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Abstract In this article, a locally recurrent neural network with input feed through 
(LRNNIFT) is presented for control of nonlinear dynamical systems. The rationale of 
using LRNNIFT is due to its modest structure and mathematical model, which gives 
it an edge over the existing Elman neural networks (ENN) and feed forward neural 
networks (FFNN). Results from simulation showed that LRNNIFT-based controller 
is able to achieve adaptive control in a nonlinear system. It is also tested and observed 
to counterbalance the effects of disturbances. A comparative analysis is presented 
with the help of simulation, and it is deduced that overall performance of LRNNIFT 
controller is better than that of FFNN and ENN controllers. 

Keywords Neural-based control · Back-propagation · Nonlinear system ·
Robustness 

1 Introduction 

The world of science has grown drastically in the past few decades with an increased 
focus on solving complex real world problems. The growth of such a mindset led 
the researchers to realise that conventional modelling or control techniques are no 
longer applicable to complex dynamical systems. This paved way for the rise of the 
era of soft computing techniques, algorithms based on biological phenomena. One 
of the earliest significant control techniques in conventional control was the Ziegler 
Nichols method [1] which was further followed by several modifications [2, 3] and 
advanced forced oscillation techniques [4, 5] to achieve control on linear plants. Since 
most processes that require control nowadays are nonlinear, the use of conventional 
proportional- integral-derivative controller has seen decrease in relevance as majority 
of the plants are nonlinear in nature or whose dynamics are not fully known. Artificial
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neural networks (ANNs) are a major breakthrough in this area as these structures 
help estimate as well as control such systems. Various structures of ANNs have been 
developed over the time based on the loops, activation function. Simplest ones are 
feed forward neural networks [6] having low convergence rates which were followed 
by multi-layered feed forward neural networks [7] which again had issues related 
to slow learning rates. Recurrent neural networks (RNNs) [8] have gained traction 
in the recent years for the control [9, 10] of nonlinear systems due to the presence 
of recurrent loops leading to faster learning. RNNs are further implemented with 
modifications for adaptive control as well [11]. 

1.1 Contributions and Novelties of the Paper 

1. This paper presents a detailed simulation of the LRNNIFT for control of 
a nonlinear time-delayed plant. Initial and final responses of a system with 
LRNNIFT controller are shown. 

2. The proposed controller is also compared with controllers based some of the 
existing neural network structures such as feed forward neural network (FFNN) 
and Elman neural network (ENN). 

3. The popular and robust back-propagation algorithm is used to tune all the 
controller models. 

4. Stringent analysis and comparison of robustness of LRNNIFT, ENN and FFNN 
controllers is performed by considering disturbance signal effects which indicates 
the adaptive nature of the controller. 

2 Overview of LRNNIFT 

LRNNIFT is essentially a locally recurrent neural network in which each input 
node is connected directly to the output neuron via weights called as feed through 
weights. The objective is to compare the performance of the novel controller based 
on LRNNIFT with FFNN and ENN controllers while considering uniform parameter 
values for all of them. This helps us gauge the actual behaviour of the controller while 
having the above two models as a basis for comparison for the control of nonlinear 
systems. The structure of the proposed controller is shown in Fig. 1. In the figure, the 
bright red arrows represent the local recurrent weights generated as output of hidden 
neuron or node and propagated through a lag of a unit instant as connected back to 
the same neuron. This leads to the formation of a locally recurrent structure. The 
maroon arrows represent feed through weights connecting the input layer neurons to 
the output layer node through weights denoted as N = N1, N2, …,  Nq. The recurrent 
weights are defined as WL = w1, w2, …,  wp while Wa represents the input weight 
vector. All weights can be updated. From the figure, it can be seen that if WL and 
N are removed or made equal to, the structure is reduced to a FFNN. Furthermore,



Indirect Adaptive Control of Nonlinear System Using Recurrent Neural… 319

FFNN and ENN structures are considered to compare the LRNNIFT controller struc-
ture. The reason behind these structures to be chosen for comparison was primarily 
for their proven performance in the fields of both estimation and control. FFNN is 
a simple structure with no recurrent weights whereas ENN has a rather complex 
structure with every recurrent weight is fed back to each hidden node. The output 
weight vector is given as, Wb = w1 

b, w
2 
b, . . . , w  p b . 

The input vector is defined as X = x1(k), x2(k), …, xq(k). Subsequently, the output 
of any pth recurrent node at any kth instant can be calculated as: 

Op(k) = f
[
Up(k)

]
(1) 

The function f is the hyperbolic tangent function. The induced field (IF) of any 
pth recurrent node can be given as: 

Up(k) = W L p (k)Op(k − 1) +
∑

q 

W b pq (k)xq (k) (2)

Fig. 1 Structure of the proposed controller 
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The IF of the output node is described below: 

S(k) =
∑

p 

W p b (k)Op(k) (3) 

The output value from the output neuron will be equal to the sum of its own IF 
and the feed through factor (from input) as a linear function has been considered as 
the activation function. Hence, we write it as: 

SIFTC(k) = S(k) =
∑

p 

W p 0 (k)Up(k) +
∑

q 

Npq (k)xq (k) (4) 

2.1 Indirect Adaptive Control of a Time-Delayed Nonlinear 
System 

As discussed previously, designing a controller for a system which is dynamic and 
nonlinear in nature is a complicated task as linear control techniques fail on such 
plants. Artificial neural networks have majorly solved this problem due to their flex-
ible nature as there is a vast majority of structures from which an appropriate structure 
can be chosen whose parameters can be tuned based on system requirements. In this 
brief, a modified recurrent neural network is used as a controller for a dynamic 
plant which is to be controlled along a reference model. The general mathematical 
formulation of a nonlinear time-delayed plant can be given as: 

YLRN(k) = F

[
Y q LRN(k − 1), Y q LRN(k − 2)...Y q LRN 
(k − O), uc(k − 1), uc(k − 2)...uc(k − D)

]

(5) 

In the above equation, YLRN 
q (k − 1) represents a previous value of the system 

delayed by an instant. In a similar fashion, all the outputs of yLRN are mentioned till 
qth instant. Similarly, input past values are written uc(k − 1) to uc(k − D). Here, 
uc is essentially the controller output which will act as an input to the plant. The 
actual input which will be fed to the controller is r(k).The aim here is to control the 
above plant, that is, to align its response with the reference model (desired response 
of the plant). This simply translates to F ≈ Fm, where Fm is the reference model. 
The potency of any nonlinear control method is established only if it reduces the 
dependency on plant parameters and structural complexity along with providing 
faster control response. Therefore, in case of LRNNIFT controller, only three inputs 
are taken from the vast array of system variables–the present value of input to plant, 
uc(k), one previous value of output, Y 

q 
LRN(k − 1), and a previous value of external 

input, r(k − 1). The control scheme is estimated relying on these three inputs only 
and is calculated as YLRN(k). Motivation behind selecting few inputs (here, three) is
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Fig. 2 Adaptive control scheme using LRNNIFT model (Proposed) 

that this minimises plant parameter dependency of the controller along with reducing 
the computation load by lowering the number of weights to be adjusted. Figure 2 
represents the block diagram of proposed LRNNIFT controller. 

Further, the versatile back-propagation method is applied for adjusting the 
weights. 

3 Simulation Study 

In order to evaluate the efficacy of the proposed LRNNIFT-based control strategy, 
the scheme is implemented on a complex dynamic system. Furthermore, the results 
obtained from the proposed controller are compared with the FFNN and ENN 
controllers. Structurally, a single input, hidden and output layer, 4 hidden neurons, 
uniform learning rate and instantaneous training is applicable to all the three 
controllers. The reason why we considered uniformity among structure parame-
ters for our analysis is to better judge the performance of LRNNIFT controller. For 
simulation, the following nonlinear dynamical plant has been considered:
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yo(k) = 
yo(k − 1)yo(k − 2)[yo(k − 1) + 2.5] 

1 + y2 o (k − 1) + y2 o (k − 2)
+ uc(k − 1) (6) 

where uc(k) denotes the input to the plant. The reference model is given as, 

ym(k) = 0.6ym(k − 1) + 0.3ym(k − 2) + r(k) (7) 

where r(k) is the BIBO stable external input to the system given as, 

r (k) = sin 
2π k 
25 

(8) 

The control objective here is to bring the difference between reference model and 
plant’s response ec(k) = ym(k)yo(k) approximately equal to zero by introducing an 
optimal control signal uc(k) at every instant, to the plant via LRNNIFT as a rectified 
input to it. uc(k) can be computed from the knowledge of y'

(k) and its past values as 

uc(k) = F[yo(k), yo(k − 1)] + 0.6yo(k) + 0.3yo(k − 1) + r (k) (9) 

Figure 3 represents the plant output response (in dotted pink) along with reference 
model response (in solid green) without control scheme implementation. From the 
plot, it can be clearly observed that the two responses do not coincide (as desired). 
Therefore, we use the adaptive control configuration shown in Fig. 2 and apply it to 
the plant. The value of learning rate is taken as 0.028. The total number of hidden 
neurons are 4. 

Figure 4 shows the response of LRNNIFT controller compared with FFNN and 
ENN based controllers and plant during the early stages of training. The instantaneous 
training was done for 60,000 time steps after which it was terminated. Post training, 
the controllers started tracking the reference plant’s output.
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Fig. 3 Plant response without control scheme 
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Fig. 4 Response of controllers during initial phases of training 

which can be seen in Fig. 5. From Fig.  4, we can clearly observe that LRNNIFT 
controller has the fastest response among all three. Additionally, it is able to force 
the plant to track the reference model from the very first instant. Time of response 
of being a critical aspect in controller design makes the proposed controller better 
than ENN and FFNN-based control. Table 1. shows the Average Mean Square Error 
(AMSE) and Total Mean Average Error values for all the three controllers which is 
also the least for the proposed controller. The proposed controller is also checked for 
robustness against disturbance signals in the system. This is one of the key aspects 
of closed loop control. A step signal of amplitude 5 is added as disturbance to the 
plant at k = 55,000th instant. 

5.998 65.9995.9975.9965.9945.9935.9925.9915.99 5.995 
Tme (in seconds) 104

-5 

0 

5 
LRNNIFT Reference model ENN FFNN 

Fig. 5 Response of controllers after successful training 

Table 1 Output error 
comparison of ENN, FFNN 
and LRNNIFT controllers 

Error Controllers 

ENN FFNN LRNNIFT 

Average MSE 0.0469 0.0907 0.0453 

Total MAE 0.1329 0.1956 0.1261
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Fig. 6 Disturbance analysis for robustness 

The disturbance leads to spike in controller response and the instantaneous mean 
square errors and mean average errors also experience the same. In Fig. 6, we can 
see the noise signal causing disturbance at k = 55,000 instant but as the training 
went on it rapidly recovered and went back on the track within few instants. This 
proves the robust or adaptive nature of the controller. On comparison, we can observe 
that the FFNN controller has under-performed whereas the ENN controller has 
performed only slightly better than LRNNIFT controller. This is because the ENN 
is an extremely complex structure, that is for equal number of inputs and hidden 
neurons, the number of update parameters (or weights) for ENN is 32 whereas for 
LRNNIFT it is only 20. FFNN controller has 16 weights only but it is slow and less 
accurate as it cannot track the plant’s past values. 

4 Conclusion 

In this paper, an adaptive controller for nonlinear plants is proposed based on a locally 
recurrent network that has input fed through weights to the output (LRNNIFT). 
Parameter tuning by minimising the error function is done via back-propagation 
method. The controller is implemented on a nonlinear complex system and its results 
are compared with FFNN and ENN controllers. The simulation results clearly depict 
that the proposed controller performs better than the other two controllers both in 
terms of error mitigation and speed of tracking. The controllers are also tested for 
robustness by introducing a disturbance signal in the plant equation. It is observed 
that the proposed controller successfully adapts by moving back to the original track. 
Although the results of ENN are slightly better than LRNNIFT in b terms of robust-
ness but the drawback here would be the high complexity of ENN network which 
again leads to the proposed controller to be a better choice. After extensive mathe-
matical analysis and simulation results, we can conclude that the proposed controller 
provides better control over plants along with having a simpler structure.
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