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Abstract. It is important to observe and split water region to help
acquire the water quality and supervise water environment. Water seg-
mentation is a task to separate water region from images. Due to the
specular nature of the water surface, various types of reflections usu-
ally appear on the water surface, which can change significantly with
weather and lighting changes, it is difficult for general segmentation to
work. According to the characteristics of waters, i.e. wide area and reflec-
tion, we propose a asymmetric interaction module (AIM) converge the
features to a larger receptive field. Further, with this powerful module, we
design the asymmetric multiscale interaction network, which can main-
tain the features of each scale and reassign the weights of features at dif-
ferent scales. We conduct extensive experiments on Hubei water dataset
we constructed, The results show the framework effectively improves the
accuracy of water segmentation and greatly improves the visual effect of
segmentation, which is 5.9% higher in self-made dataset with advanced
methods.

Keywords: Water segmentation · Hubei water dataset · Asymmetric
interaction

1 Introduction

Inland water is one of the most protected resources. However, Water pollution
threatens the health of the water quality, and will cause a large number of dead
fish, cyanobacteria outbreaks and other ecological disasters. At the same time,
floods and dry waters will also cause a huge threat to human society. Therefore,
it is important to supervise the water surface situation. To monitor the water
environment, identifying the water region and segment it from its surroundings
is essential.
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As shown in Fig. 1, due to the specularity and indeterminacy of water, prob-
lems such as reflection on the water surface can, weather changes, and lighting
changes will significantly change the feature distribution on the water surface.
Hence, we thought of use semantic segmentation for water segmentation.

Fig. 1. Some common situation in water segmentation. The first row is two images
of the water surface on a cloudy day. In (a), the severe reflection blurs the bound-
ary between the water surface and the plants. In (b), Floating objects such as algae,
garbage, and reflections coexist in the water, complicating the situation on the water
surface. (c) and (d) show the conditions of the water surface on sunny days and in
the toward evening, respectively, which make the distribution of water surface features
more uncertain.

Semantic segmentation or pixel-level classification [1], which aims to assign
each pixel if an image to one category, is one of the key problems in computer
vision. Semantic segmentation is applied in many scenes such as geographic infor-
mation systems and medical image analysis systems, advanced driver assistance
systems (ADAS) and various applications in autonomous vehicles. Most of the
semantic segmentation methods reproduce the details in a fine way [16,21], so
that each pixel can be segmented under the condition of fuzziness and occlusion.
However, in the task of water segmentation, many interference details (such as
various reflections on the water surface and the appearance of various underwater
plants) may lead to network learning irrelevant semantic to the nature of water,
thus resulting the inaccurate segmentation. In order to solve the above problem,
a natural idea is to learn features of a large area with the help of larger scale
receptive field and reduce the interference of local harmful information Fig. 2.
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In this paper, we analyze the characteristics of the task of water segmentation
in the scene of inland rivers in Hubei Province under the monitoring video. We
propose a asymmetric interaction module (AIM) to converge the water features
to a larger receptive field and use this powerful module to construct asymmetric
multiscale interaction network (AMINet). The proposed network uses AIM to
fuse the features of various scales, so as to achieve the goal of accurate learning
of large scale features to segment the water boundary more accurate.

Our contributions are mainly in the following folds:

(1) We propose a new semantic segmentation dataset, Hubei Water dataset,
which includes water monitoring images of different time periods and
weather in Hubei and annotations of the corresponding water surface and
surrounding environment.

(2) We propose a novel multiscale semantic segmentation network, unidirec-
tional feature finege network (AMINet), which converge features into large
scale features with our proposed asymmetric interaction module (AIM).
Within the scope of our knowledge, this is the first work on semantic seg-
mentation of water surface in surveillance scenarios.

(3) We empirically demonstrate the superior key point detection performance
the Hubei water dataset we collected. Compared with existing popular CNN-
based semantic segmentation methods, we achieve a 5.9-point improvement.
In addition, we have achieved unimaginable improvements in visual effects.

Fig. 2. With the same size red patch, the point in left image may confuse whether it
belongs to water or grass. But in right one, grass point and water point can be will sep-
arate. Enriching images with large receptive fields is beneficial to water segmentation.
(Color figure online)
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2 Related Work

Semantic Segmentation. Due to the rapid development of deep learning [2–
10], Fully Convolutional Networks (FCNs) [11] have been an dominated and fun-
damental work in the field of semantic segmentation. However, only convolution-
based architectures are difficult to handle large objects due to the weak ability of
convolution operations to process global information. To alleviate this problem
and enhance the global correlation capability of convolution-based architectures,
LC Chen et al. propose atrous convolution [12,13], Zhao et al. propose a pyramid
pooling module [14]. Meanwhile, follow the [15], Huang et al. find that attention
mechanism can effectively change the network preferences [16]. After that, Yuan
et al. use the area contextual information to solve context aggregation problem
[21].

Water Segmentation. Water segmentation plays a supporting role in water
area monitoring and water quality warning. To achieve water segmentation of
monitoring scenes, traditional methods mostly rely on low-level features. By
using decision forests [17] or support vector machines [18] on low-level features,
one can achieve simple water segmentation task. To improve the segmenta-
tion accuracy, Kristan proposed a method [19] to use inertial measurement unit
to assist maximize expectations for water segmentation. Further more, Lopez-
Fuentes et al. proposed a simple CNN method [20] to detect flooding in rivers
by water segmentation.

The existing research on water segmentation in monitoring scenes is not yet
mature. Our method aims to achieve high-precision water semantic segmentation
in monitoring scenes. We choose the representative CCNet [16] and the strong
semantic relevance network OCRNet [21] as the comparison objects.

3 Methodology

In this section, we first display the proposed asymmetric multiscale interaction
Network (AMINet). Then, We introduce the core component of AMINet, asym-
metric interaction module (AIM), shown in Fig. 3. After that, we introduce the
loss we use. At last, we introduce the proposed water segmentation dataset,
Hubei water dataset.

3.1 Asymmetric Multiscale Interaction Network

We focus on the design of the main body and introduce our asymmetric multi-
scale interaction network. The goal of this network is, given an input image with
size of H × W × 3, we generate different scale feature map set Fi with a reso-
lution of H

2i+1 × W
2i+1 × Ci, where i ∈ 1, 2, 3, 4. Then, By interacting information

between layers, a mask with both semantic information and detailed informa-
tion is generated. Sequential Feature Enrichment Subnetworks. Existing
CNN semantic segmentation networks are constructed by concatenating sub-
networks of different resolutions, where each sub-network forms a stage, which
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consists of a series of convolutions, and adjacent sub-networks are up-sampling
or down-sampling to separate the resolution. The rate increases or decreases in
multiples. In the next paragraphs of this section, we detailed the architecture
of our proposed wide area enhanced multi-scale feature fusion network and the
asymmetric interaction module.

Table 1. The architectures of AMINet.

Output size Asymmetric multiscale interaction network

Stage1 1024 × 1024 3 × 3 32
Stage2 3 × 3 32 3 × 3/2 64

1024 × 1024 3 × 3 32 3 × 3 64
512 × 512 3 × 3 32 3 × 3 64 x 2

Low to high fusion
Stage3 1024 × 1024 3 × 3 32 3 × 3/2 64 2 × [3 × 3/2] 128

512 × 512 3 × 3 32 3 × 3/2 64 2 × [3 × 3/2] 128
256 × 256 3 × 3 32 3 × 3 64 3 × 3/2 128

Stage4 3 × 3/2 64 2 × [3 × 3/2] 128 3 × [3 × 3/2] 256
3 × 3 32 3 × 3 64 3 × 3/2 128 2 × [3 × 3/2] 256

3 × 3/2 256
1024 × 1024 5 × 5 32 5 × 5 64 5 × 5 128 5 × 5 256
512 × 512 Low to High fusion
256 × 256 2 × [3 × 3/2] 128 3 × [3 × 3/2] 256
128 × 128 5 × 5 32 3 × 3/2 64 3 × 3/2 128 2 × [3 × 3/2] 256

5 × 5 64 5 × 5 128 3 × 3/2 256
5 × 5 256

Output 1024 × 1024 Low to high fusion

Network Construction. With a large-scale layer as the first layer, our network
propagates construct layer by layer while maintaining high-resolution features.
As a result, the layers in the later stage consists of resolution from the previous
stage and an extra lower resolution. This process can be vividly described as a
inverted triangle construction process. As the Table 1 shown, our network consist
of four stages. They can be subjectively divided into two part, stage 1 to stage
3 can be considered as a whole to obtain effective features of each scale, and
stage 4 is to integrate features of each resolution into low resolutions to obtain a
wide-area enhancement scale feature. In this table, K × K/S represents a layer
with a convolution kernel size of K, stride size of S and its supporting BN Layer
and ReLU Layer. To be specific, given an image of size H ×W ×3, we first resize
the image scale into size 1024 × 1024. With a multi-resolution feature extraction
network, the information of the image gradually convergence on low-resolution
feature maps, i.e. feature maps with a wider receptive field.
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3.2 Asymmetric Interaction Module

Fig. 3. The architecture of asymmetric interaction module. The ReLU and BN layers
after every Conv are hidden.

An example of the detailed architectures of asymmetric interaction module is
shown in Fig. 3. For a three-branched input, a series bottleneck is added at the
end of each branch. The cross fusion includes fusing the high-scale branch into
low-scale branch (high-to-low fusion) and fusing the adjacent low-scale branch
into high-scale fusion (low-to-high fusion). For low-to-high fusion, low-scale fea-
ture maps are first compressed by a 3× 3 convolution and then upsampled by a
1× 1 convolution. For high-to-low fusion, high-scale feature maps are downsam-
pled by a series of 3×3 convolution with a stride of 2 and 1×1 convolution. For
the i-th size N × N feature map, the fusion feature map Xi,N can be written
as:

Xi,N =
∑

FH(Xi−1,N×j) + FL(Xi−1,N/2) + ConvBlock(Xi − 1, N) (1)

where FH and FL refer to the feature from high scale feature maps and low
feature maps, the ConvBlock represent a sequence of convolutional layer with
BN and RELU.

3.3 Post Processing

In this part, we use the strategy used in OCRNet to make our. Unlike other
secondary processing algorithm such as ASPP, etc. which sample around the
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target point, OCRNet use the object segmentation area to replace the sparse
point. In this paper, This strategy is added after the AMINet to better focus on
area context information.

3.4 Loss

In this paper, we only adopt simple extra supervision for a fair comparison with
most of the methods. Following the PSPNet, we add the auxiliary loss and set
the weight to 0.4. The final loss can be expressed as:

Lf = Lc + αLaux (2)

where Lf and Lc are the final loss and the cross-entropy loss, Laux represents
auxiliary loss with a weight α = 0.4.

3.5 Hubei Water Dataset

Construction. The main types of water surface in the study area are rivers
and lakes. To construct this dataset, we collected data from surveillance videos
of different waters in Hubei Province. In order to obtain samples in different
weather and at different times, we collected samples in three time periods in
different weather, namely, 9:00 a.m.–11:00 a.m., 11:30 p.m.–1:30 p.m. and 6:00
p.m.–8:00 p.m.

Dataset Scale and Partition. Hubei water dataset consists of 896 images with
a size of 2560 × 1440. images are evenly divided into training (598), verification
(151) and test sets (147) according to the scene.

Pre-processing. The images with low imaging quality and the images after
7:30 pm cannot identify any effective information through human eyes or the
network, so they are removed in this dataset.

Class Selection Rules. In order to maximize the difference between the reflec-
tion on the water surface and the entities out of the water, we selected other
nine classes to help segment the water region. The Fig. 4 display the classes we
select and the reason for choosing.

Dataset Label Generation. Labels are interpreted as a polygon shape file for-
mat showing the water area. We carefully separated the water surface boundary,
summarized the common reflections and floating objects on the water surface,
and then marked them manually.

4 Experiments

4.1 Dataset and Metrics

Dataset. In this part, We train and evaluate our model on the aforementioned
Hubei water dataset.
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Fig. 4. Total classes of the Hubei water dataset. The class names and the choose reason
are given. Examples are given in the end of each row.
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Fig. 5. Qualitative results on Hubei water dataset. compared to CCNet and
OCRNet, our AMINet predicts masks with substantially finer details near water bound-
aries. And our network can better distinguish the reflection on the water surface.

Evaluation Metrics. Although the dataset labeled about eighteen categories,
but the goal is to separate the water region. So we take the Intersection over
Union (IOU) as the final inspection index.

4.2 Implementation Details

Training Sets. We trained with the input size of 1024 × 1024. The data aug-
mentation includes random crop and random rotation. Only water is taken as
positive sample. We use stochastic gradient descent (SGD). The base learning
rate is set as 1e − 2, and is dropped to 1e − 4 and 1e − 5 at the 130th and 176th
epoch. The training processing is terminated within 200 epochs.

Test Sets. We binarize the labeled mask images of pixel classification results
and test sets by whether they are water, and then calculate water IOUs.

4.3 Result on Test Set

We report the results of our method with other advanced methods. AS shown
in Table 2, Our method get a 78.5% IOU and which surpasses other advanced
method. Figure 5 shows qualitative results on Hubei water dataset, where
AMINet provides better effect and details than CCNet and OCRNet.
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Table 2. Comparison on the Hubei water test set. The best result is in bold.

Method Backbone Input size IOU

CCNet ResNet-101 2560 × 1440 43.2
HRNet HRNet-W48 1024 × 1024 68.3
OCRNet HRNet-W48 1024 × 1024 72.6
AMINet AMINet 1024 × 1024 78.5

4.4 Ablation Study

In this part, we separate our network into three part: The AMINet (/) use a
simple bilinear to replace low-to-high fusion and use only convolutional layer with
BN+RELU to replace high-to-low; The core component asymmetric interaction
module; The Conv5 × 5. We analyze the effect of these factors and the direct
effect is shown in Table 3.

Effects of AIM. from the Table 3, it is easy to find that AIM greatly improves
the IOU, which proves the effectiveness of this module and focuses more attention
on the characteristics of larger receptive field to water segment.

Conv 5×5. After using 5 × 5 convolution in the last several layers, the IOU is 2.4
% and 1.8 % higher than that of AMINet (/) and AMINet (/)+AIM respectively.
This proves that large convolution kernels will have better effect for large water
areas with uneven characteristic distribution.

Table 3. The effects of factors in AMINet.

AMINet (/) +AIM +CONV5 × 5 IOU ↑
� 71.4
� � 76.7
� � 73.8
� � � 78.5

5 Conclusion

In this paper, we propose AMINet, a powerful water semantic segmentation
method and introduce our dataset Hubei water dataset. With the effective asym-
metric interaction module, our framework gradually aggregates information on
the smallest feature layer with a larger perceptive field, and ultimately gets bet-
ter performance on the Hubei water dataset. The disadvantage is that AMINet
does not achieving good results in all categories. We leave it in the future.
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