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Abstract. Blind image super-resolution (SR) has achieved great
progress through estimating and utilizing blur kernels. However, current
predefined dimension-stretching strategy based methods trivially con-
catenate or modulate the vectorized blur kernel with the low-resolution
image, resulting in raw blur kernels under-utilized and also limiting
generalization. This paper proposes a deep Fourier kernel exploitation
framework to model the explicit correlation between raw blur kernels
and images without dimensionality reduction. Specifically, based on the
acknowledged degradation model, we decouple the effects of downsam-
pling and the blur kernel, and reverse them by the upsampling and decon-
volution modules accordingly, via introducing a transitional SR image.
Then we design a novel Kernel Fast Fourier Convolution (KFFC) to fil-
ter the image feature of the transitional image with the raw blur kernel
in the frequency domain. Extensive experiments show that our methods
achieve favorable and robust results.

Keywords: Blind image super-resolution · Blur kernel · Fourier
convolution network

1 Introduction

Single Image Super-Resolution (SISR) aims to reconstruct the High-Resolution
(HR) image from the given Low-Resolution (LR) counterpart. In past decades,
it has been widely used in surveillance imaging, astronomy imaging, and medical
imaging. As SISR is an extremely ill-posed task, early learning-based methods [8,
15,37] make plain exploration, i.e. assume that the blur kernel in the degradation
is predefined/known (e.g. Bicubic kernel). For more powerful generalization [3,
27], the blind SR task [5,10,21,25,30,36], which handles LR images underlying
unknown blur kernels, draws increasing attention. Most of these methods focus
on accurate blur kernel estimation [3,18], fully kernel exploitation [25,33,36], or
combining both [10,12]. This work focuses on fully exploiting the blur kernel in
the blind SR task.

Given explicit raw blur kernels, the core of blind SR lies in how to properly
introduce and fully utilize the information in them. The existing methods adopt
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Fig. 1. Framework comparison on kernel exploitation super-resolution task, assuming
the blur kernel is estimated or handcrafted. (a) Existing dimensionality reduction based
framework; (b) Our deep Fourier kernel exploitation framework.

dimensionality reduction manners, ignoring the physical meaning of the blur
kernel. As shown in Fig. 1(a), they use a predefined principal component analysis
(PCA) to project the raw blur kernel into a discriminative domain vector k̂, then
k̂ is stretched and trivially concatenated [25,36] or modulated [10,12,30,33] with
the LR image. Such dimensionality reduction based methods suffer from two
major flaws. (1) The PCA matrix inevitably discards part of the blur kernel
information, and the predefined strategy severely limits generalization, since it
is helpless when dealing with unseen kernels [7,19]. (2) Simply relying on the
SR network to implicitly model the correlation between the blur kernel and the
image makes the blur kernel under-utilized, and also lacks interpretability.

To tackle these problems and fully exploit the blur kernel information, with-
out predefined dimensionality reduction, we revisit the degradation model, to
decouple the effects of the raw blur kernel and the downsampling. Specifically,
in the degradation model, we observe that the blur kernel and downsampling
are independent. Hence, we propose to decouple the blind SR task into upsam-
pling and deconvolution modules, via introducing a transitional SR image.
As shown in Fig. 1(b), the upsampling module is only fed with the LR image, to
produce the transitional SR image ISRBlur, which has the same size as the HR
image, but with coarse details. ISRBlur is the approximation of convolving the
HR image with the blur kernel k, thus it eliminates the effects of downsampling
in the LR image, and naturally avoids poor generalization caused by introduc-
ing the predefined PCA. Given the transitional SR image, the deconvolution
module aims to reverse the effects of k. To fully explore the kernel informa-
tion, we here model the explicit correlation between the raw blur kernel and the
image, instead of concatenating or modulation. We design a novel Kernel Fast
Fourier Convolution (KFFC) to achieve efficient filtering via Fourier transform,
considering that the convolving can be well reversed in the frequency domain
with good interpretability [9]. Specifically, the proposed KFFC explicitly filters
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the image features of ISRBlur through k in the frequency domain. We train the
whole framework end-to-end and conduct extensive experiments and compre-
hensive ablation studies in both non-blind and blind settings to evaluate the
state-of-the-art performance.

2 Related Work

2.1 Kernel Exploitation

Kernel exploitation in blind super-resolution (SR) aims to reconstruct super-
resolved (SR) images from given low-resolution(LR) images with known degra-
dation, which is also called the non-blind SR setting. Generally speaking, there
are two definitions of the non-blind SR setting in the literature.

The one is training an SR model for one single degradation blur kernel and
evaluating the model with the synthetic dataset based on the predefined kernel [2,
8,15,31,37]. For instance, Dong et al. [8] proposed the first learning-based CNN
model for image super-resolution. Kim et al. [15] and Zhang et al. [37] employed a
very deep CNN and attention mechanism, which improved the SISR performance
by a large margin. Although they show superiority compared with traditional
interpolation-based and model-based methods, all of them assume the LR images
are degraded from the HR images through bicubic downsampling, therefore, they
construct paired LR-HR training dataset through bicubic downsampling and
conduct experiments with the predefined bicubic kernel for evaluation. One can
see that degradation in a real-world scenario is complicated and unknown which
can not be described by a simple bicubic kernel, and the models trained with a
bicubic dataset will suffer from severe performance drop when the degradation
is different from the bicubic kernel.

The other is that reconstruct the SR image from both the LR image and the
corresponding blur kernel [10,25,33,36]. Following the acknowledged degradation
model 1, these types of kernel exploitation methods focus on fully utilizing blur
kernel for reconstructing SR images. Compared with former methods which are
trained with a paired bicubic dataset, these types of methods take blur kernels
into account and obtain better performance than the former methods when given
an estimated or handcrafted blur kernel. Nevertheless, these kernel exploita-
tion methods introduce the blur kernel through a dimension-stretching strategy,
which underutilizes the blur kernel and limits the generalization. Specifically,
they use a predefined principal component analysis (PCA) matrix to project the
raw blur kernel into a discriminative domain vector and model the correlation
between the blur kernel and the image through direct concatenation or modula-
tion. In this paper, we focus on modeling the explicit correlation of the raw blur
kernel and the image, which can remedy the kernel underutilization and limited
generalization problems.

2.2 Blind SR

To tackle the blind SR task, which reconstructs SR image from only LR image
with unknown degradation, a lot of works are proposed and achieve encouraging
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performance [3,7,10,12,14,18,28]. Most blind SR methods follow a two-step man-
ner. Firstly, estimating the blur kernel from the given LR image. Bell-Kligler et
al. [3] estimates the degradation kernel by utilizing an internal generative adver-
sarial network (GAN) on a single LR image. Tao et al. [28] estimate the blur kernel
in the frequency domain. Liang et al. [18] and Xiao et al. [32] try to estimate a spa-
tial variant blur kernel for real-world images.

Given the estimated blur kernel and the LR image, the core of blind SR lies
in utilizing blur kernels. As mentioned before, the kernel exploitation approaches
can solve the blind SR task by introducing the estimated blur kernel. There also
exist two types of methods that can combine the kernel estimating network. The
one is to synthesis paired training datasets based on the estimated blur kernels,
and then train a new non-blind SR model to enhance the performance on real
datasets [3,28]. However, one can see that these methods are time-consuming
for training a new model and indirectly use the estimated blur kernel.

The other is that introduce the estimated blur kernel to the kernel exploiting
SR network directly [10,25,33,36]. Furthermore, some approaches tried to solve
the two-step blind SR task in an end-to-end manner [7,10,12,30] and proposed
some new training strategies to enhance the performance. For example, Gu et
al. [10] proposed an iterative mechanism to refine the estimated blur kernel
based on the super-resolved image. Luo et al. [12] alternatively optimized the
blur kernel estimation and kernel exploitation. It is worth pointing out that the
proposed method focuses on fully exploiting the blur kernel for blind SR and
could be combined with most kernel estimation and training strategies.

2.3 Other SR Methods

Beyond these methods aforementioned, there are other related methods that do
not explicitly estimate blur kernels, such as degradation-modeling SR [20], They
try to introduce more types of degradation, like jpeg compression, and design
a sophisticated degradation model. Then they synthesize paired datasets for
training, the whole process is time-consuming and still tends to generate over-
smoothed results when meeting slight degradation [20]. Unpaired SR [13,21]
learns the degradation in real-world images based on the cycleGAN [38], which
usually suffer from unstable training and pixel misalignment problems. Zero-shot
SR [27] utilizes the similarity of patches across scales to reconstruct SR image
from single LR image input, which has in-born problems that it can not learn a
good prior of HR datasets.

3 Methodology

3.1 Blur Kernels in Blind Super-Resolution Task

Given the low-resolution image ILR and the corresponding blur kernel k, the
core of the blind SR task lies in fully exploiting the blur kernel information
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Fig. 2. Framework Overview. Given the LR image and the corresponding blur kernel,
we decouple the kernel exploitation task into upsampling and deconvolution modules
based on the degradation model. The Upsampling module reconstructs the SRBlur
image under the constraints of the HR image and the blur kernel. The Deconvolution
module is fed with the resultant image SRBlur and the blur kernel, and recovers the
super-resolved image through our Kernel Fast Fourier Convolution which can model
the explicit correlation between the blur kernel and the SRBlur image in the frequency
domain. The whole framework is trained end-to-end.

to reconstruct the super-resolved image ISR, compared with general SR tasks.
Firstly, the acknowledged degradation model can be formulated as:

ILR = (IHR ∗ k) ↓α +n, (1)

where ∗ is a convolution operation, ↓α is a downsampling operation with the
scale factor α, and n is the additive Gaussian noise. Following [10,12,25], we
assume noise can be reduced by [34]. And the degradation model can be divided
into: convolving (IHR ∗k) and independent downsampling ↓α. The former means
information blending of IHR via k, and the latter denotes irreversible information
lost, which is irrelevant with k. Thus, k only has a direct effect on the HR scale.

3.2 Deep Fourier Kernel Exploitation Framework

Motivation: Although existing dimension-stretching strategy based kernel
exploitation methods in blind SR show superiority, they still pose two main flaws.

Firstly, the used PCA matrix inevitably discards part of the blur kernel
information, and the predefined strategy severely limits generalization. To solve
this, without using predefined PCA, we introduce the raw blur kernel to the SR
network. The degradation model in Sect. 3.1 shows the independent downsam-
pling impedes applying the raw blur kernel to the LR image directly. We hence
decouple the effects of downsampling and the blur kernel, and reverse them by
the upsampling and deconvolution modules accordingly. The two modules are
bridged through a transitional SR image.
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Secondly, simply relying on the SR network to implicitly interact the blur ker-
nel and the image, under-utilizes the blur kernel, and also lacks interpretability.
To address these problems, in the deconvolution module, we model the explicit
correlation between the transitional SR images and raw blur kernels through the
proposed module Kernel Fast Fourier Convolution (KFFC), to filter the image
feature of the transitional image with the blur kernel in the frequency domain.

Therefore, as shown in Fig. 2, the raw blur kernel is explicitly introduced
to the SR network through the decoupling framework and the KFFC module.
Firstly, the LR image ILR is fed into the upsampling module and generates
transitional SR image ISRBlur. Then, the deconvolution module reconstructs SR
image ISR from ISRBlur and the raw blur kernel k through the proposed KFFC.

Upsampling Module is designed to generate the transitional HR-size image
ISRBlur, which is an approximation of convolving the HR image and the blur
kernel k. Compared to directly recovering the original SR image ISR from ILR,
the objective of the upsampling module is easier. Hence, for simplicity, we adopt
the trivial SISR network as the module architecture. Specifically, we use sev-
eral convolution layers to extract features from ILR; then forward features to
several cascaded basic blocks, which follows Residual in Residual Dense Block
(RRDB) [31], to enhance the non-linear ability; and finally, upsample features
via the PixelShuffle layer [26]. Note that, the architecture of upsampling module
is flexible to the existing SISR network.

To supervise the upsampling module U , we first calculate (IHR ∗ k) as the
ground-truth of ISRBlur; then use the L1 constraint to achieve reverse downsam-
pling:

LU = L1(IHR ∗ k, ISRBlur) = L1(IHR ∗ k, U(ILR)) (2)

Deconvolution Module aims to reverse (IHR ∗ k), i.e. generate the SR image
ISR, given the transitional image ISRBlur and blur kernel k. A trivial way is to
concatenate or modulate k into the SR network like existing methods, we exper-
imentally find that it only sharps images without reconstructing high-frequency
details, thus under-utilizes blur kernel information (see Sect. 4.4). To solve this
problem, we propose to model an explicit correlation between k and ISRBlur.
Since ISRBlur is the approximation of convolving IHR and k, we can regard decon-
volution as deblurring ISRBlur given k. Considering that, there exists a huge gap
between ISRBlur and ground-truth (IHR ∗k), directly restoring SR images by the
inverse filter is impracticable. We hence regard the gap as independent noise,
which is termed as ISRBlur = (IHR ∗ k) + n; then, treat the task of the deconvo-
lution module as deblurring images with noise.

Like inverse filters and Wiener filters, considering that convolution can be well
reversed in the frequency domain, which has good interpretability [9], we here
handle the deconvolution task via Fourier Transform. Inspired by Fast Fourier
Convolution (FFC) [6] which is designed to capture a large reception field in
shallow layers of the network for high-level tasks, we design a module called
Kernel Fast Fourier Convolution (KFFC), to filter the transitional image with
corresponding blur kernel k in the frequency domain.
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Concretely, as shown in Fig. 2, we first use some CNN layers to extract the
image feature of ISRBlur, denoted as {fi}N

i=1; and then transform both feature
maps {fi}N

i=1 and the blur kernel k into frequency domain through fast Fourier
transform F ; next adopt two individual compilations of 1 × 1 convolution and
Leaky ReLU TF , TK to achieve non-linearly transformation. Based on the prop-
erty of Fourier Transform, we can conduct filtering through complex multipli-
cation in the frequency domain. Sequentially, we empirically use an extra 1 × 1
convolution to refine the filtered feature. Eventually, the filtered feature maps
are converted back to the spatial domain through Inverse Fourier Transform
F−1. The whole procedure of KFFC can be formulated as follows:

KFFC(fi, k) = F−1[(�(Fi) � �(Ki) − �(Fi) � �(Ki))
+ i(�(Fi) � �(Ki) + �(Fi) � �(Ki)]

(3)

where Fi = TF (F(fi)), Ki = TK(F(k)), � denotes the Hadamard product. �
and � denotes the real and the imaginary part respectively. Note that we adopt
real Fourier Transform to simplify computation because applying Fourier Trans-
form on real signal is perfectly conjugate symmetric. To enhance performance,
we also cascade multiple KFFC structures, then use two convolution layers to
output the SR image ISR.

To supervise the deconvolution module D, we leverage the L1 constraint,
which can be formulated as:

LD = L1(IHR, ISR) = L1(IHR, D(ISRBlur, k)) (4)

The whole framework is end-to-end trained with a total loss of LD + λLU,
and λ is a weight term which is set as 1 in our experiments.

4 Experiments

4.1 Datasets and Implementations

The training data is synthesized based on Eq. 1. 3450 2K HR images are col-
lected from DIV2K [1] and Flickr2K [29] for training. We use isotropic blur ker-
nels following [10,12,33,36]. The kernel width is uniformly sampled in [0.2, 2.0],
[0.2, 3.0] and [0.2, 4.0] for scale factors 2, 3, 4, respectively. The kernel size is
fixed to 21× 21. We also augment data by randomly horizontal flipping, vertical
flipping, and 90◦ rotating.

Implementation Details: For all experiments, we use 6 RRDB blocks [31]
in the upsampling module and 7 KFFCs in the deconvolution module with 64
channels. During training, we crop and degrade HR images to 64×64 LR patches
for all scale factors. For optimization, we use Adam [16] with β1 = 0.9, β2 =
0.999, and a mini-batch size of 32. The learning rate is initialized to 4 × 10−4

and decayed by half at 1 × 105 iterations. We evaluate on five benchmarks:
Set5 [4], Set14 [35], BSDS100 [22], Urban100 [11] and Manga109 [23]. All models
are trained on RGB space, PSNR and SSIM are evaluated on Y channel of
transformed YCrCb space.
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Table 1. Quantitative performance comparison of the proposed method with other
SOTAs on non-blind SR setting. The comparison is conducted using three different
isotropic Gaussian blur kernels on Set5, Set14, and BSD100 datasets. We provide the
ground-truth kernel(GTker) for all the listed methods in this table, as the original
setting in SRCNN-CAB [25], SRMDNF [36] and UDVD [33]. As for SFTMD [10] and
ZSSR [27], we also compare them by giving the GTker although they can solve the
blind SR task through a kernel estimation network or bicubic downsampling. The best
two results are highlighted in red and blue colors.

Method Kernel Width
Set5 [4] Set14 [35] BSD100 [22]

x2 x3 x4 x2 x3 x4 x2 x3 x4

GTKer+ZSSR [27]

0.2

34.94 29.29 28.87 31.04 28.05 27.15 31.42 28.24 26.68

SRCNN-CAB [25] 33.27 31.03 29.31 30.29 28.29 26.91 28.98 27.65 25.51

SRMDNF [36] 37.79 34.13 31.96 33.33 30.04 28.35 32.05 28.97 27.49

SFTMD [10] 38.00 34.57 32.39 33.68 30.47 28.77 32.09 29.09 27.58

UDVD [33] 38.01 34.49 32.31 33.64 30.44 28.78 32.19 29.18 27.70

Ours 38.17 34.63 32.45 33.82 30.52 28.85 32.33 29.23 27.74

GTKer+ZSSR [27]

1.3

33.37 28.67 27.44 31.31 27.34 26.15 30.31 27.30 25.95

SRCNN-CAB [25] 33.42 31.14 29.50 30.51 28.34 27.02 29.02 27.91 25.66

SRMDNF [36] 37.44 34.17 32.00 33.20 30.08 28.42 31.98 29.03 27.53

SFTMD [10] 37.46 34.53 32.41 33.39 30.55 28.82 32.06 29.15 27.64

UDVD [33] 37.36 34.52 32.37 33.39 30.50 28.85 32.00 29.23 27.75

Ours 37.77 34.71 32.56 33.70 30.58 28.93 33.20 29.32 27.81

GTKer+ZSSR [27]

2.6

29.89 27.80 27.69 27.72 26.42 26.06 27.32 26.47 25.92

SRCNN-CAB [25] 32.21 30.82 28.81 29.74 27.83 26.15 28.35 26.63 25.13

SRMDNF [36] 34.12 33.02 31.77 30.25 29.33 28.26 29.23 28.35 27.43

SFTMD [10] 34.27 33.22 32.05 30.38 29.63 28.55 29.35 28.41 27.47

UDVD [33] 33.74 33.15 31.99 30.08 29.58 28.55 28.93 28.49 27.55

Ours 33.67 33.31 32.18 29.92 29.64 28.68 28.81 28.48 27.64

4.2 Experiments on Non-Blind Setting

We first evaluate the performance of the proposed method on the non-blind
SR setting, which reconstructs the super-resolved image under the given low-
resolution image and a corresponding known blur kernel. Following [10,33,36],
we only consider isotropic Gaussian blur for simplicity, the kernel widths are set
to 0.2, 1.3, 2.6, and the kernel sizes are 21×21 for all scale factors. Table 1 makes
a comparison with SOTA methods under different kernel settings. We provide
ground-truth kernels for all the listed methods in Table 1, as the original setting
in SRCNN-CAB [8], SRMDNF [36], and UDVD [33]. As for SFTMD [10] and
ZSSR [27], we also compare them by giving the ground-truth kernel, although
they solve the blind SR task through a kernel estimation network [10] or bicubic
downsampling [27].

The results in Table 1 show that our method performs best on most bench-
marks, regardless of the degradation degree and scale factors. We surpass all
competitors in most experimental settings and have a large gain of 0.31 dB for
Set14 with kernel width 1.3. Interestingly, as the scale factor increases, the gain
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Fig. 3. Visual results of img046, img049 from Urban100, for different methods in non-
blind setting. The SR factor is 2 and kernel width is 1.3.

of the proposed method gradually declines. We conjecture this is because the
increasing scale factor reduces the effectiveness of blur kernels. In other words,
the information loss in the downsampling process impedes the reconstruction.
Figure 3 also shows visual comparisons. Our method yields better results on the
recurring and regular textures such as the fine stripes, and reconstructs high
quality fine details with fewer artifacts. All the above results reveal the superi-
ority of our method quantitatively and qualitatively.

4.3 Experiments on Blind Setting

We also conduct blind SR settings to evaluate the effectiveness of the proposed
method, which reconstruct super-resolved image under unknown degradation.
Since determined blur kernels are needed for reasonable comparison, following
in [10,12,14], we uniformly sample 8 kernels from range [1.8, 3.2], [1.35, 2.40] and
[0.8, 1.6] for scale factor ×4, ×3, and ×2 respectively, which is also referred to
Gaussian8. We compare our method with other SOTAs blind SR approaches
including ZSSR [27](with bicubic kernel), IKC [10], DAN [12], AdaTarget [14].
Following [10,12], we also conduct comparisons with CARN [2] and its variants
of performing the deblurring method before and after CARN. For all compared
methods, we use their official implementation and pre-trained model except spe-
cial remarks. It is worth pointing out that owing to our proposed method assum-
ing the blur kernel is known, we conduct a comparison in a blind SR setting
through integrating our method into IKC [10] and DAN [12]. Specifically, we
replace the kernel exploitation part in the original methods with our proposed
method and preserve the original training strategy such as iterative refining.
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Table 2. Quantitative comparison of the proposed method with other SOTAs on var-
ious datasets in blind SR setting. The comparison is conducted using Gaussian8 ker-
nels on five benchmark datasets. We integrate our proposed method into IKC [10] and
DAN [12], which means replacing the kernel exploitation part of the original network
and preserving their training strategy. The best two results are highlighted in red and
blue colors respectively.

Method Scale
Set5 [4] Set14 [35] BSD100 [22] Urban100 [11] Manga109 [23]

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Bicubic

x2

28.82 0.8577 26.02 0.7634 25.92 0.7310 23.14 0.7258 25.60 0.8498

CARN [2] 30.99 0.8779 28.10 0.7879 26.78 0.7286 25.27 0.7630 26.86 0.8606

Bicubic+ZSSR [27] 31.08 0.8786 28.35 0.7933 27.92 0.7632 25.25 0.7618 28.05 0.8769

[24]+CARN [2] 24.20 0.7496 21.12 0.6170 22.69 0.6471 18.89 0.5895 21.54 0.7946

CARN [2]+ [24] 31.27 0.8974 29.03 0.8267 28.72 0.8033 25.62 0.7981 29.58 0.9134

IKC [10] 37.19 0.9526 32.94 0.9024 31.51 0.8790 29.85 0.8928 36.93 0.9667

DAN [12] 37.34 0.9526 33.08 0.9041 31.76 0.8858 30.60 0.9060 37.23 0.9710

DASR [30] 37.00 0.9508 32.61 0.8958 31.59 0.8813 30.26 0.9015 36.20 0.9686

IKC [10] + Ours 37.60 0.9562 33.31 0.9105 31.84 0.8880 30.66 0.9090 38.07 0.9718

DAN [12] + Ours 37.55 0.9547 33.26 0.9074 31.96 0.8897 31.20 0.9144 37.83 0.9726

Bicubic

x3

26.21 0.7766 24.01 0.6662 24.25 0.6356 21.39 0.6203 22.98 0.7576

CARN [2] 27.26 0.7855 25.06 0.6676 25.85 0.6566 22.67 0.6323 23.85 0.7620

Bicubic+ZSSR [27] 28.25 0.7989 26.15 0.6942 26.06 0.6633 23.26 0.6534 25.19 0.7914

[24]+CARN [2] 19.05 0.5226 17.61 0.4558 20.51 0.5331 16.72 0.5895 18.38 0.6118

CARN [2]+ [24] 30.31 0.8562 27.57 0.7531 27.14 0.7152 24.45 0.7241 27.67 0.8592

IKC [10] 33.06 0.9146 29.38 0.8233 28.53 0.7899 24.43 0.8302 32.43 0.9316

DAN [12] 34.04 0.9199 30.09 0.8287 28.94 0.7919 27.65 0.8352 33.16 0.9382

DASR [30] 33.53 0.9150 29.64 0.8143 28.64 0.7825 27.26 0.8269 32.05 0.9290

IKC [10] + Ours 33.51 0.9170 30.11 0.8313 28.84 0.7931 27.53 0.8344 32.90 0.9369

DAN [12] + Ours 34.11 0.9205 30.15 0.8303 28.98 0.7925 27.78 0.8380 33.20 0.9389

Bicubic

x4

24.57 0.7108 22.79 0.6032 23.29 0.5786 20.35 0.5532 21.50 0.6933

CARN [2] 26.57 0.7420 24.62 0.6226 24.79 0.5963 22.17 0.5865 21.85 0.6834

Bicubic+ZSSR [27] 26.45 0.7279 24.78 0.6268 24.97 0.5989 22.11 0.5805 23.53 0.7240

[24]+CARN [2] 18.10 0.4843 16.59 0.3994 18.46 0.4481 15.47 0.3872 16.78 0.5371

CARN [2]+ [24] 28.69 0.8092 26.40 0.6926 26.10 0.6528 23.46 0.6597 25.84 0.8035

IKC [10] 31.67 0.8829 28.31 0.7643 27.37 0.7192 25.33 0.7504 28.91 0.8782

DAN [12] 31.89 0.8864 28.42 0.7687 27.51 0.7248 25.86 0.7721 30.50 0.9037

AdaTarget [14] 31.58 0.8814 28.14 0.7626 27.43 0.7216 25.72 0.7683 29.97 0.8955

DASR [30] 31.55 0.8822 28.13 0.7597 27.36 0.7186 25.35 0.7538 29.80 0.8929

IKC [10] + Ours 31.96 0.8858 28.35 0.7661 27.39 0.7210 25.68 0.7634 30.29 0.8994

DAN [12] + Ours 31.98 0.8877 28.42 0.7676 27.54 0.7249 25.90 0.7729 30.41 0.9016

Table 2 shows the PSNR and SSIM results on five widely-used benchmark
datasets. As one can see, the traditional interpolation-based method and non-
blind SR methods suffer severe performance drop when the degradation is
unknown or different from the predefined bicubic kernel. Although ZSSR also
assumes the bicubic kernel, it achieves better performance than CARN because
ZSSR trains a specific network for each single test image by utilizing the inter-
nal patch recurrence. However, ZSSR has in-born flaws: it can not learn a good
prior of HR datasets because the train samplings are sampled from one single LR
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Fig. 4. Visual results of img012, img083 from Urban100, for different methods in blind
setting. The σ of blur kernel is 1.25.

image. By taking the degradation kernel into account, the performance of CARN
is largely improved when combined with a deblurring method. IKC and DAN
are both two-step blind SR methods and can largely improve the results. IKC
refined the estimated kernel through an iterative manner based on the last esti-
mated kernel and super-resolved image. Furthermore, DAN optimizes the blur
kernel estimation and super-resolution alternatively, which obtains better perfor-
mance than IKC. Nevertheless, both of them adopt a kernel-stretching strategy
for introducing the estimated blur kernel to the reconstruction network, which
under-utilizes the blur kernel and limits generalization. Therefore, we integrate
our proposed method into IKC and DAN to remedy the kernel underutilizing
problem. As one can see, when combined with our proposed model, both the
performance of IKC and DAN improve by a large margin. Our method leads to
the best performance over most datasets, which proves that our methods achieve
better kernel utilization. The qualitative results are shown in Fig. 4, which illus-
trates that our method can reconstruct sharp and clear repetitive texture or
edges with fewer artifacts.

4.4 Ablation Study

We conduct ablation studies on vital components of the proposed method: the
decoupling framework and the proposed KFFC module. The quantitative results
are listed in Table 3. Following [10,36], we first project the raw blur kernel
k of size p × p to a t-dimensional kernel vector k̂ through a predefined PCA
matrix. Note that p is 21 and t is set to 15 by default. And then we intro-
duce k̂ to the reconstruction network and interact the blur kernel and the LR
image by directly concatenating or modulating, which is denoted as Base Cat
and Base Mod respectively. We adopt our proposed decoupling architecture but
still concatenate or modulate corresponding k̂ in the deconvolution module for
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Table 3. Ablation study results of network architectures. Results are reported in non-
blind setting and the test dataset is Urban100. With both the decouple architecture
and KFFC module, our method performs best.

Method Decouple Cat Mod KFFC PSNR↑ SSIM↑
Base Cat � 30.84 0.9111

Base Mod � 31.61 0.9189

Dec Cat � � 31.64 0.9193

Dec Mod � � 31.68 0.9196

Oursw/o � � 29.98 0.9136

Ours � � 31.96 0.9233

Fig. 5. Ablation visualization on Urban100. Our complete method reconstructs more
clear and correct texture.

introducing the blur kernel, and term these methods as Dec Cat and Dec Mod
respectively in Table 3. As one can see, compared to introducing the blur kernel
in the LR scale, the decoupling architecture improves the performance quantita-
tively, which is consistent with our analysis that the blur kernel should only have
an impact on the high-resolution scale based on the degradation model Sect. 3.1.
Furthermore, one can see modeling the explicit correlation between the raw blur
kernel and images in the frequency domain based on the proposed KFFC module
gains significant improvements by about 0.35db by a large margin quantitatively,
which demonstrates that the proposed KFFC utilizes the blur kernel more effec-
tively. Moreover, we also evaluate our method without the blur kernel (denoted
as Ours w/o). Its inferior is strong evidence that gains come from both the pro-
posed method and the utilization of blur kernels. Qualitative results are shown
in Fig. 5, our proposed method reconstructs more clear and correct texture when
enabling all the vital components.

4.5 Generalization Evaluation

As mentioned in Sect. 3.2, the predefined PCA matrix will limit the gener-
alization. Specifically, the previous dimension-stretching-strategy based kernel
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Fig. 6. In-distribution (left) and out-of-distribution (right) degradation results. Our
method performs robustly under both settings.

Fig. 7. Visualization on unseen blur kernel. The quantitative results of the whole bench-
mark DIV2KRK [3] are listed below directly. Our method generates visual pleasant
result with less artifacts.

Fig. 8. SISR performance comparison of different methods with SR factor 2 on a real
historical image [17].

exploitation methods [10,12,25,33,36] project the raw blur kernel into a ker-
nel vector through a predefined PCA matrix. When the predefined PCA matrix
meets unknown raw blur kernels, it will generate a wrong kernel vector, which
means the whole SR network needs to be retrained again. Therefore, we conduct
two experiments to evaluate the generalization of the proposed method: i.e.,
out-of-distribution degradation, and unseen blur kernels. At last, we conduct an
experiment on a real degradation dataset where the ground-truth HR image and
the blur kernel are not available.
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Out-of-Distribution Degradation: During training, we shrink the kernel
widths of seen blur kernels from range [0, 2, 2], and then evaluate the model
on two parameter ranges of blur kernel widths. The in-distribution kernel width
ranges from 0.6 to 1.6, while the out-of-distribution kernel width ranges from
2.6 to 3.6. Figure 6 shows quantitative results. The decoupling architecture limits
the effect of the blur kernel on the HR scale, it alleviates the influence of the
wrong kernel vector. As one can see, for both in and out distribution settings,
our method performs better than other methods because we utilize the raw blur
kernel and explicitly interact with raw blur kernels and images in the frequency
domain.

Unseen Blur Kernels: We investigate the proposed method on DIV2KRK [3].
It sets the blur kernel to an anisotropic Gaussian kernel, randomly samples the
kernel width from [0.6, 5], and adopts uniform multiplicative noise. As shown
in Fig. 7, all the performance suffers from severe performance drop because blur
kernels in DIV2KRK are different from the isotropic Gaussian kernel in training
settings. Nonetheless, our method still achieves better performance than existing
methods both quantitatively and qualitatively. Here, quantitative results of the
total dataset are recorded under the image directly.

Performance on Real Degradation: To further demonstrate the effective-
ness of the proposed method. We conduct an experiment on a real degradation
dataset where the ground-truth image and the blur kernel are not available.
The qualitative comparison is shown in Fig. 8. Compared with other blind SR
methods, our proposed method enhance the performance of IKC and DAN, and
recover clear and sharp texture.

5 Conclusion

In this paper, we demonstrate the flaws in existing blind SR methods. Cur-
rent blind SR methods adopt a two-step framework including kernel estimation
and kernel exploitation. However, they adopt a dimension-stretching strategy for
kernel exploitation when the blur kernel is estimated. Specifically, the estimated
raw blur kernel will be projected into a kernel vector through a predefined PCA
matrix, and they interact the blur kernel with LR images by direct concatenation
or modulation, which underutilizes the raw blur kernel and limit the generaliza-
tion. To tackle these problems, we decouple the kernel exploitation task into
the upsampling and deconvolution modules. To fully explore the blur kernel
information, we also design a feature-based kernel fast Fourier convolution, for
filtering image features in the frequency domain. Comprehensive experiments
and ablation studies in both non-blind and blind settings are conducted to show
our gratifying performance.
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