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Abstract. Coronavirus disease 2019 (COVID-19) has been spreading
since late 2019, leading the world into a serious health crisis. To control
the spread rate of infection, identifying patients accurately and quickly is
the most crucial step. Computed tomography (CT) images of the chest are
an important basis for diagnosing COVID-19. They also allow doctors to
understand the details of the lung infection. However, manual segmenta-
tion of infected areas in CT images is time-consuming and laborious. With
its excellent feature extraction capabilities, deep learning-based method
has been widely used for automatic lesion segmentation of COVID-19 CT
images. But, the segmentation accuracy of these methods is still limited.
To effectively quantify the severity of lung infections, we propose a Sobel
operator combined with Multi-Attention networks for COVID-19 lesion
segmentation (SMA-Net). In our SMA-Net, an edge feature fusion mod-
ule uses Sobel operator to add edge detail information to the input image.
To guide the network to focus on key regions, the SMA-Net introduces a
self-attentive channel attention mechanism and a spatial linear attention
mechanism. In addition, Tversky loss function is adopted for the segmenta-
tion network for small size of lesions.Comparative experiments onCOVID-
19 public datasets show that the average Dice similarity coefficient (DSC)
and joint intersection over Union (IOU) of proposed SMA-Net are 86.1%
and 77.8%, respectively, which are better than most existing neural net-
works used for COVID-19 lesion segmentation.

Keywords: Lesion segmentation · Deep learning · COVID-19 ·
Multi-attention

1 Introduction

Coronavirus disease 2019 (COVID-19) is an epidemic disease caused by a new
coronavirus (formerly known as 2019 nCoV). This new coronavirus has strong
adaptability, so far, it has produced eleven different mutant strains [1]. Accord-
ing to the latest statistics from the Johns Hopkins Center for Systems Sci-
ence and Engineering (CSSE) (updated October 8, 2022), the number of con-
firmed COVID-19 cases worldwide has reached 621 million, including 6.56 million
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
G. Zhai et al. (Eds.): IFTC 2022, CCIS 1766, pp. 377–390, 2023.
https://doi.org/10.1007/978-981-99-0856-1_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-0856-1_28&domain=pdf
https://doi.org/10.1007/978-981-99-0856-1_28


378 F. Lu et al.

deaths. Currently, reverse transcription-polymerase chain reaction (RT-PCR) is
the standard test for diagnosing COVID-19 disease [2]. However, the RT-PCR
test has the possibility of false negatives when the nucleic acid content of the
new coronavirus is too low in the test sample. The missed diagnosis cases caused
by false negatives will lead to more widespread transmission, which is extremely
unfavorable for the prevention and control of the epidemic [3].

In order to better suppress the spread of the coronavirus, chest computed
tomography (CT) images have become an important tool for diagnosing COVID-
19. Studies in [4,5] show that CT scan has high sensitivity, and abnormal fea-
tures such as ground-glass opacity (GGO), consolidation and rare features in CT
images can reflect the severity of infection in patients. However, it takes a lot of
time to manually segment the lesion area in CT images, and for an experienced
radiologist, it needs about 21.5min to get the diagnostic results of each case
by analyzing CT images [6]. Therefore, it is necessary to propose an automatic
lesion segmentation method to assist doctors in diagnosis. Recently, with the
powerful feature extraction capability of deep convolutional neural networks,
deep learning-based method has been widely used in medical image process-
ing [1,7]. Wang et al. [8] developed a deep learning method combined with CT
classification and segmentation that can extract CT image features of COVID-
19 patients and provide medical diagnosis for doctors. Matteo et al. [9] pro-
posed a lightweight convolutional neural network for distinguishing CT images
of COVID-19 patients from healthy CT images.

It is worth noting that the encoder-decoder structure is the most common
used in lesion segmentation models. Many studies [10,11] have confirmed that
this structure has good segmentation performance and robustness. As a result, a
number of studies have been conducted on segmentation of COVID-19 lesions by
using encoder-decoder structures. FCN [12], SegNet [13], Unet [14] and deeplav3
[15] are applied to the COVID-19 segmentation task. In addition, Unet and its
variants have also been applied to the COVID-19 segmentation task. Chen et
al. [16] used Unet combined with residual network to achieve automatic seg-
mentation of COVID-19 lesions. Bhatia et al. [17] proposed a U-Net++-based
segmentation model for identifying 2019-nCoV pneumonia lesion on chest CT
images of patients. A large number of deep learning-based methods [18,19] have
been applied to the lesion segmentation of COVID-19. Although these methods
are more efficient than manual segmentation, they still have shortcomings in seg-
mentation accuracy. They tend to have the following problems. (1) Although the
encoder-decoder structure can extract high-level features with rich semantics, it
will lose spatial detail information such as the edge information of the lesion area
when the encoder performs down sampling. (2) These networks lack an effective
mechanism to learn the channel information and spatial information of features.
(3) The previous loss function of semantic segmentation is not suitable for the
lesion segmentation task of COVID-19, which makes the network insensitive to
small lesion areas.

To solve the above problems, we propose a Sobel operator combined with
Multi-Attention networks (SMA-Net) to segment the lesions of COVID-19. Dif-
ferent from previous methods, we pay more attention to the edge information
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of images. We propose self-attentive channel attention mechanism and spatial
attention mechanism to guide the network in the concatenation of low-level and
high-level features for feature extraction. The Tversky loss function adopted by
SMA-Net can take into account the small lesion area and improve its sensitivity.

Our contributions are summarized as follows:

1) We propose a module for fusing COVID-19 CT images and their edge features
to provide more detailed information for the network. This module uses the
Sobel edge detection operator to obtain edge information.

2) We propose a self-attentive channel attention mechanism with a spatial linear
attention mechanism module that is independent of the resolution size of the
feature map, which we apply to each layer of the low-level feature and high-
level feature splicing. It enables the network to focus on important semantic
information, thereby improving the segmentation performance of the network.

3) SMA-Net has a suitable loss function for the small lesion area of COVID-19.
Compared with other segmentation methods, SMA-Net has better segmenta-
tion accuracy in small lesion.

2 Dataset and Data Enhancement

Public COVID-19 segmentation dataset: The public dataset used in this paper
is from zendo [20]. The dataset contains 20 COVID-19 CT scans, including lung
and lesion segmentation labels. The dataset was annotated by two radiologists
and examined by an experienced radiologist. In this study, 2237 CT images
were selected for the experiment. To speed up the convergence of the network
and improve efficiency, some preprocessing operations were performed on this
dataset. We cropped the CT images to a resolution of 512*512 size to reduce
the amount of calculation in the training process. The CT images are then
normalized. Image normalization is the process of centering the data by de-
meaning, which can improve the generalization of the network.

3 The Proposed Method

In this section, we first propose the overall structure of SMA-Net. Then the
core modules of the network are introduced in detail, including edge feature
fusion, self-attentive channel attention mechanism and spatial linear attention
mechanism. Finally, the loss function used for training is described.

3.1 Network Structure

The structure of proposed SMA-Net is shown in Fig. 1. It can be seen that the
original CT image is first fused with its corresponding edge features to obtain
the input tensor of the network. Then the input feature map is divided into two
directions after convolution and activation operations. Feature map is sent to
the SCAM module, and it is also sent to the next layer by pooling for further
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Fig. 1. The network structure of SMA-Net. The part (a) in the blue dashed box is the
edge feature fusion. After the edge feature fusion is completed, the image is fed into
the segmentation network. The segmentation network has four layers. Each layer has a
corresponding channel attention mechanism and a spatial linear attention mechanism.
The input image and the segmentation result output by the network have the same
resolution size. (Color figure online)

feature extraction. SMA-Net performs 4 times down-sampling for the features.
The feature map is reduced from a resolution size of 512*512 to 32*32. Then,
the feature map is begun up-sampling. After up-sampling, the feature map is
concatenated with the encoder feature map in the same layer after it passing
through SCAM module, and then the obtained feature map is sent to the PLAM
module to get a feature map with rich semantic information. Next, the feature
map is further upsampled, and then repeat the above operation to upsample the
feature map to the original image size. Finally, compress the channel to get the
final segmentation result.

3.2 Edge Feature Fusion

In the semantic segmentation models applied to medical images, most of them
use encoding-decoding structure as the overall architecture. The encoder extracts
the feature maps from the images through convolution and pooling operations.
The low-level feature maps are often containing more edge information of the
lesions in the CT images. But in the process of downsampling, the edge details
in the feature map will be partially lost. To solve the loss of edge information,
we propose to fuse CT images with their edge features to add spatial detail
information from the source of the model input. As shown in Fig 1(a), we first
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do a Gaussian filtering process on the CT image. The idea of Gaussian filtering
is to suppress noise and retain detail information by weighted average of pixels.
Then, a thresholding process is done to obtain a binary map U.

U = T (G(X, k = 3), t = 127) (1)

where G denotes Gaussian filtering operation, k is the filter size and X is the
grey scale map of the input CT image. t denotes image thresholding and it is set
to 127 in this paper. The Sobel operator is then used to calculate the gradient in
the X and Y directions for the binary map, and the two gradients are combined
to obtain the edge feature map. Finally, the model input Z is obtained by fusing
the extracted edge feature map with its CT image.

Fig. 2. SCAM: Self-attentive channel attention mechanism

3.3 Self-attentive Channel Attention Mechanism (SCAM)

To improve semantic segmentation performance, U-shaped networks concatenate
high-level features with low-level features to obtain richer semantic information.
In the process of concatenation, a redundancy channel of feature map often
occurs. So, channel attention modules (such as the classical SE module) are
usually added to the network in order to emphasize the meaningful features of
channel axis. SE module obtains the compressed feature vectors by global average
pooling of the feature maps, and then the obtained compressed feature vectors
go through the full connection layer to generate the weight of each channel of
the feature map. The SE module is simple and easy to apply it to the model.
However, the global averaging pooling operation in the SE module results in a
loss of semantic information.
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In order to solve this problem, we propose a self-attentive channel attention
mechanism (SCAM) module as shown in Fig. 2. Instead of compressing the fea-
ture map by global average pooling, the module first performs a convolution
operation on the feature map J input to the SCAM module to obtain the fea-
ture map F ∈ RC×H×W as shown in Eq. 2. The feature map F is then reshaped
to obtain the matrix M ∈ RC×N, and then the transpose of matrix M and M
are calculated as matrix product. Finally, using softmax to activate the matrix
product yields the channel attention weight map E.

F = f(J, k = 3) (2)

Eji =
exp (Mi · Mj)

∑C
i=1 exp (Mi · Mj)

(3)

whereEji denotes the effect of the i-th channel on the j-th channel. After obtain-
ing the weight map E, E and the transpose of matrix J are calculated as matrix
product. This assigns the values in the weight map to each channel of J . Given
on the idea of residual networks, the result of the product is multiplied by the
adaptive coefficient α and then summed with J to obtain the final output L of
the SCAM module.

L = α

c∑

i=1

(
EjiJ

�)
+ J (4)

where the initial value of α is set to 0 and it can be changed with the needs of
the network during the training process. L is used as the output of the input
J passing through the SCAM module. L is then connected in series with its
corresponding high-level features in the decoder.

3.4 Spatial Linear Attention Mechanism (PLAM)

After completing the concatenation of low-level features with high-level features,
the decoder obtains a semantic rich feature map. However not all regions of
this rich semantic information are equally important for lesion segmentation. To
enhance the representation of key regions, we introduce the spatial linear atten-
tion module as shown in Fig. 3. Before introducing the spatial linear attention
module, we first review the principle of the compressed dot product attention
mechanism (Scaled-Dot Attention, SDA), as given in Eq. 5.

Attention (Q,K, V ) = softmax
(

QKT

√
dk

)

V (5)

where Q, K and V denote the query matrix, the key matrix and the value
matrix respectively. These three matrices are obtained by convolving the input
feature map by compressing the number of channels and then reshaped the
feature map.

√
dk denotes the scaling factor. The overall dot product attention



SMA-Net for COVID-19 Lesion Segmentation 383

Fig. 3. PLAM Spatial linear attention mechanism structure

mechanism can be summarized as modeling the similarity between pixel points
by matrix multiplication and the softmax function is used to activate the matrix
multiplication result.

However, since Q ∈ R
n×d, K ∈ R

n×d, V ∈ R
n×d where n = W ∗H, W and H

represent the width and height of the feature map respectively. The complexity
of the dot product attention mechanism is O (

n2
)
, which makes SDA limited by

the image resolution. Moreover, the resolution of CT images is usually large and
if SDA is used directly, it will exceed the computational power of the computer.
If the resolution of the CT image is scaled by scaling, much detailed information
is lost in the image.

In order to improve SDA, we propose a spatial linear attention mechanism
module. The complexity of the module is reduced from O (

n2
)

to O(n), which
allows the module to be flexibly applied to segmentation networks. We start by
equivalently rewriting Eq. 5 as Eq. 6. Because PLAM does not use a scaling
factor,

√
dk is removed from Eq. 6. Equation 6 represents the result of the i-

th row of the matrix obtained from the feature map after feeding into the dot
product attention mechanism.

Attention (Q,K, V )i =

∑n
j=1 eq

�
i kjvj

∑n
j=1 eq

�
i kj

(6)

where eq
�
i kj is essentially a weighted average over vj , so Eq. 6 can be generalized

to a general form by replacing the softmax function with the general function as
given in Eq. 7.

Attention(Q,K, V )i =

∑n
j=1 sim (qi, kj) vj

∑n
j=1 sim (qi, kj)

(7)

where sim (qi, kj) ≥ 0. In order to reduce the complexity of Eq. 7, the order of
concatenation of qi, kj , vj needs to be changed and the normalization of qi, kj
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needs to be solved. In the construction of linear attention mechanism, we start
with Taylor expansion. Turn eq

T
i kj into 1 + qTi kj .

eq
T
i kj ≈ 1 + qTi kj . (8)

According to the Taylor expansion of Eq. 7, sim (qi, kj) = 1+ qTi kj . Since we
need to normalize qi, kj and ensure that sim (qi, kj) > 0. We can use the two
norms of the matrix for normalization. Following this Eq. 6 can be equated to
Eq. 9.

Attention(Q,K, V )i =

∑n
j=1

(

1 +
(

qi
‖qi‖2

)T (
kj

‖kj‖2

))

vj

∑n
j=1

(

1 +
(

qi
‖qi‖2

)T (
kj

‖kj‖2

)) (9)

By modifying the original form of the attention mechanism, we have completed
the construction of a spatial linear attention mechanism.

3.5 Loss Function

Due to the exist of small lesions in the CT images of COVID-19, and the early
clinical manifestations of COVID-19 are not obvious. The small lesion part of
the CT images can be used as a basis for the early diagnosis of COVID-19. When
the proportion of pixels in the target region is small, network training becomes
more difficult, so small lesions are easily ignored in the network training process.
Therefore, after the network has been built, it is important to choose a suitable
loss function that is appropriate for the segmentation task. The Dice Loss func-
tion, which is often used in segmentation tasks, cannot meet the segmentation
needs of small lesions in COVID-19. In order to fit the segmentation task, we
chose the Tversky loss. As given in Eq. 10.

TL(α, β) =
∑N

i=1 p0ig0i
∑N

i=1 p0ig0i + α
∑N

i=1 p0ig1i + β
∑N

i=1 p1ig0i
(10)

where α, β are hyper parameters, set to 0.3 and 0.7 respectively in this paper.
p0i represents the probability of a pixel point being diseased. g0i is 1 and g1i
is 0 when the pixel point is diseased. p1i represents the probability of a pixel
point being non-diseased. When the pixel point is non-lesioned, g0i is 0 and g1i
is 1. As can be seen from the Eq. 10, the trade-off between false negatives and
false positives can be controlled when adjusting the values of α, β. The value of
β is taken to be 0.7 greater than α, improving sensitivity by emphasizing false
negatives. This allows the network to focus on small lesion areas during training,
thus addressing the problem of data imbalance in CT images of patients with
neocoronary pneumonia.
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4 Experiment

4.1 Experimental Setup

Baseline: In the lesion segmentation experiments, our proposed SMA-Net is com-
pared with the classical network Unet and Unet++. In addition, we also refer to
the advanced semantic segmentation networks Deeplabv3, FCN, SegNet. More-
over, we also compare three newly proposed COVID-19 lesion segmentation net-
works: AnamNet, JCS, and Inf-Net.

AnamNet [21]: A lightweight CNN based on deformation depth embedding for
segmentation network of COVID-19 chest CT image anomalies, can be deployed
to mobile terminals.
JCS [22]: A novel combined classification and segmentation system for real-time
and interpreted COVID -19 chest CT diagnosis.
Inf-Net [23]: A semi-supervised segmentation framework based on a random
selection propagation strategy for a network with a fully supervised form, which
we have selected for its fully supervised approach.

Table 1. Comparison of lesion segmentation performance

Methods DSC IOU SEN SPE

Unet 0.797 0.701 0.869 0.998
Unet++ 0.754 0.687 0.836 0.993
Deeplabv3 0.773 0.646 0.861 0.997
FCN 0.689 0.612 0.795 0.876
Segnet 0.731 0.634 0.854 0.993
AnamNet 0.808 0.71 0.846 0.979
JCS 0.847 0.754 0.852 0.989
Inf-Net 0.818 0.723 0.871 0.985
Ours 0.861 0.778 0.915 0.997

4.2 Segmentation Results

To compare the segmentation performance of SMA-Net, we refer to the classical
medical image segmentation network Unet and its variant Unet++. In addi-
tion we also refer to the advanced semantic segmentation networks Deeplabv3,
FCN, SegNet. For the three recently proposed COVID-19 lesion segmentation
networks (AnamaNet, JCS, Inf-Net), we have also conducted comparative exper-
iments. The quantitative results are shown in Table 1. It can be seen that for
the other methods our proposed SMA-Net achieves a significant improvement in
IOU metric, with a 7.8% improvement compared to Unet. The DSC coefficient
also achieves the best. We attribute this improvement to our edge feature fusion
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Fig. 4. Visual comparison of lesion segmentation results using different networks. (a)
represents CT images (b) represents ground truth. (c), (d), (e), (f) and (g) represent
the segmentation results of SMA-Net, JCS, Unet, AnamNet and Inf-Net, respectively.
The green, blue, and red regions refer to true positive, false negative and false positive
pixels, respectively. (Color figure online)

module as well as to self-attentive channel attention mechanism and spatial
linear attention mechanism. Thanks to the two attention mechanisms guiding
SMA-Net, SMA-Net can sample a richer feature map of semantic information
during feature extraction.

Figure 4 shows a visual comparison of SMA-Net with Unet and the three
newly proposed COVID-19 lesion segmentation networks (AnamaNet, JCS, Inf-
Net). The green, blue, and red regions refer to true positive, false negative and
false positive pixels, respectively. It can be seen that SMA-Net is closest to the
ground truth. In contrast, many false positive pixels appear in the Unet and
AnamNet segmentation results. Thanks to our choice of Tversky loss function,
SMA-Net achieves good results in the segmentation of small lesions. Compared
to the other networks, our increased sensitivity of the loss function to the small
lesion region allows the network to segment the small lesion region well.
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4.3 Ablation Studies

In this section, we experimentally demonstrate the performance of key compo-
nents of SMA-Net, including the edge feature fusing module, the self-attention
channel attention mechanism module (SCAM), and the spatial linear attention
mechanism module (PLAM). In Table 2, A is the SMA-Net without the SCAM
module, B is the SMA-Net without the PLAM module, C is the SMA-Net with
the edge feature fusion module removed and D is the complete SMA-Net. E is
the SMA-Net without SCAM, PLAM and the feature fusion module.

Table 2. Results of the ablation experiment

Model DSC IOU SEN SPE

A 0.846 0.756 0.903 0.997
B 0.837 0.732 0.897 0.983
C 0.783 0.697 0.884 0.997
D 0.861 0.778 0.915 0.997
E 0.797 0.701 0.869 0.998

– Effectiveness of SCAM: To explore the SMA-Net’s self-attentive channel
attention module, we propose two benchmarks: as shown in Table 2, A (SMA-
Net without SCAM), D (SMA-Net), and the results show that SCAM is
effective in improving network performance.

– Effectiveness of PLAM: From Table 2, it can be observed that the IOU values
decrease more between B (SMA-Net without PLAM) compared to D. This
indicates that the spatial linear attention mechanism has an important role in
guiding the network to learn to segment the lesion area, allowing the network
SMA-Net to focus more on the pixels in the lesion area.

– Effectiveness of edge feature stitching: After the fusing of edge features is
completed, the encoder obtains richer semantic information. As can be seen
from Table 2, C has the lowest IOU metric compared to A, B and D, which
indicates that edge features are important for the detail complement of CT
images.

5 Comparison of Loss Function

5.1 Selection of Loss Function

After the construction of the network SMA-Net is completed, the selection of the
loss function has a great impact on the performance of the network. Therefore,
for different semantic segmentation tasks, the selection of the loss function is
based on the characteristics of the task. Commonly used loss functions such as
Dice loss (DL) function, Balanced cross-entropy loss function BCE for binary
classification task, Weighted cross-entropy loss function WCE. In addition, we
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also selected excellent loss functions that have been used for semantic segmen-
tation in recent years, namely Asymmetric Loss Functions (AL), Tversky Loss
(TL), PenaltyGDiceLoss (PL).

1) Asymmetric Loss Functions (AL): A novel loss function is designed to address
the problem of positive and negative sample imbalance in classification tasks.
Adaptive methods are proposed to control the asymmetric rank.

2) Tversky Loss (TL): In order to solve the problem of data imbalance, a new
loss function is proposed to improve the sensitivity of small lesion areas by
adjusting the hyper parameters of the tversky index.

3) PenaltyGDiceLoss (PL): improves network segmentation performance by
adding false negative and false positive penalty terms to the generalized dice
coefficients (GD).

Table 3. Comparison of SMA net results under different loss functions

Loss DSC IOU SEN SPE

BCE 0.834 0.743 0.979 0.896
WCE 0.823 0.726 0.983 0.852
DC 0.783 0.697 0.997 0.884
GD 0.799 0.689 0.973 0.854
AL 0.824 0.727 0.998 0.897
TL 0.861 0.778 0.997 0.915

5.2 Comparison Results

As can be seen from Table 3, Tversky Loss (TL) performed the best among the
three indicators of IOU, DSC and SPE. Compared to the BCE loss function IOU
and DSC coefficients improved by 6.8% and 7% respectively. Among them, AL
performed the best in sensitivity. We also made a visual comparison of the output
results of SMA-Net with different loss functions. The results from TL are more
sensitive for small lesion regions and can do well in segmenting small lesions. In
contrast, the lack of segmentation for small lesion regions can be observed from
the segmentation results of BCE as well as AL.

6 Conclusion

To improve the efficiency of diagnosis of COVID-19, we have developed a
COVID-19 lesion segmentation network. In our network, we propose the first
edge feature fusion module, which allows the network to capture more edge fea-
ture information. In addition, we introduce a self-attentive channel attention
mechanism and a spatial linear attention mechanism to improve the network
performance. Two attention mechanisms guide SMA-Net, which captures lesion
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areas more accurately during feature extraction. Compared with the classical
medical image segmentation network Unet, the DSC and IOU of SMA-Net are
improved by 7% and 7.8% respectively. Although our method achieves good
results in terms of performance, it still has the following shortcomings. (1) the
network has a high computational complexity, and (2) the network does not
perform the classification task simultaneously. Therefore, our future work will
try to start with the light weighting of the model and to achieve simultaneous
network classification and segmentation as a way to improve the diagnosis of
neocrown pneumonia.
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