated 
(Mii and Chin 2018; Ozyigit and Yucebilgili Kurtoglu 2020). 

In the family Orchidaceae, the first reports of genetic transformation focused on 
testing and improving the efficiency of the method, using only marker or reporter 
genes to demonstrate that explants were successfully transformed. However, genetic 
transformation has enabled the change in flower color, the induction of early 
flowering, the resistance to pathogens, such as Cymbidium Mosaic Virus 
(CymMV) and Odontoglossum Ring Spot Tobamovirus (ORSV), and more recently, 
the resistance to Erwinia carotovora (Li et al. 2021a), the production of miniaturized 
Phalaenopsis by overexpression of the OsGA2ox6 gene (Hsieh et al. 2020), and the 
modification of the color of flowers, such as violet-blue in the white-flower Phalae-
nopsis cultivar (Liang et al. 2020). 

The main limitations of genetic transformation in orchids are the low efficiency of 
transgeny; the limited results until now, especially with changes in the color of 
flowers of transgenic plants, and the difficulties with the release of transgenic 
cultivars in the flower market. 

4.3 In Vitro Polyploidization and Self-Duplication 
of Genomic DNA 

Polyploidy is a biological event in which eukaryotic organisms have more than two 
complete sets of chromosomes, thus generating changes from the genetic level to 
their relationship and adaptation with the environment (Fox et al. 2020; Soltis et al. 
2009) and which are observed from humid tropical forests, desert regions, and 
extremely cold environments. This characteristic of increased vigor in polyploid 
organisms is due to genetic redundancy, which also serves as a defense mechanism 
against the negative effects of mutations and heterosis (Comai 2005). Genetic studies 
have analyzed genome duplication events in angiosperms, revealing that they all



have a paleopolyploid ancestor, as their genome has undergone at least one dupli-
cation event during evolution (Jiao et al. 2011; Renny-Byfield and Wendel 2014). 
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There are two mechanisms for natural polyploid formation in plants: the produc-
tion of unreduced gametes (2n) and somatic duplication (Sattler et al. 2016). Somatic 
duplication in plants is called endoreduplication, which is modulated by hormonal, 
environmental, and nutritional factors. Endoreduplication is caused by errors during 
the endocycle of mitosis, where cells replicate their genome but do not undergo 
cytokinesis, generating different levels of ploidy within them (Maluszynska et al. 
2013). Diploid organisms can also produce unreduced gametes due to errors during 
the first or second division of the restitution phase of meiosis (Sattler et al. 2016). 

From the establishment of in vitro plant cultivation by Haberlandt (1902) and 
with the first report of polyploidization using this cultivation system (Murashige and 
Nakano 1966), it was possible to determine that plant tissue culture could be used not 
only for mass propagation of plants but also as a new and efficient tool for artificially 
obtaining polyploid plants (Dhooghe et al. 2011). Currently, the use of in vitro 
cultivation system using colchicine as an antimitotic agent has become the most 
common and popular strategy for plant polyploidization (Eng and Ho 2019). 

In orchids, the chromosome number of more than 90% of species is the result of at 
least one polyploidy event (Mondin and Neto 2006). Thus, natural polyploidy 
events, such as endopolyploidy and the formation of unreduced gametes have 
been reported in many orchid genera, especially those used as ornamentals 
(Vilcherrez-Atoche et al. 2022). Endopolyploid tissues have been reported in almost 
all commercial orchid genera, with DNA content ranging from 2C to 16C in 
Cymbidium, 2C to 32C in Dendrobium, and 2C to 64C in hybrids of Phalaenopsis 
(e.g., Doritaenopsis) and Vanda (Vilcherrez-Atoche et al. 2022). Regarding the 
frequency of occurrence of unreduced gametes in orchids, this is not naturally 
high, being observed in some commercial cultivars of Cymbidium, between 
0.15–4.03% (Zeng et al. 2020). 

Although the natural production of polyploid plants from non-reduced gametes or 
tissues with high rates of endopolyploidy is possible, polyploidization with the use 
of antimitotics is the most used technique for the artificial induction and increase of 
the frequency of polyploids for orchid breeding (Vilcherrez-Atoche et al. 2022). 

The artificial induction of polyploidy in orchids has already been reported, at least 
once, in the main genera used as ornamental plants, and in more than 80% of 
polyploidization studies, the mutagen used was colchicine (Vilcherrez-Atoche 
et al. 2022). Dendrobium, Cymbidium, and Phalaenopsis were the first genera 
used for artificial chromosome duplication in Orchidaceae. Menninger (1963) first 
performed the induction of a tetraploid of Cymbidium using colchicine, followed by 
Griesbach (1981) who exposed protocorms of Phal. equestris, Phal. fasciata, Phal. 
“Betty Hauaserman” to colchicine, resulting in the generation of polyploid plants 
with an average frequency of 46%. Chaicharoen and Saejew 1981 also successfully 
performed artificial autopolyploidy of Dendrobium phalaenopsis using colchicine. 

The procedure for autopolyploidization in orchids using colchicine basically 
consists of choosing the tissues to be treated; in orchids protocorms, and PLBs are 
the most used, with the concentration (50–500 mg L-1 colchicine) and explant



exposure time (1–7 days) to the antimitotic agent (Vilcherrez-Atoche et al. 2022). 
After this process, tissues are immersed or exposed in a culture medium containing 
the antimitotic agent, followed by washing the tissues with deionized water and 
transferring the treated explants in a culture medium without the antimitotic agent, in 
order to reduce phytotoxic effects and regenerate polyploidized individuals. Subse-
quently, there is a need to select polyploidized individuals, which has been 
performed more frequently using flow cytometry, which is a more practical method 
that allows the analysis of a large number of plants in a short time, being more 
effective than chromosome counting using microscopy (Vilcherrez-Atoche et al. 
2022). 
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Plant polyploidization results in a change in the architecture of polyploidized 
plants, including stem size and diameter, as well as leaf dimensions, shape, and color 
(Eng et al. 2021). Polyploid plants of Phal. amabilis var. grandiflora showed a 
reduction in plant size and an increase in the number of leaves (Mohammadi et al. 
2021). Likewise, polyploid plants of Den. nobile showed a decrease in size, 
pseudobulb diameter and leaf width/length (Vichiato et al. 2007) in relation to 
diploids. In Cym. lowianum, artificial chromosome duplication generated plants 
with slow growth, short stems, and darker and thicker leaves (Xuejiao et al. 2010). 
In the reproductive part, such as leaves and inflorescences, changes such as increased 
size, color intensity, aroma, and durability of flowers are also observed (Sattler et al. 
2016; Vichiato et al. 2007). Changes like those described have already been 
observed in polyploid plants of Phal. Golden Sands “Canary” showed an increase 
in the size of the flowers, in addition to a darker and more intense color (Griesbach 
1985). Likewise, polyploid Den. officinale plants generated flowers with increased 
lip length and gynostemium width (Zhang and Gao 2020). 

Most commercial cultivars of Dendrobium, Cymbidium, and Phalaenopsis orig-
inate from interspecific crosses, in which it has been observed that many of these 
hybrids have different levels of infertility due to irregularities during meiosis 
(Bolaños-Villegas and Chen 2007; Sattler et al. 2016). Triploid hybrids are those 
with the greatest infertility problems (De et al. 2014a, b), limiting their use in orchid 
breeding programs. Artificial polyploidization of these triploid genomes may result 
in the restoration of fertility in these hybrids (Sattler et al. 2016). An example of 
fertility restoration in orchids was observed in the triploid hybrid Phal. Golden 
Sands “Canary”, in which colchicine-treated protocorms generated fertile hexaploid 
plants that were later used as progenitors for the development of new cultivars, such 
as Phal. Meadowlark (Griesbach 1985). On the other hand, the development of 
triploid plants (3×), from the crossing of polyploidized plants (4×) with diploid 
plants (2×), could result in hybrids of interest to companies focused on breeding, 
since the infertility of these hybrids could limit its use by other competing compa-
nies’ genetic improvement programs.
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4.4 Isolation, Culture, Regeneration, and Fusion 
of Protoplasts in Orchids 

Protoplasts are plant cells free of the cell wall, which can be obtained from different 
plant tissues and organs, and which have the biological mechanisms necessary for 
the reconstruction of a new cell wall aiming at the regeneration of a complete plant 
(Naing et al. 2021). 

The first stage in the protoplast culture system is the isolation of cells from the 
tissue or organ of the donor plant. There are two methods for removing the cell wall 
from plant cells, either by mechanical procedures used to obtain small amounts of 
protoplasts from larger cells (Davey et al. 2005) and by enzymatic digestion treat-
ments (Davey et al. 2003). Currently, treatments using enzymes are the most used, in 
which intrinsic factors specific to the explant and extrinsic factors are considered 
important during the release and acquisition of protoplasts (Giles 2013; Sinha et al. 
2003). 

There are some efficient protocols for the isolation of protoplasts in different 
orchid genera, as observed by Teo and Neumann (1978), in which they used 
enzymatic treatment with cellulase (2%), macerosyme (1%), pectinase (0.5%), 
and 0.7 M sorbitol for the isolation of protoplasts from protocorms, leaves, plantlets, 
and shoots of Renantanda “Rosalind Cheok,” Phalaenopsis, Cattleya, Dendrobium, 
and Paphiopedilum, respectively. Price and Earle (1984) also used isolated enzy-
matic treatments with 2% cellulase or in combination with driselase (0.5%) and 
macerosyme (1%) and 0.2 M and 0.5 M sorbitol for the isolation of protoplasts in 
Angraecum, Brassia, Cattleya, Dendrobium, Odontonia, Paphiopedilum, and 
Vanilla. 

After the isolation of protoplasts, it is necessary to determine some important 
parameters such as density, viability, and yield of the isolated material to increase the 
chances of establishing the culture and achieving a high efficiency of fusion and 
regeneration (Naing et al. 2021). In orchids, protoplast/cell viability and isolated 
protoplast density were determined by the fluorescein diacetate and hemocytometer 
method, respectively (Yasugi et al. 1986; Shrestha et al. 2007; Ren et al. 2020a, b). 
These two parameters analyzed during the isolation of protoplasts and their possible 
regeneration can be influenced by the type and endogenous characteristics of the 
explant (Naing et al. 2021). Ren et al. 2020a, b observed in Cymbidium that the 
highest yield (~2.50 × 107/g FW), viability (~92.09%) and durability (>70% intact 
protoplasts for up to 3 days) of protoplasts were obtained with the use of leaf base 
tissues, compared to flower pedicels and young root tips. Explant age can also 
influence protoplast yield (Khentry et al. 2006), in which two-month-old 
Dendrobium Sonia “Boom 17” leaves generated a greater number of protoplasts 
per fresh weight (g) compared to 1-month-old leaves. In Dendrobium Pompadour, it 
was determined that the protoplast size and yield of leaves from plantlets >2.5 cm in 
length (31.12 × 105 /g FW) were higher compared to leaves smaller than 2.5 cm in 
length (28.33 × 105 /g FW) (Kanchanapoom et al. 2001). In a Cymbidium hybrid, a 
difference in protoplast isolation efficiency was found using in vitro (5.2 × 104 /



g FW) and ex vitro (4.4 × 104 /g FW) leaves (Pindel 2007). Similar results were 
reported by Kang et al. (2020). 
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In orchids, extrinsic factors such as low temperature (5 °C) caused a decrease in 
the percentage of isolation of protoplasts/cells after enzymatic treatment of leaves 
and petals of Dendrobium Yukidahura “Rainha” (Yasugi 1986). 

Once the protoplasts are obtained, they are suspended to obtain an optimal 
density that allows theirs in vitro cultivation. In orchids, protoplast density is an 
important factor during its cultivation, as observed in protoplasts of Dendrobium 
Sonia “Bom 17,” in which a density of 2 × 105 protoplasts/mL showed a higher 
division rate (20.18%) for the highest density, 5 × 105 protoplasts/mL (6.45%) 
(Khentry et al. 2006). The authors attributed this lower division rate to excess 
protoplasts, which would cause a rapid decrease in nutrients, interfering with cell 
wall regeneration and normal protoplast division. 

In orchids, there are studies on the cultivation of protoplasts in some genera, such 
as Aranda (Kanchanapoom and Tongseedam 1994), Cymbidium (Pindel 2007), 
Dendrobium (Khentry et al. 2006; Yasugi 1986; Kunasakdakul and Smitamana 
2003), Phalaenopsis (Shrestha et al. 2007; Kobayashi et al. 1993; Ichihashi and 
Shigemura 2002), Rhyncholaelia (Mota-Narvaez et al. 2018), and Vanilla (Montero-
Carmona and Jiménez 2015). 

Among the factors with the greatest effect on the cultivation and regeneration of 
Phalaenopsis and Dendrobium protoplasts are the culture medium, phytoregulators 
and the gelling agent. Shrestha et al. (2007) reported that the use of sodium alginate 
beads allowed a greater production of compact colonies of cells and that they 
presented a high capacity of callus induction and plant regeneration in Phalaenopsis 
when compared to the method with gellan gum or standard with agar. Plant regen-
eration from protoplast culture can follow the organogenic or embryogenic pathway. 
About 70% of ornamental species follow the organogenic regeneration pathway 
(Tomiczak 2020), but in orchids, regeneration via embryogenesis and the subsequent 
formation of PLBs has been more frequently observed (Shrestha et al. 2007; 
Kobayashi et al. 1993; Mota-Narvaez et al. 2018; Kunasakdakul and Smitamana 
2003). 

Isolation and cultivation of protoplasts have different purposes and applications 
in modern agriculture. Among these applications, the fusion of protoplasts from 
different species, also called somatic hybridization, is a biotechnological tool that 
allows the formation of different types of somatic hybrids depending on the degree 
of fusion between two protoplasts of different origins (Grosser et al. 2010). This 
technique has been used to hybridize species that cannot transmit their genetic 
characteristics through conventional breeding techniques via sexual hybridization 
(Grosser et al. 2010). The formation of somatic hybrids by protoplast fusion has been 
applied in ornamental plants (Naing et al. 2021) and in some orchid genera, such as 
Dendrobium (Kanchanapoom et al. 2001; Thomas et al. 2017; Yasugi 1989), 
Phalaenopsis (Sumardi and Indrianto 1991), and Vanilla (Montero-Carmona and 
Jiménez 2015; Divakaran et al. 2008; Macareno et al. 2016). 

There are two mechanisms to carry out the fusion of protoplasts in plants by 
physical means—via electrofusion, and by chemical means—via polyethylene



glycol (PEG). Electrofusion allows the fusion of organelles and maintains the 
viability and integrity of the protoplast (Davey et al. 2005). Polyethylene glycol is 
a high molecular weight reagent that dehydrates and alters cell membranes, increas-
ing their fluidity and affinity between membranes (Begna 2020) and has been the 
most used compound for the fusion of orchid protoplasts (Divakaran et al. 2008; 
Sumardi and Indrianto 1991; Yasugi 1989). Yasugi (1989) managed to form somatic 
hybrids of Dendrobium with Epidendrum, Cattleya, and Paphiopedilum, and 
Sumardi and Indrianto (1991) performed the fusion of Dendrobium and Phalaenop-
sis protoplasts using PEG. In the Vanilla genus of orchids, electrofusion was also 
used for somatic hybridization, which generated a high number of fusion events 
(8.9%) (Montero-Carmona and Jiménez 2015). 
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4.5 Production of Haploid and Double-Haploid Plants 

The production of haploid and double-haploid plants is one of the most promising 
techniques in breeding programs for allogamous plants, with a high heterozygosity 
rate. Obtaining intervarietal hybrids from homozygous lines has supported world 
agriculture since the end of the last century, serving as the basis for high yields of 
crops such as corn, and more currently in the cultivation of vegetables, from the 
cultivation of hybrids originating from the F1 generation of crosses between homo-
zygous lines. 

Conventionally, obtaining homozygous lines from heterozygous plants can take 
between 7–9 generations of self-fertilization, making the process slow and tedious. 
On the other hand, the techniques of in vitro culture of gamete tissues, such as the 
culture of anthers or isolated microspores or the culture of eggs or ovaries in vitro are 
strategies of great value in different crops and currently support the production of 
homozygous strains in different species of agronomic and horticultural interest 
(Chaikam et al. 2019; Germanà 2011). 

Basically, in a process of obtaining haploid and double-haploid plantlets, gamete 
cells from microspores or eggs are induced to enter consecutive cell divisions, 
without the need for fertilization. Thus, through the embryogenic pathway, there 
would be the formation of embryos and haploid plantlets, from a change from the 
gametophytic to the sporophytic pathway. In this regeneration process, there may be 
maintenance (haploid) or natural duplication of the haploid genome (double-
haploid), resulting in completely homozygous plants, which can be used to obtain 
intervarietal hybrids. 

Despite the wide applicability, there are few reports of obtaining haploid and 
double-haploid plants in orchids. Kato and Ichihashi (2018) observed the formation 
of haploid and double-haploid plantlets in orchids of the genus Bletilla via parthe-
nogenesis, that is, by the use and regeneration of plantlets from unfertilized eggs. 
Sporophytic cell division has also been reported, due to the occurrence of symmet-
rical divisions and multicellular structures from microspores of Dendrobium hybrid 
and Spathoglottis orchids (Indrianto et al. 2015).
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Despite the few studies in this area, the development of breeding programs based 
on obtaining haploid and double-haploid plants, this technology can be of great 
value both to expand the diversity of genotypes available for breeding programs and 
to produce hybrid seeds from homozygous lines, which could change, simplify, and 
cheapen the entire propagation system for ornamental orchids. This is because using 
this technology, seeds of the F1 generation of homozygous lines are used as the main 
source of propagation material, instead of complex systems conventionally used on a 
large scale and which involve the regeneration and proliferation of somatic tissues 
in vitro for cloning orchids (Cardoso et al. 2020). 

If, on the one hand, each orchid fruit generates hundreds of thousands or even a 
million seeds, and directed pollination is a simple method to be used in orchids, on 
the other hand, some difficulties can limit the use of this technique, such as high 
polyploidy rate of current commercial cultivars, which would result in the regener-
ation of dihaploid (n = 2x, from 2n = 4x) and non-haploid (n = x, from 2n = 2x) 
tissues. Thus, for this technology to be properly employed, it requires the need to 
identify cultivars with commercial potential that have not yet undergone 
polyploidization, resulting in haploid and double-haploid plants that can be evalu-
ated as homozygous lines in crosses aiming at obtaining elite hybrids. 

5 Orchid Breeding in the Generation of Genome 
Sequencing and Editing 

5.1 The Transient Gene Expression System in Orchids 

Advances in genetic sequencing in some orchid genera (Chao et al. 2017; Hsiao et al. 
2021) have allowed for the beginning of work on the identification and functional 
characterization of genes; this information is essential to understand the complex 
mechanisms of development, flowering, adaptation, nutrition, and reproduction in 
this plant family (Hsieh et al. 2013, 2020; Su and Hsu 2003; Tan et al. 2005). 

The transient gene expression system using protoplasts is a technique that 
combines plant tissue culture through the isolation of protoplasts with genetic 
transformation mediated by the incorporation of genetic material through a vector 
using polyethylene glycol (PEG) or electroporation for the study of biological 
activity of different genes or proteins in plant cells (Ren et al. 2021; Davey et al. 
2005). 

It is a tool that allows for characterizing and studying the behavior, regulation, 
interaction, and expression of genes of interest within the plant transcriptome (Lin et 
al. 2018). There are studies in the literature on some orchid genera, such as 
Cymbidium (Ren, Gao, et al. 2020; Ren et al. 2021; Yang et al. 2021a, b; Ren 
et al. 2020a, b), Dendrobium (Li et al. 2021a, b, c) and Phalaenopsis (Li et al. 2018; 
Lin et al. 2018), which use the transient gene expression system using protoplasts.
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In Cymbidium, the polyethylene glycol (PEG)-mediated transient gene expres-
sion system using leaf-based protoplasts was used to analyze the CsDELLA gene 
responsible for gibberellin (GA) regulation for flowering-related genes. Among the 
results of this work is the high efficiency of protoplast transfection (80%), which 
allowed the subcellular localization of the CsDELLA-GFP protein. The analyses 
showed that the overexpression of the CsDELLA gene caused a decrease in the 
expression of some genes related to flowering and the CsSOC1 and CsFT genes, 
while its silencing generated an upregulated expression of these aforementioned 
genes. The expression of genes related to flowering promoted by gibberellic acid 
(GA) also caused the suppression of the CsDELLA gene (Ren et al. 2021). 

Yang et al. (2021a) used protoplasts from young leaves and petals of Cym. 
ensifolium to generate overexpression of the Ce-miR396 gene through the transient 
gene expression system using polyethylene glycol (PEG). The results showed that 
the overexpression of the Ce-miR396 gene generated a decrease in the transcription 
of the CeGRF gene in both types of protoplasts, indicating that the Ce-miR396 gene 
plays a key role in the development of plant organs and that regulatory differences in 
each CeGRF gene are due to different tissue-specific expression patterns. 

In Cymbidium, the transient gene expression system by protoplasts allowed not 
only studies related to plant development but also virus–plant interaction studies, as 
observed in Ren et al. (2020b), where it was possible to observe in protoplasts that 
Cymbidium mosaic virus (CymMV) infection increased the expression of three 
proteins (CsNPR1–2, CsPR1–1, and CsPR1–2) and when salicylic acid (SA) was 
present, it increased the expression of CsNPR1–2. This SA-dependent protein 
CsNPR1–2 response is a defense mechanism that Cymbidium has against CymMV 
infection. 

The PEG-mediated transient gene expression system also allowed the subcellular 
localization (cytoplasm and nucleus) of the DOTFL1 protein in protoplasts of the 
leaf mesophyll of Dendrobium “Chao Praya Smile.” The DOTFL1 protein is an 
ortholog of TFL1 in Arabidopsis thaliana and is involved in vegetative growth as 
well as floral transition events necessary for reproductive success in Dendrobium 
(Li et al. 2021a, b, c). 

In Phalaenopsis “Ruili Beauty” and Phalaenopsis aphrotide subsp. formosa, a  
transient gene expression system mediated by PEG was developed using protoplasts 
from young leaves and petals, respectively; in which this genetic tool allowed the 
subcellular localization of fluorescence-labeled proteins in the cell nucleus and 
membrane. Furthermore, the modified protoplasts served to provide specific infor-
mation, such as protein–protein interactions, transcription factor activity, and 
response mechanisms to plant growth regulators (Li et al. 2018; Lin et al. 2018). 

5.2 CRISPR Gene Editing 

Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR/Cas9) is a 
gene editing technique that has been efficiently used in plant genetics (Semiarti



et al. 2020). One of its advantages in relation to genetic transformation is the fact that 
it allows the production of non-transgenic plants, which facilitates their regulation 
regarding genetic modification. CRISPR can perform gene editing without transfer-
ring exogenous DNA, but silencing endogenous genes to achieve a trait of interest 
(Corte et al. 2019). 
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Advances in genome sequencing in the family Orchidaceae have an impact on the 
development of this technique. Although some species of the genera Phalaenopsis, 
Dendrobium, Cymbidium, Gastrodia, Bletilla, Platanthera, Vanilla, and Apostasia 
have their genome sequenced (Zhang et al. 2022), the CRISPR/Cas 9 technique was 
reported only in Phalaenopsis (Nopitasari et al. 2020; Tong et al. 2020) and 
Dendrobium (Kui et al. 2017). 

In Phalaenopsis amabilis, a successful CRISPR/Cas9 KO system was developed 
using protocorms and PDS3 as target genes, in which transformant plants showed 
albino phenotype in leaf tissues (Semiarti et al. 2020). A gene editing system was 
developed using Agrobacterium-delivered CRISPR/Cas9 carrying the VAR2 gene 
into Phal. amabilis protocorms, resulting in variegate patterns in the leaves of 
transformant plants (Nopitasari et al. 2020). In Phal. equestris, CRISPR was used 
to produce mutants, combined with Agrobacterium-mediated transformation with 
MADS genes, which are important for flower development (Tong et al. 2020). In 
Dendrobium officinale, CRISPR/Cas9 was applied for editing endogenous genes 
associated with the lignocellulose biosynthesis pathway (Kui et al. 2017). In 
Dendrobium Chao Praya Smile, the DOTFL1 was knockout aiming at rapid 
flowering and bulb formation, studying the role of DOTFL1 in plant development 
(Li et al. 2021a, b, c). 

These results demonstrate that CRISPR gene editing systems are promising for 
the molecular breeding of orchids, enabling the transference of exogenous genes and 
the deletion of endogenous genes, as well as the development of new cultivars with 
characteristics of interest in the family Orchidaceae, regardless of the disadvantages 
of conventional breeding techniques. 
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1 Introduction 

Orchids are extremely fascinating plants that surpass all the plant groups in the 
“Plant kingdom.” It belongs to the Orchidaceae family, which is the second largest as 
well as the highly advanced family among flowering plants. It encompasses approx-
imately 850 genera and 35 thousand species (Stewart and Griffith 1995; Gutierrez 
2010). Orchids are better known for their alluring, enchanting attractive floweret, 
which are extremely precious globally in floricultural trades. Orchids became the 
second most top-selling cut flowers as well as potted floricultural products due to 
their increasing demand in the globe for trading. Their aristocratic, adorable, and 
wonderful colors, sometimes-intricate forms, have enchanted men and women 
through the ages. Orchids lend a charming beauty with their extraordinary flower 
heterogeneity, in terms of size, shape, structure, number, density, color, and fra-
grance. Besides their adorning values, the orchids are also mentioned specially for 
their therapeutic medicinal properties as well as economic importance especially in 
the traditional pharmacopeias extensively since time immemorial (Withner 1959; 
Kaushik 1983). Earlier in China and Japan orchids were used as herbal medicine for 
different illnesses nearly 3000–4000 years ago, respectively (Reinikka 1995; Bulpitt 
2005; Jalal et al. 2008). 

Many species of Vanda, Dendrobium, Habenaria, Malaxis, Cymbidium, 
Coelogyne, Cypripedium, Anoctochilus, Bletilla, Calanthe, and Cymbidium, etc. 
are significantly important for having medicinal importance. Medicinal orchid
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plays an outstanding part in therapeutics with the presence of important phytochem-
icals such as alkaloids, flavonoids, carotenoids, sterols, saponins, anthocyanins, and 
polyphenols either in their pseudo bulb, tubers, leaves, stems, flowers, roots, or in the 
complete plant (Okamoto et al. 1966; Williams 1979; Majumder and Sen 1991; 
Majumder et al. 1996; Zhao et al. 2003; Yang et al. 2006; Singh and Duggal 2009). 
Several ailments like arthritis, tumors, fever, malaria, snakebite, scorpion bite, 
depression, tuberculosis, cervical carcinoma, diabetes, and biliousness, etc. are 
cured by medicinal orchids (Szlachetko 2001). These orchids were also employed 
as food and fodder, and local medicine by rural communities for their livelihoods 
and revenue generation. Moreover, uprooting the whole plant from its habitat for 
sale to the traders as well as over-exploitation by rural communities causes the 
extinction of many important orchid species (Kala 2004). Other than that native 
environment of many orchids is rapidly declining due to hefty desertification, habitat 
loss, urban sprawl, and usage of land for farming and cultivation. Therefore in 
medicinal orchids, it leads to a wide gap between booms and busts.
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In recent years, in Western countries, the growing use of herbal medicine and its 
demand is increasing. Ultimately, this type of over-exploitation requisites an intense 
protection measure. But in situ or ex situ of medicinal orchids conservation in their 
natural habitat is not sufficient for propagation as their rate is low. Orchid seeds are 
small, have no endosperm, and require fungal pathogens to germinate; therefore, 
germination rates in nature are very low (Arditti 1992). It takes a long time to obtain 
the desired number of orchids through asexual reproduction by rhizomes, bulbs, or 
rooting branches. Hence, it needs proactive mass distribution and re-establishing 
them in nature. To meet their growing pressure and to reduce collection pressure on 
wild species, biotechnological approaches such as the plant tissue culture technique 
has contributed immensely to plantlets production on large scale and developed 
different protocols for rapid cloning of desired genotypes using various types of 
explants. This technique has come up as a key drive in the production of planting 
quality material for commercially and medicinally important orchids to fulfill the 
increasing demand and to reduce the collection pressure on wild orchids. 

Under the above circumstances, biotechnological approaches enhance the in vitro 
propagation as well as conservation and mass multiplication of important medicinal 
orchids has raised high hopes by adopting asymbiotic seed germination, vegetative 
explants materials, artificial seed technology and secondary metabolites production, 
in vitro acclimatization of raised plantlets and their establishment in nature, etc. This 
chapter briefly endows the state-of-the-art information mediated on tissue culture 
with biotechnological interventions in some medicinal orchids through 
micropropagation, along with its societal impacts such as ethnomedicinal properties, 
phytochemistry, biological activities, and economics that being the need of the hour.
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2 In Vitro Propagation 

To establish a successful propagation of orchids explants type selection is the most 
crucial factor. Among the various vegetative explants materials, the leaf has been 
utilized as a potent and potential source of explants for the mass multiplication of 
orchids. Leaf has the viability for producing a large number of uniform plantlets 
from a single leaf or leaf segment through direct embryogenesis or organogenesis. 
Knudson (1922) explored the asymbiotic seed germination in orchids under the 
aseptic condition, which was the first feasible technique of in vitro propagation that 
formed the base of modern biotechnology (Knudson 1922). Later on, Rotor (1949) 
developed a method to culture Phalaenopsis using uni-nodal flower stalk cuttings 
but all credit goes to George Morel for developing a micropropagation technique for 
orchids at a large scale (Rotor 1949). Virus-free Cymbidium clones were obtained 
from in vitro shoot meristem culture (Morel 1960). Later on, Morel (1964) reported 
that it was possible to produce million of plantlets within a year using a single bud by 
frequent sub-culturing of protocorm-like bodies (PLBs) that motivated the orchid 
growers (Morel 1964). The present-day micropropagation in both basic and practical 
aspects is much more organized than it was in the beginning. Though shoot-tips have 
remained the most commonly used explants for propagating orchids, the regenera-
tion potential of other explants like axillary buds, stem discs, inflorescence seg-
ments, floral stalks, leaves, leaf peels, perennating organs (pseudobulbs, rhizomes, 
tubers), and roots has also been utilized successfully (Vij et al. 2004; Arditti 2008). 

2.1 Seed Germination 

To produce firm seeds and flowers, it takes 5–10 years for an orchid plant. Orchid 
seeds are one of the most distinctive features of the Orchidaceae family. They are 
tiny, very small, and powdered, and are produced in large quantities, with 
1300–4000,000 seeds per capsule (Harley 1951; Arditti 1961). Very fragile, rela-
tively undifferentiated, and without endosperms or cotyledons, seeds are produced 
from the majority of orchid species (Mitra 1971). 

Due to a lack of metabolic machinery and functional endosperm, the natural 
germination rate of orchid seeds is very poor. Only 0.2–0.3% germinates in natural 
conditions (Prasad and Mitra 1975). It is well known that the seeds of almost all 
orchids are entrusted to mycorrhizal fungi for germination in natural conditions. 
Symbiotic fungi have been extensively exhibited to induce seed germination in both 
terrestrial and epiphytic orchids for seedling development. But, asymbiotic seed 
germination has imparted a systematic way for the mass multiplication of orchids 
(Chen et al. 2022).
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2.1.1 Asymbiotic Seed Germination 

The ability of orchid seeds to germinate asymbiotically by in vitro means was 
demonstrated for the first time by Knudson in Cattleya species (Knudson 1922). 
Asymbiotic in vitro seed germination of orchids occurred by culturing immature 
ovules often known as either embryo, fruit, or pod (Fig. 1a–d). The germination 
potential of immature embryos was much better than that of mature ones and varied 
with their developmental stages. Due to pH, dormancy, and other metabolic factors, 
very young orchid oocytes cannot germinate and thus cannot form suitable explants 
(Withner 1953). During in vitro seed germination of orchids, the intermediate 
protocorm stage is followed by subsequent seedling development (Fig. 1e–f). A 
protocorm is a chlorophyll-like, hairy, and pear-like bulbous or oblong structure that 
originates from the apical or lateral suture of the seed coat and provides nutrients like 
cotyledons during embryonic development and subsequent seedling growth (Lee 
1987). Protocorms have been inconsistently assessed as uniform callus structures or 
distinct shoots (Kanase et al. 1993). The protocorm-like body specified the orchids 
for the regeneration of multiple plantlets which is a blessing to the world floricultural 
market (Fig. 1g–j). 

Asymbiotic seed germination of orchids was exploited for in vitro mass produc-
tion of orchids with commercial and medicinal importance for conservation and 
ecorestoration. It was reported by several investigators from time to time. 

Half strength of Murashige and Skoog (MS) medium (Murashige and Skoog 
1962) were used for seed germination of Bletia purpurea (Dutra et al. 2008), 
Coelogyne stricta (Parmar and Pant 2016), Cymbidium giganteum (Hossain et al. 
2010), Cymbidium goeringii (Gong et al. 2018), and Spathoglottis plicata (Aswathi 
et al. 2017; Hossain and Dey 2013). Accordingly, Cymbidium aloifolium was 
germinated in 1.0 mg/L 6-benzylaminopurine (BAP) and 0.5 mg/L 
α-naphthaleneacetic acid (NAA) supplemented (Paul et al. 2019). However, a 
modified half-strength MS medium was tested for in vitro germination of 
Dendrobium ovatum (Shetty et al. 2015). 

Six different media compositions for testing were examined for their effective-
ness towards the growth of Dactylorhiza hatagirea (Warghat et al. 2014) and Bletia 
purpurea seeds in BM-1 (Van Waes and Debergh 1986); 1/2 MS, Vacin and Went 
modified (VW) medium (Vacin and Went 1949); Malmgren modified terrestrial 
orchid medium (MM) (Malmgren 1996) and Knudson C (KC) medium (Knudson 
1946). Dendrobium macrostachyum seeds were accomplished on MS, VW, and KC 
medium having different accumulation, amalgamation of growth hormones, and 
other additives. Among them, VW basal medium tested with 0.5 mg/L BAP and 
5 mg/L NAA was more acceptable for plantlet formation (Li et al. 2018). 
Dactylorhiza hatagirea was cultured on Heller and Lindemann (LD) medium 
(Warghat et al. 2014), MM, VW, MS, and KC media. Both MS and KC medium 
were examined for asymbiotic seed germination of Eria bambusifolia (Basker and 
Bai 2010). MS, KC, and KC-modified Morel medium were used for Satyrium 
nepalense (Mahendran and Bai 2009) seed germination. Seeds from mature capsules
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of Dendrobium trigonopus were augmented in B5, MS, and 1/2 MS with NAA, 
BAP, and bark powder for in vitro germination (Pan and Ao 2014). MS + 1.0 mg/L 
BAP + Phytamax™ were provided for seed germination of Dendrobium aphyllum 
(Hossain et al. 2013).
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Vacin and Went (1949) medium was alone tested for seed germination of 
Dendrobium parishii (Vacin and Went 1949; Kaewduangta and Reamkatog 2011). 
Likely, on VW medium mature seeds of Dendrobium lasianthera were enhanced 
with the incorporation of different concentrations of peptone of 1, 2, and 3 gm/L 
(Utami et al. 2017). Mature seeds of Cypripedium macranthos were sown on 
hyponex-peptone (HP) medium that contained 1 μM NAA and BAP after steriliza-
tion (Shimura and Koda 2004). Mature capsules of Ansellia africana were tested on 
Vasudevan and Van Staden (2010) medium for seed germination in vitro 
(Vasudevan and Van Staden 2010; Bhattacharyya et al. 2017a). However, in vitro 
germination of Dendrobium nobile Lindl. (Bhattacharyya et al. 2014), 
D. thyrsiflorum (Bhattacharyya et al. 2015), D. heterocarpum (Longchar and Deb 
2022), Cymbidium iridioides (Pant and Swar 2011), C. kanran (Shimasaki and 
Uemoto 1990), Cypripedium debile (Hsu and Lee 2021), and C. macranthos 
(Shimura and Koda 2004) was reported in MS medium of full strength. Cymbidium 
iridioides young pods were cultured on MS medium containing 1 mg/L of NAA and 
BAP (Longchar and Deb 2022). Immature seeds of Cymbidium kanran were inoc-
ulated on MS medium for shoot multiplication (Shimasaki and Uemoto 1990). 
Young pods of Cymbidium iridioides were cultured on MS medium having NAA 
(1 mg/L) + BAP (1 mg/L) for micropropagation (Pant and Swar 2011). 

2.2 Micropropagation of Orchids Via Vegetative Explants 
Materials 

In orchids, as a result of out crossing, heterozygous offspring were produced from 
seeds. Therefore, it is necessary to augment various vegetative parts of mature plants 
to validate micropropagation protocols in orchids. Georges Morel was the pioneer 
for culturing Cymbidium shoot tips and attained protocorm-like bodies (PLBs) from 
contaminated plants to regenerate mosaic virus-free plants (Morel 1960). He intro-
duced the term “protobulb (PLB)” in his work published in the Bulletin of the 
American Orchid Society (Arditti 2010). At the same time, a number of orchid 
species have yielded fruitful results, including Lycaste, Cattleya, Ondontoglossum, 
Dendrobium, Phaius, Miltonia, and Vanda (Arditti and Ernst 1993). 

Large-scale propagation of medicinal orchids through in vitro method, different 
vegetative explants sources such as shoot tip, axillary bud, leaves, nodal segments, 
and inflorescence were augmented through callus formation or PLB mediation or 
direct shoot bud formation as described below:
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2.2.1 Shoot Tip Culture 

To induce efficient clonal propagation of medicinal orchids, shoot tips have been 
efficiently cultured. It was first implemented in Cymbidium by Morel (Morel 1960). 
This technique enables the rapid propagation of Vanda coerulea (Seeni and Latha 
2000). Response of bud formation is obtained from the shoot tips in vitro and mature 
plants in a medium having 8.8 μM BAP and 4.1 μM NAA. For forming multiple 
shoots in Vanda tessellate BAP and NAA combination was found to be more 
effectual as compared to indole-3-acetic acid (IAA), NAA, and kinetin at single 
action (Rahman et al. 2009). Shoot primordium of Doritis pulcherrima was cultured 
for rapid propagation and regeneration of plantlets (Mondal et al. 2013). In VW 
medium, Dendrobium shoot tip was cultured containing 15% coconut water plus 
10 ppm NAA for a rapid proliferation of PLB and plantlet formation as well as the 
growth of seedlings (Soediono 1983). Sixty days old Dendrobium chrysotoxum 
shoot tips was inoculated on MS + 0.1 mg/L NAA + 3% sucrose + 0.5 mg/L BAP 
for proliferation, shoot induction (Gantait et al. 2009). 

2.2.2 Nodal/Internodal Culture 

Dendrobium fimbriatum segments were conferred for shoot induction, and prolifer-
ation in MS + 0.2–0.5 mg/L NAA + 1.0–4.0 mg/L BAP (Huang et al. 2008). But MS 
medium with NAA and BAP at 17.76 μM recorded maximal regeneration 
(14.0 ± 0.47) of shoots (Paul et al. 2017). Stem nodes of Dendrobium devonianum 
cultured at MS + 0.01–0.5 mg/L NAA + 1.0–4.0 mg/L BAP for PLB and shoot 
induction and proliferation in vitro (Li et al. 2011, 2013a). 0.5–1.0 cm nodal 
segments excised with axillary buds from 4–5-month-old Dendrobium chrysanthum 
seedlings grown in vitro, half strength MS + 0.1 mg/L NAA + 6 mg/L BAP + 3% 
sucrose + 0.65% agar (Mohanty et al. 2013a). 

Nodal explants of Malaxis acuminata were cultured on MS + sucrose (3% 
w/v) + 3 μM NAA + 3 μM BAP and resulted in well-developed plantlets with 
shoots and root growth (Arenmongla and Deb 2012). Young healthy nodal shoot 
segments from the newly grown branches of wild Bulbophyllum odoratissimum 
were taken and cultured on BAP (4.0 mg/L) and IBA (0.5 mg/L) fortified MS 
medium for producing maximum shoot proliferation (Prasad et al. 2021). Nodal 
cultures of Ansellia africana were tested in an MS medium supplemented with 5 μM 
NAA and 10 μM of meta-topolin (mT) for multiple shoot induction (Bhattacharyya 
et al. 2017a). Pseudo-stem segments of Dendrobium nobile with nodes (0.5–1 cm) 
was used as explants for induction of PLBs with varied concentration of thidiazuron 
(TDZ) for culture (Bhattacharyya et al. 2014). Malaxis acuminata internode cultures 
responded to MS + 0.5 mg/L NAA + 3 mg/L TDZ; MS + 0.5 mg/L NAA + 3 mg/L 
TDZ + 0.4 mM spermidine (spd); MS + 1.5 mg/L activated carbon (AC) + 4 mg/L 
IBA was used for shoot induction (Cheruvathur et al. 2010).
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2.2.3 Leaf Culture 

Leaves and leaf tips of young orchids were cultured in vitro for PLB initiation and 
shoot proliferation. Wimber (1965) showed the potential of Cymbidium leaves 
(Wimber 1965). Growth stimulation in the nutrient pool, donor axis location, and 
physiological age of the mother plant strongly determine the regeneration potential 
(Trunjaruen and Taratima 2018). Therefore, factors like growth hormones, medium 
nutrients composition, leaf part, leaf source (in vivo/in vitro), explants preparation, 
leaf maturity, etc. determine the efficiency of a leaf explants micropropagation 
protocol (Chugh et al. 2009). 

The leaf base of Vandaceous orchids evinced greater proliferative potential than 
leaf tips (Na and Knodo 1995; Jena et al. 2013; Seeni and Latha 1992; Nayak et al. 
1997). Younger leaves perform better than older leaves. Leaves of mature Vanda 
coerulea did not respond to bud formation or PLB in vitro (Seeni and Latha 2000). 
Whereas, mature plants of V. spathulata (L.) Spreng the regeneration potential of 
leaf explants was noticed with 28.5 μM IAA + 66.6 μM BAP medium (Mitra et al. 
1976). 

2.2.4 Axillary Bud Culture 

Axillary bud culture also played a very important role in medicinal orchid 
micropropagation. Cymbidium elegans’s axillary buds were responsive to PLBs 
formation (Pant and Pradhan 2010). Axillary bud culture of Dendrobium longicornu 
was tested in MS medium with 0.8% agar + 3% sucrose + 5 μM NAA and 15 μM 
BAP (Dohling et al. 2012). In Cypripedium formosanum a quarter concentration of 
MS medium containing 22.2 or 44.4 mM BAP was sufficient to propagate 6.3 and 
7.1 shoots per explant with an average length of 10.6–11.7 mm to produce cultures 
after 90 days (Lee 2010). Five species of Dendrobium (D. crumenatum, 
D. fimbriatum, D. moschatum, D. nobile, and D. parishii) induced multiple shoots 
when axillary buds were cultured in vitro (Sobhana and Rajeevan 1993). Field-
grown axillary buds of Lycaste hybrids were grown in half-strength MS basal 
medium supplemented with 0.5 mg/L BAP and 1.0 mg/L TDZ and 2% (w/v) sucrose 
(Huang and Chung 2011). Six to seven millimeter long shoot tips of Aranda 
Deborah hybrids grown in VW medium supplemented with coconut water (20% 
v/v) produced an average of 2.7 PLB after 45 days (Lakshmanan et al. 1995). 

2.2.5 Pseudobulb Culture 

The pseudobulb of Coelogyne cristata was cultured with basal medium + BAP 
(1–10 mg/L) + kinetin (1–10 mg/L) alone and in combination with NAA (1–10 mg/ 
L). In parallel sets of experiments, 0.2% AC was used in the medium for shoot 
multiplication (Sharma 2021); 6-BAP (2.0 mg/L) + NAA (0.5 mg/L) induced shoot



proliferation in C. flaccid (Parmar and Pant 2016). The pseudobulb of Malaxis 
acuminata was cultured on MS + 1.0 mg/L BAP + 1.0 mg/L NAA + 2.0 g/L AC 
for PLB formation (Suyal et al. 2020). 
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2.2.6 Flower Bud Culture 

Ascofinetia, Neostylis, and Vascostylis were the first species to culture the young 
flower buds or inflorescence for medicinal orchid micropropagation (Intuwong and 
Sagawa 1973). Similarly, Phalaenopsis, Phragmipedium, and Cymbidium were also 
cultured equivalently (Kim and Kako 1984). The floral buds were exposed to either 
higher auxin levels or higher cytokinin levels and anti-auxin levels (Zimmer and 
Pieper 1977; Tanaka and Sakanishi 1978; Reisinger et al. 1976). Younger floral buds 
or inflorescence were more responsible than the matured ones in terms of shoot or 
PLB proliferation in Oncidium Gower Ramsey, Phalaenopsis capitola, Dendrobium 
Miss Hawaii, Ascofinetia (Intuwong and Sagawa 1973; Mitsukuri et al. 2009; 
Nuraini and Shaib 1992). 

2.2.7 Root and Rhizome Segment Culture 

The in vitro root culture was so far attempted with success in a few species of 
medicinal orchids. The capacity of orchid root to induce shoot regeneration was very 
low as reported earlier (Kerbauy 1984). Thereafter roots of Catasetum, 
Cyrtopodium, and Rhyncostylis were utilized to regenerate plantlets a very high 
proliferation rates (Kerbauy 1984; Sanchez 1988; Sood and Vij 1986). Root tips 
excised from Vanda hybrids and Rhyncostylis were cultured in 1.0 mg/L IAA, 
1.0 mg/L BAP and 200 mg/L of casein hydrolysate for a speedy shoot proliferation 
rate (Chaturvedi and Sharma 1986). Rhizome of Cymbidium goeringii responded to 
MS + 0.2% (w/v) AC, 3% (w/v) sucrose, 0.2% (v/v) coconut water, and 0.8% (w/v) 
agar powder (Park et al. 2018). Moreover, auxin, particularly NAA was responsible 
for stimulating rhizome formation of some medicinal orchids and ultimately new 
shoots were developed from a rhizome in a cytokinin-enriched medium of C. kanran 
Makino (Shimasaki and Uemoto 1990), C. forrestii (Paek and Yeung 1991), and 
Geodorum densiflorum (Roy and Banerjee 2002). 

Rhizome tips were also tested for PLB formation and shoot development (Udea 
and Torikata 1972). In a few cases, cytokinins were inductive for stimulation of 
shoots from rhizome segments of medicinal orchids such as Cymbidium forrestii 
(Paek and Yeung 1991) and Geodorum densiflorum (Lam.) Schltr. (Roy and 
Banerjee 2002; Sheelavantmath et al. 2000). Sometimes BAP was responsible for 
the reduction of rhizome growth and branching but induced certain rhizome tips 
gradually into shoots (Paek and Yeung 1991).
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2.2.8 Thin Cell Layer Culture 

Longitudinal or transverse sections of the thin cell layers are isolated from different 
plant parts such as leaves, floral primordia, stems, or PLBs. The efficiency of normal 
plant tissue culture and thin cell layer culture techniques is compared very method-
ically (Rout et al. 2006). In vitro raised seedlings of Dendrobium chrysotoxum, 
cross-section (2 mm thickness) of stem-nodes is grown in MS medium (semi-solid 
and liquid) supplemented with BAP 4.44 μM and Kinetin 4.65 μM induced shoot 
buds (Kaur 2017). 

2.2.9 Protoplasts Culture 

Different explants of orchids like stem, root, leaf disc, petal, and protocorm were 
used for the isolation of protoplasts. Chris K. H. Teo (Malaysian scientist) and 
K. Neumann (German botanist) first introduced the induction and synthesis of orchid 
protoplasts (Teo and Neumann 1978a, b). Since then studies were carried out in this 
field for the isolation of orchid protoplasts. However, during the screening of more 
than 24 orchid species, from bases of juvenile leaves of medicinal orchid Cymbidium 
aloifolium protoplast culture was achieved (Seeni and Abraham 1986). 

2.3 Root Induction 

Concentrations of different auxins were incorporated into basal media either singu-
larly or in combination for testing their root-promoting efficiency in medicinal 
orchids. For root induction of Dendrobium fimbriatum with 100% rooting fre-
quency, MS + 0.5 mg/L NAA or 0.3–1.0 mg/L IBA and a combination of 0.5 mg/ 
L IBA and NAA were used (Huang et al. 2008). IBA, IAA, and phenolic elicitor PG 
containing MS medium were responsible for root induction of Ansellia africana 
within 6 weeks interval (Bhattacharyya et al. 2017a). IBA was responsible for root 
promotion of medicinal orchids viz., 1.0 mg L/1 IBA in Acampe praemorsa (Nayak 
et al. 1997) and Cymbidium iridioides (Pant and Swar 2011), and 1.5 mg L/1 IBA in 
Dendrobium densiflorum (Pradhan et al. 2013). 

A decline in root number and length was reported with increased concentration of 
IBA. In Dendrobium nobile, IBA was better than NAA in maximizing root numbers 
(Asghar et al. 2011). MS + 3% sucrose + 2 g/L AC + 0.2 mg/L IBA was used in 
Dendrobium chrysotoxum (Gantait et al. 2009). Whereas, in the root formation of 
Vanilla planifolia and Geodorum densiflorum, NAA exhibited a conducive effect 
(Sheelavantmath et al. 2000; Tan et al. 2011). 

In Dendrobium transparens (Sunitibala and Kishor 2009) and Dendrobium 
primulinum (Pant and Thapa 2012) supplementation of IAA increased the rate of 
root proliferation whereas its affectivity was poor during root formation. However,



rooting of Vanda spathulata shoots was observed within 3–9 weeks in a medium 
containing 75 g/L banana pulp and 5.7 μm IAA. In vitro shoots of 2–5 cm in length 
developed two to five roots easily in pots at 80–90% survival rates instead of 
hardening (Decruse et al. 2003). 
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2.4 Photoperiodic Condition 

In vitro seed culture and micropropagation of medicinal orchids were influenced by 
ambiance conditions, like photoperiod (PP) for efficient early culture development. 

Cool white light, 16/8-h PP, 1000 lux light intensity, 25 ± 2 ° C, and pH 5.2 have 
been reported for Dendrobium moschatum (Kanjilal et al. 1999). Fluorescent light, 
12/12-h PP, 60 μL mol m-2 s-1 , 25  ± 2 °C was provided in D. parishii 
(Kaewduangta and Reamkatog 2011). D. trigonopus was probably supplemented 
with 14/12-h PP, 25 ± 2 °C, 50 μL mol m-2 s-1 (Pan and Ao 2014). In D. aphyllum 
provide 14/12-h PP, 60 μL mol m-2 s-1 , cool white fluorescent, 25 ± 2 °C (Hossain 
et al. 2013). 1000–1500 lux, 12/12-h PP, white fluorescent tube, 25 ± 1 °C extended 
to D. candidum (Zhao et al. 2008). 50 μL mol m-2 s-1 , 12/12-h PP, 25 ± 2 °C was 
furnished in D. chrysanthum (Mohanty et al. 2013a). In D. chrysotoxum 16/8-h PP, 
30 μL mol m-2 s-1 , white fluorescent tube, 60% RH, 25 ± 2 °C was supplied 
(Gantait et al. 2009). Originally, 25 ± 2 °C in the dark for 2 weeks, 23 μL mol m-

2 s-1 25 ± 2 ° C, 16/8-h PP, (callus + PLB) was described in D. crumenatum 
(Kaewubon et al. 2015). 350–500 lux 16/8-h PP, 25 ± 2 °C was supplied in 
D. densiflorum (Pradhan et al. 2013). 1500–2000 lux, 12/12-h PP, 25 ± 2 °C and 
pH 6.0 was suitable for D. devonianum (Li et al. 2011, 2013a). Cool white fluores-
cent tubes, 12/12-h PP, 40 μL mol m-2 s-1 , 25  ± 2 °C were used in D. draconis 
(Rangsayatorn 2009). 2000 lux, 12/12-h PP, 25 °C and pH 5.4–5.6 was reported in 
D. fimbriatum (Huang et al. 2008). Cultures of Ansellia africana were maintained in 
cool white fluorescent tubes in a culture room with a light intensity of 40 μ mol m-

2 s-1 at 25 ± 2 °C under a dark and light cycle of 12 h (Bhattacharyya et al. 2017a). 
D. fimbriatum was cultured under a photoperiod of 14 h with a light intensity of 
50 μ mol m-2 s-1 using cool-fluorescent tube lights, at 25 ± 2 °C (Paul et al. 2017). 

2.5 Hardening and Acclimatization 

Hardening and acclimation of in vitro cultured plantlets are important steps of 
micropropagation for better survival and successful plant establishment under ex 
vitro conditions. The percentage of plant loss or damage is higher during the transfer 
of in vitro growing plants to ex vitro conditions. Regenerates have to adapt to many 
abnormal conditions such as high irradiance, low humidity, and water hydraulic 
conductivity of the root and root-stem connections in an ex vitro environment (Fila



et al. 1998). Acclimatization of regenerates with gradually reducing humidity will 
overcome this threat (Bolar et al. 1998). 
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Well-rooted micropropagated orchid plantlets were ready for acclimatization after 
attaining sufficient growth in terms of root or shoot length. After removal from 
flasks, the well-rooted plants were cleaned thoroughly to remove the remnant of 
artificial media such as sucrose and nutrient agar. Thereafter, clean plantlets were 
soaked in an effective fungicide solution before shifting them into pots or poly 
sleeves having a potting mixture. The blending of various potting mixtures plays an 
important part in the survivability of orchid plantlets raised in vitro. A combination 
of the potting mixture was pounded of dried coconut husk or coco peat, tiny pieces of 
tree cortex, peat moss or sphagnum moss, and pieces of broken bricks or charcoals in 
various ratios. The ideal potting mixture should have water retaining capacity along 
with draining out of extra water and aeration for proper hardening and acclimatiza-
tion of plants (Diaz et al. 2010; Kang et al. 2020) (Fig. 1k–m). 

Brick pieces and charcoal chunks (1:1) mixture were fruitful for acclimatization 
of Dendrobium chrysanthum with a topmost cover of moss (Mohanty et al. 2013a). 
Plantlets of Dendrobium moschatum were shifted for hardening to a blending of 
charcoal, brick, coal, sand, and soil (1:1:1:1:1) with 48% survivability (Kanjilal et al. 
1999). Rooted shoots of Dendrobium macrostachyum were provided with a perlite 
and peat moss mixture and kept in the green house for acclimatization (Li et al. 
2018). In the mixture of coco peat, litter, and clay in the ratio of 2:1:1 with a covering 
of sphagnum moss Cymbidium aloifolium plantlets were acclimatized with an 85% 
survival rate (Pradhan et al. 2013). Acclimatization was carried out for hardening 
plantlets of Dendrobium draconis and shifted to cocopeat and perlite (1:1) compo-
sition with 92% achievement (Rangsayatorn 2009). In Coelogyne cristata, the 
composition of pine bark, brick, moss, and charcoal pieces (1:1:1:1) was used for 
transplanting (Sharma 2021). In Coelogyne finlaysonianum, brick, charcoal, coco 
peat and litter (1:1:1:1); brick, charcoal, litter, and saw dust (1:1:1:1); brick, char-
coal, and litter (1:1:1); and brick and charcoal (1:1) were utilized for survival (Islam 
et al. 2015). A mixture of humus and sand (1:1) was tested in Changnienia amoena 
(Jiang et al. 2011). A composition of brick, charcoal, coconut husk, and sand (1:1:1: 
1) was provided for acclimatization of Spathoglottis plicata (Grell et al. 1988).  In  
Cymbidium iridioides, plantlets were acclimatized by using cocopeat, peat moss, and 
brick (Pant and Swar 2011). In the ratio of 1:1:1 substrate of brick, charcoal, 
shredded bark, and a moss cover were imparted for the survivability of Dendrobium 
longicornu in a greenhouse (Jaime et al. 2015). Eria bambusifolia was tested on 
coconut husk, charcoal, brick pieces, broken tiles, and perlite (Basker and Bai 2010). 
Hardening plantlets of Satyrium nepalense were transferred to a 1:1:1 ratio of a 
mixture containing vermicompost, sand, and coconut husk in plastic pots 
(Mahendran and Bai 2009). Rhynchostylis retusa was adapted in small plastic pots 
containing (2:1) moss and bark (Naing et al. 2010). Cypripedium macranthos was 
hardened in a plastic bag that contain wet vermiculite and acclimatized in a soil 
mixture of coarse volcano ash and clay granules (Shimura and Koda 2004). 
Dactylorhiza hatagirea was survived in a potting mixture consisting of (1:1:1) 
cocopeat, vermiculite, and perlite (Warghat et al. 2014). Rooted plantlets of



Dendrobium lasianthera were planted in a composition of coconut husk and sphag-
num moss (3:1) and achieved a 90% survivability rate (Utami et al. 2017). In vitro 
rooted Ansellia africana plantlets were tested with a mixture of vermiculite, sand, 
and decaying litter (1:1:1) and found 87% survivability after 60 days (Bhattacharyya 
et al. 2017a). Dendrobium nobile plantlets were acclimatized with various compo-
sitions of mixture viz., (1) charcoal and bricks in the ratio 1:1; (2) in the ratio 1:1 of 
decaying litter and brick; (3) in the ratio 1:1:1 of brick chips, leaf litter, and charcoal; 
and (4) brick chips, leaf litter, and charcoal in the ratio 1:1:1 in addition to the 
topmost coating of moss. Among various compositions brick, charcoal, and 
decaying litter treatment as well as moss covering received the highest 84.3% 
survivability (Bhattacharyya et al. 2014). Composition of (a) brick and charcoal 
(1:1) (b) brick and coco peat in the ratio 1:1 (c) coco peat, brick, charcoal pieces in 
the ratio 1:1:1; and (d) leaf mold, brick chips, and cocopeat in the ratio 1:1:1 were 
supplied for transplantation of Bulbophyllum odoratissimum in Green house condi-
tion with 90% relative humidity (RH) and 91.66% survival rate. Among the different 
treatments, brick chips, charcoal, and coco peat (1:1:1) containing the mixture was 
best for high water retention as well as good aeration capacity (Prasad et al. 2021). 
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3 Ecorestoration 

Ecosphere restoration is the “task reconstructing of an ecosystem that has been 
damaged due to manmade catastrophe” (Libini et al. 2008). The main objective of 
restoration is to re-establish the environmental system that is disturbed by various 
factors with respect to its structure and functional properties. 

After successful acclimatization, in vitro-raised Vanda coerulea plantlets were 
transferred to tree trunks of forest segments, for successful ex situ harbor by using 
the binding medium like moss and coconut husk with 70–80% survivability rate for 
ecorestoration. Such a study commencing in India for restoring the natural habitat is 
of great interest from a horticultural and conservation point of view (Seeni and Latha 
2000). Similarly, Epidendrum ilense and Bletia urbana were also shifted to the forest 
ecosystem or typical natural habitat for ecorestoration (Christenson 1989; Rublo 
et al. 1989). During the lab to land transfer strategy, it was observed that host trees 
with rough bark were selected and the in vitro-raised orchids were fixed either to the 
tree trunks with the roots or tree bark for ecorestoration efforts (Decruse et al. 2003; 
Aggarwal and Zettler 2010; Aggarwal et al. 2012; Gangaprasad et al. 1999; Grell 
et al. 1988; Kaur et al. 2017). Micropropagated plantlets of Smithsonia maculate 
showed 48% survival after one year reinforced at Karamana river of Peppara 
Wildlife Sanctuary, Kerala, India. The pilot trial on restoration through 
micropropagation was useful for further reintroduction and population enhancement 
for the practical conservation of this orchid (Decruse and Gangaprasad 2018). In 
vitro rooted plantlets of Vanda spathulata were observed with a 50–70% survival 
rate, which were introduced into forest segments at Ponmudi and Palo de in the 
Southern Western Ghats of India (Decruse et al. 2003).
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The reintroduction trials of orchid plantlets should be conducted with well-
established in vitro-rooted plantlets during the monsoon period to corroborate the 
maximum survival rate of the plantlets for ecorestoration or eco-rehabilitation study. 

4 Artificial Seed Technology 

The concept of artificial or synthetic seed was first coined by Murashige and at 
present it is well known by some different names such as manufactured seed, 
synthetic seed, or synseed (Murashige 1977). Artificial seeds were originally defined 
as “encapsulated single somatic embryos” by Murashige (1978), i.e., a clonal 
product that can grow into plantlets at in vitro or ex vivo conditions if used as real 
seeds for sowing, storage, and transport (Murashige 1978). Gray and Purohit (1991) 
also define somatic embryos with practical usage in commercial plant production 
(Gray et al. 1991). Therefore, the production of synthetic seeds has previously been 
restricted to those plants where somatic embryogenesis has been reported. Although 
somatic embryogenesis is restricted to selective plant species, to overcome this 
limitation, exploration of a suitable alternative to somatic embryos, i.e., 
non-embryogenic vegetative propagules like shoot tips, segmental/axillary buds, 
protocorm-like bodies (PLBs), organs or embryogenic callus is practiced (Ahmad 
and Anis 2010; Ara et al. 2000; Danso and Ford-Llyod 2003). 

However, artificial/synthetic seeds or beads production was reported first time by 
Kitto and Janick (Kitto and Janick 1985). Since then, several flowering plant species 
have extensively utilized this technique including orchids. Production of synthetic 
seeds opens a new vista in plant tissue culture technology by adding many fruitful 
improvements on a commercial scale. Artificial seeds were utilized for transforma-
tion into plantlets under in vitro and in vivo circumstances. It was applied for the 
multiplication of rare, threatened, and endangered plant species which are hard to 
propagate by normal propagation process and by natural seeds. 

Synthetic seed production in orchids is especially important as they produce 
minute non-endosperm seeds. Corrie and Tandon (1993) have used protocorms to 
produce synthetic seeds of Cymbidium giganteum which are transferred to a nutrient 
medium or sterile sand and soil medium developed healthy seedlings (Corrie and 
Tandon 1993). Comparable conversion frequencies of 100%, 88%, and 64% were 
obtained on in vitro, sand, and sand-soil mixture condition, respectively. These 
observations enable the direct transplantation of aseptically grown protocorms into 
the soil as well as reduce the cost of growing plantlets in vitro and subsequent 
acclimatization. As orchids produce tiny and non-endospermic seeds, the production 
of artificial seeds was beneficial. 

Several reports on encapsulation using somatic embryos have been carried out 
(Ara et al. 2000; Danso and Ford-Llyod 2003; Castillo et al. 1998; Ganapati et al. 
1992). For synthetic seed production, meristematic shoot tips or axillary buds were 
also utilized in orchids along with somatic embryos or PLBs (Ganapati et al. 1992; 
Bapat et al. 1987; Piccioni and Standardi 1995). Encapsulation of PLBs is well



reported in many orchids such as Cymbidium giganteum, Dendrobium wardianum, 
Dendrobium densiflorum, Phaius tonkervillae, and Spathoglottis plicata (Danso and 
Ford-Llyod 2003; Saiprasad and Polisetty 2003; Vij et al. 2001). 
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In Dendrobium orchid, Saiprasad and Polisetty found that fractionated PLB was 
best suited for encapsulation at leaf primordia stage 13–15 days after culture 
(Saiprasad and Polisetty 2003). Encapsulation matrices prepared with MS medium 
(3/4 strength) + 0.44 μMB BAP + 0.54 μM NAA result in 100% conversion of 
encapsulated PLBs when cultured on MS medium + 0.44 μMB BAP + 0.54 μM 
NAA (Dendrobium). Sarmah et al. (Sarmah et al. 2010) production of synthetic 
seeds in an endangered monopod orchid, i.e., Vanda coerulea by leaf-based encap-
sulating PLBs with 94.9% conversion frequency on immediate inoculation in 
Ichihashi and Yamashita (IY) medium (Ichihashi and Yamashita 1977). 95% con-
version was achieved on encapsulating PLB of Flickingeria nodosa in Burgeff 
medium (Withner 1955) + 2% sucrose + 2 mg/L Adenine sulfate + 1 mg/L IAA at 
4 °C for 3 months (Nagananda et al. 2011). Alginate encapsulation of Aranda × 
Vanda PLB was also reported (Gantait et al. 2012). Three percent sodium alginate 
and 75 mM calcium chloride support better encapsulation of individual PLBs (4 mm 
long). Plant growth regulator (PGR)-free MS medium (1/2 strength) reported 96.4% 
of conversion. Likely, short-term storage of PLBs of Dendrobium shavin (Bustam 
et al. 2012); 60-day-old PLBs in Dendrobium nobile (Mohanty et al. 2013b) and 
Coelogyne breviscapa (Mohanraj et al. 2009); 30-day-old PLBs in Geodorum 
densiflorum (Datta et al. 1999); PLB of Spathoglottis plicata Blume (Haque and 
Ghosh 2017); somatic embryos in Dendrobium candidum (Guo et al. 1994) were 
used for encapsulation with varied binding solution, polymerization time, and 
conversion percentage. During the sowing of artificial seeds contamination is one 
of the main barriers to the commercialization of encapsulation technology. However, 
Chitosan was used as a fungal growth retardant. 

5 Genetic Stability 

The somaclonal variations are a phenomenon of plant tissue culture that is dependent 
on medium composition, multiplication, explants type, adventitious shoots forma-
tion, culture period, and plant genotype (Côte et al. 2001). Despite several experi-
ences of in vitro regeneration, either genetic uniformity or variability was observed 
in micropropagated plantlets (Larkin and Scowcroft 1981). Micropropagation pro-
vides a feasible substitute to seed propagation as it entitles rapid propagation of elite 
stock cultivars in a fairly short duration of time. For the raising of quality plant 
material, the genetic consistency of micropropagated plants is a prerequisite factor. 
In contrast, genetic instability occurs in the in vitro-regenerated plants (somaclonal 
variation) due to the use of hyper-optimum potency of growth regulators and 
continuous sub-culturing. Orchid micropropagation was interrupted with an inter-
vening callus phase, which interfered with the integrity of the regenerated clonal



plantlets (Nookaraju and Agrawal 2012); on the other hand, micropropagation via 
meristem culture was considered as uniform culture (Rani and Raina 2000). 
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To examine the in vitro protocols, whether propagation was either true-to-type or 
not clonal fidelity was tested with various Single Primer Amplification Reaction 
(SPAR)-based methods such as Inter Simple Sequence Repeats (ISSR), Random 
Amplified Polymorphic DNA (RAPD), and Direct Amplification of Minisatellite 
DNA (DAMD) markers (Zietkiewicz et al. 1994; Williams et al. 1990; Heath et al. 
1993). In addition, a recently invented molecular marker, the Start Codon-Targeted 
(SCoT) polymorphism (Collard and Mackill 2009) has gained popularity as a 
powerful tool for the evaluation of clonal fidelity or genetic diversity in regenerated 
orchid plants (Bhattacharya et al. 2005; Ranade et al. 2009) (Table 1). 

Very few studies were endured for testing of clonal fidelity of micropropagated 
orchids. Among them, the genetic stability of micropropagated Dendrobium plant-
lets was screened by Random Amplified Polymorphic DNA (RAPD) marker 
(Ferreira et al. 2006). Likely, in Habenaria edgeworthii (Giri et al. 2012a); Aerides 
crispa (Srivastava et al. 2018); Anoectochilus elatus (Sherif et al. 2017); 
Changnienia amoena (Li and Ge 2006); Cymbedium finlaysonianum 
(Worrachottiyanon and Bunnag 2018); Cymbidium giganteum (Roy 2012); Cym-
bidium aloifolium (Sharma et al. 2011; Choi et al. 2006); Dendrobium densiflorum 
(Mohanty and Das 2013); Dendrobium chrysotoxum (Tikendra et al. 2019a); 
Dendrobium fimbriatum (Tikendra et al. 2021); Dendrobium heterocarpum 
(Longchar and Deb 2022); Dendrobium moschatum (Tikendra et al. 2019b); 
Dendrobium nobile (Bhattacharyya et al. 2014); Eulophia dabia (Panwar et al. 
2022); Rhynchostylis retusa (Oliya et al. 2021); Spathoglottis plicata (Auvira et al. 
2021); Vanda coerulea (Manners et al. 2013) and in Vanilla planifolia (Sreedhar 
et al. 2007) genetic uniformity was tested by RAPD marker. 

Moreover, Inter Simple Sequence Repeats (ISSR) marker was tested in 
Anoectochilus elatus (Sherif et al. 2017, 2018); Anoectochilus formosanus (Lin 
et al. 2007; Zhang et al. 2010); Bletilla striata (Wang and Tian 2014); Bulbophyllum 
odoratissimum (Prasad et al. 2021); Cymbidium aloifolium (Sharma et al. 2011, 
2013; Choi et al. 2006); Dendrobium aphyllum (Bhattacharyya et al. 2018); 
Dendrobium chrysotoxum (Tikendra et al. 2019a); Dendrobium crepidatum 
(Bhattacharyya et al. 2016a); Dendrobium fimbriatum (Tikendra et al. 2021); and 
in Dendrobium nobile (Bhattacharyya et al. 2014); Dendrobium thyrsiflorum 
(Bhattacharyya et al. 2015); Habenaria edgeworthii (Giri et al. 2012a); Platanus 
acerifolia (Huang et al. 2009); Vanda coerulea (Manners et al. 2013; Gantait and 
Sinniah 2013); and Vanilla planifolia (Gantait et al. 2009; Sreedhar et al. 2007; 
Bautista-Aguilar et al. 2021) for studying the effectiveness of in vitro protocol. 
Simple Sequence Repeats (SSR) marker was tested in Vanilla planifolia (Bautista-
Aguilar et al. 2021). Amplified Fragment Length Polymorphism (AFLP) marker was 
tested in Anoectochilus formosanus (Zhang et al. 2010) and Dendrobium 
thyrsiflorum (Bhattacharyya et al. 2017b). Inter-Retrotransposon Amplified Poly-
morphism (IRAP) marker was tested in Bletilla striata (Guo et al. 2018) and 
Dendrobium aphyllum (Huang et al. 2009). Directed Amplification of 
Minisatellite-region DNA (DAMD) marker was tested on Cymbidium aloifolium
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(Sharma et al. 2011) and Dendrobium heterocarpum (Longchar and Deb 2022). Start 
Codon-Targeted Polymorphism (SCoT) was performed in micropropagated plantlets 
of Anseilla africana (Vasudevan and Van Staden 2010); Bletilla striata (Guo et al. 
2018); Dendrobium crepidatum (Bhattacharyya et al. 2016a); Dendrobium 
fimbriatum (Tikendra et al. 2021); Dendrobium heterocarpum (Longchar and Deb 
2022); Dendrobium nobile (Bhattacharyya et al. 2014, 2016b); Dendrobium 
thyrsiflorum (Bhattacharyya et al. 2015), and Spathoglottis plicata (Manokari et al. 
2022) for homogeneity demonstration.

78 K. D. Mudoi et al.

Genetic variation or polymorphism was analyzed in Bulbophyllum 
odoratissimum as 3.94% (Prasad et al. 2021); 2.76% in Anoectochilus formosanus 
(Zhang et al. 2010); 2.53% in Dendrobium chrysotoxum; 2%  in  Dendrobium 
moschatum (Tikendra et al. 2019a, b); 2.38% in Anoectochilus elatus (Sherif et al. 
2018); and 2.88% in Platanus acerifolia (Huang et al. 2009). The results of the ISSR 
analysis confirmed the feasibility of the micropropagation protocol of orchids 
although tiny dissimilarity in genomic constituents was noticed. Such negligible 
variation may be due to the maintenance of in vitro culture for a longer duration, 
concentration of growth regulators, and in vitro stress conditions that lead to clonal 
variations (Tikendra et al. 2019a; Razaq et al. 2013; Devarumath et al. 2002). 

6 Ethno-Medicinal Properties 

Orchids are the backbone of traditional herbal medicines and have been extensively 
studied because of their pharmacological importance. From ancient times orchids are 
being used in traditional systems of medicine like Ayurveda, Siddha, Yunani, 
Homeopathy, Traditional Chinese Medicine (TCM), etc. Chinese described a 
Dendrobium species and Bletilla striata in Materia Medica of Shen-Nung (twenty-
eighth century B.C.) and in many other Chinese writings orchids symbolize friend-
ship, perfection, numerous progeny, noble, and elegant (Reinikka 1995). In India, 
there are nearly 1600 species that constitute about 9% of the total flora (Medhi and 
Chakrabarti 2009). The therapeutic importance of Indian orchids in treating ailments 
is well documented in the literature (Lawler 1984; Handa 1986) (Table 2). 

Several orchid species have important ingredients in various traditional medicinal 
formulations. Whole plants or their parts are used as a paste or in boiled form, single 
or mixed with other food stuffs as therapeutics in several ailments (Pant 2013; 
Gopalakrishnan and Seeni 1987). 

The roots of Acampe papillosa are used in rheumatism, burning, boils, expecto-
rant, biliousness, asthma, bronchitis, eyes, and blood, and help in curing infections, 
curing secondary syphilis, uterine diseases, tuberculosis, fever, and throat troubles 
(Hossain 2009; Zhan et al. 2016; Chopra et al. 1969). The root of Acampe praemorsa 
is used as a tonic for rheumatism and treats neuralgia, sciatica, syphilis, and uterine 
disorders. Various parts of this orchid are used for the treatment of cough, stomach-
ache, ear-ache, and eyes diseases, reduce body temperature, antibiotic for wounds, 
traumatic pain, backache, menstruation pain, burning sensation, asthma, bronchitis,
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and mild uterine diseases (Pant 2013; Perfume workshop n.d.-a; Leander and Lüning 
1967; Shanavaskhan et al. 2012; Devi et al. 2015; Panda and Mandal 2013; 
Nongdam 2014; Mishra et al. 2008). The paste of leaves of Aerides multiflorum is 
used for wounds, cuts, earaches, and consumed as a tonic (Perfume workshop n.d.-a; 
Baral and Kurmi 2006; Basu et al. 1971; Behera et al. 2013; Raja 2017). The leaf of 
Aerides odorata is applied in cuts, wounds, and tuberculosis, the fruit is used to heal 
the wound. Leave juice and seeds are used in treating boils in ear, nose, and skin 
disorders (Pant 2013; Perfume workshop n.d.-a; Leander and Lüning 1967; Baral 
and Kurmi 2006; Basu et al. 1971; Behera et al. 2013). The whole plant of 
Anocetochilus elatus is used to relief chest and abdominal pain and treats snake 
bites (Raja 2017; Sherif et al. 2012; Jiang et al. 2015).
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The whole plant of Anocetochilus formosanus is used as an antipyretic, in 
detoxification, and treats tuberculosis, diabetes, bronchitis, infections in the kidney, 
bladder, cramps, snake bites, stomach ache, inflammation, hematemesis, nocturnal 
emission, nephritis, vaginal discharge, hepatitis, hypertension, and convulsions The 
plant possesses antioxidant, anti-hyperglycemic, hepatoprotective, anticancerous 
properties, and pharmacological effects, such as antiosteoporosis, antihyperliposis, 
and antifatigue (Perfume workshop n.d.-a; Aswandi and Kholibrina 2021; 
Nandkarni 1976). The leaf and stem of Ansellia africana are used for treating 
madness. Besides it also possesses anti-acetylcholinesterase activity in treating 
Alzheimer’s disease (Saleh-E-In et al. 2021; Bhattacharyya and Staden 2016). The 
whole plant of Arundina graminifolia is used for curing rheumatic, trauma, bleeding, 
and snake bites. To relieve body aches root is used. In cracks scrapped bulbous stem 
is applied on the foot-heels (Pant 2013; Aswandi and Kholibrina 2021; Kumar 2002; 
Dakpa 2007). 

Bletilla striata is used for tonic, against leucorrhea; leaves are used in treating 
lung disease; tubers are used for regeneration of muscle and other tissues, in 
hemorrhage dyspepsia, dysentery, fever, malignant ulcers, gastrointestinal disorders, 
anthrax, malaria, eye diseases, ringworm, tumors, necrosis, silicosis, traumatic 
injuries, coughs, chest pain, cures tuberculosis, sores, scaling, chapped skin, blood 
purification, strengthening, and lungs consolidation, malignant swellings, breast 
cancer, pustules ulcers, demulcent, and expectorant (Perfume workshop n.d.-a; 
Kong et al. 2003; Bulpitt et al. 2007). The Bulbophyllum odoratissimum plant is 
used to cure fractures, pulmonary tuberculosis, hernia pain, infusion, or decoction is 
used to treat tuberculosis and chronic inflammation (Perfume workshop n.d.-a; Chen 
et al. 2008; Bhattacharjee 1998). The entire plant of Calanthe discolor is used for 
improving blood flow, circulation, abscesses, scrofula, rheumatism, bone pain, and 
traumatic injuries, treating skin ulcers and hemorrhoids (Perfume workshop n.d.-a; 
Yoshikawa et al. 1998). Changnienia amoena plant cools the blood, acts as anti-heat 
and antitoxic, cures coughs, blood-streaked sputum, sores, and furuncles (Teoh 
2016). The pseudo bulbs of Coelogyne cristata are used in constipation and aphro-
disiac (Pant and Raskoti 2013; Subedi et al. 2011; Pamarthi et al. 2019). Coelogyne 
stricta pseudo bulb paste cures headaches and fever (Pamarthi et al. 2019; Yonzone 
et al. 2012). Coelogyne flaccida pseudo bulb paste cures headache and fever, juice 
helps in indigestion (Teoh 2016; Pant and Raskoti 2013; Pamarthi et al. 2019).
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The rhizome paste of Cymbidium aloifolium is applied on fractured and 
dislocated bones. Bulbs are used as demulcent agents (Pamarthi et al. 2019). The 
root of Cymbidium ensifolium decoction used to treat gonorrhea and flower decoc-
tion used in eye sore disorders (Tsering et al. 2017). The leaves of Cymbidium 
giganteum are applied over wounds (Bulpitt 2005; Fonge et al. 2019; Linthoingambi 
et al. 2013). The seed of Cymbidium goeringii is used to treat cuts and injuries; entire 
plant parts are used in curing fractures (Teoh 2016). The leaf juice of Cymbidium 
iridioides is used to cease blood; its powder as a tonic; pseudo bulbs and roots are 
consumed in diarrhea (Aggarwal and Zettler 2010; Medhi and Chakrabarti 2009; 
Arditti et al. 1982; Arditti and Ernst 1984). The whole plant of Cymbidium kanran is 
used in heart purification, cures cough and asthmatic problems, and its roots are used 
to cure ascariasis and gastroenteritis. The whole plant of Cymbidium lancifolium is 
used in the treatment of rheumatism, improves blood flow, and traumatic injuries. 
The whole plant of Cymbidium sinense is used in purifying the heart, lungs; treat 
cough and asthma (Perfume workshop n.d.-a). The dried powdered pseudo bulb of 
Cymbidium longifolium is consumed on an empty stomach and fresh shoot is used 
for nervous disorders, madness, epilepsy, hysteria, rheumatism, and spasms. Salep 
used as demulcent (Zhan et al. 2016; Teoh 2016; Yonzone et al. 2013). 

The powdered roots of Cypripedium calceolus promote sleep and reduce pain and 
tea prepared by the roots cures nerves and headaches (Singh and Dey 2005). The 
whole plant of Cypripedium debile is used for improving blood flow, swellings, 
pain, and diuretic. Likely, Cypripedium formosanum is used to improve blood flow, 
menses, expels gas, pain and itching whereas roots along with stems are used in 
treating malaria, snake bites, traumatic injury, and rheumatism. The roots and leaves 
of Cypripedium guttatum are used in treating epilepsy (Perfume workshop n.d.-a). 
The rhizomes, roots, and stems of Cypripedium macranthos are used to treat skin 
disease, promote dieresis, swelling, and pain and improve the flowing of blood; dried 
flowers are used to stop blood (Shimura et al. 2007). The rhizome of Cypripedium 
parviflora helps to treat insomnia, fever, headache, neuralgia, emotional tension, 
tumors, delirium, convulsions, anxiety, menstruate pain, and child birth (Moerman 
1986; Grieve 1998; Kumar et al. 2005). The whole plant of Cypripedium pubescens 
is used as antispasmodic, diaphoretic, hypnotic, sedative, tonic, diabetes, diarrhea, 
dysentery, paralysis, and malnutrition, also in cases of nervous irritability, functions 
of the brain and promotes sleep. The dry powder roots are used as drugs for joint 
pains and treating stomach worms (Singh and Duggal 2009; Khory 1982). 

The tubers of Dactylorhiza hatagirea are used as food and tonic and help in 
healing wound and fever and control burns and bleeding (Arditti 1992, 1967, 1968; 
Aggarwal and Zettler 2010; Arditti et al. 1982; Arditti and Ernst 1984). The leaves 
and pseudo bulb paste of Dendrobium amoenum are applied on skin diseases, burnt 
skin, and dislocated bones (Venkateswarlu et al. 2002). The leaf paste of 
Dendrobium aphyllum is applied on deformed abnormal head of a new born baby 
in order to form a normal shape (Pant 2013). The leaves of Dendrobium candidum 
are used to treat diabetes (Wu et al. 2004). The stem of Dendrobium chrysanthum is 
used as a tonic, enhances the immune system, and reduces fever. Leaves are used as 
antipyretic and mild skin diseases, which benefit the eyes (Bulpitt 2005; Jalal et al.



2008, 2010; Li et al. 2016). The whole plant of Dendrobium chrysotoxum possesses 
antitumorous and anticancerous properties, stem and flower extract is used as tonic 
and leaf extract as antipyretic (Bulpitt et al. 2007; Sood et al. 2006; Joshi et al. 2009). 
The pseudo bulb paste of Dendrobium crepidatum is used in fractured and dislocated 
bones. Stems are used as a tonic, in arthritis and rheumatism (Joshi et al. 2009; 
Reddy et al. 2001; Joshi and Joshi 2001). The leaves of Dendrobium crumenatum 
are used to cure boils and pimples (Joshi and Joshi 2001). The pseudo bulb pulps of 
Dendrobium densiflorum are used to cure boils, pimples, and various skin eruptions, 
leaf paste is applied upon fractures bones, sprains, and inflammations (Arditti 1992; 
Arditti et al. 1982; Arditti and Ernst 1984). The dried stems of Dendrobium 
devonianum is used as an enhancer for the immune system (Cakova et al. 2017). 
The stem of Dendrobium draconis are used in antipyretic and hematinic (Perfume 
workshop n.d.-b). The whole plant of Dendrobium fimbriatum is used during upset 
of the liver and severe anxiety; leaves are used in bone fracture and as a tonic, the 
pseudo bulbs are used in fever (Aggarwal and Zettler 2010; Arditti et al. 1982). The 
pseudo bulb paste of Dendrobium heterocarpum is used in treating fractured and 
bone dislocate (Arditti and Ernst 1984). The root, stem, and leaf of Dendrobium 
lasianthera act as anticancer (Utami et al. 2017). 
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The whole plant juice of Dendrobium longicornu is added to lukewarm water to 
bath for fever; roots are boiled to feed the livestock, to remove cough; stem juice is 
used to treat fever (Perfume workshop n.d.-b). The tender shoot tip juice of 
Dendrobium macrostachyum is used for earaches (Zhan et al. 2016). The pseudo 
bulb paste of Dendrobium moschatum is used for dislocated and fractured bone 
(Reddy et al. 2001). The pseudo bulb extracts of Dendrobium nobile are used in 
treating burns, and eye infections; the plant is used to cure pulmonary tuberculosis, 
fever, general debility, flatulence, dyspepsia, reduce salivation, parched, thirsty 
mouth, night sweats, antiphlogistic, and tonic. Seeds are used to heal wounds; 
stems to cure fever and tongue dryness; stems are used in longevity, aphrodisiac, 
stomachic, and analgesic (Aggarwal and Zettler 2010; Arditti et al. 1982; Arditti 
1967). Whole plant juice of Dendrobium ovatum cures stomach aches, excites bile, 
and is a laxative for the intestines, curing constipation (Kirtikar and Basu 1981; 
Caius 1986). The dried stem of Dendrobium primulinum acts as an enhancer for the 
immune system (Pant and Thapa 2012). The pseudo bulb paste of Dendrobium 
transparens is used in treating fractures and dislocated bones (Arditti and Ernst 
1984). The stem of Dendrobium trigonopus is used to cure fever and anemia 
(Perfume workshop n.d.-b). Doritis pulcherrima leaf is used to treat ear infections 
(Perfume workshop n.d.-c). 

The whole plant of Eria bambusifolia is used in treating hyper acidity and various 
stomach aches (Zhan et al. 2016). The tubers of Eulophia dabia tubers are used as a 
tonic and aphrodisiac help to cure stomach aches, and stimulate blood flow, also 
used for consumption mixed with milk, sugar, and flavored species (Panwar et al. 
2022). The tuber of Eulophia epidendraea is applied upon boils; controls pain in 
breast feeding mother; cures tumor and diarrhea; acts as an appetizer, anthelmintic, 
aphrodisiac, stomachic, worm infestation, stimulate appetite and purifies blood 
during heart troubles (Narkhede et al. 2016). The whole plant of Eulophia nuda is



used in stomachache and snake bites; the stems are used to stop bleeding and trauma 
pain; a thick paste of tuber is applied on the stomach to kill intestinal worms, cures 
rheumatoid arthritis, bronchitis, scrofulous glands, tumors, purifies blood, used as a 
tonic, acts as anti-aphrodisiac, demulcent, and anthelmintic. The leaf is used as a 
vermifuge (Hada et al. 2020). The tuber of Gastrodia elata is used to cure stroke, 
tetanus, migraine, headaches, backache, skin boils, ulcers, and pain in the lower 
extremities; for generalized dermatitis dizziness, sleepiness, insomnia, high blood 
pressure, blood circulation, rheumatism, numbness, and paralysis (Chen et al. 2014). 
The root paste of Geodorum densiflorum is applied on insect bites and wounds; the 
root paste by mixing with ghee and honey to correct menstrual disorders and the 
poultice made from pseudo bulbs is used as a disinfectant (Sheelavantmath et al. 
2000). The stem of Gymnadenia conopsea helps the kidney, treats cough, lactation 
failure, sexual dysfunction, traumatic injuries, thrombosis, and chronic hepatitis 
(Gustafsson 2000). 
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The leaves and roots of Habenaria edgeworthii act as cooling and spermopiotic; 
the pseudo bulb of Habenaria pectinata is used during diathesis bleeding, burning 
sensation, fever, and phthisis (Singh and Duggal 2009). The root of Herminium 
lanceum is beneficial for the lungs and kidneys, strengthens muscles, bones, stops 
bleeding, and treats tuberculosis (Perfume workshop n.d.-d). The whole plant of 
Liparis odorata is soaked in wine for external use; tubers are used during stomach 
disorders (Perfume workshop n.d.-e). The pseudo bulb of Malaxis acuminata is used 
as a tonic, aphrodisiac, styptic, antidysentery, and febrifuge (Pushpa et al. 2011). The 
stem and leaves of Papilionanthe teres are used for improving blood flow and 
reducing swellings. The whole plant of Pholidota articulata is used to remove gas 
and reduce swelling, treat coughs, headaches, dizziness, ulcers, sores, traumatic 
injuries, uterine, and menses problems. The roots and pseudo bulb paste of Pholidota 
pallida are used to cure fever and induce sleep and juice to remove abdomen pain. 
The whole plant of Platanthera chlorantha is used to strengthen the kidneys and 
lungs, hernia, and sexual dysfunction (Perfume workshop n.d.-c). 

The leaves and roots paste of Rhynchostylis retusa are used in rheumatism, leaf 
juice is used in constipation, gastritis, acidity, and as emollient; root juice is used to 
heal cuts and wounds; root is used to treat menstrual pain and arthritis; dry flower is 
used as emetic (Basu et al. 1971; Dakpa 2007; Bulpitt et al. 2007; Bhattacharjee 
1998; Dash et al. 2008). Tubers of Satyrium nepalense are used to treat diarrhea, 
dysentery, and malaria, consumed as an aphrodisiac, and used as a children’s growth 
supplement. Juice is used in cuts and wounds (Gutierrez 2010; Baral and Kurmi 
2006; Basu et al. 1971; Behera et al. 2013; Bulpitt et al. 2007). The pseudo bulb of 
Spathoglottis plicata is used in rheumatic swelling; the hot fomentation is pressed on 
to draw out pus from the infected part, helps in proper blood flow and reduces pain 
(Friesen and Friesen 2012). The whole plant of Thunia alba is used in treating 
cough, pneumonia, bronchitis, bone break treatment, and injury (Mathew 2013). 

The flower juice of Vanda coerulea is used in treating glaucoma, cataract, and 
blindness. The root of Vanda roxburghii is used to treat fever, dyspepsia, bronchitis, 
cough, piles, snake bites, rheumatism, allied disorders, and nervous system disease 
(Uprety et al. 2010). The dried flower powdered juice of Vanda spathulata are used



to treat asthma, depression, enhance memory, antioxidant activity, and alleviate 
chronic disease, and degenerative ailments such as cancer, autoimmune disorders, 
hypertension, delay in aging process, and atherosclerosis (Jeline et al. 2021). The 
leaf of Vanda tessellata is used in inflammation, rheumatism, dysentery, bronchitis, 
dyspepsia, and fever (Chowdhury et al. 2014). The leaf, root, and flower powdered 
extract of Vanda testacea is used in nervous disorders, piles, inflammations, rheu-
matism, bronchitis, and anti-cancerous drugs (Kaur and Bhutani 2009). The fruit of 
Vanilla planifolia is used to treat intestinal gas and fever, increase sexual desire, used 
as flavoring syrup and perfume fragrance (Rxlist n.d.). 
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The phytochemicals such as alkaloids, flavonoids, and glycosides made the 
orchids therapeutically important (Hossain 2011); they are, however, mainly used 
as nutraceuticals because the active principles responsible for their medicinal prop-
erties are yet to be identified with further accuracy. 

7 Phytochemistry 

Gas Chromatography and Mass Spectrometry (GC/MS) analyzed the essential oil 
and the oleoresins for various medicinal orchids. In our present study, we accessed 
and summarized the phytochemicals of 45 orchid species (Table 3). 

Major phytochemicals reported in Ansellia africana namely n-Hexanal, Mesityl 
oxide, 4-Heptenoic acid, 3,3-dimethyl-6-oxo-methyl ester, Pentadecanoic acid, 
Succinic acid, 3,7-dimethyloct-6-en-1-yl pentyl ester, Linoleic acid, Linolenic 
acid, l-Ascorbyl 2,6-Dipalmitate, Toluene, Ethylbenzene, Mesitylene, Erythro-1-
Phenylpropane-1,2-diol, Styrene, Hyacinthin, 2-Ethylbutyric acid, 
3-methylbenzylester which possess cytotoxic effect against cancerous cell line 
(Saleh-E-In et al. 2021). Gramniphenol, a potent marker reported in Arundina 
graminifolia showed anti-tobacco mosaic virus activity (Gao et al. 2012). Phyto-
chemicals of B. striata showed major biological activity in aiding hemostasis, 
cytotoxicity, antimicrobial, anti-inflammation, anti-oxidation, immunomodulation, 
anti-fibrosis, antiaging, and anti-allergy (He et al. 2017). Densiflorol B, the most 
active compound reported from Bulbophyllum odoratissimum exhibit cytotoxic 
activity against the five tested cell lines (Chen et al. 2008). Major stilbenoids, 
flaccidin, oxo flaccidin and isoflaccidin were reported in Agrostophyllum callosum, 
Coelogyne flaccida (Majumder and Maiti 1988, 1989, 1991; Majumder et al. 1995). 
5-hydroxy-3-methoxy-flavone-7-O-[β-D-apiosyl-(1 → 6)]-β-D-glucoside, an alpha-
glucosidase inhibitor reported from Dendrobium devonianum (Sun et al. 2014). 
Sesquiterpene such as alloaromadendrene, emmotin, and picrotoxane from 
Dendrobium nobile possesses immunomodulatory potential (Ye et al. 2002). 
Dendroparishiol a marker reported from Dendrobium parishii exhibited antioxidant 
and anti-inflammatory activity against RAW264.7 cells (Kongkatitham et al. 2018). 
9, 10-dihydrophenanthrene, a novel marker reported from Eria bambusifolia showed 
anticancer activity against the human cell line (Rui et al. 2016). Major aromatic 
phytochemicals were reported in Platanthera chlorantha namely β-Ocimene, Lilac



Species Phytochemicals References
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Table 3 Screening of phytochemicals in some medicinal orchids 

Sl. 
No. 

1 Anacamptis 
pyramidalis 

Disaccharide, Citric acid, Parishin 
G isomer-1, Parishin G isomer-2, 
Gastrodin derivative, Parishin B, 
Gastrodin derivative, Parishin C, 
Dihydroxybenzoic acid derivative, 
Caffeic acid derivative, Acacetin 
derivative, Oxo-dihydroxy-
octadecenoic acid, Trihydroxy-
octadecenoic acid 

Fawzi Mahomoodally et al. 
(2020) 

2 Ansellia 
africana 

2,4,4-Trimethyl-1-hexene, 
2-Hexene, 2,5,5-trimethyl, 
2,3-Dimethyl-2-heptene, 
Cyclopentane, 1,2,3,4,5-
pentamethyl, pentane, 1,2,3,4,5-
pen, Nonane 4,5 dimethyl, Octane 
5-ethyl-2-methyl, n-Decane, 
1-Undecane, 4-methyl, Dodecane, 
Cyclohexane, (1,2,2-
trimethylbutyl), tetradecane, 
pentadecane, Hexadecane 
4-methyl, heptadecane, 
Nonadecanol, Lignoceric alcohol, 
cis-4-Hexen-1-ol, n-Hexanal, 
Mesityl oxide, 4-Heptenoic acid, 
3,3-dimethyl-6-oxo-methyl ester, 
Pentadecanoic acid, Succinic acid, 
3,7-dimethyloct-6-en-1-yl pentyl 
ester, Linoleic acid, Linolenic acid, 
l-Ascorbyl 2,6-Dipalmitate, Tolu-
ene, Ethylbenzene, Mesitylene, 
Erythro-1-Phenylpropane-1,2-diol, 
Styrene, Hyacinthin, 2-Ethylbutyric 
acid, 3-methylbenzylester 

Saleh-E-In et al. (2021) 

3 Arundina 
graminifolia 

graminibiben-zyls A, 5,12-
dihydroxy-3-methoxybibenzyl-6-
carboxylic acid, dihydropinosylvin, 
2,5,2′,5′-tetrahydroxy-3-
methoxybibenzyl, rhapontigen, 
pinosylvin, bauhiniastatin D, 
arundinaol, coelonin, cucapitoside, 
blestriarene A, isoshancidin, 
obovatin, kaempferol-β-3-O-
glycos, dihydropinosylvin, 4′-
-methylpinosylvin, 3-(γ,-
γ-dimethylallyl)resveratrol, 5-(γ,γ 
dimethylallyl)oxyresveratrol, 
3-hydroxy-4,3′,5′-trimethoxy-
trans-stilbene, gramniphenol, 9'-
dehydroxy-vladinol, vladinol F, 

Gao et al. (2012), Hu et al. (2013), 
Zhang et al. (2021)



Species Phytochemicals

9-O-β-D-xylopyranoside-
vladinol F, 4,9-dihydroxy-4',7-
epoxy-8',9'-dinor-8,5'-neolignan-7'-
oic acid
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Table 3 (continued)

Sl. 
No. References 

4 Bletilla striata 3,3′-dihydroxy-5-methoxybibenzy, 
gigantol, 5,4′-dimethoxybibenzyl-
3,3′-diol, 3′-hydroxy-5-
methoxybibenzyl-3-O-β-D-
glucopyranoside, 5-hydroxy-4-
(p-hydroxybenzyl)-3′,3-
dimethoxybibenzyl, bulbocol, 
gymconopin D, bulbocodin D, 
blestritin B, 4,7-dihydroxy-2-
methoxy-9,10-
dihydrophenanthrene, 9,10-
dihydro-4,7-
dimethoxyphenanthrene-2,8-diol, 
blestriarene A, 2,4,7-trimethoxy-
phenanthrene, 7-hydroxy-2-
methoxyphenanthrene-3,4-dione, 
3′,7′,7-trihydroxy-2,2′,4′-
-trimethoxy-[1,8′-biphenanthrene]-
3,4-dione, cyclomargenone, 
β-sitosterol, stigmasterol, 
protocatechuic acid, cinnamic acid, 
p-hydroxybenzaldehyde, 
3,7-dihydroxy-2,4,8-
trimethoxyphenanthrene, 9,10-
dihydro-4,7-
dimethoxyphenanthrene-2,8-diol, 
9,10-dihydro-1-(4'-
hydroxybenzyl)-4,7-
dimethoxyphenanthrene-2,8-diol, 
3',4"-dihydroxy-5',3",5"-
trimethoxybibenzyl, batatasin III 

He et al. (2017), Woo et al. (2014) 

5 Bulbophyllum 
odoratissimum 

Moscatin, 7-hydroxy-2,3,4-
trimethoxy-9,10-
dihydrophenanthrene, coelonin, 
densiflorol B, gigantol, batatasin 
III, Tristin, vanillic acid, 
syringaldehyde, 3,7-Dihydroxy-
2,4,6-trimethoxyphenanthrene, 
Bulbophyllanthrone 

Chen et al. (2008), Sharifi-Rad 
et al. (2022) 

6 Coelogyne 
cristata 

Coelogin, coeloginin, 3,5,7-trihy-
droxy-1,2-dimethoxy-9,10-
dihydrophenanthrene, 3,5,7-trihy-
droxy-1,2-dimethoxyphenanthrene 

Majumder et al. (2001)



Species Phytochemicals References
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Table 3 (continued)

Sl. 
No. 

7 Coelogyne 
flaccida 

Callosin, flaccidin, oxoflaccidin, 
2,7-dihydroxy-6-methoxy-5H-
phenanthro [4,5-bcd] pyran-5-one 

Majumder and Sen (1991), 
Majumder and Maiti (1988, 
1989), Majumder et al. (1995) 

8 Cymbidium 
aloifolium 

1,2 diarylethanes, 9,10 
dihydrophenanthrene, 6-0-
methylcoelonin, batatasin III, 
coelonin, gigantol, 5-hydroxy-3-
methoxy-1,4-phenanthraquinone, 
Friedelin, sitosterol, 
n-hexadecanoic acid, 9,12-
octadecadienoic acid, 9,12,15-
octadecatrienoic acid, octadecanoic 
acid, phytol; 2-butyne; 
2-cyclopenten-1-one; and 
1,4-benzenedicarboxylic acid 

Juneja et al. (1987), Barua et al. 
(1990), Rampilla and Khasim 
(2020) 

9 Cymbidium 
ensifolium 

Cymensifins, cypripedin, and 
gigantol 

Jimoh et al. (2022) 

10 Cymbidium 
finlaysonianum 

1-(4-Hydroxybenzyl)-4,6-
dimethoxy-9,10-
dihydrophenanthrene-2,7-diol, 
Cymbinodin-A 

Lertnitikul et al. (2018) 

11 Cymbidium 
giganteum 

1,2-diarylethane, gigantol, 4ξ-(β-d-
glucopyranosyloxymethyl)-14-
α-methyl-22ξ, 24ξ, 25,28-
tetrahydroxy-9,19-cyclo-5α,9-
β-ergostan-3-one 

Juneja et al. (1985), Dahmén and 
Leander (1978a) 

12 Cymbidium 
goeringii 

Gigantol Won et al. (2006) 

13 Cymbidium 
kanran 

Vicenin-2, Schaftoside isomer, 
Schaftoside, Vicenin-3, Vitexin, 
Isovitexin 

Jeong et al. (2017) 

14 Dendrobium 
amoenum 

3,4′-dihydroxy-5-methoxybibenzyl 
and 4,4′-dihydroxy-3,3′,5-
trimethoxybibenzyl, 3,4,5-
trimethoxybenzaldehyde, 
picrotoxinin, aduncin, 9,10-
dihydro-5H-phenanthro-(4,5-b,c, 
d )-pyran, amoenumin, (E)-13-
docosenoic acid; oleic acid; 
11-octadecenoic acid, methyl ester; 
and hexadecanoic acid, 
2,3-dihydroxypropyl ester, 
aphyllone B, (R)-3,4-dihydroxy-
5,4′,α-trimethoxybibenzyl, 
4-[2-[(2S,3S)-3-(4-hydroxy-3,5-
dimethoxyphenyl)-2-
hydroxymethyl-8-methoxy-2,3-
dihydrobenzo (Stewart and Griffith 

Venkateswarlu et al. (2002), 
Majumder et al. (1999), Dahmén 
and Leander (1978b), Veerraju 
et al. (1989), Paudel and Pant 
(2017)



Species Phytochemicals

1995; Kaushik ) dioxin-6-yl] 
ethyl]-1-methoxyl benzene, 
dendrocandin B, 4,4′-dihydroxy-
3,5-dimethoxybibenzyl, 
3,4-dihydroxy-5,4′-
-dimethoxybibenzyl, 3-O-
methylgigantol, dendrophenol, 
gigantol, dendrocandin C, 
dendrocandin D, and 3,3′,4,4′-
-tetrahydroxy-5-methoxybibenzyl 

1983
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Table 3 (continued)

Sl. 
No. References 

15 Dendrobium 
candidum 

3,4′-dihydroxy-5-
methoxybibenzyl, uridine, sucrose, 
adenosine 

Li et al. (2008, 2009) 

16 Dendrobium 
chrysanthum 

Denchrysan B, dengibsin, 
moscatin, dendroflorin, 
denchrysan A, moscatilin, gigantol, 
batatasin III, Tristin, 
4,9-dimethoxy-2,5-
dihydroxyphenanthrene, 
3,4-dihydroxybenzoic acid, dibutyl 
phthalate, stigmasterol, β-sitosterol, 
daucosterol 

Li et al. (2016) 

17 Dendrobium 
chrysotoxum 

Chrysotoxols A and B, bibenzyls, 
phenanthrenes, fluorenones, cou-
marin, flavonoid, gigantol, 3-O-
methylgigantol, moscatilin, 
4-[2-(3-hydroxy-4-methoxyphenyl) 
ethyl]-2,6-dimethoxyphenol, 
crepidatin, chrysotoxine, erianin, 
isoamoenylin, batatasin III, tristin, 
nobilin C, moscatin, 2,5-dihydroxy-
4,9-dimethoxyphenanthrene, 
confusarin, nudol, fimbriatone, 
1,5,6,7-tetramethoxy-2-
hydroxyphenanthrenol, 7-hydroxy-
2,3,4-trimethoxyphenanthrene, 
1,2,6,7-tetrahydroxy-4-
methoxyphenanthrene, 
2,4-dihydroxy-7-methoxy-9,10-
dihydrophenanthrene, erianthridin, 
2,5-dihydroxy-4-methoxy-9,10-
dihydrophenanthrene, 1,4,7-trihy-
droxy-5-methoxy-9H-fluoren-9-
one, nobilone, 6-methylesculetin, 
and homoeriodictyol 

Hu et al. (2012), Liu et al. (2022) 

18 Dendrobium 
crepidatum 

Crepidatuols A, (±)-
homocrepidine A, Crepidatin, 
crepidatumines A and B, 

Li et al. (2013), Hu et al. (2016), 
Xu et al. (2020, 2019b), Ding 
et al. (2021)



Species Phytochemicals

dendrocrepidine B, crepidatumines
C and D, crepidine, isocrepidamine,
crepidamine, octahydroindolizine
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Table 3 (continued)

Sl. 
No. References 

19 Dendrobium 
densiflorum 

Densiflorol, Dendroflorin Fan et al. (2001) 

20 Dendrobium 
devonianum 

Quercetin, Taxifolin, Rutin, 
Luteolin, Kaempferol, Myricetin, 
(-)-Epiafzelechin, 
5-Hydroxyauranetin, 6-C-Hexosyl-
hesperetin O-hexoside, 8-C-
Hexosyl-apigenin 
O-feruloylhexoside, 8-C-Hexosyl-
apigenin O-hexosyl-O-hexoside, 
8-C-Hexosyl-chrysoeriol 
O-feruloylhexoside, Isorhamnetin 
hexose-malonate, Isorhamnetin 
O-acetyl-hexoside, Isorhamnetin-3-
O-rutinoside, Isoschaftoside, 
Isovitexin, Isovitexin 7-O-gluco-
side, Jaceosidin, Kaempferide 
3-O-β-D-glucuronide, Ladanein, 
Naringenin, Nepetin, Peonidin 3-O-
glucoside chloride, Pinobanksin, 
Quercitrin, Rhoifolin, Schaftoside, 
Tamarixetin, Tangeretin, Tricin 
7-O-hexoside, Tricin 7-O-hexosyl-
O-hexoside, Tricin 
O-malonylhexoside, Tricin 
O-saccharic acid, Tricin 
O-sinapoylhexoside, Violanthin, 
Vitexin, Vitexin 2''-O-β-L-
rhamnoside, Vitexin-2-O-D-
glucopyranoside, 5-hydroxy-3-
methoxy-flavone-7-O-[β-d-apiosyl-
(1 → 6)]-β-d-glucoside 

Zhao et al. (2021), Sun et al. 
(2014) 

21 Dendrobium 
draconis 

5-methoxy-7-hydroxy-9, 
10-dihydro-1,4-
phenanthrenequinone, hircinol, 
gigantol, batatasin, 7-methoxy-
9,10-dihydrophenanthrene-2,4,5-
triol 

Sritularak et al. (2011) 

22 Dendrobium 
fimbriatum 

Plicatol B, hircinol, plicatol A, and 
plicatol C, 1 bibenzyl (3′,4-
dihydroxy-3,5′-
-dimethoxybibenzyl), furostanol, 
protodioscin, Denfigenin, gigantol-
5-O-β-d-glucopyranoside, 9,10-
dihydro-aphyllone A-5-O-β-d-

Talapatra et al. (1992), Xu et al. 
(2017), Favre-Godal et al. (2022)



Species Phytochemicals

glucopyranoside, ficusal-4-O-β-d-
glucopyranoside, botrydiol-15-
O-β-d-glucopyranoside
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Sl. 
No. References 

23 Dendrobium 
heterocarpum 

Methyl 3-(4-hydroxyphenyl) propi-
onate, 3,4-dihydroxy-5,4’-
-dimethoxybibenzyl, 
dendrocandin B, 
dendrofalconerol A, syringaresinol, 
batatasin III, 3-O-methylgigantol, 
gigantol, moscatilin, 
dendrocandin A, (S)-3,4,-
α-trihydroxy-4′,5-
dimethoxybibenzyl, densiflorol A, 
dendrocandin I, dendrocandin F, 
coelonin, carthamidin, 4-hydroxy-
2-methoxy-3,6-dimethylbenzoic 
acid 

Warinhomhoun et al. (2022), 
Xiao-bei et al. (2019) 

24 Dendrobium 
longicornu 

Longicornuol A, 
4-[2-(3-hdroxyphenol)-1-
methoxyethyl]-2,6-
dimethoxyphenol, 5-hydroxy-7-
methoxy-9,10-
dihydrophenanthrene-1,4-dione, 
7-methoxy-9,10-
dihydrophenanthrene-2,4,5-triol, 
erythro-1-(4-O-β-D-
glucopyranosyl-3-methoxyphenyl)-
2-[4-(3-hydroxypropyl)-2,6-
dimethoxyphenoxy]-1,3-
propanediol, Longicornuol B 

Hu et al. (2008b, 2010) 

25 Dendrobium 
nobile 

Vitamin A Aldehyde; Longifolene; 
1-Heptatriacotanol; Z,Z6,28-
Heptatriactontadien-2-One and 
Dendroban-12-One, 
alloaromadendrane, emmotin, 
picrotoxane, dendronobilate, 4-O-
demethyl-nobilone, dendronobilate, 
4-O-demethyl-nobilone 

Ye et al. (2002), Cao et al. (2021), 
Meitei et al. (2019) 

26 Dendrobium 
ovatum 

Stilbenoid Pujari et al. (2021) 

27 Dendrobium 
parishii 

(-)-Dendroparishiol Kongkatitham et al. (2018) 

28 Dendrobium 
primulinum 

2,4,7-trihydroxy-9,10-
dihydrophenanthrene, denthyrsinol, 
moscatin, moscatilin, gigantol, 
batatasin III, tristin, 3,4,5-
trihydroxybibenzyl, 3,6,9-

Ye et al. (2016)



Species Phytochemicals

trihydroxy-3,4-dihydroanthracen-1
(2H)-one, -sitosterol, -daucosterol
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29 Dendrobium 
thyrsiflorum 

Denthyrsin, denthyrsinol, 
denthyrsinone, 2,3,5-Trihydroxy-4-
methoxyphenanthrene, 
3,7-Dihydroxy-2,4-
dimethoxyphenanthrene, 
2,7-Dihydroxy-1,5,6-
trimethoxyphenanthrene, 
Syringaresinol, Pinoresinol, 
Ayapin, Scopoletin, and 
6,7-Dimethoxycoumarin, 
4, 7-dihydroxy-2-methoxy-9, 
10-dihydrophenan-threne, 
syringaldehyde, moscatin, gigantol, 
batatasin Ill, tristin, stigmasterol 

Zhang et al. (2005), Wrigley 
(1960), Ruixuan et al. (2015) 

30 Dendrobium 
trigonopus 

Trigonopols A and B, gigantol, 
tristin, moscatin, hircinol, 
naringenin, 3-(4-hydroxy-3-
methoxyphenyl)-2-propen-1-ol, (-
)-syringaresinol 

Hu et al. (2008a) 

31 Eria 
bambusifolia 

Erathrins A and B, bambusifolia, 
batatasin III, tristin, 3-hydroxy-5-
methoxy bibenzyl, gigantol, 3′,5-
dimethoxy-9,9′-diacetyl-
4,7′-epoxy-3,8′-bilign-7-ene-4′-
-methol, and balanophonin 

Rui et al. (2016) 

32 Eulophia 
epidendraea 

β-sitosterol, β-sitosterol glucoside, 
β-amyrin, lupeol 

Maridass and Ramesh (2010) 

33 Eulophia nuda Eulophiol, Nudol, 2,3,4,7-
tetramethoxyphenanthrene, 9,10-
dihydro-4-methoxyphenanthrene-
2,7-diol, 
l,5-dimethoxyphenanthrene-2,7-
diol, 1,5,7-
trimethoxyphenanthrene-2,6-diol, 
5,7-dimethoxyphenanthrene-2,6-
diol, 4,4,8,8-tetramethoxy-
[1,1-biphenanthrene]-2,2,7,7-
tetraol, 2,2,4,4,7,7,8,8-
octamethoxy-1,1-biphenanthrene, 
Lupeol, 9,10-dihydro-2,5-
dimethoxyphenanthrene-1,7-diol, 
9,10-dihydro-4-
methoxyphenanthrene-2,7-diol, 
1,5-dimethoxyphenanthrene-2,7-
diol, 1,5,7,-
trimethoxyphenanthrene-2,6-diol, 

Hada et al. (2020), Bhandari et al. 
(1985), Tuchinda et al. (1988)



Species Phytochemicals

5,7-dimethoxyphenanthrene-2,6-
diol, and 4,4′,8,8′-tetramethoxy
[1,1′-biphenanthrene]-2,2′,7,7′-
-tetrol. 4-Hydroxybenzaldehyde,
4-hydroxybenzyl alcohol,
2,7-dihydroxy-3,4-
dimethoxyphenanthrene

(continued)
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Table 3 (continued)

Sl. 
No. References 

34 Gastrodia 
elata 

Parishins B and C, gastrodin A, 
gastrol A 

Lin et al. (1996), Li et al. (2007) 

35 Gymnadenia 
conopsea 

Gymnoside, loroglossin, 
dactylorhin, daucosterol, dioscin, 
gymconopin, blestriarene, 
2,6-dimethoxy phenol, eugenol, 
4-hydroxybenzene, 4-methoxy 
phenylpropanol, 4-ethoxy 
phenylpropanol, contra-
hydroxybenzyl, dithioether, 
syringol, syringaldehyde, gastrodin, 
arabinose, xylose, lupenone, 
4,4-dimethyl-5α-cholesta-8,14,24-
trien-3β-ol, lupeol, cirsimarin, 
astragalin, kaempferol-7-O-gluco-
side, desmethylxanthohumol, 
isorhamnetin, naringenin chalcone, 
equol, galangin, 
1-((4-hydroxyphenyl)methyl)-4-
methoxy-2,7-phenanthrenediol, 
gymconopin A,9,10-dihydro-2-
methoxy-4,5-phenanthrenediol, 
blestriarene A, gymconopin, 
blestriarene B 

Gustafsson (2000), Shang et al. 
(2017) 

36 Liparis 
odorata 

Anodendrosin A, Liparisglycoside, 
Liparis alkaloid, 4-(O-β-D-
Glucopyranosyl)-3,5-bis(3-methyl-
2-butenyl) benzoic acid, Adeno-
sine, D-α-2-Alanin, 
p-Hydroxybenzoic acid 

Liang et al. (2019) 

37 Malaxis 
acuminata 

Catechin, phloridzin, rutin, Caffeic 
acid, chlorogenic acid, ellagic acid, 
3-hydroxy benzoic, 4-hydroxy 
benzoic, protocatechuic acid, 
3-hydroxy cinnamic acid, 
p-coumaric acid, Stigmasterol and 
β-sitosterol, Sibutramine, limonene, 
diethylene glycol, p-cymene, euge-
nol, benzene, piperitone, glycerol, 
ribitol, and myo-inositol, 
6-octadecenoic acid, 

Suyal et al. (2020)



Species Phytochemicals

8-octadecenoic acid, 9-octadecenal,
batatasin III, bulbophythrin A, butyl
oleate, cerasynt, cis-oleic acid,
cyclopentadecanolide, diethyl
phthalate, cyclopentanetridecanoic
acid

(continued)
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Table 3 (continued)

Sl. 
No. References 

38 Phalaenopsis 
cornucervi 

1,2-saturated pyrrolizidine mono-
esters, T-phalaenopsine 

Frölich et al. (2006) 

39 Pholidota 
pallida 

Oelonin, lusianthridin, flavanthrin, 
batatasin-III, 3′,5-dihydroxy-2-
(4-hydroxybenzyl)-3-
methoxybibenzyl, gigantol, 
3-[2-(3-hydroxyphenyl) ethyl]-2,4-
bis[(4-hydroxyphenyl) methyl]-5-
methoxyphenol, hydroxytyrosyl 
butyrate, (24R)-ethylcholest-5-en-
3-ol-7-one, taraxerone, friedelin, 
hydroxytyrosyl 

Yu et al. (2021) 

40 Platanthera 
chlorantha 

β-Ocimene, Lilac aldehyde, 
β-Elemene, α-Bergamotene, 
Cedrene, Germacrene D, 
Pentadecane, b-Bisabolene, 
b-Sesquiphellandrene, 1,2,3-
Trimethoxy-5-(2-propenyl) ben-
zene, Tetradecanal, Benzophenone, 
Galaxolide, Docosane, Tetradecyl 
benzoate 

D'Auria et al. (2020) 

41 Platanus 
acerifolia 

5,7,40-trihydroxy-8-
(1, 1-dimethylallyl)-30-
methoxyflavonol, 5,7,40-trihy-
droxy-60-prenyl-30-
methoxyflavonol, Kaempferol-3-O-
a-L-(300-E-p-coumaroyl)-
rhamnoside, Quercetin-3-O-α-l-
(2″-E-p-coumaroyl-3″-Z-p-
coumaroyl)-rhamnopyranoside (E, 
Z-3′-hydroxyplatanoside, and 
quercetin-3-O-α-l-(2″-Z-p-
coumaroyl-3″-E-p-coumaroyl)-
rhamnopyranoside (Z,E-3′-
-hydroxyplatanoside, 8-methoxy-6-
C-methyl-5,7-dihydroxyflavonol, 
8-C-(1,1-dimethyl-2-propen-1-yl)-
5,7-dihydroxyflavonol, and 8-C-
(1,1-dimethyl-2-propen-1-yl)-4′-
-methoxy-5,7-dihydroxyflavonol 

Wu et al. (2022), Kaouadji 
(1989), Thai et al. (2016) 

42 Thunia alba Batatasin-III, lusianthridin, 
3,7-dihydroxy-2,4-

Majumder et al. (1998), Ya-ping 
et al. (2019), Yan et al. (2016)

https://www.sciencedirect.com/topics/chemistry/butyrate
https://www.sciencedirect.com/topics/chemistry/friedelin


Species Phytochemicals

dimethoxyphenanthrene,
3,7-dihydroxy-2,4,8-
trimethoxyphenanthrene,
cirrhopetalanthrin and flavanthrin,
hircinol, scoparone, β-sitosterol,
3,7-dihydroxy-2,4-
dimethoxyphenanthrene,
lusianthridin, coelonin, thunalbene

aldehyde, β-Elemene, α-Bergamotene, Cedrene, Germacrene D, Pentadecane, 
b-Bisabolene, b-Sesquiphellandrene, 1,2,3-Trimethoxy-5-(2-propenyl) benzene, 
Tetradecanal, Benzophenone, Galaxolide, Docosane, Tetradecyl benzoate (D'Auria 
et al. 2020). Quercetin-3-O-α-L-(2″-E-p-coumaroyl-3″-Z-p-coumaroyl)-
rhamnopyranoside (E, Z-3′-hydroxyplatanoside and quercetin-3-O-α-L-(2″-Z-p-
coumaroyl-3″-E-p-coumaroyl)-rhamnopyranoside (Z, E-3′-hydroxyplatanoside) 
markers reported from Platanus acerifolia. The leaves exhibit antimicrobial activity 
against Staphylococcus aureus (Wu et al. 2022). Phytochemicals reported in genus 
Vanda possess major pharmacological activities, markers such as stigmasterol, 
γ-sitosterol, β-sitosterol, β-sitosterol-D-glucoside, tetracosylferulate possess anti-
aging, antimicrobial, anti-inflammatory, antioxidant, neuroprotective, membrane 
stabilizing, and hepato-protective activities (Khan et al. 2019).
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Table 3 (continued)

Sl. 
No. References 

43 Vanda 
coerulea 

Imbricatin, methoxycoelonin, 
gigantol, phenanthropyrans, 
bibenzyl, dihydrophenanthrenes 

Simmler et al. (2009) 

44 Vanda 
tessellate 

Tessalatin, Oxo-tessallatin, 
2,5-Dimethoxy-6,8-dihydroxy iso-
flavone, Gallic acid, 2.7.7-
Trimethyl bicycle () heptanes, 
Octacosanol, Heptacosane 

Khan et al. (2019) 

45 Vanda 
roxburghii 

Stigmasterol, γ-sitosterol, 
β-sitosterol, β-sitosterol-D-gluco-
side, tetracosylferulate 

Khan et al. (2019) 

46 Vanilla 
planifolia 

Vanillin Podstolski et al. (2002) 

7.1 Secondary Metabolites 

A wide range of secondary metabolites is present in Orchids, of which only a very 
slight portion was analyzed. Normally several phytochemicals viz., alkaloids, sapo-
nins, flavonoids, anthocyanins, carotenoids, polyphenols, sterols, etc. were produced 
and integrated into in vitro culture of orchids (Mulabagal and Tsay 2004; Yesil-
Celiktas et al. 2007; Shinde et al. 2010). Among them, polyphenols were responsible

https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/neuroprotective-agent


for their crucial role in curing many degenerative and age-linked ailments (Brewer 
2011; Procházková et al. 2011). Likely, other bioactive compounds like flavonoids, 
tannins, and alkaloids were bestowed for the medication of several chronic diseases 
(Lu et al. 2004; Zhang et al. 2005; Harris and Brannan 2009). 
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7.1.1 Bioactive Compounds 

Various plant parts (leaf, root, and pseudobulb) of orchids possess a group of 
important phenolic acids such as gentisic acid, gallic acid, salicylic acid, 
protocatechuic acid, syringic acid, caffeic acid, sinapic acid, ferulic acid as well as 
flavonoids viz., catechin, apigenin, myricetin, naringin, rutin, quercetin, kaempferol, 
and alkaloids viz., chysine, drobine, dendronine, grandifolin, crepidine, and vanilin 
in higher concentration. In in vitro raised plants, bioactive compounds were more 
dominant than in wild plants of medicinal orchids (Fig. 2). 

The majority of bioactive compounds viz., ayapin, n-octastylferulate, crepidatin, 
confusarin, physcion, scopolin, rhein, fimbriatone, and β-sitosterol were reported in 
Dendrobium fimbriatum which were important for pharmacological point of view 
(Paul et al. 2017; Bi et al. 2003; Shailajan et al. 2015). However, studies on the 
phytochemical analysis of medicinal orchids raised in vitro are very few 
(Bhattacharyya et al. 2014, 2015, 2018, 2016a,b; Bhattacharyya and Staden 2016; 
Giri et al. 2012b; Bose et al. 2017). A bioactive compound such as bisbenzyl erianin 
was isolated from the callus culture of Dendrobium chrysotoxum which was the 
potential as an antioxidant, antitumor, and antiangiogenic agent (Zhan et al. 2016). 
The presence of polyphenols was reported in Habenaria edgeworthii culture (Giri 
et al. 2012a). Different biochemical constituents like total phenolic, flavonoid, 
alkaloids, and tannins contents were analyzed and comparisons were reported 
between the various parts of mother plants and micropropagated plants of 
Dendrobium nobile (Bhattacharyya et al. 2014). Compounds with higher concen-
trations are reported in micropropagated plants of Herminium lanceum (Singh and 
Babbar 2016) and Habenaria edgeworthii (Giri et al. 2012a) than in wild plants. The 
phytochemical evaluation of various parts of the mother plant and in vitro propa-
gated plants of Bulbophyllum odoratissimum was performed by using HPLC (Prasad 
et al. 2021). Extracts of Dendrobium crepidatum contained bioactive compounds 
like tetracosane, hexadecanoic acid, triacontane, phenol derivatives, and 
tetradecanoic acids are responsible for antioxidant and cytotoxic activities (Paudel 
et al. 2019). 

7.1.2 Biological Activity 

Antioxidant Activity 

Bioactive components exhibited vigorous antioxidant properties in divergent in vitro 
methods which showed high scavenging potentiality to various Reactive Oxygen
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Fig. 2 Chemical structure 
of bioactive molecules of 
medicinal orchids (Drawn in 
Chemdraw 8.0)



Species (ROS) viz. hydroxyl radical, peroxynitrite, superoxide anion, and 
hypochlorous acid (Halliwell 2008). Unlike synthetic antioxidants, vigorous studies 
were conducted on antioxidants present in natural fruits, vegetables and medicinal 
plants, which are considered less toxic due to their effective free radical scavenging 
activity.
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1,1- diphenyl-2-picrylhydrazyl (DPPH) and Ferric Reducing Antioxidant Power 
(FRAP) assay were used for the analysis of the antioxidant activity of the plant 
extracts of mother and micropropagated Dendrobium nobile plants (Cao et al. 2021). 
Both the assays describe the antioxidant response of Dendrobium nobile determining 
the high antioxidant potential in samples of leaf due to its high content of poly-
phenols, alkaloids, and flavonoids. Among the different solvents and plant parts of 
the tested species, the DPPH activity of the methanolic leaf extraction was the 
highest (89.8 ± 2.9%), but the activity of radical scavenging of the chloroform 
leaf extraction was the lowest (28 ± 2.9%) of the micropropagated plant. D. nobile 
plantlets grown through tissue culture reported higher levels of free radical scav-
enging activity than mother plants (Bhattacharyya et al. 2014). Total phenol content 
(TPC), radical scavenging activity DPPH and ABTS (2,2′-azino-bis 
(3-ethylbenzothiazoline-6-sulfonic acid), Total Flavonoid Content (TFC) as well 
as total reducing power ability is being reported from all plant material extracts of 
mother plants and in vitro-cultured plants of Bulbophyllum odoratissimum (Prasad 
et al. 2021). DPPH radical scavenging activity was studied in some of the following 
orchid species viz. Acampe papillosa, Aerides odorata, Bulbophyllum lilacinum, 
Arundina graminifolia, Cymbidium aloifolium, Dendrobium aphyllum, 
Papilionanthe teres, Luisia zeylanica, Dendrobium tortile, Rhynchostylis retusa 
(Rahman and Huda 2021); Rhynchostele rossii (Gutiérrez-Sánchez et al. 2020); 
Dendrobium candidum (Wang et al. 2016); Dendrobium chrysanthum (Aswandi 
and Kholibrina 2021); Dendrobium draconis (Sritularak et al. 2011); Pholidota 
articulata (Singh et al. 2016a); Papilionanthe teres (Mazumder et al. 2010); 
Geodorum densiflorum (Keerthiga and Anand 2014). DPPH assay measures the 
total phenolic, alkaloid and flavonoid content by using Folin-Ciocalteu, spectropho-
tometry and modified acid-alkalimetry methods in Dendrobium crumenatum 
(Topriyani 2013). DPPH radical, column chromatography Diaion HP-20 or 
reverse-phase silica gel column chromatography was studied in Gymnadenia 
conopsea (Shang et al. 2017). A DPPH radical, spectrophotometric method, Liquid 
Chromatography Mass Spectrometry (LC-MS) was studied in Paphiopedilum 
villosum (Khamchatra et al. 2016). DPPH and ABTS assay were studied in Cym-
bidium kanran (Axiotis et al. 2022); Dactylorhiza hatagirea (Kumari et al. 2022); 
Dendrobium moschatum (Robustelli della Cuna et al. 2018); Geodorum densiflorum 
(Keerthiga and Anand 2014); Gastrodia elata (Song et al. 2016). DPPH, ABTS 
radical scavenging assays and reducing capacity assays have been studied in 
Dendrobium aphyllum (Liu et al. 2017) and Dendrobium macrostachyum 
(Sukumaran and Yadav 2016). DPPH, ABTS, and metal chelating in Malaxis 
acuminata (Bose et al. 2017) and in Dendrobium nobile hydroxyl radicals scaveng-
ing assay was also studied (Luo et al. 2010). MTT (3-(4, 5-dimethylthiazol-2-yl)-2, 
5-diphenyltetrazolium bromide) assay in Dendrobium aphyllum (Liu et al. 2018) and



DPPH assay in Dendrobium densiflorum (Pant et al. 2022), and in Dendrobium 
crepidatum by using GC–MS (Gas Chromatography and Mass Spectrometry) was 
used to identify the compounds (Paudel et al. 2019). DPPH, ORAC, and deoxyri-
bose assays in Dendrobium parishii (Raja 2017); DPPH scavenging activity, reduc-
ing power and chelating activity against iron ions (Fe2+ ) in  Dendrobium candidum 
(Ng et al. 2012). DPPH and FRAP assay were studied in Dendrobium devonianum 
(Wang et al. 2018) and Dendrobium fimbriatum (Paul and Kumaria 2020). Deoxy-
ribose assays, non-site-specific scavenging assays, or antioxidants and iron ions, also 
known as site-specific scavenging assays have been studied in Dendrobium 
chrysotoxum (Zhao et al. 2007) (Table 4). 
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Antimicrobial Activity 

Five different multidrug resistance (MDR) bacterial clinical isolates were used for 
testing the antibacterial activity of the epiphytic orchid Pleione maculata which 
includes Escherichia coli (2461), Enterococcus sp. (2449), Staphylococcus aureus 
(2413), Serratia sp. (2442), and Acinetobacter sp. (2457) along with 
antimycobacterial activity with Mycobacterium tuberculosis strain (H37Rv) 
(Bhatnagar and Ghosal 2018). Likely methanolic extracts of tubers of Satyrium 
nepalense were studied against both Gram-negative and -positive food pathogenic 
bacteria namely Staphylococcus mutans, Pseudomonas aeruginosa, Staphylococcus 
aureus, and Klebsiella pneumonia and 6 mg/100 μL concentration was responsible 
for the minimal effect against all the tested microorganisms (Mishra and Saklani 
2012). 

Ethanolic and hexane extracts of Coelogyne cristata and Coelogyne fimbriata, 
leaves and pseudobulbs were explored against human pathogens like Gram-positive 
Bacillus cereus (ATCC 14579), Staphylococcus aureus (ATCC 12600), and Gram-
negative Escherichia coli (ATCC 10798), Yersinia enterocolitica (ATCC 9610), and 
Klebsiella pneumonia (ATCC BAA-3079) bacteria. Only 70% of ethanolic leaf 
extracts inhibited the growth of the investigated human pathogens (Pyakurel and 
Gurung 2008; Subedi 2002; Wati et al. 2021; Subedi et al. 2013). Methanolic and 
water extract of Peristylus densus showed better antimicrobial activity against 
bacterial and fungal strains with an inhibition zone of 8–10 mm when tested against 
S. typhi, P. aeruginosa, S. aureus, E.coli, and Aspergillus niger (Jagtap 2015). 
Methanolic and ethanolic extract of Malaxis acuminata revealed strong antimicro-
bial activity against P. aeruginosa and S. aureus strain in Minimum Inhibitory 
Concentration (MIC) assay and Butanol extract showed a strong inhibition zone of 
32 mm compared to control 28 mm against Candida albicans (Suyal et al. 2020). 
Ethyl acetate extract showed significant antimicrobial activity against bacterial 
strains K. pneumoniae, S. enteric and E. coli with an inhibition zone of 14–18 mm 
in Pholidota articulata (Singh et al. 2016b). Whereas ethanolic extract of the species 
showed antimicrobial activity against microbial strains S. aureus, Vibrio cholerae, 
B. subtilis, E. coli, and K. pneumoniae with inhibition zone ranges from 9 to 12 mm. 
No activity was observed in V. cholerae (Marasini and Joshi 2012). Ethanolic extract



Species Antioxidant activity References

(continued)
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Table 4 Testing of antioxidant activity of some medicinal orchids 

Sl 
No. 

1 Cymbidium 
kanran 

DPPH and ABTS assays Axiotis et al. 
(2022) 

2 Dactylorhiza 
hatagirea 

DPPH and ABTS assays. Further, UPLC-DAD 
analysis 

Kumari et al. 
(2022) 

3 Dendrobium 
aphyllum 

DPPH and ABTS-free radical scavenging assays 
and the reducing power assay. MTT assay 

Liu et al. (2017) 

4 Dendrobium 
candidum 

DPPH scavenging activity, 2,2-diphenyl-1-
picrylhydrazyl (DPPH) scavenging activity, 
reducing power, and ferrous ion (Fe2+ ) chelating 
activity 

Wang et al. 
(2016), Ng et al. 
(2012) 

5 Dendrobium 
chrysanthum 

DPPH radical scavenging activity Xiao-Ling et al. 
(2014) 

6 Dendrobium 
chrysotoxum 

Deoxyribose assay, non-site-specific scavenging 
assay) or antioxidants and iron ions (referred as a 
site-specific scavenging assay) 

Zhao et al. (2007) 

7 Dendrobium 
crepidatum 

DPPH (2, 2-diphenyl-1-picrylhydrazyl) and MTT 
(3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide) assays 

Paudel et al. 
(2019) 

8 Dendrobium 
crumenatum 

1-1 Diphenyl-2-picrylhydrazyl (DPPH) method, 
measurement of total phenol, flavonoid, and alka-
loid content using Folin-Ciocalteu method, spec-
trophotometry method, and modified acid-
alkalimeter method 

Topriyani (2013) 

9 Dendrobium 
draconis 

DPPH-free radical assay Sritularak et al. 
(2011) 

10 Dendrobium 
densiflorum 

DPPH and MTT assays Pant et al. (2022) 

11 Dendrobium 
devonianum 

DPPH Radical-Scavenging Assay, Ferric Reduc-
ing Antioxidant Power (FRAP) Assay 

Wang et al. 
(2018) 

12 Dendrobium 
fimbriatum 

DPPH and FRAP assay Paul and Kumaria 
(2020) 

13 Dendrobium 
macrostachyum 

DPPH, ABTS radical scavenging, and reducing 
power activity 

Sukumaran and 
Yadav (2016) 

14 Dendrobium 
moschatum 

DPPH assay and ABTS assay Robustelli della 
Cuna et al. (2018) 

15 Dendrobium 
nobile 

Free radical scavenging activity assay; ABTS 
assay; DPPH assay; hydroxyl radicals scavenging 
assay 

Luo et al. (2010) 

16 Dendrobium 
parishii 

DPPH, ORAC, and deoxyribose assays Kongkatitham 
et al. (2018) 

17 Gastrodia elata The DPPH and ABTS radical scavenging activities Song et al. (2016) 

18 Geodorum 
densiflorum 

DPPH method (1,1-diphenyl-2-picrylhydrazine) Keerthiga and 
Anand (2014) 

19 Gymnadenia 
conopsea 

Diaion HP-20 column chromatography (reverse-
phase silica gel column chromatography, DPPH 
radical 

Shang et al. 
(2017)



Species Antioxidant activity References

of Pholidota imbricata showed effectiveness against S. aureus, V. cholerae, 
B. subtilis, E. coli, and K. pneumonia microbial strains with inhibition zone ranges 
from 8 to 14 mm (Marasini and Joshi 2012). Rhyzopus stolonifer, Candida albicans, 
and Mucor sp. were tested with the different orchid species. No activity against 
fungal organisms reported in Coelogyne stricta (leaf), Coelogyne stricta 
(Pseudobulb), and Dendrobium amoenum. Whereas Pholidota imbricata and 
P. articulata extracts showed fine activity. Dendrobium nobile, Eria spicata, 
Rynchostylis retusa, Bulbophyllum affine, and Vanda cristata showed very weak 
to moderate activity against selected fungal pathogens (Marasini and Joshi 2012).
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Table 4 (continued)

Sl 
No. 

20 Malaxis 
acuminata 

DPPH, metal chelating, and ABTS Bose et al. (2017) 

21 Paphiopedilum 
villosum 

Anti-free radical activity (DPPH), spectrophoto-
metric methods, liquid chromatography coupled to 
mass spectrometry (LC-MS) 

Khamchatra et al. 
(2016) 

22 Papilionanthe 
teres 

DPPH assay Mazumder et al. 
(2010) 

23 Pholidota 
articulata 

DPPH radical scavenging Singh et al. 
(2016a,b) 

Cytotoxic Activity 

The cytotoxic activity of crude extracts from Dendrobium longiflorum plants was 
determined by the Mean Transit Time (MTT) assay (Mosmann 1983; Sargent and 
Taylor 1989). This study tested tumor cells of the human brain (U251) and cervical 
cancer cells (HeLa). The cytotoxicity results of D. longicornu acetonic extract 
showed a significant cell growth inhibitory effect on the U251 cell line which may 
be due to high levels of flavonoids, while ethanolic extract had no significant 
cytotoxic activity on U251 cells. Similarly, the higher flavonoid levels in the 
ethanolic extract of D. longicornu showed significant results on the cytotoxic 
activity of the HeLa cell line. The cytotoxic activity of flavonoids has been described 
by previous researchers (Patel and Patel 2011; Awah et al. 2012; Jeune et al. 2005). 

Methanolic extract of the whole plant of Pleione maculata was tested for cell 
cytotoxicity and found to be within permissible limit, i.e., 7% at MIC assay. This 
supports scientific evidence in favor of folk medicinal utilization of Pleione 
maculata for various ailment treatments (Bhatnagar and Ghosal 2018). However, 
no cytotoxic effect was observed at an extract dosage of 50–100 μg/mL in the 
methanolic extract of Pholidota articulata, whereas 200–400 μg/mL of the extract 
showed better activity in HeLa cells (IC50 673.04) compared to U251 cells (IC50 
3170.55). The control showed a better cytotoxic effect (Joshi et al. 2020). Similarly 
in Papilionanthe uniflora no cytotoxic effect was observed at a methanolic extract



dosage of 50–100 μg/mL, whereas 200–400 μg/mL of the extract showed better 
activity in HeLa cells (IC50 781.85) compared to U251 cells (IC50 2585.88) and 
control showed better cytotoxic effect (Joshi et al. 2020). 
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The cytotoxic activity of Dendrobium crepidatum was determined against HeLa 
(Human Cervical Cancer) and U251 (Human Glioblastoma) cell lines. The extract 
contains bioactive compounds like tetracosane, tetradecanoic acid, triacontane, 
phenol derivatives, and hexadecanoic acid which cause cytotoxic activity. The 
percentage of growth inhibition of HeLa cells for extraction of hexane (DCH) at 
100 g/mL and chloroform extract (DCC) at 800 g/mL was found to vary from 19.84 
to 4.31% and 81.49–0.43%, respectively. Whereas higher growth inhibition percent-
age was recorded in DCC at 800 μg/mL and in the extraction of acetone (DCA) at 
400 μg/mL (74.35–0.59%) of HeLa cell, which was significantly different compared 
to other extracts. Likewise, ethanol extracts (DCE) at 100 μg/mL and methanol 
extracts (DCM) at 200 μg/mL showed significantly higher growth inhibition per-
centages of HeLa cells (Paudel et al. 2019). 

8 Economics 

Orchids are popular due to their attractive and long-lasting flowers, with unique 
shapes and forms. This is a flowering plant consisting of diverse genera and species. 
Nowadays using the micropropagation technique it has become easy to multiply 
some of the rare medicinal orchids. Flowers have bagged a significant position in 
present-day contemporary society. Therefore, a potential pressure for flowers was 
created especially in terms of the orchid flower as they have a plethora of flower 
forms and colors. As Orchid reproduction is in a very germinal stage in India, 
different medicinal orchid varieties can be reproduced by adopting a well-planned 
Orchid augmentation strategy for the cut-flower trade. 

Orchids were the first horticultural crop mass multiplied successfully through the 
micropropagation technique and the commercial aspects of this group were being 
increasing day by day for their medicinal importance. Commercial Tissue Culture 
laboratories around the globe have aided the orchid’s mass multiplication and helped 
the orchid industry revolutionize in the form of cut flower business in several 
countries. The Indian flower market is expected to grow to INR 661 billion by 
2026. North East India, along with Sikkim, Arunachal Pradesh, and Himachal 
Pradesh, is the orchid-rich state in the country. In southern India, Kerala and 
Tamil Nadu have high humidity, low temperatures, abundant rainfall, and a pleasant 
climate suitable for commercial orchid cultivation. The orchid industry in India is in 
its infancy in terms of in vitro micropropagation or commercial cultivation. This is 
due to inappropriate or unsuitable planting material for large-scale cultivation, a 
deficit of technology for commercial mass propagation techniques, a lack of post-
harvest commercial techniques for the cut-flower market for international trade, 
export policies, inappropriate commercial planting methods, etc. However, in 
India, it can be possible to grow commercially viable orchid varieties such as



Cattleya, Cymbidium, Dendrobium, Oncidiums, Phalaenopsis, Paphiopedilum, and 
Vandaceous for cut flower production. Presently, the inward demand for orchid 
cut-flower is mainly refilled through imports from outside India. However, with the 
installation of in vitro propagation technology, cost-effective greenhouses, and 
post-harvest and storage technology, the orchid cut-flower industry can commence 
in other parts of India also. 
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According to the National Horticultural Database released by the National Hor-
ticultural Administration, in 2020–2021, the flower planting area in India is 322,000 
hectares, producing 2152 thousand tones of scattered flowers and 828,000 tones of 
cut flowers. Growing orchids is more than just a pleasure these days. This is an 
international trade that accounts for about 8% of the world’s horticultural business 
and has the potential to change a country’s economic outlook. 

According to Biotech Consortium India Limited (Biotechnology Division) and 
Agri-Business of Small Farmers’ Consortium, Indian Tissue Culture Market 
Research, 2005, Dendrobium sp. as cut flowers and Vanilla as spice are the most 
important plants in India which are suitable for micropropagation. Growing orchids 
in India, different agro-climatic regions, low labor costs, and accelerating high-end 
customer markets create a successful impact on society (Singh et al. 2008). But, the 
orchid cut flower business is consistently retarded by the unruly condition in 
airports; large numbers of infected and deserted cut flowers; moreover chemically 
processed flowers are rejected in Indian cities for violation of bio-safety norms 
(De 2008). 

Presently, worth millions of dollars industry of orchid cut flower are flourishing in 
different countries such as Malaysia, Australia, Thailand, and Singapore among the 
top ten cut flowers of the world, the cut flower grasps sixth position and 3% 
Cymbidium orchid alone contributes in this list (De and Debnath 2011). 

9 Conclusion 

Biotechnological interventions and plant tissue culture techniques are accelerating 
the large-scale reproduction of the delicate and rare medicinal orchid for its potential 
uses as therapeutics. Since orchids are exotic breeders, they propagate by seed to 
produce hybrid plants. Therefore, protocols that allow regeneration from different 
vegetative parts of the plant are needed to achieve suitable types of micropropagation 
of medicinal orchids, which have shown amazing developments in germplasm 
conservation in recent years. Hardening and acclimatization of in vitro-propagated 
orchids have maintained in different ratios of the organic medium before ex vitro 
survivability. In recent years, as a research tool addition to being used, plant tissue 
culture techniques have also been of great industrial significance in the plant 
propagation field, plant improvement, and secondary metabolites production. 

Furthermore, testing of clonal fidelity of micropropagated medicinal orchids by 
using markers like RAPD, ISSR, and SCOT can be adequately utilized in the 
sustainable implementation of plant genetic resources by identifying and eliminating



the difficulties of somaclonal variations. However, from various parts of the in vitro-
raised medicinal orchid many compounds have been isolated which are a good 
source of bioactive molecules as well as phytochemicals. Antioxidant activities 
and ethnomedicinal properties have been offering better possibilities for the occur-
rence of value-added products, for the treatment of diseases with herbal medicines to 
boost health benefits. 
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Similar to micropropagation technology, synthetic seed technology has attracted 
much attention in recent years due to its broader application of germplasm conser-
vation in natural habitats. Although little progress has been made in proving the 
feasibility of synseeds, their successful implementation in the conservation of orchid 
ornamental/medicinal genetic resources is achievable. 

Emphasis on eco-rehabilitation study provides a new gateway for ex situ conser-
vation of in vitro-raised medicinal orchids in their natural habitats. The host tree and 
orchid species symbiosis still maintains a proper balance for further reintroduction 
and population enhancement for the practical conservation of important orchids. 
Orchids have both flower value and medicinal value and are more demanding in the 
international market. Endemic and rare orchids have a plethora of flower shapes and 
colors that require scientific attention for their use in the cut flower industry. 

Comprehensive research is still necessary to extensively study the different 
orchid species for various ailments. However, due to limited understanding and 
knowledge about the therapeutic values of these locally available plants, the use of 
orchids in the traditional healing process is restricted. For commercial scale, very 
less effort has been made for medicinal orchid cultivation due to its small size 
population and restriction in distribution. Different precious orchid species that 
have reached either the threatened or extinct category can survive with biotechno-
logical interventions and human support for their mass propagation. Therefore, to 
meet the current need for medicinal orchids and to reduce the pressure on its natural 
population, plant tissue culture can be an acceptable alternative for its sustainable 
utilization which is the need of the hour. 
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Gene Expression Profiling in Orchid 
Mycorrhizae to Decipher the Molecular 
Mechanisms of Plant–Fungus Interactions 

Silvia De Rose, Silvia Perotto, Raffaella Balestrini, and Fabiano Sillo 

1 Introduction 

The Orchidaceae family comprises over 27,000 plant species (WFO 2022 http:// 
www.worldfloraonline.org/) adapted to live in diverse environments, ranging from 
soil (terrestrial orchids), rock surfaces (lithophytic orchids) and on other plant 
species (epiphytic orchids) (Zhao et al. 2013). 

Like 90% of plant species (Bonfante and Genre 2010), orchids form symbiotic 
associations with mycorrhizal fungi. From an ecological point of view, the study of 
orchid mycorrhizal (OM) symbiosis is pivotal since many orchid species are rare or 
at risk of extinction due to habitat destruction and over-harvesting. The presence of 
compatible OM fungi, necessary for seed development and plant growth, is therefore 
extremely crucial for the survival of plants in nature, as well as for ex situ horticul-
tural growth. Furthermore, symbiotic germination from seeds may favor genetic 
variability compared to monocultures created by asexual propagation (Fig. 1) 
(Dearnaley et al. 2016). 

In most mycorrhizal symbioses, the fungus provides inorganic nutrients in 
exchange for fixed carbon (C) from the photosynthetic host plant, which achieves 
several beneficial effects from this association (Genre et al. 2020). However, the OM 
symbiosis appears to be an unusual association because the usual mechanism of 
mycorrhizal nutrient exchange is reversed, at least during early development 
(Dearnaley and Cameron 2016); under natural conditions, orchids are entirely 
dependent on their associated symbiotic fungi for the supply of carbon and other
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nutrients, particularly during seed germination and early plant development, appar-
ently without getting anything in return (Selosse and Roy 2009). The plant depen-
dency on the associated fungus is maintained throughout the orchid life cycle in 
achlorophyllous species. This peculiar trophic strategy, whereby orchids obtain 
carbon from their mycorrhizal fungi, instead of supplying carbon to their partner, 
is called mycoheterotrophy (Dearnaley et al. 2016).
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Fig. 1 In vitro development stages from seeds into the adult stage of Serapias vomeracea. (a, b) 
seeds seen under a stereomicroscope; (c) swollen seed; (d, e) protocorms; (f) protocorm with 
pre-leaf; (g) seedling; (h) adult plant 

The advent of -omics approaches, particularly transcriptomics, has contributed to 
elucidating the molecular mechanisms of this intriguing symbiosis and to providing 
insights into the nutrient exchanges between orchids and their associated fungi, thus 
helping to dissect this paradigm. By reflecting the gene expression changes during 
the development of organisms, as well as under the effects of biotic and abiotic 
factors, the transcriptome allows filling the gap between the genome and its pheno-
type at a particular time (Stark et al. 2019). Next-generation sequencing (NGS) 
approaches have now become widely available, thus providing the opportunity to 
explore differential gene expression at great resolution by the sequencing of whole 
transcriptomes, i.e., RNA-sequencing (RNA-seq; Marconi et al. 2014). RNA-seq 
approaches make it possible to investigate the extreme complexity of cellular life in



the round, redefining the fields of investigation that can be further explored by 
integrating with other -omics techniques (Lowe et al. 2017) or with target tools 
such as the use of laser microdissection (LM) technology (Balestrini et al. 2009). 
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In the next sections, the contributions that transcriptomics has made to the broad 
understanding of the mechanisms that drive this intriguing type of symbiosis, with 
reference to nutrient exchange, fungal genes and plant responses involved in the 
establishment of this association, are introduced and discussed. 

2 Transcriptomics to Understand Nutrient Exchanges 
between Orchids and their Symbionts 

As mentioned above, OM fungi play a key role during orchid seed germination and 
plant development during the early stages. Orchid seeds are often small (0.3–14 μg) 
and the embryos have limited nutrient reserves, which mainly consist of protein and 
lipids (Arditti and Ghani 2013; Zhao et al. 2013; Dearnaley et al. 2016). Germination 
of these tiny seeds requires the interaction with a compatible OM fungal species/ 
isolate, which forms elaborate intracellular hyphal coils (Smith and Read 2008), 
called “pelotons,” responsible for nutrient exchanges between symbionts. The sub-
sequent orchid developmental stages include the formation of tuber-like heterotro-
phic structures lacking chlorophyll, defined as protocorms (Smith and Read 2008). 
In the adult stage, orchids can develop different trophic strategies: most species 
become autotrophic, with green leaves and photosynthetic capacity (Dearnaley 
2007), but around 100 species are reported as achlorophyllous and therefore 
completely dependent on the fungal symbiont for organic carbon (C), i.e., 
mycoheterotrophic (Selosse and Roy 2009; Hynson et al. 2013). Mixotrophy is an 
interesting evolutionary intermediate between the first two strategies, where the plant 
takes advantage of the fungal supply of organic C while retaining photosynthetic 
capacity (Julou et al. 2005; Gebauer et al. 2016). Mixotrophy allows strong adapta-
tion under shady environments or in situations of reduced photosynthetic capacity 
(Girlanda et al. 2006; Lallemand et al. 2019). 

Early studies on nutrient exchange based on experiments with isotope tracing 
showed that the OM fungus is responsible for the supply of C, phosphorus (P), and 
nitrogen (N) to protocorms and that the supply of P and N continues in seedlings and 
adulthood plants (Cameron et al. 2006, 2007, 2008). By performing a high-
resolution secondary ion mass spectrometry, nutrient transfer through peloton lysis 
in the obligate mycoheterotrophic orchid Rhizanthella gardneri has been observed 
(Bougoure et al. 2014). In mycorrhizal protocorms of Spiranthes sinensis, the use of 
imaging of stable isotope tracers at the cellular level also demonstrated that C and N 
are translocated from the mycorrhizal fungus to the orchid cell either through intact 
pelotons or through the release of hyphal cytoplasm during peloton degradation 
(Kuga et al. 2014).
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In the last years, several nutrient transporter genes have been detected and 
characterized in OM by transcriptomics (Perotto et al. 2014; Zhao et al. 2014; 
Fochi et al. 2017a, b), thus supporting the hypothesis that an active nutrient 
exchange takes place at the plant–fungal interface. Investigations have been mainly 
focused on symbiotic protocorms obtained in vitro, but recent work also considered 
the symbiosis in the roots of adult plants (Valadares et al. 2020, 2021). Before the 
advent of RNA-seq, methods relying on PCR-based amplification of cDNA frag-
ments that differ from the control, like suppression subtractive hybridization (SSH), 
led to the identification of various genes involved in transport processes in the orchid 
Dendrobium officinale colonized by a Sebacina sp. fungus, including a cation 
transporter of the plant and an inorganic phosphate transporter of the fungus (Zhao 
et al. 2013). 

By using RNA-seq technology, the transcriptomic responses of Cymbidium 
hybridum plantlets co-cultivated with two different beneficial fungi, one of them 
non-mycorrhizal, were investigated (Zhao et al. 2014). Among the different genes 
involved in nutrient transport, two plant phosphate transporters, co-regulated during 
interactions with both fungal species, were identified (Zhao et al. 2014). Two genes 
coding for phosphate transporters expressed in mycorrhizal roots of the adult green 
orchid Oececlades maculata collected in natural conditions were also recently 
identified (Valadares et al. 2020). These results provide evidence that the acquisition 
of inorganic phosphorus in adult plants is mediated by the associated fungus, as 
suggested for the terrestrial orchid Goodyera repens based on isotope studies 
(Cameron et al. 2007). In soils with limited P availability, naturally occurring 
orchids have been found to acquire significant amounts of inorganic P from the 
symbiotic fungal partners; plant–fungus combinations, which may be more or less 
efficient, strongly influence P acquisition, with plant-mediated niche differentiation 
(Davis et al. 2022). 

Bidirectional transfer of C between a green adult orchid and its fungal symbiont 
has been demonstrated by isotope tracing experiments, thus allowing a more com-
plete view of C fluxes in OM symbiosis (Cameron et al. 2006). Interestingly, an 
up-regulated putative bidirectional sugar plant transporter belonging to the SWEET 
family has been identified by high-throughput transcriptomics of a normalized 
cDNA library by 454 GS-FLX Titanium pyrosequencing in Serapias vomeracea 
protocorms colonized in vitro by the fungus Tulasnella calospora (Perotto et al. 
2014). Pathogenic microorganisms and beneficial symbionts are both known to 
target plant SWEET transporters for nutritional gain (Chen et al. 2010). SWEET 
transporters were also identified in mycorrhizal roots of albino variants of Epipactis 
helleborine, a mixotrophic orchid (Suetsugu et al. 2017); in symbiotic protocorms of 
Bletilla striata (Miura et al. 2018) and mycorrhizal roots of adult orchids 
O. maculata and Limodorum abortivum (Valadares et al. 2020, 2021) both collected 
in nature. Intriguingly, a sucrose transporter that may allow sucrose import at the 
symbiotic interface in mycoheterotrophic Gastrodia elata associated with the fungus 
Armillaria has been found (Ho et al. 2021). Moreover, invertase, an enzyme cleaving 
sucrose into glucose and fructose, has been identified, through proteomic



approaches, in mycorrhizal protocorms of the orchid Oncidium sphacelatum 
(Valadares et al. 2014). 
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Most orchid tissues are highly N-enriched (Hynson et al. 2013,) and the fungus 
has been demonstrated to provide N to protocorms and adult green orchids by 
exploiting inorganic and organic N sources in the substrate (Kuga et al. 2014; 
Cameron et al. 2006). The exchange of N in OM has been clarified thanks to 
transcriptomics approaches. RNA-seq analysis of the plant and fungal N uptake 
pathways in the model system S. vomeracea-T. calospora identified several 
up-regulated plant and fungal genes associated with N metabolism (Fochi et al. 
2017a). To understand the preferential N form taken up by the fungus and transferred 
to the orchid protocorm, the fungal mycelium was grown on two different N sources. 
Based on transcriptomic and genomic data, it has been hypothesized that the fungus 
can obtain N from organic and inorganic sources, excluding nitrate, and two 
ammonium fungal transporters were identified, one of which was up-regulated in 
symbiosis. Plant transporters for N compounds resulted to be up-regulated in 
symbiosis, such as ammonium and oligopeptide transporters, as well as amino 
acid transporters, including a plant lysine histidine transporter (LHT1). A homolo-
gous LHT1 gene was previously reported in mycorrhizal roots of Cymbidium 
hybridum (Zhao et al. 2014) and recently detected in symbiotic protocorms of 
B. striata (Miura et al. 2018) and symbiotic roots of adult orchid plants (Valadares 
et al. 2021). This repertoire of fungal and plant genes was further investigated 
through the use of laser microdissection (Balestrini et al. 2018; Fochi et al. 
2017b). By combining a microscope and a computer-assisted laser beam to separate 
various cellular components from sections placed under a microscope slide, laser 
microdissection enables the quick separation of specific cells from a piece of 
heterogeneous tissue making it possible to extract a variety of cellular compounds, 
including RNA (Balestrini et al. 2009, Balestrini and Fiorilli 2020). The analysis of 
gene expression in RNA samples originating from orchid cells harboring fungal coils 
at diverse developmental stages, as well as cells non-colonized by the fungus, 
demonstrated that plant genes coding for transporters of N compounds are differen-
tially expressed in symbiosis (Fochi et al. 2017b). Based on these findings, it has 
been hypothesized that N-rich amino acids may be transferred from the fungus to the 
host plant, also contributing to the C requirement. Moreover, in addition to active 
transport, recovery of organic N forms from peloton lysis may occur (Kuga et al. 
2014). Recent transcriptomic and proteomic studies focused on orchid species 
collected in nature support this hypothesis (Valadares et al. 2021). For example, in 
the mycorrhizal roots of the orchid L. abortivum, genes encoding a lysine histidine 
transporter 1 (LHT1) and an amino acid permease, as well as several NRT1/PTR 
family members putatively associated with N transfer from the fungus to the host 
plant, were found to be up-regulated (Valadares et al. 2021). Similarly, it has been 
discovered that the mycorrhizal roots of the terrestrial orchid O. maculata regulates 
genes for LHT1 and NRT1/PTR family members, which are amino acid transporters 
(Valadares et al. 2021). Interestingly, members of this protein group have also been 
discovered to transport peptides, but also chloride, nitrite, glucosinolates, and several 
phytohormones such as auxin, abscisic acid, gibberellins, and jasmonate



(Corratgé-Faillie and Lacombe 2017). However, their roles in mycorrhizal symbiosis 
are still under debate (Corratgé-Faillie and Lacombe 2017). 
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A recent metabolomic study using the model system S. vomeracea—T. calospora 
integrated previous transcriptomic data (Fochi et al. 2017a, b) and showed that the 
external mycelium of the mycorrhizal fungus freely growing close to the host 
protocorms affected several metabolic pathways. The interaction between plant 
and fungus increased compounds associated with structural, signaling, and energy, 
mostly lipids, particularly glycerolipids (GP) and sphingolipids (SP) (Ghirardo et al. 
2020). Lipids are known to be the main structural components of cell membranes but 
also provide other important biological functions, ranging from signaling, C storage, 
plant–microbe interactions, and even response to environmental stresses (Ghirardo 
et al. 2020). Notably, a percentage decrement of N- and S-containing compounds in 
the mycorrhizal fungus growing close to the host protocorms, led the authors to 
hypothesize that this depletion may mirror a transfer of N compounds to the host 
plant. However, among the identified S-containing compounds, the amount of 
S-adenosylmethionine (SAM) increased in the mycelium surrounding protocorms 
(Ghirardo et al. 2020). This molecule is used by methyltransferases as a methyl 
group donor for a variety of target substrates (Mato et al. 1997; Ghirardo et al. 2020). 
Currently, scarce information on S transfer from fungi to the host plant in OM is 
available. This nutrient is essential for plant growth and development, as a constit-
uent of amino acids such as cysteine and methionine and sulfated peptides (i.e., 
glutathione or phytosulfokines) (Kopriva et al. 2019). Very recently, experiments 
with labeled S, N, and C showed that these elements could be translocated from the 
substrate to the protocorm cells via the fungal hyphae (De Rose et al., submitted), 
corroborated by target transcriptomic data which showed up-regulation of several 
plants and fungal transporter genes, as well as genes related to S assimilation 
enzymes involved in movement and redistribution of S in the cell. Overall, these 
findings support the hypothesis of transfer during symbiosis of S in a reduced 
organic form that also contains N, such as S-amino acids or small peptides, including 
glutathione (De Rose et al., submitted). 

Based on the reports so far available, the model originally proposed for nutrient 
transport in OM (Dearnaley and Cameron 2016) can be strengthened and integrated 
with transcriptomic data. In non-photosynthetic stages, orchids may receive 
inorganic P, C, N, and S from the symbiotic fungal partner in the form of amino 
acids, and export ammonium in exchange (Cameron et al. 2006, 2007; Kuga et al. 
2014; Fochi et al. 2017a, b). This exchange takes place across intact membranes 
(Kuga et al. 2014; Fochi et al. 2017b), but the lysis of senescent fungal pelotons may 
also release C, N, and P (Bougoure et al. 2014). Significant metabolic (particularly 
lipid-related) changes in the mycelium outside the plant could also participate in the 
nutrient supply to the host plant (Ghirardo et al. 2020). In photosynthetic orchids, C 
as sugars could be exported from the plant to the fungus, while inorganic P continues 
to be received by the mycorrhizal partner (Cameron et al. 2006; Valadares et al. 
2020, 2021) in amounts that can vary, even greater, depending on plant-fungus 
compatibility (Davis et al. 2022). The flow of nutrients in the orchid mycorrhizal 
symbiosis may be even more complex than presented when considering the hyphal



interconnections that may exist in natural ecosystems, well investigated for 
mycoheterotrophic orchids, and the fungal diversity in orchid roots (extensively 
reviewed by Yeh et al. 2019). An example is the flow of C between the tree species 
Salix repens and Betula pendula with the orchid Corallorhiza trifida by hyphal 
network shared by the plants (McKendrick et al. 2000), or the coexistence of 
different endosymbionts in Cymbidium hybridum (Zhao et al. 2014). 
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3 Transcriptomics to Decipher the Mechanisms Involved 
in the Establishment of Symbiosis 

Fungi that form mycorrhizal associations with orchids exhibit great phylogenetical 
and ecological diversity (McCormick et al. 2018). Orchids are known to associate 
with a plethora of fungi, including ectomycorrhizal basidiomycetes and ascomycetes 
wood degraders and other saprotrophic basidiomycetes (Bidartondo et al. 2004; 
Selosse et al. 2004; Dearnaley 2007; Ogura-Tsujita and Yukawa 2008; Martos 
et al. 2009; Kottke et al. 2010; Lee et al. 2015; Kinoshita et al. 2016). The most 
common taxa in photosynthetic orchid species include Tulasnella, Ceratobasidium, 
and Serendipita (Dearnaley et al. 2012). 

The diversity of OM fungi in the soil may be a crucial element in determining the 
distribution and future of orchids (McCormick et al. 2018) because orchids in nature 
are entirely dependent on OM fungi at least for seed germination and early stages of 
development. After initial contact and seed germination, protocorms are colonized 
by OM fungi; the hyphae penetrate parenchyma cells, branch and fold to create thick 
hyphal coils (the pelotons) that at last degrade (Miura et al. 2018). The symbiotic 
germination of orchid seeds requires the coordinated expression of numerous func-
tional genes as well as a crosstalk between genes associated with the mycorrhizal 
establishment and the germination process (Liu et al. 2015; Chen et al. 2020). 
According to Evangelisti et al. (2014), plant hormones may act as a node in the 
crosstalk between plant development and plant–microbe interactions. Strigolactones 
(SLs), for instance, are signaling molecules produced by plant roots either constitu-
tively (Akiyama et al. 2005) or in response to low phosphorus levels (Kretzschmar 
et al. 2012) capable of recruiting arbuscular mycorrhizal (AM) fungi and promoting 
hyphal branching. In orchids, a carotenoid cleavage dioxygenase, involved in the 
strigolactones biosynthetic pathway, has been identified in a proteomic study in 
O. sphacelatum mycorrhizal protocorms by Valadares et al. (2014). Since the 
enzyme was more expressed in earlier stages of mycorrhizal protocorm develop-
ment, it has been hypothesized that SLs may have essential early functions in luring 
compatible fungal symbionts to aid orchid seeds germination (Valadares et al. 2014). 

The crosstalk of jasmonic acid (JA), abscisic acid (ABA), and SLs were inves-
tigated in D. officinale seeds colonized by Tulasnella sp. during the germination 
phase (Wang et al. 2018). The transcriptomic and RT-qPCR data, combined with the 
quantification of endogenous phytohormones, suggested that the OM fungus had a



role in hormone production (Wang et al. 2018). Additionally, endogenous JA, ABA, 
or SLs levels were maintained low to promote the formation of the D. officinale-
Tulasnella protocorm-like structures (Wang et al. 2018). However, the great phylo-
genetic and ecological diversity of OM fungi might suggest that other signals are 
involved. A comparative analysis of gene expression in asymbiotic and symbiotic 
Anoectochilus roxburghii seeds through Illumina HiSeq 4000 transcriptome 
sequencing allowed focus on the regulatory module GA-GID1-DELLA (Liu et al. 
2015). Gibberellins (GAs) are plant hormones that play key roles in growth and 
development (Wang and Deng 2014). The GID1 receptor and the DELLA repressor 
were found to be critical in the regulation of seed germination (Wang and Deng 
2014). ABA, another important phytohormone, was found instead to inhibit the 
process through a finely tuned crosstalk (Liu et al. 2015). Among the differentially 
expressed plant transcripts identified in symbiotic and asymbiotic seeds, two tran-
scripts coding for gibberellin 20 oxidase (GA20ox), two transcripts coding for 
gibberellin 2-oxidase (GA2ox) involved in GAs biosynthesis, and two transcripts 
coding for DELLA proteins, members of GRAS superfamily (Hernández-García 
et al. 2021), were established as common elements of the mycorrhizal signaling 
pathway (Jin et al. 2016). This study suggested that OM fungi could modulate the 
expression of these plant genes, possibly affecting the entire GA-GID1-DELLA 
regulatory module. 
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Investigations focused on the impact of GAs on symbiotic seed germination in the 
model system represented by D. officinale and Tulasnella sp. were also performed 
(Chen et al. 2020). Levels of endogenous gibberellic acid (GA3) using liquid 
chromatography-mass spectrometry (LC-MS/MS) were determined during symbi-
otic and asymbiotic germination of orchid seeds, and a significantly higher ratio 
between GA3 and ABA was found in symbiosis (Chen et al. 2020). Phenotypic and 
target gene expression investigations were conducted on the germination of seeds 
treated with various concentrations of exogenous GA3, showing a negative effect of 
high concentrations of GA3 on fungal colonization. These findings were combined 
with data obtained from RNA-seq and proteomic analyses that highlighted a signif-
icantly higher expression of an ABA receptor protein, PYR1, during the early stages 
of symbiotic germination in D. officinale (Chen et al. 2017). The expression profile 
of genes involved in GAs and ABA biosynthesis, identified in the transcriptomic 
data, and of genes reported to be part of the recognized common symbiotic pathway 
(including a calcium-binding protein and a calcium-dependent protein kinase), 
showed a fine-tuned regulation under the different GA treatments (Chen et al. 
2020). These results suggest that an interplay between GAs metabolism and the 
establishment of symbiosis may occur in orchids (Chen et al. 2017, 2020). 

A group of common symbiosis genes (CSG) have been identified in angiosperms 
forming arbuscular mycorrhizal (AM) symbiosis, reported to act in the signaling 
pathway for recognizing and transducing microbial signals that are diffuse through-
out root colonization and nutrient exchange (Stougaard 2001; Kistner et al. 2005; 
Genre and Russo 2016). In contrast, angiosperms unable to form mycorrhizal 
associations with AM fungi, such as members of Brassicaceae, showed no functional 
or only a few members of CSG (Delaux et al. 2014). Members of the Pinaceae in the



gymnosperms, forming ectomycorrhiza, were also lacking CSG in their genomes 
(Garcia et al. 2015). 
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To explore the possible presence of CSG in orchids, protocorms of B. striata 
colonized by the mycorrhizal fungal taxa Tulasnella sp. were analyzed at different 
stages by transcriptomics (Miura et al. 2018). Notably, all of the CSG characterized 
in other plant species were found in the B. striata transcriptome (Miura et al. 2018). 
In vivo assay by functional complementation of L. japonicus CCaMK mutant 
through B. striata CCaMK gene showed that this gene complemented the function 
of LjCCaMK (Miura et al. 2018). Moreover, eight genes were strongly induced 
during symbiosis (Miura et al. 2018). The high similarity of these genes to the AM 
marker genes in rice (Gutjahr et al. 2008), as well as their strong induction during the 
plant–fungus interaction, allow considering this set of eight genes as marker genes 
also for OM (Miura et al. 2018). 

A large-scale analysis of more than 250 transcriptomes and about 100 plant 
genomes, encompassing the whole land-plant diversity, demonstrated that a shared 
symbiosis signaling pathway occurred in all plants forming intracellular endosym-
bioses (Radhakrishnan et al. 2020). It is worth noting that co-evolution between 
plants and fungi began approximately 400 million years ago and that four mycor-
rhizal types evolved at different times: arbuscular mycorrhiza, orchid mycorrhiza, 
ericoid mycorrhiza, and ectomycorrhiza (Genre et al. 2020). The first three types are 
endosymbioses, i.e., fungal symbionts are harbored intracellularly inside plant cells. 
In particular, AM symbiosis is probably the most ancient plant–fungus symbiosis 
(Delaux et al. 2013) from which OM symbiosis appeared to be derived after plant 
diversification (Radhakrishnan et al. 2020). Comparative transcriptomic studies 
allowed us to identify six genes lost in non-mutualistic plant taxa: CcaMK, calcium-
and calmodulin-dependent protein kinase, SymRK, a receptor-like kinase, 
CYCLOPS and RAD1, two transcription factors, and two transporters STR and 
STR2 showing a half-ATP-binding cassette (ABC). In particular, the first three 
genes were conserved in all plants forming intracellular endosymbiosis, while 
STR, STR2, and RAD1 were supposed to be specific to AM (Radhakrishnan et al. 
2020). 

Starting from the earliest observations (Burgeff 1932; Burges 1939), OM has 
been often argued to represent a balanced antagonism between plant and fungus, 
since it has been documented that fungi occasionally might destroy the protocorm 
(Adamo et al. 2020) and because plant receives C from the fungus lacking a clear 
reward. However, large-scale transcriptomic data integrated with target gene expres-
sion analysis with RT-qPCR allowed to demonstrate the absence of a defense 
activation in S. vomeracea mycorrhizal protocorms (Perotto et al. 2014), as previ-
ously observed (Zhao et al. 2013). The OM symbiosis was suggested as “a friendly 
plant–fungus relationship” and the lack of a strong defense response was succes-
sively confirmed by other transcriptomic studies in other orchid species (Suetsugu 
et al. 2017; Miura et al. 2018). Using 454 pyrosequencing, Perotto et al. (2014) 
proposed a nodulin-like gene called SVNod1 as a marker of OM symbiosis (Perotto 
et al. 2014). In this transcriptomic study, a set of plant and fungal genes expressed in 
S. vomeracea protocorms colonized by OM fungus T. calospora was identified



(Perotto et al. 2014). In-depth gene expression analysis using an extremely efficient 
target approach, laser microdissection, tested the expression of several genes iden-
tified in the work by Perotto et al. (2014), confirming the results and suggesting 
SvNod1 as a marker gene of orchid symbiosis, since its transcript was detected in the 
fungal colonized cells only (Perotto et al. 2014; Balestrini and Bonfante 2014). 
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An important process for endosymbiosis is clathrin-mediated endocytosis 
(Leborgne-Castel et al. 2010). The plant plasma membrane plays a pivotal role in 
the management of microbial interactions, as it senses and possibly allows the entry 
of endocellular symbionts or microbial substances, and endocytosis can regulate the 
entry of extracellular particles or cargoes into the cell (Zeng et al. 2017). The 
molecular components of this process have been investigated by transcriptomics in 
the peculiar OM system represented by the orchid Gastrodia elata, a fully 
mycoheterotrophic orchid able to establish a symbiosis with two genera of fungal 
partners, i.e., Mycena and Armillaria. Mycena species are known to interact with 
Gastrodia as symbionts during the early stages of plant development, including 
protocorm formation (Kim et al. 2006; Zeng et al. 2017). The transcriptomes of 
G. elata symbiotic seeds and protocorms were analyzed by RNA-seq and among the 
differentially expressed genes identified in the study, genes putatively linked to 
energy metabolism, plant defense, molecular signaling, and secondary metabolism 
were detected (Zeng et al. 2017). Genes coding for clathrin, an adaptor protein, 
dynamin, and HSC70, were found to be constitutively expressed in seeds but 
strongly expressed in protocorms, indicating that endocytosis mediated by clathrin 
may be crucial in G. elata during interactions with Mycena fungi (Zeng et al. 2017). 
Comparative transcriptome analysis was also used to unravel molecular mechanisms 
underlying gastrodin biosynthesis since this compound has been reported to have 
several positive effects on human health (Tsai et al. 2016). Two putative 
monooxygenases and one glycosyltransferase key enzymes involved in gastrodin 
biosynthesis were identified, which could be a target of genetic editing to improve 
gastrodin production (Tsai et al. 2016). 

In OM symbiosis, the fungal hyphae must enter the cell walls of the epidermal 
cells to reach the internal parenchyma cells during the colonization of orchid seeds, 
protocorms, or roots (Chen et al. 2014; Favre-Godal et al. 2020). The plant cell wall 
is therefore the first physical structure where interactions between the host plants and 
the associated symbiotic partners take place (Balestrini and Bonfante 2014). 
Recently, Chen et al. (2022) compared transcriptomic profiles during seed germina-
tion, protocorm formation, and seedling development under symbiotic and 
asymbiotic conditions to further investigate changes in the expression of plant 
genes related to plant cell wall biosynthesis, structure modification, and the expres-
sion pattern of fungal genes related to plant/fungal cell wall degradation (i.e., 
CAZymes) (Chen et al. 2022). After being inoculated with two symbiotic fungi 
(Tulasnella sp. and Serendipita sp.), D. officinale seeds showed significantly 
increased expression of genes coding for secreted glycoproteins specifically associ-
ated with the epidermis, proline-rich receptor-like proteins, leucine-rich repeat 
(LRR) extensin-like proteins, and extensin-like proteins during the symbiotic 
stage. Extensins are a large class of hydroxyproline-rich glycoproteins that play a



variety of roles in plant defense, such as reinforcing the cell wall to preclude invasion 
by pathogens or to facilitate the interaction with symbiotic organisms (Chen et al. 
2022). They were also probably essential for preventing fungal colonization of basal 
cells and spreading inside the whole protocorms (Li et al. 2018). The observed 
up-regulation of a microtubule-associated protein gene during the symbiotic stage 
suggested that cytoskeletal remodeling took place during the fungal colonization of 
orchid seeds (Chen et al. 2022). In addition, some genes involved in plant cell wall 
biosynthesis, including genes coding for cellulose synthase and pectin esterase, were 
significantly up-regulated in seeds of D. officinale inoculated with both fungal 
species, suggesting that the interaction between seeds and mycorrhizal fungi was 
particularly active in terms of modification in plant cell wall biosynthesis pathways 
(Chen et al. 2022). In the symbiotic fungal mycelium, several differentially 
expressed CAZymes were found, representing approximately 24.8% and 36.7% of 
the total number of CAZymes identified in Serendipita sp. and Tulasnella 
sp. genomes, respectively (Chen et al. 2022). These genes were hypothesized to 
play a role in the suppression of the plant defense responses, the identification of 
mycorrhizal fungi during the germination of orchid seeds, and also in the successful 
fungal colonization (Chen et al. 2022). 
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As mentioned earlier, OM fungi sometimes display a saprotrophic behavior that 
leads to disruption of the mycorrhizal association, and recent research by Adamo 
et al. (2020) focused on possible changes, during mycorrhizal symbiosis and 
saprotrophic growth, in the expression of fungal genes encoding CAZymes capable 
of breaking down the plant cell wall (PCW). They found that PCW-degrading 
enzymes are finely regulated in T. calospora during mycorrhizal and saprotrophic 
growth in the host and hypothesized that the expression of several important 
CAZymes was connected to OM fungal transitions from symbiotic to saprotrophic 
growth (Adamo et al. 2020). 

Although most studies on OM have been focused on germinating seeds and 
protocorms, omics approaches are also revealing molecular mechanisms and actors 
involved in the adult stages of orchids. In comparison to protocorms, the interaction 
in adult plants is expected to be different because of it involves the root, an 
anatomically and metabolically complex plant organ (Valadares et al. 2020). Two 
recent studies have shed light on the mechanisms driving plant–fungus interactions 
in adult orchids in natural conditions (Valadares et al. 2020, 2021). The interaction 
between adult plants of the terrestrial orchid O. maculata and its mycorrhizal fungus 
Psathyrella candolleana (Basidiomycota) was analyzed using transcriptomic and 
proteomic analyses (Valadares et al. 2020). 

In nature, the same individual of O. maculata can form older roots completely 
colonized by OM fungi as well as younger non-colonized roots (Valadares et al. 
2020). For this reason, O. maculata is an excellent experimental system allowing the 
study of the molecular changes related to OM formation and functioning since it can 
be used to analyze both mycorrhizal and non-mycorrhizal roots from the same plant. 
Integration of transcriptomic and proteomic data showed that a chitinase and a 
mannose-binding lectin, two proteins involved in plant defense responses, decreased 
in mycorrhizal roots, suggesting that the proximity of the fungal symbiont might



cause a local decrease of plant defense responses in the orchid tissues (Valadares 
et al. 2020). Results also highlighted that allene oxide synthase transcripts, pre-
cursors involved in the biosynthesis of JA, were only found in non-mycorrhizal roots 
of O. maculata, while genes annotated as 9-lipoxygenase and allene oxide synthase 
were negatively regulated in mycorrhizal roots (Valadares et al. 2020). Based on 
these findings, the authors suggested that inhibition of JA production is probably 
needed to promote fungal colonization and OM formation (Valadares et al. 2020). In 
addition, the up-regulation of three ethylene-induced calmodulin genes and 15 eth-
ylene-responsive transcription factors in the transcriptome of O. maculata mycor-
rhizal roots suggested that the activation of the ethylene pathways plays a role in OM 
(Valadares et al. 2020). Similar outcomes were also reported in C. hybridum mycor-
rhizal roots (Zhao et al. 2014). 
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To further explore the mycorrhizal interactions in adult orchids in natural condi-
tions at the molecular level, a transcriptomic approach has been used to examine 
gene expression in roots of the mixotrophic orchid Limodorum abortivum, able to 
associate with ectomycorrhizal fungi of the taxon Russula (Valadares et al. 2021). 
This study, which focused on how the plant responds to the mycorrhizal symbiont 
(s) and used non-sterile non-mycorrhizal roots collected in nature as references, 
addressed for the first time OM interactions in an orchid species interacting with an 
ectomycorrhizal fungus. The comparison between non-sterile mycorrhizal and 
non-mycorrhizal roots made it simpler to distinguish between the general orchid 
responses to microbes and the mycorrhiza-specific plant responses. A shared core of 
plant genes engaged in endomycorrhizal symbioses already identified in arbuscular 
mycorrhiza was identified in L. abortivum and mirrored by the overexpression of 
several molecular marker genes for symbiosis in mycorrhizal roots. Further studies 
and gene characterization are needed to determine whether the unique characteristics 
of OM depend on the precise regulation of these elements, or if additional genes are 
involved in the process (Valadares et al. 2021). Among the genes differentially 
expressed in planta, pectin methyl esterase (PME) genes were detected to be 
significantly down-regulated in L. abortivum, while PME inhibitor genes were 
up-regulated in mycorrhizal roots, demonstrating that the main proportion of pectin 
is in a highly methylated state in the outer cell wall and/or symbiotic interface 
(Valadares et al. 2021). The high expression of two expansin coding genes in 
mycorrhizal roots further supports the hypothesis that a loosening of the cell wall 
during symbiosis may occur (Valadares et al. 2021). 

The transcriptome of L. abortivum mycorrhizal roots also showed a significant 
up-regulation of subtilisin-like serine protease-coding genes. The major part of 
subtilisin-like serine proteases is primarily directed to the plant cell wall, in which 
they can play a role in the regulation of the structural remodeling of the cell wall 
(Schaller et al. 2018). Additionally, two genes in mycorrhizal L. abortivum roots 
coding for syntaxin-132 (SYP132) proteins were found to be up-regulated, and thus 
it has also been documented in mycorrhizal roots of other orchid species (Zhao et al. 
2014; Valadares et al. 2020). Syntaxins have been characterized in the AM symbi-
osis and the SYP132α isoform has been demonstrated by knockdown mutant 
experiments to be needed for arbuscule formation in the model plant Medicago



truncatula (Huisman et al. 2020). It has been hypothesized that SYP132, which is 
localized on the perisymbiotic plant membrane surrounding functional arbuscules, is 
essential for the development of a functional plant-fungus interface (Huisman et al. 
2020). Even though it is currently unknown where the SYP132 proteins are located 
in OM roots, it is intriguing to hypothesize that the AM and OM symbioses share a 
similar exocytotic route (Valadares et al. 2021). 
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4 Conclusion 

In the last decades, thanks to advances in technology applied to transcriptomics, the 
understanding of how orchids interact with their symbiotic partners has been 
strongly improved. The application of RNA-seq in several orchid species has 
allowed in-depth analyses of the molecular bases of nutrient transfer between OM 
fungi and their orchid hosts, as well as the identification of fungal and orchid genes 
involved in the establishment of the symbiotic association. The current availability 
of annotated orchid and fungal transcriptomes will help to fill the gap between the 
genomic data and the phenotypic observations, also in natural conditions. From the 
plant side, a broad transcriptomics resource for orchid species has been developed, 
named Orchidstra 2.0 database (http://orchidstra2.abrc.sinica.edu.tw), including data 
from EST libraries and RNA-seq of 18 species from the five major subfamilies of the 
Orchidaceae (Chao et al. 2017). This tool has already proven to be useful for the 
comparison of whole transcriptomes across different orchid species. In addition, 
international sequencing efforts, including the “1000 Fungal Genomes” project of 
the U.S. Department of Energy (DOE) Joint Genome Institute (JGI) (Grigoriev et al. 
2014), boosted knowledge on the fungal genomes and transcriptomes of several 
fungal taxa, including OM fungi. The integration of this data with outcomes of other
-omics approaches, such as metabolomics, will improve our knowledge of the 
orchids and their fungal “friends,” and allow a better understanding of this fascinat-
ing and complex symbiosis. 
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1 Introduction 

Orchids belong to one of the largest and most diverse plant families in flowering 
plants (Christenhusz and Byng 2016). This diversity is due to their ability to 
acclimatize to almost every type of habitat. Their exquisitely beautiful flowers confer 
these plants high ornamental and economic value in the global commercial market. 
Apart from the immense ornamental significance of orchids, these plants are also 
medicinally important and have been utilized as therapeutics as acknowledged in the 
traditional pharmacopeias worldwide (Hossain 2011; Sut et al. 2017). Habenaria 
edgeworthii, Habenaria intermedia, Malaxis acuminata, and Malaxis muscifera are 
components of Astavarga, which is a popular rejuvenating herbal formulation in 
Ayurveda (Dhyani et al. 2010). In the traditional Chinese medicine system, 
Anoectochilus roxburghii and A. formosanus have been used for preventing cancer, 
protecting the liver, and treating diabetes and cardiovascular diseases (Han et al. 
2008; Zhang et al. 2013). Shi-Hu, an orchid-based Chinese therapeutic formulation 
derived from Dendrobium nobile, has been effectively used in treating lung, kidney, 
and stomach diseases (Teoh 2016). Over the time, there have been numerous reports 
on the wide usage of different plant parts of orchids in the treatment of a myriad of 
diseases and ailments. The tubers of Bletilla striata are used in the treatment of 
tuberculosis and gastric and duodenal ulcers (Ming et al. 2003). Dendrobium 
candidum extracts maintain the tonicity of the stomach and have a body fluid-
promoting effect (Ng et al. 2012). Pseudobulbs of Malaxis acuminata are used as 
a curative for burning sensations, fever, and tuberculosis and as a nutritive tonic 
(Hossain 2011). Whole plants of Ansellia africana are used for their aphrodisiac 
properties (Chinsamy et al. 2011). Direct application of seeds of Acampe praemorsa 
on wounds serves as a substitute for antibiotics (Shanavaskhan et al. 2012). Dried 
powder of whole plants of Bulbophyllum odoratissimum is used to treat fractures, 
chronic inflammations, and tuberculosis (Mohanty et al. 2015). There have been 
wide ethnomedicinal evidence on the use of leaves of numerous species of 
Dendrobium for treating musculoskeletal and nervous system problems (Wang 
2021). The roots, rhizomes, pseudobulbs, stems, flowers, and whole plant of species 
belonging to the genus Calanthe are used in curing toothaches, rheumatism, jaun-
dice, typhoid, stomach-ache, ulcers, asthma, sore throat, etc. (Nanjala et al. 2022). 
Additionally, there are a plethora of reports on the traditional medicinal usage of



Bulbophyllum species in various countries such as Nepal, India, China, Japan, 
Bangladesh, Thailand, and Malaysia (Sharifi-Rad et al. 2022). It can therefore be 
concluded that orchids have an immense therapeutic potential which is indicated by 
the ethnobotanical reports and the presence of the wide variety of secondary 
metabolites (Gantait et al. 2021). 
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Plant secondary metabolites are a rich source of compounds having potent 
biological activity. These metabolites are classified into numerous categories such 
as alkaloids, flavonoids, anthocyanins, and terpenoids (Sut et al. 2017; Ghai et al. 
2021). The biosynthesis of these metabolites is regulated by pathways such as 
phenylpropanoid pathway, mevalonate (MVA) pathway, and methyl-d-erythritol 
4-phosphate (MEP) pathway. (Ghai et al. 2022). Some of the genes involved in 
these pathways like Phenylalanine Ammonia Lyase (PAL), Chalcone synthase 
(CHS), Chalcone Isomerase (CHI), Flavonol Synthase (FLS), and Stilbene Synthase 
(STS) encode the key rate-limiting enzymes in specific secondary metabolites bio-
synthetic pathways, and hence regulate their biosynthesis (Ghai et al. 2022; Halder 
et al. 2019; Kaur et al. 2022). 

In orchids, pharmaceutically important biomolecules such as polysaccharides, 
bibenzyl derivatives, phenylpropanoids, phenanthrene derivatives, alkaloids, and 
flavonoids are widely present (Hossain 2011; Sut et al. 2017). Numerous studies 
on the evaluation of the biological activity of the phytochemicals extracted from 
orchids have been reported (Table 1). There have been reports on disease ameliora-
tion using orchid phytochemicals. Antidiabetic properties of extracts of Aphyllorchis 
montana and Anoectochilus roxburghii have been reported (Thalla et al. 2013; Cui 
et al. 2013). Immunomodulatory effects of polysaccharides derived from orchids 
have been evaluated in Bletilla striata where the polysaccharides derived from it 
improved the spleen and thymus indices (Chen et al. 2020). Additionally, a Type II 
arabinogalactan polysaccharide extracted from Anoectochilus formosanus stimu-
lated the maturation of dendritic cells to induce immune responses against patho-
gens, thus attributing to their immune-enhancing potential (Lai et al. 2015). The 
compounds extracted from orchids also exhibit antimicrobial properties. For 
instance, bibenzyl derivatives of Dendrobium nobile displayed broad-spectrum 
antifungal activity against several phytopathogenic fungi (Zhou et al. 2016). 
Retusiusines B, a phenylpropanoid compound extracted from Bulbophyllum 
retusiusculum showed effective antifungal activity against Candida albicans (Fang 
et al. 2018). The significant antioxidant potential has also been evaluated through 
DPPH (2, 2-Diphenyl-1-picrylhydrazyl) radical scavenging activity, for a flavonoid 
compound, rutin, isolated from Dendrobium officinale (Zhang et al. 2017). The 
compounds derived from orchids have also been reported to possess anticancer 
properties. Bulbophythrins, the phenanthrene derivatives isolated from 
Bulbophyllum odoratissimum displayed cytotoxic potential against human hepa-
toma, leukemia, adenocarcinoma, and stomach cancer cell lines (Xu et al. 2009). 
Similarly, in Dendrobium nobile, ‘nudol’, a phenanthrene derivative, inhibited the 
osteosarcoma cell growth (Zhang et al. 2019). High cytotoxicity against the growth 
of Hela human cervical cancer cell line has been observed for the bibenzyl com-
pounds derived from Dendrobium officinale (Ren et al. 2020). Different researches
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Table 1 Compounds isolated from orchid species and their biological activity 

Biological 
activity 

Antibacterial 
activity 

Bletilla ochracea Blestriarene A, Blestriarene B, 
Blestriarene C 

Yang et al. (2012) 

Bletilla striata Bletistrin F, Bletistrin G, 
Bletistrin J, Bulbocol, Shanciguol, 
and Shancigusin B 

Jiang et al. (2019b) 

Bulbophyllum 
retusiusculum 

Retusiusines B Fang et al. (2018) 

Liparis regnieri Erianthridin, Gigantol, Hircinol, 
Nudol, Coelonin, Moscatin 

Ren et al. (2016) 

Antidiabetic 
property 

Aerides multiflora Aerimultin C Thant et al. (2021) 

Dendrobium 
crepidatum 

Dendrocrepine Xu et al. (2020) 

Dendrobium 
formosum 

Confusarin Inthongkaew et al. 
(2017) 

Dendrobium 
loddigesii 

Loddigesiinols G–J Lu et al. (2014) 

Dendrobium 
scabrilingue 

Dendroscabrol B Sarakulwattana et al. 
(2020) 

Antioxidant 
activity 

Cremastra 
appendiculata 

Coelonin, Orchinol Tu et al. (2018) 

Dendrobium 
officinale 

Rutin Zhang et al. (2017) 

Dendrobium 
palpebre 

Dendroflorin Kyokong et al. 
(2019) 

Dendrobium 
parishii 

Dendroparishiol Kongkatitham et al. 
(2018) 

Gastrodia elata Gastrodin Jiang et al. (2020) 

Anticancer 
activity 

Bulbophyllum 
odoratissimum 

Bulbophythrins A and B Xu et al. (2009) 

Cattleya tigrina Triterpene 
24-methylenecycloartanol, 
gigantol, phocantone 

Ferreira et al. (2021) 

Dendrobium 
brymerianum 

Moscatilin, gigantol, lusianthridin, 
and dendroflorin 

Klongkumnuankarn 
et al. (2015) 

Dendrobium 
draconis 

Gigantol Bhummaphan and 
Chanvorachote 
(2015) 

Dendrobium 
falconeri 

Dendrofalconerol A Pengpaeng et al. 
(2015) 

Dendrobium 
nobile 

Nudol Zhang et al. (2019) 

Dendrobium 
williamsonii 

Aloifol I, moscatilin, 
moniliformine, balanophonin 

Yang et al. (2018) 

Goodyera 
schlechtendaliana 

Goodyschle A Dai et al. (2021)



Plant name Compound Reference

have been conducted to test the anti-inflammatory effects of the compounds derived 
from different orchid species. The ethanolic extract of Bletilla striata yielded a 
dihydrophenanthrene, coelonin, which possessed the potential to decrease inflam-
mation (Jiang et al. 2019a). The alkaloids and phenanthrene isolated from 
Dendrobium crepidatum and Dendrobium chrysanthum, respectively, exhibited 
anti-inflammatory activity (Hu et al. 2020; Yang et al. 2006). To summarise, it can 
be inferred that the secondary metabolites of orchids have the potential to be used as 
leads for therapeutic cures in pharmaceutical industries after systematised preclinical 
and clinical studies.
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Table 1 (continued)

Biological 
activity 

Spiranthes 
sinensis 

Spiranthes phenanthrene A Liu et al. (2019) 

Anti-inflam-
matory 
activity 

Dendrobium 
chrysanthum 

Dendrochrysanene Yang et al. (2006) 

Dendrobium 
crepidatum 

(+)-Dendrocrepidamine A, 
Dendrocrepidamine B, (+)-
Homocrepidine A 

Hu et al. (2020) 

The therapeutic properties of orchids have aroused curiosity amongst people all 
over the world and have in turn led to unscrupulous collections from their natural 
habitats for trade and consumption. As a result, these plants face threats due to their 
habitat destruction and indiscriminate exploitation. Resultantly, the family 
Orchidaceae is included in the Appendix II of the Convention on International 
Trade in Endangered Species of Wild Fauna and Flora (CITES), and the interna-
tional trade in orchids is austerely governed (Hinsley et al. 2018). Hence, there is a 
dire need to develop approaches for developing alternative methods for propagation 
and protection of these high-value plants. In vitro culture methods play a pivotal role 
in ameliorating the pressures and restoring the decimated natural populations. 
Besides this, it facilitates the production of biomass and amassing of metabolites 
in plant tissues and culture media. In vitro cultures also serve as a tool for extensive 
investigation of the controls and mechanisms of metabolic pathways. 

2 In Vitro Propagation and Production of Secondary 
Metabolites 

There are several limitations associated with the extraction of secondary metabolites 
from the wild plants cultivated in the field such as fluctuations in the yield due to 
variability in the geographic location, seasonal variation, and environment of the 
plant, therefore, in vitro propagation has emerged as a better substitute (Murthy et al. 
2014). In vitro cultures are grown on defined media under controlled conditions. In 
orchids, there are several nutrient media which are generally employed for tissue



culture such as media proposed by as Murashige and Skoog (MS) (Murashige and 
Skoog 1962), Knudson C (KC) (Knudson 1946), Vacin and Went (VW) (Vacin and 
Went 1949), Mitra (M) (Mitra et al. 1976), etc. 

168 A. Kaur et al.

A general trend of decline in secondary metabolite production under normal 
in vitro growing circumstances in comparison to wild plants has been observed. 
However, culture media conditions, concentrations of plant growth regulators, 
nitrogen source, carbon source, and other organic/inorganic additives have been 
optimised for enhanced production of secondary metabolites (Chandran et al. 2020). 
In Habenaria edgeworthii, three times more phenolic content was found in callus 
grown on half strength Murashige and Skoog (MS) and 3 μM 6-benzyladenine (BA), 
as compared to the wild tubers. These also showed enhanced antioxidant activity 
evaluated by the standard in vitro assays (Giri et al. 2012). In Dendrobium 
candidum, the supplementation of the MS basal medium with 0.5 mg L�1 NAA, 
ratio 5:25 (mM) of NH4:NO3, 2.5% (w/v) sucrose, and 1% (v/v) banana homogenate 
were favourable for the production of polysaccharides, polyphenolics, and flavo-
noids (Cui et al. 2015). In D. huoshanense, phosphate at 0.312 mmol L�1 concen-
tration was optimum in the medium for maximum accumulation and production of 
polysaccharides (Jiang et al. 2006). Similarly, the supplementation with 50 g L�1 

sucrose in protocorm-like bodies (PLBs) cultures of D. huoshanense resulted in a 
109-fold increase in the polysaccharide content compared to the media which lacked 
sucrose feeding (Zha et al. 2007). 

In vitro cultures with specific additives and growth conditions have been reported 
to favour secondary metabolite content and resultant antioxidant potential in com-
parison to the mother plant as in Dendrobium nobile (Bhattacharyya et al. 2014), 
Dendrobium thyrsiflorum (Bhattacharyya et al. 2015), Aphyllorchis montana 
(Mahendran and Bai 2016), Dendrobium crepidatum (Bhattacharyya et al. 2016), 
Malaxis acuminata (Bose et al. 2017), Coelogyne ovalis (Singh and Kumaria 2020), 
Cymbidium aloifolium (Kumar et al. 2022). Additionally, antimicrobial activity was 
also found to be higher in in vitro propagated plants of Aphyllorchis montana as 
compared to the wild plants (Mahendran and Bai 2016). In Dendrobium longicornu, 
the in vitro protocorms have higher anticancer, antioxidant, and antimicrobial 
potential (Paudel et al. 2020). Similarly, the protocorms of Dendrobium chryseum 
were reported to significantly inhibit the growth of human cervical carcinoma cell 
lines (Pant et al. 2021). Thus, besides mass multiplication for the production of 
greater biomass, in vitro propagation protocols can also be used for the heightened 
phytochemical production and significant biological activities. Additionally, the use 
of in vitro cultures offers a sustainable strategy for conservation and utilization of 
these endangered medicinal plants.
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3 Elicitation stimulates Secondary Metabolism 

Several reports suggest the use of specific conditions/compounds as elicitors to 
enhance secondary metabolism. Elicitor-specific receptors are present on the cell 
membrane of plants which get activated in the presence of an elicitor which 
subsequently induces a cascade of downstream signalling events in plant cells 
involving changes in the expression of genes encoding rate-limiting enzymes of 
the secondary metabolites biosynthetic pathways (Halder et al. 2019). Thus, stimu-
lation by an elicitor can increase the content of metabolites and/or also generate new 
compounds, mimicking the inherent strategy of the plant to protect and adapt itself to 
the abiotic and biotic stresses such as drought, salinity, UV-irradiation, and patho-
genesis (Khare et al. 2020). There are various types of elicitors that affect secondary 
metabolite production in orchids. Abiotic elicitors are derived from non-living 
sources and include light and plant hormones, etc., while biotic elicitors have a 
biological origin like chitosan and microorganisms (Table 2). This biotechnological 
technique of elicitation offers a beneficial approach to exploit the therapeutic 
potential of medicinal plants and has unfolded a hot topic for research which has 
tremendous potential for the therapeutic industry (Fig. 1). 

3.1 Variable Light Exposure alters Phytochemical Profile 

The growth and metabolism of the plants is influenced by light. A number of studies 
have highlighted the effect of intensity and quality of light on the phytochemical 
profile in orchids. In Anoectochilus roxburghii, the plants grown under light filtered 
through blue and red film for 8 months displayed enhancement in the content of 
active compounds such as polysaccharides and flavones and greater antioxidant 
enzyme activities; the highest phenolic content was observed in the plants with red 
film treatment (Ye et al. 2017). In another report on the same plant, a noteworthy 
increase in the total polyphenols and total flavonoids upon supplementation of blue 
light has been reported while yellow light treatment produced higher soluble sugar 
and polysaccharide content (Wang et al. 2018). Some research studies have also 
focussed on using combinations of lights of different wavelengths to promote the 
production of active compounds. A treatment using a combination of blue-red light 
in the ratio 1:4 in Anoectochilus roxburghii plants enhanced the total flavonoid 
content. An increase in the expression of genes such as CHI (Chalcone Isomerase) 
and FLS (Flavonol Synthase) involved in the flavonoid biosynthetic pathway was 
also observed (Gam et al. 2020). In Dendrobium Enopi x Dendrobium Pink Lady 
hybrid orchid, the in vitro PLB cultures showed the highest flavonoid content upon 
treating the PLBs pre-illuminated with cool-white LED with blue-red (1:1) LED 
irradiation. In addition, the PLBs precultured with red fluorescent light for two 
subculture cycles upon exposure to blue LED light displayed the highest antioxidant 
activity (Yeow et al. 2020). Thus, the technique of altering the light source during
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the propagation of orchids is an effective choice to increase the production of 
bioactive compounds.
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3.2 Chemical Abiotic Elicitors trigger Stress Responses 

There are various plant growth regulators which act as elicitors and play a key role in 
modifying the secondary metabolism in plants. The exogenous applications of these 
chemicals have frequently been used in cell or organ culture to accentuate secondary 
metabolite biosynthesis (Thakur et al. 2019). 

3.2.1 Methyl jasmonate 

Methyl jasmonate (MeJA), a derivative of jasmonic acid is one such hormone that 
functions as a signalling molecule and strongly activates secondary metabolism in 
medicinal orchids as it induces defence response against pathogens and wounding 
(Nabi et al. 2021). Also, it triggers the expression of pivotal genes involved in 
flavonoid and anthocyanins biosynthesis such as Phenylalanine Ammonia Lyase 
(PAL), Stilbene Synthase (STS),  and  Chalcone Isomerase (CHI) which play a pivotal 
role in the production of flavonoids and anthocyanins (Nabi et al. 2021). There have 
been reports on the role of MeJA in the accumulation of alkaloids in Dendrobium 
officinale (Chen et al. 2019). Besides alkaloids, elicitation with MeJA in the root 
tissue of D. officinale has been observed to induce the production of bibenzyl 
compounds such as erianin and gigantol (Adejobi et al. 2021). The treatment of 
75 μM MeJA to the protocorm-like bodies (PLBs) of Dendrobium candidum showed 
augmentation in the production of alkaloids, polysaccharides, and flavonoids while 
the increase in phenolic content was observed under 100 μM MeJA treatment (Wang 
et al. 2016). Thus, optimization of elicitation is required for the production of a 
particular group of active compounds. Besides chemical concentration, the duration 
of exposure also matters. The rhizome suspension cultures of Anoectochilus 
roxburghii upon treatment with 550 μM MeJA for a period of 14 and 16 days, 
resulted in the maximum production of kinsenoside and polysaccharide, respectively 
(Luo et al. 2018). In addition, the increase in the concentration of MeJa beyond the 
optimum concentration may result in the reduction of the metabolite content. For 
instance, in Habenaria edgeworthii, the total phenolic content decreased beyond 
10 μM MeJA (Giri et al. 2012). Similarly, using MeJA beyond 50 μM in the 
protocorm-like bodies (PLBs) of Dendrobium Sabin Blue (a hybrid species between 
Dendrobium Blue Angel and Dendrobium Sanan Blue) orchid resulted in the 
reduction in anthocyanin content (Abd Malik et al. 2021).
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3.2.2 Salicylic acid 

Salicylic acid (SA), a phenylpropanoid compound, is another common elicitor 
involved in signalling in plants. Besides its significant role in the physiological 
processes of plants such as seed germination, photosynthesis, uptake of nutrients, 
nodulation in legumes, and induction of flowering, it also regulates the expression of 
genes associated with the enzymes of secondary metabolism (Ali 2021). The effect 
of this important signal molecule may differ in different plant tissues. In Coelogyne 
ovalis, the leaf tissues treated with SA yielded the highest content of flavonoids and 
anthocyanins while the SA-treated pseudobulbs showed the highest phenolic con-
tent. In addition, the SA-treated plantlets exhibited significantly higher antioxidant 
activity (Singh and Kumaria 2021). SA, like MeJA, regulates the metabolite content 
in a concentration and time-dependent manner. Alkaloids and polysaccharides 
accumulated in high amounts in the protocorm-like bodies (PLBs) of Dendrobium 
candidum upon elicitation with 75 μM SA while 100 μM SA led to high production 
of flavonoids (Wang et al. 2016). Anoectochilus roxburghii rhizomes exhibited 
maximum kinsenoside and polysaccharide contents upon treatment with 500 μM 
SA for 12 days (Luo et al. 2018). However, some sporadic studies also report the 
inhibitory role of SA (Chin et al. 2021). 

3.2.3 Cytokinins 

Apart from playing a vital role in the growth and development of plants, cytokinins, 
and their derivatives also influence the production of active compounds in plants. In 
Habenaria edgeworthii, the callus grown on 3 μM BA showed a significant 
improvement in phenolic content and antioxidant activity (Giri et al. 2012). Simi-
larly, another cytokinin, topolin, and its derivatives like meta-topolin riboside (mTR) 
and 6, 3-methoxybenzylamino-9-b-D-ribofuranosylpurine (MemTR) showed a pos-
itive impact in Ansellia africana. The PLBs showed an increase in the production of 
phenolic compounds like benzoates and cinnamates along with an increase in 
antioxidant activity (Bhattacharyya et al. 2019). The PLBs of Dendrobium Sabin 
Blue supplemented with 4 mgL�1 thidiazuron (TDZ) depicted an increase in the 
anthocyanin content (Chin et al. 2021). 

Thus, chemical or hormonal elicitors are promising for increasing the production 
of the metabolites and their utilization is considered an advantageous strategy. 
However, it is important to formulate the optimum concentration and duration of 
exposure to the elicitor being used.
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3.3 Biotic Elicitors alter Secondary Mechanism as a Defence 
Mechanism 

3.3.1 Fungal elicitors 

In orchids, mycorrhizal fungi play a key role in the germination of seeds and 
development as the fungi supplement organic and inorganic nutrients for the grow-
ing entity (Dearnaley et al. 2012). Thus, orchid-mycorrhizal symbiosis constitutes a 
pivotal part in the life cycle of orchids. Fungal elicitation also leads to the activation 
of specific genes related to secondary metabolite biosynthetic pathways. Moreover, 
fungal elicitors have been reported to be more promising in the biosynthesis of 
metabolites in comparison to the chemical elicitors in a plethora of studies (Favre-
Godal et al. 2020). A significant increase in the production of active metabolites in 
the host plant upon inoculation with different types of mycorrhizal fungi has been 
demonstrated in a few orchids. F-23 fungus (Mycena sp.) improved the production of 
kinsenosides and flavonoids of Anoectochilus formosanus (Zhang et al. 2013). 
Similarly, Dendrobium nobile upon inoculation with the same fungus (F-23) showed 
an increase in dendrobine level in the stem thus suggesting the role of mycorrhizal 
fungi in dendrobine synthesis (Li et al. 2017). Another fungus, Ceratobasidium 
sp. AR2 stimulated the accumulation of flavonol-glycosides (narcissin, rutin, 
isorhamnetin-3-O-β-d-glucoside, quercetin-7-O-glucoside, and kaempferol-3-O-
glucoside), flavonols (quercetin and isorhamnetin), and flavones (nobiletin and 
tangeretin) in Anoectochilus roxburghii (Zhang et al. 2020a). Similar results show-
ing the promoting role of AR2 on flavonoid production in Anoectochilus roxburghii 
have been reported in another study (Zhang et al. 2020b). An enhancement in the 
antioxidant and the hepatoprotective activity upon inoculation of Rhizoctonia 
mycorrhizal fungi had also been observed in Anoectochilus formosanus (Cheng 
and Chang 2011). 

3.3.2 Chitosan 

Another biotic elicitor, chitosan, a polysaccharide, derived from the exoskeletons of 
insects and fungi showed a promoting role in the accretion of secondary metabolites 
by augmenting the production of the enzymes involved in the biosynthetic pathways 
of secondary metabolites (Zhao et al. 2005). Chitosan is a non-toxic natural bio-
polymer consisting of glucosamine and N-acetylglucosamine subunits (Sanford and 
Hutchings 1987). It basically mimics the fungal pathogen and gets recognised at the 
plant membrane through the mechanism of cell surface recognition which induces a 
series of downstream events activating the defence response in plants (Singh and 
Kumaria 2021). The micropropagated plantlets of Vanda coerulea when treated with 
chitosan displayed an improvement in the phytochemical contents and antioxidant 
potential. A positive correlation between the phytochemical content and Phenylal-
anine ammonia lyase (PAL) enzyme activity in Vanda coerulea upon treatment with



chitosan was also observed (Nag and Kumaria 2018), thus suggesting that chitosan 
triggered the genes involved in secondary metabolism. 
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4 Precursors Feeding in Cultures accentuates Secondary 
Metabolite Production 

The use of precursor molecules as elicitors has also been elucidated in some orchids. 
Precursors are intermediates in the pathway of secondary metabolite biosynthesis 
which upon adding to the culture media tend to increase the amount of the related 
secondary metabolites. This strategy of precursor feeding is quite useful when the 
precursor compound is available at a low cost compared to the final desired product 
(Namdeo et al. 2007).The highest phenolic and flavonoid content in the cultures of 
Dendrobium fimbriatum was observed upon application of caffeic acid (CA) while 
2 mM ferulic acid (FA) and 4 mM p-coumaric acid led to the highest alkaloid and 
tannin content, respectively. Also, the cultures treated with caffeic acid exhibited the 
highest antioxidant activity (Paul and Kumaria 2020). In a similar manner, in 
Dendrobium ovatum, the use of L-Phenylalanine as a precursor ensured high content 
of moscatilin, a bibenzyl derivative compound that possesses anticancer properties 
(Pujari et al. 2021). 

5 Bioreactors as Mini Factories for Scale-up 

A bioreactor is an instrument for large scale in vitro propagation. It consists of a 
closed and sterile culture vessel in which the internal environmental conditions can 
be monitored and controlled (Mamun et al. 2015). The application of bioreactor 
systems offers an alternative strategy for the production of bioactive compounds at 
the industrial level. The method of bioreactor systems consumes less time and is 
cost-effective compared to the use of gelled or semi-solid medium which requires the 
transfer of the plant material into a fresh expensive media at periodic intervals of 
time (Murthy et al. 2018). Moreover, in solid media all the plant parts are not in 
direct contact with the medium and resultantly, growth occurs slowly (Zhang et al. 
2018). Thus, to overcome these problems, different plant parts and culture media 
under bioreactor systems have been utilised in orchids (Table 3). Several factors 
affect the plant biomass and phytochemical production in a bioreactor that needs to 
be optimised for desired results. The selection of a suitable type of bioreactor is vital 
for the growth and metabolism of plant cultures. Temporary and continuous immer-
sion bioreactor systems are usually used for plant cultures. In the continuous 
immersion system, the plant cultures are continuously immersed in the liquid 
medium whereas the temporary immersion system works on the principle of tem-
porarily submerging the cultures in the medium at specific intervals of time (De Carlo
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et al. 2021). In Anoectochilus roxburghii, the continuous immersion bioreactor 
having a net at the bottom of the sphere of the bioreactor was found apt for the 
mass production of rhizomes; nearly 2980.5 mg L�1 of kinsenoside and 
5672.9 mg L�1 of polysaccharides were produced (Jin et al. 2017). In 2014, a 
research group cultured the protocorms of Dendrobium candidum in different 
bioreactor systems and found that the continuous immersion bioreactor system 
was the most appropriate for the production of polyphenolics, flavonoids, 
vitamin C, and vitamin E, coumarins, and polysaccharides (Cui et al. 2014). In 
Epipactis flava, maximum in vitro micropropagation efficiency was obtained by 
using the temporary immersion system in comparison to the continuous immersion 
bioreactor system (Kunakhonnuruk et al. 2019). RITA® bioreactor based on a 
temporary immersion system has been employed to cater to the demand of Cattleya 
forbesii in the commercial market (Ekmekçigil et al. 2019). Similarly, in Vanda 
tricolor, a temporary immersion bioreactor system has been established to be 
efficient for its commercial production (Esyanti et al. 2016).
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For optimisation of the bioreactor system, different aspects associated with bio-
reactors such as inoculation density, air volume, immersion frequency, and light 
intensity hold significant importance. Inoculation density affects the number of 
nutrients that are available for each explant and aeration volume affects the mixing 
of the constituents and oxygenation. Inoculation density of 50 g L�1 and an aeration 
volume of 0.1 vvm (air volume per culture volume per minute) were found beneficial 
in protocorm immersion culture of Dendrobium candidum (Cui et al. 2014). In 
Anoectochilus roxburghii, an inoculation density of 12.5 g L�1 , air volume lower 
than 500 mL L�1 and 45 μmol m�2 s�1 light intensity was favourable (Jin et al. 
2017). The temporary immersion frequency of 5 min every 6 h maximised the 
biomass and total alkaloid content in the plantlets of Dendrobium nobile (Zhang 
et al. 2022). 

The secondary metabolite content reaches its peak value after a specific number 
of days of initiation of bioreactor culture. For instance, for the rhizome immersion 
bioreactor culture in Anoectochilus roxburghii, 30 days period was the optimum for 
maximum polysaccharide (4251.2 mg L�1 ) and kinsenoside (1724.0 mg L�1 ) pro-
duction (Jin et al. 2017). However, for Dendrobium nobile, 20 days culture period 
was most advantageous for alkaloids production (Zhang et al. 2022). Further, the 
concentration of carbon source used in the culture medium also has a role in PLB 
bioreactor cultures of Dendrobium candidum, the optimal concentration of sucrose 
in the culture medium was found to be 30 g L�1 for improved polysaccharide and 
alkaloid yields (Yang et al. 2015). Additionally, the elicitors have also been tested in 
bioreactor cultures in a few orchids. In Dendrobium candidum, the MeJA treatment 
to 30 days bioreactor cultured PLBs for 4 and 10 days has been observed to induce 
mass production of alkaloids or polysaccharides and phenolics or flavonoids, 
respectively (Wang et al. 2016). The content of polysaccharide and kinsenoside 
and antioxidant activity showed improvement upon elicitation with MeJA or 
salicylic acid in rhizome immersion bioreactor cultures of Anoectochilus roxburghii 
in comparison to the plants grown in the field (Luo et al. 2018). In Dendrobium 
nobile, 10 μM MeJA improved the accumulation of alkaloids in the bioreactor
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culture of plantlets (Zhang et al. 2022). Similarly, elicitation with 0.25 mmole L�1 of 
MeJA enhanced the biosynthesis of polysaccharides and enlarged the pseudobulbs 
of Bletilla striata (Zhang et al. 2018). Hence, the use of elicitors in bioreactor 
cultures is considered suitable for orchids to serve as mini-factories of important 
metabolites by scaling up the secondary metabolites production. 
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6 Conclusions 

In vitro cultures serve as a consistent source of valuable plant-specific metabolites in 
orchids. Thus, this technique could be utilised for the scale-up process resulting in 
the mass production of orchid-specific bioactive compounds to cater to the demands 
of the pharmaceutical, cosmetic, and nutraceutical industries. Additionally, it 
reduces overexploitation and unscrupulous collections pressures on the natural 
populations of orchids. Hence, resulting in sustainable utilization, commercial 
propagation, and conservation of high-value therapeutically important orchid spe-
cies. This review offers insights into the strategies for improvement of phytochem-
ical production in orchids and provides a baseline data for future research. 
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1 Introduction 

The obtention of new drugs from plant secondary metabolites plays an important 
interest in the pharmaceutical industry (Radice et al. 2020). Many medicinal plants 
from the Solanaceae, Asteraceae, and Fabaceae families have been studied, whereas 
other plant families like Apiaceae, Ranunculaceae, and Orchidaceae lack scientific 
information validating their medicinal properties (Marrelli 2021). 

The Orchidaceae family is the most diverse in the plant kingdom and represents 
an important part of the biodiversity in the Neotropics. This family has a wide 
distribution in this area. Some of the genera, including Laelia, Stanhopea, 
Cyrtopodium, and Epidendrum belonging to this family have reports of medicinal 
properties (Castillo-Pérez et al. 2019). These orchid genera have shown biological 
activities as antihypertensive, antipyretic, anti-inflammatory, antinociceptive, and 
antidysentery, among others (Vergara-Galicia et al. 2013; Morales-Sánchez et al. 
2014; Emeterio-Lara et al. 2016; Arora et al. 2017). 

A particular and low-studied genus within the Orchidaceae family is the 
Catasetum genus, which possesses approximately 170 species and is widely distrib-
uted in the neotropical region of America (Milet-Pinheiro and Gerlach 2017). 
However, some Catasetum hybrids have been successfully cultivated and adapted 
to other regions, being grown in Europe, Asia, and America (Cantuaria et al. 2021). 
They have diverse growth habits, most species are epiphytic (Fig. 1a), but some 
species present terrestrial, lithophyte, or saprophyte development (Milet-Pinheiro 
and Gerlach 2017). Moreover, they are sexually dimorphic and exhibit male and 
female flowers (Fig. 1b, c) (Gerlach 2013). Another important piece of data is these 
orchids present mycorrhizal and myrmecophile ecological interactions for their

Fig. 1 Catasetum integerrimum (Orchidaceae) is a common example of the genus Catasetum.  (a) 
Whole plant in situ with epiphytic growth; (b) Male flowers; (c) Female flowers; (d) Interaction 
with the bee of the Euglossini tribe, the main pollinator of the genus Catasetum



growth and defense, and the male bees of the Euglossini tribe are the main pollinat-
ing agent (Fig. 1d) (Gerlach 2013; Bonilla-Morales et al. 2016).
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Currently, species of the Catasetum genus are used mainly as ornamental plants 
in several parts of the world. Some species of this genus have medicinal properties 
attributed to different population groups around the world. The objective of this 
chapter is to summarize all the research findings available on various aspects, such as 
botanical description and distribution, ethnopharmacology, phytochemistry, and 
conservation of the Catasetum genus. 

The information search was based on the following groups of keywords: 
Catasetum orchids, Medicinal Catasetum, Phytochemical Catasetum, Biotechnol-
ogy Catasetum, and Ecology of Catasetum. We search the most relevant data in 
“PubMed”, “ScienceDirect”, “Scopus”, “Web of Science”, and “Google Scholar”, in  
addition, physical and digital books were consulted. The current taxonomy of the 
species was validated using the website of The World Flora Online (http://www. 
worldfloraonline.org/). The article search was carried out from 15 March 2022 to 
15 August 2022. Based on all the compiled information, the research gap has also 
been discussed. This chapter provides the basis for further studies on the conserva-
tion and development of identifying better therapeutic agents and health products 
from the Catasetum orchids. 

2 Botanical Description of the Species 

This section describes the general characteristics shared by Catasetum orchids. We 
suggest consulting the taxonomic keys provided in the botanical bibliography for the 
specific description of any species from this genus. Most Catasetum orchids are 
epiphytic, perennial, medium-sized with a height of 30–70 cm, composed of 
pseudobulbs ovoid to fusiform and fibrous roots at the base. The plants have leaves 
that can be oblong-lanceolate to elliptic and deciduous. The flowers are terminal 
racemes, and some species develop non-resupinate, unisexual, dimorphic and fra-
grant flowers. The column in the Catasetum species is short and truncated and has a 
pollinial vestigial. After pollination, these species develop ellipsoid and glaucous 
capsules with seeds minute and powdery. Most of the pseudobulbs are fleshy, 
smooth, shining, greenish, covered with membranous sheath, and slightly mucilag-
inous (Salazar et al. 1990). The flowering of these species varies throughout the year 
and some species can develop flowers more than once a year. Anatomical and 
histochemical studies revealed the presence of endophytic mycorrhizal fungus in 
the root and protocorm (Silva et al. 2015). The anatomical similarity between 
rhizomes and pseudobulbs indicates that species can be propagated from its rhi-
zomes as well as pseudobulbs.

http://www.worldfloraonline.org/
http://www.worldfloraonline.org/
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3 Habitat, Distribution, and Ecology 

Catasetum orchids have different development forms, some species are epiphytic, 
others are terrestrial or lithophyte and some species have even been described with 
saprophyte growth. The species of the Catasetum genus usually develop mycorrhizal 
and myrmecophile interactions for their growth, plant development, and defense. 
Another interesting ecological aspect is that the wide majority of Catasetum species 
share their main pollinating agent, the male bees of the Euglossini tribe, also known 
as orchid bees (Milet-Pinheiro and Gerlach 2017; Gerlach 2013; Bonilla-Morales 
et al. 2016). 

The Catasetum genus is present only in the neotropical region of the American 
continent and has approximately 170 species. Brazil encompasses the largest number 
of Catasetum orchids (Romero-Gonzales 2012; Ramos et al. 2012; Chase et al. 
2015). In the case of Mexico, two of the most important orchids of the Catasetum 
genus, C. integerrimum, and C. laminatum are distributed in the states of Tamauli-
pas, San Luis Potosí, Hidalgo, Veracruz, Puebla, Querétaro, Oaxaca, Chiapas, 
Tabasco, Campeche, Yucatan, and Quintana Roo (Salazar et al. 1990). 

Table 1 shows the few available studies published about the habitat and ecology 
of the Catasetum orchids. Most of these species are distributed in tropical forests, 
which is not surprising since many of these orchids are epiphytes. Interestingly, 
C. discolor grows in more arid ecosystems in countries like Bolivia, Brazil, and 
Venezuela (Milet-Pinheiro and Gerlach 2017; Dodson 1978). 

Catasetum orchids have their pollinating species. Nevertheless, there are few 
records about the pollinating organisms of these orchids, including insects of the 
Hymenoptera order, Apidae family, and Euglossini tribe, specifically two genera, 
Eufriesea, Euglossa, and Eulaema (Table 1). However, this work found records of 
16 Catasetum species, which represents a gap in the ecological knowledge of these 
species. 

Another ecological aspect with limited information is the time of flowering in 
these orchids. For example, of the 16 species presented in this work, this data is only 
known in eight of the 16 species. Interestingly, some species such as 
C. integerrimum and C. viridiflavum flower for most of the year (Table 1) (Milet-
Pinheiro and Gerlach 2017; Hernández-Ramírez 2021). 

4 Ethnomedicinal Uses 

The medicinal uses conferred on the Catasetum orchids have been documented in 
several reports (Table 2). Firstly, it was recorded in 1958 that the ashes of 
pseudobulbs from C. maculatum were used for the treatment of inflammations, 
abscesses, sores, and warts (Kunow 1958). Afterward, Arenas and Moreno-Azorero 
(1977) documented using C. gardneri pseudobulbs as a sterilant. The application of 
this orchid was recommended in conjunction with the rhizomes of another plant
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denominate Typha latifolia. To obtain the sterilizing effect, both parts of the plants 
should be boiled in water and consumed at the morning. The consumption of the 
pseudobulbs of C. gardneri as an infusion is registered as a contraceptive method by 
residents of indigenous regions from Paraguay and Brazil.
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Fig. 2 Pseudobulbs on sale of C. integerrimum in a local market in the municipality of Matlapa, 
Huasteca Potosina, Mexico 

C. barbatum is another species of the Catasetum genus documented as medicinal. 
This species is used in traditional medicine from Paraguay for the treatment of 
asthma and lumbago. However, there is no information on the preparation of this 
plant for the treatment of these diseases (Shimizu et al. 1988). 

One of the Catasetum species with the most records of medicinal properties is 
C. integerrimum (Table 2). In the late 1980s, this species was reported to be useful 
for treating viper bites (Téllez-Valdés et al. 1989). Subsequently, it was reported that 
the leaves of this species were used by Mayan communities in the state of Yucatan, 
Mexico for the treatment of “large grains”, which possibly may allude to tumors 
(Ankli et al. 1999). Another investigation carried out by Alonso-Castro et al. (2011) 
mentioned the entire use of the orchid for the treatment of dermatological conditions, 
and Cox-Tamay (2013), documented its application in the treatment of tumors, 
abscesses, and wounds by communities of Yucatan, Mexico. Another use that has 
been conferred to C. integerrimum is in the treatment of burns and wounds (Cruz-
Garcia et al. 2014), and recently in the state of Veracruz, Mexico, its application is 
used for treating diarrhea (Teoh 2019). However, the information on which plant 
part should be used for the medicinal purpose, the way of administration, and the 
way of preparation are frequently omitted in the scientific literature. 

In the Huasteca Potosina region, pseudobulbs of C. integerrimum are traded in 
local markets with other medicinal plants and fruits (Fig. 2). The inhabitants of this 
region comment that the pseudobulbs should be prepared as an infusion with water



and orally consumed for treating kidney, gastrointestinal, urinary tract infections, 
and against diabetes mellitus (Castillo-Pérez et al. 2021). 
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Other Catasetum species documented with medicinal properties are C. expansum 
and C. macroglossum, used in communities in Provincias del Rio, Ecuador. 
According to Zambrano-Intriago et al. (2015), C. expansum is used in the treatment 
of broken bones and bone fractures, through the preparation of plaster or poultice, 
made from the scape floral, which is then applied to the affected area. On the other 
hand, Ramos-Corrales et al. (2011) mention that C. macroglossum is used in the 
treatment of inflammation, pain and broken bones, also applied by making a poultice 
from the pseudobulbs. Likewise, Ramos et al. (2012) reported the topical use of the 
pseudobulbs of C. macroglossum as anti-inflammatory and anti-rheumatic in the 
middle lands and forests of Ecuador. 

Finally, some reports documented the consumption of the stem floral wand of 
some Catasetum species for the reduction of headaches in Shuar communities 
(Ecuador). However, the Catasetum species was not reported (Bennett 1992). 
Likewise, Kunow (1958) and Teoh (2019) reported the use of Catasetum maculatum 
used in traditional Mayan medicine for treating external tumors and abscesses. The 
Catasetum genus has a wide variety of medicinal applications. However, the studies 
that support these properties are scarce. 

5 Phytochemicals Isolated and Pharmacological Activities 

As shown in Table 3, the studies on the secondary metabolites isolated Catasetum 
species and their pharmacological actions are limited to three species. Four com-
pounds, including the phenanthrene 2,7-dihydroxy-3,4,8-trimethoxyphenanthrene 
were isolated from an ethanolic extract of the aerial parts of C. barbatum and tested 
on their anti-inflammatory and antinociceptive activity through the carrageenan-
induced plantar edema test and the histamine-induced contortion tests in rats 
(Shimizu et al. 1988). 

Currently, C. integerrimum is one of the orchids most studied under different 
approaches. There are two studies carried out to verify its pharmacological activities. 
First, 25 μg/mL ethyl acetate extract of leaves, roots, and pseudobulbs of 
C. integerrimum showed cytotoxic activity by 79.47% and 97.79% on breast cancer 
cell lines MCF-7 and MDA-MB231, respectively. The compounds identified 
included phenolic acids (ferulic, gallic, p-coumaric, p-hydroxybenzoic, syringic, 
and vanillin) and flavonoids (phloretin, galangin, naringenin, quercetin, and rutin) 
(Cruz-Garcia et al. 2014). 

The antioxidant activity of a root extract from C. integerrimum and its metabo-
lites showed antioxidant activity in the ABTS and DPPH assays. The phytochemical 
qualitative test revealed the presence of sterols, unsaturations, flavonoids, and 
coumarins in wild plants and vitroplants (Table 3). This is one of the first studies 
reporting the phytochemical profile of Catasetum vitroplants (Torres-Rico 2021).
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Aqueous extract prepared from C. macroglossum pseudobulbs showed anti-
inflammatory activity on the carrageenan-induced plantar edema test in Wistar 
rats. These properties were attributed to the presence of flavonoids. An HPLC-
DAD analysis determined the presence of phenanthrenic and stilbenic 
dihydroderivatives (Ramos et al. 2012). Recent current works on 
C. macroglossum suggested the presence of phenols, flavonoids, various sugars, 
and some fatty acids in this plant species (Table 3). Some of these compounds have 
antioxidant effects, which can confer add value to many of these edible orchids. The 
presence of biological activity in Catasetum species confirms the traditional use of 
these orchids, demonstrating the need for more ethnobotanical studies. 

6 Propagation and Cultivation Effort 

Current biotechnological efforts in plants are an integral part of the works associated 
with in vitro and ex vitro conservation and propagation, genetic transformation, 
acclimatization, and product development from several plant genera and species 
(López-Puc and Herrera-Cool 2022). Several works were published on biotechno-
logical studies about the Catasetum genus (Table 4), focusing on the propagation 
and in vitro conservation of these species from various types of explants, denoting a 
preference for the conservation of the genus, but with little research focused on the 
acclimatization and development of products from species with phytochemicals of 
pharmacological potential. 

The conservation protocols of six different Catasetum species were published. 
Seeds and protocorms are the most widely used explants, although pseudobulbs, 
roots, and in vitro plants have also been used. Seed germination and 
micropropagation for mass propagation studies are available for these species. 
Fernandes et al. (2015) used seeds from an immature capsule of Catasetum boyi 
and obtained up to 90% germination. The percentage of seed germination is low, 
approximately 5% of all seeds, under natural conditions (Arditti 1967). 
Micropropagation work was also carried out for C. gardneri (Silva-Maia and 
Pedroso-deMoraes 2017), C. macrocarpum (Ferreira et al. 2018), and 
C. schmidtianum (Leles-Gaudêncio et al. 2014) using seeds as explants. 

There are micropropagation protocols using roots as explants in two species of 
Catasetum orchids (C. gardneri and C. integerrimum) have worked 
micropropagation protocols using roots as an explant. In the case of C. gardneri, 
in vitro plants were obtained with a developed of 3.75 cm root growth per explant 
(Peres et al. 2009). Indirect organogenesis was tested and observed in the production 
of C. integerrimum in vitro plants by adding kinetin as a plant growth regulator 
(López-Puc and Herrera-Cool 2022). No Catasetum orchid micropropagation pro-
tocol has reported leaves as an efficient explant to generate in vitro plants. Castillo-
Pérez et al. (2021) tested this type of explant in C. integerrimum, obtaining a null 
response to regenerate seedlings (Fig. 3).
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Table 4 Propagation effort by plant tissue culture techniques in Catasetum species 

Explant 
type used 

Composition of the 
culture media 

Catasetum boyi 
Mansf. 

Seed 30 mg L-1 sucrose 
2 g  L-1 fertilizer B and 
G 
100 mg L-1 coconut 
water 
2 g  L-1 activated carbon 
4 g  L-1 agar 

90% seed germination 
was obtained 

Fernandes 
et al. 
(2015) 

Catasetum 
gardneri Schltr. 

Protocorm MS basal medium mod-
ified with 1/2 
macronutrients 

Vitroplants were 
obtained by direct organ-
ogenesis way with 
growth of 6 cm per 
explant, 3 roots devel-
oped per explant and 
pseudobulbs with 3 cm in 
diameter 

Rego-
Oliveira 
and de 
Faira 
(2005) 

Commercial formulation 
N.P.K (10–5-5) 
2 mL  L-1 

Vitroplants were 
obtained by direct 
organogenesis way with 
a growth of 8.04 cm per 
explant 

Seed MS basal medium 
1 g  L-1 activated carbon 
30 g L-1 sucrose 
7 g  L-1 agar 
Jasmonic acid (concen-
tration not mentioned) 

Vitroplants were 
obtained by direct organ-
ogenesis way with the 
development of 2.4 roots 
per explant, 1 leaf per 
explant and approxi-
mately 1.75 cm leaf and 
root growth per explant 

Silva-Maia 
and 
Pedroso-
deMoraes 
(2017) 

Roots Vacin and Went 
medium modified by 
substituting 
Fe2(C4H4O6)3 by 
27.8 mg dm-3 

Fe-EDTA 
MS micronutrients 
Sucrose 

Vitroplants were 
obtained with a devel-
oped of 3.75 cm root 
growth per explant 

Peres et al. 
(2009) 

Vitroplants Vacin and Went 
medium 
Micronutrients of MS 
0.01% thiamine 
0.1% soy peptone 
2% sucrose 
0.2% phytagel 

In this work ethylene 
production showed a 
decreasing trend in the 
first 4 months, presenting 
an initial and a final con-
centration of 66.11 
± 10.68 and 21.92 
± 6.67 μL g-1 FW h-1 , 
respectively. Likewise, 
an increase in ethylene 
production was observed 
at the end of the 8 months 

Rodrigues 
et al. 
(2013)
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(198.64 ± 5.17), coin-
ciding with the termina-
tion of a growth cycle
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Table 4 (continued)

Explant 
type used 

Composition of the 
culture media References 

Nodal 
explants 

Vacin and Went 
medium 
Micronutrients of MS 
0.1% activated charcoal 
2% sucrose 
0.7% agar 
Ethylene 
1-MCP 

The chronic exposure to 
exogenous ethylene-
induced severe growth 
deterioration in young 
plants during the 
5 weeks of treatment, on 
the contrary, the supply 
of 1-MPC, induced 
morphological effects 
opposite to those 
induced by ethylene 

Catasetum 
integerrimum 
hook 

Vitroplants 4.46 g L-1 MS medium 
8 g  L-1 agar plant 
30 g L-1 sucrose 
3 g  L-1 activated carbon 
IAA 
BAP 

Vitroplants were 
obtained with 5.73 
± 0.45 shoots per explant 
and 5.84 ± 0.48 leaves 
per shoot. Moreover, 
vitroplants developed 
11.20 ± 0.28 roots per 
explant and 13.20 
± 0.28 cm root growth 

Castillo-
Pérez et al. 
(2021) 

Pseudobulb 4.46 g L-1 MS basal 
medium 
8 g  L-1 agar plant 
30 g L-1 sucrose 
3 g  L-1 activated carbon 
1 mg  L-1 IAA 
1 mg  L-1 BAP 

By direct organogenesis 
in vitro plants were 
obtained with 1.00 ± 00 
shoots per explant, 5.50 
± 0.18 leaves per shoot, 
4.37 ± 0.37 roots per 
explant with a growth 
rate of 4.88 ± 0.20 cm 
and a plant growth of 
7.96 ± 0.12 cm 

Plantlet MS basal medium (half-
strength) 
Sorbitol 
Carbon 

The treatment added with 
3% carbon, and 2% sor-
bitol presented the lowest 
value of growth in plant-
let length (17.70 ± 5.8). 
In the same way, showed 
the lowest shoot forma-
tion (1 ± 00) 

López-Puc 
and 
Herrera-
Cool 
(2022) 

Root and 
node 

MS basal medium 
3% sucrose 
2.2 g L-1 Gelrite 
2 g  L-1 activated carbon 
BAP 
Kinetin 

Direct shoot organogen-
esis was observed in 
node explant in 
BAP-supplemented MS 
and kinetin-
supplemented MS at all 
concentrations tested.
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Indirect shoot organo-
genesis was observed in
root explant in MS
supplemented with 4.64
or 9.29 μM kinetin
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Table 4 (continued)

Explant 
type used 

Composition of the 
culture media References 

Catasetum 
macrocarpum 
Rich. ex Kunth 

Seed ½ MS basal medium 
0.4 mg L-1 tiamin 
100 mg L-1 myo-inosi-
tol 
2% sucrose 
BA 
NAA 

Vitroplants were 
obtained with 4.1 shoots 
per explant and 6.1 roots 
per explant 

Ferreira 
et al. 
(2018) 

Vitroplant First phase: Bioplant 
Prata® with sphagnum 
(1:1) 
Second phase: Bioplant 
Prata with Ouro Negro 
substrate (1:2) 

The survival rates 
observed in the acclima-
tization process were 
93.3% for the first phase 
and 96.6% for the sec-
ond phase 

Catasetum 
pileatum 
Rchb. f. 

Protocorm MS basal medium 
3% sucrose 
0.8% agar-agar 
Kinetin 
IBA 

8.63 regenerated PLB 
were obtained per 
explant with 12.70 leaves 
and 7.40 average roots 

Zakizadeh 
et al. 
(2019) 

Protocorm MS basal medium 
3% sucrose 
0.8% agar 
1.00 mg L-1 BA 
0.50 mg L-1 NAA 
Colchicine 

For the polyploid induc-
tion, treatment with 
4.00 mg l-1 colchicine 
for 72 h was the only 
treatment to result in a 
mixoploid seedling. 
Moreover, developed 
4.16 and 4.12 cm root 
growth per explant, 7.00 
roots per explant, 
4.58 cm leaf growth per 
explant, and 6.66 cm leaf 
per explant 

Kazemi 
and 
Kaviani 
(2020) 

Catasetum 
schmidtianum 
F.E.L. Miranda 
and 
K.G. Lacerda 

Protocorm 30 mg L-1 sucrose 
2 g  L-1 fertilizer B and 
G 
200 mg L-1 coconut 
water 
2 g  L-1 activated carbon 
4 g  L-1 agar 
1 mg  L-1 extract 
pyroligneous 

By direct organogenesis 
in vitro plants were 
obtained with 27.6 cm 
leaf growth per explant 
and 4.1 roots per explant 

Florestino-
Silva 
(2021)
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Table 4 (continued)

Explant 
type used 

Composition of the 
culture media 

Seed 10 mL L-1 Kudson C 
medium 
30 g L-1 sucrose 
24 g L-1 natural gelatin 

By direct organogenesis 
in vitro plants were 
obtained with 3 mm 
Protocorm growth per 
explant 

Leles-
Gaudêncio 
et al. 
(2014) 

Vitroplants Fertilizers B and G 
Coconut water 
Activated carbon 
Agar 
Sucrose 
Water 
Sphagnum Moss 
Vermiculite 
Carbonized rice straw 
Charcoal 

The acclimatization 
treatment consists of 
Chile Moss + vermiculite 
+ carbonized Rice straw 
+ charcoal (1:1:1:1 v/v) 
presented the most suit-
able conditions for the 
development of the 
species 

Arenas-
deSouza 
and Vera-
Karsburg 
(2016) 

Fig. 3 Null in vitro response of leaves after 16 weeks of culture in an experiment with different 
concentrations and types of plant growth regulators for induction of direct organogenesis in 
C. integerrimum 

Finally, the most used culture media for the micropropagation of Catasetum 
orchids are the MS medium and the Vacin and Went medium. Furthermore, acti-
vated carbon is commonly used for the micropropagation of Catasetum orchids and 
the most frequently used carbon source is sucrose. Plant growth regulators and 
additives (vitamins or natural extracts) vary depending on the objective of each 
study (Table 4).
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7 Future Prospective and Conclusions 

Some Catasetum species showed in vitro anti-inflammatory, cytotoxic, and antiox-
idant activities. The ethnomedicinal information of these plant species was validated. 
However, in vivo assays and their molecular mechanism of action remains to be 
elucidated. Most of the secondary metabolites isolated from the Catasetum orchids 
correspond to polyphenols, and many of these compounds have previously reported 
anti-inflammatory and antioxidant actions. Nevertheless, some Catasetum orchids 
lack of chemical composition of their metabolites. The isolation and elucidation of 
the structure of new compounds obtained from the Catasetum genus should be 
carried out. 

There is limited information about the obtention of new compounds from the 
Orchidaceae family. It is also necessary to work on the biological and ecological 
aspects of the Catasetum orchids, such as growth and climatic conditions, seasons, 
exposure to sunlight, altitude, and genetic composition, due to these abiotic factors 
influence the chemical composition and the pharmacological effects of these plant 
species. 

Biotechnological plant tissue culture techniques, including symbiotic and 
asymbiotic germination, clonal propagation, and direct organogenesis are available 
in this orchid genus. The use of biotechnological techniques can prevent and control 
the reduction of the pressure on wild species of this genus. In our laboratory 
(Environmental Science Research Laboratory—Autonomous University of San 
Luis Potosí, Mexico), we have worked with an efficient propagation protocol for 
C. integerrimum from pseudobulb sections and using the direct organogenesis 
technique (Castillo-Pérez et al. 2021). Moreover, we have begun to study the 
production of phytochemicals produced by in vitro orchids, inducing different 
types of stress in vitro, and comparing them with the homologous produced by 
wild plants for establishing a biotechnological technique for the production of 
bioactive compounds. Overall, Catasetum orchids remain to be studied for their 
pharmacological, ecological, botanical, chemical, and toxicological aspects. 

Acknowledgments This work was partially supported by Consejo Nacional de Ciencia y 
Tecnología (CONACYT, Mexico), grant number 321352 provided to HMRT and CCA. LJCP is 
a student of doctors in science (773045) and DTR is a student of master’s in science (1181114), 
both students supported by CONACYT fellowship. 

References 

Alonso-Castro AJ, Villarreal MJ, Salazar-Olivo LA, Gomez-Sanchez M, Dominguez F, Garcia-
Carranza A (2011) Mexican medicinal plants used for cancer treatment: pharmacological, 
phytochemical and ethnobotanical studies. J Ethnopharmacol 133:945–972 

Ankli A, Sticher O, Heinrich M (1999) Medical ethnobotany of the yucatec maya: healers' 
consensus as a quantitative criterion. Econ Bot 53:144–160 

Arditti J (1967) Factors affecting the germination of orchid seeds. Bot Rev 33:1–97



Ethnomedicinal Uses, Phytochemistry, Medicinal Potential,. . . 205

Arenas P, Moreno-Azorero R (1977) Plants used as means of abortion, contraception, sterilization 
and fecundation by paraguayan indigenous people. Econ Bot 31:302–306 

Arenas-deSouza MD, Vera-Karsburg I (2016) Substratos alternativos na aclimatação de Catasetum 
schmidtianum Miranda e Lacerda (Orchidaceae) micropropagadas. Revista Biociências 22:36– 
41 

Arora M, Mahajan A, Sembi JK (2017) A review on phytochemical and pharmacological potential 
of family Orchideaceae. Int Res J Pharm 8:9–24 

Bennett BC (1992) Uses of epiphytes, lianas, and parasites by the Shuar people of amazonian 
Ecuador. Selbyana 13:99–114 

Bonilla-Morales MM, Aguirre-Morales AC, López-Toscano H (2016) Diversidad y conservación 
de Catasetum (Orchidaceae: Catasetinae) en el Departamento de Santander, Colombia. Ciencia 
en Desarrollo 7:57–65 

Brandt K, Machado IC, Ferraz-Navarro DM, Dötterl S, Ayasse M, Milet-Pinheiro P (2020) Sexual 
dimorphism in floral scents of the neotropical orchid Catasetum arietinum and its possible 
ecological and evolutionary significance. AoB Plants 12:plaa030 

Buenaño-Morales HJ, Santillán-Chávez MC (2021) Evaluación de la composición química y 
actividad antioxidante de la Catasetum macroglossum (suelda consuelda). Bachelor Tesis. 
Universidad de Guayaquil, Ecuador 

Cantuaria PD, Krahl DRP, Krahl AH, Chiron G, da Silva JBF, da Silva JBF (2021) The Catasetum 
x sheyllae (Orchidaceae: Catasetinae), a new natural hybrid from Brazilian Amazon. Phytotaxa 
527:257–265 

Carvalho R, Machado I (2002) Pollination of Catasetum macrocarpum (Orchidaceae) by Eulaema 
bombiformis (Euglossini). Lindleyana 17:85–90 

Castillo-Pérez LJ, Martínez-Soto D, Maldonado-Miranda JJ, Alonso-Castro AJ, Carranza-Álvarez 
C (2019) The endemic orchids of Mexico: a review. Biologia 74:1–13 

Castillo-Pérez LJ, Alonso-Castro AJ, Fortanelli-Martínez J, Carranza-Álvarez C (2021) 
Micropropagation of Catasetum integerrimum Hook (Orchidaceae) through seed germination 
and direct shoot regeneration from pseudobulbs and roots. In Vitro Cell Dev Biol Plant 58:279– 
289 

Cervantes-Reyes MA (2008) Evaluación farmacológica de Prosthechea michuacana 
(Orchidaceae), especie de potencial agronómico. Master Thesis. Instituto Politécnico Nacional 
de Santa Cruz Xoxocotlán, México 

Chase MW, Cameron KM, Freudenstein AM, Salazar G, Van den Berg C, Schuiteman A (2015) An 
updated classification of Orchidaceae. Bot J Linn Soc 177:151–174 

Coelho-Ferreira AW (2005) Fenologia de Catasetum gardneri (Morren) Lindl. (Catasetinae, 
Orchidaceae) e sua polinizacao por albelhas Euglossini (Hymenoptera, Apidae) na regiao de 
São Carlos-SP, Brasil. Master Thesis. Universidade Federal de São Carlos, Brazil 

Cox-Tamay LD (2013) Orquídeas: Importancia y uso en México. Bioagrociencias 6:4–7 
Cruz-Garcia G, Solano-Gomez R, Lagunez-Rivera L (2014) Documentation of the medicinal 

knowledge of Prosthechea karwinskii in a Mixtec community in Mexico. Rev Bras 24:153–158 
Dodson CH (1978) The Catasetums (Orchidaceae) of Tapakuma, Guyana. Selbyana 2:159–168 
Emeterio-Lara A, Palma-Linares V, Vázquez-García LM, Mejía-Carranza J (2016) Usos y 

comercialización de orquídeas silvestres en la región sur del estado de México. Polibotánica 
42:197–214 

Fernandes L, Soares JAG, Nascimiento JJR, Oliveira VG, Karsburg IV (2015) Germinação de 
Catasetum boyi verde em diferentes potenciais hidrogeniônicos. Cacéres 2:523–528 

Ferreira WM, Pereira-de Oliveira S, Suzuki RM, Ferreira-Silva KL, Pereira-Soares JW (2018) 
Germination, growth and morpho-anatomical development of Catasetum macrocarpum 
(Orchidaceae) in vitro. Rodriguésia 69:2137–2151 

Florestino-Silva MF (2021) Desenvolvimento de Catasetum schmidtianum Miranda & Lacerda em 
diferentes concentrações de extrato pirolenhoso obtido de Enterolobium contorstisiliquum. Braz 
J Dev 7:16070–16082



206 L. J. Castillo-Pérez et al.

Galicia-Mendieta EM (2017) Evaluación citotóxica de compuestos fenólicos de Catasetum 
integerrimum (Orchidaceae). Bachelor Thesis. Universidad Nacional Autónoma de México, 
México 

Gerlach G (2013) La pesadilla de Lindley—la biología sexual de Catasetum y Cycnoches. 
Lankesteriana 13:39–46 

Hernández-Bautista EY, Martínez-Espinoza LAF (2019) Aspectos ecológicos, etnobotánicos, 
análisis fitoquímico y cultivo in vitro de Catasetum integerrimum Hook. (Orchidaceae). Bach-
elor Thesis. Instituto Tecnológico de Huejutla, México 

Hernández-Ramírez AM (2021) Reproductive ecology of Euglossine bee-pollinated orchid 
Catasetum Integerrimum hook (Ochidaceae), 25 May 2021. Preprint (version 1) available at 
Research Square. https://doi.org/10.21203/rs.3.rs-438140/v1 

Huatangare-Córdova E (2000) Ecología y distribución de Phragmipedium spp y Catasetum spp 
(Orchidaceae) en la cuenca alta del Ahuashiyacu, Cordillera Escalera, región San Martín, Perú. 
Bachelor thesis. Universidad Nacional de San Martin, Perú 

Janzen DH (1981) Bee arrival at two Costa Rican female Catasetum orchid inflorescences, and a 
hypothesis on Euglossine population structure. Oikos 36:177–183 

Kazemi M, Kaviani B (2020) Anatomical, morphological, and physiological changes in colchicine-
treated protocorm-like bodies of Catasetum pileatum Rchb. f. in vitro. Cogent Biol 6:1–13 

Kunow MA (1958) Maya medicine: traditional healing in Yucatán. University of New Mexico 
Press, Albuquerque 

Leles-Gaudêncio RR, Pereira-Miranda D, Vera-Karsburg I (2014) Germinação in vitro de sementes 
de Catasetum schmidtianum Miranda & Lacerda em diferentes geleificantes alternativos. 
Goiânia 10:1862–1870 

López-Puc G, Herrera-Cool GJ (2022) Asymbiotic germination, in vitro conservation and regen-
eration of Catasetum integerrimum. Polibotánica 53:135–149 

Marrelli M (2021) Medicinal Plants Plants 10:1355 
Milet-Pinheiro P, Gerlach G (2017) Biology of the Neotropical orchid genus Catasetum: a historical 

review on floral scent chemistry and pollinators. Perspect Plant Ecol Evol 27:23–34 
Milet-Pinheiro P, Navarro DM, Dötterl S, Torres-Carvalho A, Pinto CE, Ayasse M, Schlindwein C 

(2015) Pollination biology in the dioecious orchid Catasetum uncatum: how does floral scent 
influence the behaviour of pollinators? Phytochemistry 116:149–161 

Milet-Pinheiro P, Silva JBF, Navarro DMAF, Machado ICS, Gerlach G (2018) Notes on pollination 
ecology and floral scent chemistry of the rare neotropical orchid Catasetum galeritum Rchb.f. 
Plant Species Biol 33:158–163 

Molina-Sandoval LJ (2020) Evaluación de la actividad antioxidante de los extractos etanólicos de 
cinco especies de orquídeas de los géneros Maxillaria, Catasetum y Epidendrum, presentes en el 
Ecuador. Bachelor Tesis. Universidad Politécnica Salesiana, Ecuador 

Morales-Sánchez V, Rivero-Cruz I, Laguna-Hernández G, Salazar-Chávez G, Mata R (2014) 
Chemical composition, potential toxicity, and quality control procedures of the crude drug of 
Cyrtopodium macrobulbon. J Ethnopharmacol 154:790–797 

Nunes CEP, Gerlach G, Bandeira KDO, Gobbo-Neto L, Pansarin ER, Sazima M (2017) Two 
orchids, one scent? Floral volatiles of Catasetum cernuum and Gongora bufonia suggest 
convergent evolution to a unique pollination niche. Flora 232:207–216 

Peres LEP, Zsögön A, Kerbauy GB (2009) Abscisic acid and auxin accumulation in Catasetum 
gardneri roots growing in vitro with high sucrose and mannitol content. Biol Plant 53:560–564 

Radice M, Scalvenzi L, Gutiérrez D (2020) Etnofarmacología, bioactividad y fitoquímica de 
Maxillaria densa Lindl. Revisión científica y biocomercio en el neotrópico. Colomb For 23: 
20–33 

Ramos P, Colareda GA, Rosella MA, Debenedetti SL, Spegazzini ED, Consolini AE (2012) 
Phytochemical profile and anti-inflammatory effect of the orchid Catasetum macroglossum. 
Lat Am J Pharm 31:62–67

https://doi.org/10.21203/rs.3.rs-438140/v1


Ethnomedicinal Uses, Phytochemistry, Medicinal Potential,. . . 207

Ramos-Corrales PC, Crivos M, Corales MN, Dolores-Spegazzini E, Rosella MA (2011) 
Relevamiento etnofarmacobotánico de plantas medicinales usadas en tres zonas diferentes del 
Cantón Quevedo, provincia de los ríos (Ecuador). Rojasinia 10:9–20 

Rego-Oliveira LV, de Faira RT (2005) In vitro propagation of Brazilian orchids using traditional 
culture media and commercial fertilizers formulations. Maringá 27:1–5 

Rodrigues MA, Freschi L, Purgatto E, Pereira-Lima VFGA, Kerbauy GB (2013) Ethylene modu-
lates the developmental plasticity and the growth balance between shoot and root systems in the 
in vitro growth epiphytic orchid Catasetum gardneri. J Plant Growth Regul 33:513–525 

Romero GA, Nelson CE (1986) Sexual dimorphism in Catasetum orchids: forcible pollen emplace-
ment and male flower competition. Science 232:1538–1540 

Romero-Gonzales GA (2012) Las flores unisexuales y dimórficas de Catasetum Rich. 
(Orchidaceae). Desde el Herbario CICY 4:32–36 

Salazar GA, Soto-Arenas MA, Hágsater E, Jiménez R, Aguirre I, Greenwood EW (1990) Icones 
Orchidacearum. Fascicle I. Orchids of Mexico, Herbario AMO, México 

Shimizu M, Shogawa H, Hayashi T, Arisawa M, Suzuki S, Yoshizaki M, Morita N, Ferro E, 
Basualdo I, Berganza LH (1988) Anti-inflammatory constituents of topically applied crude 
drugs. III. constituents and anti-inflammatory effect of Paraguayan crude drug “Tamanda cuna” 
(Catasetum barbatum Lindle). Chem Pharm Bull 36:4447–4452 

Silva IVD, Oliveira RMD, Rossi AAB, Silva ABD, Oliveira DMD (2015) Use of anatomical root 
markers for species identification in Catasetum (Orchidaceae) at the portal da Amazônia region, 
MT, Brazil. Acta Amazon 45:21–28 

Silva-Maia JA, Pedroso-deMoraes C (2017) Influence of different concentrations of jasmonic acid 
on in vitro development of Catasetum gardneri Lindl. (Orchidaceae). Mod phytomorphol 11: 
99–104 

Téllez-Valdés O, Cabrera-Cano EF, Linares-Mazari E, Bye R (1989) Las plantas de Conzumel: guía 
botánico-turística de la Isla de Cozumel. Instituto de Biología - Universidad Nacional Autónoma 
de México, México, Quintana Roo 

Teoh ES (2019) Orchid as aphrodisiac, Medicine or Food. Springer Nature Switzerland, Singapore 
Torres-Rico D (2021) Capacidad antioxidante, potencial fitoquímico y micropropagación in vitro de 

Catasetum integerrimum Hook (Orchidaceae). Bachelor Thesis. Universidad Autónoma de San 
Luis Potosí, México 

Vergara-Galicia J, Castillo-España P, Villalobos-Molina R, Estrada-Soto S (2013) Vasorelaxant 
effect of Laelia speciosa and Laelia anceps: two orchids as potential sources for the isolation of 
bioactive molecules. J Appl Pharm Sci 3:34–37 

Vogel S (1963) Das sexuelle Anlockungsprinzip der Catasetinen- und Stanhopeen-Blüten und die 
wahre Funktion ihres sogenannten Futtergewebes. Österr Bot Z 110:308–337 

Zakizadeh S, Kaviani B, Hashemabadi D (2019) Micropropagation of two near threatened orchid. 
Part 1: Catasetum pileatum cv. Alba. Adv Hortic Sci 33:475–483 

Zambrano-Intriago LF, Buenaño-Alluaca MP, Mancera-Rodríguez NJ, Jiménez-Romero E (2015) 
Estudio etnobotánico de plantas medicinales utilizadas por los habitantes del área rural de la 
Parroquia San Carlos, Quevedo, Ecuador. Rev Univ Salud 17:97–111 

Zapata-Hoyos JS, Maldonado-Figueroa CJ, Arteaga-Morales DA, Valdez-Benítez OJ, López-
Machado F, Otero-Ospina JT (2021) Estructura poblacional y agentes polinizadores de 
Catasetum ochraceum en los farallones de la cordillera occidental (La Vorágine, Colombia). 
Rev Fac Cienc Salud 16:31–40 

Zimerman JK (1991) Ecological correlates of labile sex expression in the orchid Catasetum 
viridiflavum. Ecology 72:597–608



Diversity and Antimicrobial Potential 
of Orchidaceae-Associated Fungal 
Endophytes 

Muhammad Adil, Pragya Tiwari, Jen-Tsung Chen, Rabia Naeem Khan, 
and Shamsa Kanwal 

1 Orchidaceae-Associated Fungal Endophytes: 
Introduction and Significance 

As a major and diverse family of flowering plants, Orchidaceae represents almost 
750–850 genera and 25,000–35,000 species (Hossain 2011; Sarsaiya et al. 2019). 
Subtropical and tropical regions are blessed with the highest diversity of these 
ubiquitous plants, whereas, orchids are not found in hot deserts and Antarctica 
(Hossain 2011). Orchids are capable of occupying a wide range of habitats including 
forest floors, sandy dunes, and tree barks as epiphytes, lithophytes, saprophytes, and 
terrestrial plants (Ma et al. 2015). Apart from the photosynthesis process, 
mycoheterotrophism is also employed by the adult orchid plants for carbon acqui-
sition (Zhang et al. 2018). Orchids are characterized by their remarkable capability 
of deceiving pollinators using several mechanisms such as rendezvous attraction, 
shelter imitation, generalized food deception, sexual deception, brood-site imitation, 
food-deceptive floral mimicry, and pseudo antagonism (Jersáková et al. 2006;
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Shrestha et al. 2020). Several orchid species have been associated with the produc-
tion of storage organs in terms of pseudo-bulbs or bulbs (Śliwiński et al. 2022). 
Monopodial as well as sympodial growth patterns have been documented in orchids.
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Although, predominantly grown for ornamental purpose, orchids also exhibit 
culinary and medicinal values, on account of different bioactive compounds includ-
ing flavonoids, carotenoids, alkaloids, xanthones, and saponins (Hossain 2011; 
Cheamuangphan et al. 2013). The ethnomedicinal significance of orchids is consid-
erably exploited in Ayurvedic and Chinese medicines (Bulpitt et al. 2008; Kobayashi 
2020). Calanthe, Ephemerantha, Coelogyne, Dendrobium, Galeola, Cymbidium, 
Eria, Ludisia, Gastrodia, Cypipedium, Habenaria, Nevilia, Thunia, Luisia, and 
Gymnadenia represent the major genera of medicinal orchids (Bungtongdee et al. 
2019). 

Fungal microorganisms, known for internally colonizing and inhabiting the 
leaves, stems, roots, seeds, and flowers of plants, without inflicting any damage or 
infection, are referred to as endophytic fungi (Dhayanithy et al. 2019; Zhang et al. 
2019). Therefore, the association of fungal endophytes with host plants is primarily 
meant for mutual benefits and described as mutualism or symbiosis (Khare et al. 
2018). Endophytic fungi are mainly harbored by flowering plants, ferns, and grasses 
(Sudheep et al. 2017). Plants may be invaded by a single or multiple species of 
endophytes. These beneficial and non-pathogenic fungi are dependent upon their 
host for shelter and nourishment, and improve the uptake of nutrients, growth as well 
as tolerance of plants to abiotic and biotic stress in exchange (Velma et al. 2018; 
Rana et al. 2019; Devi et al. 2020). Orchids are completely dependent on endophytic 
fungi for the germination of seed and subsequent growth, due to lack of endosperm 
(Shah et al. 2019). Certain secondary metabolites are secreted by the endophytes for 
counteracting the plant defense mechanisms and thereby enhancing their viability 
within the host tissues (Tiwari and Bae 2022). Besides, endophytes may potentially 
modify or enhance the synthesis of phytometabolites (Ludwig-Müller 2015). 

Orchidaceae-associated fungal endophytes can be cultured to harvest their bio-
active metabolites for agricultural, industrial, and pharmaceutical applications 
(Bungtongdee et al. 2019). Several industrially-important extracellular enzymes 
including cellulase, lipase, laccase, pectinase, and amylase have been isolated 
from Orchidaceae-associated fungal endophytes (Paramanantham et al. 2019). 
Orchidaceae-associated Penicillium isolates have shown tolerance to copper and 
lead and can be potentially used for bioremediation purpose (Khan and Lee 2013; 
Idris et al. 2019). Some beneficial metabolites obtained from fungal endophytes have 
been linked with the conferral of plant protection against pathogenic fungi and pests 
(Duan et al. 2019; Yadav et al. 2020). The causal role of fungal endophytes in 
orchid–endophyte interaction has been explicated in terms of bioprotection, 
bioregulation, and biofertilization (Pant et al. 2017).
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2 Diversity of Orchidaceae-Associated Fungal Endophytes 

Despite the one million globally recorded species of fungal endophytes, less than 
30% of the entire orchids genera have been screened for the isolation and identifi-
cation of fungal endophytes (Sarsaiya et al. 2019). Since the conventional fungal 
classification is based on their spore-bearing structures and spores, the identification 
of some fungi becomes difficult due to failure of in vitro sporulation. Endophytic 
fungi belonging to Fusarium, Aspergillus, Trichoderma, Verticillium, 
Colletotrichum, Xylaria, and Phomopsis genera have been frequently recovered 
from orchids (Chen et al. 2013a; Ma et al. 2015). Fusarium, Penicillium, and 
Aspergillus are most common, whereas Nigrospora, Guignardia, and Gliocladium 
are relatively infrequent endophytes of Bulbophyllum orchids (Sudheep and Sridhar 
2012; Sawmya et al. 2013). Cattleya orchids predominantly harbor Epulorhiza and 
Colletotrichum genera, while, Tetracladium, Monilliopsis and Botrytis are their 
minor endophytic fungi (Ovando et al. 2005; Da Silva et al. 2018). Apart from 
Fusarium and Tulasnella as the most frequent endophytic fungi, Cylindrocarpon, 
Cryptosporiopsis, and Cyperus have also been sporadically associated with Cym-
bidium orchids (Yu et al. 2015; Shubha and Srinivas 2017). Table 1 enlists the 
important Orchidaceae-associated fungal endophytes. 

Aspergillus, Fusarium, Trichoderma, Acremonium, Rhizoctonia, Xylaria, 
Alternaria, Colletotrichum, and Phomopsis are major endophytes of Dendrobium 
orchids, whereas, Aureobasidium, Curvularia, Thielavia, Westerdykella, 
Chaetomium, and Scolecobasidium have been rarely isolated (Yuan et al. 2009; 
Mangunwardoyo et al. 2012; Sour et al. 2015; Jin et al. 2017; Shrestha et al. 2018). 
In addition to Rhizoctonia as the most frequent endophyte, Oncidium orchids are less 
commonly invaded by Pestalotia and Aspergillus (Otero et al. 2002; Mohamed and 
Joseph 2016). Tulasnella is the most widespread endophyte of Paphiopedilum 
orchids along with Valsa, Penicillifer, Lasiodiplodia, and Rigidoporus as the 
uncommon inhabitants (Khamchatra et al. 2016; Rajulu et al. 2016; Parthibhan 
and Ramasubbu 2020). Rhizoctonia and Tulasnella have been widely isolated 
from Phalaenopsis orchids than Cochliobolus and Trichoderma (Saha and Rao 
2006; Rachanarin et al. 2018). Vanda orchids have been commonly linked with 
Ceratobasidium, Alternaria, and  Fusarium, while, Agaricus, Mycena, Armillaria, 
Russulaceae, and Moniliopsis are their infrequent endophytes (Sudheep et al. 2012; 
Chand et al. 2020). 

3 Antimicrobial Screening of Orchidaceae-Fungal 
Endophytes 

The association of orchid plant species with endophytes is attributed to the plant-
endophyte dynamics and microbial development via plant host association (Chutulo 
and Chalannavar 2018). The screening of endophytic fungi for antimicrobial
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Table 1 Diversity of Orchidaceae-associated fungal endophytes 

Host orchid 
plants 

Bulbophyllum 
kaitiense 

Aspergillus, Penicillium Kasmir et al. (2011) 

Bulbophyllum 
neilgherrense 

Aspergillus, Colletotrichum, Fusarium, 
Gliocladium, Guignardia, Nigrospora, Penicil-
lium, Pestalotiopsis, Trichoderma, Xylaria 
species 

Sudheep et al. (2012); 
Sawmya et al. (2013) 

Cattleya 
jongheana 

Colletotrichum Da Silva et al. (2018) 

Cattleya 
skinneri 

Epulorhiza, Penicillifer, Trichoderma, Fusarium, 
Aspergillus, Tetracladium, Verticillium, 
Pestalotiopsis, Monilliopsis, Botrytis 

Ovando et al. (2005) 

Cymbidium 
aloifolium 

Cyperus, Fusarium, Trichoderma, Alternaria, 
Penicillium, Colletotrichum, Aspergillus 

Shubha and Srinivas 
(2017) 

Cymbidium 
dayanum 

Corynascus, Fusarium, Xylaria, Phoma, 
Pestalotiopsis, Chaetomium, Colletotrichum 

Sour et al. (2015) 

Dendrobium 
friedericksianum 

Fusarium, Pestalotiopsis, Xylaria 

Dendrobium 
hercoglossum 

Chaetomium cochliodes, Xylaria Colletotrichum, 
Nigrospora species 

Cymbidium 
faberi 

Umbelopsis, Tulasnella, Fusarium, Trichoderma Yu et al. (2015) 

Cymbidium 
goeringii 

Cylindrocarpon, Cryptosporiopsis, Nigrospora, 
Fusarium, Exophiala, Tulasnella 

Dendrobium 
crumenatum 

Cladosporium, Scolecobasidium, Colletotrichum, 
Guignardia, Curvularia, Fusarium, 
Westerdykella, Xylohypha, Pestalotiopsis, Xylaria 
species 

Mangunwardoyo et al. 
(2012); Sour et al. 
(2015) 

Dendrobium 
loddigesii 

Acremonium, Cladosporium, Fusarium, 
Colletotrichum, Sirodesmium, Chaetomella, 
Pyrenochaeta, Nigrospora, Thielavia 

Chen et al. (2010) 

Dendrobium 
nobile 

Colletotrichum, Hypoxylon, Clonostachys, 
Guignardia, Penicillium, Trichoderma, 
Phomopsis, Fusarium, Pestalotiopsis, Rhizocto-
nia, Xylaria 

Yuan et al. (2009) 

Dendrobium 
officinale 

Alternaria, Aspergillus, Aureobasidium, 
Cochliobolus, Colletotrichum, Cystobasidium, 
Epicoccum, Fusarium, Pestalotiopsis, 
Trichoderma, Xylaria 

Jin et al. (2017) 

Dendrobium 
speciosum 

Epicoccum nigrum, Fusarium, Trichoderma, 
Nigrospora, Phialophora, Tulasnella 

Boddington and 
Dearnaley (2008) 

Dendrobium 
aphyllum 

Colletotrichum, Fusarium, Phomopsis, 
Xylariaceae species 

Chen et al. (2013a, b) 

Dendrobium 
chrysanthum 

Dendrobium 
chrysotoxum
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potential is defined by literature, suggesting that endophytes modulate the host 
defense mechanisms in accordance with the spectrum of pathogens. Orchid species 
are being widely explored for endophytic associations and their potential to produce 
promising antimicrobial compounds. With recent advances in scientific technolo-
gies/assay systems, research initiatives are undertaken to screen the potential endo-
phytic fungi from various species of orchids. Different fermentation conditions and 
types are employed for the synthesis of bioactive products using the endophytic 
fungi (Tiwari et al. 2021a) and include potato dextrose medium (liquid culture),
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Table 1 (continued)

Host orchid 
plants 

Dendrobium 
crystallinum 

Dendrobium 
falconeri 

Dendrobium 
fimbriatum 

Dendrobium 
monoliforme 

Aspergillus, Fusarium, Cladosporium, 
Hypoxylon, Colletotrichum, Trichoderma, 
Helminthosporium, Leptosphaerulina 

Shrestha et al. (2018) 

Dendrobium 
transparens 

Oncidium 
altissimum 

Rhizoctonia, Colletotrichum, Pestalotia, Xylaria Otero et al. (2002) 

Oncidium 
species 

Rhizoctonia, Cercospora, Aspergillus Mohamed and Joseph 
(2016) 

Paphiopedilum 
druryi 

Colletotrichum, Penicillifer, Tulasnella Parthibhan and 
Ramasubbu (2020) 

Paphiopedilum 
fairrieanum 

Xylaria, Penicillium, Lasiodiplodia, Fusarium, 
Cladosporium 

Rajulu et al. (2016) 

Paphiopedilum 
villosum 

Valsa, Coriolopsis, Nigroporus, Flavodon, 
Ceratobasidium, Rigidoporus, Tulasnella 

Khamchatra et al. (2016) 

Phalaenopsis 
manni 

Cochliobolus, Trichoderma, Rhizoctonia Saha and Rao (2006) 

Phalaenopsis 
pulcherrima 

Rhizoctonia, Epulorhiza, Tulasnella Rachanarin et al. (2018) 

Vanda cristata Mycoleptodiscus, Agaricus, Fusarium, 
Paraconiothyrium, Alternaria, 
Pseudochaetospaeronema 

Chand et al. (2020) 

Cymbidium 
sinense 

Epulorhiza, Tulasnella Nontachaiyapoom et al. 
(2010) 

Paphiopedilum 
sukhakulii 

Vanda testacea Ceratobasidium, Fusarium, Xylaria, Rhizoctonia, 
Tulasnella, Thanatephorus, Serendipita, 
Russulaceae, Mycena, Moniliopsis, 
Erythromyces, Ceratobasidium, Armillaria 

Behera et al. (2013)



23 days culture, 25 �C for mullein production from Penicillium janczewskii (Patil 
et al. 2016), fermentation medium, for 8 days at 30 �C for Taxol production from 
Aspergillus aculeatinus (Qiao et al. 2017) mineral medium (liquid), 3 days at 25 �C 
for Vincristine production from Fusarium oxysporum (Patil et al. 2016), submerged 
culture, 30 days at 25 �C for pyrrocidine A and B production from Acremonium zeae 
(Patil et al. 2016), grain–bran–yeast medium for 40 days at 28 �C for rhizoctonic acid 
production from Rhizoctonia species (Patil et al. 2016), among other techniques.
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The fungal endophytes from orchids are cultured via solid-state fermentation or 
submerged fermentation and the conditions, namely temperature, pH, media com-
position, partial pressures of carbon dioxide and oxygen (pCO2 and pO2), aeration, 
etc. are optimized for maximum product recovery. These media parameters are 
crucial to metabolite production and differ accordingly. The different fungal endo-
phyte strains are screened via antimicrobial (antibacterial, antifungal, 
antiviral) assays for validation of their antimicrobial properties. Moreover, the 
culture broth of endophytes is screened for bioactive properties via common 
methods, namely mycelial radial growth test, disk diffusion technique, and agar 
dilution assay (Songrong et al. 2005; Aly et al. 2008; Hoffman et al. 2008; 
Pongcharoen et al. 2008). The increased bio-prospection of endophytes colonizing 
different plants has demonstrated significant antimicrobial potential, particularly 
from medicinal plants including Paris polyphylla var. yunnanensis, fungal endo-
phytes from Garcinia, Ophiopogon, and Cyrtomium species (Jiang et al. 2006; 
Phongpaichit et al. 2006; Li et al. 2008; Zhao et al. 2010). 

4 Antimicrobial Potential of Orchidaceae-Associated 
Fungal Endophytes 

Antimicrobial compounds are gaining popularity on account of their therapeutic 
potential in combating the pathogenic microorganisms. Alternative biological 
resources are extensively screened and employed to produce novel antimicrobials 
(Tiwari et al. 2021a, 2022b). The endophyte species are documented to be prolific 
producers of bioactive metabolites (Tiwari et al. 2022a), exhibiting potent pharma-
cological activities and are commercialized as marketed drugs. For instance, taxol, a 
multi-billion-dollar drug is synthesized by endophytic fungus, Taxomyces 
andreanae that was isolated from Taxus brevifolia (Tiwari et al. 2021b, 2022a). 
Orchid-associated endophytes have been implicated in the synthesis of diverse 
antimicrobial metabolites. Fungal endophyte species, namely Xylaria, Phoma, and 
Fusarium, isolated from Dendrobium devonianum, Dendrobium officinale, 
Acianthera teres, and Acianthera setaceus have been investigated for their antimi-
crobial potential. Fusarium oxysporum has been extensively screened for antimicro-
bial effects against various pathogenic microorganisms including Saccharomyces 
cerevisiae, Staphylococcus aureus, Pseudomonas aeruginosa, Candida albicans, 
Candida krusei, Sarcina lutea, and Escherichia coli (Vaz et al. 2009; Jin et al. 2017;



Bungtongdee et al. 2019). Table 2 enlists the antimicrobial activities of endophytic 
fungi recovered from diverse orchid species. 
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Table 2 The antimicrobial potential of fungal endophytes from diverse orchid species 

Fungal species Orchid species Test microorganisms Reference 

Fusarium nivale Dendrobium 
crumenatum 

Candida tropicalis, Candida 
albicans 

Mangunwardoyo 
et al. (2012) 

Streptomyces 
strains DR5–1, 
DR7–3, DR8–5, 
DR8–8 

Dendrobium 
species 

Alternaria alternate, Fusarium 
oxysporium, Curvularia oryzae, 
Colletotrichum gloeosporioides 

Tedsree et al. 
(2022) 

Xylaria species Anoectochilus 
setaceus 

Methicillin-resistant, Staphylo-
coccus aureus, Bacillus subtilis 

Ratnaweera et al. 
(2014) 

Aureobasidium 
pullulan, fusarium 
oxysporum 

Dendrobium 
officinale 

Staphylococcus aureus, 
Escherichia coli, Pseudomonas 
aeruginoa, Candida albicans 

Jin et al. (2017) 

Fusarium 
oxysporum 

Acianthera teres Staphylococcus aureus, 
Escherichia coli, Candida 
albicans, Candida krusei 

Vaz et al. (2009) 

Fungal endophyte 
DO14 

Dendrobium 
officinale 

Candida albicans, Cryptococcus 
neoformans, Trichophyton 
rubrum, Aspergillus fumigatus 

Wu et al. (2015) 

Alternaria species Oncidium 
warmingii 

Staphylococcus aureus, Bacillus 
cereus 

Vaz et al. (2009) 

Phoma species Dendrobium 
devonianum, 
Dendrobium 
thyrsiflorum 

Escherichia coli, Staphylococcus 
aureus, Bacillus subtilis 

Xing et al. (2011) 

Bioactive products with promising antimicrobial activity have been derived from 
different endophyte species. A triterpenoid, helvolic acid, isolated from the organic 
endophyte extract of a Sri-Lankan orchid (Anoectochilus setaceus), displayed potent 
antimicrobial effect against Bacillus subtilis and methicillin-resistant Staphylococ-
cus aureus (Ratnaweera et al. 2014). The antimicrobial properties of metabolites 
from fungal endophytes, found in Thai orchids were examined and out of the 
97 isolates, 13 endophyte strains demonstrated antifungal activity against 
Colletotrichum species, Fusarium species and Curvularia species. In addition, 
endophyte CK F05–5 showed potent antifungal activity against Fusarium species 
(Bungtongdee et al. 2019). A fungal endophyte was isolated, characterized from 
Dendrobium moniliforme, and the presence of phenolics in the organic extract 
contributed to the antimicrobial properties of the host plant (Shah et al. 2019). 
Endophytic Pyrenochaeta species, recovered from Dendrobium loddigesii, revealed 
antimicrobial activity against Bacillus subtilis and Aspergillus fumigatus (Chen et al. 
2010). Phoma species of endophytic fungi also demonstrated significant antimicro-
bial effects against Staphylococcus aureus, Bacillus, and Escherichia coli (Xing 
et al. 2011). Surprisingly, the antibacterial efficacy of Orchidaceae-derived fungal 
endophytes was superior to that of some existing antimicrobial drugs such as 
ampicillin (Xing et al. 2011).
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5 Conclusion and Future Perspectives 

In addition to their ornamental and culinary values, orchids also possess a wide range 
of phytochemical ingredients including terpenoids, phenanthrenes, steroids, and 
flavonoids (Zhang et al. 2015). Accordingly, the antimicrobial, anticancer, 
neuroprotective, antioxidant, hypoglycemic, hepatoprotective, and immuno-
modulatory actions of these valuable plants are traditionally being exploited in 
several forms of ethnomedicine for the treatment of various diseases (Kong et al. 
2003; Pant  2013; Biswas et al. 2016). Besides, Orchidaceae-associated fungal 
endophytes also synthesize diverse bioactive metabolites such as alkaloids, peptides, 
quinones and phenolics, exhibiting anti-inflammatory, antineoplastic and antimicro-
bial properties (Jin et al. 2017; Pant et al. 2017). 

Several species of Orchidaceae-fungal endophytes have been linked with antimi-
crobial effects (Singh et al. 2012). So far, the antimicrobial potential of Phoma, 
Xylaria, and Fusarium species of fungal endophytes associated with different 
orchids including Anoectochilus setaceus, Acianthera teres, Dendrobium 
thyrsiforum, Dendrobium Officinale, Dendrobium lindleyi, Dendrobium 
devonianum, and Dendrobium crumenatum have been analyzed. Consequently, 
the metabolic products of Orchidaceae-associated fungal endophytes can serve as 
lead compounds for potential development of new antimicrobial agents against the 
drug-resistant microbial pathogens (Cui et al. 2012). Recent advances in omics, 
medicinal chemistry and computer-aided drug development are projected to expedite 
the translation of complicated orchid–endophyte interaction into more prolific and 
ecofriendly therapeutic products. Nevertheless, challenges in terms of scarce taxo-
nomic data, lack of biotechnologically based in vitro reproduction and rapid deteri-
oration of orchid diversity necessitate adequate and long-term solutions. Moreover, 
bioactive metabolites of Orchidaceae-associated fungal endophytes with proven 
antimicrobial efficacy during in vitro assays should be further evaluated through 
appropriate in silico and in vivo studies. 
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Asymbiotic Seed Germination in Terrestrial 
Orchids: Problems, Progress, and Prospects 

Nora E. Anghelescu, Yavar Vafaee, Kolsum Ahmadzadeh, 
and Jen-Tsung Chen 

1 Introduction 

The species within the Orchidaceae family are among the largest and most diverse 
groups of flowering plants (Gaskett and Gallagher 2018). Scientific evidence indi-
cates that the most recent common ancestor of extant orchids lived about 76–84 
million years ago (the Late Cretaceous) (Ramirez et al. 2007). Throughout history, 
orchids have fascinated mankind, dating back thousands of years. Based on a Greek 
myth, Orkhis was a prince who fell in love with a priestess of Bacchus, but the 
creatures guarding her, tore him apart. The flowers that grew from his bloodshed 
were named after him (Ramirez et al. 2007). Therefore, this explains the origin of the 
name of one temperate genus, genus Orchis L., which later gave the name of the 
entire Orchidaceae family. The word “orchid” can also be traced back to the works 
of Theophrastus between 370 and 285 BC (Yam and Arditti 2017a). Due to the 
shape of the tuberoids of some orchids, they were considered to be aphrodisiacs, and 
another myth suggests that the tuberoids were the favorite food of satyrs (Gaskett 
and Gallagher 2018). With 899 genera, 27,801 species, and about 70,000 to 100,000

N. E. Anghelescu 
Faculty of Horticulture, University of Agronomic Sciences and Veterinary Medicine of 
Bucharest, Bucharest, Romania 

Y. Vafaee (✉) · K. Ahmadzadeh 
Department of Horticultural Sciences and Engineering, Faculty of Agriculture, University of 
Kurdistan, Sanandaj, Iran 

Medicinal Plants Breeding and Development Research Institute, University of Kurdistan, 
Sanandaj, Iran 
e-mail: y.vafaee@uok.ac.ir 

J.-T. Chen 
Department of Life Sciences, National University of Kaohsiung, Kaohsiung, Taiwan 
e-mail: jentsung@nuk.edu.tw 

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023 
P. Tiwari, J.-T. Chen (eds.), Advances in Orchid Biology, Biotechnology and Omics, 
https://doi.org/10.1007/978-981-99-1079-3_8

221

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-1079-3_8&domain=pdf
mailto:y.vafaee@uok.ac.ir
mailto:jentsung@nuk.edu.tw
https://doi.org/10.1007/978-981-99-1079-3_8#DOI


interspecific, cultivated hybrids, Orchidaceae is the second most species-rich family 
among the flowering plants, after Asteraceae, comprising 10% of all systematically 
verified angiosperms and 40% of all monocotyledon species (Gaskett and Gallagher 
2018; The Plant List 2020). From an evolutionary and phylogenetic point of view, 
orchids are among the most evolved plant species with a broad range of inter- and 
intra-specific variation, reflected as a wide morphological diversity including plant 
architecture and flower size, shape, color and smell, and variations that can be rarely 
seen in other plant families (Zhang et al. 2018; Otero and Flanagan 2006). All 
characteristics of the species undergoing active speciation are present among 
orchids, which live in a delicately balanced equilibrium with their ecosystem 
(Dressler 1982). Orchids represent the main interest in many scientific studies due 
to their amazing flower beauty, small and dust-like seed, unique pollination strate-
gies and reproduction system, as well as due to their complex symbiosis association 
with mycorrhizal fungi (Zhang et al. 2018; Schluter et al. 2011). It is important to 
note that these outstanding features are considered evolutionary forces to retain or 
improve orchids’ diversity and survival (Gaskett and Gallagher 2018; Rasmussen 
1995; Shefferson et al. 2020). Orchidaceae is one of the most adaptive plant families, 
which has provided their species with the possibility of long-term survival 
(Shefferson et al. 2020). A typical adaptation mechanism among Orchidaceae 
species is the formation of a multilayer epidermis of dead cells, called velamen, 
present in the roots of many orchids, especially tropical orchids, protecting the root 
cortex from excessive drying and helping the water absorption (Zotz and Winkler 
2013; Gravendeel et al. 2004). Another adaptation mechanism of orchids is their 
extraordinary flowers, which have a close and special relationship with pollinating 
insects (Schluter et al. 2011; Waterman and Bidartondo 2008). The third mechanism 
is the symbiotic relationship with mycorrhizal fungi, which makes orchids more 
tolerant of non-suitable habitats, thus helping their global spreading (Gao et al. 2020; 
Selosse et al. 2022). Therefore, members of the Orchidaceae family comprise a 
substantial variety of life forms including epiphyte, lithophyte, aquatic, and terres-
trial, which are compatible with diverse niches from tropical forests to high alpine 
regions, except Antarctica, with the greatest species diversity in the tropical and 
subtropical region (Zhang et al. 2018; Tsiftsis et al. 2018; Acharya et al. 2011). They 
are found all over the world, from deserts and semi-scrubs to rainforests and tundra 
ecosystems (Acharya et al. 2011; Renz 1978). Renz (Renz 1978) indicated two 
distinct border lines of Mediterranean orchids grown in the Iranian plateau and 
Himalayan range (Fig. 1).
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Among different life types of orchids, terrestrial species are typically grown in 
soil and produce fleshy underground round or palmate-shaped tubers. Many terres-
trial species within the Orchidaceae family are on the red list of rare and endangered 
species of wild plants and animals (CITES) (Valletta et al. 2008; Hinsley et al. 2017) 
and some of them are at risk of extinction because of climate change, deforesting, 
land manipulation, tuber overexploitation, and illegal trade (Vafaee et al. 2021; 
Ghorbani et al. 2014a, 2014b). The harvest of underground tubers of terrestrial 
orchid species in the Anatolia and Middle East, the two main hotspots of terrestrial 
orchid species, has intensified due to increased global demand. For instance,



approximately 7–11 million orchid plants are annually harvested from the main 
terrestrial orchid diversity regions in Iran, and this pressure has put these medicinally 
valuable species in danger of extinction (Ghorbani et al. 2014a). In the presence of 
special mycorrhizal fungi, which provide essential nutrients for orchids, only a little 
ratio of orchid seeds can germinate in nature (Acharya et al. 2011; Renz 1978). 
Exploiting the large number of seeds produced within each capsule (about 0.2–2 
million seeds (Valletta et al. 2008)), the asymbiotic seed germination procedure can 
be employed for large-scale propagation of terrestrial orchids through the generation 
of a high number of in vitro raised plantlets over a short period (Jolman et al. 2022). 
The present book chapter introduces terrestrial orchid species, describes their biol-
ogy and conservational status, and focuses on in vitro conservation efforts performed 
on terrestrial orchids, with major emphasis on asymbiotic seed germination barriers. 
Moreover, it summarizes the performed research on asymbiotic seed germination of 
terrestrial orchid species highlighting the important variables including media com-
ponents in particular organic supplements and plant growth regulators (PGRs). 
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Fig. 1 The supposed distribution of distinct border lines for Europe-Mediterranean and Himalayan 
orchids (Renz 1978)
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2 Conservational Status of Orchids 

Based on the state of the World’s Plants and Fungi report released by Royal 
Botanical Gardens Kew, it has been highlighted that about 40% (two-fifths) of all 
plant species are at risk of extinction on a world scale which shows a double increase 
in the number of threatened species from 2016 to 2020 (Nic Lughadha et al. 2020). 
With the highest documented species number after Asteraceae, the Orchidaceae 
family is on the front line of extinction. In this regard, five orchid species have 
already been extinct, 87 are near threatening, 195 species are classified as vulnerable, 
197 species are identified as critically endangered, and a total of 747 species are 
classified as threatened based on the IUCN Global Red List 2020 (Wraith et al. 
2020). An individual tropical tree can harbor hundreds of epiphytic orchid species, 
so a small loss in habitat will impose profound negative impacts on orchid diversity 
and survival (Go et al. 2020). Several major and minor factors can, directly and 
indirectly, lead to the destruction of natural orchid habitats and declining their 
diversity and survival, as summarized by Hágsater and Dumont (Hágsater and 
Dumont 1996). Geographic distribution, habitat specificity, and population size all 
affect the efficiency of these factors on a given orchid species. The main causes are 
habitat destruction, modification, and fragmentation due to lodging, agriculture, 
artificial plantations, and overexploitation for ornamental, medicinal, and food 
purposes (Hágsater and Dumont 1996; Sezik 2002). Rare species are generally 
thought to have more specific habitat priorities than non-threatened species. A 
further factor responsible for orchid decline is environmental destruction, which 
can increase extinction risk through intensified climate change, soil erosion, and 
drought, among other factors (Gale et al. 2018; Swarts and Dixon 2009). Intense 
fires, floods, or severe environmental fluctuations are among the natural catastrophes 
threatening rare orchid species (Wraith et al. 2020; Phillips et al. 2020). Small and 
spatially isolated fragments of natural habitat destabilize populations and impede 
pollen and seed exchange (Kropf and Renner 2008; Cozzolino et al. 2005). Genetic 
diversity can be lost in fragmented populations, leading to decreasing the attraction 
of a diverse range of pollinators. For example, it has been shown that some terrestrial 
orchid species grown in Iran including Himantoglossum affine (Boiss.) Schltr., 
Orchis simia Lam. and Anacamptis collina (Banks & Sol. ex Russell) R. M. 
Bateman, Pridgeon & M. W. Chase are at risk of extinction due to environmental 
and anthropogenic impacts (Gholami et al. 2021a, 2021b; Kaki et al. 2020; Vafaee 
et al. 2017; Nosrati et al. 2011). Orchid conservation traditionally is based on three 
procedures including developing action plans, determining the population or con-
servation status at the species or genus level, and propagating and reintroducing 
cultivated individual plants of the threatened species into nature/the wild (Gale et al. 
2018).
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3 Terrestrial Orchid 

Genealogically and phenologically, temperate, terrestrial orchids are similar to 
tropical orchids, the main differences being the underground fleshy tubers formed 
in soil and their rather smaller flowers (Djordjević and Tsiftsis 2022). The significant 
feature of terrestrial orchid species includes their complicated ecology, rareness, and 
capability to survive in almost all habitats (Rasmussen 1995; Swarts and Dixon 
2017). Beyond their reproductive structures and pollination mechanisms, terrestrial 
orchids are unusual in many ways (Shefferson et al. 2020). It is important to study 
the terrestrial orchids, mostly temperate species, from a mycotrophic viewpoint if we 
are going to understand their biology. It is well documented that terrestrial orchids 
are more associated with mycorrhizal fungi than epiphytic counterparts. This is 
because the seedlings of these species stay underground and remain dependent on 
mycorrhizal fungi for a long time. In contrast, orchid seedlings growing epiphyti-
cally access light at their early-life stages and can start photosynthesis once the 
seedlings are established (Rasmussen 1995). Based on the World Conservation 
Union, terrestrial species account for one-third of all taxonomically verified orchids, 
while more than half of extinct, vulnerable, and critically endangered species belong 
to this life type of orchids (Swarts and Dixon 2009, 2017). Due to the multiplicity of 
threatening factors, terrestrial orchids have already experienced more injuries and are 
also more vulnerable to experience extinction in the future (Swarts and Dixon 2009). 
The terrestrial orchid genera which have attracted more attention in terms of 
conservational activities are Cypripedium L. (Bernhardt and Edens-Meier 2010), 
Orchis Tourn. ex L. (Fay et al. 2007), Ophrys L. (Devey et al. 2008), Platanthera 
Rich. (Knudson et al. 2015), Dactylorhiza Neck. ex Nevski (Hedrén 2001), 
Himantoglossum Spreng. (Dulić et al. 2019), Goodyera R.Br. (Wong and Sun 
1999), Cephalanthera Rich. (Hasegawa et al. 2017), Epipactis Zinn (Squirrell 
et al. 2002), and Serapias L. (Bellusci et al. 2009). In Fig. 2, the flower and 
inflorescence morphology of some endangered terrestrial species have been shown. 

4 The Life Cycle of Terrestrial Orchids 

Terrestrial orchids have a long-life cycle in nature where they need 2–5 years to enter 
the reproductive phase and to produce mature seeds (Balilashaki et al. 2020; 
Delforge 2006). Seeds, protocorms, juveniles, dormant adults, vegetative adults, 
and flowering individuals account for the six primary stages of the terrestrial orchid 
life cycle (Shefferson et al. 2020; Harrap and Harrap 2009) (Fig. 3). The life cycle of 
terrestrial orchids starts with symbiotic seed germination, which is a complex 
process requiring special microclimate and micro-edaphic conditions besides the 
relationship with mycorrhizal fungi (Rasmussen et al. 2015; Fatahi et al. 2022a). Cell 
division of the embryo within the dust-like seed leads to the formation of the 
protocorm, a special structure containing leaf and shoot primordia (Cardoso et al.



2020). The protocorm is the primordial stage of terrestrial orchids’ life cycle, which 
develops underground, and is found in the Orchidaceae and Pyroloideae families 
(Shefferson et al. 2020; Yeung 2017). Upon the development of protocorm, a high 
density of rhizoids will be generated, which will help the absorption of the essential 
nutrients from the surrounding medium (Piria et al. 2008). The length of the first 
post-germination winter determines the seedling’s ability to transition from the 
protocorm to the young plantlet stage. In this term, some species even require 
more than one winter season (Rasmussen 1995). In the next stage, the protocorms 
develop root-tuber structures (also known as mycorrhizae), from which small plant-
lets will start developing, after spending the dormant phase (Harrap and Harrap 
2009). The seedlings can live underground for months or even years, where they
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Fig. 2 The flower and inflorescence morphology of some most endangered terrestrial orchid 
species. (a) Orchis mascula (L.) L.; (b) Ophrys reinholdii subsp. straussii (H.Fleischm.) E.Nelson; 
(c) Ophrys schulzei Bornm. & Fleischm.; (d) Dactylorhiza umbrosa (Kar. & Kir.) Nevski; (e) 
Himantoglossum affine (Boiss.) Schltr.; (f) Nigritella nigra subsp. bucegiana Hedrén, Anghel. & 
R. Lorenz, subsp. nov.; (g) Anacamptis coriophora (L.) R. M. Bateman, Pridgeon & M. W. Chase; 
(h) Orchis simia Lam.; (i) Steveniella satyrioides (Spreng.) Schltr.; (j) Orchis purpurea Huds., (k) 
Dactylorhiza fuchsii (Druce) Soó subsp. carpatica (Batoušek & Kreutz) Kreutz var. albiflora;  (l) 
Anacamptis palustris (L.) R.M.Bateman, Pridgeon & M.W.Chase subsp. elegans (Heuff.) R. M. 
Bateman, Pridgeon & M. W. Chase var. albiflora. Photos a–e, g–j © Yavar Vafaee, Abdolbaset 
Ghorbani, Iran; Photos f, k, l © Nora E. Anghelescu, Romania



exclusively depend on mycorrhizal fungi to obtain their required nutrients, being 
called mycotrophs (Harrap and Harrap 2009). It is important to consider various 
factors such as the depth of the germination, the porosity of the soil, concentration of 
humus, climate and genetic variation that may affect how long the underground 
phase lasts (Rasmussen 1995).
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Fig. 3 The life cycle of terrestrial orchids. After Shefferson, Jacquemyn (Shefferson et al. 2020). 
(The diagram created with Biorender.com) 

Like many other higher plants, orchids exploit asexual propagation means besides 
sexual reproduction (Yam and Arditti 2017a). This includes vegetative reproduction 
through the root-tuber structure which results in the generation of genetically 
identical individuals. Vegetative reproduction can be seen in almost all types of 
terrestrial orchid root systems as classified by Tsiftsis, Štípková (Tsiftsis et al. 2018) 
including rhizomatous (Cephalanthera Rich., Corallorhiza Gagnebin, Epipactis 
Zinn, and Epipogium Sw.), intermediate (Dactylorhiza Neck. ex Nevski, 
Gymnadenia R.Br., and Platanthera Rich.) and tuberous orchids (Anacamptis, 
Himantoglossum Spreng., Ophrys L. and Orchis Tourn. ex L.). In tuberous orchids, 
during the autumn of the second year, root and shoot meristems started to activate, 
producing a young plantlet that remains dormant during the winter (Malmgren 
1996). During the spring of the third year, the axillary bud of the mother tuber 
produces a new tuberoid that survives in the next dormant season and generates a 
new shoot in the growing season (Figs. 4 and 5). In Iran and Turkey, the collectors



pick the daughter young tuber and leave the mother tuber for the next growing 
season, a traditional conservational activity mitigating the overharvesting pressure 
on terrestrial orchid species (Ghorbani et al. 2014a, 2014b). 
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Fig. 4 The growth phases and stages of terrestrial orchid species. The brown and gray parts are the 
protocorm and mother tuber, respectively. The pink part is new formed daughter tuber. After 
Rasmussen (1995) and Harrap and Harrap (Harrap and Harrap 2009). (The picture created with 
Biorender.com) 

Fig. 5 The development of the daughter tuber on the mother tuber as a vegetative reproduction 
system in (a). Ophrys reinholdii subsp. straussii (H. Fleischm.) E. Nelson and (b). Gymnadenia 
conopsea (L.) R.Br. Photos © Yavar Vafaee, Iran 

At the time of harvest, each plant has an old tuber, which has a stem and flower, 
and a fresh, fleshy tuber, which is for the next year’s plant growth (Fig. 5). Old tubers 
are rough and wrinkled. In most cases, collectors collect the plant before the seeds 
are formed, which is a limitation of reproduction in wild populations (Kreziou et al. 
2016).
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5 Salep and Tuber-Derived Products 

Besides medicine, orchid products are widely used in the food industry to make 
traditional ice creams and beverages with special rheological properties (Kurt 2021; 
Şen et al. 2018; Kurt and Kahyaoglu 2015). The tubers of terrestrial orchids are rich 
sources of glucomannan (GM), which consists of linear chains of glucose and 
mannose connecting with 1–4 beta glycosidic bonds (Kurt 2021) (Fig. 6). In 
Mediterranean and Middle East countries, the underground tubers usually harvest 
and boil in water or milk, and then dry to prepare salep powder (Şen et al. 2018; Sen 
et al. 2019). During salep preparation, no cleaning and purification process is 
performed and the resulting powder is used directly in various formulations (Ece 
Tamer et al. 2006; Jagdale et al. 2009). However, salep has other constituents 
including starch, protein, and ash, which usually consider factors reducing the 
quality of the salep powder. A typical salep sample can include 8–48% 
glucomannan, 5–44% starch, 2.7–12% protein, and 1.5–6.8% ash (Şen et al. 
2018). As an anti-constipation constituent, GM generally causes bowel movements 
for 12–24 h (Kurt 2021; Kurt and Kahyaoglu 2015). On the other hand, GM is a 
natural water-soluble fiber that can regulate blood sugar, help hypoglycemia allevi-
ation, and reduce stress (Tekinşen and Güner 2010). It can also act as a preventive 
agent for chronic diseases and obesity (Jagdale et al. 2009). 

Fig. 6 Chemical structure of glucomannan, a polysaccharide found in a high ratio in terrestrial 
orchid species. (Source: Kim, S., et al., PubChem 2023 update. Nucleic Acids Research, 2023. 51 
(D1): p. D1373–D1380)
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Fig. 7 Tuber morphology of tuber in selected terrestrial orchid species. Scale: 1 cm 

In recent years, the high demand for salep-based beverages and ice creams and 
also for its food and medicinal products has attracted the attention of collectors to 
supply tuber material from nature (Ghorbani et al. 2014b; Sezik 2006). Salep is a 
white flour obtained by grinding the dry tubers from terrestrial orchid species (Kurt 
2021). About 24 genera and 90 species of terrestrial orchids within the Orchidaceae 
family are used to produce salep powder (Sen et al. 2019). The genera Anacamptis 
Rich., Himantoglossum Spreng., Orchis Tourn. ex L., Ophrys L., and Serapis L. are 
orchids with round or oval tubers and the genus Dactylorhiza Neck. ex Nevski with 
palmate and finger-shaped tubers are among the most used taxa to produce salep 
powder (Ece Tamer et al. 2006; Ghorbani et al. 2017). Approximately 30 tons of 
orchids are annually harvested in Turkey (Kurt 2021) which accounts for 30–120 
million individual terrestrial orchid plants. The shortage of natural populations of 
terrestrial orchids in Turkey has shifted the harvesting pressure to neighboring 
countries. In this regard, a volume of 7–13 million terrestrial orchid plants is 
harvested in Iran belonging to 30 species and sub-species mainly growing in the 
Alborz and the Zagros Mountain basins (Vafaee et al. 2021; Ghorbani et al. 2014a, 
2014b). Figure 7 shows the tuber morphology of some terrestrial orchid species 
grown on the Iranian plateau. 

Hot salep is a viscous milky drink with unique rheological features that is widely 
consumed in Turkey during the winter season (Karaman et al. 2012). It is prepared 
by boiling salep powder and milk with sugar and then sprinkling cinnamon on top 
(Ece Tamer et al. 2006; Dogan and Kayacier 2004). In Greece, it is also widely used 
in local markets as a traditional warm beverage in winter. It is interesting that before 
the introduction of coffee, the salep drink was common in Europe (Kreziou et al. 
2016). Although there are alternatives such as carboxymethyl cellulose (CMC) due 
to the unique and special organoleptic and rheological features of salep and also 
because of CMC side effects, there is still an increasing demand for original salep 
powder (Kurt 2021; Sen et al. 2019; Kargar Jahromi et al. 2018).
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6 Seed and Embryo in Terrestrial orchids 

Despite their microscopic size, orchid seeds are produced in large numbers where an 
individual orchid capsule may contain about 0.2–2 million seeds (surprisingly about 
four million seeds per capsule in Cycnoches ventricosum Bateman) (Sonkoly et al. 
2016; Arditti and Ghani 2000). As a result, orchid seeds are among the smallest 
known seeds in the plant kingdom. All orchids including terrestrial species have tiny 
and dust-like seeds which makes the tracing of seed dispersal and monitoring of 
germination and plantlet growth challenging (Rasmussen and Whigham 1993; Ren 
et al. 2017). These stages could comprise seed releasing from dehiscent capsules to 
the symbiotic establishment and seedling development (Rasmussen 1995; 
Rasmussen et al. 2015; Süngü Şeker et al. 2021). However, with the advent of 
current domestication platforms for terrestrial orchids, it is possible to trace and 
monitor seed dispersal and establishment at pilot levels (Rasmussen 1995). On the 
other hand, considering the geographical distribution of orchids and the physical 
properties of seeds, some reasonable assumptions can be made about seed dispersal 
(Rasmussen 1995). Aside from their size (from 0.05 in Anoectochilus imitans Schltr. 
to 6 mm in length in Epidendrum secundum Jacq., showing 120-fold size differ-
ences) and shape, orchid seeds particularly in terrestrial species represent a remark-
able diversity in their testa architecture and sculpture (Vafaee et al. 2021; Gholami 
et al. 2021b; Arditti and Ghani 2000; Barthlott et al. 2014). Having a large number of 
air spaces, seeds are ideally adapted to being dispersed by wind (Hedrén et al. 2021). 
This allows orchids to disperse their seed kilometers far from their main niches 
(100 and 250 km for Orchis militaris L. and Orchis simia Lam., respectively 
(Rasmussen 1995)) leading to higher dispersal rates, maintenance, and extension 
of genetic diversity throughout geographical and ecological boundaries and in the 
same time reducing parental investment per seed (Hedrén et al. 2021). The seed 
morphometric characteristics play an important role in the systematic and taxonomic 
analyses of terrestrial orchid species, and species-specific patterns have been found 
for various epiphytic and terrestrial orchid species (Vafaee et al. 2021; Barthlott et al. 
2014). The morphometric variation of seed testa in orchids could be attributed to the 
ways of dispersion and dormancy status (Barthlott et al. 2014). The color of orchid 
seeds varies greatly from whitish to dark brown which is determined by the seed coat 
and especially by the embryo. Figure 8 shows the seed morphology and structure of 
some threatened terrestrial orchid species collected from the Iranian plateau. 

Compared to other flowering plants, orchids exhibit a unique seed development 
pattern (Fang et al. 2016). The pattern of orchid embryo development is unique 
among flowering plants for several features including lack of cotyledon and endo-
sperm, the various morphology of suspensor, and the simple seed coat (Lee et al. 
2007). The seeds of most flowering plants are known for having an embryo that 
differentiates into cotyledon(s), radicle, plumule, and hypocotyl, but in orchids, 
embryo development is not as advanced as other flowering plants (Yeung 2017; 
Lee et al. 2007; Kauth et al. 2006). In orchids, the embryo is poorly differentiated 
and the meristems and cotyledons are usually absent at the time of seed maturity



(Balilashaki et al. 2020; Yeung 2017). Although in some orchid species, there may 
be more than one embryo (polyembryony), for example, the presence of more than 
12 embryos in the seed of Thecostele alata (Roxb.) E.C.Parish & Rchb. f. species 
(Barthlott et al. 2014). An embryo gradually expands and fills the endosperm cavity, 
as the polar-chalazal complex degenerates at the beginning of seed development 
(Yeung 2017; Lee et al. 2007). An increase in embryo volume occurs during the
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Fig. 8 The seed morphology of some threatened orchid species. (a) Anacamptis coriophora (L.) 
R. M. Bateman, Pridgeon & M. W. Chase; (b) Dactylorhiza umbrosa (Kar. & Kir.) Nevski; (c) 
Ophrys reinholdii subsp. straussii (H.Fleischm.) E. Nelson; (d) Orchis mascula (L.) L.; (e) 
Himantoglossum affine (Boiss.) Schltr.; (f) Orchis simia Lam.; (g) Ophrys cilicica Schltr. (prev. 
Ophrys kurdistanica Renz); (h) Himantoglossum comperianum (Steven) P.Delforge (part of 
research studies performed at the Research Center for Terrestrial Orchid, RCTO, university of 
Kurdistan)



generation of globular embryos due to cell divisions in the outermost as well as the 
inner layers of the embryo proper (Lee et al. 2007). The seed coat develops from the 
integuments (maternal tissues) into a thin layer with varied surface characteristics. In 
Fig. 9, the SEM and light microscopic images of seed-containing embryos have been 
shown in some typical terrestrial orchid species.
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Fig. 9 The testa and embryo as revealed by SEM in (a). Himantoglossum comperianum (Steven) 
P.Delforge and (b). O. simia Lam. and using light microscopy in (c). Ophrys reinholdii subsp. 
straussii (H.Fleischm.) E.Nelson. SE seed embryo; ST seed testa 

7 Symbiosis with Mycorrhizal Fungi 

Recent investigations have revealed that an increasingly large number of green 
orchids, in the genera Cypripedium L., Cephalanthera Rich., Corallorhiza 
Gagnebin, Epipactis Zinn, Epipogium Sw., Limodorum Boehm., Gymnadenia R. 
Br., Neottia Guett., Orchis Tourn. ex L. and Platanthera Rich (Shefferson et al. 
2020; Abadie et al. 2006), obtains large amounts of their carbon from associations 
with ectomycorrhizal fungi. Current research using molecular techniques has begun 
to elucidate the type of fungi found in association with orchids. All of the fungi 
identified thus far that form orchid mycorrhiza typically belong to the division 
Basidiomycota Moore, R.T. Rhizoctonia-forming fungi or higher fungi, which 
occurred in the most ancestral orchid lineages, and today are most widespread in 
the family. More specifically, the mycorrhizal fungi mainly come from four families, 
Ceratobasidiaceae G.W. Martin (genus Rhizoctonia D.C., genus Ceratobasidium 
D.P. Rogers), Sebacinaceae K.Wells & Oberw. (genus Sebacina Tul. & C.Tul.),



Tulasnellaceae Juel (genus Tulasnella J.Schröt., genus Epulorhiza R. T. Moore) and 
Russulaceae Lotsy (genus Russula Pers.). They are usually saprotrophs, which feed 
on decaying wood, leaf litter or dung, ectomycorrhizal fungi attached to tree roots, 
and parasites on other plants (Rasmussen et al. 2015; Favre-Godal et al. 2020). The 
ectomycorrhizal fungi are generally symbiotic with the roots of neighboring photo-
synthetic trees. They obtain simple carbohydrates from the photosynthetic leaves of 
the trees and, in return, they provide minerals, amino acids, water, etc., to them 
(Selosse et al. 2022). Studies showed that the orchids managed to hitch-hike the 
hyphae of the ectomycorrhizal fungi and thus gain direct access to the flow of readily 
synthesized nutrients that come from the photosynthetic leaves. By associating with 
these tree-symbiotic fungi (the ectomycorrhizal fungi), the orchids ultimately 
became parasites on the trees, directing the abundant flow of nutrients straight into 
their roots (Selosse et al. 2022). This mutualistic association provides the fungus 
with relatively constant and direct access to carbohydrates, such as glucose and 
sucrose (Selosse and Cameron 2010). The carbohydrates are translocated from the 
tree source, usually the leaves, to root tissue and onto the plant’s fungal partners. In 
return, the plant gains the benefits of the mycelium’s higher absorptive capacity for 
water and mineral nutrients due to the large surface area of fungal hyphae, which are 
much finer than plant roots, thus improving the plant’s mineral absorption capabil-
ities. The mycelium can send extremely fine filaments far out into the soil, which acts 
as root extensions (Dearnaley et al. 2016). These filaments are far more effective in 
nutrient and water absorption than the plant roots themselves. The mycorrhizae 
enable them to grow much more quickly than they would otherwise. It has been 
estimated that the mycorrhizae increase the nutrient absorption of the plant by a 
factor of 100–1000 times (Li et al. 2021). This phenomenon used to be termed 
epi-parasitism or hyper-parasitism (to be a parasite on another parasite). Yet orchids 
are not alone in benefitting from such a relationship with ectomycorrhizal fungi. It is 
now known that 90% of plant species interconnect and have mutually beneficial 
relationships with mycorrhizae, but for these to exist, the soil must be undisturbed. 
These fungi have been fundamental to plant growth for the last 460–400 million 
years (Wang 2009; Kanchan et al. 2022). 
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7.1 The Damaging Effect of Phytoalexins 

Nevertheless, at certain moments in time, the friendly, mycorrhizal fungus has the 
potential to grow excessively and turn the tables on the orchid, becoming parasitic on 
the roots. If the infection would not be stopped on time, the fungus may extend its 
pelotons to the entire rhizome, the base of the stem, and leaves. In protocorms, this 
phenomenon may be lethal, the fungus being able to infect the whole protocorm 
body, ultimately destroying it. Having said that, this sudden and seemingly 
uncontrolled invasion generally does not take the orchid by surprise because these 
plants have adapted to produce highly effective, "home-made," specific fungicides, 
known as phytoalexins. These poisonous substances allow the orchid to keep control



of the expansion of the hyphae, without destroying or killing them. In most cases, the 
fungi remain alive, for at least a certain period, and benefit the orchid by releasing the 
needed nutrients. Phytoalexins also limits the penetration of hyphae to specific areas, 
such as the aboveground organs (leaves, stem, flowers). They are synthesized 
locally, before the initial fungal infection, initially by the protocorms’ rhizoids, 
and later, by the entire root system. The production increases significantly in 
response to fungal infection or wounding (Pavarino 1909; Bernard 1911). Several 
phytoalexins were isolated from orchids. To mention a few, orchinol, discovered in 
1957 and isolated from Orchis militaris L., was shown to be widespread in many 
European terrestrial orchids, as well as loroglossol and hircinol that were isolated 
from Loroglossum hircinum (L.) Rich. [today Himantoglossum hircinum (L.) 
Spreng.], both discovered by Bernard in 1910 (Bernard 1921; Bernard and Costantin 
1916). Thus, the orchid can control and regulate the timing and degree of fungal 
association, presumably providing a sufficient reason for the fungi to colonize and 
re-associate with it. The degree of colonization changes over the season, indicating 
that the orchid is controlling the uptake of nutrients while preventing parasitism by 
the fungus. While fungal food sources have become a life condition for orchids, one 
might ask how strong is the impact of orchid predation on fungal survival and 
evolution (Jones and Smith 2004). Up until now, it has not been demonstrated that 
orchid poisonous effect substantially affects fungal health and vigor. However, in 
some areas, it has been reported that the aboveground production of mushrooms (the 
fruiting bodies of fungi) was much lower in mycelia that supported orchids, as 
compared to mycelia of related fungal species, which do not associate with them. 
This might indicate that fungal fitness was reduced by the poisonous effect of 
orchids on their fungal partner. Moreover, the damaging effect was, subsequently, 
affecting other exosystemic interactions, damaging entire hyphal networks, and 
reducing plant species’ resistance and development. It remains to be fully demon-
strated if the reduction in fungal diversity in specific habitats was solely due to the 
poisonous effect of a sudden increase in the production of phytoalexins or if it was 
also due to the simultaneous, combined effect of other factors such as changes in the 
substrates pH, temperature, humidity, etc. Despite these observations, it is well 
known that orchid mycorrhiza, as well as all the other complex mycorrhizal net-
works, can heal and recover rapidly. This would diminish, at least partially, the 
effects orchids have on their specific fungi. At the same time, during their evolution, 
the fungi have not developed any significant avoidance or defense mechanisms 
against orchid poisonous effects. This leads to the conclusion that fungi are generally 
able to gradually recover and, in time, re-establish the ectomycorrhizal associations 
specific to certain, particular ecosystems (Merckx and Bidartondo 2008). However, 
in case of temporary loss/disappearance of specific symbiotic fungal partners, 
germination of seeds may be significantly affected, even if the loss of fungal parents 
lasts for 1–6 months to 1 year. This generally would be sufficient to affect entire 
generations of germinating seeds or protocorms in their first stages of development 
when they are entirely dependent on healthy, strong fungal associations.
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7.2 Destruction of Ecosystems/Natural Habitats 

As mentioned in the previous section, orchids are highly dependent on the activities 
of both the specific fungi and the trees that sustain them, from the initial, early stages 
of development and, in many cases, throughout their adult life. This explains why 
particular orchids are only found in woodlands that contain specific types of trees 
(Yeh et al. 2019; Jacquemyn et al. 2017). For instance, the chlorophyll-deficient 
Corallorhiza trifida Châtel. is associated with the ectomycorrhizal fungi of the genus 
Tomentella (Thelephoraceae family), which populate the roots of birch and willow 
in some areas and pine trees in others (De Angelli and Anghelescu 2020). Recent 
studies showed that Corallorhiza trifida Châtel. derives about 52% of its nitrogen 
and 77% of its carbon from the associated fungi and therefore it is particularly 
sensitive to the type of trees and fungi associated with. Another example is 
Limodorum abortivum (L.) Sw., which in some areas has a particular association 
with pine trees, while in others with beech or oak trees (Bellino et al. 2014; Wang 
et al. 2021a). It seems that most orchid species grow in woods not because of the 
shade and moisture they provide, but because of the presence of the specific fungi 
that are dependent on certain trees. This makes the orchids particularly sensitive to 
any environmental change or destruction. Dr. Kenji Suetsugu (Kobe University), in 
2016, discovered the elusive Japanese orchid, Lecanorchis tabugawaensis Suetsugu 
& Fukunaga, explains the significance and importance of fungi-dependent plants for 
the ecosystems in which they live: “Due to the sensitivity of mycoheterotrophic 
plants, it has long been suggested that their species richness provides a useful 
indicator of the overall floral diversity of forest habitats. A detailed record of the 
distribution of these vulnerable plants, therefore, provides crucial data for the 
conservation of primary forests.” 

Wherever the natural habitats/ecosystems remain unaltered by human presence 
and activity, a perfect balance is established between the varied plant and animal 
species living together in the same natural habitat. As long as there is no human 
disruptive intervention, each ecosystem self-regulates. But any interference by 
humans can have unpredictable consequences, which can lead to the destruction of 
the existing balance in that ecosystem. Due to their complex way of life, the 
associations with a mycorrhizal fungus, and the sophisticated yet low-efficiency 
reproductive cycle, orchids need stable ecosystems (Rasmussen et al. 2015). For 
these sensitive plants, any change or alteration to their environment can lead to a 
rapid reduction in numbers and eventually to their disappearance (Hágsater and 
Dumont 1996). Where there is the correct blend/mixture of fungi present within the 
soil, orchids, as well as other plant species can flourish. When this equilibrium is 
disturbed, for instance, by deep cultivation, land drainage, or slash-and-burn agri-
culture, the composition of the soil and the mycorrhizal growth mat changes. As a 
consequence, the symbiotic fungi could disappear and the subsequent uptake and 
sharing of nutrients from the environment to the orchid can be severely inhibited. 
Habitat destruction and habitat change are the major reasons for this, but the 
collectors illegally removing plants, photographers, botanists, and visitors trying to



get a closer look, all contribute to their decline (Gale et al. 2018). All ecosystems are 
complex, resilient systems that connect thousands of species of plants, allowing 
them to intercommunicate and adapt. But they are also vulnerable, not only to 
natural disturbances but also to a myriad of anthropic factors. Instead of hurting 
and destroying them, we could reinforce and help them recover. The great thing 
about natural environments is that they have an enormous capacity to regenerate 
(Dukes 2007). Nevertheless, we should not be surprised if new research into the 
social networks of plants will reveal the surprising benefits that orchids provide to 
their partners—the fungi and, ultimately, the whole ecosystems in which they live 
(Anghelescu 2021). 
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8 Barriers of Seed Germination in Terrestrial orchids 

8.1 Seed Testa 

The physical features of seeds in terrestrial orchid species and their biological roles 
have been studied and reviewed by many researchers (Vafaee et al. 2021; Süngü 
Şeker et al. 2021; Aybeke 2013, 2007; Calevo et al. 2017; Chase and Pippen 1988; 
Gamarra et al. 2015a, 2015b, 2012; Ortúñez et al. 2006). Seeds in terrestrial orchids 
are species-specific as they have unique features like embryo/airspace size ratio, 
unique testa sculpture, and the presence of plant hormones and other regulators 
which impact both symbiotic and asymbiotic seed germination (Arditti and Ghani 
2000; Barthlott et al. 2014; Yang and Lee 2014). The seed testa phenotypic diversity 
in orchids could be attributed to the dispersion strategy and seed dormancy (Ren 
et al. 2017; Yang and Lee 2014; Prutsch et al. 2000). In this regard, air space within 
the seed testa surrounding the embryo increases its air travel and floatability on the 
water surface. However, the lignified, pectin layer can act as a barrier to water uptake 
and embryo enlargement, thus preventing seed germination in terrestrial orchids 
(Vafaee et al. 2021; Şeker and Şenel 2017). 

Therefore, the lignified testa should be removed or softened during the seed 
germination process to facilitate protocorm-like bodies and rhizoid formation, 
which are the perquisites for the successful development of the in vitro raised 
plantlets (Fatahi et al. 2022a, 2022b). Therefore, the hard seed testa is one of the 
causes of extended dormancy observed in orchids, particularly in terrestrial species 
occurring in seasonal climates (Arditti and Ghani 2000). This is because, unlike 
tropical and epiphytic species with a seed testa composed of one layer, terrestrial, 
mature seed testa has 2–3 layers of dead cells (Yang and Lee 2014). Seed testa 
structure, cuticle thickness, seed cell number, and presence or absence of a distinct 
cell size gradient also provide information on how easy mature seeds are to germi-
nate symbiotically and asymbiotically. One of the strategies to soften and eliminate 
the strong and impenetrable testa is the treatment with sodium hypochlorite 
(NaOCl), which simultaneously disinfects and scarifies the seeds. Depending on 
the species, the concentration and treatment time differ for many terrestrial species.



In this regard, Malmgren has proposed the optimal NaOCl concentrations and 
disinfection times for Euro-Mediterranean orchid species (Malmgren 1996). Ponert 
Vosolsobě (Ponert et al. 2011), by studying different European temperate orchid 
species, found that higher concentrations of NaOCl and longer disinfection times 
have a negative effect on the germination of Dactylorhiza fuchsii (Druce) Soó and 
Dactylorhiza majalis (Rchb.) P.F.Hunt & Summerh., while other species like 
Dactylorhiza baltica (Klinge) Nevski, showed high germination rates. As ethanol 
eliminates suberin, cutin, and other wax derivatives off the orchid seed surfaces, its 
implementation could also improve seed germination (Jolman et al. 2022). Experi-
mentally, the important point is the color change of disinfected seeds from brown to 
a milky, transparent/translucent color, which indicates successful sterilization. After 
the color change, the seeds should be immediately sown on a culture medium 
surface, as over-disinfection can lead to seed death. Fig. 10 shows how the color 
change occurs in the seed of several terrestrial orchid species and what exactly 
happens on the seed testa surface during the disinfection processes. 
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Fig 10 Test color change of seed testa in (a). Anacamptis coriophora (L.) R. M. Bateman, 
Pridgeon & M. W. Chase; (b) Dactylorhiza umbrosa (Kar. & Kir.) Nevski; (c) Ophrys reinholdii 
subsp. straussii (H. Fleischm.) E. Nelson; (d) Himantoglossum affine (Boiss.) Schltr.; (e) Ophrys 
schulzei Bornm. & Fleischm.; (f) Seed testa rupturing in Paphiopedilum armeniacum S. C. Chen & 
F. Y. Liu by the impact of NaOCl (Lee 2011). Photos © Yavar Vafaee, Kolsum Ahmadzadeh 

8.2 Toxicity of Inorganic Nitrogen Sources 

During orchid seed germination, nitrogen plays a crucial role in the synthesis of 
macromolecules including proteins, nucleic acids, and enzymes. In this connection, 
the form of nitrogen used in media is one of the most important factors affecting seed



germination. Living cells are stimulated to synthesize proteins by exogenous ammo-
nium, which activates glutamate dehydrogenase. Nitrate reductase enzymes also 
respond to the reduced forms of nitrogen, making the nitrates absorbed more 
efficiently (Rasmussen et al. 2015; Rasmussen and Whigham 1993). However, 
inorganic forms of nitrogen have been included in some well-known media for 
orchid micropropagation, the inhibition effect of organic nitrogen has been described 
in both tropical and temperate orchids where both orchid groups prefer organic 
nitrogen in the form of amino acids rather than ammonium (NH4+ ) or nitrates 
(NO3-) (Rasmussen 1995; Rasmussen et al. 2015; Dijk and Eck 1995; Figura 
et al. 2020; Nadarajan et al. 2011; Van Waes and Debergh 1986a). Terrestrial 
orchids are growing in natural habitats with low strength of available nutrients and 
therefore the reported nitrate sensitivity in asymbiotic seed germination of terrestrial 
orchids may be part of their adaptive strategy (Figura et al. 2020, 2021; Ponert et al. 
2013). It seems that each terrestrial orchid species shows a unique response to the 
presence of nitrate and ammonium, therefore for the selection of an appropriate 
medium, we should consider the ability of target species in metabolizing nitrogen 
sources (Jolman et al. 2022). As an alternative conclusion, it has been stated that 
some terrestrial orchid species possess low nitrate reductase activity or delayed 
activation (Fatahi et al. 2022b; Johnson and Kane 2007; Van Waes and Debergh 
1986b; Bektaş et al. 2013). The presence of both nitrate and ammonium not only can 
have an inhibitory impact on asymbiotic seed germination but also negatively affect 
the association of mycorrhizal fungi with orchids during in vitro symbiotic seed 
germination. According to Cuenca and Azcón (Cuenca and Azcón 1994), arbuscular 
mycorrhizal plants can enhance the nitrate absorption of fungi through nitrogen 
metabolism (a symbiotic relationship). By increasing nitrate concentrations above 
optimal levels, symbiosis loses its beneficial effect on plant growth, and colonized 
plants exhibit varying behaviors depending on the fungal species (Azcón et al. 
2001). Further investigation is required to understand the details of nitrate and 
ammonium metabolism during symbiotic and asymbiotic seed germination at phys-
iological and molecular scales. Our studies performed on terrestrial orchid species 
from the Iranian plateau show that even common media like Murashige and Skoog 
(MS) (Murashige and Skoog 1962) with low strengths (1/4 or 1/8 strength) can 
inhibit seed germination. As is represented in Fig. 11, even the protocorms of rarely 
germinated seed turned black and died. 
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8.3 Seed and Plantlet Dormancy 

Terrestrial orchids have an annual cycle, whereby a period of growth is followed by 
the loss of leaves, stems, and adventitious roots (Schiebold 2018). In many species, 
the duration of the protocorm stage can extend from a few months, up to several 
years, until leaves are produced. Thus, the absence of a compatible mycorrhiza may 
last several years (Rasmussen et al. 2015; Dearnaley 2007). The period needed from 
seed germination to reaching the adult stages (when the first flower is produced)



varies considerably and depends on the species. Consequently, the maturation time 
for Cypripedium calceolus L. is 9 to 11 years, for Corallorhiza trifida Châtel. is 5 to 
9 years, for Epipogium aphyllum Sw. is 10 years, for Ophrys apifera Huds. is about 
6 to 8 years, for Neottia nidus-avis (L.) Rich and Cephalanthera damasonium (Mill.) 
Druce is 9 to 11 years, for Neottia ovata (L.) Bluff & Fingerh. is 15 to 20 years, for 
Dactylorhiza sambucina (L.) Soó is 12 years, for Dactylorhiza majalis (Rchb.) P.F. 
Hunt & Summerh. and Dactylorhiza incarnata (L.) Soó is 16 years, for Orchis 
mascula (L.) L. is 8 years, for Spiranthes spiralis (L.) Chevall. is 3 to 10 years, for 
Neotinea ustulata (L.) R. M. Bateman, Pridgeon & M. W. Chase is 10 to 15 years, 
etc. (Rasmussen 1995). The orchid remains below ground until conditions become 
suitable for further growth. In the absence of a suitable fungus, the orchid 
protocorms may remain viable in the soil, postponing their germination (Allen 
1992; Allen et al. 1995). They survive by utilizing their minimal reserves very 
slowly, waiting for a food source of simple nutrients to save them. When these are 
provided (by fungal association), the development continues (Selosse and Cameron 
2010; Selosse et al. 2022). Nevertheless, it is commonly known that only a very 
small percentage of germinating seeds succeed and became adult plants. This is 
usually due to the absence of the mycorrhizal partner that lacks from those particular 
habitats. Despite the high survival potential of dormant protocorms, the prolonged 
absence of the fungal symbiont usually leads to protocorm starvation and ultimately 
to its death. Less than 5%, or even 1% in some temperate species, manage to survive 
and successfully reach the age of reproduction when they are able to produce fruits 
and viable seeds. The rest (seeds or protocorms), even perfectly viable, in the 
absence of the fungus, remain dormant for good. The absence of fungi, as stressed 
previously, may be due mainly to detrimental human intervention (anthropic fac-
tors), which usually led to major habitat and climatic changes (substrate pH, 
temperature changes, flooding, soil desiccation, deforestation, agriculture, tourism, 
estate expansion, etc.), all ultimately leading to mycorrhizal network destruction and 
plant species interaction disruption. 
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Fig. 11 The negative effect of high concentration of nitrate and ammonium present in MS medium 
on asymbiotic seed germination of Ophrys reinholdii subsp. straussii (H. Fleischm.) E. Nelson. (a) 
1/4 MS; (b) 1/8 MS; (c) An individual browning protocorm. Photos © Yavar Vafaee, Kolsum 
Ahmadzadeh.
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9 Asymbiotic Seed Germination 

However, almost all terrestrial orchid species needs a symbiosis relationship with 
mycorrhizal fungi to germinate seed, develop protocorm, and establish plantlets in 
nature, these events can also be proceeded both symbiotically (in the presence of 
fungal symbiont) or asymbiotically (without fungal symbiont) (Ponert et al. 2013). 
The establishment of a reciprocal relationship with mycorrhizal fungi could be 
obligatory in some terrestrial orchid species for successful germination and 
protocorm formation as they supply a big part of water, mineral nutrients, and 
vitamins (Jolman et al. 2022). On the other hand, it has been represented that several 
fungal species are joining the symbiotic relationship in terrestrial orchid roots 
continuously or seasonally (Rasmussen 1995). One of the reasons for endangering 
and threatening some terrestrial orchid species is the absence of mycorrhizal fungi 
symbiosis due to climate change or habitat destruction (Li et al. 2021). In this regard, 
one of the main problems to start a symbiotic seed germination experiment is the 
need for a diverse range of ectomycorrhizal fungus species which usually have 
unfavorable features like slow growth, difficult cultivation, and high host specificity 
(Rasmussen et al. 2015; Fatahi et al. 2022b; Kömpe 2022). Moreover, during the 
symbiotic seed germination of terrestrial orchids, the nutritional and cultivation 
condition requirements of both orchids and mycorrhizae should be provided (Ponert 
et al. 2011). It is, moreover, not suitable for a wide range of physiological studies on 
orchids because it is almost impossible to separate any effect of the fungus from the 
direct effect of the factor under study. Unlike symbiotic germination, during 
asymbiotic seed germination, the required nutrients are obtained by orchid seeds 
through an artificial medium (Knudson 1922). Considering the obstacles of symbi-
otic culture establishment, asymbiotic germination procedures possess advantages 
including an easier cultivation process, fast and large scale in vitro plantlet produc-
tion, and direct investigation of important variables affecting different biological 
aspects of orchids’ life (Jolman et al. 2022; Swarts and Dixon 2009, 2017). To date, 
the asymbiotic seed germination of different terrestrial orchid species has been 
optimized as each terrestrial orchid taxon needs a specific and accurate combination 
of organic and inorganic medium ingredients. Depending on the genus, species, and 
even sub-species, there are drastically different developmental requirements, in 
particular, based on the climate origin like tropical and temperate that necessitate 
the exploitation of technically different germination procedures (Jolman et al. 2022; 
Diantina et al. 2020). An extensive list of the performed research works on 
asymbiotic seed germination of terrestrial orchid species highlighting the exploited 
basal media, organic components, and PGRs, the highest reported seed germination 
rate, and the country origin of the studied species has been shown in Table 1.
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9.1 Asymbiotic Seed Germination Stages 

There are different processes and stages between symbiotic and asymbiotic germi-
nation in terrestrial orchids as symbiotic germination requires an extra stage for 
mycorrhizal association and symbiont development. In terrestrial orchid species, 
during asymbiotic germination process, the embryos enlarge and produce small 
structures called protocorms, which have root and shoot meristematic centers. The 
protocorm can develop completely only in the presence of adequate storage 
resources for the shoot and root formation. By activation of root and shoot meristem, 
the plantlets start to grow under in vitro conditions. Based on the description in the 
literature, asymbiotic seed germination in terrestrial orchids can be divided into five 
stages (Bektaş 2016; Nabieva 2021): 

Stage I: “no-germination” stage. Unimbibed seed with intact testa. 
Stage II: “swelling” stage. Embryo swelling and enlargement followed by testa 

rupturing. 
Stage III: the “pre-germination” stage. Complete rising of the embryo from 

ruptured seed testa and formation of first rhizoids. 
Stage IV: “Rhizoid” stage. The formation of rhizoids on the surface of the 

protocorm. 
Stage V: “Protocorm or germination” stage. Enlargement of protocorm and 

formation of protomeristem. 
Stage VI: “Shoot” stage. Further enlargement and development of the first 

green leaf. 
As a part of studies performed in the Research Center for Terrestrial Orchid, 

RCTO, university of Kurdistan), the asymbiotic seed germination of Ophrys 
reinholdii subsp. straussii (H.Fleischm.) E. Nelson (a threatened Euro-
Mediterranean terrestrial orchid species) has been shown in Fig. 12 highlighting 
the main stages of germination. 

10 Organic Supplements and Asymbiotic Seed Germination 

As artificial media give different results depending on the target species, screening 
media and supplements would be helpful to determine the best nutrient formulation 
that maximizes seed germination in terrestrial orchids (Swarts and Dixon 2009, 
2017; Cardoso et al. 2020). In this regard, terrestrial orchid species seeds are 
sensitive to the inorganic form of nutrients in particular nitrogen and therefore a 
variety of organic additives and compounds have been used for asymbiotic seed 
germination of orchids (Utami and Hariyanto 2020; de Menezes Gonçalves et al. 
2016; Kaur 2021). There are several such compounds, including peptone, coconut 
water, pineapple juice, casein hydrolysate, yeast extract, and amino acid mixtures. It 
is very important to use a suitable organic compound such as pineapple juice, 
coconut milk, boiled potatoes, or other similar compounds. These compounds



contain vitamins and plant hormones, which are often the most suitable compounds 
for orchid propagation. The use of organic compounds is important in the in vitro 
culture of various orchids as they provide vitamins and plant growth regulators. In 
many cases, they have a positive effect on seed germination and plantlet growth 
regardless of whether their components are known or unknown. Here, we discuss the 
nature and the application of some organic supplements used for in vitro germination 
and propagation of terrestrial orchids. The use of inexpensive organic complex 
supplements can reduce the costs helping the large-scale in vitro micropropagation

Asymbiotic Seed Germination in Terrestrial Orchids: Problems, Progress,. . . 247

Fig. 12 Seed germination stages and plantlet growth and development in Ophrys reinholdii subsp. 
straussii (H.Fleischm.) E.Nelson. (a) SEM micrograph of seed testa micromorphology (Stage I); (b) 
Embryo enlargement (stage II) and its excise from seed testa (stage III) 18–22 days after seed sown; 
(c) Rhizoid formation (stage IV) 24–30 days after seed sown; (d, e) Enlargement of protocorm and 
formation of protomeristem (stage V); (f) Developing green leaves (stage VI); ready for acclima-
tization 3–4 months after seed sown; (g) A clump of in vitro raised plantlets with healthy and green 
leaves and small tuber; (h) The stages of in vitro protocorm development, rooting, and plantlet 
growth. SE swelling embryo; RT rupturing testa; DP developing protocorm; RZ rhizoids; LP leaf 
primordium; IT in vitro formed tubers; MR main root. Photos © Yavar Vafaee, Kolsum 
Ahmadzadeh



of endangered terrestrial orchid species and their reintroduction to nature (Fatahi 
et al. 2022a, 2022b).
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10.1 Peptone 

Different raw materials can be digested by acids or enzymes to produce a protein 
hydrolysate named peptone (Nhut et al. 2008). Peptone is a product of animal tissue 
and products digestion and is composed of low molecular weight constituents (23% 
glycine, 16.16% total nitrogen, 15.38% peptone nitrogen, 11% glutamic acid, 9.42% 
monoamine nitrogen, 8% arginine, 5.9% aspartic acid) (Yam and Arditti 2017b). 
Peptone not only is autoclavable and dialyzable but also stable under acidotic and 
alkaline conditions (Jan et al. 1994). There are numerous reports on the exploitation 
of peptone as one of the main organic media constituents not only in plant tissue 
culture but also in animal and insect cell culture to supply carbon and nitrogen. In 
orchids, peptone is used to improve symbiotic and asymbiotic seed germination. In 
this regard, in Himantoglossum affine (Boiss.) Schltr. as a Euro-Mediterranean 
terrestrial orchid species, the highest germination rate (98.77 ± 0.37%) was obtained 
with media containing pineapple juice plus peptone. Besides its positive impact on 
seed germination and protocorm development and growth, peptone also positively 
affects terrestrial orchid plantlet growth as it is a rich source of amino acids and 
vitamins such as thiamin, biotin, pyridoxine (Utami and Hariyanto 2020). In this 
regard, individual use of organic nitrogen compounds resulted in higher germination 
efficiencies, and plantlets grown on media supplemented with peptone had the 
highest plantlet length and weight compared to other organic nitrogenous com-
pounds (Fatahi et al. 2022a). Evaluation of different levels of peptone and banana 
homogenate on in vitro micropropagation of terrestrial orchid Paphiopedilum 
venustum (Wall. ex Sims) Pfizer revealed that BM-1 medium (Van Waes and 
Debergh 1986b) containing 1 g/L peptone resulted in the highest shoot efficiency 
of shoot multiplication (Kaur and Bhutani 2016). The adding peptone to seed 
germination medium for Paphiopedilum hirsutissimum (Lindl. ex Hook.) Stein 
and Paphiopedilum insigne (Wall. ex Lindl.) Pfizer resulted in a 30% higher 
germination percentage (Zeng et al. 2016). Orchis simia Lam. is a threatened 
terrestrial orchid growing in central and southern Europe with fragmented 
populations due to climate change and overexploitation. Fatahi, Vafaee (Fatahi 
et al. 2022b) by studying different organic compounds supplying nitrogen found 
that commercially available amino acid mixture (Vamine) and casein hydrolysate 
were more efficient than peptone on seed germination and plantlet growth. They 
stated that altogether the using of organic nitrogenous supplements can replace the 
need for mycorrhizal fungi regardless of the nature of used organic nitrogenous 
compounds. Malmgren medium containing peptone, coconut water, and glutamine 
resulted in the highest germination rate in lizard orchid, Himantoglossum 
calcaratum (Beck) Schltr. subsp. jankae (Somlyay, Kreutz & Óvári) R.M.Bateman, 
Molnar & Sramkó (Dulić et al. 2019) showing the important role of amino acids in



the successful asymbiotic seed germination of terrestrial orchids. With lower per-
centages, the seed of Himantoglossum adriaticum H.Baumann was successfully 
germinated on the same medium supplemented with 0.5 g/L peptone (Del Vecchio 
et al. 2019). 
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10.2 Coconut Water 

Coconut water is the liquid obtained from the center part of the endosperm, while 
coconut milk is the liquid obtained from the solid and fleshy part (George et al. 2008; 
Yong et al. 2009). Compared to coconut water, coconut milk which is also the source 
of coconut oil has not been commonly used in terrestrial orchid tissue culture. There 
are a variety of compounds found in coconut water, including amino acids, organic 
acids, plant growth regulators, vitamins, sugars, sugar alcohols, minerals, nucleic 
acids, and unknown growth substances, all of which can support and trigger in vitro 
plant growth and development (George et al. 2008; Yong et al. 2009). Plant growth 
regulators (PGRs) including auxins (mainly indole-3-acetic acid IAA), cytokinins 
(trans-zeatin, trans-zeatin O-glucoside, N6-isopentenyladenine, and dihydrozeatin), 
gibberellins (GA1 and GA3), and abscisic acid are among most prevalent PGRs in 
coconut water (Yong et al. 2009; Shekarriz et al. 2014). Various mineral ions 
including Ca, Fe, Mg, P, and K can be found in coconut water (Vasupen et al. 
2022). Additionally, it contains B1, B2, B3, B5, B6, B7, and B9 vitamins (George 
et al. 2008; Yong et al. 2009). Due to the presence of PGRs in particular cytokinins, 
coconut water is extensively has been exploited in the propagation of terrestrial 
orchid species through asymbiotic seed germination (George et al. 2008). By 
providing faster energy to the cells and by triggering cell division through its 
cytokinin content, CW implementation in culture media results in better responses 
(Jolman et al. 2022). Coconut water could promote seed germination and develop-
ment of seed to post protocorm stage in Eulophia flava (Lindl.) Hook. f (Vasupen 
et al. 2022). However, the supplementation of Malmgren medium with coconut 
water resulted in lower asymbiotic germination rates in Himantoglossum affine 
(Boiss.) Schltr. (an endangered Euro-Mediterranean tuberous orchid), causing the 
shortest time to germination compared to other used organic supplements (Fatahi 
et al. 2022a). Orchis militaris L. is a cold-hardy terrestrial Euro-Siberian species 
considered recalcitrant to in vitro seed germination response. Adding 5% coconut 
water to Malmgren medium led to a higher number of protocorms and seedlings, 
producing first secondary roots and true leaves in Orchis militaris L. (Nabieva 
2021). The perennial tuberous and rhizomatic orchid species, Pleione 
bulbocodioides (Franch.) Rolfe, also known as Cremastra Pleione, is an endangered 
species due to tuber overharvesting and natural low-rate propagation. It has been 
reported that the rate of protocorm formation is higher in Pleione bulbocodioides 
(Franch.) Rolfe uses coconut water than other organic compounds like peptone and 
banana extract. Among three studied concentrations of coconut water (50, 100, and 
150 mg/L), the protocorm induction percentage was at the highest value



(50.35 ± 0.60%) using 100 mg/L coconut water (Zhou et al. 2021). The Spiranthes 
spiralis (L.) Chevall. seed sown on Knudson C medium supplemented with coconut 
water had a high germination rate which has been attributed to a high content of 
cytokinins supporting cell division and thus growth promotion (Dulić et al. 2019). 
Similar findings have been obtained with asymbiotic seed germination in threatened 
terrestrial orchid Cypripedium macranthos Sw. on the MS medium nourished with 
coconut water (Huh et al. 2016). 
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10.3 Pineapple Juice 

Sucrose, glucose, and fructose are among the most abundant ingredients of pineap-
ple, which comprise about 81–86% of its total soluble solids. On the other hand, 
there is 2–3% fiber in pineapple which is high value within fruit crops (Malmgren 
1996). Ascorbic acid is the most prevalent organic acid in pineapple while there is 
also a low level of citric acid present in pineapple juice (Kitsaki et al. 2004; George 
et al. 2008). In this term, bromelain is a protease present in pineapple contributing 
80% of total proteolytic activity that can break down other proteins. Minerals found 
in pineapples include calcium, chlorine, potassium, phosphorus, sodium, and copper 
(Utami and Hariyanto 2020; George et al. 2008). Besides nutritional roles in 
providing macro- and micronutrients as well as PGRs, pineapple juice can also 
reduce phenolic compound production in the environment (Rasmussen 1995), which 
has improved the propagation efficiency of European orchids through asymbiotic 
seed germination (Malmgren 1996). A number of temperate terrestrial species have 
also been found to benefit from pineapple juice in terms of root differentiation and 
growth (Rännbäck 2007). Malmgren stated that adding 15–125 mL pineapple juice 
supplies about 30–40 mg/L potassium and also enough concentrations of microel-
ements (Malmgren 1996). Pineapple juice is a permanent organic supplement added 
to the asymbiotic seed germination medium in different species members of terres-
trial orchid genera including Cypripedium L., Dactylorhiza Neck. ex Nevski, 
Nigritella Rich., Gymnadenia R.Br., Orchis Tourn. ex L., Platanthera Rich., etc. 
Pineapple juice could be successfully applied for asymbiotic seed germination in 
endangered tuberous orchid species including Orchis simia Lam. (Fatahi et al. 
2022b), Himantoglossum affine (Boiss.) Schltr. (Fatahi et al. 2022a), Cypripedium 
spp. (Rännbäck 2007), Ophrys benacensis (Reisigl) O. Danesch, E. Danesch & 
Ehrend, (Pierce et al. 2010), Himantoglossum calcaratum (Beck) Schltr. subsp. 
jankae (Somlyay, Kreutz & Óvári) R. M. Bateman, Molnar & Sramkó and 
Spiranthes spiralis (L.) Chevall. (Dulić et al. 2019), Anacamptis pyramidalis (L.) 
Rich., and Gymnadenia conopsea (L.) R. Br (Ostojić et al. 2022). Moreover, a high 
ratio of seed germination and plant development have been obtained with Malmgren 
medium containing pineapple juice, however, the best results were obtained with 
BM1 medium supplemented with casein hydrolysate. On the other hand, Kitsaki and 
Zygouraki (Kitsaki et al. 2004) studied during the germination of different terrestrial 
orchid species belonging to the Ophrys L. genus including Ophrys umbilicata Desf.,



Ophrys sphegodes subsp. spruneri (Nyman) E.Nelson, Ophrys speculum Link, 
Ophrys tenthredinifera Willd., Ophrys sphegodes subsp. mammosa (Desf.) Soó ex 
E.Nelson, Ophrys lutea Cav., Ophrys fusca subsp. iricolor (Desf.) K.Richt., Ophrys 
ferrum-equinum Desf., Ophrys × delphinensis O. Danesch & E. Danesch, Ophrys 
scolopax subsp. cornuta (Steven) E. G. Camus, Ophrys argolica H. Fleischm. and 
Ophrys apifera Huds., the medium containing pineapple juice as the inorganic 
supplement resulted in the best plantlet development (Kitsaki et al. 2004). 
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10.4 Casein Hydrolysate 

The enzymatic or acidic hydrolysis of different natural products such as milk, plant 
and animal tissues, and microbial cultures can result in the production of hydroly-
sates. There are mixed recommendations for using hydrolysates in the in vitro orchid 
culture (Lee and Yeung 2018). There are several commercially available hydroly-
sates. Casein hydrolysate is a fraction product obtained from the enzymatic digestion 
of mammalian milk. Casein hydrolysate is an important component in various media 
formulations since it provides a mixture of proteins, amino acids, and peptides as 
reliable natural sources (George et al. 2008). Some micronutrients and vitamins are 
also present (Dulić et al. 2019). Due to its high concentration of essential and 
non-essential amino acids, vitamins, and phosphates, casein hydrolysate is known 
as a germination and growth-inducing factor in the orchid tissue culture (Fatahi et al. 
2022a; Kaur 2021). BM media are typical media used for asymbiotic seed germi-
nation of some terrestrial orchids, developed by Van Waes and Debergh (Van Waes 
and Debergh 1986b), which contains 500 mg/L casein hydrolysate. However, other 
commercial media used for multiplication, maintenance, and sub-culturing terrestrial 
orchids usually contain 1–2 g/L of casein hydrolysate depending on the species 
(Utami and Hariyanto 2020). In this term, among different combinations of organic 
additives, 500 mg/L casein hydrolysate plus 15% coconut water (CW) represented 
the best seed germination results in Eulophia spectabilis (Dennst.) Suresh is a 
therapeutically important endangered orchid species from India (Nanekar et al. 
2014). Using MS and Mitra media supplemented with 500 mg/L casein hydrolysate 
and 1 mg/L N6-benzyladenine (BA), a high asymbiotic seed germination 
(75 ± 2.5%) was obtained Crepidium khasianum (Hook.f.) Szlach (Deb 2006). 
Similar results were obtained in Ophrys sphegodes Mill. using Knudson C and 
Malmgren media containing peptone, L-glutamine, folic acid, and casein hydroly-
sate (Dulić et al. 2018). Chloraea crispa Lindl. (Quiroz et al. 2017), Anacamptis 
pyramidalis (L.) Rich. and Gymnadenia conopsea (L.) R.Br. (Ostojić et al. 2022), 
Orchis simia Lam. (Fatahi et al. 2022b), Himantoglossum affine (Boiss.) Schltr. 
(Fatahi et al. 2022a), Himantoglossum calcaratum (Beck) Schltr. subsp. jankae 
(Somlyay, Kreutz & Óvári) R. M. Bateman, Molnar & Sramkó (Dulić et al. 2019), 
and Eulophia spectabilis (Dennst.) Suresh (Nanekar et al. 2014) are among other 
species whose asymbiotic seed germination has benefited from the improving 
impacts of casein hydrolysate.
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10.5 Amino Acid Mixtures 

Based on the fact that the enzymatic systems of amino acid metabolism and 
biosynthesis of the developing embryo change and evolve (Lee et al. 2007), they 
can be exploited as easy-to-metabolize alternative nitrogen sources (Rasmussen et al. 
2015; Utami and Hariyanto 2020; Kaur 2021). However, they may not be available 
and considered primary nitrogen sources, they can be metabolized and used to 
synthesize new essential structural and enzymatic proteins (Rasmussen et al. 
2015). The metabolism of ready mixtures of amino acids (which are commercially 
available) can be performed by orchids’ embryos and PLBs more efficiently com-
pared to other inorganic nitrogen sources (Valadares et al. 2014). This is because 
under in vitro conditions, they can redirect or skip some nitrogen assimilation 
pathways (Rasmussen 1995; Rasmussen et al. 2015). The response of asymbiotic 
seed germination to amino acids supplementation is different depending on the 
terrestrial orchid species (Fatahi et al. 2022b). Researchers believe that nitrogen in 
the amino acid form may facilitate seed germination or growth of protocorms than 
available inorganic nitrogen sources (Malmgren 1996; Kauth et al. 2008; Stewart 
and Kane 2007). This fact has been also shown in asymbiotic seed germination of 
Himantoglossum affine (Boiss.) Schltr. where a ready amino acid mixture with the 
commercial name Vamine was more effective in the induction of seed germination 
than peptone and casein hydrolysate (Fatahi et al. 2022a). The slow growth of 
orchids was attributed to the sluggish nitrogen metabolism using inorganic nitrogen 
forms like NH4 

+ for seed germination, in the first step ammonium is converted to 
amino acids (Wu et al. 2013). Since all amino acids are not required during seed 
germination, a combination of selected important amino acids can be used more 
effectively to achieve high seed germination ratios. It has been shown in Orchis 
simia Lam. that bigger protocorms (4.5-fold bigger) were obtained on media 
supplemented with pineapple juice (PJ) in combination with Aminoven 
(a commercially available amino acid mixture) compared to protocorms grown on 
other media. Enhanced seed germination and subsequent plant growth in Habenaria 
macroceratitis Willd. on modified Malmgren modified medium have been reported 
(Stewart and Kane 2010). The advantage of using amino acid mixtures instead of 
undefined organic supplements containing nitrogen such as peptone, casein hydro-
lysate, and in particular coconut water and pineapple juice is that commercial amino 
acid mixtures contain given concentrations of known amino acids. On the other 
hand, unlike inorganic nitrogen sources, the recommended levels of amino acids 
even at higher concentrations are not suitable for terrestrial orchid seed germination. 

11 Conclusions 

Since all amino acids are not required during seed germination, a combination of 
selected important amino acids can be used more effectively to achieve high seed 
germination ratios. It has been shown in Orchis simia Lam. that bigger protocorms



(4.5-fold bigger) were obtained on media supplemented with pineapple juice (PJ) in 
combination with Aminoven (a commercially available amino acid mixture) com-
pared to protocorms grown on other media. Enhanced seed germination and subse-
quent plant growth in Habenaria macroceratitis Willd. on modified Malmgren 
modified medium have been reported (Stewart and Kane 2010). The advantage of 
using amino acid mixtures instead of undefined organic supplements containing 
nitrogen such as peptone, casein hydrolysate, and in particular coconut water and 
pineapple juice is that commercial amino acid mixtures contain given concentrations 
of known amino acids. On the other hand, unlike inorganic nitrogen sources, the 
recommended levels of amino acids even at higher concentrations are not always 
suitable for terrestrial orchid seed germination. (the fragments are repeating!) 
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Progress and Prospect of Orchid Breeding: 
An Overview 

Khosro Balilashaki, Zahra Dehghanian, Vahideh Gougerdchi, 
Elaheh Kavusi, Fatemeh Feizi, Xiaoyun Tang, Maryam Vahedi, 
and Mohammad Musharof Hossain 

1 Introduction 

Orchid is the general name of Orchidaceae, which belongs to perennial herbaceous 
plants with unique and attractive flower shapes and colors, and is the second-largest 
family of flowering plants with high ornamental, medicinal, and other economic 
value. Orchidaceae is the most evolved, highly specialized, diverse, and widespread 
plant family belonging to Monocotyledons, with about 801 genera and 28,237 
species (Shriram and Kumar 2022). Orchids are virtually found on all continents 
except icy Antarctica and hot deserts but their greatest variation is to be found in the 
tropical and subtropical regions, mostly Asia, South America, and Central America.
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So far, over 1,06,000 hybrids have already been registered and developed (Hossain 
et al. 2013) and more than 1000 new hybrids are added per year.

262 K. Balilashaki et al.

The shape of orchids is simple and elegant, the fragrance of flowers attacks 
people, is one of the precious flowers, deeply loved by people. As a flower with 
high ornamental value and miniature potted plants, orchids are widely used in trade 
and commercial markets, and the current market demand is increasing (Chao et al. 
2018). The world business value of orchids exceeded billion dollars, and the 
countries of Thailand, Singapore, and Malaysia dominated the world orchid market. 
The global orchid trade value was estimated at US$ 504 million in 2013 
(Cheamuangphan et al. 2013), and the figure is undoubtedly increased many folds 
recently. In addition, Gastrodia elata, Dendrobium nobile, Cypripedium henryi, and 
other species of orchids are excellent Chinese herbal medicine, with great medicinal 
value (Wang et al. 2020). 

With the prosperity and development of the orchid market in the world, many 
countries are engaged in orchid breeding, and the demand for technological renewal 
and industrial upgrading of orchid breeding is increasing. At present, the breeding 
methods of orchids are still mainly based on the combination of wild resource 
domestication and traditional breeding. However, there are many practical problems 
with traditional breeding techniques, such as prolonged bleeding times and a huge 
workload. With the renewal and development of technology, several new breeding 
methods have emerged. In recent years, compared with the time-consuming tradi-
tional breeding, the method of using the CRISPR/Cas9-KO system to carry out 
orchid molecular breeding has produced ideal alleles in less than 20 months, which 
greatly accelerates the efficiency of breeding (Semiarti et al. 2020). The genetic 
modification of orchids by Agrobacterium-mediated transformation and gene gun 
technique has been successfully and continuously applied, which has made great 
progress in the improvement of important traits of orchids, such as flower color, 
fragrance, cut flower shelf-life, and so on (da Silva et al. 2016). This article mainly 
reviews the history and methods of orchid breeding, which might be a reference for 
future studies on orchid breeding. 

2 The History of Breeding 

As an ornamental plant, orchids have a history of more than 2000 years. Undoubt-
edly, the Chinese described orchids for medicinal use (Bulpitt 2005). Between 
551 and 479 B.C., the elite people of Japan grew orchids for their beauty and 
fragrance (Hossain et al. 2013). In ancient times, orchids are often found in poetry, 
with the rise of private gardens, orchid cultivation is more and more extensive, and 
after thousands of years of choice and utilization, the formation of a variety of orchid 
varieties resulted in a wealth of orchid culture. 

Orchids have a long history of cultivation and are extremely rich in germplasm 
resources. The ancient laborers began the original breeding work by selecting the 
most satisfactory or strange types. For thousands of years, a wealth of experience has



been accumulated, and many numbers of fine garden plant species have been 
created. Because of the characteristics of history and culture, breeding is not alone 
as a technique but is usually included in cultivation and reproduction methods. 
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Chinese ornamental and cultivated orchids are much earlier than those cultivated 
in the West. As early as 2400 years ago in the Spring and Autumn period, there was 
already a description of orchids. The oldest book on orchids in Japan is “Igansai-
ranpin” written by Jo-an Matsuoka in 1728 A.D. in which species of Aerides, 
Bletilla, Cymbidium, Dendrobium, and Neofinetia were described. The Samurai 
grew Neofinetia falcata, the merchants grew Cymbidium, and possibly the peasants 
grew Bletilla (Bulpitt 2005). In ancient times, people first collected wild orchids, as 
for artificial cultivation of orchids, until the court began. After Wei and Jin dynasties, 
orchids expanded from court cultivation to private gardens of literati class and were 
used to decorate gardens and beautify the environment. It was not until the Tang 
Dynasty that the cultivation of orchids developed into general gardens and florists 
(Deng 1990). 

The cultivation of orchids became very widespread during 960–1126 AD, and 
records of the descriptive features, ecology, and distribution became abundant 
(Schiff 2018). The Jin Zhang Lan Pu written by Zhao Shigeng of the Southern 
Song Dynasty in 1233 can be said to be the earliest monograph on orchids in China, 
and it is also the first monograph on orchids in the world (Chen et al. 2011). The 
book is divided into three volumes and five parts, describing the morphological 
characteristics of more than 30 species of orchids. About 10 years later, Wang 
Guixue wrote a book (Wang’s Treatise on Orchids) in 1247, which described the 
types and grades of orchid genealogy and the use of soil or soil mixture as potting 
medium (Luo et al. 2012). Early articles on orchids and their cultivation were 
relatively short. 

The orchid cultivation in Ming Dynasty entered the prosperous period, the orchid 
variety in the south of the Yangtze River increased continuously, the cultivation 
experience became more and more abundant, and the orchid gradually became the 
common appreciation of the general people. Qing Dynasty was the most prosperous 
period of orchid cultivation in China. With the continuous emergence of genealogy 
and new horticultural varieties in the past dynasties, a number of Yilan with rich 
experience have emerged. Based on summing up the previous experience, they have 
put forward new ideas and wrote valuable orchid Monographs. The period of the 
Republic of China is also an important period of development in the history of 
Chinese orchids. During this period, after 2 or 300 years of exploration, the valve 
type theory of orchids has been completed, and a large number of orchid varieties 
have been discovered. In the twentieth century, Chinese orchids have entered a more 
prosperous period, the number of all kinds of orchid books published; the wide range 
of newly developed national orchid varieties, the huge contingent of orchid enthu-
siasts, and the active orchid trading have exceeded the previous dynasties (Reinikka 
1972). 

Ancient horticulturists gradually mastered fine cultivation and management tech-
niques, constantly used sexual reproduction combined with selection to breed new 
varieties, and used asexual propagation methods to preserve special variation types



and other horticultural ideas and methods for traditional breeding. It also laid a 
foundation for the formation and development of modern orchid variety groups. 
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In Europe, the cultivation of orchids only started in the late eighteenth century. In 
1778, Dr. John Fotherrdill brought Cymbidium ensifolium and Phaius tankervilleae 
back to England for the first time (Reinikka 1972). In 1780, Vere Kensington 
introduced Cymbidium pendulum into Europe. Since then, Orchid plants have been 
found in Asia and Oceania and sent to the United Kingdom, and then spread to 
Europe and the United States through the United Kingdom. 

The Orchid was initially ignored in England, but it has been noticed by the British 
since 1889 by the hybrid of Cymbidium eburneum and C. lowianum. From 1904 to 
1905, there were many new orchids introduced from Vietnam to Europe, such as C. 
insigne, C. erythrostylum, and C. eburneum. Since then, there has been more and 
more crossbreeding, and new hybrids have been emerging. There were only four 
hybrids in 1904 and 88 in 1908, which increased to as many as 170. One of the 
parents of C. insigne is praiseworthy, it shows obvious genetic factors, leaving future 
generations with good characteristics, such as growth habits, flower shape and color, 
and easy to cross with other orchids of the genus. 

In crossbreeding, most of the parents in Europe are large flower types. They are 
easier to cross and obtain hybrid offspring, so they are valuable and excellent 
parents. These hybrids have many flowers, large flowers, long flowering, and 
beautiful colors, so they are very popular as cut flowers. As a result, the number of 
new hybrid varieties has increased greatly every year, and tens of thousands of new 
hybrid varieties have been increased at present. New and excellent hybrid varieties 
continue to replace the inferior old varieties. The application of new cultivation 
techniques, aseptic test-tube plantlets, tissue culture, and other rapid propagation 
progress, so that enterprises and companies engaged in orchid cultivation all over the 
world. 

Since the nineteenth century, European orchid scholars have done a lot of work. 
In 1833, J. Lindley (father of orchid cultivation) sorted the genus Orchid and gave 
the first classification of orchids. He also left an unfinished book, “Folia 
Orchidaceae” considered a classic of Botany.. Blume established the related genus 
Cyperorchis and Irdorchis. English naturalist Charles Darwin wrote the book 
“Fertilisation of Orchids” in 1862, this book was the first essential contribution to 
the knowledge and comprehension of the strategies used for the species to ensure 
propagation. Lewis Castle published another book “Orchids: Their Structure, His-
tory and Cultivation” in 1877 that offers a concise history of the orchid coupled with 
simple directions for breeding. For the first time, Reinchenbach made a comprehen-
sive summary of the genus Orchid, describing 19 species of orchids. In 1903, Rolfe, 
a British scientist, first classified Orchidaceae in China, including nine species of 
orchids. In 1919, R. Schlechter, a German orchid scholar, summarized 33 species of 
Orchidaceae in East Asia. In 1924, he made a taxonomic study on Cymbidium and 
Cyperorchis all over the world and established the following taxa (groups). The 
renowned British plant explorer and phytogeographer J.D. Hooker (1888–90) 
described 1250 species of orchids from the Indian subcontinent in his famous 
book “Flora of British India.”
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In Southeast Asia, the history of planting orchids is also earlier. In addition to the 
cultivation of orchids produced in the region, there are also C. ensifolium and 
C. sinense from China. In recent decades, with the improvement of orchid planting 
technology and the continuous emergence of hybrid orchids, many orchid growing 
enterprises and companies have been formed, such as Thailand and Singapore, 
where commercial orchids have entered the international orchid market and have a 
fixed position in the world orchid industry. 

3 Botany and Structure of the Flower 

Orchid flowers display a bewildering array of shapes, sizes, and colors, yet all have a 
distinctive “orchidness” that sets them apart from other plant groups (Apriyanti et al. 
2013). The flower of Orchids consists of four main parts including an outer whorl of 
three sepals, an inner loop of three petals, a single large column in the center, and an 
enlarged bottom petal called a labellum. The overall flower shape is bilaterally 
symmetrical a necessity for reliable insect pollination. 

The pollen of orchids is also very special. The pollen structure of orchids is called 
pollen block or pollinia (a coherent mass of pollen grains). It is not the pollen that 
will spread out, and it will not cause the discomfort of some pollen allergies. Pollen 
block is the general name of flower powder mass, pollen mass stalk, sticky disk 
handle, and sticky disk connected, and it is the organ of male and female (Johnson 
and Edwards 2000). This structure is an efficient structure for orchids to transmit 
powder to insects. When the insect comes to the orchid flower to collect honey, his 
body touches the sticky plate, which sticks the orchid pollen block to the insect, 
takes it to the next orchid, and completes the pollination. 

4 Pollination 

Pollinators are resources on which plants rely and sometimes compete, hence 
systems of pollination can be thought of as ecological niches. The pollinator 
assembly of a plant determines its pollination niche, even though plants interacting 
with the same pool of pollinators may have diverse pollination niches due to 
different pollinator use (Joffard et al. 2019). Orchids have a wide range of pollination 
tactics and flower characteristics. One-third of these orchid species are charming, in 
that they do not provide a reward for pollinators but instead use signs that pollinators 
traditionally associate with food or sex promises to attract them (Reyes et al. 2021). 
Pollinators have played a significant role in the Orchidaceae family’s diversification 
and are critical for the conservation of most orchid species that rely mainly on insects 
for sexual reproduction (Schatz et al. 2017). While some orchid–pollinator relation-
ships are described as highly specialized, such as in sexually deceptive or euglossine 
bee-pollinated orchids, others, such as food deceptive orchids, appear to be far more



opportunistic. Pollination niche breadth and overlap may differ between pollination 
tactics and maybe biogeographical zones. Pollinators of several hundreds of orchids 
have been documented in detail in several places, particularly in the Europe -
Mediterranean region, where orchid–pollinator interactions have been widely 
recorded (Claessens and Kleynen 2016). 
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The morphological structure of the orchid flower is an obstacle to easy fertiliza-
tion and consequently, the pollen lumps can’t be carried by the wind, either. 
Although the birds play a role in the pollination of some species, insects are the 
most common pollinators in nature. Identifying orchid flowering periods and polli-
nation biology will aid in the creation of capsules, ensuring a dependable and 
sufficient seed source for future trials. This data is critical for determining the best 
harvesting period for high-yielding seed germination. Pollen and the age of the 
flower are both important factors in pollination success (Indan et al. 2021). Reward-
based generalized food deception, pollination, autonomous self-pollination, and 
Batesian food-source mimicry are the four known ways of pollination in Cymbidium 
orchids (Indan et al. 2021). 

4.1 Capsule Development 

In orchids, pollination mechanisms are highly specialized, and many species have 
species-specific pollination systems. Specialization, unfortunately, makes species 
increasingly reliant on and vulnerable to the absence of mutualism partners. The 
investigation of plant–pollinator interactions is important with considering 
attempting to maintain self-sustaining populations in the wild over the long term. 
Pollination during the early flowering phase is recommended because pollen is most 
receptive between the first and seventh days after blooming, increasing the likeli-
hood of capsule development. Using immature flowers that are less than a week old 
ensures that the stigmatic surface is open to pollen. Flowers close after 2 weeks, and 
pollen becomes brown and unresponsive. Hand-pollination technique increased the 
success of capsule productions as well because the time between pollination and 
subsequent developmental events in embryos differs enormously in both genus and 
species, and the time it takes for an orchid capsule to achieve complete maturity 
differs by species (Utami and Hariyanto 2019). Winter was shown to be the best 
season for pollinating Phalaenopsis hybrids, resulting in an 80–88% capsule forma-
tion rate. The germination effectiveness of seeds taken from capsules of varying 
maturity levels was further reduced by the pollination season. Seeds recovered from 
winter pollinated capsules consistently outperformed seeds gathered from other 
seasons in terms of germination (Balilashaki et al. 2015). In Phalaenopsis hybrids, 
it was founded that seeds derived from 5-month mature capsules needed the least 
amount of time to germinate than seeds derived from 3 months or 7-month mature 
capsules (Balilashaki et al. 2015).
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4.2 Seed Germination 

The ultimate competent system of orchid breeding is seed propagation (Shekarriz 
et al. 2014). Isolation of compatible mycorrhizal fungi is required for symbiotic seed 
germination. Asymbiotic seed germination, on the other hand, does not necessitate 
the isolation of mycorrhizal fungi. Moreover, asymbiotic seed germination is a 
comparatively simple and effective procedure. Nonetheless, there are still some 
situations where symbiotic germination seedlings are preferable. If there is a prob-
ability that symbiotic seedlings will develop more quickly than asymbiotic seed-
lings, symbiotic seed germination may become the favored method for producing 
orchids (Deng 1990). Orchid seeds are incredibly tiny which may be 0.1 mm 
(in Oberonia) to the highest 6 mm (in Epidendrum) in size is the world’s smallest 
seed. There is a nearly 400-year gap between the first sighting of orchid seeds and 
Knudson’s successful asymbiotic germination in 1921. Since then, orchid hybridi-
zation has been used for propagation and breeding all over the world. Initial growers’ 
hybrids, on the other hand, could not have predicted their success (Yam and Arditti 
2009). Modern hybrid seedlings are usually created by crossing two superior 
parental cultivars to improve and refine morphological and reproductive character-
istics as well as disease resistance (Tang and Chen 2007). Typical orchid hybrids 
could serve as role models for reintroduction projects, which could help endangered 
and threatened species. The most important stage in this process is to figure out 
effective asymbiotic germination techniques to create seedlings for further research. 
There is little data on seed germination in Phalaenopsis species, and none on 
asymbiotic or symbiotic seed germination parameters. The type of basal medium 
and capsule age was found to affect ability (seed maturity) (Indan et al. 2021). 

5 Hybridization 

Crossing orchids to other species is one option for preventing genetic extinction. 
Hybridization has the effect of combining the best qualities of both parents in the 
hybrid offspring. In assessing the effectiveness of a hybridization procedure, 
selecting a parent with high compatibility to be crossed is critical, one major block 
to the successful crossing is that the crossed parents should have close genetic 
closeness and in assessing the effectiveness of a crossbreeding effort (Hartati et al. 
2019). Even though crossbreeding is a straightforward and effective method for 
cultivating orchid hybrids, there are various things to consider when doing so, 
including the hybrid combination’s fertility, qualitative analysis of goal features, 
and the selection of superior hybrid offspring (Reinikka 1972). F1 progenies formed 
from two parents with opposing goal features typically show significant phenotypic 
differences. However, it has been noted that in the case of Cymbidium, hybrid seeds, 
particularly those of distant hybrids, are difficult to cultivate because of their distant 
genetic link, with the degree of difficulty rising in the order intraspecific intrageneric/



intergeneric. Failure of distant hybridization is caused by parents’ incompatibility 
and postfertilization embryo abortion (Li et al. 2021). 
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Since the beginning of orchid collection and cultivation, natural hybrids resulting 
from crossbreeding between species have been observed in the wild. Phalaenopsis 
intermedia is the oldest hybrid that produces by a cross between P. aphrodite and 
P. rosea (De and Bhattacharjee 2011). 

5.1 Artificial Hybridization 

Orchid developers around the world have experimented with many species and 
hybrids, with variable degrees of success. Orchid hybrids are the progeny of a 
cross between two genetically different individuals. In this group of plants, intra-
specific, intrageneric, and intergeneric hybrids have been developed. In orchids, 
intergeneric crossings are very common, and many hybrids involving two, three, 
four, and five genera have been registered and listed (De and Bhattacharjee 2011). 
Although free breeding is prevalent in orchids, it is not possible to make hybrids 
between any two genera. The majority of orchid breeding success has been attributed 
to the art of paint breeding, orchid breeders’ intuition and tenacity, and, on a few 
times, pure luck. Raising progeny from seed to flowering stage takes several years. 
Orchid seeds, unlike those of other crops, require specific care to germinate and the 
maturation of seeds takes a long time. Furthermore, the number of seeds produced in 
a capsule is so large that obtaining a representative sample of the progeny is 
impossible. As a result, information on the ability to combine characteristics and 
their inheritance in orchids is limited (De and Bhattacharjee 2011). 

6 Breeding Methods 

6.1 Crossbreeding 

Crossbreeding is one of the most common and effective methods in orchid breeding. 
Orchid interspecific and even some intergeneric crossing is easy to succeed, but 
because orchid seeds do not have endosperm and organized embryo, they need to 
rely on symbiotic fungi to germinate in nature. Early hybrid breeding is very difficult 
to obtain hybrid progenies. In 1854, RHS founded the international login system for 
orchid hybrids. The first orchid hybrid to be logged in is Calanthe dominyi (C. 
furcate � C. masuca). Knudson found that sugar can replace fungi to promote seed 
germination, and established the technique of in vitro propagation of any plant in 
pure (that is, aseptic) culture (Knudson 1922). The registration of new orchid hybrids 
showed explosive growth. Several factors must be considered when performing 
crossbreeding, these factors are fertility of the hybrid combination, qualitative 
analysis of target traits, and the selection of superior hybrid offspring (Reinikka



1972). The F1 progenies derived from two parents with contrasting target traits (such 
as a parent with large flowers in size but short flowering time and the other with long 
flowering time but small flowers in size) usually exhibit large phenotypic differences 
(Zhang et al. 2011). Recently embryo rescue technique has shown the light of hope 
to regenerate distant hybrids effectively. By this technique, immature embryos are 
cultured in vitro and controlled embryo abortion (Luo et al. 2012). 
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6.2 Ploidy Breeding 

Orchids are prone to 2n gametes during meiotic, which leads to polyploidy of hybrid 
progenies. Polysomaty and polyploidy are common occurrences among orchids, 
represent a powerful force for evolution, and have been found in several important 
genera: Paphiopedilum, Coelogyne, Cymbidium, Dendrobium, Calanthe, Oncidium, 
Paphiopedilum, Vanilla, Vanda, etc. (Hossain et al. 2013). At present, the offspring 
sterility produced by interspecies crossing with different chromosome sizes or ploidy 
levels is one of the problems encountered by Phalaenopsis breeders. Therefore, the 
occurrence of endopolyploidy in Phalaenopsis was studied, and a simple and 
effective technique was developed to determine the nuclear DNA content and double 
the number of chromosomes. In addition, flow cytometry has been used for endo-
polyploidy in different tissues of Phalaenopsis species. It was found that different 
patterns of endopolyploidy occurred in different tissues of Phalaenopsis species at 
various stages of development. According to these results, a simple and effective 
protocol was developed for the production of polyploid plants by sectioning 
protocorms or protocorm-like bodies (PLBs) without using anti-microtubule agents 
(Chen et al. 2011). Through this technique, a series of tetraploid species of Phalae-
nopsis were developed. For example, Phal. Doris and Phal. Zada, the super parents 
of Phalaenopsis breeding, are tetraploid hybrids. Among the registered Phalaenop-
sis hybrids, 90.2% have Phal. Doris lineage and 43.5% have Phal. Zada lineage. 

6.3 Selection Breeding 

Breeding according to selection uses the natural diversity of genotypes as the 
original material for selection. After selection breeding, three important genetic 
parameters must be considered: heritability, genetic correlations between traits, 
and interactions of genotypes �environment. The three parameters should be used 
to deal with the relationship between heritability, variation, and selection given that 
plant phenotypes are determined by the environment as well as by the genetic 
material (Murthy et al. 2018).
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6.4 Molecular Marker-Assisted Breeding (MMAB) 

In addition, MMAB was also carried out. The application of MMAB technologies 
for practical breeding and selection has several advantages as it is fast, accurate, and 
free from the influence of environmental conditions (Jiang 2015). MMAB is to 
reduce linkage liability, aggregate favorable genes, speed up the breeding process, 
and improve breeding efficiency by using molecular marker analysis closely linked 
to the target gene. Among the different molecular markers, scientists and breeders 
have given prevalence to RFLP, AFLP, SNP, SSR. The genetic relationship among 
81 selected Dendrobium species and hybrids was studied. AFLP markers could be 
used to determine the variation between materials. This study provided useful 
information on the genetic diversity of some Dendrobium orchids and will likewise 
be useful for monitoring the germplasm, developing new hybrids, and protecting 
new plant varieties. Molecular marker-assisted breeding has been widely used in 
crop breeding, but there are few reports in orchid breeding, and there is still a lack of 
molecular markers closely linked to the target traits. The breeding and application of 
functional genes have become a hot research direction in orchid plants in recent 
years. Professor Yu Hao of the National University of Singapore has successfully 
established a genetic transformation system for Dendrobium, which is expected to 
carry out molecular breeding and quality-oriented improvement (Sawettalake et al. 
2017; Chai and Yu 2007). Recently, the point mutants of C3H and C4H genes of 
Dendrobium candidum, and the mutants of MADS44, MADS36, and MADS8 of 
Phalaenopsis were successfully obtained by using the CRISPR/Cas9 gene-editing 
system (Tong et al. 2020). 

6.5 Transgenic Breeding 

To improve the important characteristics of orchids, such as new flower color, 
fragrance and shape, flowering control, abiotic stress tolerance, disease, and pest 
resistance, transgenic technology has been applied to orchids. It is often difficult to 
introduce new traits into orchids through mutation or conventional breeding, but 
genetic transformation can be relatively easy to achieve (Nirmala et al. 2006). The 
success of orchid genetic engineering, like other plants, depends on the totipotency 
of plant cells, that is, the inherent ability of plant tissues to produce cells that can 
regenerate fully dynamic plants (Hossain et al. 2013). 

Although the flowering time, flower fragrance, and color of orchids can be 
controlled by genetic transformation, it remains to be determined whether the 
flowering period is prolonged or not. Moreover, the disastrous impact of viral 
diseases on the yield and quality of orchids remains a major concern for orchid 
breeders and producers.
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6.6 Conventional Breeding 

Flower color, shape, and smell are the main unique identifiers for orchids since they 
are the main determinatives of customer choice. Conventional breeding techniques, 
though, have resulted in the loss of perfume in many new floricultural cultivars. Cut 
flower and decorative orchid breeders have concentrated on generating plants with 
enhanced vase life, transportation qualities, and overall aesthetic attributes (like 
color and shape). Phalaenopsis orchids have 2–3 years of growth courses. Using 
conventional hybridization to transfer beneficial characteristics into commercial 
cultivars is a lengthy and time-consuming procedure that will require years to 
complete. Furthermore, intraspecific and/or interspecific incompatibility hampers 
variety enhancement work. All five Phalaenopsis subgenus has identical chromo-
some numbers (2n ¼ 2x ¼ 38), which may be classified into small, medium, and 
large chromosomal groupings based on chromosome sizes and nuclear DNA content 
(Chen et al. 2011). Species with short chromosomes, including P. amabilis, 
P. aphrodite, and P. equestris, are the source of the majority of commercial cultivars. 
P. amboinensis and P. violacea are among the species with big chromosomes and 
powerful scents. Because of interspecific incompatibility, productive crosses among 
species with tiny and big chromosomes are challenging. Seed germination, as an 
important component of traditional breeding, is directly relevant to the performance 
and efficiency of crossbreeding. To develop an effective germination mechanism, 
in-depth research into the developmental features and germination processes of 
distant hybrid seeds is very important. Because once hybrid seeds are gained, an 
appropriate cultivation strategy is required to maintain the population constant or 
expand it. Because orchid grains are hard to replicate in the natural environment, 
in vitro propagation system is the most significant breeding procedure for orchids. 
Seed maturation, culture situations, and culture medium are all important elements of 
in vitro propagation success. Many orchid species have been studied in vitro, such as 
those of the genera Cymbidium, Phalaenopsis, Dendrobium, Oncidium, 
Dactylorhiza, and Calanthe (Bezerra et al. 2020). At the moment, the major goals 
of in vitro propagation are the production of genotype variation and reducing the 
breeding course, and substantial progress has been achieved toward these goals. 
Adaptation of bioreactor system in micropropagation has opened a new era in plant 
propagation. 

6.7 Breeding Via Mutation 

Mutation breeding is suited for breeding ornamental plants because species can be 
easily reproduced, simplifying the generation of spontaneous and induced mutants 
(Yamaguchi 2018). Mutation provides several benefits, such as a high mutation rate, 
the disruption of trait relationships, efficient enhancement of individual characteris-
tics, and the reduction of the breeding course (Li et al. 2021). Over time, this kind of



breeding has already been utilized to create orchids with distinct phenotypic char-
acteristics, increased medicinal component concentration, and improved adaptation 
and tolerance (De et al. 2014). Polyploidization is a usual technique of mutation 
breeding. Most orchid species, such as Cymbidium (Wang et al. 2011), Dendrobium 
(Zhang et al. 2011), Oncidium (Cui-Cui et al. 2010), and Phalaenopsis (Chang et al. 
2019), have been successful through polyploid breeding. Orchids’ high heterozy-
gosity can boost the apparent mutation rate and result in a slew of superior mutation 
kinds in a short time. Unexpected mutations can occur, resulting in harmful muta-
tions, but in most cases, only single alterations are acquired (Reinikka 1972). 
Furthermore, the success of mutation breeding is determined by parameters includ-
ing explant type, genotype, induced mutation technique, and optimal dose for each 
mutagenic treatment. 
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6.8 Hybrid Breeding 

Due to the intrinsic beauty of flowers and the capacity to transfer these characteristics 
to hybrids, several species have gained worldwide attention in breeding programs. 
Several species are important, such as Cymbidium devonianum, C. lowianum, 
C. tracyanum, C. elegans, and others (Tiwari et al. 2022). 

6.9 Molecular Breeding 

A research project aimed at creating a solid approach for orchid molecular breeding 
utilizing the CRISPR/Cas9 knockout technology. Phalaenopsis amabilis 
protocorms cultured on New Phalaenopsis medium supplemented with peptone 
were utilized as the plant materials. Ti plasmids had been filled with T-DNA 
construct of pRGEB32 vector carrying PDS3 sequence, and protocorm was 
immersed in the Agrobacterium tumefaciens. Transformants were detected and 
verified. From PDS3T2 lines, 0.96% of PDS transformants were produced. Several 
transformants have paler leaves than non-transformants. The CRISPR/Cas9 system 
appears to have effectively altered the target gene in orchids, indicating that it might 
be used for practical gene editing in orchids (Semiarti et al. 2020). The study 
determined that the Agrobacterium tumefaciens-mediated transformation method 
might be used to deliver CRISPR/Cas9 to a Dendrobium macrophyllum orchid 
protocorm. The T-DNA Ubi::: Cas9:: VAR2/prGEB32, and afterward the protocorm 
were cultivated for 4 weeks in the Vacin and Went culture medium +6 mg/L 
hygromycin antibiotics for transformants, the A. tumefaciens strain EHA 105 was 
infected. 

Researchers found that transformation efficiency was maximum (0.66%) during 
the 15-min infection phase, but it dropped to 0.43% and 0.23% after 30 and 45 min. 
Cas9 (402 bp), HPT (545 bp), VAR2 (723 bp), the D. macrophyllum genome, and



TrnL-F (1200 bp) were amplified. When examining the sequence, a substitution 
mutation was observed at the target site (Setiawati et al. 2020). MMAB offers the 
advantages of fast, accurate, independent of environmentally friendly settings using 
molecular biotechnologies for practical breeding and breeding (Jiang 2015). As a 
result of their frequency and potential, the following are the most relevant molecular 
markers: RFLP AFLP, SSR, and SNP. The first three were broadly applied with 
great success for orchid reproduction (Li et al. 2015), established a set of markers 
(Gen-SSR) for the genetic connections, and the cartooning investigations of other 
orchid species at Cymbidium ensifolium. When combined with functional annota-
tions of unigenes, these marker types assist to recognize candidate genes with unique 
environmental roles. The sequencing of Paphiopedilum concolor root transcriptome 
in a simple sequence of repeats provides critical insight into the mechanisms of the 
growth and development of the roots (Li et al. 2015). The genes linked with flower 
color, floral shape, and resistance in Phalaenopsis, which were utilized by Chung 
et al. (2017) to  find out, was a major reference point in genetic engineering generally 
for the Phalaenopsis and Orchidaceae (Chung et al. 2017). The efficacy of flower 
color forecast for several Phalaenopsis species was tested by applying gene-specific 
single-nucleotide amplified polymorphism markers to facilitate the reproduction of a 
novel Phalaenopsis variety. The Phalaenopsis aphrodite genome was confirmed and 
integrate with an SNP-based genetic link and optical map. This has developed a 
unique asset to not only increase the reproductive performance of horticultural 
orchids but also attributed to major studies of epiphyte genomic adaptation for future 
reference (Chao et al. 2018). The first SNP integrated high-density map with large 
coverage in the genome of Dendrobium was published by Lu et al. (2018). Many 
QTL sites laid the basis to map more features of medicinal relevance for the future. 
When it comes to gene-mining and genome studies, Bletilla striata’s EST-SSR 
transcriptome has provided a solid foundation for phylogenetic and operational 
gene-mining studies (Xu et al. 2019). Researchers have laid the groundwork for 
fine-tuning the expression quantitative trait locus (eQTL) mapping of Dendrobium 
(D. nobile, D. wardianum) by RNA sequencing, eQTL analysis, and development of 
high-density genetic maps (Li and Chan 2018). Wang et al. (2019) examined in vitro 
the fluctuation of SNP and insertion-deletion frequencies in Oncidium “Milliongold” 
somaclones that had been regenerated by protocorm-like bodies (PLBs) (Wang et al. 
2019). Most species lacking reference genome sequences might benefit from SLAF-
seq, according to the study’s findings. Molecular marker technology has been 
extensively applied to the study of orchid phylogeny and genetic relationships, but 
only a few studies have combined molecular marker technologies with phenotypic 
characteristics. Another technology (Genome-Wide Association Research) has also 
been used in studies on cabbage, tomato, and tea (Deng 1990;  Xing  et al.  2019; Fei 
et al. 2020), but in orchids only to a modest extent. As a result, greater study on these 
characteristics is needed to offer more precise genetic data for orchid breeding. 
Camellia is a genus of flowering plants in the Theaceae family, and many of its 
species are economically valuable. A large number of single sequence repeats 
(SSRs) in the Camellia genus have been produced in the last decade, yet there are 
not enough SSRs available to the public in this genus. During the investigation, a
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total of 4,63 kb of data was collected, including 28,854 putative SSRs. They 
synthesized and initially screened 172 primary pairs of 10 C. japonica accessions 
and found that 111 polymorphic accessions matched those depending on taxonomy 
and regional categorization. Additionally, 51 polymorphic SSR markers have been 
randomly selected for future genetic interactions of 89 accessions in the Camellia 
region. Each C. japonica genotype was significantly split and grouped, as demon-
strated by the genetic structure study’s clustering algorithms. For the molecular 
genetic reproduction of camellias, the results give high-quality SSR resources 
(Li et al. 2021). Genomic diversity was found to be widespread among the species 
(PPB: 90.1%; HE: 0.3414; H: 0.5013). Despite this, genetic diversity within groups 
was limited. With PPB: 76.2%; HE: 0.2966; H ¼ 0.4319, Shiko-2 was the most 
variable, whereas XS was the least variable (PPB: 67.3%; HE: 0.2344; H: 0.3478). 
Nei’s gene diversity statistics, Shannon’s information measure, and AMOVA (anal-
ysis of molecular variance) with 21.3%, 21.4%, and 22.5%, respectively, indicated a 
very high degree of genetic differentiation among populations. The genetic and 
geographic distances were shown to be significantly related (r ¼ 0.8154, P 0.05) 
(Deng 1990). An important part of developing microsatellite loci to improve com-
mercial moth orchid breeding is molecular identification (Phalaenopsis species). 
There are Microsatellite Primer Sets for the Phalaenopsis aphrodite subspecies, 
which include genomically-SSR and EST-SSR primers. To better understand Phal-
aenopsis transferability, P. aphrodite subsp. formosana will be utilized. Magnetite 
beads and NGS (next-generation sequencing) collected 10 or 28 polymorphic 
EST-SSRs and gSSR (genomic-SSR) markers that indicate 21 Phalaenopsis species, 
including several subgenus Phalaenopsis with strong transferability. They found 
that these microsatellite markers differed from those found in the Phalaenopsis 
subgenus. The genetic connections among species of the Phalaenopsis subgenus 
may therefore be isolated and integrated. They can help to identify parentages of 
Phalaenopsis and to investigate the hybridization of Phalaenopsis (Bolaños-
Villegas et al. 2021). 
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6.10 Gene Transfer Breeding 

Mutation breeding and crossbreeding are generally challenging methods for intro-
ducing new traits, like new colors or disease resistance, into orchids, but transgenic 
technology makes it possible (Nirmala et al. 2006). It is most usual to utilize 
Agrobacterium-mediated and microprojectile techniques to breed orchids (Fig. 1). 
Dendrobium (Kuehnle and Sugii 1992) were the first orchids to undergo successful 
transformations by particle bombardment. Efficient transformation methods have 
been devised for certain major commercial orchids, such as Phalaenopsis (Tong 
et al. 2020), Vanda (Shrestha et al. 2007), Cymbidium (Chin et al. 2007), 
Dendrobium (Chen et al. 2018), Cattleya (Zhang et al. 2010), Erycina pusilla 
(Li and Chan 2018), etc.
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Fig. 1 Gene transfer methods to breed Phalaenopsis orchids are based on Agrobacterium-mediated 
and particle bombardment techniques and their transformation pathways to introduce superior traits 
in orchids species 

By using particle bombardment, Yang et al. (1999) successfully transferred a 
plasmid containing GUS and NPTII markers to orchids to create kanamycin-resistant 
transgenic plants (Yang et al. 1999). Scent-related genes were identified by using 
RAPD molecular markers. Transgenic Cymbidium plants were created when NPTII, 
the plasmid containing the GUS marker gene, was introduced from Agrobacterium 
to Cymbidium (Chin et al. 2007). As Chai and Yu (2007) review, transgenics have 
become a key means for creating new genotypes of orchids and have resulted in 
important progress in flora, plant architecture, and biotic and abiotic resistance. 
Agrobacterium tumefaciens has created the Phalaenopsis protocorm as a vector 
expressive receptor material and pCAMBIA1301 (containing the GUS report gene 
and the hygromycin resistant gene hpt) (Chai and Yu 2007). Researchers used the 
pollen tube route as well as the ovary injection methods for the transmission of the 
cbf1 resistant gene into Phalaenopsis. On Fd and OnFNR have shown substantial 
impacts on soft rot and both genes can play an important role in the resistance to 
Oncidium soft rot (Tong et al. 2020). 

The transformation of the Oncidium PLBs via Agrobacterium-mediated transfor-
mation for temporary expression was carried to PR1 (an important downstream gene 
of acquired plant resistance). Plants that were transformed became stronger (Gao 
et al. 2020). In A. thaliana, the introduction of Dendrobium Chao Praya Smile



DOAP1 led to early flowering as well as early termination of inflorescence meristem 
into flower meristems [4; 61]. 
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Use of protocorms produced from seeds of Phalaenopsis aphrodite and Phalae-
nopsis cultivars as an alternate transformation method. eGFP was driven by 
ubiquitin promoter in the T-DNA vector construct utilized for transformation. 
Hygromycin was used to select the altered protocorms, which were then effectively 
regenerated. BC1 progeny demonstrated resistance to hygromycin when 
backcrossed to the transgenic line, proving the transgene is heritable. It has been 
shown that all backcross F1 explants that survived were positive transformants 
utilizing PCR and western blot analysis (Hsing et al. 2016). With the use of particle 
bombardment, Agrobacterium-based transformation systems and direct gene trans-
formation procedures for genetically modified Oncidium orchids have been devel-
oped (Li et al. 2015; You et al. 2003). When it comes to transforming Oncidium with 
ferredoxin resistant to soft rot disease (You et al. 2003), for example, the following 
methods are described: using the Agrobacterium system, using particle bombard-
ment to suppress the flower color gene (Yee et al. 2008), and using the same 
Agrobacterium system to alter the ethylene receptor gene (Raffeiner et al. 2009). 
The processing of Oncidium has grown even more complicated by adding the 
phosphomannose isomerase gene to the Agrobacterium-mediated transformation 
system. Because of their hygromycin sensitivity and long-term regeneration, Oncid-
ium species have had a restricted number of genetic transformation studies. GFP 
(Green Fluorescent Protein), phosphotransferase hygromycin (hptII), and CymMV-
CP genes were introduced into the protocorm-like bodies of Oncidium orchids 
Oncidium Gower Ramsey and Oncidium Sweet Sugar (PLBs) using a direct gene 
transformation approach. Many transgenic Oncidium orchids were investigated in a 
genetic study to confirm the inheritance of transgenes. 

It was possible to effectively transfer the AcF3H gene from Ascocenda flavanone 
3-hydroxylase (AcF3H) to Dendrobium 5 N white orchid plants utilizing 
Agrobacterium-mediated gene transformation. A plant expression vector with the 
AcF3H gene was built in the gateway cloning method. A. tumefaciens AGL1, which 
carried the plant expression vector pGWB5-AcF3H, was co-constructed as a selec-
tive marker. The agroinfiltration method was employed to temporarily express 
acF3H in white Dendrobium 5 N and Anna petals Dendrobium and the findings 
revealed that, according to the study, no cyanidine concentration was detected for 
white petals Dendrobium 5 N after acF3H infiltration. On the other hand, the content 
of Dendrobium Anna petals was 6% higher than cyanidin showing that AcF3H was 
transitory (Khumkarjorn et al. 2017). 

Tetraploid or diploid Phalaenopsis orchids have been explored with the transfers 
of Agrobacterium-mediated genes with a construct of T-DNA vector which contains 
the eGFP powered by the ubiquitin promoter. A hybrid between the pollinia of the 
transgenic plants and four separate Phalaenopsis orchid varieties revealed 
hygromycin and hptII positivity in PCR and GFP protein production demonstrated 
by Western blotting (Hsing et al. 2016). The AcF3H (Ascocenda Flavanone 
3-hydroxylases) gene has been successfully transformed into white orchid plants



of Dendrobium 5 N utilizing Agrobacterium transformation genes. An expression 
medium for the AcF3H gene was produced for the first time utilizing gateway 
cloning. For the hpt gene, the protocol-like corpus (PLBs), the A. tumefaciens line 
AGL1, and the PGWB5-AcF3H vector of plant expression were co-cultivated. The 
highest transformation efficacy was therefore obtained by cultivating PLBs with 
Agrobacterium cells in 15 min (10.13%). To verify the transgenic plants, the 
seedlings were rebuilt 3 months after the transformation and PCR analysis was 
performed, the hpt gene and the 35S promoter region were targeted using particular 
primers. Transgenic crops had about 400 and 500 bp PCR products that matched the 
gene of hpt and the 35S promoter, respectively, but no non-transgenic crops, 
indicating that the AcF3H gene was present in a white orchid genome. AcF3H 
was temporarily expressed using agroinfiltration procedures in the white and the 
Dendrobium Anna petals of Dendrobium 5 N and discovered in the white petals of 
Dendrobium 5 N after AcF3H that wasn’t cyanidin content in the sample. The 
cyanidin concentration of Dendrobium Anna petals, on the other hand, rose by 
around 6%, indicating temporary expression of the AcF3H gene. When PLBs 
were co-cultivated with A. tumefaciens AGL1, which maintains pGWB5-AcF3h 
for 15 min, the highest transformation efficiency (10.13%) was attained. The wild 
type and mutant libraries were completely clean reading 98,988,774 and 
100,188,534 bp and De Novo, constructed at 98,446 uniqueness, accordingly for 
an average length of 989 bp. When transcription profiles were compared between the 
two libraries, 18.489 were discovered to be differently expressed. 
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Most of the Kyoto encyclopedia for the enrichment of genes and genomes was 
used in membrane-building and ploidy-related activities, consisting of increased 
flowering and changed cell sizes seen in the mutant. 29 MADS-box genes were 
identified as possibilities for the floral patterning of C. goeringii, as well as several 
floral and hormone-affecting regulators and genes. A short RNE sequence revealed 
that 132 miRNA families produced in C. goeringii flowers were conserved, and the 
multiple-tepal formation has been caused by 11 microRNAs related to 455 target 
genes. The combined study of mRNA and microRNA showed two transcription/ 
microRNA pathways that contribute to multi-tepal characterization (Fig. 2): a 
popular floral related miR156/SPL and a miR167/ARF regulations technique for 
developing reproductive organs; and a multi-tepal cell-proliferation regulations 
cascade that likely regulates the miR319/TCP4–miR396/GRF regulation 
(Cheamuangphan et al. 2013). 

Cymbidium faberi has a distinctive floral smell which boosts its commercial 
worth, one of the most renowned oriental orchids. However, until this study the 
molecular process of floral fragrance production was unclear. Methyl jasmonate 
(MeJA) is one of C. faberi’s major organic volatile compounds (VOCs). 79,363 
unigenes were selected for further examination using comparative transcriptome 
analysis. 9409 genes (GDEs) of which 558 were assigned to 258 pathways led to a 
transcriptome study of blooming and withered C. faberi flowers (Xu et al. 2019). 
The top 10 strategies for achieving a conversion of alpha-linolenic acid to MeJA 
included the metabolism of α-linolenic acid, pyruvate metabolism, and fatty acid 
degradation. In one of its DEG Jasmonic Carboxylic Acid Methyl Transferases



(CfJMT, unigene 79,363), flora blooming C. faberi is expressed extensively but 
seldom detected in the roots or leaves. While CfJMT synthesis in tomatoes did not 
raise MeJA levels, the expression of internal MeJA genes, particularly for the 
treatment of injuries, has changed, indicating that CfJMT may be connected with 
abiological stress in the tomato. The molecular pathways for floral fragrance gener-
ation in C. faberi have been explored as part of a study that will aid in the genetic 
modification of modern varieties of commercially valuable oriental orchids (Xu et al. 
2019). 
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Fig. 2 A system of miRNA/transcription factors influences the multi-tepal characteristics of 
C. goeringii 

The EHA105 A. tumefaciens strain, which possesses a binary plasmid, has been 
shown to successfully process Erycina pusilla plants. The promoter for the plasmid 
should be CaMV 35S series (CaMV 35S) (Lee et al. 2015). The hygromycin-
containing medium can be used to select explants with 6-benzylaminopurine and 
naphthaleneacetic acid modifications. According to research, protocorm-like (PLBs) 
at 3 months of age is the best stage for transformation. Self-pollination allowed T1 
progenies to be obtained in the 18-month MV 35S series (Li and Chan 2018; Lee 
et al. 2015). To stimulate protocorm development and multiplication, the self-
pollinated seed capsules of Erycina pusilla are broken under aseptic conditions 
and a sterile half-strength MS medium was used to germinate seedlings in plastic 
plates (Lapjit and Tseng 2015). Upon germination, the protocorms and greens



should have a diameter of 1 cm. It’s time to get back to the basics. CRISPR/Cas9 
might be used to change MADS-box genes and alter floral morphology in Erycina. 
Agrobacterium-mediated RNA interference has been investigated in the past, but 
with little success (Lin et al. 2016). E. pusilla has been crossed with several 
important Oncidiinae orchids to produce new commercial orchid species. The 
clone PSYP1 as E. pusilla “Hsingda Golden” derived from in vitro flowering system 
has been granted the Plant Variety Rights in Taiwan for protection (Bolaños-
Villegas et al. 2021). 
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7 Prospects for Orchid Breeding 

There seems to be unevenness in science-based study and practice in the application 
of forwarding genetics since laborers select effective point mutations (Hall and 
Richards 2013) but do not recognize how to use them, so research labs are restricted 
by the lack of viable mutants to investigate. Reverse genetics, as opposed to 
forwarding genetics, investigates phenotypic changes in genetically inherited mod-
ifications using huge amounts of information. Omic information from orchids, which 
includes genomic, proteomic, transcriptome, and metabolome sequence analysis, 
has been getting more and more a direct consequence of developments in limited 
sequence alignment techniques. The above findings will serve as guidelines for 
genetically modified breeding and genome engineering breeding programs, laying 
the groundwork for orchid breeding programs. Moreover, among the most apparent 
disadvantages of reverse genetics is that it can reveal a large number of genes linked 
to favorable characteristics, making it more difficult to constrict the objective gene 
array. To resolve this ambiguity, it is necessary to combine genomic and other omic 
data, as well as breeding and morphologic records. Integrating, acquiring knowl-
edge, and investigating will aid in the discovery of gene functions linked to essential 
qualities (Langridge and Fleury 2011). Besides conquering conflict and infertility, 
mutagenesis breeding could be used to gain large differences in flower color, 
anatomy, and shape. As a result, merging hybridization and mutation breeding will 
be a viable tactic for recognizing hybridization’s maximum capabilities throughout 
orchid rearing. Attribution of specific genes is a prevention effort for breeding 
programs, but there is presently no reliable transition service for orchids. Transfor-
mation is currently accomplished primarily through Agrobacterium-mediated pro-
cesses, particle bombardment, and gene silencing. Besides this, even though plants 
from essential ornate species of the genus like Phalaenopsis and Dendrobium have 
already undertaken genome editing, general performance is lower. As a result, it is 
still important to broaden studies on CRISPR/Cas9 to support access to key orchid 
phenotypes. Furthermore, while there is reportedly very little molecular genetic 
information for orchids, more transcriptomic evidence has become accessible, 
which will aid in the exploration of essential qualities including flower color, floral 
morphological characteristics, and flower aromas. As a consequence, molecular 
breeding is expected to become the primary method for orchid breeding. To



summarize, for certain, if researchers investigate important characteristic genetic 
traits utilizing forward or reverse genetics, or if we use conventional breeding, 
natural selection, or single-molecule breeding to produce great progeny to achieve 
desired attributes, every method has benefits and drawbacks, and if used individu-
ally, it seems to be unusual to advance reproduction. Thus, a variety of techniques 
and research directions must be incorporated to enable the production of orchids 
with different flower sizes and morphology, new colors, and complex flower 
fragrances. 
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