
Chapter 2 
Big Data Analytics in Healthcare 

Chonghui Guo and Jingfeng Chen 

2.1 Big Data-Driven Paradigm 

The cross-integration of information technology and economic society has led to the 
rapid growth of data, which has become a basic national strategic resource. Big data 
is increasingly exerting an important influence on global production, circulation, 
distribution, consumption activities, economic operation mechanism, social lifestyle, 
and national governance capacity (Chen et al., 2012; Ji et al., 2017; Lynch, 2008; 
Naeem et al., 2022; van Elten et al., 2022). In the context of big data, the advantages 
of the data-driven paradigm are constantly highlighted. Generally speaking, the big 
data-driven paradigm is described from three aspects: external embedding, technol-
ogy augmentation, and enabled innovation, reflecting a “correlation + causality” 
viewpoint in a “data-driven + model-driven” manner (Bakker & Tsui, 2017; Chen, 
Wu, et al., 2018). Recently, governments, academics, and industries around the 
world have promoted the research and application of big data to an unprecedented 
height. In 2008 and 2011, Nature and Science published a special issue on big data 
respectively, discussing the challenges of big data from multiple perspectives. In 
2014, The Bridge, the journal of the American Academy of Engineering, organized a 
special issue to discuss the current situation, challenges, and future trends of big data 
from the perspective of globalization (Shi, 2014). 
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As an important strategic resource, big data contains many key management 
issues and has its own management characteristics. And in the big data environment, 
the existing management models should also have further development. The para-
digm of scientific research is also shifting to the “data-intensive” fourth paradigm, 
which fosters research into scientific data management, data analysis, data visuali-
zation, and new algorithms and tools (Hey et al., 2009). 

2.1.1 The Research Background of Big Data Analytics 
in Healthcare 

Along with the development and popularization of cloud computing, the Internet, 
various mobile devices, and the Internet of Things, big data analytics has been one of 
the current and future research frontiers (Chen et al., 2012; Haque et al., 2020). In the 
medical field, Mayer-Schönberger and Cukier (2013) elaborated on the reforms from 
two aspects. One is to provide help for the rapid improvement of the collective 
medical experience of human beings, which will make everyone become the master 
of their own diseases, and the other is that inexhaustible medical data innovation is 
dominant, bringing industrial effects with great commercial value. 

However, big data analytics in healthcare, in general, lags behind e-commerce 
business intelligence and analytics applications because it has rarely taken advantage 
of scalable analytical methods or computational platforms (Miller, 2012). Fortu-
nately, along with the construction and development of healthcare informatization, 
medical institution informatization, regional medical informatization, and internet 
plus medical, healthcare, as an important field of big data & big data analytics, is 
entering a “big data era.” In the clinical sphere, the amount of patient data has grown 
exponentially because of new computer-based information systems, including clin-
ical data (electronic health records (EHRs), electronic medical records (EMRs), 
electronic patient records (EPRs), etc.), claims and cost data, pharmaceutical R & 
D data, and patient behavior data (Groves et al., 2013). 

The release of big data analytics in healthcare is transforming the discussion of 
what is appropriate or right for a patient and right for the healthcare ecosystem, and 
further changing the paradigm by achieving the new value pathways, as follows. 
(1) Right living: patients should take more active steps to improve their health; 
(2) Right care: developing a coordinated approach to care in which all caregivers 
have access to the same information. (3) Right provider: any professionals who treat 
patients must have strong performance records and be capable of achieving the best 
outcomes; (4) Right value: improving value while simultaneously improving care 
quality; (5) Right innovation: identifying new approaches to healthcare delivery 
(Groves et al., 2013; Guo & Chen, 2019). 

The transformation of the medical paradigm is also accelerating the revolution of 
the medical model, from one-size-fits-all medicine and stratified medicine to preci-
sion medicine, from the bio-psycho-social medical model to the “4P” medical



model, as shown in Fig. 2.1. Specifically, one-size-fits-all medicine requires popu-
lation average effect analysis, and all patients adopt the uniform treatment; stratified 
medicine divides patients into groups according to their response to therapy and uses 
heterogeneous effect analysis to correct for the failure of average effect analysis to 
account for patient differences; while precision medicine uses personalized effect 
analysis, which often requires personalized data. In addition, precision medicine, 
sometimes known as “personalized medicine,” is an innovative approach to tailoring 
disease prevention and treatment by considering differences in people’s character-
istics, environments, and lifestyles. Thus, the goal of precision medicine is to target 
the right treatments for the right patients at the right time (Hopp et al., 2018). 
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Fig. 2.1 Precision medicine and the “4P” medical model (the left part comes from Hopp et al. 
(2018)) 

During the process of achieving the goal of precision medicine, the “4P” medical 
model is emerging. The “4P” medical model refers to preventive, predictive, per-
sonalized, and participatory, emphasizing prevention first, predictive treatment, 
individualized diagnosis and treatment, and then public participation. It provides 
patients with a physician guide to medical science as a tool for living healthier, 
happier, and more productive lives. In the case of the “4P” medical model, it is the 
power to predict and prevent disease, feel good, slow or even partially reverse 
biological aging, and optimize patients’ ability to move, think, and perform at 
patients’ best in all aspects of life, environment, mind, and body (Auffray et al., 
2009; Bricage, 2017; Sun et al., 2019; Topol, 2015; Wu et al., 2015). 

The application and development of big data in healthcare will promote profound 
revolutions in the medical service model and greatly improve the quality and 
efficiency of healthcare services. The application of big data and big data analytics 
in healthcare will improve healthcare quality, long-term care, and patient empower-
ment, and using this information and knowledge to analyze the efficacy of clinical 
diagnosis and treatment and healthcare decision support will bring revolutionary 
reforms to the medical industry (Chen et al., 2012, 2020).
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2.1.2 The Research Framework of Big Data Analytics 
in Healthcare 

Healthcare big data not only have the 4 V (volume, variety, value, and velocity) 
characteristics of big data, but also high dimensionality, heterogeneity, and relational 
complexity among data objects. Thus, the existing hypothesis-driven research and 
reductionist approaches to causality have no capability to adjust for confounding and 
modifying factors in clinical practice. In recent years, some popular research frame-
works or the modeling processes of big data analytics in healthcare have been 
proposed to promote the transformation from data to knowledge. For example, in 
a data-intensive healthcare environment, Hey et al. (2009) proposed a unified 
modeling approach that can take full advantage of a data-intensive environment 
without losing the realistic complexity of health. Based on the cross-industry 
standard process for data mining (CRISP-DM), Niaksu (2015) and Esfandiari et al. 
(2014) proposed an extension of the CRISP-DM to address specific challenges of big 
data analytics in healthcare, and described some specialized tasks and activities for 
each phase, respectively. Considering healthcare as an adaptive system with a 
combination of three essential components—decision making, decision informatics, 
and human interface, Tien and Goldschmidt-Clermont (2009) proposed a decision-
making framework from data to information, knowledge, and wisdom, and also a 
decision informatics paradigm with a feedback loop among multiple data sources, 
abstracted information, and real-time decision. 

From the perspective of systems engineering and service engineering, we put 
forward the paradigm of big data analytics in healthcare, as shown in Fig. 2.2. 
Firstly, the fusion and analysis of multi-source heterogeneous data can be used as 
input for data-driven decision modeling on the one hand, and for building a 
knowledge map on the other hand. Secondly, descriptive modeling and predictive 
modeling are carried out by using data mining methods and technologies, where the 
descriptive modeling mainly includes the feature extraction of objects from high-
dimensional sparse data and the complex relation representation between individual 
objects, while the predictive modeling mainly includes statistical inference and 
prediction model. Then, normative modeling for obtaining the knowledge is carried 
out by integrating the knowledge map into the results based on descriptive and 
predictive modeling. Finally, knowledge can provide decision support for the prac-
tical problems in the operation and management of the medical service system. 

While based on the literature records related to data mining for EHRs, Chen et al. 
(2017) adopted the Latent Dirichlet Allocation (LDA) and Topics Over Time (TOT) 
models to extract topics and analyze topic evolution trends and further summarized 
the general research framework of data mining for the medical domain by combining 
the topic co-occurrence relations and domain knowledge, including the data, 
methods, knowledge, and decision levels, as shown in Fig. 2.3. This research 
framework can provide a high-level insight for scholars in the medical domain 
field and guide their choices of medical data mining techniques in healthcare 
knowledge discovery, medical decision support, and public health management.
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Fig. 2.2 Big data analytics in healthcare from the perspective of systems engineering and service 
engineering 

Further, as the core medical big data, EMRs have become the core foundation of 
smart hospital construction, and the research on the analysis and utilization of EMRs 
is of great significance. In order to promote the analysis and utilization of EMRs, an 
integrated research framework for the generation, analysis, and utilization of elec-
tronic medical records was proposed in Fig. 2.4. We found that EMR analysis was 
helpful to the construction of higher-level hospital intelligent service, and further 
improve the intelligent service level of the hospital by relying on data mining 
methods such as classification, recommendation, association rules, text mining, 
and natural language processing. 

In summary, these research frameworks of big data analytics in healthcare are 
similar, emphasizing data collection and preprocessing methods, big data analytics 
and modeling techniques, and knowledge for decision support discovery methods to 
optimize the medical process and further achieve the profound reforms of the 
medical model. 

2.1.3 Analysis of Clinical Diagnosis and Treatment Process 

In clinical practice, it is necessary to formulate and implement standardized diagno-
sis and treatment processes in order to effectively improve the efficiency of medical 
staff, promote the quality of hospital medical services, and achieve a patient-centered 
service concept. Shortliffe and Cimino (2006) proposed a clinical diagnosis and
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treatment process based on hypothetic-deductive methods when admitted to a 
hospital, as shown in Fig. 2.5. First, when a new patient is admitted to the hospital 
with chief complaints (symptoms or diseases), the doctor forms the initial hypothesis 
(diagnosis) by asking some questions and further revises the hypothesis based on the 
patient’s history of present illness, past medical history, family history, social 
history, and review of the system. Then, when the patient completes the medical 
examination, the hypothesis lists revised by the doctor may be effectively reduced to 
determine the appropriate treatment. Finally, the doctor determines the source of the 
patient’s problems and develops a specific treatment regimen to treat the diseases 
and observe the outcomes. In addition, when clinical diseases have not been 
effectively improved, the doctor needs to further revise the hypothesis and treat 
the patient again.
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Fig. 2.5 The clinical diagnosis and treatment process based on hypothetic-deductive methods 

Whereas clinical data describing patient phenotypes and treatment remains an 
underutilized source of data, it holds tremendous potential for advancing research 
and optimizing clinical diagnosis and treatment regimen (Jensen et al., 2012; MIT 
Critical Data, 2016; Yadav et al., 2018). Thus, we design a clinical diagnosis and 
treatment process based on data-driven methods to reduce medical costs and 
improve medical service quality, as shown in Fig. 2.6. Firstly, according to the 
research framework of big data analytics in healthcare described in Sect. 2.1.2,  we  
can mine diagnosis and treatment patterns from EMRs by data-driven methods, and 
build two types of rule bases: Admission Information-Diagnosis rule base, and 
Diagnosis-Treatment rule base. Secondly, when a new patient is admitted to the 
hospital, the doctor can retrieve the most similar diseases from the Admission 
Information-Diagnosis rule base on demographic information, symptoms, and lab-
oratory indicators of the patient. Thirdly, the doctor can recommend the most 
effective treatment pattern for the patient based on the Diagnosis-Treatment rule



base. Finally, if the outcome of the patient is not effectively improved, the doctor 
needs to further revise the disease type and the corresponding treatment pattern. 
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Fig. 2.6 The clinical diagnosis and treatment process based on data-driven methods 

Obviously, in the data-driven clinical process, diagnosis-treatment pattern plays 
an important role to reduce the inflammation that triggers patients’ signs and 
symptoms and improve long-term prognosis by limiting complications. Meanwhile, 
the diagnosis-treatment pattern should also meet the requirements of rational drug 
use. Rational drug use requires that “patients receive medications appropriate to their 
clinical needs, in doses that meet their own individual requirements, for an adequate 
period of time, and at the lowest cost to them and their community” (World Health 
Organization, 2012). The goal of rational drug use is also to achieve “5R”: right 
patient, right drug, right dose, right route, and right time. Thus, according to the 
above analysis, we further describe the role of data-driven diagnosis-treatment 
pattern mining in the healthcare environment in Fig. 2.7. Concretely, on one hand, 
after collecting the medical evidence (e.g., pyramid of evidence), medical experts 
adopt the evidence-based medicine (EBM) approach to design clinical guidance, 
which can be applied to the diagnosis and treatment process proposed in Fig. 2.5.  On  
the other hand, we can mine the diagnosis and treatment rule database from clinical 
data by data-driven methods, which is suitable for the clinical diagnosis and treat-
ment process described in Fig. 2.6. Then the clinical guidance can guide the 
feasibility implementation of diagnosis-treatment patterns by providing domain 
knowledge, and diagnosis-treatment patterns can enrich, supplement, and perfect 
the clinical guidance, which both can achieve the goal of “5R” in medical (i.e., 
rational drug use) and “5R” in healthcare (i.e., new value pathways in the healthcare 
paradigm discussed in Sect. 2.1.1).
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Fig. 2.7 The role of data-driven diagnosis-treatment pattern mining 

2.1.4 The Literature Summary of Diagnosis-Treatment 
Pattern Mining 

Data-driven diagnosis-treatment pattern mining is receiving increasing attention in 
the field of healthcare management. Diagnosis-treatment patterns, as actionable 
knowledge latent in EMRs representing the best practice for most patients in most 
time of their clinical processes, can be exploited to help physicians better understand 
their specialty and learn from previous experiences for clinical guidance improve-
ment (Huang et al., 2015). To the best of our knowledge, unifying diagnosis (UD), 
clinical pathway (CP), and rational drug use are the main research directions of 
diagnosis-treatment pattern mining. 

2.1.4.1 The Related Work of Unifying Diagnosis (UD) 

In medical practice, clinicians are encouraged to seek a UD that could explain all the 
patient’s signs and symptoms in preference to providing several explanations for the 
distress being presented (Herman, 1994). A UD is a critical pathway to identifying 
the correct illness and crafting a treatment plan; thus, clinical experience and 
knowledge play an important role in the science of diagnostic reasoning. Generally, 
from a brief medical history of a patient, clinicians can use the intuitive system in 
their brain and rapidly reason the disease types, whereas, for complex and multi-type 
abnormal results, clinicians must use the more deliberate and time-consuming 
method of analytic reasoning to deduce the UD, raising the risk of diagnostic errors. 

The coexistence of multiple diseases is pervasive in the clinical environment, 
particularly for patients in the intensive care unit (ICU) (Sareen et al., 2020). 
According to the statistical results of the MIMIC-III database, which is a freely 
accessible critical care database, the average number of diagnosis codes for patients



in the ICU is 11. Additionally, diagnosis codes are highly fine-grained, closely 
related, and extremely diverse (Johnson et al., 2016). Thus, it is trivial and difficult 
for clinicians to make a consistent, accurate, concise, and unambiguous diagnostic 
decision reasonably. 
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Furthermore, although the inter-relation of diagnosis codes was considered in 
previous studies, the researchers commonly used the first three digits of ICD-9 codes 
to assign diagnosis codes for patients (Diao et al., 2021; Wu et al., 2022); hence, the 
complexity may increase and prediction performance may reduce when considering 
all digits of the ICD-9 codes. Additionally, in those studies, reasonable complicated 
and confusing diagnosis codes could not be classified into a UD using a data-driven 
method. A UD is the basic principle of clinical diagnostic thinking. Its basic idea is 
that when a patient has many symptoms and if these symptoms can be explained by 
one disease, it will never explain different symptoms using multiple diseases. A UD 
reflects the integrity of the patient and the professionalism of clinicians; however, in 
previous studies, the main focus was on the UD of a category of diseases from the 
clinical perspective, such as mood/mental disorders (Malhi et al., 2020), intracranial 
mesenchymal tumor (Sloan et al., 2021), and arrhythmogenic right ventricular 
cardiomyopathy (Liang et al., 2016). 

2.1.4.2 The Related Work of Clinical Pathway (CP) 

CPs are regarded as useful tools that ease the tension of the doctor-patient relation-
ship and enable patients to receive correct and timely diagnosis and treatment with 
controlled medical costs and improved medical quality (Chen, Sun, et al., 2018). In 
general, process mining is the most popular method to mine CPs from massive 
EMRs. When process mining technology is applied to clinical environments, treat-
ment behavior can be measured from EMRs that regularly record patient execution 
information. What is more, due to strict mathematical logic and reasoning ability, 
process mining can be used as an objective way to analyze clinical pathways 
(Rebuge & Ferreira, 2012). For instance, Mans et al. (2008) applied process mining 
technology to discover the treatment workflow of stroke patients. Bouarfa and 
Dankelman (2012) proposed a process mining algorithm to extract a consensus 
model from multiple clinical activity logs, which can automatically detect the 
abnormal behavior of CPs without the prior knowledge of clinical experts. 
Lakshmanan et al. (2013) designed a process mining approach for mining CPs 
correlated with patient outcomes that involve a combination of clustering, process 
mining, and frequent pattern mining. Huang et al. (2013) presented a process mining 
method for constructing CP summaries from the collected event logs which regularly 
record various kinds of medical behaviors by hospital information systems. Yang 
et al. (2017) presented a process analysis and recommendation framework to extract 
medical prototypes from activity logs. 

In addition, sequential pattern mining and probabilistic topic model have also 
been applied to discover CPs. For instance, Perer et al. (2015) used a frequent 
sequence mining algorithm to explore care pathways from EMRs with visual



analytics. Huang et al. (2014, 2015) developed a probabilistic topic model to mine 
treatment patterns hidden in EMRs for clinical pathway analysis and improvement. 
Hirano and Tsumoto (2014) designed a typicalness index method to mine typical 
order sequences from EHRs for building clinical pathways. While in clinical prac-
tice, considering the complexity of actual treatment activities, variations are widely 
existent in different stages of CPs. Li et al. (2015) proposed an automatic method to 
detect CP variation patterns in EMRs and statistically examined their correlation 
with patient outcomes. Ainsworth and Buchan (2012) developed a collaborative 
online CP investigation tool that combines the required specialist knowledge and 
skills from different disciplines, providing a network-based CP variation analysis 
tool for clinicians and health service managers. 
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2.1.4.3 The Related Work of Rational Drug Use 

Rational drug use is also an important research direction of treatment patterns 
mining, which requires that the right patient receives the right drug with the right 
dose and the right route at the right time. EMR data mining technology has been 
proven that it has good results to analyze drug use efficiency and various drug 
treatment regimens. For instance, Wright et al. (2015) used sequential pattern mining 
to automatically infer temporal relationships between medications, visualize these 
relationships, and generate rules to predict the next medication likely to be pre-
scribed for a patient. Jin et al. (2018) developed a treatment engine to predict next-
period prescriptions based on disease conditions, laboratory results, and treatment 
records of the patient. Chen, Li, et al. (2018) presented a disease diagnosis and 
treatment recommendation system to recommend medication treatments based on 
the given inspection reports of patients. 

In general, EMRs are heterogeneous and longitudinal in nature, including demo-
graphic information, diagnostic information, laboratory indicators, doctor orders, 
and outcomes. A treatment record is a series of doctor orders, and each doctor’s 
order usually consists of a drug name, delivery route, dosage, start time, and end 
time. However, in the existing studies, a doctor’s order is simplified as an event code 
and a treatment record is simplified as a code sequence. Thus, the information 
inherent in doctor orders is not fully used for in-depth analysis (Sun et al., 2016). 
In this chapter, considering the diversity, temporality, and dynamicity of EMRs, we 
propose the concept of typical treatment patterns, which can reflect the complexity of 
EMRs better and enhance the interpretability of mining results. 

The rest of the chapter is organized as follows. Section 2.2 highlights the 
challenges to analyze the large-scale and complex EMRs to mine typical 
diagnosis-treatment patterns. Section 2.3 describes the UD unifying diagnosis iden-
tification and prediction method embedding the disease ontology structure from 
electronic medical records. Section 2.4 provides four clinical pieces of research on 
typical treatment patterns in rational drug use and CPs, and discusses the examina-
tion of typical treatment pattern mining approaches, limitations, and open issues. 
Section 2.5 presents the conclusions as well as the challenges.



2 Big Data Analytics in Healthcare 39

2.2 Challenges for Typical Diagnosis-Treatment Pattern 
Mining 

EMRs usually contain five kinds of information about patients, such as demographic 
information, diagnostic information, laboratory indicators, doctor orders, and out-
comes. Concretely, demographic information includes the age, gender, address, race 
and ethnicity, education, and other information of a patient. Diagnostic information 
includes diagnosis code, disease names, and severity of the diseases. Laboratory 
indicators record the detailed results of laboratory tests to evaluate the health status 
of a patient, such as blood routine, urine routine, stool routine, liver function, and 
kidney function. A doctor order is a medical prescription, including drug name, 
delivery route, dosage, starting time, and ending time, and a treatment record is a 
series of doctor orders related to the patient. The outcome is evaluated by doctors 
when a patient is discharged from the hospital, including treatment efficacy (cured, 
improved, ineffective, and dead) and treatment efficiency (payment and length of 
stay) (Chen, Sun, et al., 2018; Dang & Ho, 2017; Sun et al., 2016). 

After summarizing our previous works (Chen, Guo, et al., 2018; Chen, Sun, et al., 
2018; Sun et al., 2016), we propose a general framework of data-driven typical 
treatment pattern mining, as illustrated in Fig. 2.8. Our framework has two stages: 
typical treatment pattern mining and typical treatment pattern evaluation and rec-
ommendation. The former includes (1) similarity measure among diagnosis and 
treatment records; (2) clustering diagnosis and treatment records based on similarity 
matrix; and (3) typical diagnosis and treatment pattern extraction from each cluster. 
The latter includes (1) patient cohort division by classification methods; (2) evalua-
tion of diagnosis and treatment records in each patient cohort; and (3) recommenda-
tion of the most effective diagnosis and treatment pattern for each patient cohort. In 
this process, three key technical challenges for the general framework emerge, 
including how to measure similarity among diagnosis and treatment records, how
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Fig. 2.8 The general framework of data-driven typical treatment pattern mining



to extract typical diagnosis and treatment patterns from EMRs, and how to evaluate 
and recommend diagnosis and typical treatment patterns.
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2.2.1 Measuring Similarity Among Diagnosis and Treatment 
Records 

2.2.1.1 Similarity Measure of Patients’ Diagnostic Records 

Diagnostic information is one of the most important clinical data. Diagnostic 
information refers to a record of disease diagnosis made by clinicians based on the 
health condition of a patient admitted to the hospital. It is stored in the patient’s EMR  
data in the form of a diagnosis code (e.g., ICD-9 and ICD-10). How to calculate the 
similarity between disease diagnosis codes is a problem to be solved. Diagnosis code 
is a semantic concept, not a specific numerical value. ICD code of disease diagnosis 
concept is classified data with a hierarchical structure, which contains medical 
knowledge. The distance between the two concepts in medical semantics can be 
judged according to the position of the disease diagnosis concept in the ICD 
coding tree. 

In the real EMR dataset, patient diagnostic information is typically a set of 
diagnosis codes, as shown in Fig. 2.9. Thus, patient similarity can be transformed 
into the similarity of the diagnosis code set. Generally, for binary code-level 
similarity, we can use classical methods, such as Dice, Jaccard, cosine, and overlap, 
to calculate set-level similarity. However, these methods cannot fully embed seman-
tic similarity. Thus, it is critical to measure the similarity of patients’ diagnostic 
records by fusing the information content measure of diagnosis codes, diagnosis 
code similarity measure, and diagnosis code set similarity measure. 
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Fig. 2.10 Treatment records of two cerebral infarction patients 

2.2.1.2 Similarity Measure of Patients’ Treatment Records 

The similarity between pairwise treatment records measures how similar a pair of 
treatment records are according to their doctor order information under a specific 
clinical context. As discussed in Sect. 2.1.4, a treatment record is a series of doctor 
orders with timestamps, which can be seen as a temporal event, as shown in 
Fig. 2.10. In general, the treatment information not only includes nominal terms 
like drug name, and delivery route, but also figures like dosage, frequency per day, 
and repeated times, so the recorded information in a treatment record is heteroge-
neous. The timestamp is also more complex than previously studied as it records 
both start and end times. In this case, how to measure similarity between pairwise 
treatment records has become a challenging problem (Sun et al., 2016, 2021). 

After analyzing the characteristics of treatment records in Fig. 2.10, there exist 
three categories of differences illustrated in Fig. 2.11: including (1) doctor order 
content difference: each doctor order is a set of seven tuples, including drug name, 
drug efficacy, delivery route, daily dosage, frequency, start and end time; (2) doctor 
order duration difference: the usage and duration time of the same doctor order are 
various in different treatment records; and (3) doctor order sequence difference: 
certain temporal relations exist between doctor orders. Thus, it is necessary to take 
these differences into full consideration when designing similarity measure methods 
of pairwise treatment records (Chen, Guo, et al., 2018; Chen, Sun, et al., 2018; Htun 
& Sornlertlamvanich, 2017; Sun et al., 2016, 2021).
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Fig. 2.11 Three-view analysis for treatment records of two patients 

2.2.2 Extracting Typical Diagnosis-Treatment Patterns 
from EMRs 

After obtaining the similarity matrix for all diagnosis and treatment records, we first 
divide all diagnosis and treatment records into several groups by clustering algo-
rithms and then extract a typical diagnosis and treatment pattern from each cluster. 
Clustering is a technique of partitioning a set of objects into multiple groups (i.e., 
clusters) so that objects in the same cluster are more similar to each other than to 
those in other clusters (Cho & Kim, 2017; Han et al., 2011; Wang et al., 2018; Xu &  
Tang, 2018). For the research on cluster analysis in data-driven management and 
decisions, Sun, Chen, et al. (2017) discussed the three most popular clustering 
categories, such as centroid-based clustering, connectivity-based clustering, and 
density-based clustering, analyzed and addressed five challenges for cluster analysis 
in new business environments, including clustering dynamic data, clustering a large-
scale data set, finding the representatives, handling arbitrary-shaped clusters, and 
validation measures and consensus clustering, and further provided three practical 
cases relating to management and decisions, for instance, clustering enhanced 
information extraction, data-driven operations research, and clustering assisted 
knowledge discovery. 

2.2.2.1 Typical Diagnosis Pattern Extraction from Clustering Results 

Some previous studies have proved that defining the core zone of a cluster is an 
effective approach to extracting stable clustering results (Chen et al., 2020).



Additionally, considering the complex semantic relations among different diagnosis 
codes, the feature of a cluster cannot be fully described when the diagnostic 
information (cluster center or exemplar) of only one patient is used. Thus, the core 
zone of each cluster can be defined to select a group of patients (i.e., core patients) 
using the k-nearest neighbor method, and further, identify typical diagnosis code 
co-occurrence patterns (TDCCoP) from each cluster by defining a threshold and a 
sorting function. 
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Fig. 2.12 The extraction process of the UD from diagnostic records 

To extract typical diagnosis patterns (i.e., UD) from patients’ diagnostic records, 
categorizing the TDCCoP of each cluster reasonably according to the disease 
taxonomy is a critical step. Chen et al. (2022) proposed a UD identification method, 
as shown in Fig. 2.12. Specifically, for the TDCCoPk of cluster k, all typical 
diagnosis codes were visualized in the reconstructed ICD ontology structure and 
marked in their orders. Then the least common ancestor (LCA) method was used to 
categorize these codes and define their LCA and the corresponding orders. Further-
more, the conditional co-occurrence matrix was calculated using patient diagnostic 
information to select the optimal segmentation between primary diseases and com-
plications, where the primary diseases were regarded as UD. 

2.2.2.2 Typical Treatment Pattern Extraction from Clustering Results 

Clustering large-scale treatment records is also a big challenge to extracting typical 
treatment patterns. Sun et al. (2016, 2021) proposed a MapReduce enhanced density 
peaks-based clustering (MRDPC) to address this challenge, as shown in Fig. 2.13. 
MRDPC is a two-stage procedure. First, the total N patients are first randomly 
divided into m parts, DPC is implemented on each part with an N0 × N0 similarity 
matrix to obtain k potential exemplars (i.e., representative objects); then a partial 
similarity matrix with m × k × N is obtained by computing similarities between the 
selected potential exemplars and all objects, and partial DPC (PDPC) is used to 
determine K final exemplars according to the partial similarity matrix (Sun et al., 
2016, 2021). 

Then after clustering all treatment records, a typical treatment pattern can be 
identified from each cluster. In most of the previous applications of exemplar-based



clustering (e.g., affinity propagation (AP) and density peaks-based clustering 
(DPC)), an exemplar can be directly used to describe the corresponding cluster. 
However, a treatment record can vary in many different directions as a complex 
temporal and heterogeneous data set, and the exemplar of each cluster cannot well 
describe the cluster it belongs to. In this case, Sun et al. (2016, 2021) defined the core 
area of a treatment cluster and extract a semantic description of each treatment 
cluster by its dense core. Further, the typical treatment pattern can be extracted 
from the dense core based on the trade-off between the support of drug or usage 
manners of drug and a threshold defined aforehand, as shown in Fig. 2.14. 
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Fig. 2.14 The extraction process of typical treatment patterns from EMRs 

2.2.3 Predicting Typical Diagnosis Patterns 

After extracting the typical diagnosis pattern (i.e., UD), Chen et al. (2022) further 
proposed the prediction task based on the health condition of a patient admitted to 
the hospital, exploring the important features to assign the most possible UDs to new 
patients. Figure 2.15 shows the proposed UD prediction method. First, three
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categories of features using time series feature representation and text analysis 
methods were fused into structured data for further prediction. Then after data 
preprocessing and feature selection, all patients were labeled with a UD. Finally, 
some classical prediction models were adopted to perform the UD prediction task.
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2.2.4 Evaluating and Recommending Typical Treatment 
Patterns 

Before recommending typical treatment patterns (TTP) to patients, how to evaluate 
their effectiveness is also one of the most challenging problems, since the treatment 
outcome is affected by a lot of factors, and for different patient cohorts, the most 
effective typical treatment patterns may be different. Sun et al. (2016, 2021) 
presented a general framework with three stages to address this challenge shown 
in Fig. 2.16. First, according to demographic information, laboratory indicators, 
diagnostic information, and outcomes of all patients, we divide patients into different 
groups by a decision tree model. The patients in the same leaf node are defined as a 
patient cohort. Then, for a specified patient cohort, we observe how many typical 
treatment patterns have been used on the patients in this cohort, and further figure out 
which treatment pattern can result in the highest effective rate. Finally, we can 
recommend the best typical treatment pattern for each patient cohort. 

In addition, Chen, Guo, et al. (2018) and Chen, Sun, et al. (2018) proposed a brief 
evaluation and recommendation framework. First, we use treatment outcomes to
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Fig. 2.16 Evaluation and recommendation of typical treatment patterns



evaluate the effectiveness of the extracted typical treatment patterns, such as treat-
ment efficacy and treatment efficiency. Then, we also analyze demographic infor-
mation, laboratory indicators, diagnostic information of each pattern, and identify 
some representative characteristics. Finally, for a specific patient cohort with these 
representative characteristics, we can recommend the most effective typical treat-
ment pattern for new patients.
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2.3 Typical Diagnosis Pattern Mining for Clinical Research 

This section provides a clinical case of data-driven typical diagnosis pattern mining 
and predicting (i.e., UDIPM) from EMRs in our previous studies (Chen et al., 2022). 
In clinical practice, the reasonable classification of a large number of distinct 
diagnosis codes can clarify patient diagnostic information and help clinicians to 
improve their ability to assign and target treatment for primary diseases. Thus, the 
accurate identification and prediction of the UD from a large number of distinct 
diagnosis codes and multi-source heterogeneous patient admission information in 
EMRs can provide a data-driven approach to assist in better coding integration of 
diagnosis. Chen et al. (2022) proposed a research framework for data-driven UDIPM 
from EMRs, as shown in Fig. 2.17. 
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This study adopted diagnostic information to identify the UD and used demo-
graphic information, symptom information, and laboratory examination informa-
tion to predict the UD. First, a set of similarity measure methods was applied to a 
large number of patients by embedding the semantic relation of the ICD classifi-
cation system (Task 1). Second, a clustering algorithm was adopted to divide 
patients into different groups, and further obtain the exemplar and core patients 
of each cluster (Task 2). Third, the typical diagnosis code co-occurrence patterns 
(TDCCoPs) were identified from each cluster by defining a threshold and a sorting 
function (Task 3). Fourth, the visual analysis and conditional co-occurrence matrix 
(CCoM) were combined to extract the UD by selecting the optimal segmentation 
(Task 4). Finally, after obtaining the health condition of the patient admitted to the 
hospital, a UD prediction using multi-class classification methods was achieved 
(Task 5). 

After applying the AP clustering algorithm, we first divided the 4418 sepsis 
patients into two clusters, where clusters 1 and 2 contained 1391 and 3027 patients 
with the support of 31.48% and 68.52%, respectively. After obtaining TDCCoPs, we 
visualized all the TDCs in the ICD-9 ontology structure and obtained the LCA 
co-occurrence pattern (LCoP), as is shown in Fig. 2.18. Then we calculated the 
CCoM2 of the LCoP2 based on the diagnostic information of 800 core patients in 
cluster 2, as described in Table 2.1. Thus, diseases of the respiratory system 
(460–519, order: 3) and diseases of the circulatory system (390–459, order: 5)
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f

p2(dj/di) 580-629 38.9 460-519 390-459 785.52 240-279 995.92 

580-629 (1) 0.75 0.60 0.64 0.92 0.71 0.61 0.94 

38.9 (2) 0.73 0.61 0.73 0.93 0.72 0.63 0.94 

460-519 (3) 0.72 0.67 0.66 0.92 0.71 0.62 0.94 

390-459 (5) 0.74 0.61 0.66 0.93 0.71 0.60 0.94 

785.52 (8) 0.99 0.60 0.65 0.93 0.73 0.60 0.97 

240-279 (9) 0.74 0.63 0.67 0.91 0.71 0.61 0.94 

995.92 (10) 0.74 0.61 0.66 0.92 0.75 0.61 0.94 

were likely to be the optimal segmentation between primary diseases and com-
plications, and the first three diseases were considered to be the UD (UD2) o  
cluster 2.
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Table 2.1 CCoM obtained based on the result of LCoP in Fig. 2.18 

Note Values in brackets are the orders of the seven diseases, and bold values on the master diagonal 
denote the occurrence probabilities of the seven diseases 

Further, we applied feature fusion and feature selection using the IG method and 
performed five classifications to predict a UD based on patient admission informa-
tion and identify important features for the constructed prediction models. 
Figure 2.19 shows the classification performance of the proposed UDIPM, including 
the area under the ROC curve (AUC), accuracy (Acc), precision (Pre), recall (Rec), 
and F1-score (F1). 

The experimental results indicated that the proposed UDIPM achieved better 
prediction performance, where the AUC values were all above 0.8, except for the 
decision tree method. Similarly, the best Acc, Pre, Rec, and F1 among all classifi-
cations were XGBoost, at approximately 80%, followed by random forest, SVM, 
and logistic regression, whereas the decision tree was last, at approximately 66%. 
Consider the random forest as an example. We obtained the feature importance 
results to better understand the prediction model. First, we found that demographic 
information (i.e., age) and laboratory examination information were more important 
than symptom information. Then some disease severity indicators were very impor-
tant, such as SAPS and SAPS-II. Finally, the variance distribution (i.e., Var) of the 
laboratory examination indicators was more important than the mean, median, 
minimum, and maximum values. To summarize, the proposed UDIPM not only 
identified a UD from patient diagnostic information but also predicted a UD based 
on the health condition of a patient admitted to the hospital.
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2.4 Typical Treatment Pattern Mining for Clinical 
Research 

This section provides three clinical cases of data-driven typical treatment pattern 
mining from different views in our previous studies (Chen et al., 2020; Chen, Guo, 
et al., 2018; Chen, Sun, et al., 2018; Sun et al., 2016, 2021). The first case proposes a 
data-driven typical treatment regimen mining approach from a doctor order content 
view, which is published in Proceedings of the 22nd ACM SIGKDD International 
Conference on Knowledge Discovery and Data Mining (Sun et al., 2016) and 
Transactions on Knowledge and Data Engineering (Sun et al., 2021). The second 
case designs a data-driven typical drug use pattern mining approach from a doctor 
order duration view, which is published in proceedings of the 19th International 
Symposium on Knowledge and Systems Sciences (Chen, Guo, et al., 2018) and 
Journal of Systems Science and Systems Engineering (Chen et al., 2019). The third 
case discusses the context of clinical pathways and presents a data-driven typical 
treatment process mining approach from a doctor order sequence view in the Journal 
of Biomedical Informatics and our work can provide managerial guidance for 
clinical pathway redesign and optimization (Chen, Sun, et al., 2018). The fourth 
case proposes a fusion framework to extract typical treatment patterns based on the 
multi-view similarity network fusion method in Artificial Intelligence in Medicine 
(Chen et al., 2020). Furthermore, all proposed methods have been validated on real-
world EMRs of the cerebral infarction dataset and MIMIC-III dataset (Johnson et al., 
2016). In addition, a typical treatment regimen, typical drug use patterns, and typical 
treatment process can be regarded as one of the typical treatment patterns according 
to different research questions. Thus, both cases are in the context of rational drug 
use, and the methods we proposed can contribute to achieving the “5R” goal, namely 
right patient, right drug, right dose, right route, and right time. 

2.4.1 Typical Treatment Regimen Mining from Doctor Order 
Content View 

A typical treatment regimen usually refers to a series of doctor orders with a high 
frequency of occurrences (i.e., typical doctor orders) in a group of patient treatment 
records, and each typical doctor order also includes the drug name, delivery route, 
daily dosage, frequency, start and end time. Sun et al. (2016, 2021) presented a 
research framework of data-driven typical treatment regimen mining from doctor 
order content view shown in Fig. 2.20. This process has been discussed in Sect. 2.2, 
except for the similarity measure methods. In this work, we developed a novel 
method that can compute the similarity between two doctor orders by an orderly 
combination of a drug name, delivery route, and dosage-per-day, and further pro-
posed a complex set similarity measure method for computing the similarity between 
two treatment records.
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Doctor orders 

Dividing patients into subset by 

decision tree 

Each leaf node represents a patient 

cohort 

Computing similarities between 

treatment records 

Clustering treatment records 

Extracting typical treatment regimen 

from each cluster 

Evaluating and recommending the most effective typical treatment 

regimen for each patient cohort 

Demographic 

information 
Diagnostic 

information 
Laboratory 
indicators 

Outcome 

Fig. 2.20 The research framework of data-driven typical treatment regimen mining 

After clustering treatment records, we extracted typical treatment regimens from 
each cluster. For instance, Fig. 2.21 shows the extraction results of typical treatment 
regimen 2, where each bar denotes a typical drug. Concretely, the support of typical 
treatment regimen 2 is 15.5%, and the most typical drugs are Shuxuetong, Ozagrel, 
Cinepazide, and Aspirin. The usages of four medicines in different periods are also 
different. Further, taking the third period (4–7 days) for example, each pie denotes 
the different usage manners of the typical drug with its support, such as “IV/160/4” 
of Ozagrel refers to that the delivery route is an intravenous injection (IV), the daily 
dosage is 160 units, four days are used during the third period, and the support is 
52%. 

Next, after extracting typical treatment regimens and dividing the patients into 
homogeneous cohorts by the decision tree method, we can evaluate and recommend 
the most effective typical treatment regimen for each patient cohort. For instance, 
Fig. 2.22 shows the evaluation and recommendation for two patient cohorts. Spe-
cifically, for Case 1 (leaf node 2 with 4035 patients), most of the patients are cured 
and improved. Typical treatment regimen 4 (Patient-T4) is the best regimen with the 
highest cure rate and improved rate, but only 0.37% of patients in this cohort used 
this regimen. Typical treatment regimen 3 (Patient-T3) with higher support of 
25.97% is regarded as the most effective treatment regimen because it can obtain a 
higher cure rate and lower ineffective and dead rate than a typical treatment regimen 
1 (Patient-T1) and 2 (Patient-T2). Similarly, we can recommend typical treatment 
regimen 2 to the patient cohort with leaf node 17.
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2.4.2 Typical Drug Use Pattern Mining from Doctor Order 
Duration View 

Rational drug use also requires that patients receive medications for an adequate 
period of time. The adequate duration time of medications not only improves the 
therapeutic effect of medicines but also reduces the side effects and adverse reactions 
of medicines. Chen, Guo, et al. (2018) and Chen et al. (2019) proposed a research 
framework of data-driven typical drug use pattern mining from the doctor order 
duration view shown in Fig. 2.23. The main process has been also discussed in Sect. 
2.2, except for the representation of the drug use distribution feature vector 
(DUDFV) from doctor orders and the similarity measure methods. In this work, in 
order to analyze the duration time characteristic of medications, we first defined the 
drug use distribution feature with a quintuple for each drug, including the mean, the 
variance, the lasting days, and the first and last day of drug use. Then we represented 
the DUDFV of each patient by the ordered combination of DUDFs for all drugs and 
further used the Euclidean distance to measure the similarity between pairwise 
DUDFVs. 

After clustering DUDFVs, we extracted three typical drug use patterns (i.e., 
pattern 1, pattern 2, and pattern 3). For instance, Fig. 2.24 shows the extraction 
results of pattern 2, where each black bar in Fig. 2.24 (1) and Fig. 2.24 (2) denotes a 
drug and drug use day, respectively; each white bar in Fig. 2.24 (1) and Fig. 2.24 
(2) denotes a typical drug and effective drug use day when exceeding a threshold 
defined aforehand, respectively; and the curve in Fig. 2.24 (2) is the effective drug 
use days and DUDF of Heparin. Concretely, the support of pattern 2 is about 55% 
with 19 typical drugs, and the support of each typical drug is different. For Heparin

Computing similarities between DUDFVs 

Extracting typical drug use pattern 

from each cluster 

Clustering DUDFVs 

Admission type; Gender; Age; 

Disease severity scores; 

Mortality; Average survival days 

Diagnosis ICD_9 code 

Doctor orders DUDFVs Demographic 
information 

Diagnostic 
informationOutcome 

Evaluation 

Laboratory 
examination 

Annotation 

Evaluating, annotating and recommending typical drug use patterns 

Fig. 2.23 The research framework of data-driven typical drug use pattern mining
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selected from pattern 2, the DUDF is {5.5, 8.25, 10, 1, 10} indicating that the mean, 
the variance, the lasting days, and the first and last day of Heparin use are 5.5, 8.25, 
10, 1, and 10. Similarly, we can also obtain the DUDFs of all typical drugs and 
provide clinical guidance for the duration time of drug use.
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Then, we further evaluated the extracted typical drug use patterns based on 
demographic information, laboratory examination and outcome, annotated diagnosis 
codes for each typical drug use pattern according to diagnostic information, and 
proposed a recommendation work for the patients with the same patient condition 
and disease types shown in Fig. 2.25. In Fig. 2.26, we deem patterns 2 and 3 to be the

New patient 

Age ≥60 

Emergency 

Demographic 
& Laboratory 

Diagnosis 

Outcome 
Mortality/Average survival days 

Disease types 

in pattern 1 
In-hospital : 90.5%/1.35 days 
Out-of-hospital: 3.5%/23.5 days 

Pattern 1 

Typical drug use pattern 

Disease types 

in pattern 2 
In-hospital : 14%/7.53 days 

Out-of-hospital: 47.5%/452 days 
Pattern 2 

Disease types 

in pattern 3 
In-hospital : 26%/2.1 day 

Out-of-hospital: 21%/300 days 

Pattern 3 

Fig. 2.25 Recommendation of typical drug use patterns 

Core patients in pattern 1 

(200 patients) 

Acute respireatory failure 

Yes No 

100 patients 100 patients 

Yes No 

15 patients 85 patients 

Yes No 

30 patients 55 patients 

Pattern 3 

Pattern 2 

Urinary tract infection NOS 

Congestive heart failure NOS 

Fig. 2.26 Recommendation for the patients in pattern 1



effective typical drug use patterns because of lower in-hospital and out-of-hospital 
mortality and a longer average survival time than that of pattern 1. Thus, for patients 
in pattern 1, we further analyze their disease types and recommend pattern 2 and 
pattern 3 to the seventy patients in Fig. 2.26, which can effectively improve their 
treatment outcomes.
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2.4.3 Typical Treatment Process Mining from Doctor Order 
Sequence View 

A clinical pathway (CP) defines a standardized care process for a well-defined 
patient group, aimed at improving patient outcomes and promoting patient safety 
(Huang et al., 2015). Figure 2.27 shows the process of CP design and implementa-
tion. However, in clinical practice, creating such a pathway from scratch is demand-
ing for medical staff as it involves multidisciplinary medical team collaboration, 
plan-do-check-act-related techniques, and optimal EBM (Chen, Sun, et al., 2018). In 
addition, due to the difference in disease severity, complication, multi-pathogenesis, 
and reaction to therapy, the variation of CPs often occurs when implementing them 
for patients. 

In order to build CPs from EMRs, Chen, Sun, et al. (2018) proposed a research 
framework of data-driven typical treatment process mining from the doctor order 
sequence view shown in Fig. 2.28. This process has been also discussed in Sect. 2.2, 
except for the representation of doctor order set sequence (DOSS) from doctor orders 
and the similarity measure methods. In this work, considering the treatment courses 
in clinical practice, we divided treatment into different periods and defined DOSS, 
then generated a set transition matrix sequence from DOSS based on Markov chain 
theory, and further adopted Manhattan distance to compute the similarity between 
two treatment records. 

After clustering all DOSSs, we can extract the typical treatment process from 
each cluster. For instance, Fig. 2.29 shows the extraction result of typical treatment 
processes from dataset 3 (i.e., patients in critical condition), where each circle 
denotes a typical drug, and each line represents the transition probability of two 
doctor orders in the adjacent period. Specifically, we identified four categories of 
typical treatment processes with seven drugs for cerebral infarction patients in the 
critical condition. For typical treatment process 1, we can extract a high-frequency 
typical treatment process (HF-TTP: support 2 [0.7,1), black thin line), namely, 
{Admission, {Lum, GBEP, Asp}, {Lum, GBEP, Asp}, {Lum, GBEP, Asp}, 
{Lum, GBEP, Asp}, Discharge}, which can be contribution to build CPs. Similarly, 
we can also extract some HF-TTPs from the typical treatment processes 2, 3, and 4. 

Next, we further evaluated the treatment efficacy and efficiency, analyzed demo-
graphic and diagnosis information of typical treatment process, and discussed a 
recommendation work for the patients with the same patient condition and disease 
severity. Figure 2.30 shows the recommendation of typical treatment processes,
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where F-TTP, S-TTP, and C-TTP denote the extracted typical treatment processes 
from dataset 1 (patients in fair condition), dataset 2 (patients in serious condition), 
and dataset 3 (patients in critical condition), respectively. For instance, when a new 
patient is admitted to hospital A, and diagnosed with cerebral infarction in fair 
condition after demographic information and laboratory examination by clinical 
doctors, the F-TTP1 can be recommended for this patient, and treatment outcome 
is predictable, such as the cured rate is as high as 74%, the probability of payment 
[￥4000, ￥24,000] is 86%, and the probability of length of stay less than two weeks 
is 78%. Similarly, we can recommend the best treatment for different patients 
according to Fig. 2.30.
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Fig. 2.28 The research framework of data-driven typical treatment process mining 

2.4.4 Typical Treatment Pattern Mining from Multi-View 
Similarity Network Fusion 

In clinical practice, rational drug use means that patients receive medications 
appropriate to their clinical needs, in doses that meet their own individual require-
ments, for an adequate period of time, and at the lowest cost to them and their 
community (World Health Organization, 2012). Thus, the goal of rational drug use is 
to achieve the “5Rs”: “right drug,”  “right dose,”  “right route,” and “right time” for 
“right patient.” However, due to diseases with multiple similar treatment stages, 
various symptoms, and multiple pathogeneses and clinical experience and
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knowledge with the characteristics of inadequate communication, experience 
exchange, and cooperation between young and senior doctors, it is difficult to 
achieve the “5Rs” goal in an accurate and efficient manner (Chen, Guo, et al., 
2018; Chen, Sun, et al., 2018).
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Therefore, Chen et al. (2020) analyzed the characteristics of doctor orders, 
formulate new patient representations and compute the corresponding patient sim-
ilarity from three views (i.e., an improved doctor order content view patient simi-
larity measure, a doctor order sequence view patient similarity measure, and a novel 
doctor order duration view patient similarity measure), and applied a multi-view 
Similarity Network Fusion (SNF) method to fuse three kinds of patient similarity for 
typical treatment pattern extraction. Figure 2.31 illustrates the fusion framework of a 
typical treatment pattern extraction in this chapter. The fusion framework mainly 
consists of four steps: (1) terms and definitions, (2) patient similarity measure 
methods, (3) the multi-view SNF method, and (4) the typical treatment pattern 
extraction method. 

Real-world EMR data of cerebral infarction patients used in our experiment were 
collected from three Traditional Chinese Medicine (TCM) hospitals, which are

Similarity fusion 

Typical treatment pattern extraction 

Content view Sequence view Duration view 

Spectral clustering and Top-K patients 

section from each cluster 

Content-based similarity Sequence-based similarity Duration-based similarity 

Multi-view SNF method 

Core of treatment pattern extraction method 

Treatment and doctor orders 

terms and definitions 

EMRs data collection 

Fig. 2.31 The research framework of data-driven typical treatment pattern mining



located in three cities in China. After evaluating the performance of the multi-view 
SNF method, we first discussed the selection of the number of clusters and then use 
the proposed fusion framework to extract typical treatment patterns, including the 
distribution of typical drugs in different periods, delivery routes, doses per day, and 
repeated times in different periods from the content view, the transition of typical 
drugs in different periods from the sequence view, and the duration distribution of 
typical drugs from the duration view.
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From the content view, Fig. 2.32 describes the distribution of typical drugs in four 
periods for TTP3. First, with the exception of Mannitol (78) in the fourth period (i.e., 
8–14 days), most drugs are widely used in four periods, where Aspirin (133) has the 
largest support of 92%, followed by Xuesaitong (114), Ozagrel (36), and Heparin

Fig. 2.32 The distribution of typical drugs in different periods for TTP3



(91). Second, Mannitol (78), as a hypertonic antihypertensive drug, is commonly 
used in clinical rescue, especially in the treatment of brain diseases with the 
characteristics of rapid and accurate antihypertensive effects to reduce intracranial 
pressure. Thus, along with the extension of the treatment period, the support 
gradually decreases from 22% to 0%. Finally, the support of Alprostadil (19), 
Yindanxinnaotong capsules (128), and Ginkgo biloba extract powder (129) gradu-
ally increases from the first 24 h to 8–14 days post-infarction, while other drugs 
remain unchanged. Additionally, we selected Ozagrel (36), Heparin (91), 
Xuesaitong (114), and Aspirin (133) as four representative drugs in the third period 
(i.e., 4–7 days post-infarction) to further analyze how these typical drugs are used.
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Figure 2.33 shows the usage manners of the four representative drugs used in the 
third period for TTP3, including their drug efficacy, delivery route, dose per day, and 
repeated times. Overall, each drug has multiple usage manners with different 
supports, and fewer drugs have the same usage manners. Specifically, for Ozagrel 
(36), the most widely used manner is “IV/80/4” with a support of 28%, followed by 
“IV/60/4” with a support of 10%, where “IV/80/4” indicates the delivery route is 
Intravenous Injection, the daily dose is 80 units, and the duration is 4 days in the 
third period. Heparin (91) is an important anticoagulant drug to treat cerebral 
infarction and has three distinct usage manners, where “ST/other” ranks first with

Fig. 2.33 The usage manners of four representative drugs used in the third period for TTP3



the support of 31.91%, followed by “IV/1/1,” “Lock Flush (LF)/1/4,” and “LF/1/1.” 
“ST/other” denotes the delivery route is Subcutaneous Injection, but the daily dose 
data are missing. For Xuesaitong (114) and Aspirin (133), the most popular usage 
manners are “IV/400/4” with a support of 46%, and “Oral/100/4” with the support of 
84%, respectively.
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Fig. 2.34 The transition between typical drugs in four periods for TTP3 

From the sequence view, Fig. 2.34 shows the extracted transition patterns for 
TTP3, including an HF-TTP ({Admission, Aspirin (133), Aspirin (133), Aspirin 
(133), Aspirin (133), Discharge}, an MF-TTP ({Admission, {Ozagrel (36), 
Xuesaitong (114)}, {Ozagrel (36), Xuesaitong (114)}, {Ozagrel (36), Xuesaitong 
(114)}, {Ozagrel (36), Xuesaitong (114)}, Discharge}, and some LF-TTPs. In 
general, the HF-TTP and MF-TTP can be used as important guidance to build 
different levels of CPs. 

From the duration view, Fig. 2.35 shows the duration distribution of the four 
representative drugs used in TTP3, the mean usage day and dispersion degree of 
these drugs are similar to distribution intervals [6.9, 7.4] and [15.3, 16.1], while the 
durations are greatly different, the shortest is Heparin (91) with 7.9 days, while the 
longest is Aspirin (133) with 12.35 days. Additionally, the start and end times of the 
four drugs are different. For example, Ozagrel (36) is started on approximately the 
second day and is ended on the twelfth day, Heparin (91) is started on approximately 
the third day and is ended the eleventh day, and Xuesaitong (114) is started on the 
seventh day and is ended on the fifteenth day, and Aspirin (133) is started on the first 
day and is ended on the fourteenth day. 

2.4.5 The Examination of Typical Treatment Pattern Mining 
Approaches, Limitations, and Open Issues 

As discussed in Sections 2.2 and 2.4, four kinds of typical treatment pattern mining 
approaches mainly include similarity measure method, clustering algorithm, and



typical treatment pattern extraction method; thus it is an unsupervised learning 
approach and can be used the clustering results to examine the performance. 
Concretely, for the experimental setting, the labeled clinical dataset is essential, 
which requires patients with the same label have similar characteristics, such as 
patient condition, complication, treatment days, total payment, hospital code, and 
treatment efficacy. For evaluation criteria, clustering accuracy and normalized 
mutual information can be used to examine the clustering results (Chen, Sun, 
et al., 2018; Sun, Guo, et al., 2017). For the baselines of the similarity measure 
method, we can select the LDA with cosine distance, vector space model weighted 
by TF-IDF with cosine distance, and edit distance (Chen et al., 2016; Chen, Sun, 
et al., 2018; Guo et al., 2018). For the clustering algorithm, we can select AP 
clustering, K-center, and DPC. Chen, Sun, et al. (2018) have demonstrated that the 
typical treatment pattern mining approach we proposed achieved the highest clus-
tering performance among different clustering algorithms. 
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Fig. 2.35 The duration distribution of the four representative drugs used in TTP3 

In addition, there are still some limitations in our studies. Firstly, fixed intervals 
for treatment periods may not be the most optimal split due to the complex and 
varying length of treatment records (e.g., the four periods in the first two weeks), 
thus a new solution for future studies could involve splitting varying-length treat-
ment records based on significant changes in prescription indications (Hoang & Ho, 
2019). Secondly, in the experimental setting, some parameters need to be manually 
defined aforehand, such as the weights of different treatment periods, the threshold 
of typical drugs, the definition of the core area for a treatment cluster, and so 
on. Finally, the labeled clinical dataset is essential to examine the performance of 
typical treatment pattern mining approaches, while in our experiment, only a small



amount of the clinical dataset is manually annotated, which may be a lack of 
sufficient evidence to demonstrate the advantages of our approaches. 
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Furthermore, abnormal activities occur frequently in clinical practice; thus abnor-
mal diagnosis and treatment patterns mining from mass EMRs is also a crucial issue 
for improving clinical diagnosis and treatment level, optimizing the existing clinical 
guidelines, and identifying healthcare insurance fraud incidents. 

2.5 Conclusions 

The advance of big data analytics in healthcare is accelerating the transformation of 
the medical paradigm. This chapter is an extension of our previous work (Guo & 
Chen, 2019), firstly discussed the research background of big data analytics in 
healthcare, summarized the research frameworks of big data analytics in healthcare, 
and analyzed two types of medical processes to highlight the important role of data-
driven diagnosis-treatment pattern mining in clinical guidance. Then for three 
challenges, we investigated how to measure similarity between diagnosis and treat-
ment records, how to extract typical diagnosis-treatment patterns from EMRs, and 
how to predict, evaluate, and recommend typical diagnosis-treatment patterns. 
Further, five clinical pieces of research have been provided to demonstrate the 
important role that data-driven diagnosis-typical treatment pattern mining can con-
tribute to achieving the “5R” goal in UD identification and predication, rational drug 
use, and CP redesign and optimization. Finally, we also discussed the examination of 
typical diagnosis-treatment pattern mining approaches, limitations, and open issues. 

Although big data analytics and artificial intelligence technology are promoting 
the automatization, informatization, and intellectualization of healthcare service, 
several challenges have been widely recognized as major barriers to the successful 
implementation of big data in healthcare. First and foremost, the security and privacy 
concerns surrounding big data in healthcare have become increasingly urgent in 
recent times, primarily due to the sensitive nature of diagnosis and treatment records. 
To address these concerns, one approach is to enact and enforce the laws and 
regulations of data sharing and exchange by the government such as the health 
insurance portability and accountability act (HIPAA) and the health information 
technology for economic and clinical health (HITECH) Act in the United States; 
another is to accelerate technological developments in data privacy protection by the 
technology of data masking, encryption, and de-identification. 

In addition, with the increasing popularity of intelligent diagnosis and treatment 
machines in clinical practice, how to determine their ethics and the legal liability 
among clinicians, intelligent machines, and producers for medical accidents are 
becoming the subject of attention. Nowadays there exists a consensus that clinicians 
are the leader of human-machine relationships, and intelligent diagnosis and treat-
ment machines cannot replace them completely, but assist them to make better 
clinical decisions. Thus, clinician intelligent diagnosis and treatment machine inte-
gration is an effective pathway to enhance the efficiency of healthcare service. In the



future, considering high integration and interdisciplinary cooperation of technolo-
gies, ethics, laws, and regulations, it is possible to embed ethics and laws into 
intelligent diagnosis and treatment machines and determine their status as liability 
subjects. 
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