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Abstract. The development of energy-efficient battery thermal management
technology is of great significance for lithium-ion batteries. In this paper, a Tesla
valve type channel cold plate was designed for square batteries, also liquid cooling
experimental studies were carried out to verify the optimized cold plate parameters.
The maximum error between liquid cooling simulation and experiment under the
optimal configuration did not exceed 1.25 °C. The experimental analysis found that
when the inlet flow rate exceeded 398mL/min, the improvement of battery cooling
effect and temperature uniformity gradually tended to saturate. The coolant inlet
temperature was too high or too low would cause the unbalanced performance of
the cold plate.
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1 Introduction

Under the severe situation of global environmental pollution and shortage of fossil
energy, electric vehicles with the advantages of environmental protection and energy
saving, low noise and simple structure have developed rapidly and become an indis-
pensable part of the automobile market [1, 2]. The performance of automotive lithium-
ion batteries is more sensitive to temperature, and it is of great significance to develop
energy-efficient battery thermal management technologies to ensure that lithium-ion
batteries operate within the optimal range of 15-35 °C [3-6]. Liquid cooling is currently
the most widely used method of heat dissipation in electric vehicles. Compared with
traditional liquid cooling technology, microchannel heat sink is a highly efficient heat
exchanger with advantages such as small size, large heat transfer coefficient and high
efficiency of heat transfer.

Nagqiuddin et al. introduced a new segmented microchannel to improve the thermal
performance of a straight channel heat sink, which could improve the heat transfer
performance with minimum pressure drop [7]. Rao et al. used the Jaya algorithm to
optimize the microchannel heat sinks of rectangular and trapezoidal cross-sections, and
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obtained better results than other methods [8]. Osanloo et al. investigated a two-layer
microchannel heat sink with upper and lower tapered staggered channels and obtained
the optimal combination of coolant flow and tapered inclination [9]. Lu et al. proposed a
special structure of the Tesla valve to achieve enhanced heat transfer and further improve
the heat transfer efficiency of the microchannel heat sink [10].

In this paper, the optimal cold plate parameters obtained by the central compos-
ite design response method for different flow rates and different cooling temperature
experimental conditions are verified experimentally [10].

2 Battery Microchannel Cooling Simulation

As shown in Fig. 1, we proposed a Tesla valve channel cold plate cooling system in our
previous study [10].
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Fig. 1. Tesla microchannel cooling system

In [10] we obtained the optimal parameters of the cold plate by multi-objective
optimization as were: Tesla valve angle « of 120°, Tesla valve spacing L of 23.1 mm,
channel spacing B of 28 mm and coolant inlet velocity v of 0.83 m/s (Figs. 2 and 3).
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Fig. 2. The temperature and pressure diagram of the optimal cold plate
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Fig. 3. Different simulation results
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3 Battery Microchannel Cooling Experiments

As shown in Fig. 4 the designed Tesla valve channel cold plate was machined by milling.
The material of the cold plate was aluminium and the internal channel structure param-
eters of the cold plate were consistent with the optimal channel parameters obtained by
multi-objective optimization (Fig. 5).
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Fig. 4. Tesla valve channel cold plate 3D modelling.
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Fig. 5. Battery liquid cooling system experiments.

The experimental results in Fig. 6 showed that the heat transfer performance of
coolant flowing in the reverse direction was significantly better than in the forward
direction. At the end of battery 3C discharge, the central temperature of the battery
surface was basically maintained at around 30 °C when the coolant flowed in the reverse
direction. There were still some deviations between the liquid cooling simulation and
the experimental results, with a maximum error of 1.25 °C for forward flow and 1.04 °C
for reverse flow. This was due to some factors, such as ignoring the influence of the
thermal interface material, the inlet temperature of the coolant fluctuating to a certain
extent, the existence of the diverter at the inlet, as well as the accuracy limitations of the
instrumentation and the processing errors of the cold plate itself.
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Fig. 6. Comparison of simulation and experimental results for liquid cooling under optimised
conditions.

As can be seen from Fig. 7, the designed cold plate could significantly reduce the
temperature of the battery and slow down the temperature rise of the battery. As the
coolant flow rate increased, the surface central temperature of the battery gradually
decreased and the cooling performance of the cold plate was gradually enhanced. But
this did not mean that the larger the coolant flow rate the better, because when the coolant
flow rate increased from 360 mL/min to 398 mL/min, the surface central temperature
of the battery decreased by approximately 0.55 °C. It would consume more pump work
when increasing the coolant flow, so the coolant flow rate was selected at 398 mL/min,
i.e., the coolant inlet speed was about 0.83 m/s, which was basically consistent with the
recommended results of multi-objective optimization.

Figure 8 showed that as the flow rate increased, the temperature difference decreased,
but the degree of reduction gradually decreased. This indicated that increasing the flow
rate also had limited improvement on the temperature uniformity of the whole battery
liquid cooling unit. When the coolant flow rate was 398 mL/min, the maximum temper-
ature difference was about 5.42 °C, which was basically consistent with the simulation
results of the battery liquid cooling finite element model.

Figure 9 showed that a decrease in the coolant inlet temperature would cause a
gradual decrease in the central cell surface temperature. In addition, as the coolant inlet
temperature decreased, the earlier the central temperature changed into a steady state.
Figure 10 showed that as the coolant inlet temperature decreased, the temperature dif-
ference of the battery liquid cooling unit became larger. When the inlet temperature was
20 °C, the maximum temperature difference reached 6.09 °C. When the inlet temperature
was 28 °C, the temperature difference basically remained within 5 °C. This indicated
that the coolant inlet temperature was not the lower the better. Too low coolant inlet
temperature would make the temperature uniformity of the whole battery liquid cooling
unit worse. Therefore the coolant inlet temperature should be selected in conjunction
with the ambient temperature to avoid the uneven performance of the cold plate.
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Fig. 7. Cell surface central temperature variation curve at different coolant flow rates.
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Fig. 8. Cell surface temperature variation at different coolant flow rates.

4 Conclusions

The experiment for the optimal cooling plate obtained by multi-objective optimization
showed the relative error between the liquid cooling experiment and simulation were
small. As the coolant inlet flow rate increased, the surface central temperature and
temperature difference of the battery would decrease. When the flow rate exceeded
398mL/min, further increasing the flow rate would have limited improvement on the
cooling effect and temperature uniformity of the battery. The decrease of the coolant inlet
temperature would reduce the surface central temperature, but increase the temperature
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Fig. 9. Cell surface central temperature variation curve at different coolant temperature.
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Fig. 10. Temperature difference variation at different coolant temperature.

difference of the liquid cooling unit. Therefore the coolant inlet temperature should be
considered comprehensively to avoid uneven performance of the cold plate caused by
too high or too low inlet temperature.
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