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Abstract In this work, a Linear-Quadratic Regulator (LQR)-based control scheme is 
designed for a highly nonlinear and unstable inverted pendulum system. The system 
is linearised about its vertical position based on certain assumptions. Initially, weight 
matrices of the LQR controller are selected based on a trial and error method. These 
matrices are then optimised using a multi-objective genetic algorithm (GA) and 
whale optimization algorithm (WOA). The robustness of designed controllers is 
tested by reference tracking and parametric uncertainty analysis. The results reveal 
that optimisation of LQR by WOA provides superior performance compared to GA. 
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1 Introduction 

The inverted pendulum is a platform for testing several control algorithms because of 
its nonlinear and unstable behaviour [1]. An inverted pendulum has its centre of mass 
above its pivot point, due to which it falls when released from a slight angle about its 
vertical position. It is a classical control theory problem for verifying different control 
techniques [2, 3]. The aim is to move the cart to prevent the pendulum from falling 
[4]. It is done with the help of a DC motor and a control technique [5–7]. Modern 
and advanced control techniques are available to control such systems [8–11]. 

LQR designed by trial and error method gives a satisfactory response close to 
the desired response but not optimal. The optimum values of weight matrices are
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required for an efficient response, which is achieved using GA and PSO [4, 12]. A 
genetic algorithm works on the reactions from its environment and can solve multiple 
dimensions optimisation problems [13, 14]. 

In this paper, the whale optimisation algorithm [15] is also utilised to obtain 
the optimal feedback gain matrix ‘K’ of LQR controller. WOA copies the social 
behaviour of Humpback whales and follows their hunting method known as a bubble 
net method. Simulation results for inverted pendulum show that the optimal solution 
obtained from WOA leads to superior performance compared to GA and trial and 
error method in overshoot, settling time and Integral Absolute Error (IAE). Further-
more, uncertainty analysis is performed to show the robustness of the WOA optimised 
LQR controller over others. 

The paper is organised as follows. Section 2 describes the mathematical modelling 
of the inverted pendulum. Controller design and its optimisation are presented in 
Sects. 3 and 4, respectively. Section 5 summarises the simulation results. Lastly, 
Sect. 6 concludes the research work. 

2 Mathematical Modelling of Inverted Pendulum 

The structure of the inverted pendulum is shown in Fig. 1. It consists of a pendulum 
connected to a movable cart that can move left and right on a rail to prevent the 
pendulum from falling [16]. The system’s parameters, their nominal values, and SI 
units are given in Table 1. 

The dynamic behaviour of angle and position of the system varies proportionally 
to the control force ‘F’ [2]. Differential equations relate the kinetic and potential 
energy of the system with control force [5]. The state space model of the system can 
be derived from ‘LaGrange mechanics’ as, 

d 

dt

[
∂ 

∂q◦ L

]
− 

∂ 
∂q 

L = τ (1) 

where Lagrange Function L = K − V . K is the kinetic energy and V is potential 
energy of the system given as

Fig. 1 Schematic diagram 
of inverted pendulum
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Table 1 Parameters of 
inverted pendulum [17] 

Symbol Quantity Value/SI unit 

M Mass of the cart 2.4 kg 

m Mass of the pendulum 0.23 kg 

l Length of pendulum 0.36 m 

f Coefficient of friction 0.1 N/m/s 

g Acceleration due to gravity 9.8 m/s2 

F Control force applied to the cart Newton 

θ Angle between pole and vertical 
direction 

Radian 

x Position of the cart Metre

K = 
1 

2 
M ẋ2 + 

1 

2 
m[(ẋ + l θ̇ cos θ)2 + (

l θ̇ sin θ)2
]

(2) 

V = mgl cos θ̇ (3) 

Solving Eq. (1) by substituting Eqs. (2) and (3) yields 

(M + m)ẍ + ml θ̈ cos θ − ml θ̇ 2 sin θ = F (4) 

l θ̈ + ẍ cos θ − g sin θ = −f θ̇ (5) 

where f θ̇ denotes the friction in the rotational link of system. The state obtained are 
X (t) = [xẋθ θ̇ ]T. After eliminating algebraic loops, the state model is 

⎧⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎩ 

ẋ1 = ẍ = x2 
ẋ2 = ẍ = −mg sin x3 cos x3+mlx2 4 sin x3+fmx4 cos x3+F 

M +(1−cos2 x3)m 

ẋ3 = θ̇ = x4 
ẋ4 = (M +m)(g sin x3−fx4)−(lmx2 4 sin x3+F) cos x3 

l(M+(1−cos2 x3)m) 

(6) 

The state space obtained above is nonlinear model that needs to be linearised in 
order to introduce a modern control scheme. Thus, system is linearised around its 
equilibrium point

[
xẋθ θ̇]= [0000

]
. The linear model can be obtained by approxi-

mation of certain terms. These approximations are sin x3 = x3, cos x3 = 1, x2 4 = 0, 
x3x4 = 0.
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

⎡ 

⎢⎢⎣ 

ẋ 
ẍ 
θ̇ 
θ̈ 

⎤ 

⎥⎥⎦ = 

⎡ 

⎢⎢⎣ 

0 0 1 0  
0 0  −0.9392 0.0096 
0 0 0 1  
0 0 311.2802 −0.3044 

⎤ 

⎥⎥⎦ 

⎡ 

⎢⎢⎣ 

x 
ẋ 
θ 
θ̇ 

⎤ 

⎥⎥⎦ + 

⎡ 

⎢⎢⎣ 

0 
0.4167 

0 
−1.1574 

⎤ 

⎥⎥⎦u(t) 

y(t) =
[
1 0 0 0  
0 0 1 0

]⎡ 

⎢⎢⎣ 

x 
ẋ 
θ 
θ̇ 

⎤ 

⎥⎥⎦ +
[
0 
0

]
u(t) 

(7) 

3 Controller Design 

The control objective is to move the cart so that it keeps the pendulum in an upright 
position. This means that at θ = θ̇ = 0 [4]. An optimal LQR controller is designed 
to stabilise the system state feedback. The control input u(t) is obtained by reducing 
the cost function J. 

J = 
∞ ∫
0

(
xT Qx + uT Ru

)
dt (8) 

Here Q is a positive semi-definite matrix known as state variable weighting matrix, 
and R is positive definite matrix as input variable weighting matrix [12]. Hence, input 
vector u is designed which reduces the cost function J [1]. Therefore, control signal 
u(t) is called optimal control [2]: 

u = −  K∗x = −R−1 BT P∗x (9) 

where P is obtained by solving Riccati equation and K is the feedback gain matrix. 
Now, solving Riccati equation: 

AT P + PA − PBR−1 BT P + Q = 0 (10)  

where [13] Q = diag
([
100 1 200 1

])
and R = 1. Then, 

K = −R−1 BT P = [
K1 K2 K3 K4

]
= [ − 10.0 −8.10 −633.86 −35.64

]
(11) 

This feedback gain matrix is then used in the system model of the inverted 
pendulum to get the results. The system model of inverted pendulum stabilisation 
using LQR controller is given in Fig. 2.



Optimum LQR Controller for Inverted Pendulum Using Whale … 311

Fig. 2 LQR control 
structure 

4 Optimisation of Controller 

The feedback gain matrix is obtained using two weighting matrices Q and R as 
defined above. The elements of Q and R matrices emphasis on the two main state 
variables–angle and position. These values are varied to get desired response. To get 
an optimal feedback gain matrix, we have used two optimisation algorithms: GA and 
WOA. Aim is to obtain the optimal values of matrices Q and R, which minimises the 
settling time and overshoot of the response. 

4.1 Genetic Algorithm 

The genetic algorithm (GA) is one of the evolutionary algorithms that work on 
the principle of laws of natural selection and evolution. This algorithm creates a 
virtual environment where better responses are emphasised, whereas other responses 
are disregarded. The basis of the algorithm is the three operations of evolution: 
reproduction, crossover, and mutation [1]. The design steps for GA are given in 
literature [1]. The two objectives of minimisation in the fitness function are: settling 
time and overshoot. This algorithm is carried out by using optimisation toolbox in 
MATLAB. Convergence plot is shown in Fig. 3 and the optimum value of K obtained 
is: 

K = [−12.0458 − 14.0369 − 707.8372 − 39.8890]

4.2 Whale Optimization Algorithm 

This algorithm is a nature inspired algorithm which follows a biological phenomenon 
of impersonating the behaviour of Humpback whales. It is found that they are intel-
ligent animals and have emotions as well. However, they are predators and preys 
on small fishes near the surface of the ocean. Their method of hunting is known as 
bubble net feeding method. Humpback whale first goes deep inside the water and
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Fig. 3 Convergence curve 
for GA and WOA

form bubbles in the shape of spirals. These spirals look like small circles encircling 
the group of small fishes present near the surface of water. Whale then swims up to 
the surface to kill its prey. The key mathematical formulation and design procedure of 
the WOA algorithm is presented in literature [15]. The convergence curve obtained 
is shown in Fig. 3 and the value of K obtained using WOA is: 

K = [−1.2015 − 19.3238 − 839.1297 − 58.2497] 

5 Simulation and Results 

The system model of the inverted pendulum is designed in MATLAB, and the results 
are analysed for reference tracking and parametric uncertainties. First, LQR is devel-
oped and then optimal feedback gain matrix is then obtained using GA and WOA. 
Comparative analysis of LQR, GA-LQR, and WOA-LQR controller is shown in 
Table 2. Figure 4 shows the open loop response of the pendulum on the cart (Fig. 5). 

From Table 2, it is clear that the best response is achieved by WOA-LQR, as it 
reduces the settling time by 99% and 53.9%, respectively. The use of WOA-LQR

Table 2 Time-domain specifications for LQR, GA-LQR, and WOA-LQR 

Time-domain specifications Angle of the pendulum Position of the cart 

LQR GA WOA LQR GA WOA 

Settling time (s) 17.2 9.54 0.16 57.18 33.88 26.32 

Overshoot 0.012 0.0114 0.0025 1.52 1.39 1.02 

IAE 0.149 0.149 0.104 8.42 5.42 4.39



Optimum LQR Controller for Inverted Pendulum Using Whale … 313

Fig. 4 Open loop response a cart position b pendulum angle 

Fig. 5 Reference tracking graph a cart position b pendulum angle

significantly improves the overshoot of the cart and pendulum as compared to GA-
LQR and LQR. Also, Integral Absolute Error (IAE) is minimum for WOA-LQR 
optimised controller. Results are also compared with the literature [13]. 

5.1 Uncertainty Analysis 

Uncertainty analysis is carried out for the mass of cart alone, mass of the pendulum 
alone, both the masses, length of pendulum alone, and both masses and length 
together. IAE of different controllers are obtained for parametric uncertainty. 
Controller performance under parameter uncertainties is shown in Table 3 and Fig. 6.

6 Conclusion 

In this paper, the dynamics of a nonlinear inverted pendulum is derived using the 
Euler–Lagrange formulation and linearised about its operating point. Further, an 
LQR controller is designed using GA and WOA optimisation. The performance of
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Table 3 IAE for ±50% parametric uncertainty 

Uncertainty in parameter IAE of pendulum 

LQR GA-LQR WOA-LQR 

+50% −50% +50% −50% +50% −50% 

M 0.152 0.146 0.107 0.101 0.030 0.029 

m 0.148 0.149 0.104 0.104 0.029 0.028 

L 0.145 0.154 0.102 0.107 0.030 0.029 

M & m 0.151 0.146 0.106 0.102 0.030 0.028 

M, m & l 0.149 0.153 0.107 0.106 0.033 0.028 
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Fig. 6 IAE variations for model parameter uncertainties a 50% increase b 50% decrease

WOA is superior to GA in reference tracking. Furthermore, uncertainty analysis 
is successfully carried out, showing that WOA-LQR is more robust than GA-LQR 
controller. 
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