
Chapter 4
A Simple Isotropic Correlation Family
in R

3 with Long-Range Dependence
and Flexible Smoothness

Victor De Oliveira

Abstract Most geostatistical applications use covariance functions that display
short-range dependence, in part due to the wide variety and availability of these
models in statistical packages, and in part due to spatial interpolation being the main
goal of many analyses. But when the goal is spatial extrapolation or prediction based
on sparsely located data, covariance functions that display long-range dependence
may be more adequate. This paper constructs a new family of isotropic correlation
functions whose members display long-range dependence and can also model dif-
ferent degrees of smoothness. This family is compared to a sub-family of the Matérn
family commonly used in geostatistics, and two other recently proposed families of
covariance functions with long-range dependence are discussed.

Keywords Fractal dimension · Geostatistics · Hurst coefficient · Mean square
differentiability · Radial distribution

4.1 Introduction

Random fields are ubiquitous for the modeling of spatial data in most natural and
earth sciences. When the main goal of the analysis is spatial prediction, an adequate
specification of the correlation function of the random field is of utmost importance.
In this paper, attention is restricted to correlation functions in Rd with the properties
of being isotropic, i.e., functions of the Euclidean distance which separates two
locations that decrease monotonically to zero as distance increases without bound.
These features are common inmany spatial phenomena.A largenumber of parametric
families of correlation functions with these properties have been proposed in the
literature and used in applications; see, for instance, [2, 3]. Most of these families
display short-term dependence, meaning that the correlation function decays to zero
fast, usually exponentially fast, so spatial association between far-away observations
is negligible. The Matérn family is a commonly used example. On the other hand,
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some spatial phenomena display long-term dependence, meaning that the correlation
function decays to zero slowly, usually hyperbolically fast, so the spatial association
between far-away observations is not negligible. An early example of this behavior
was provided by [4] using data from agricultural uniformity trials, who empirically
found that, for large distances r , the correlation function decays approximately as r−1

(a so-called power law). Similar behavior is commonly found in spatial geophysics
and hydrology data; see [8] and the references therein. Fewer models have been
proposed in the literature for phenomena that display this behavior.

Time series models displaying long-range dependence were discussed in [5] (dis-
crete time) and [12] (continuous time). Spatial data models displaying long-range
dependence were discussed in [10, 17] for the case when the index set is Zd (usually
d = 2). Some families of correlation functions for random fields in R

d that display
long-range dependence were constructed by [21], and more recently [8, 13] devel-
oped new families in this class. In this paper, we construct what appears to be a new
family using a correspondence between continuous isotropic correlation functions
in R3 and probability density functions (pdfs) in R with support [0,∞). In addition
to displaying long-range dependence, the new family of correlation functions allows
different degrees of smoothness, which is important for efficient spatial interpola-
tion under infill asymptotics [20]. After describing its main properties, this family
of correlation functions is contrasted with a sub-family of the Matérn family which
also provides flexibility regarding smoothness, but displays short-range dependence.
This paper ends with a discussion of two other families of correlations functions that
also display long-range dependence.

4.1.1 A Spectral Representation

Let K : [0,∞) → R be the correlation function of a mean square continuous and
isotropic random field {Z(s) : s ∈ D}, with D ⊂ R

d and d ≥ 1, and let �d denote
the class of all such functions. A characterization of �d is given in a classical result
by [18], who showed that any K ∈ �d can be written as

K (r) =
∫ ∞

0
�d(r x)dF(x), r ≥ 0,

where

�d(t) =
(2
t

) d
2 −1

�
(d
2

)
Jd

2 −1(t), t > 0,

�(·) is the gamma function, Jν(·) is the Bessel function of the first kind and order
ν, and F(·) is a cumulative distribution function on R with support [0,∞). Such a
function K (·) is also a radial positive definite function onRd , and can also be viewed
as the Hankel transform of F of order d

2 − 1. Any K ∈ �d is continuous on [0,∞),
and [(d − 1)/2]-times continuously differentiable on (0,∞), where [a] denotes the
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integer part of a, and limr→∞ K (r) = F(0) − F(0−); see [6, 15, 20, 22] for further
properties of such functions.

For all d ≥ 1, �d(t) is itself a continuous isotropic correlation function in Rd (so
�d(0) = 1), which can be written in terms of elementary functions when d is an odd
integer. For instance, for d = 1, 2, 3 it holds that

�1(t) = cos(t), �2(t) = J0(t), �3(t) = sin(t)

t
,

and�∞(t) := limd→∞ �d(t) = e−t2 . In particular, any isotropic correlation function
in R3 admits the representation

K (r) =
∫ ∞

0

sin(r x)

r x
dF(x), r ≥ 0,

and any such function is also an isotropic correlation function in R
2 and R

1, since
the classes of functions�d are decreasing in d. If F(·) is absolutely continuous, with
pdf f (·) say, then

K (r) =
∫ ∞

0

sin(r x)

r x
f (x)dx, r ≥ 0; (4.1)

the functions F and f are also called, respectively, the radial distribution and radial
pdf functions of the random field Z(·) [15]. Therefore, (4.1) establishes a bijection
between the class of continuous isotropic correlation functions inR3 and the class of
pdfs in R (w.r.t. Lebesgue measure) having support [0,∞). Consequently, choosing
a continuous isotropic correlation function K (·) amounts to choosing a pdf f (·)with
support in [0,∞).

4.2 A New Correlation Family

In this section, we use (4.1) with a particular family of radial pdfs to construct what
appears to be a new family of correlation functions in R

3 whose members display
long-range dependence and various degrees of smoothness. For σ > 0 and m ∈ N0,
let fσ,m(x) be the pdf of the t2m+1(0, σ 2) distribution1 truncated to [0,∞), i.e.,

1 The symbol tν(μ, σ 2) denotes the t distribution with ν degrees of freedom, location parameter μ

and scale parameter σ .
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fσ,m(x) = 2�(m + 1)

σ
√

π(2m + 1)�( 2m+1
2 )

(
1 + 1

2m + 1

( x

σ

)2
)−(m+1)

1(0,∞)(x)

= 2�(m + 1)

σ
√

π(2m + 1)�( 2m+1
2 )

(
(2m + 1)σ 2

)m+1(
(2m + 1)σ 2 + x2

)−(m+1)
,

when x > 0. Then from (4.1), the correlation function in R3 that corresponds to this
radial pdf is

Kσ,m(r) = 2�(m + 1)
(
(2m + 1)σ 2

)m+1

σ
√

π(2m + 1)�( 2m+1
2 )r

∫ ∞

0

sin(r x)

x
(
(2m + 1)σ 2 + x2

)m+1 dx

= 2�(m + 1)
(
(2m + 1)σ 2

)m+1

σ
√

π(2m + 1)�( 2m+1
2 )r

× π

2
(
(2m + 1)σ 2

)m+1

(
1 − e−σ

√
2m+1r

2mm! Pm
(
σ
√
2m + 1r

))

=
√

π�(m + 1)

σ
√

(2m + 1)�( 2m+1
2 )r

(
1 − e−σ

√
2m+1r

2mm! Pm
(
σ
√
2m + 1r

))
, (4.2)

where the second equality follows from [9, 3.737.3], and Pm(·) is the polynomial of
degree m obtained by the recursion

Pm(x) = (x + 2m)Pm−1(x) − x P ′
m−1(x), m ≥ 1, with P0(x) = 1.

For instance, for m = 1, 2, 3 we have

P1(x) = x + 2, P2(x) = x2 + 5x + 8, P3(x) = x3 + 9x2 + 33x + 48.

Reparametrizing (4.2) with θ := (σ
√
2m + 1)−1, we obtain the following two-

parameter family of continuous isotropic correlation functions in R3

D =
{
Kθ,m(r) := cm

θ

r

(
1 − e− r

θ

2mm! Pm
( r
θ

))
: θ > 0,m ∈ N0

}
, (4.3)

with2

cm =
√

π�(m + 1)

�( 2m+1
2 )

.

For instance, for r ≥ 0 and m = 0, 1, 2 we have

2 The fact Kθ,m(0) = 1 follows by continuity.
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Fig. 4.1 Plots of Kθ,m(r)
for m = 1 and three values
of θ
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4.3 Properties

In this section, we describe some of the properties of the new family of correlation
functions. First, any of the correlation functions in (4.3) displays long-range depen-
dence, as it decays slowly with increasing distance r . Specifically, for any θ > 0 and
m ∈ N0 it holds that Kθ,m(r) → 0 and Kθ,m(r) = O(1/r) as r → ∞, so

∫ ∞

0
rd−1Kθ,m(r)dr diverges (d = 1, 2, 3). (4.4)

For isotropic correlation functions, the above property defines long-range depen-
dence. Second, the interpretation of the parameters is the following. The parameter
θ is a range parameter that controls how fast the correlation function decays with
distance r . This is illustrated in Fig. 4.1 where plots Kθ,m(r) are displayed form = 1
and three values of θ . On the other hand, m is a smoothness parameter that controls
the mean square differentiability of the random field Z(·), as stated by the following
result.
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Fig. 4.2 Plots of the even extension of Kθ,m(r) (left) and corresponding realizations of zero-mean
Gaussian random fields with these correlation functions (right). In all θ = 0.25 and m = 0 (top), 1
(middle) and 2 (bottom)

Proposition 4.1 Let {Z(s) : s ∈ D}, with D ⊂ R
d and d ≤ 3, be an isotropic mean

square continuous random field with correlation function Kθ,m(r) from the family
(4.3). Then Z(·) is m-times mean square differentiable.

Proof For any k ∈ N0, an isotropic random field Z(·) is k-times mean square dif-
ferentiable if and only if its correlation function is 2k-times differentiable at zero3

[20]. In addition, for any radial positive definite function in R
d , K (r) say, K (2k)(0)

exists if and only if the radial pdf f in the representation (4.1) has a finite moment of
order 2k [6, Lemma 3]. Since the radial distribution associated with Kθ,m(r) is the
t2m+1(0, σ 2) distribution truncated to [0,∞) and this has finite moments up to order
2m, the above results imply that a random field with correlation function Kθ,m(r) is
exactly m-times mean square differentiable. �

To illustrate the above result, Fig. 4.2 plots the even extension of Kθ,m(r) (left)
and corresponding realizations of zero-mean Gaussian random fields in the real line
with these correlation functions (right), where θ = 0.25 andm = 0 (top), 1 (middle),

3 Differentiability of K (·) at zero refers to differentiability of its even extension over the real line,
defined as Ke(r) := K (|r |), r ∈ R. Also, the phrase ‘Z(·) is 0-times mean square differentiable’ is
used if Z(·) is mean square continuous.
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and 2 (bottom). The plots show the smoothness of Kθ,m(r) at the origin increasing
withm, and its corresponding effect on the smoothness of the realizations. The three
realizations were obtained from the same seed. Together, Figs. 4.1 and 4.2 suggest
that D is a flexible family of correlation functions capable of describing different
degrees of spatial association and smoothness in random fields that display long-
range dependence.

4.4 Comparison With a Matérn Sub-family

The Matérn family of correlation functions [15, 20] is a two-parameter family of
correlation functions in R

d for all d ≥ 1 that is commonly used in geostatistical
applications. It is given by

Mθ,ν(r) = 1

2ν−1�(ν)

( r
θ

)ν

Kν

( r
θ

)
, (4.5)

where θ, ν > 0 andKν(.) is the modified Bessel function of second kind and order ν;
see [9, 8.40] for details on the behavior of this special function. This family contains
the exponential correlation function e−r/θ (obtained when ν = 0.5), and the squared
exponential correlation function e−(r/ϑ)2 is a limit case (obtained when θ = ϑ/2

√
ν

and ν → ∞). We consider here the following sub-family:

M = {Mθ,m+0.5(r) : θ > 0,m ∈ N0}. (4.6)

Like the familyD in (4.3), θ is a range parameter that controls how fast the correlation
function decreases with distance r , and m is a smoothness parameter that controls
the mean square differentiability of the random field Z(·). It was shown by [20]
that a random field Z(·) with correlation function Mθ,m+0.5(r) is exactly m-times
mean square differentiable. Additionally, Mθ,m+0.5(r) can be written as e−r/θ times
a polynomial in r of degree m [9, 8.468]. For instance, for r ≥ 0 and m = 0, 1, 2 we
have

Mθ,0.5(r) = e− r
θ ,

Mθ,1.5(r) = e− r
θ

( r
θ

+ 1
)
,

Mθ,2.5(r) = e− r
θ

(1
3

( r
θ

)2 + r

θ
+ 1

)
.

But unlike the familyD, the correlation functions in (4.6) display short-range depen-
dence, since for any θ > 0 and m ∈ N0

Mθ,m+0.5(r) ∼ arm− 1
2 e− r

θ , as r → ∞,
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Fig. 4.3 Plots of K0.25,1(r) and M1.285,1.5(r) (left) and corresponding realizations of zero-mean
Gaussian random fields with these correlation functions (right)

for some a > 0 [1, 9.7.2]. So Mθ,m+0.5(r) decreases to zero exponentially fast as
r → ∞, and consequently

∫ ∞
0 rd−1Mθ,m(r)dr converges. To illustrate the different

behaviors of correlation functions in the families D and M with the same smooth-
ness and similar rates of decay, Fig. 4.3 plots K0.25,1(r) and M1.285,1.5(r) (left) and
corresponding realizations of zero-mean Gaussian random fields in the real line with
these correlations functions (right); the two realizations were obtained from the same
seed. Both correlation functions correspond to random fields that are 1-time mean
square differentiable, and their range parameters are such that their correlations at
distance r = 5 is 0.1. Note thatM1.285,1.5(r) has larger correlations than K0.25,1(r) for
small distances, but the opposite holds for large distances. As a result, the realization
of the random field with correlation function K0.25,1(r) displays more ‘oscillatory’
behavior for small distances, but process values for large distances are more ‘alike’
than process values of the realization of the random field with correlation function
M1.285,1.5(r). Therefore, the families of correlationsD andM appear equally flexible
in terms of describing different degrees of spatial association and smoothness, but
are complementary in terms of the range of dependence, as one displays long-range
dependence while the other short-range dependence.
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4.5 Other Correlation Families With Long-Range
Dependence

4.5.1 The Generalized Cauchy Family

The generalized Cauchy family [8, 11] is a three-parameter family of isotropic cor-
relation functions in Rd , for all d ≥ 1, given by

Cα,β,θ (r) =
(
1 +

( r
θ

)α)−β/α

,

whereα ∈ (0, 2],β > 0 and θ > 0.As in the previous families, θ is a rangeparameter.
The main virtue of this family is that it allows for independent choices of fractal
dimension andHurst coefficient, where the former is a measure of the ‘roughness’ of
realizations of random fields with this correlation function, and the latter is a measure
of ‘persistence’ or long-range dependence [7]. Specifically, realizations of a random
field in Rd with correlation function Cα,β,θ (r) have fractal dimension [11]

D = d + 1 − α/2 ∈ [d, d + 1),

with D = d (D > d) when the random field is (is not) mean square differentiable;
the larger D is, the rougher the realizations. So this property is entirely controlled
by the parameter α.

Additionally, Cα,β,θ (r) ∼ r−β as r → ∞, so it satisfies (4.4) when β ∈ (0, d],
and the random field has long-range dependence with Hurst coefficient [11, 16]

H = d + β

2
∈ (d/2, d];

the closer H is to d/2, the stronger the persistence. So this property is entirely
controlled by the parameterβ ∈ (0, d]. The randomfield has short-range dependence
when β > d. Hence, D and H can vary independently of each other, and they can
take any value in their respective ranges of possible values [8]. This property is
in sharp contrast with that of self-affine processes often used to model long-range
dependence [14] where the fractal dimension and Hurst coefficient are tied by the
relation D + H = d + 1.

The generalized Cauchy family allows a wide range of ‘roughness’ and ‘persis-
tence’ behaviors controlled by the parameters α and β, respectively. On the other
hand, this family does not allow a wide range of smoothness behaviors, since a ran-
dom field with correlation function Cα,β,θ (r) is non-differentiable in mean square
when α ∈ (0, 2) and infinitely differentiable when α = 2, with no possible interme-
diate behaviors [19].
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4.5.2 The Confluent Hypergeometric Family

Recently, [13] derived a new family of isotropic correlation functions in R
d , for

all d ≥ 1, that display long-range dependence. The construction involves mixing
the Matérn correlation functions (in a parametrization different than (4.5)) over the
(new) squared range parameter, with the IG(α, β2/2) distribution as the mixing
distribution4. Specifically, their correlation function is given by

Hα,β,ν(r) =
∫ ∞

0
Mφ/

√
2ν,ν(r)

β2α

2α�(α)
φ−2(α+1)e

− β2

2φ2 dφ2

= β2α�(ν + α)

�(ν)�(α)

∫ ∞

0
xν−1(x + β2)−(ν+α)e− νr2

x dx

= �(ν + α)

�(ν)
U

(
α, 1 − ν, ν

( r

β

)2)
,

where α, β, ν > 0 and U (a, b, c) is the confluent hypergeometric function of the
second kind ([1, 13.2]), so this family was named the Confluent Hypergeometric
family; see [13] for details.

It was shown by [13] that the Confluent Hypergeometric and Matérn covariance
functions with the same parameter ν have the same asymptotic behavior as r → 0.
Hence, like the Matérn family, a random field with correlation function Hα,β,ν(r) is
[ν]-times mean square differentiable [20], and the fractal dimension of realizations
from this random field is [7, 16]

D =
{
d + 1 − ν if ν ∈ (0, 1)
d if ν ≥ 1

(D ∈ [d, d + 1)).

So this model allows any degree of smoothness and roughness which is controlled
by the parameter ν.

Additionally, it was shown by [13] that

Hα,β,ν(r) ∼ ar−2αL(r2), as r → ∞,

for some a > 0, where L(x) := (
x/(x + β2/(2ν))

)ν+α
is a slowly varying function

at infinity. Then, for any d ∈ N, Hα,β,ν(r) satisfies (4.4) when α ∈ (0, d/2]. Hence,
unlike theMatérn family, theConfluentHypergeometric correlation functions display
long-range dependence when α ∈ (0, d/2]. In this case, they decay hyperbolically
fast with increasing distance, with the rate of decay controlled by the parameter α,
and the Hurst coefficient [16] is

H = d/2 + α ∈ (d/2, d].

4 The symbol IG(α, β2/2) denotes the inverse gamma distribution with shape parameter α and scale
parameter β2/2.
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The random field has short-term dependence when α > d/2. Like the generalized
Cauchy family, D and H in the Confluent Hypergeometric family can vary inde-
pendently of each other and they can take any value in their respective ranges of
possible values. But in contrast to the former, the latter family allows a wide range
of smoothness behaviors.

4.6 Discussion

Correlation functions displaying short-range dependence are the most often used in
geostatistical applications. This practice is mainly due to the following:

(I) Correlation families displaying long-range dependence are fewer and less
known in geostatistics than short-range correlation families.

(II) The detection of long-range dependence requires abundant data collected over
large regions, which is often not available.

(III) The main goal in many geostatistical applications is spatial interpolation based
on densely collected data, in which case the behavior of the correlation function
at short distances is much more important than the behavior at large distances.

Nevertheless, recent developments in theory and applications have shown that
correlation functions displaying long-range dependence have a role to play in geo-
statistics.

When the goal is spatial extrapolation or interpolation with sparsely located data,
short-range correlation models may provide less satisfactory predictive inferences.
In this case, the effect of the correlation function on the optimal linear predictor
is negligible, as this predictor is essentially the estimated mean function. This is
an unwanted outcome because it is rarely the case in applications that the modeler
has strong confidence in the proposed mean function, even when this is constant.
In an analysis of carbon dioxide measured in the United States by satellite, [13]
found that, for spatial extrapolation, predictive inference based on the Confluent
Hypergeometric family was better than that based on the Matérn family (when ν was
fixed at the same value in both families). On the other hand, for spatial interpolation,
predictive inference based on both families was about the same. These behaviors are
explained by the fact that both families are equally flexible in modeling smoothness
of the random field, while only the confluent hypergeometric family can model both
short- and long-range dependence.

Acknowledgements This work was partially supported by the U.S. National Science Foundation
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