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Abstract. The Coronavirus Disease 2019 (COVID-19) outbreak in late
2019 threatens global health security. Computed tomography (CT) can
provide richer information for the diagnosis and treatment of COVID-
19. Unfortunately, labeling of COVID-19 lesion chest CT images is an
expensive affair. We solved the challenge of chest CT labeling by simply
marking point annotations to the lesion areas, i.e., by marking individ-
ual pixels for each lesion area in the chest CT scan. It takes only a
few seconds to complete the labeling using this labeling strategy. We
also designed a lightweight segmentation model with approximately 10%
of the number of model parameters of the conventional model. So, the
proposed model segmented the lesions of a single image in only 0.05 s.
In order to obtain the shape and size of lesions from point labels, the
convex-hull based segmentation (CHS) loss function is proposed in this
paper, which enables the model to obtain an approximate fully super-
vised performance on point labels. The experiments were compared with
the current state-of-the-art (SOTA) point label segmentation methods on
the COVID-19-CT-Seg dataset, and our model showed a large improve-
ment: IoU improved by 28.85%, DSC improved by 28.91%, Sens improved
by 13.75%, Spes improved by 1.18%, and MAE decreased by 1.10%.
Experiments on the dataset show that the proposed model combines
the advantages of lightweight and weak supervision, resulting in more
accurate COVID-19 lesion segmentation results while having only a 10%
performance difference with the fully supervised approach.
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1 Introduction

An outbreak of COVID-19 began in December 2019 and has since spread
throughout the world [1]. In early 2020, the virus had spread to 33 countries
and had begun a global pandemic. As of October 27 2022, more than 620 million
confirmed cases of COVID-19 have been reported worldwide, with more than 6.5
million deaths, accounting for 1.0% of confirmed cases [2]. Clinical manifestations
of the disease range from asymptomatic to the more severe acute respiratory dis-
tress syndrome (ARDS). The most common symptoms are fever, dry cough, and
malaise. A small number of patients will develop dyspnea. Reverse transcription
polymerase chain reaction (RT-PCR) is the gold standard for the diagnosis of
COVID-19, but the quality of the RT-PCR sampling process affects the positive
rate of the test, and RT-PCR requires a strict testing environment and testing
equipment to ensure the correctness of the test results.

Although RT-PCR is the gold standard for COVID-19 diagnosis, its rela-
tively low sensitivity and high specificity can lead to negative RT-PCR results
in early-stage patients with no obvious symptoms [3]. The COVID-19 detection
sensitivity of chest CT scan is relatively high. Chest CT scans accurately reflect
the severity of COVID-19 patients, and radiologists can determine the type of
patient based on the chest CT scan changes. Consequently, a chest CT scan can
assist in the diagnosis of COVID-19. It has been shown to be effective in diag-
nosing the disease, as well as determining the prognosis for recovered patients,
making it an important adjunct to the gold standard [4].

Typically, asymptomatic or mildly patients have no additional clinical symp-
toms. When the disease reaches a moderate or advanced stage, the chest CT
image reveals a slight increase in lung tissue density, which is less than consol-
idation, with a blurred, cloudy appearance; however, the internal blood vessels
and bronchial tissue are still visible, a phenomenon known as ground grass opac-
ity (GGO). Additionally, chest CT scans can detect subpleural patchy shadows
and interstitial pneumonia [3]. Pulmonary fibrosis can also be detected on CT
scans of severe patients [5,6].

During the COVID-19 pandemic, there was a lack of experienced radiologists
due to the high medical demand and physician shortage. Therefore, we required a
computer-assisted system to assist radiologists in automatically analyzing chest
CT scans and rapidly segmenting lesion areas to provide diagnostic clues to
physicians, thereby alleviating the difficult problems of medical pressure and the
shortage of physicians, which played a crucial role in preventing the spread of
COVID-19 and treating patients promptly.

Fortunately, there have been numerous successful applications of deep learn-
ing techniques for computer-assisted COVID-19 screening. However, the use of
conventional deep learning models to aid physicians in COVID-19 screening is
suboptimal. Existing advanced models typically have a large number of param-
eters and calculation, which can lead to easy overfitting, slow inference, and
inefficient deployment of the models, and is not conducive to practical applica-
tions;Second, the majority of the most widely used and effective models are fully
supervised methods, which require complete labeling. However, labeled public
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datasets are scarce, and obtaining the complete labeling is laborious and time-
consuming.

Given that we require a rapid screening method to effectively relieve medical
pressure and to rapidly screen for COVID-19, it is urgent to design a COVID-19
screening system with low computation and rapid inference. In this paper, we
are inspired by Gao et al. [7] to reduce the number of model channels to 256 and
reduce the number of model parameters by group convolution and point-wise
convolution using D-Block, a dilation convolution block. In order to avoid the
problem of detail loss and model performance degradation caused by reducing
the number of covariates, we also introduce the dilated convolution module D
block, which enlarges the model’s receptive field by adjusting the dilation rate.
This improves the model’s ability to learn multi-scale information without adding
extra parameters, and we also add residual connections to address the issue of
model performance degradation.

To compensate for the lack of publicly available data, we trained the model
using point labels. According to Ma et al. [8], the fully supervised label annotator
requires an average of 1.6 min to label a CT slice, however, the point label data
annotator requires only 3 s to label a single pixel point in a lesion region, which
greatly reduces the difficulty of acquiring point label data. However, point labels
lack semantic information such as shape and size, and the prediction accuracy of
the fully supervised model trained by them is low, making it challenging to use
point labels to complete the semantic segmentation task effectively. Meanwhile,
when the model is trained using a point-level loss function, the loss function
only encourages the model to supervise a small number of pixel points, result-
ing in the model only predicting a very small region. Therefore, we refer to the
novel loss function as convex-hull-based segmentation loss (CHS), which encour-
ages the model to make accurate predictions by obtaining shape information
from a small number of points in lesion regions. Our experiments on the point-
annotation dataset demonstrate that our method outperforms the conventional
point-level loss function, and we also demonstrate that this weakly supervised
method performs similarly to the fully supervised method.

Our contribution is shown as follows:

1. In combination with D-Block, we proposed a weakly-point D-block network
(WPDNet) for efficient and rapid segmentation of COVID-19 lesions on point-
annotation datasets.

2. We propose the CHS loss function for point-annotation datasets, which can
provide semantic information such as shape and size to the model and enhance
segmentation performance.

3. We offer a method for labeling points that requires marking only a small
number of points in each lesion area.

2 Related Work

In this section, we review the methods to accomplish COVID-19 segmentation
on chest CT scans. Then, we discuss lightweight models and weakly supervised
segmentation methods.
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2.1 COVID-19 Segmentation Methodology

In recent years, the COVID-19 lesion segmentation method has become one of
the most popular tasks within the field of medical image analysis due to its high
application value. This task classifies each pixel of a chest CT image as either
background or lesion, typically segmenting the lesion area from each CT slice,
thereby providing the physician with the information required to diagnose the
disease. Traditional lesion segmentation methods segment images using features
such as the boundary gray gradient, gray value threshold, and image region.

Among them, the threshold-based [9–11] segmentation method utilizes the
contrast information of CT images, which is the quickest but has a tendency to
miss abnormal tissues and is suitable for segmenting images with a clear con-
trast between the object and the background. Region-based [12] segmentation
methods are quick and produce more accurate segmentation results, but they are
susceptible to noise, which can result in over segmentation and contour loss. Due
to the robust feature extraction capability of deep learning, its image segmenta-
tion results are vastly superior to those of conventional methods; consequently,
COVID-19 segmentation methods based on deep learning are widely used.

Due to the large variation of lesion size in COVID-19 chest CT images, multi-
scale learning plays a crucial role in COVID-19 segmentation. Therefore, SOTA
deep learning methods aim to design fully convolutional networks to learn multi-
scale semantic information. Currently, U-Net [13] is one of the most popular
medical image segmentation models. It proposes a symmetric encoder-decoder
structure that employs skip-connections to fuse multi-scale information at dif-
ferent stages. Numerous COVID-19 segmentation methods are based on U-Net
or its variants (Unet++ [14], Vnet [15], Attention-Unet [16], VBnet [17]). Wu
et al. [18] designed a U-shaped COVID-19 segmentation network and proposed
Enhanced Feature Module (EFM) and Attentional Feature Fusion (AFF) to
improve the network feature representation, achieving a Dice score of 78.5%.
Paluru et al. [19] proposed COVID-19 segmentation network with symmetric
encoder-decoder structure using skip-connections to fuse multi-scale features at
different levels to improve network performance, and the Dice score of this net-
work was 79.8%.

The DeepLabs V2 [20] based segmentation methods has superior multi-scale
learning capability because it uses the Atrous Spatial Pyramid Pooling (ASPP)
module, which is comprised of dilated convolution with different dilatation rates,
to learn abundant multi-scale semantic information from the input image. Xiao
et al. [21] proposed SAUNet++ network segmentation COVID-19 based on Unet
and Unet++ using ASPP and squeeze excitation residual (SER) modules and
obtained a Dice score of 87.38%. In addition, Gao et al. [7] rethink the strategy
for expanding the network’s receptive field by designing a structure with two
parallel 3× 3 convolutions with different dilation rates and repeating this struc-
ture in the backbone to expand the network’s receptive field without adding
a context module after the backbone, while preserving the local information.
Enshaei et al. [22] improved the model’s multi-scale learning capability by incor-
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porating the Content Perception Boosting Module (CPB) and achieved a Dice
score performance of 80.69%.

In addition to the ROI (region of interest), there is a lot of redundant infor-
mation in chest CT scan images. An attention mechanism is used to address this
issue by instructing the models to concentrate on the most important data. Raj
et al. [23] suggested using DenseNet rather than standard convolution and Atten-
tion Gate (AG) to ignore the background and increase segmentation accuracy.
OuYang et al. [24] proposed a new dual-sampling attention network to automati-
cally diagnose COVID-19, in which the attention module can effectively mitigate
the imbalance problem in chest CT images. Feature fusion can synthesize multi-
ple image features for complementary information and more robust and precise
segmentation results. Shi et al. [25] trained 3DU-Net and 2D-UNet models with
directional fields to fuse segment lesion features. Wu et al. [18] proposed a joint
classification and segmentation (JCS) system for diagnosis that enhances robust-
ness by fusing classification network information via the AFF module. These
fully supervised methods are computationally intensive and time-consuming to
deploy, despite their high accuracy. Some lightweight models are proposed to
resolve this issue.

2.2 Lightweight Model

The design of lightweight models can solve two efficiency issues: (a) storage
issues, as ordinary models require a great deal of storage space; (b) speed
issues, as ordinary models are second-level and do not meet practical application
requirements.

A common technique for lightweight design is model compression, in which
trained models are pruned and quantized to solve storage and speed issues prob-
lems, but at the expense of performance. In recent years, the lightweight design
of models has been considered mainly from a “computational approach” per-
spective. The “computational approach” for convolutional operations is divided
into (a) spatial-based convolutional operations [26–28] and (b) shift-based con-
volutional operations [29,30], which reduces the number of parameters with-
out affecting network performance. The shift convolution requires no additional
parameters or operations and uses 1× 1 convolution to simulate each type of
convolution to reduce the number of parameters and computational complex-
ity. Nevertheless, displacement convolution necessitates high-end hardware, and
training results are not always optimal. Therefore, spatially-based convolution
parameter methods are more common. Common spatial convolution operations
include dilated convolution and depth wise separable convolution.

To achieve parametric reduction, many well-known network architectures,
such as Inception networks [31], Xception [32], and MobileNets [33], use deep
separable convolution. Among them, MobileNet V2 uses point-wise convolu-
tion (1× 1 convolution) to further reduce the number of parameters and down-
scale the input feature channels. ESPNetV2 [28] employs depth wise separable
dilated convolution instead of depth wise separable convolution and hierarchi-
cal feature fusion (HFF) to eliminate the grid residual problem, thereby reduc-
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ing the network’s computational complexity and enhancing its receptive field.
Miniseg [34] employs dilated convolution in conjunction with point-wise convo-
lution to decrease the model parameters while expanding the model’s receptive
field. Anam-Net [19] reduces the parameters using point-wise convolution and
adds residual connections to prevent network performance degradation. Unfor-
tunately, these methods require fully supervised labels, yet publicly available
datasets are rare. To solve this problem, weakly supervised semantic segmenta-
tion is proposed.

2.3 Weakly Supervised Semantic Segmentation

Weakly supervised semantic segmentation can reduce the reliance on fully super-
vised labels. The common weakly supervised labels used for semantic segmenta-
tion are (a) image-level label [35,36]; (b) scribble label [37]; (c) bounding boxes
[38,39]label; and (d) point label [40,41].

Weakly supervised segmentation utilizing image-level labels typically
employs Class Activation Maps (CAM) to obtain initial lesion localization; how-
ever, this initial localization is imprecise and the final segmentation accuracy
is low. Since CAM at different scales requires complex network structures and
extensive post-processing, to solve this problem, Tang et al. [36] proposed the
dual weakly supervised segmentation method M-SEAM-NAM, which proposes
a Self-supervised Equivalent Attention Mechanism (SEAM) with Neighborhood
Affinity Module (NAM) for exact segmentation. However, M-SEAM-NAM still
has the problem of easily identifying the thoracic skeleton as a lesion. Scribble
labels perform better than CAM in COVID-19 segmentation, but their acqui-
sition time is relatively lengthy and there are no standard setting criteria. The
acquisition of point labels for each image takes only 22.1 s, whereas the acquisi-
tion of fully annotated takes 239 s, which is an order of magnitude faster than
the acquisition of point labels [42]. Laradji et al. [40] trained a COVID-19 seg-
mentation network based on weakly supervised consistent learning (WSCL) on
point labels, but the network showed over-segmentation. In order to solve this
problem, this paper implements WPDNet and provides a point label setting
method to complete COVID-19 semantic segmentation using weak supervision.

3 Materials and Methods

In this section, we first introduce the dataset used in this paper and then give
the point label setting method. Then, the structure of our proposed WPDNet
model is described in detail. Finally, our proposed loss function CHS for weakly
supervised point label segmentation is introduced.

3.1 Data Collection

Since public datasets are relatively scarce and the majority of COVID-19 seg-
mentation studies are based on private datasets, it is crucial to collect public
datasets and evaluate the performance of various models.
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Fig. 1. Different annotations strategy. We demonstrate the distinction between fully
supervised labeling, P1 labeling strategy, and Pdynamic (ours) labeling strategy. Several
points within the lesion region are labelled.

Dataset A. This dataset [43] contains the results of 110 CT scans of over 40
patient outcomes; the original images were downloaded from the public dataset
of the Italian Society of Medical and Interventional Radiology and annotated
using MedSeg by three radiologists.

Dataset B. This dataset [44] consists of over 800 CT slices from 9 patients on
Radiopaedia, of which approximately 350 slices were determined positive by the
radiologist and annotated using MedSeg, and over 700 slices were labeled for the
lung parenchyma.

Dataset C. The dataset [45] consists of CT scans of 20 patients. Two radiol-
ogists labeled CT images of the left lung parenchyma, right lung parenchyma,
and infected areas, which were then validated by experienced radiologists.

Dataset D. This dataset [46] contains anonymous chest CT scans provided by
the Moscow Municipal Hospital in Moscow, Russia, with 50 labeled chest CT
scans.

Point Label Setting. As point labeling gains popularity, there are already
point labeling setup strategies [47,48] in place. Typically, they sample pixel
points within the ROI and classify them as objects or backgrounds. Previous
sampling strategies were manual [42,49,50] clicks by markers, but manual clicks
are more subjective, and when the contrast between COVID-19 lesions and the
surrounding background is low (especially in mild patients), markers may over
focus on areas of significant contrast, which may result in monolithic data.
According to Bearman et al. [51], random points on ground truth (GT) are
more suitable than manual clicks for training weakly segmentation models.

The most common way to label is to mark one pixel in the center of the
lesion, which is called P1. COVID-19 lesion size varies frequently, and we want
to reflect the lesion size on point labels. Therefore, we use a random sampling
strategy to dynamically set the sampling points according to the area of each



94 F. Lu et al.

lesion region: two points are sampled when the number of lesion pixels is less
than 288; four points are sampled when the number of lesion pixels is between
228 and 2386; and nine points are sampled when the number of lesion pixels is
greater than 2386 (228 and 2386 are the lower quartile and upper quartile of
all lesion areas, respectively). As depicted in Fig. 1, we refer to this method as
Pdynamic and mark only the focal pixels while ignoring the background pixels.

Fig. 2. Network structure. 10 Y blocks are used for feature extraction, where green
block represents Y block when s = 2, and blue block represents Y block. D block is set
with different dilation rates to improve the model receptive field. (Color figure online)

3.2 Network Structure

Our network backbone integrates the Y block and Multi-Scale D-Block Module
(MDM), as shown in Fig. 2. In this section, we describe the main components of
the model: the backbone and the MDM.

Backbone. The WPDNet network consists of five layers; the first four layers
use the Y block in RegNet [52] to extract features, while the fifth layer employs
the MDM module to expand the model’s receptive field. As shown in Fig. 3, the
Y block adds the SE block attention mechanism to remove redundant informa-
tion after standard convolution and then uses point-wise convolution to combine
weighted features in depth direction and adds point-wise convolution on residual
connections to avoid noise interference while eliminating network performance
degradation. The standard kernel size for convolutional is 3× 3, and the number
of channels increases from 32 to 256. In order to obtain spatial information at
downsampling while boosting the size invariance of the encoder, we use a convo-
lution with stride = 2 in the Y block while adding an average pooling with stride
= 2 and a 1× 1 convolution on the residual connection. This paper adds Multi-
Scale D-block Module (MDM) to expand the encoder’s receptive field without
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Fig. 3. Y block structure

sacrificing detail, as different receptive fields are required to extract features from
different regions of an image. Finally, the segmentation results are obtained by
fusing the features of different layers of the backbone during upsampling and
restoring them to the original resolution.

Table 1. Multi-scale D-block module

Module d1 Stride Channels

MDM1 2 1 256

MDM4 4 1 256

MDM6 8 1 256

Multi-scale D-Block Module. MDM consists primarily of D blocks; depend-
ing on how MDM is utilized at different network layers, different dilation rates
and numbers of D blocks are set. We assume that the D block is repeated N
times in MDM, we denote this as MDMN , where N ∈ {1, 4, 6}. The D block is
comprised of a parallel standard convolution and a dilated convolution, where
the dilation rate of the dilated convolution can be set to various values depend-
ing on the MDMN in which it is located, Table 1 shows their detailed parameter
settings. When the stride of the D block is 2, the average pooling operation with
stride = 2 is used at the jump connection. Figure 4 illustrates the MDM4 with
the D block structure.

3.3 Loss Function

Localization-based counting loss [47] (LC) is comprised of four components:
image-level, point-level, split-level, and false-positive. Its primary application
scenario is instance localization and counting, but it can force the model to pre-
dict the semantic segmentation label of each pixel in the image. To encourage
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Fig. 4. D block structure.

the model to learn lesion information through point labels, the loss function
CHS proposed in this paper is modified based on the LC loss function by adding
convex-hull supervision and removing split-level supervision.

Given the output matrix X of the network after softmax, where Xiy denotes
the probability that pixel i belongs to class y (lesion or background), Y denotes
the point label matrix, where the object’s position is 1 and all other positions
are 0. Our proposed loss function can be expressed as follows:

L (X,Y ) = LI(X,Y )
︸ ︷︷ ︸

Image−level loss

+ LP (X,Y )
︸ ︷︷ ︸

Point−level loss

+ LF (X,Y )
︸ ︷︷ ︸

False Positive loss

+ LCH(X,Y )
︸ ︷︷ ︸

ConvexHull loss

(1)

Image-Level Loss. Let C denote the set of classes present in the image, the C′

denote the set of classes not present in the image. The image-level loss is shown
below:

LI(X,Y ) = − 1
|C|

∑

y∈C
log(Xtyy) − 1

|C′ |
∑

y∈C′
log(1 − Xtyy) (2)

where ty = arg maxj∈Ia
Xjy, Ia denote all pixels in the image. For each category

present in the C, at least one pixel should be labeled as that class; For each
category present in the C′

, none of the pixels should belong to that class.

Point-Level Loss. I denotes the set of points in the point label. We apply the
standard cross-entropy (CE) loss function to encourage the model to correctly
predict the set of pixel points in I. The point-level loss is shown below:

LP (X,Y ) = −
∑

j∈I
log(XjYj

) (3)

where XjYj
denotes the probability that pixel j in the output matrix X belongs

to the class of pixel j in the GT of the point label.
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False Positive Loss. To reduce the number of false positive lesions, LF dis-
courages the network from predicting lesion regions without point annotations.
The loss function is described as follows:

LF (X,Y ) = −
∑

j∈B

log(Xj0) (4)

where B represents the collection of all connected regions that lack point annota-
tions and Xi0 represents the probability that pixel i belongs to the background.

Fig. 5. Convex-Hull Loss Function. In a 10× 10 network prediction output (the darker
color represents the lesion prediction), the red color represents the GT of the point
label, the blue line represents the boundary line obtained by convex hull of the point
labels, and the blue pixels are all included in CHi (the gray dashed line is only to
suggest the true lesion area, it does not play any role in the actual work). (Color figure
online)

Convex-Hull Loss. We define the set CHi, i ∈ {1, . . . , N} where n is the
number of lesions in the image. It is the collection of convex hull pixels generated
by point labels in each lesion region, as depicted in Fig. 5. Then, we use a CE
loss function to encourage the model’s segmentation results to be as close as
possible to the GT. The loss function is described as follows:

LCH(X,Y ) = −
N

∑

i=1

∑

j∈CHi

log(XjYj
) (5)

4 Experiments

In this section, we describe our experimental setup, evaluation metrics, and
comparison experiments in detail.
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4.1 Experimental Setup

Implementation Detail. We implemented the WPDNet model using the
Pytorch framework and trained it on an Nvidia RTX 2080 Ti 11 GB GPU using
the Adam optimizer, with a 1e−4 weight decay. 300 epochs were trained with
the initial learning rate set to 1e−5 and the batch size set to 2. We use the same
settings to train other networks on Dataset C to ensure fairness.

Evaluation Metrics. In this paper, we evaluated the COVID-19 segmentation
methods using the following metrics:

Intersection over Union(IoU). To calculate the cross-merge ratio between the
predicted and the GT:IoU = TP

TP+FP+FN , where TP, FP, and FN are the num-
bers of pixels of true positive, false positive, and false negative, respectively.

Dice Similarity Coefficient (DSC). Similar to IoU, DSC also calculates the sim-
ilarity between prediction and GT, but the coefficient of TP in DSC is 2 rather
than 1:DSC = 2∗TP

2∗TP+FP+FN .

Sensitivity (Recall). To quantify the probability that the model predicts a lesion
with a true positive GT:Sens. = TP

TP+TN .

Specificity. Measures the percentage of true negative in correct predictions:
Spec. = TN

TN+FP .

4.2 Comparison

We compare the performance of the point-supervised loss function on various
point label setting strategies, test the performance of our proposed loss function
using different backbone networks. Finally, compare the WPDNet with image
segmentation networks to conclude.

Table 2. Comparison of different point labeling strategies. The effect of different point
labeling strategies on segmentation results was tested using our method (WPDNet)
with FCN-8S, and the bolded part is our method.

Methods Loss functions Points strategy Dice(%) IoU(%) Sens.(%) Spec.(%)

FCN-8s LC P1 67.74 60.09 63.99 99.95

FCN-8s LC Pdynamic 76.14 68.78 73.92 99.92

WPDNet LC P1 69.33 61.80 66.41 99.94

WPDNet (Ours) LC Pdynamic 76.18 69.01 79.14 99.80
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Points Number. As shown in Table 2, we evaluated the performance of two
models, FCN-8s and WPDNet, using the same loss function for the two point
labeling strategies. Notably, because the P1 strategy cannot utilize the convex
hull supervision in CHS, we evaluate the performance of both strategies using LC
as a fairness benchmark.P1 only labels a single pixel at the center of the lesion,
whereas Pdynamic labels points according to the area of each lesion, which can
laterally reflect the size and shape of the lesion. Hence, Table 2 shows that our
Pdynamic strategy is almost comprehensively ahead of the P1 strategy in both
methods, with a maximum improvement of about 12% in the sensitivity metric
when using WPDNet as the backbone and a different degree of lead for all other
metrics.

Table 3. Comparison of different loss functions. The effect of LC and our loss function
(CHS) on segmentation results was tested using our method (WPDNet) with FCN-8S,
and each model’s significant values are highlighted in bold.

Methods Loss functions Metrics(%)

FCN-8s WPDNet LC CHS DSC IoU Sens. Spec.

� � 76.14 68.78 73.92 99.92

� � 80.15 73.18 88.32 99.63

� � 76.18 69.01 79.14 99.80

� � 81.00 73.44 95.44 99.53

Loss Functions. As shown in Table 3, we evaluated the effect of our CHS loss
function on FCN-8s and WPDNet, respectively, and found that our loss function
provided superior performance compared to the point-supervised loss function
LC. When FCN-8s used CHS, DSC, IoU, and Sens. improved by 4.01%, 4.4%,
and 14.4%, respectively. With a maximum of 16.3%, the Sens. improvement
was greatest when the WPDNet utilized CHS. Our CHS loss results in a more
competitive performance for other metrics.

Figure 6 visualizes the segmentation results, comparing the LC loss with the
CHS loss. Due to the fact that CHS adds convex-hull loss to LC to provide
size and shape information to the model and removes split-level loss, it does
not force the model to segment connected regions containing two or more point
labels, allowing the network to learn more about the lesion. It can be observed
that CHS improves the problem of more false negatives in LC and has better
true positive results.

Quantitative Evaluation. To compare with SOTA methods, we constructed a
performance comparison experiment using three fully supervised image segmen-
tation models and two weakly supervised segmentation models, including Unet,
AnamNet, COVID-Rate, WSCL, and M-SAME-NAM, COVID-Rate, AnamNet,
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Fig. 6. Effect of loss function on segmentation performance. (a) WPDNet+LC; (b)
WPDNet+CHS; (c) FCN-8s+LC; (d) FCN-8s+CHS; Red: false positive; green: true
positive; blue: false negative. (Color figure online)

WSCL, and M-SAME-NAM are specifically designed for COVID-19 lesion seg-
mentation, whereas M-SAME-NAM and WSCL are weakly supervised networks
trained with classification labels and point labels, respectively.

Table 4. Compare the number of parameters, FLOPs, and inference speed of WPDNet
with other SOTA methods.

Method Backbone #Param FLOPs Speed

Unet – 31.04M 421.49G 16.3 fps

AnamNet – 4.47M 196.12G 29.0 fps

COVID-Rate – 14.38M 297.92G 19.2 fps

WSCL FCN-8s 134.26M 317.25G 20.2 fps

M-SAME-NAM ResNet38 106.40M 403.78G 2.8 fps

WPDNet – 11.03M 21.96G 24.6 fps

The results of WPDNet compared with other networks in terms of number
of parameters, FLOPs, and speed are shown in Table 4. These fully supervised
segmentation networks (Unet, FCN8s, and Covid-Rate) have high accuracy, but
the number of parameters and FLOPs of these methods are relatively high.
Using more skip connections affects inference speed. The FLOPs of Unet reached
421 GFLOPs, and the inference speed was only 16.3 FPS (frames per second),
while the FLOPs of Covid-Rate were only about half of those of Unet, but
the inference speed was only increased by 2.9 FPS. AnamNet, a lightweight
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segmentation network, achieves the fastest inference speed of 29 FPS, but it
requires fully supervised labeling, and the accuracy of the weakly supervised
method presented in this paper is not significantly different. In the training
phase, WSCL requires two FCN8s networks, so the training time is lengthy. Even
though only one FCN8s is required to complete segmentation in the inference
stage, the network’s FLOPs still reach 317 GFLOPs, and the inference speed
of 20 FPS is not dominant. M-SEAM-NAM needs to calculate the CAM and
affinity matrix during inference and use the random walk algorithm to get the
result, so its inference speed is only 2.8 FPS. WPDNet uses point-wise and D
block to reduce the model parameters, and the FLOPs are only 21.96 GFLOPs
while the inference speed reaches 24 FPS.

Table 5. Comparison of WPDNet with the advanced COVID-19 segmentation method,
where the bolded black is the method in this paper.

Label Methods DSC(%) IoU(%) Sens.(%) Spec.(%)

Full Unet 87.58 82.23 86.11 99.93

AnamNet 86.83 77.27 94.10 99.67

COVID-Rate 83.79 80.13 88.22 99.85

Point WSCL 52.09 44.59 81.69 98.35

Classification M-SAME-NAM 51.00 50.13 53.50 80.19

Point WPDNet (Ours) 81.00 73.44 95.44 99.53

A comparison of the evaluation metrics of WPDNet with the above networks
is shown in Table 5. On DataSet C, WPDNet achieved the best results com-
pared to other weakly supervised methods, with DSC and IOU leading by more
than 29% and 28%, respectively, demonstrating the effectiveness of the weakly
supervised method in this paper. Compared with the fully supervised method,
the performance of WPDNet is slightly inferior; from the IoU point of view, the
lowest difference of the method in this paper is only 3.8%, but the performance
of Sens. in this paper is 9.3%, 1.3%, and 7.2%, respectively. Therefore, we can
conclude that our method is rapid, effective, precise, simple to implement in
practice, and crucial for assisting in the diagnosis of COVID-19.

Qualitative Comparison. In order to demonstrate the efficacy of WPDNet,
this paper compares visually two weakly supervised methods and one fully super-
vised method. As depicted in Fig. 7, we chose some representative images from
Dataset C for comparison, and it can be seen that the WSCL method suffers
from over segmentation and that the numerous lesion regions are nearly con-
nected. M-SEAM-NAM uses CAM combined with the affinity’s segmentation
method. Even though M-SEAM-NAM adds an attention mechanism for CAM
to focus more on the lesion, it is still easy to misidentify the thoracic skeleton as
a lesion. The segmentation results of this paper’s method have the fewest false



102 F. Lu et al.

Fig. 7. The visualization comparison graphs of different segmentation methods. Red:
false positive; green: true positive; blue: false negative. (Color figure online)

positives and are closest to GT, which is superior to the segmentation results of
other weakly supervised methods. Compared to Unet, the segmentation results
of this paper’s method produce relatively more false positives, but are otherwise
comparable to Unet.

5 Conclusion

Deep learning can lead to a detection and segmentation solution for COVID-19.
In this paper, a lightweight, weakly-supervised point-label COVID-19 segmenta-
tion network called WPDNet is proposed.WPDNet fuses the D block into the net-
work to expand the model’s receptive field. The CHS loss function was designed
based on LC to learn the shape and size of lesions under point labels.This paper
presents a dynamic setting method for point labels, and experiments demon-
strate that this method achieves the highest segmentation accuracy compared
to the conventional method.In this paper, we used point-wise convolution and
reduced the number of model channels, which significantly reduced the FLOPs
of the model. Compared to other weakly supervised segmentations, the method
described in this paper achieves the highest segmentation accuracy and is suit-
able for rapid COVID-19 lesion segmentation deployment.
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