
Necessary and Sufficient 
Delay-Independent Stability Conditions 
for Commensurate Time Delay Systems 

Pooja Sharma and Satyanarayana Neeli 

Abstract This paper presents an algebraic delay-independent stability (DIS) test for 
the commensurate multiple time delay systems (CMTDSs). We provide necessary 
and sufficient conditions for stability test. The stability is analysed using stability 
tests of two univariate polynomials and a generalized eigenvalue problem. The pro-
posed stability approach is advantageous compared to the existing methodologies 
because it includes less computational complexity. Numerical examples are given to 
demonstrate the applicability and effectiveness of the proposed approach. 
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1 Introduction 

The motivation to investigate the stability of time delay systems (TDSs) in the con-
text of practical and commercial applications comes from the fact that instability 
and unexpected changes in system performance [ 1]. The examples of TDSs are such 
as gyroscopic system [ 2] and load frequency control system [ 3]. Consequently, the 
stability analysis of TDS has become the most important for qualitative study of 
TDS [ 1– 7]. The stability of multiple time delay systems (MTDSs) has also gained 
ample attention amidst TDSs (see [ 4– 7], and references therein). The class of MTDS 
generally grouped into commensurate [ 4] and noncommensurate [ 6] multiple time 
delay systems where commensurate multiple time delay systems (CMTDS) [ 4], delay 
terms rationally depend on a single delay otherwise, it is known as noncommensu-
rate MTDS [ 6]. The investigation on commensurate multiple time delay system 
(CMTDS) has become increasingly relevant research because systems having com-

P. Sharma (B) · S. Neeli 
Department of Electrical Engineering, Malaviya National Institute of Technology, Jaipur, India 
e-mail: 2017ree9082@mnit.ac.in 

S. Neeli 
e-mail: nsnarayana.ee@mnit.ac.in 

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023 
A. Rani et al. (eds.), Signals, Machines and Automation, Lecture Notes 
in Electrical Engineering 1023, https://doi.org/10.1007/978-981-99-0969-8_27 

269

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-0969-8_27&domain=pdf
2017ree9082@mnit.ac.in
 854
53672 a 854 53672 a
 
nsnarayana.ee@mnit.ac.in
 854 56550 a 854 56550 a
 
https://doi.org/10.1007/978-981-99-0969-8_27
https://doi.org/10.1007/978-981-99-0969-8_27
https://doi.org/10.1007/978-981-99-0969-8_27
https://doi.org/10.1007/978-981-99-0969-8_27
https://doi.org/10.1007/978-981-99-0969-8_27
https://doi.org/10.1007/978-981-99-0969-8_27
https://doi.org/10.1007/978-981-99-0969-8_27
https://doi.org/10.1007/978-981-99-0969-8_27
https://doi.org/10.1007/978-981-99-0969-8_27
https://doi.org/10.1007/978-981-99-0969-8_27
https://doi.org/10.1007/978-981-99-0969-8_27


270 P. Sharma and S. Neeli

mensurate type delays can be found in various engineering applications, for instance, 
N -machine-M-Bus power system [ 9] and unmanned underwater vehicle [ 10]. The 
stability of CMTDSs has been widely investigated over the years [ 9– 14]. Roughly 
speaking, the stability criteria of TDS can be divided into two broad categories: delay-
dependent stability (DDS) [ 9] and delay-independent stability (DIS) [ 4], whether or 
not, the information of delay term is required or not, respectively. In most of the 
practical systems, either it is not feasible to compute delay terms or delay parameters 
cannot determine exactly or both; hence, the DIS criterion is preferred [ 9]. 

Some of the DIS tests for CMTDS available in the literature are: frequency sweep-
ing tests [ 4], a polynomial (auxiliary characteristic equation) method [ 6], a graphical 
approach using bivariate polynomial [ 12], zero criteria-based bivariable polynomial 
approach [ 13, 15], frequency-dependent one-dimensional (1D) Lyapunov equation 
[ 16], and 2D Lyapunov equation [ 17]. In [ 14], the stability condition of TDS is 
given in terms of LMI. The necessary and sufficient stability conditions for DIS of 
CMTDS were proposed in [ 8, 13], but later it was established in [ 15] that these con-
ditions are sufficient. Some sufficient conditions for CMTDS are derived in terms 
of frequency-dependent 1D Lyapunov equation [ 16]. In [ 17], an algebraic procedure 
for a 2D continuous system was developed using the Lyapunov equation and Kro-
necker product. These conditions were established to provide Hurwitz stability of 
polynomial merely. A 2D algebraic technique to check the Routh–Schur stability of 
multiple TDS was established as sufficient conditions in [ 18]. The Hurwitz–Schur 
stability test was derived algebraically in [ 19] for TDS, but this procedure provided 
merely sufficient conditions for stability. Thus, Lyapunov approaches, 2D Hurwitz– 
Schur stability, and LMI techniques result in distinct conservatisms and sufficient 
conditions. Therefore, the above-discussed stability tests provide merely sufficient 
conditions. Different from these approaches, an algebraic method for necessary and 
sufficient conditions for TDSs is required. In [ 20], an algebraic approach for 2D 
filters (discrete domain) was established as stability tests of three 1D conditions and 
one generalized eigenvalue problem (GEVP). Some necessary and sufficient stability 
conditions to test the stability of 2D linear systems (continuous, discrete, and hybrid) 
are developed using two polynomials and one GEVP [ 21]. 

Motivated by this observation and the stability tests of 2D linear systems in [ 21], 
this stability approach can be applied to CMTDSs. In this paper, we investigate the 
necessary and sufficient conditions for DIS of CMTDS in algebraic manner using 
this novel stability test. This method has a lower computing complexity and a limited 
number of 1D tests when compared to previous results [ 16– 19]. The proposed DIS 
test for CMTDS is based on the bivariate polynomial that is derived using the system’s 
characteristic polynomial. Only two univariate polynomial stability tests and a GEVP 
are required. To demonstrate the procedure and validity of the proposed approach, 
numerical examples are given. 

Notations. The real and complex number sets are used to represent R and C in this 
study. R+ states the set of positive real number set. The determinant and transpose 
of matrix Z are represented by det(Z ) and (Z )T , respectively. Re(y) stands for real 
part of y, and conjugate of y is represented by ȳ. The open left half complex plane
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and the closed right half complex plane are represented by C− and C+, respectively. 
The closed unit disc is represented by D, and its complementary set is denoted by D. 
δD states the boundary of unit disc. ∗ denotes the symmetric matrix blocks and the 
notation iff stands for the if and only if. The n × n identity matrix is represented by 
In , and 0n is used for n × n zero matrix. l is used to represent −1 

√
in this paper. 

2 Problem Formulation 

In this section, the DIS problem of CMTDS using an algebraic approach is discussed. 
To illustrate this goal, consider general form of CMTDS represented by delay dif-
ferential equation as 

ẋ(t) = A0x(t) + 
m∑ 

k=1 

Bk x(t − τk), (1) 

where x(t) ∈ Rn is the state, A0, B1, . . . ,  Bm ∈ Rn×n are known matrices, τk = 
kτ (τ  ∈ R+{τ ≥ 0}) are the commensurate delays, and k = 1, 2, . . . ,  m. The  
CMTDS (1) is said to be asymptotically stable if and only if the roots of the charac-
teristic polynomial given by 

P̃(s, e−τ s ) Δ det 

( 

s I  − A0 − 
m∑ 

k=1 

Bke
−kτ s 

) 

, (2) 

are located in the left half of the complex plane. Where s is the Laplace operator. By 
considering z = e−τ s , the bivariate polynomial for characteristic polynomial (2) can 
be rewritten as follows: 

P̃(s, z) Δ det 

( 

s I  − A0 − 
m∑ 

k=1 

Bkz
k 

) 

. (3) 

Our objective in this paper is to propose algebraic and simple necessary and 
sufficient conditions for checking the DIS of CMTDS (1) with its corresponding 
bivariate polynomial (3). In the next section, we recall some useful definitions for 
the stability analysis of CMTDS using characteristic polynomial in the next section. 

3 Preliminaries 

In this paper, we are interested in the DIS analysis of CMTDS (1) using an algebraic 
procedure. To this end, we interpret here some definitions of stability which are 
indispensable to derive the main results of this paper. The polynomial (3) of CMTDS  
(1) can be rewritten as irreducible bivariate polynomial as
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P(s, z) Δ
n2∑ 

i=0 

n1∑ 

j=0 

ci j  s
i z j , (4) 

where n1 and n2 are the orders of s and z variables, respectively. For the abovemen-
tioned bivariate polynomial (4) of CMTDS  (1), we introduce the following defini-
tions. 

Definition 1 A univariate polynomial d(λ) is Hurwitz when stability region is C− 
and Schur when stability region is D with respect to λ iff 

d(λ) /= 0, ∀λ ∈ C+ or λ ∈ D. (5) 

This paper deals with DIS of the system (1) with bivariate polynomial P̃(s, z) (4). 

Definition 2 The CMTDS given in (1) is DIS  if  

P̃(s, z) /= 0, ∀s ∈ C+ and z ∈ D. (6) 

Remark 1 In Definition (2), the discrete TDSs or noncommensurate TDSs consist 
of D1 = D2 = D (closed unit disc) and stability region for z1, z2 variables will be in 
D1 × D2 region. 

The stability test for CMTDS (1) is derived using the characteristic bivariate 
polynomial (4), which will be presented in the next section. 

4 Algebraic Necessary and Sufficient Delay-Independent 
Stability Conditions 

In this section, we use the results from Sect. 3 to determine the necessary and sufficient 
DIS conditions for CMTDS (1). 

Lemma 1 [22] The CMTDS in (1) with its associated characteristic bivariate poly-
nomial (4) is stable if, it holds the following equivalent conditions 

P(ŝ, z) is stable in terms of z, for a ŝ ∈ C−, (7) 

P(s, ẑ) is stable in terms of s, ∀ ẑ ∈ D. (8) 

The conditions (7) and (8) are equal to each other. Further, we merely discuss 
here condition (8). The stability test of univariate polynomial in z can be done using 
(7). The main problem in Lemma 1 is with condition (8), where stability is checked 
for bivariate polynomial (4). This problem can be solved by transforming some
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univariate polynomial’s stability tests and then solving a generalized eigenvalue 
problem (GEVP). The bivariate polynomial (4) can be rewritten as follows 

P(s, z) = Pa(z)(s) = 
n2∑ 

i=0 

ci (Z) si = 
n2∑ 

i=0 

CT 
i Z s

i , (9) 

where Ci Δ
[ 
ci0, ci1 , ci2, .  .  .  ,  cin1 

]T 
and Z = 

[ 
1, z, z2, .  .  .  zn1 

]T 
. Consider that 

Pa(z)(s) is equal to its conjugate Pa(z)(s) (due to real coefficients) (9) and Pa(z)(s) 
can be represented as 

Pa(z)(s) = 
n2∑ 

i=0 

Ci (z)s
i = 

n2∑ 

i=0 

C 
T 
i Z̄ s

i . (10) 

By multiplying (9) and (10), we get new polynomial that is defined as 

Fa(z)(s) Δ Pa(z)(s)Pa(z)(s) = 
n2∑ 

i '=0 

n2∑ 

i=0 

CT 
i ψ(z)Ci s

i+i ' , (11) 

where ψ(z) Δ 1 
2 (Z Z 

T + Z Z T ). For stability tests of the (7) and (8) conditions, 
Fa(z)(s) and ψ(z) are needed to be computed over z ∈ D. The matrix ψ(z) for z ∈ D 
can be represented as follows: 

ψ(z) = 
1 

2 
× 

⎡ 

⎢⎢⎢⎢⎢⎣ 

2 
z + z 2(zz) ∗ 
z2 + z2 zz(z + z) 2(zz)2 

... 
... 

. . . 
zn1 + zn1 zz(zn1−1 + zn1−1 ) · · · 2(zz)n1 

⎤ 

⎥⎥⎥⎥⎥⎦ 
. (12) 

Lemma 2 For CMTDS in (1) z = D = (ei θ : 0 ≤ θ <  2π)  then ψ(z) = γ (z̃), where 
z̃ = Re(z), z̃ should not belong to T Δ [−1, 1], and γi, j (z̃) = S|i− j |(z̃), S0(z̃) = 1, 

S1(z̃) = z̃, S2(z̃) = 2z̃2 − 1, . . . ,  Sn1+1(z̃) = 2z̃Sn1 (z̃) − Sn1−1(z̃), 
j = 1, 2, . . . ,  n1 − 1. 

(13) 

Proof From z = D = (elθ : 0 ≤ θ <  2π), l = −1 
√

it follows that z̃ /∈ T , and Sj (x) 
is the first type Tchebyshev polynomial [ 22], we get,
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ψ(z)|z∈D = γ (z̃) = 

⎡ 

⎢⎢⎢⎢⎢⎣ 

S0(z̃) 
S1(z̃) S0(z̃) ∗ 
S2(z̃) S1(z̃) S0(z̃) 

... 
... 

. . . 
Sn1 (z̃) Sn1−1(z̃) · · ·  S1(z̃) S0(z̃) 

⎤ 

⎥⎥⎥⎥⎥⎦ 
. (14) 

By using (11) and Lemma 2, we get 

Fa(z)(s)|z̃∈D = Fa(z̃)(s) Δ
n2∑ 

i=0 

n2∑ 

i '=0 

CT 
i γ (z̃)Ci s

i+i ' . (15) 

Remark 2 From (11), it is noted that Fa(z)(s) is of order 2n2 and its characteristics 
will be as same as P(s, z) for stability test. Hence, (8) can be tested by using Fa(z)(s), 
rather than P̃(s, z). Further, using (12) it is noted that ψ(z) is real and symmetric 
matrix. Hence, we observe using (11) and (12), Fa(z)(s) is a real polynomial. In our 
case, conditions (7) and (8) are equal to the stability test of Fa(z̃)(s) (15) with respect 
to s∀z̃ ∈ T where T Δ [−1, 1]. For computation of Fa(z̃)(s) (15) and condition (11), 
we follow the next lemmas and definitions. 

Definition 3 [22] The Jury matrix of dimensions (2r  1)  (2r  1) denoted by 
Δ[V (σ )] for the polynomial V r 

−
 2

(σ ) = 
∑

h 0 Vhσ h with the specified 
× −

stability region =
C− × D, where Vh ∈ R is as follows: 

z = D, then Δ[V (σ )] Δ K − L , (16) 

where K = 

⎡ 

⎢⎢⎢⎢⎢⎣ 

V2r V2r−1 V2r−2 · · ·  V2 

V2r V2r−1 · · ·  V3 

V2r · · ·  V4 

0 
. . . 

... 
· · ·  V2r 

⎤ 

⎥⎥⎥⎥⎥⎦ 
, and L = 

⎡ 

⎢⎢⎢⎢⎢⎣ 

V0 

0 
. . . 

... 
V0 · · ·  V2r−4 

V0 V1 · · ·  V2r−3 

V0 V1 V2 · · ·  V2r−2 

⎤ 

⎥⎥⎥⎥⎥⎦ 
. 

Lemma 3 Consider Fa(z)(s) in (15) is stable in respect to s, ∀z∈D iff det(Δ[Fa(z̃)(s)]) 
and all elements of R(z̃) are positive ∀z̃ ∈ T , where 

R(z̃) Δ
{ 
Fa(z̃)(0) for s = C− 

} 
. (17) 

The condition (8) is checked by finding the roots of univariate polynomials and 
with the solution of generalized eigenvalue problem (GEVP) in next lemma and 
theorem.
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Lemma 4 Consider T Δ [−1, 1] and condition (7) and following statements are 
equal, 

(a) P(s, z̃) is stable in respect to s for a z̃ ∈ δD, 
(b) All the elements of R(z̃) (17) are not equal to zero ∀ z̃ ∈ T , 
(c) and the GEVP, 

⎡ 

⎢⎢⎢⎢⎢⎣ 

0 I 
I 0 

0 I 
. . . 

α0 α1 · · ·  αn1−1 

⎤ 

⎥⎥⎥⎥⎥⎦ 

⎡ 

⎢⎢⎢⎢⎢⎣ 

w1 

w2 
... 

wn1−1 

wn1 

⎤ 

⎥⎥⎥⎥⎥⎦ 
= z̃ 

⎡ 

⎢⎢⎢⎢⎢⎣ 

I 
I 0 

. . . 
I 0 

0 0 · · ·  −αn1−1 

⎤ 

⎥⎥⎥⎥⎥⎦ 

⎡ 

⎢⎢⎢⎢⎢⎣ 

w1 

w2 
... 

wn1−1 

wn1 

⎤ 

⎥⎥⎥⎥⎥⎦ 
(18) 

of dimensions n1(2n2 − 1) × n1(2n2 − 1) does not have any roots of GEVP in T , 
where 

α j Δ Δ[C j (s)], j = 0, 1, . . . ,  n1. (19) 

When Fa(z̃)(s), i = 0, 1, 2, . . .  ,  n2 (15) can be rewritten as follows 

Fa(z̃)(s) = Fa(s)(z̃) Δ
n1∑ 

j=0 

C j (s)z̃ 
j . (20) 

Proof The Remark (2) states that stability region for condition (7) in respect to 
s, ∀z̃ ∈ δD, is equal to the stability test of Fa(z̃)(s) in (15) in respect to s can be 
violated for a z̃ ∈ T so that one of the elements of R(z̃) is zero. Therefore, Fa(z̃)(s) is 
stable with respect to s, ∀z̃ ∈ T iff (a). Fa(z̃)(s) is stable with respect to s for z̃ ∈ T , 
(b). All elements of R(z̃) are not equal to zero ∀z̃ ∈ T , and (c). det(Δ[Fa(z̃)(s)]) = 0 
does not have any root in T . Using  (16) and (20), the Jury matrix for Fa(z̃)(s) can be 
rewritten as 

det(Δ[Fa(z̃)(s)]) = det 

⎛ 

⎝ 
n1∑ 

j=0 

Δ[C j (s)]z̃ j 
⎞ 

⎠ = 0. (21) 

We consider the expansion of polynomial (19) as GEVP as follows:  

(α0 + α1 z̃ + α2 z̃
2 +  · · ·  +  αn1 z̃

n1 )w = 0, (22) 

where w ∈ R2n1−1 and we define α j are considered here j = 0, 1, . . . ,  n1, where 
w1 Δ w, w2 Δ z̃w1, . . . , wn1 = z̃wn1−1. Therefore, the DIS condition of CMTDS 
(1) can derive using the following theorem. 

Theorem 1 Assume that CMTDS (1) with bivariate polynomial (4), and T Δ
[−1, 1], for  s ∈ C  and z − ∈ D, respectively. By considering Definitions 1 and 2, 
CMTDS (1) is delay-independent stable iff, it holds the following statements,
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(a) P(ŝ, z) is stable in respect to z for a ŝ ∈ C−. 
(b) P(s, ẑ) is stable in respect to s, for a ẑ ∈ δD. 
(c) All the members of R(z̃) in (17) do not have any real roots in T . 
(d) The GEVP in (18) contains no eigenvalue in T ∈ [−1, 1] . 
Proof Using the aforementioned lemmas and definitions, we prove theorem. 

Using above-mentioned Theorem 1 and Lemmas 1–4, the DIS of CMTDS (1) can 
be algebraically tested using the following algorithm. 

Algorithm 1 An algorithm for delay-independent stability for CMTDS (1) 
1: Obtain the bivariate polynomial of CMTDS (1) as (4). 
2: State the stability region for both variables (C− × D ), and check DIS condition (a) of theorem 

1 and follow the next step. If it is not satisfied, then CMTDS is unstable. 
3: Rewrite the bivariate polynomial (4) as (9) and compute Ci . 
4: Using Lemma 2 compute γ (z̃), Fa(z̃)(s), and  R(z̃) using (17). 
5: Test condition (c) of Theorem 1, If condition is not satisfied, then CMTDS (1) is unstable 

otherwise follow the next step. 
6: Compute Fa(z̃)(s) and C j (s) (20) for  j = 0, 1, . . . ,  n1. 
7: Using Lemma 2 and Definition 3 compute Jury matrix. 
8: Obtain the GEVP (18), check the condition (d) of theorem 1, if condition is satisfied then CMTDS 

(1) is stable, otherwise unstable. 

Furthermore, the applicability of the Algorithm 1 can be seen in the next section 
using numerical example. 

5 Numerical Example and Discussion 

In this section, numerical example demonstrates the applicability of the proposed 
algebraic method, and the approach is also compared to existing methods. 

Example 1 Consider the following second-order CMTDS (1) (motor-driven pendu-
lum with multiple delays in feedback [ 25]) with following data, 

A0 = 
[ 

0 1  
−59.9568 −1.4584 

] 
, B1 = 

[ 
0 0  

−13.5602 0 

] 
, B2 = 

[ 
0 0  
0 1.2339 

] 
, (23) 

and τ2 = 2τ1.The CMTDS with given data is delay-free stable, and roots are 
−0.1122 ± l8.5735. We investigate the necessary and sufficient conditions of DIS 
of CMTDS using algorithm 1 in the following steps as
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(i) Step 1, the characteristic bivariate polynomial for CMTDS is obtained as 

P(s, z) = s2 − 1.2339sz2 + 1.4584s + 13.5602z + 59.9568 (24) 

(ii) Step 2, the stability region C− × D and univariate polynomial P(0, z) is stable 
and its roots are −0.7292 ± l7.7088. 

(iii) Step 3, for  P(s, 1) polynomial the roots are −0.1122 + l8.5735 and − 0.1122 
− 8.5735l. Therefore, P(s, 1) is stable. 

(iv) Step 4, Fa(z̃)(s) is −91.9528s2z − 1.7997s2 + 27.1205sz2 + 19.7769sz  
+ 983.3501s + 10141.1348z2 + 564.7471z + 4280.6336 and roots of Fa(z̃)(0) 
are −0.0278 ± l0.649. It shows that the R(z̃) does not have any real roots in 
T ∈ [−1, 1]. 

(v) Step 5, by solving GEVP in (18) we find the roots of GEVP are 525.13, −232.2 
± l222.3, 228.3 ± l236.6 and 6.20, respectively. Hence, there is no real eigen-
value lie in T ∈ [−1, 1]. 

CMTDS (23) is delay-independent stable. For the comparison, the DIS of CMTDS 
is also investigated using delay Lyapunov matrix in [ 24], and the results discussed 
in [ 24] conclude the sufficient conditions of stability only with more computational 
time. The algebraic DIS approach developed into single formalism with complex 
computations and required the computation of α free parameter [ 23]. 

6 Concluding Remarks 

In this paper, we have proposed necessary and sufficient conditions for testing 
the delay-independent stability of time delay systems of commensurate type alge-
braically. The approach we followed here requires merely two univariate polynomials 
stability tests and a generalized eigenvalue problem. Using this approach, we reduce 
the mathematical computational burden over existing methods, even if the multiplic-
ity of delay increases. The effectiveness and applicability of the proposed approach 
to CMTDS are demonstrated using numerical example. The future work will extend 
the proposed approach to linear systems with noncommensurate, distributed, and 
time-varying delays. 
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