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Foreword

The Long and Curved Road

It was about 50 years ago when I was a master’s student at Osaka University, I started
time series analysis by Hannan’s book: Multiple Time Series (1970), which deals
with statistical analysis for multivariate stochastic processes. It is a very difficult and
high-level book for beginners. At that time, I felt hectic and discouraged to study
time series analysis.

Entering into the Ph.D. course, I had an occasion to hear a junior student’s seminar
talk on Beran (1977, Ann. Stat.), which discusses minimum Hellinger distance esti-
mation in i.i.d. case. These days, because there have been no approaches using
Hellinger distance for time series, I was much influenced by this paper. Motivated by
Beran’s paper, I could introduce two divergences between the periodogram and para-
metric spectral densities and developed their asymptotic theory in view of efficiency
and robustness.

In 1978, I got a research position at Hiroshima University, where there was an
active group of researchers in multivariate analysis and experimental design. There,
multivariate analyzers were applying the asymptotic expansion to a variety of statis-
tics. I got much influenced by them and could proceed to higher-order asymptotic
theory for time series by use of the asymptotic expansion method.

Around that time, Ted Hannan visited Hiroshima. I was very pleased to meet
the VIP person in time series analysis and responded to this opportunity with best
Japanese hospitality, e.g., sightseeing, gourmet, etc. However, Ted did not appreciate
such Japanese hospitality, but, he invitedme toAustralianNationalUniversity (ANU)
in 1983. In this era, ANU was in a golden period. At the seminar, beside Ted, Heyde
C., Gani, J., Hall, P., Speed, T., Daley, D., etc. were there. It was a high-standard one.
My first foreign stay was a very impressive one.

Coming back to Hiroshima, I was interested in higher-order asymptotic theory in
time series analysis and econometrics. Especially, I tried to establish the validity of
Edgeworth expansion for the maximum likelihood estimators and related statistics.
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In 1986, I was invited to the Center for Multivariate Analysis at the University
of Pittsburgh by Krishnaiah. Because he was the editor of Journal of Multivariate
Analysis, he provided me with the latest achievement in multivariate analysis. Then
I could write papers on the problem of eigenvalue for multivariate time series effi-
ciently.Also, the third-order asymptotic efficiencywas discussed in time series obser-
vations. As a related topic, I could write a paper on statistical inference of dyadic
processes with Zhidong Bai, etc.

After this, I was interested in the differential geometry of curved exponential fami-
lies, which was introduced by Amari. He defined an ancillary space corresponding to
the estimator and its curvature, which measures the goodness of the estimator. Then
I tried to generalize this approach to time series models.

Around that time, Dahlhaus and Hardle organized workshops in Heidelberg and
at the Oberwolfach Research Institute for Mathematics, respectively. I was invited
there and got acquainted withmany people, e.g., Durbin, J., Robinson, P.M., Deistler,
M., Tjøstheim, D., Stoffer, D., Rao, Subba, Giraitis, L., Bhansali, R., etc.

After I got transferred to Osaka University, I completed a paper on “Curved Prob-
ability Models” which includes multivariate stochastic processes, and the inference
is very general. I felt that curved models include a lot of stochastic models, and the
applications are vast.

In 1993, by Madan Puri, I was invited to Indiana University, USA, and devel-
oped the higher-order asymptotic theory for normalizing transformations of MLE.
Based on the integral functional of the spectral density matrix, a new nonparametric
approach was proposed for non-Gaussian vector stationary processes, which has a
variety of applications in statistics and econometrics. In Indiana, I recognized that
Madan was a good cook for Indian cuisine. I enjoyed his cuisines.

In 1996, Marc Hallin invited me to Universite libre de Brussels as a visiting
professor. The Grand-Place is the central square of the City of Brussels. All over
the world, it is known for its decorative and aesthetic wealth. I felt it was a very
impressive place. Near my staying place, there was a very nice Thai–French restau-
rant, whose taste was a connoisseur. At the university, Marc and I developed the
optimal asymptotic inference for time series regression models with long memory
disturbances based on the local asymptotic normality (LAN). The results led to our
Annals paper.

At Osaka University, Kakizawa and I were proceeding the problem of discrimi-
nation and clustering for multivariate time series by using the integral functional of
spectral density matrix. Bob Shumway kindly joined our work providing us seismic
data, leading to our JASA paper, and together with the above LAN and higher-order
asymptotic theory, yielding Taniguchi–Kakizawa (2000, Springer book).

In 2000, Garderen K.J. invited me to the University of Bristol as a visiting
professor. Although Bristol was a nice city, K.J. kindly tookme to the neighbourhood
places, e.g., Salisbury Cathedral, Stonehenge, etc., which were very impressive ones.
In our research, I could publish a paper on the higher-order asymptotic estimation
for semiparametric models in time series, inviting Madan as a co-author.

Around that time, Sangeol Lee invited me to Seoul National University, which
accelerate my research exchange with Asian countries, e.g., Hong Kong, Taiwan,
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China, etc. Sangeol and I developed the asymptotic theory for the empirical residual
process for the stochastic regression model by use of LAN. Transferred to Waseda
University (2003), I organized an international symposium, inviting Marc, Peter
Robinson, Linton, O., Howell Tong, Dahlhaus, R., Chan, N.H., Sangeol, Koul, H.,
Stoffer, D., etc. I was much influenced by these high-standard people.

After this, I was much interested in the empirical likelihood approach for time
series. Anna ClaraMonti was a leader of this field. For 2007–2008,Marc and I started
Japan–Belgium Research Cooperative Program (JSPS and FNRS), and organized
Belgian side workshops and Japanese side workshops. We invited Anna Clara to the
Izu workshop. There she called disciples “kids”. From this occasion, we have been
using her way of calling disciple students.

Simultaneously I got a large JSPS funding Kiban (A) for 2007–2010 and orga-
nized 10 workshops in nice local cities. Many foreign and domestic researchers
joined, mixed, and were much influenced each other. In 2006, Akaike, H. received
Kyoto Prize. At that time, I was the editor of Journal of Japanese Statistical Society,
and arranged the Celebration Volume for Akaike in 2008, inviting Philiips, P.C.B.,
Atkinson, A.C., Robinson, P.M., etc. Successively, I got Kiban (A) for 2011–2014,
and Kiban (A) for 2015–2018, and organized 16 workshops for each. I invited many
foreign researchers, e.g., Hall, P., Dette, H., Hallin, M., Koenker, R., Prakasa Rao,
Mikosch, T., Bosq, D., Kedem, B., Kutoyants, Y.A., Khmaladze, E., Anna Clara
Monti, Proietti, T., Luati, A., Tsay, R., Giraitis, L., Taqqu, M., Yao, Q., Chan, N.H.,
Ing, C.K., Meihui, G., Lee, S., Chen, Cathy, Dunsmuir, W., Negri, I., Bose, A., Chen,
Y., Delaigle, A., Tjøstheim, D., Davis, R., Ombao, H., Yoon-Jae Whang, Francq,
C., Zakoian, M., Patilea, V., Hansen, P., Pourahmadi, M., Fokianos, K., Sachs, R.,
Lahiri, S.N., and Chen, K.

A lot of collaborative researches and exchanges were proceeded by some of the
above mentioned people, in many ways, especially, for young people. Academically,
we published four English research books in Springer, Chapman Hall. Also, we
organized a lot of local workshops in nice resort places, e.g., Mt. Fuji area, Hakone,
Izu, Kyoto, Ise-Shima, Kanazawa, Niigata, Kagawa, Kōchi, Kumamoto, Kagoshima,
Sapporo, etc. We could deepen our friendship, and enjoy gourmet there.

After this, I got a bigger JSPS grant, Kiban (S), for the period 2018–2022. The title
is “Introduction of General Causality to Various Data and Its Applications”. Here-
after, I exported our workshops to foreign countries. In 2019, Anna Clara organized
ItalianWorkshop “Statistical Methods andModels for Complex Data” in Benevento.
Below is a photo of the workshop.
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After this, SolvangKato organized theNorwegianworkshop “Workshop on causal
inference in complex marine ecosystems” in Bergen. We enjoyed the fjord tour and
seafood. In September, Meihui arranged NSYSU–Waseda International Symposium
“Time Series, Machine Learning and Causality Analysis” in Kaohsiung. We felt
a very nice tropical atmosphere by the seaside. Moving to Tainan, Ray-Bing Chen
arrangedNCKU–Waseda International Symposium “Time Series,Machine Learning
and Causality Analysis”. Liang-Ching Lin showed us an interesting big salt pan
and oyster field. Moving to Taichung, Cathy arranged FCU–Waseda International
Symposium at Feng Chia University. We enjoyed the old town and sea coast. The
universitywas planning to construct newbuildings designedbyKengoKuma (famous
Japanese architect).

After this, Japan was infected by COVID-19. For about three years, we could
not arrange any workshop. But, fortunately, in 2022, the epidemic waned. So I
planned Italian workshops. Tommaso organized Rome–Waseda Time Series Sympo-
sium in Villa Mondragone. The conference site, dinners and lunches were very nice.
Also, there were many high-standard talks and I enjoyed them. Moving to Bologna,
Alessandra organized Bologna–Waseda Time Series Workshop at Accademia delle
Scienze in Bologna. There were many interesting talks. The sanctuary of San Luca is
one of the most important symbols of Bologna, so, we went there. The scenery from
the top of church was fantastic. In Japan, I usually order Limoncello “with soda”.
But I recognized that the way was not normal in Bologna.
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My statistical life is a sort of “The long and curved road”. In the course of it, I had
a lot of collaborations, friendships, and hospitalities. I thank all of the above people,
all of the contributors of this volume, and all of the “kids” who always stimulated my
research. Thanks are extended to my teachers: Hannan, E.J., Okamoto, M., Nagai,
T. and Huzii, M., and leaders of my research: Takeuchi, Kei, Hosoya, Y., Fujikoshi,
Y., Akahira, M. and Kitagawa, G., etc.

Tokyo, Japan
November 2022

Masanobu Taniguchi



Preface

The papers in this volume were contributed by the friends and students of Masanobu
Taniguchi on the occasion of his 70th birthday.Wewish him a belated happy birthday.
In addition, we celebrate his very extensive contributions to asymptotic theory for
time series and related topics.

This book of 26 contributed papers compiles theoretical developments on statis-
tical inference for time series and related models in honor of Masanobu Taniguchi.
Chapter 1 studies self-weighted GEL estimator and test statistics for hypotheses
testing of parameters in vector autoregressive models with possibly infinite variance.
Chapter 2 proposes a new estimator, called the excess mean of power estimator, for
estimating the extreme value index, and the asymptotic normality of this new esti-
mator is established for dependent observations. Chapter 3 proposes an exclusive
topic model consisting of a pairwise Kullback–Leibler divergence and a weighted
LASSO penalty for interpretation and topic detection. Chapter 4 proposes a new
family of isotropic correlation functions whose members display long-range depen-
dence and can also model different degrees of smoothness. Chapter 5 considers three
portmanteau tests for general nonlinear conditionally heteroscedastic time series,
and compares them in terms of Bahadur slope. Chapter 6 discusses the estima-
tion of the AR(1) and MA(1) models driven by non-i.i.d. noise, with an emphasis
on the impact of non-i.i.d. noise for the standard errors and confidence interval.
Chapter 7 considers three tests for non-negative integer-valued time series, and the
asymptotic properties of the tests are elucidated. Chapter 8 considers M-estimation
in GARCH models under milder moment assumptions, together with weighted
bootstrap approximations of the distributions of these M-estimators. Chapter 9
proposes the linear serial rank statistics for the problem of testing randomness
against time-varying MA alternative, and then establishes its asymptotic normality
under both null and alternative hypotheses. Chapter 10 discusses asymptotic expan-
sions for the distributions of χ2 type test statistics from GEL framework in the
possibly over-identified moment restrictions, including the bootstrap-based Bartlett-
type correction. Chapter 11 addresses the problem of testing the goodness-of-fit
hypothesis inmultiple linear regressionmodelswith non-random and randompredic-
tors. Chapter 12 proposes a new contrast function for multivariate time series and

xi



xii Preface

establishes the asymptotic normality of the proposed minimum contrast estima-
tors. Chapter 13 considers the models based on the Box–Cox transform of the
spectral density function of locally stationary processes. Chapter 14 describes a
model of elements that drive the dance, and allow the attunement and synchro-
nization between a couple of dancers. Chapter 15 overviews the Z-process method
for detecting changes in parameters of stationary time series models. Chapter 16
extends the Fréchet–Hoeffding copula bounds for circular data to the modified
Fréchet andMardia families of copulas for modelling the dependency of two circular
random variables. Chapter 17 considers the topological data analysis approaches to
decompose theweighted connectivity network into its symmetric and anti-symmetric
components for comparing the anti-symmetric components between prior-to-seizure
and post-seizure. Chapter 18 develops an orthogonal impulse response analysis for
time-varying covariance functions. Chapter 19 overviews many attractive aspects of
optimal transportation and leaves important open problems to achieve robust optimal
transportation. Chapter 20 derives the asymptotic distribution of the estimated ruin
probability from an insurance surplus model with longmemory. Chapter 21 proposes
complex-valued time series models, related to two famous circular distributions in
direction statistics. Chapter 22 considers the semiparametric estimation problem
of an optimal dividend barrier for spectrally negative Levy Processes. Chapter 23
presents a method of fitting a local spectral envelope to heterogeneous sequences for
choosing the best-fitting model. Chapter 24 reviews recent studies on the statistical
inference for persistent homology of EEG signals to address clinical questions in
brain disorders. Chapter 25 deals with the uniformly minimum variance unbiased
estimation problems in time series analysis. Chapter 26 proposes a new estimator,
without bias or median adjustment, for the coefficient of the Gaussian AR(1) model,
which is shown to be better than the MLE in the sense of the third-order MSE.

In addition to the 26 contributed papers, we have included a foreword from Prof.
Masanobu Taniguchi, a short vita/a list of publications of Taniguchi, together with a
list of Taniguchi’s Ph.D. students.Wewould like to express our thanks to all contribu-
tors of this Festschrift. Our deepest thanks go to Sivananth Siva Chandran andYutaka
Hirachi at Springer Nature for their continued support and warm encouragement.

Tokyo, Japan
Niigata, Japan
Hokkaido, Japan
October 2022

Yan Liu
Junichi Hirukawa

Yoshihide Kakizawa



Photos of Masanobu Taniguchi

Benevento, Italy, 2019
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xiv Photos of Masanobu Taniguchi

Masanobu Taniguchi and his “kids” at his celebration ceremony for receiving Commendation for
Science and Technology by the Minister of Education, Culture, Sports, Science and Technology
(MEXT), 2022. Left to right front row: Masao Urata, Yoshihide Kakizawa, Masanobu Taniguchi,
Junichi Hirukawa, Hiroshi Shiraishi. Back row: Yuichi Goto, Yoichi Nishiyama, Yan Liu, Yujie
Xue, Xiaoling Dou, Fumiya Akashi, Hiroaki Ogata, and Takayuki Shiohama
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Chapter 1
Spatial Median-Based Smoothed
and Self-Weighted GEL Method
for Vector Autoregressive Models

Fumiya Akashi

Abstract This paper considers the estimation and testing problems for the coeffi-
cient matrices of vector autoregressive models, including infinite variance processes.
The self-weighted generalized empirical likelihood (GEL) estimator and test statis-
tic for the hypotheses of the nonlinear restriction of the parameters are proposed.
The limiting distributions of the GEL estimator and test statistic are derived under
mild distributional conditions for the innovation processes. The proposed testing
procedure does not require any prior information for the nuisance parameters of the
process, such as the behavior of the distributional tail of the innovation processes;
hence, the results in this paper provide a feasible testing procedure for the hypothe-
sis. Simulation experiments illustrate the finite sample performance of the proposed
methods.

1.1 Introduction

In various fields including economics and financial engineering, we often encounter
data that exhibit heavy tails. Such data are poorly grasped by Gaussian models,
and a variety of infinite variance time series models have been proposed by several
authors. For example, [5–7] studied limit theorems for stochastic processes gener-
ated by random variables with regularly varying tails. Especially [7] investigated the
limit behavior of the sample covariance and autocorrelation functions for the infinite
variance processes. On the other hand, one of the famous classes of infinite vari-
ance processes is the stable processes. The book [32] summarized the fundamental
properties of stable processes. In the frequency domain approach, [17] considered
parameter estimation for autoregressive moving average (ARMA) processes with
stable innovations, and investigated the asymptotics of the Whittle estimator. The
papers [11, 18] studied the properties of the periodograms and their integral func-
tionals for the stable processes. These results showed the sharp contrast between
finite and infinite variance cases in the sense of the different limit distributions and
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rates of convergence of fundamental statistics. However, the limit distributions of
the estimators and test statistics in these papers were represented by sums of stable
random variables; hence, it was difficult to develop a feasible inference procedure
based on the results in practice. For example, [35] derived the limit distribution of the
least square estimator for autoregressive (AR) models with generalized autoregres-
sive conditional heteroscedastic (GARCH)-type errors, but the rate of convergence
contained an unknown tail index of the error term, and the limit distribution was
non-Gaussian. Moreover, the probability density functions of the stable distributions
cannot be represented in a closed form except for a few special cases, and it is also
difficult to apply the likelihood ratio statistics directly. To overcome such difficul-
ties, a useful weighting method has been proposed by [14], which is referred to as a
self-weighting method. The self-weighting method for scalar AR models proposed
by [14] enables us to control the heavy tails of stochastic processes and recovers
the asymptotic normality of estimators. The paper [28] extended the self-weighting
approach toward infinite variance ARMA models. Furthermore, the self-weighting
approach is widely applicable to various complex models; for example, see [15, 36,
37] for ARMA-GARCH-type processes.

Another approach to circumvent this problem is the empirical likelihood (EL)
method of [27]. The EL method can be used to build a nonparametric likelihood
ratio function and provides a feasible statistical framework to carry out hypothesis
testing under mild conditions for the population distributions of data-generating
processes. Notably, the EL and its generalized version (GEL) have been studied in
time and frequency domains. The paper [30] considered the EL based on estimating
equations, and [22] gave a unified view of the higher order properties of the GEL
estimators. In the context of time series analysis, [9] extended the EL approach to
weakly dependent processes via a data blocking technique. In the frequency domain,
[20] provided a version of the EL test statistic based on the Whittle estimator. The
frequency domain approach was extended by [23, 25], respectively, to long-memory
processes and non-Gaussian multivariate processes. A review of the developments
of the EL approach in time series analysis was provided by [24].

Although the self-weighting and EL approaches are useful in the analysis of
heavy-tailed time series models, most of the researches considered scalar processes
because the self-weighting approach is always used with the least absolute deviation
(LAD) regression; for the self-weighted EL and GEL approach in univariate time
series models, see, for example, [1, 12, 13]. To extend the self-weighting and EL
approaches tomultivariate stochastic processes,weutilize the spatialmedian concept,
which is a natural multivariate extension of univariate medians. There is a substantial
body of literature on the spatial median concept and its related topics. For example,
[4] discussed an estimation problem of multivariate median, and [3] showed the
consistency and asymptotic normality of the least distance estimator, which is defined
as the minimizer of the sum of the Euclidean norm of residuals. For some reviews
on spatial median approaches, see [26, 33].

Motivated by the aforementioned studies, we extend the self-weighted GEL
approach toward vector AR (VAR) models based on the spatial median. Although
the self-weighted LAD method provides a robust statistical inference procedure, a
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lack of smoothness of objective functions causes problems in stochastic expansions
and computations. To avoid this inconvenience, we also incorporate the smoothed
EL approach of [34] into the GEL. The extension in this paper is highly nontrivial
and contains a lot of novel aspects.

The rest of the paper is organized as follows. Section 1.2 defines the model in this
paper and introduces the concept of the spatial median. Some fundamental results
of the spatial median are presented. This section also introduces the GEL function.
Section 1.3 provides the main results of this paper. Section 1.4 illustrates the finite
sample performance of the proposed methods via simulation experiments. Auxiliary
lemmas and technical proofs are relegated to Sect. 1.5.

In this paper, we use the following notations. The symbols R, Z, N, and C

denote the set of all real numbers, integers, natural numbers, and complex num-
bers, respectively, and R

+ := {x : x ∈ R, x ≥ 0}. For any matrix A, we define
‖A‖ := √

tr(A�A), where the symbol � is the transpose. For a differentiable func-
tion f : Rd → R, we denote ∇ f (x) := ∂ f (x)/∂x . The symbol A ⊗ B denotes the
Kronecker product of matrices A and B. Also, Ik , 0k , and Ok×l denote, respectively,
the k × k identity matrix, the k × 1 zero vector, and the k × l zero matrix.

1.2 Settings

1.2.1 Model and Spatial Median

Let {X (1), ..., X (n)} be an observed stretch from the d-dimensional VAR process of
order p, i.e.,

X (t) = A1X (t − 1) + · · · + ApX (t − p) +U (t), (1.1)

where Ai is a d × d constant matrix (i = 1, ..., p) and {U (t) : t ∈ Z} is a sequence
of i.i.d. random vectors with the density function fU . Throughout this paper, we
assume d ≥ 2. By denoting

Xt−1 := [X (t − 1)�, ..., X (t − p)�]� ∈ R
dp and A := [A1, ..., Ap] ∈ R

d×dp,

we define the residuals

U (t; θ) := X (t) − AXt−1 (t = p + 1, ..., n),

where θ = vec(A). For anyvectorφ ∈ R
m (m := d2 p), define anoperator� : Rm →

R
d×dp as

�(φ) :=
[
ψ

(1)
1 (φ) · · · ψ(d)

1 (φ) · · · ψ(1)
p (φ) · · · ψ(d)

p (φ)
]
,
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where ψ
( j)
i (φ) is a d × 1 vector (i = 1, ..., p, j = 1, ..., d), which satisfies

φ = (ψ
(1)
1 (φ)�, ..., ψ

(d)
1 (φ)�, ..., ψ(1)

p (φ)�, ..., ψ(d)
p (φ)�)�.

Evidently, we have vec(�(φ)) = φ for any φ ∈ R
m and �(vec(M)) = M for any

M ∈ R
d×dp. That is, � reconstructs a d × dp matrix from an m-dimensional vector.

We denote the true value of A as A0, and denote θ0 := vec(A0). Now, define the
spatial sign function Sign(·) as

Sign(u) =
{
u/‖u‖ (u 	= 0d),

0d (u = 0d).

In this paper,we assume the following conditions forU (t) and the coefficientmatrices
A1, ..., Ap.

Assumption 1.1

(i) E(Sign(U (t))) = 0d ;
(ii) fU (x) is continuous on R

d and bounded by a constant uniformly in x ∈ R
d ;

(iii) P(α�U (t) = 0) < 1 for any non-zero vector α ∈ R
d ;

(iv) E(‖U (t)‖δ) < ∞ for some δ > 0;
(v) for any θ ∈ R

m , let Ai (θ) be a d × d matrix (i = 1, ..., p) satisfying [A1(θ), ...,

Ap(θ)] = �(θ), we have det(Id − ∑p
j=1 z

j A j (θ)) 	= 0 for all z ∈ C such that
|z| ≤ 1 and for all θ ∈ 	, where 	 is a compact subset of Rm .

Denote the i th component of U (t) by Ui (t) (i = 1, ..., d). If U1(t), ...,Ud(t) are
mutually independent and each Ui (t) has a zero-marginal median, then Assump-
tion1.1(i) is satisfied. More generally, if a matrix B satisfies B�B = cId for some
constant c > 0 and a randomvector Z satisfiesAssumption 1.1(i), thenU (t) =d BZ ,
where =d stands for equal in distribution, also satisfies Assumption1.1(i). Assump-
tion1.1(ii) is required to bound the moment of ‖U (t)‖−r for r ∈ (0, d). Assump-
tion1.1(iii) guarantees the positive definiteness of the matrices

AU :=
∫

1

‖u‖
(
Id − uu�

‖u‖2
)

fU (u)du and BU :=
∫

uu�

‖u‖2 fU (u)du, (1.2)

which appear in the stochastic expansions of the GEL statistics. Assumption1.1(iv)
and (v) are standard for the stationarity of the model (1.1). Assumption1.1 allows
the infinite variance of the error term so that the process (1.1) contains both finite
and infinite variance models.

It is worth mentioning the relationship between Assumption1.1 and the spatial
median. Let us define an objective function

Q(v) := E(‖U (t) − v‖ − ‖U (t)‖). (1.3)
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Since an inequality |‖U (t) − v‖ − ‖U (t)‖| ≤ ‖v‖holds, the expectation (1.3) always
exists. Theminimizer of Q is called the spatial median ofU (t). It is also easy to show
that Q is 1-Lipschtz continuous and convex. In addition, under Assumption1.1, the
dominated convergence theorem yields∇Q(v) = 0d if v = 0d . From the elementary
calculation and the properties of convex functions, we conclude that one of the min-
imizers of Q(v) is 0d . When d ≥ 2, the uniqueness of the spatial median is shown
by [19] under a milder assumption than Assumption1.1(iii).1

Now, we state (without proof) a key lemma in the literature of the spatial median
approach. A similar result as Lemma1.1 below is found in [4].

Lemma 1.1 Suppose that U is a d-dimensional random vector with a density func-
tion f satisfying Assumption 1.1 (ii). Then, E(‖U + v‖−r ) ≤ Cd(r, f ) for any con-
stant vector v ∈ R

d and r ∈ (0, d), where

Cd(r, f ) := 1 + 2πd−1 supx∈Rd f (x)

d − r
.

The following result is a corollary of Lemma1.1.

Corollary 1.1 Suppose that U and X are independent d-dimensional random vec-
tors, U has a density function f satisfying Assumption1.1(ii), and q : Rd → R

+
is a nonnegative and nonrandom function satisfying E(q(X)) < ∞. Then, we have
E(‖U + X‖−r q(X)) ≤ Cd(r, f )E(q(X)) for any r ∈ (0, d).

Corollary1.1 is an easy consequence of Lemma1.1 and Fubini’s theorem for
nonnegative random variables; thus, the detail of the proof is omitted. Lemma1.1
and Corollary1.1 are frequently used for (U, X) = (U (t),�(θ)Xt−1) in the proofs
to bound the remainder terms in the stochastic expansions. It should be noted that
d ≥ 2 is essential in this paper, since Corollary1.1 is used for r > 1 in the proofs
of the main results. In addition, the matrices AU and BU , defined as (1.2), must
be positive definite, since they appear in the asymptotic covariance matrix of the
proposed estimator.

1.2.2 Self-weighted and Smoothed GEL Function

Motivated by the EL approach for quantile regression methods in the univariate case,
one may consider the moment restriction of the form “E(Sign(U (t; θ)) ⊗ Xt−1) =
0m” and construct EL ratio statistics. However, the spatial sign function is not smooth
at 0d ; besides, X (t) is possibly an infinite variance process in our framework. Thus,
we consider the smoothed and self-weighted moment function

g∗
t,h(θ) := − U (t; θ)

√‖U (t; θ)‖2 + h2
⊗ J (Xt−1) (t = p + 1, ..., n), (1.4)

1 The paper [19] assumed that the support of fU is not concentrated on a line in Rd .
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where h > 0 is a smoothing parameter tending to zero as n → ∞, J : Rdp → R
dp+q

is defined as

J (x) :=
(

w(x)x
ϕ(x)

)
,

withw : Rdp → R
+ and ϕ : Rdp → R

q being user-specified functions. In particular,
w is called the self-weight. The additional function ϕ expresses an over-identified
moment condition, and if q = 0, then g∗

t,h(θ) corresponds to the just-identified (and
smoothed) moment function. We set the following condition for w and ϕ.

Assumption 1.2 There exist some β > 2 and r ∈ (0, 1) such that

E
(‖J (Xt−1)‖β + {‖Xt−1‖ + ‖Xt−1‖1+r

} {‖J (Xt−1)‖ + ‖J (Xt−1)‖2
})

< ∞.

Example 1.1 Assume that J (x) = w(x)x . If w has the bounded support (for exam-
ple, w(x) := I(‖x‖ ≤ c) with some c ∈ R

+), then Assumption1.2 is automatically
satisfied. Moreover, it is easy to check that the following weight function fulfills
Assumption1.2;

w(Xt−1) := 1

(1 + ∑p
s=1 s

−a‖X (t − s)‖)2 , (1.5)

where a > 2 is a constant. This weight function can be regarded as a truncated and
multivariate version of [28].

By definition, we have U (t; θ0) = U (t) and U (t) 	= 0d a.s. Then, for any r ∈
(0, 1), a Taylor expansion yields

∥∥∥∥∥
E

(
U (t; θ0)√‖U (t; θ0)‖2 + h2

)∥∥∥∥∥
=
∥∥∥∥∥
E

(
U (t)

√‖U (t)‖2 + h2
− U (t)

‖U (t)‖

)∥∥∥∥∥

≤ E

(∣∣∣∣∣
‖U (t)‖

√‖U (t)‖2 + h2
− 1

∣∣∣∣∣

r)

≤ E
(‖U (t)‖−2r

)
h2r

≤ Cd(2r, fU )h2r , (1.6)

where the last inequality in (1.6) follows from Lemma1.1. Thus, under Assump-
tion1.2, the moment condition

E(g∗
t,h(θ0)) = o(1) (1.7)

holds when h → 0.
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Remark 1.1 The form of our moment function (1.4) is reminiscent of the smoothed
EL approach presented by [34]. In his paper, a linear regression model Yt = X�

t β0 +
Ut was considered,whereYt and Xt are, respectively, a scalar response and a vector of
regressors, andUt is an unobserved error whose τ th quantile (0 < τ < 1) is zero. In
this model, the moment restriction E((τ − I(Yt − X�

t β0))) = 0 is satisfied. For the
estimation problem of the true coefficient vector β0, [34] considered the EL estimator
based on the smoothed moment function Zt (β) := −(τ − Ih(X�

t β − Yt ))Xt , where

Ih(u) :=
∫ u/h

−∞
K (v)dv

and K is a kernel function on R. This function Ih(u), when h is sufficiently small,
is regarded as a smooth approximation of the indicator function I(u ≥ 0). Now,
consider a special case of τ = 1/2. If we choose K (v) := 1/(2(v2 + 1)3/2), then

Ih(u) = 1

2

(
u√

u2 + h2
+ 1

)
.

Therefore, the moment function Zt (β) satisfies

Zt (β) ∝ − Yt − X�
t β

√
(Yt − X�

t β)2 + h2
Xt ,

and this corresponds to an unweighted and scalar version of our moment function
(1.4). In our framework, however, we restrict ourselves within the multivariate case,
and K may be unbounded. Therefore, the extension is not straightforward and high-
lights some sharp contrasts between univariate and multivariate cases. Nonetheless,
thanks to the smoothing, we can use the gradient of the objective function in numer-
ical optimizations. This aspect is another advantage of the smoothed approach.

Remark 1.2 In this remark, we consider the just-identified case J (x) = w(x)x
to make the motivation of the moment function (1.4) clear. Define a function
lh(u) := u/

√‖u‖2 + h2. Then, themoment function (1.4) is represented as g∗
t,h(θ) =

−lh(U (t; θ)) ⊗ w(Xt−1)Xt−1.By somecalculation, it is shown that lh(u) = ∇Dh(u),
where Dh(u) := √‖u‖2 + h2 − h. Therefore, the sum of the moment function (1.4)
corresponds to the gradient vector of the objective function Wh(θ) := ∑n

t=p+1
w(Xt−1)Dh(X (t) − �(θ)Xt−1). If h = 0 andw(x) ≡ 1, then theminimizer ofW0(θ)

is a sort of the least distance estimator by [3] for VAR models. It should be noted
that, for each h > 0, the function Dh(u) is approximated by ‖u‖ when ‖u‖ → ∞.
Therefore, the GEL estimator and test statistic based on (1.4) are expected to be
robust to outliers.

The self-weighted GEL function for the moment restriction (1.7) is defined as

r∗
n (θ) := sup

λ∈�̂n(θ)

P̂n(θ, λ),
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where

P̂n(θ, λ) :=
n∑

t=1

ρ(λ�g∗
t,h(θ)),

�n(θ) := {
λ ∈ R

m : λ�g∗
t,h(θ) ∈ Vρ for all t = 1, ..., n

}

and ρ : Vρ → R is a user specified function with domain Vρ (⊂ R). By choosing
ρ appropriately, the GEL statistic can represent famous statistics in econometrics.
For example, the EL (see [27]), exponential tilting (ET) (see [10]), and continuous
updating (CU) (see [8]) are special cases of the GEL with

(EL) ρ(x) = log(1 − x) and Vρ = (−∞, 1);
(ET) ρ(x) = 1 − exp(x) and Vρ = R;
(CU) ρ(x) = −(x + 2)x/2 and Vρ = R.

In general, we assume the following condition for ρ.

Assumption 1.3 Afunctionρ is concave and twice continuously differentiable on its
domainVρ , whereVρ is an open interval of R and contains zero. Further, ρ(0) = 0
and ρ̇(0) = ρ̈(0) = −1, where ρ̇ and ρ̈ are the first and second derivatives of ρ,
respectively.

1.3 Main Results

This section derives the asymptotic distributions of the GEL estimator and test statis-
tic. We focus on the null hypothesis

H : R(θ0) = 0s, (1.8)

where R : Rm → R
s (s ≤ m) is a restriction function. For example, R(θ) := �θ − γ ,

where � ∈ R
s×m and γ ∈ R

s are, respectively, the user-specified matrix and vec-
tor. By choosing an appropriate R, our framework represents various problems,
such as model diagnostics and tests of causality. Define the GEL estimator θ̂n :=
argminθ∈	 r∗

n (θ) and the GEL test statistic

Tn := 2

[
inf

θ∈	R

r∗
n (θ) − inf

θ∈	
r∗
n (θ)

]
,

where 	R := {θ : θ ∈ 	, R(θ) = 0s}.
Before presenting the main theorem of this paper, we introduce a supporting

theorem. Let us define
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ĝn,h(θ) := 1

n

n∑

t=p+1

g∗
t,h(θ)

and ḡh(θ) := E(g∗
t,h(θ)).

Theorem 1.1 Define B0(δ) := {θ : θ ∈ 	, ‖θ − θ0‖ ≤ δ}. If h → 0 as n → ∞,
and Assumptions 1.1 (ii) and 1.2 hold, then, for any sequence δn → 0 (n → ∞),

sup
θ∈B0(δn)

√
n
∥∥{ĝn,h(θ) − ḡh(θ)

} − {
ĝn,h(θ0) − ḡh(θ0)

}∥∥

1 + √
n‖θ − θ0‖ → 0 (n → ∞).

Here, we discuss the distinction between our approach and [22]. As the moment
function (1.4) contains parameter θ in a complicated way, the uniform convergence
results in [21] can not be applied directly. Therefore, the techniques in [22], based
on the Taylor expansions and uniform results of [21], are not applicable to our
framework. However, Theorem 1.1 corresponds to Assumption2.2(d) of [29]. Thus,
in the proof of our theorem below, we mainly follow a similar argument as in [29]
with Theorem1.1. To establish Theorem1.1, we make use of the approximation

‖lh(u − x) − lh(u) + Mh(u)x‖ ≤ √
d + 4

‖x‖1+ω

‖u‖1+ω

for any u, x ∈ R
d , x 	= u, u 	= 0d , and ω ∈ [0, 1], where

Mh(u) := 1
√‖u‖2 + h2

(
Id − uu�

‖u‖2 + h2

)
. (1.9)

The special case of this approximation (h = 0)was introduced in [3] and [26, Lemma
6.2]. This approximation plays a crucial role in the proofs of theorems in this paper.

To describe the limit distributions of the GEL estimators and test statistics, some
important quantities need to be introduced. Let us define

Ĝn,h(θ) := 1

n

n∑

t=p+1

∂g∗
t,h(θ)

∂θ� .

Through a lengthy but elementary calculation, we obtain a representation

Ĝn,h(θ) = 1

n

n∑

t=p+1

[
X

�
t−1 ⊗ Mh(U (t; θ)) ⊗ J (Xt−1)

]
.

Also, define Ḡh(θ) := ∂ ḡh(θ)/∂θ�. Note that, for each h,



10 F. Akashi

∥∥X�
t−1 ⊗ Mh(U (t; θ)) ⊗ J (Xt−1)

∥∥ ≤ ‖Xt−1‖‖J (Xt−1)‖
√
d + 3

h
(1.10)

and the right-hand side of (1.10) is integrable under Assumption1.2. Then, Corol-
lary1.1 and the dominated convergence theorem yield

Ḡh(θ) = E
(
X

�
t−1 ⊗ Mh(U (t; θ)) ⊗ J (Xt−1)

)

and

Ḡh(θ0) = E

(
1

√‖U (t)‖2 + h2
X

�
t−1 ⊗

(
Id − U (t)U (t)�

‖U (t)‖2 + h2

)
⊗ J (Xt−1)

)

→ E
(
X

�
t−1 ⊗ AU ⊗ J (Xt−1)

)
(h → 0).

Hereafter, denote E(X�
t−1 ⊗ AU ⊗ J (Xt−1)) by G0.

We make the following assumptions.

Assumption 1.4 Let h = hn . There exists some δ ∈ (0, 1) such that nh4δ → 0 as
n → ∞.

Assumption 1.5

(i) The matrix �J := E(J (Xt−1)J (Xt−1)
�) exists and is nonsingular;

(ii) G0 and ∂R(θ)/∂θ�|θ=θ0 are full-rank;
(iii) Ḡ0(θ) is a continuous function of θ ;
(iv) θ0 ∈ Int(	).

Assumption1.4 is required for a remainder term in the expansion of
√
nĝn,h(θ0) to

be asymptotically negligible. Assumption1.5 guarantees some regularity conditions
for the asymptotic normality of fundamental quantities.

The following theorem gives the limit distributions of the proposedGEL estimator
and test statistic.

Theorem 1.2 Suppose that Assumptions1.1–1.5 hold. Then, for d ≥ 2,

√
n(θ̂n − θ0)

d−→ N (0d2 p, (G
�
0 �−1

0 G0)
−1),

where �0 := BU ⊗ �J . Further, under (1.8), Tn
d−→ χ2

s as n → ∞, where χ2
s is the

chi-squared random variable with s degrees of freedom.

By Theorem1.2, the self-weighted GEL estimator has asymptotic normality, and
the GEL test statistic has a pivotal limit distribution under fairly mild conditions
for the moments and distribution of the error term. Because the rate of convergence
and the limit distribution of Tn do not contain any nuisance parameters, such as the
tail index of the error process, Theorem1.2 provides a feasible testing procedure
for the null hypothesis (1.8). That is, we reject the null hypothesis (1.8) whenever
Tn > q1−α , where q1−α is the (1 − α)th quantile of the χ2

s distribution. Throughout
this paper, the test based on the test statistic Tn is referred to as the Tn-test.
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Remark 1.3 It is naturally shown that the asymptotic behavior of θ̂n and Tn depends
on the asymptotics of the quantity ĝn,h(θ0). In the proof of the asymptotic normality
of ĝn,h(θ0), it is shown that

√
n(ĝn,h(θ0) − ĝn,0(θ0)) = op(1). Note that

√
nĝn,0(θ0)) = 1√

n

n∑

t=p+1

Sign(U (t)) ⊗ J (Xt−1),

and then
√
nĝn,0(θ0) is a sum of a martingale difference array due to the spatial sign

approach and self-weighting. Therefore, the central limit theorem in [16] can be used
directly without the data-blocking technique by [9].

1.4 Finite Sample Performance

This section shows some simulation results to illustrate the finite sample perfor-
mance of the proposed estimator and test statistic. Suppose that X (1), ..., X (n) are
an observed stretch from the bivariate VAR(2)-model

X (t) =
[
0.5 a1
0.3 −0.5

]
X (t − 1) +

[
0.1 a2
0.5 −0.2

]
X (t − 2) +U (t), (1.11)

where a1 and a2 are some scalars. In this section, {U (t) : t ∈ Z} is assumed to be
a sequence of i.i.d. random vectors, and U (t) =d BZ ( j1, j2), where B is a (2 × 2)-
constant matrix and Z ( j1, j2) = (Z ( j1)

1 , Z ( j2)
2 )� is a vector of two independent random

variables Z ( j1)
1 and Z ( j2)

2 . We assume one of the following distributions for Z ( ji )
i ,

according to a parameter ji ;

Z ( ji )
i ∼

⎧
⎪⎨

⎪⎩

N (0, 1) ( ji = 1)

t2 ( ji = 2)

t1 ( ji = 3)

(i = 1, 2),

where tk is the t-distribution with k degrees of freedom. In particular, Z (3)
i follows

the Cauchy distribution. We also assume that B is one of the following matrices;

(B1) B = I2;

(B2) B = B2 :=
[

1/2 −√
3/2√

3/2 1/2

]
.

For the case (B2), the components of U (t) are not independent. Since the marginal
medians of Z ( j1, j2) are zero and B is a rotation matrix,U (t) has a zero-spatial median
in all cases.Note thatU (t)has infinite variance except for the case of ( j1, j2) = (1, 1).
The function ρ is chosen as ρ(v) = −(2 + v)v/2 (CU), and the self-weight (1.5) is
used with a = 3.
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Table 1.1 The estimated MSEs (1.12) for Â1 and Â2 in the case of (B1)

n = 100 n = 500 n = 1000

( j1, j2) MSE1 MSE2 MSE1 MSE2 MSE1 MSE2

(1, 1) 0.2407 0.2483 0.1033 0.1105 0.0740 0.0784

(1, 2) 0.2478 0.2519 0.1065 0.1067 0.0736 0.0745

(1, 3) 0.2885 0.2993 0.1191 0.1203 0.0843 0.0840

(2, 1) 0.2245 0.2239 0.0946 0.0947 0.0678 0.0674

(2, 2) 0.2152 0.2145 0.0896 0.0888 0.0616 0.0621

(2, 3) 0.2350 0.2247 0.0897 0.0859 0.0625 0.0595

(3, 1) 0.2437 0.2199 0.0969 0.0852 0.0659 0.0581

(3, 2) 0.2309 0.2148 0.0856 0.0786 0.0572 0.0548

(3, 3) 0.2225 0.1993 0.0798 0.0710 0.0541 0.0477

First, we check the accuracy of the CU estimator. We generate an observed stretch
with length n from the model (1.11), and calculate the CU estimator θ̂n . We estimate

the true coefficient matrices A1, A2 by
[
Â1, Â2

]
:= �(θ̂n). By repeating the above-

mentioned procedure 1000 times, we estimate the mean squared error (MSE) of the
estimators by the quantity

MSE j := 1

1000

1000∑

l=1

∥∥∥ Â(l)
j − A j

∥∥∥ ( j = 1, 2), (1.12)

where Â(l)
j is the estimator for A j in the lth iteration. The parameters are set as

a1 = a2 = 0, n = 100, 500, 1000, and h = n−1/2. The results are summarized in
Tables 1.1 and 1.2.

Table 1.2 The estimated MSEs (1.12) for Â1 and Â2 in the case of (B2)

n = 100 n = 500 n = 1000

( j1, j2) MSE1 MSE2 MSE1 MSE2 MSE1 MSE2

(1, 1) 0.2418 0.2539 0.1043 0.1096 0.0735 0.0786

(1, 2) 0.2368 0.2279 0.1005 0.0990 0.0702 0.0695

(1, 3) 0.2603 0.2458 0.1026 0.0944 0.0722 0.0653

(2, 1) 0.2482 0.2435 0.1025 0.1035 0.0730 0.0710

(2, 2) 0.2169 0.2159 0.0894 0.0909 0.0621 0.0628

(2, 3) 0.2276 0.2238 0.0893 0.0841 0.0601 0.0575

(3, 1) 0.2908 0.2482 0.1218 0.0984 0.0821 0.0659

(3, 2) 0.2415 0.2194 0.0923 0.0835 0.0639 0.0580

(3, 3) 0.2337 0.2151 0.0816 0.0769 0.0550 0.0521
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When the components of U (t) are independent (case (B1)), the estimated errors
tend to be largewhen the first component ofU (t) follows a normal distribution (cases
( j1, j2) = (1, 1), (1, 2), (1, 3)). Especially the estimator gives the smallest errors
when U (t) is a vector of independent Cauchy random variables (case ( j1, j2) =
(3, 3)) except for the case of n = 100, and this tendency is also observed in the
case of B = B2. When the components of U (t) are not independent (case (B2)), the
estimator tends to perform better when both Z ( j1)

1 and Z ( j2)
2 have infinite variance

(cases ( j1, j2) = (2, 2), (2, 3), (3, 2), (3, 3)), while the errors are large when Z ( j1)
1

or/and Z ( j2)
2 follows a normal distribution.

We also investigate the empirical type-I error rates and powers of the Tn-test. Let
us set s = 2 and R(θ) = �θ , where

� =
[
0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0

]
.

Then, the null hypothesis (1.8) is equivalent to H : a1 = 0 and a2 = 0. The param-
eters are chosen as (a1, a2) = (0.0, 0.0), (0.1, 0.0), (0.0, 0.1), and (0.1, 0.1). The
nominal significance level of test is 5%, and the empirical rejection rates of the
Tn-test are summarized in Tables 1.3 and 1.4. The upper left panel of each table
shows the simulated type-I error rate, while the upper right, and lower left and right
panels of each table show the empirical rejection rates under alternative hypotheses
(a1, a2) = (0.1, 0.0), (0.0, 0.1), (0.1, 0.1), respectively.

Regarding the type-I error, the proposed Tn-test is slightly oversized in a few
cases, but the nominal significance level is well-approximated in almost all cases.
For the case (B1), the powers of the test rapidly increase when Z ( j2)

2 follows the
Cauchy distribution. Even for the case (B2), a similar tendency is observed. Overall,
the proposed method shows a better performance when the error term follows heavy-
tailed distributions, and this implies the robustness of the proposed estimator and test
statistic.

1.5 Proofs

1.5.1 Some Approximations

Weintroduce the followingLemma1.2,where (i)was summarized in [26, Sect. 6.1.1],
and originally based on [2, 3].

Lemma 1.2 (i) If u, x ∈ R
d , u 	= 0d and x 	= u, then

∥∥∥∥
u − x

‖u − x‖ − u

‖u‖
∥∥∥∥ ≤ 2‖x‖

‖u‖ . (1.13)
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Table 1.3 The empirical type-I error rates and powers of the Tn-test in the case of (B1)

(a1, a2) = (0.0, 0.0)

( j1, j2) n = 100 n = 500 n = 1000

(1, 1) 0.040 0.056 0.051

(1, 2) 0.037 0.050 0.043

(1, 3) 0.032 0.040 0.046

(2, 1) 0.031 0.039 0.052

(2, 2) 0.047 0.049 0.050

(2, 3) 0.031 0.040 0.055

(3, 1) 0.050 0.062 0.047

(3, 2) 0.051 0.031 0.048

(3, 3) 0.066 0.041 0.049

(a1, a2) = (0.1, 0.0)

( j1, j2) n = 100 n = 500 n = 1000

(1, 1) 0.102 0.401 0.710

(1, 2) 0.131 0.767 0.971

(1, 3) 0.246 0.957 1.000

(2, 1) 0.097 0.305 0.537

(2, 2) 0.124 0.535 0.877

(2, 3) 0.205 0.881 0.995

(3, 1) 0.083 0.209 0.404

(3, 2) 0.083 0.433 0.720

(3, 3) 0.155 0.681 0.953

(a1, a2) = (0.0, 0.1)

( j1, j2) n = 100 n = 500 n = 1000

(1, 1) 0.100 0.424 0.747

(1, 2) 0.197 0.825 0.993

(1, 3) 0.364 0.996 1.000

(2, 1) 0.098 0.376 0.658

(2, 2) 0.140 0.685 0.939

(2, 3) 0.291 0.968 1.000

(3, 1) 0.101 0.370 0.697

(3, 2) 0.130 0.537 0.874

(3, 3) 0.211 0.850 0.998

(a1, a2) = (0.1, 0.1)

( j1, j2) n = 100 n = 500 n = 1000

(1, 1) 0.105 0.522 0.854

(1, 2) 0.206 0.886 0.997

(1, 3) 0.363 0.996 1.000

(2, 1) 0.098 0.481 0.786

(2, 2) 0.174 0.719 0.969

(2, 3) 0.294 0.951 1.000

(3, 1) 0.109 0.473 0.779

(3, 2) 0.134 0.622 0.925

(3, 3) 0.204 0.872 0.994

In addition, if d ≥ 2, then

∥∥∥∥
u − x

‖u − x‖ − u

‖u‖ + M0(u)x

∥∥∥∥ ≤ √
d + 3

‖x‖1+ω

‖u‖1+ω
(1.14)

for any ω ∈ [0, 1], where Mh is defined as (1.9).
(ii) If u, x ∈ R

d and h > 0, then ‖lh(u − x) − lh(u)‖ ≤ 2‖x‖/‖u‖, where lh is
defined in Remark 1.2. In addition, if d ≥ 2, then

‖lh(u − x) − lh(u) + Mh(u)x‖ ≤ √
d + 4

‖x‖1+ω

‖u‖1+ω

for any ω ∈ [0, 1].
Proof We give a sketch of the proof. The inequality (1.13) can be obtained through
some geometric considerations. To prove (1.14), define S(u, x) := l0(u − x) −
l0(u) + M0(u)x . By (1.13), it is easily shown that ‖S(u, x)‖ ≤ √

d + 3‖x‖/‖u‖ for
any d ≥ 2, and then, the assertion is truewhen ‖x‖ ≥ ‖u‖.When ‖x‖ < ‖u‖, we first



1 Spatial Median-Based Smoothed and Self-Weighted GEL Method 15

Table 1.4 The empirical type-I error rates and powers of the Tn-test in the case of (B2)

(a1, a2) = (0.0, 0.0)

( j1, j2) n = 100 n = 500 n = 1000

(1, 1) 0.049 0.048 0.050

(1, 2) 0.034 0.042 0.043

(1, 3) 0.044 0.045 0.046

(2, 1) 0.035 0.052 0.044

(2, 2) 0.041 0.043 0.044

(2, 3) 0.042 0.051 0.048

(3, 1) 0.041 0.051 0.047

(3, 2) 0.038 0.047 0.055

(3, 3) 0.053 0.041 0.053

(a1, a2) = (0.1, 0.0)

( j1, j2) n = 100 n = 500 n = 1000

(1, 1) 0.089 0.432 0.695

(1, 2) 0.073 0.342 0.599

(1, 3) 0.069 0.251 0.507

(2, 1) 0.119 0.619 0.907

(2, 2) 0.113 0.568 0.909

(2, 3) 0.103 0.453 0.798

(3, 1) 0.150 0.752 0.973

(3, 2) 0.140 0.775 0.981

(3, 3) 0.121 0.669 0.961

(a1, a2) = (0.0, 0.1)

( j1, j2) n = 100 n = 500 n = 1000

(1, 1) 0.104 0.435 0.746

(1, 2) 0.106 0.494 0.847

(1, 3) 0.145 0.665 0.945

(2, 1) 0.106 0.587 0.893

(2, 2) 0.142 0.659 0.936

(2, 3) 0.140 0.691 0.958

(3, 1) 0.111 0.694 0.969

(3, 2) 0.145 0.757 0.969

(3, 3) 0.162 0.803 0.987

(a1, a2) = (0.1, 0.1)

( j1, j2) n = 100 n = 500 n = 1000

(1, 1) 0.115 0.528 0.853

(1, 2) 0.157 0.651 0.927

(1, 3) 0.150 0.728 0.972

(2, 1) 0.131 0.628 0.915

(2, 2) 0.149 0.711 0.963

(2, 3) 0.177 0.748 0.976

(3, 1) 0.128 0.617 0.919

(3, 2) 0.134 0.714 0.957

(3, 3) 0.137 0.776 0.980

show that ‖S(u, x)‖ ≤ √
d + 3‖x‖2/‖u‖2 for u = e1 by considering a polar coor-

dinate system, where e1 = (1, 0�
d−1)

�. Second, for general u, note the relationships
‖u‖Re1 = u, where

R := (v + e1)(v + e1)�

1 + v�e1
− Id and v = u

‖u‖ .

By a simple calculation, it is shown that S(u, x) = RS(e1, R�x/‖u‖) for general
u ∈ R

d . Therefore, the result in the case of u = e1 leads to (1.14). Finally, (ii) is an
easy consequence of (i).

1.5.2 Proofs of Theorems 1.1 and 1.2

This section provides some auxiliary lemmas and the proofs of Theorems 1.1 and 1.2.
First, we prepare the following Lemmas1.3 and 1.4, which show the convergence
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of the fundamental quantities appearing in the stochastic expansions of the GEL
estimator and test statistic.

Lemma 1.3 Under Assumptions1.1, 1.2, 1.4, and 1.5, �0 = BU ⊗ �J is positive

definite, and
√
nĝn,h(θ0)

d−→ N (0m,�0) as n → ∞.

Proof Under Assumptions1.1(iii) and 1.5, BU , as defined in (1.2), and �J are pos-
itive definite. Thus, the first assertion follows. Define mt,h := −n−1/2lh(U (t)) and
decompose

√
nĝn,h(θ0) as

√
nĝn,h(θ0) =

n∑

t=p+1

(
mt,h − mt,0

) ⊗ J (Xt−1) +
n∑

t=p+1

mt,0 ⊗ J (Xt−1). (1.15)

By noting that mt,h and Xt−1 are independent, the first term in (1.15) is bounded as

E

⎛

⎝

∥∥∥∥∥∥

n∑

t=p+1

(
mt,h − mt,0

) ⊗ J (Xt−1)

∥∥∥∥∥∥

⎞

⎠ ≤ (n − p)E
(‖J (Xt−1)‖

)
E
(‖mt,h − mt,0‖

)
.

(1.16)

By a similar argument as in (1.6), we have

E
(‖mt,h − mt,0‖

) = O(n−1/2)E

(∥∥∥∥∥
U (t)

√
‖U (t)‖2 + h2

− U (t)

‖U (t)‖

∥∥∥∥∥

)

= O
(
n−1/2h2δ

)
,

where δ is the same constant as in Assumption1.4. Therefore, (1.16) is O(
√
nh4δ),

which converges to zero under Assumption 1.4. Next, we show the asymptotic
normality of the second term in (1.15). For any non-zero vector c ∈ R

m , write
yt,n := c�{mt,0 ⊗ J (Xt−1)}. Then, we have √

nc�ĝn,h(θ0) = ∑n
t=p+1 yt,n + op(1).

By Assumption1.1(i), we have

E(yt,n|Ft−1) = − 1√
n
c� {E(Sign(U (t))|Ft−1) ⊗ J (Xt−1)} = 0 a.s.,

where Ft−1 is the sigma-field generated by {U (s) : s ≤ t − 1}. That is, {yt,n : 1 ≤
t ≤ n} is a martingale difference array with respect to {Ft : 1 ≤ t ≤ n}. Therefore,
by checking the condition for the central limit theorem for a martingale difference
array (c.f. [16]), we obtain the desired result.

Lemma 1.4 Suppose that a sequence of random vectors {θ̄n : n ∈ N} satisfies ‖θ̄n −
θ0‖ = op(1). Then, under Assumptions 1.1 (ii), 1.2 and 1.4,

1

n

n∑

t=1

g∗
t,h(θ̄n)g

∗
t,h(θ̄n)

� p−→ �0 (n → ∞).
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Proof Denote Wn,h(θ) := n−1∑n
t=p+1 g

∗
t,h(θ)g∗

t,h(θ)� and

Sh(θ) := E(Wn,h(θ)) = (1 + o(1))E
(
Lh(U (t; θ)) ⊗ (J (Xt−1)J (Xt−1)

�)
)
,

where Lh(u) = uu�/(‖u‖2 + h2). Note that

S0(θ0) = (1 + o(1))E

(
U (t)U (t)�
‖U (t)‖2 ⊗ (J (Xt−1)J (Xt−1)

�)

)

= (1 + o(1))BU ⊗ �J

and

‖Wn,h(θ̄n) − S0(θ0)‖
≤ ‖Wn,h(θ̄n) − Wn,h(θ0)‖ + ‖Wn,h(θ0) − Wn,0(θ0)‖ + ‖Wn,0(θ0) − S0(θ0)‖.

(1.17)

We evaluate the terms in (1.17), as follows.
For the first term of (1.17), we can rewrite Wn,h(θ) as

Wn,h(θ) = 1

n

n∑

t=p+1

Lh(U (t) − �(θ − θ0)Xt−1) ⊗ (J (Xt−1)J (Xt−1)
�).

By Lemma 1.2, we have

‖Lh(u − x) − Lh(u)‖ ≤ 2

∥∥∥∥∥
u − x

√‖u − x‖2 + h2
− u

√‖u‖2 + h2

∥∥∥∥∥
≤ 4

‖x‖
‖u‖ . (1.18)

By (1.18), Corollary 1.1, and Assumption 1.2, we have

∥∥Wn,h(θ̄n) − Wn,h(θ0)
∥∥

≤ 1

n

n∑

t=p+1

∥∥Lh(U (t) − �(θ̄n − θ0)Xt−1) − Lh(U (t))
∥∥ ‖J (Xt−1)‖2

≤ ‖θ̄n − θ0‖4
n

n∑

t=p+1

‖Xt−1‖‖J (Xt−1)‖2
‖U (t)‖

p−→ 0 (n → ∞).

For the second term of (1.17), note that, for any u 	= 0d , ‖Lh(u) − L0(u)‖ ≤ 1.
In addition, a Taylor expansion with respect to h yields

Lh(u) = L0(u) − 2h2uu�

(‖u‖2 + εh2)2
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for some ε ∈ (0, 1). Hence,

‖Lh(u) − L0(u)‖ ≤ ‖Lh(u) − L0(u)‖1/2 = 2h‖u‖
‖u‖2 + εh2

≤ 2h‖u‖−1.

Then, we have

E(‖Wn,h(θ0) − Wn,h(θ0)‖) ≤ (1 + o(1))E(‖Lh(U (t)) − L0(U (t))‖‖J (Xt−1)‖2)
≤ 2hCd(1, fU )E(‖J (Xt−1)‖2)(1 + o(1)) → 0.

This implies the convergence in probability of the second term of (1.17).
The convergence of the third term of (1.17) is guaranteed by the law of large

numbers for ergodic processes.

Proof of Theorem 1.1 Recall that ĝn,h(θ) is represented as

ĝn,h(θ) = −1

n

n∑

t=p+1

lh(U (t) − �(θ − θ0)Xt−1) ⊗ J (Xt−1).

Also define

Qt,h(θ) := Mh(U (t))�(θ − θ0)Xt−1 and Q̂n,h(θ) := 1

n

n∑

t=p+1

Qt,h(θ) ⊗ J (Xt−1),

where Mh is defined in (1.9). Now, consider a decomposition

√
n
∥∥ĝn,h(θ) − ĝn,h(θ0) − ḡh(θ) + ḡh(θ0)

∥∥ ≤ √
n
∥∥∥ĝn,h(θ) − ĝn,h(θ0) − Q̂n,h(θ)

∥∥∥

+ √
n
∥∥∥ḡh(θ) − ḡh(θ0) − E(Q̂n,h(θ))

∥∥∥

+
∥∥∥Q̂n,h(θ) − E(Q̂n,h(θ))

∥∥∥

= A1 + A2 + A3 (say).

For the term A1, Lemma 1.2 yields

∥∥lh(U (t) − �(θ − θ0)Xt−1) − lh(U (t)) + Qt,h(θ)
∥∥ ≤ √

d + 4
τ0(θ)1+r‖Xt−1‖1+r

‖U (t)‖1+r

for any r ∈ [0, 1], where τ0(θ) := ‖θ − θ0‖. Therefore,

A1 ≤ √
nτ0(θ)1+r

√
d + 4

n

n∑

t=p+1

‖Xt−1‖1+r‖J (Xt−1)‖
‖U (t)‖1+r

= Dn
√
nτ0(θ)1+r (say), (1.19)
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where {Dn : n ∈ N} is Op(1) by Corollary 1.1 and Assumption 1.2, and it is inde-
pendent of θ .

For the term A2, a similar argument yields

A2 ≤ (1 + o(1))
√
nτ0(θ)1+r

√
d + 4E

(‖Xt−1‖1+r‖J (Xt−1)‖
‖U (t)‖1+r

)

≤ C0
√
nτ0(θ)1+r , (1.20)

where C0 is a constant that is independent of θ and n.
We further decompose A3 as

A3 ≤
∥∥∥Q̂n,h(θ) − Q̂n,0(θ)

∥∥∥ +
∥∥∥Q̂n,0(θ) − E(Q̂n,0(θ))

∥∥∥ +
∥∥∥E(Q̂n,h(θ)) − E(Q̂n,0(θ))

∥∥∥

= A3,1 + A3,2 + A3,3 (say).

For the term A3,1,

E(A3,1) ≤ (1 + o(1))τ0(θ)E (‖Xt−1‖‖J (Xt−1)‖ ‖Mh(U (t)) − M0(U (t))‖) .

Note that Mh(U (t)) − M0(U (t))
p−→ Od×d as h → 0 and ‖Mh(U (t)) − M0(U (t))‖

is bounded by 4/‖U (t)‖, an integrable random variable. Therefore, the dominated
convergence theorem yields E(‖Mh(U (t)) − M0(U (t))‖) → 0, hence, we have

A3,1 = op(1)τ0(θ),

where the op(1)-term is uniform in θ . On the other hand, by lengthy but elementary
argument,

Qt,h(θ) ⊗ J (Xt−1) = [
X

�
t−1 ⊗ Mh(U (t)) ⊗ J (Xt−1)

]
(θ − θ0).

Therefore,

A3,2

≤
∥∥∥∥∥∥

1

n

n∑

t=p+1

(
X

�
t−1 ⊗ Mh(U (t)) ⊗ J (Xt−1) − E(X�

t−1 ⊗ Mh(U (t)) ⊗ J (Xt−1))
)
∥∥∥∥∥∥

τ0(θ),

(1.21)

and the summation in (1.21) is op(1) uniformly in θ by the ergodicity of the sum-
mands. The term A3,3 is also evaluated as o(1)τ0(θ), where o(1)-term is uniform in
θ , by the same reason for the term A3,1. Thus,

A3 = op(1)τ0(θ), (1.22)

where the op(1)-term is independent of θ .
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By (1.19), (1.20) and (1.22), we have

√
n
∥∥{ĝn,h(θ) − ḡh(θ)

} − {
ĝn,h(θ0) − ḡh(θ0)

}∥∥

1 + √
n‖θ − θ0‖

≤
√
nτ0(θ)

1 + √
nτ0(θ)

[
(Dn + C0)τ0(θ)r + op(1)

]
.

As x/(1 + x) < 1 for any x ≥ 0, we have

sup
θ∈B0(δn)

√
nτ0(θ)

1 + √
nτ0(θ)

[
(Dn + C0)τ0(θ)r + op(1)

] ≤ (Dn + C0)δ
r
n + op(1) → 0

for any δn → 0. Thus, we obtain the desired result. �
Proof of Theorem 1.2 Because the proof of Theorem1.2 is rather complicated, we
give a sketch of the proof. The proof is mainly based on [22, 29, 30].

Step 1. Bya similar argument as in [30] andbyTheorem1.1,we show the consistency
of θ̂n as follows. We derive the stochastic expansion

P̂n(θ, λ) = −nλ�ĝn,h(θ) − n

2
λ��̄n,h(θ, εnλ)λ (1.23)

for any θ and λ, where

�̄n,h(θ, εnλ) := −1

n

n∑

t=p+1

ρ̈(εnλ
�g∗

t,h(θ))g∗
t,h(θ)g∗

t,h(θ)�,

and {εn : n ∈ N} is a sequence of real numbers in [0, 1], which may depend
on λ and n. By Lemmas 1.3, 1.4, and a similar argument as in [22, Proof
of LemmaA2], we obtain r∗

n (θ0) = Op(1). However, by noting the stochas-
tic expansion (1.23), we have a lower bound r∗

n (θn(u)) ≥ D′
nn

1−2ξ‖u‖, for
θn(u) := θ0 + n−ξu with any u ∈ R

m , ‖u‖ 	= 0, where ξ ∈ (1/β, 1/2) is
a constant and {D′

n : n ∈ N} is a sequence of random variables that con-
verges to a positive constant in probability. Now, fix any ε > 0. If we define
ûn := nξ (θ̂n − θ0), then θ̂n = θn(ûn) and r∗

n (θ̂n) ≥ D′
nn

1−2ξ‖ûn‖. By defi-
nition, r∗

n (θ̂n) ≤ r∗
n (θ0). Then, we have r

∗
n (θ0) ≥ D′

nn
1−2ξ‖ûn‖. Noting that

‖θ̂n − θ0‖ > n−ξ ε implies ‖ûn‖ > ε, we have

P(nξ‖θ̂n − θ0‖ > ε) ≤ P(r∗
n (θ0) ≥ D′

nn
1−2ξ ε) → 0

for each ε > 0. This implies ‖θ̂n − θ0‖ = op(n−ξ ).
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Step 2. Define

L̂n(θ, λ) := −nλ�G0(θ − θ0) − nλ�ĝn,h(θ0) − n

2
λ��0λ,

θ̃n := argmin
θ∈	

L̂n(θ, λ̃n(θ)),

λ̃n(θ) := arg max
λ∈Rd2 p

L̂n(θ, λ) and λ̃n := λ̃n(θ̃).

Then, it can be shown that P̂n(θ̂n, λ̂n) = L̂n(θ̃n, λ̃n) + op(1),
√
n(θ̂n − θ̃n) =

op(1) and
√
n(λ̂n − λ̃n) = op(1).

Step 3. We consider the asymptotics of θ̃n and λ̃n . The first-order conditions for θ̃n
and λ̃n are given by

−G�
0 λ̃n = 0d2 p and − G0(θ̃n − θ0) − ĝn,h(θ0) − �0λ̃n = 0d2 p. (1.24)

The equations in (1.24) are stacked as

[
Om×m G�

0
G0 �0

](
θ̃n − θ0

λ̃n

)
=
(

0d2 p

−ĝn,h(θ0)

)
,

and it is easy to see that

(
Om×m G�
G �

)−1

=
( −� �G�

0 �−1
0

�−1
0 G0� �−1

0 − �−1
0 G0�G�

0 �−1
0

)
,

where � := (G�
0 �−1

0 G0)
−1. Together with the result in Step 2 and

Lemma1.3, we obtain the limiting distribution of
√
n(θ̂n − θ0).

Step 4. Based on Steps 2 and 3, we obtain the stochastic expansion

Tn = nĝn,h(θ0)
�(PR − P)ĝn,h(θ0) + op(1) = N��N + op(1),

where N is a standard normal random vector,

P := �−1
0 − �−1

0 G0�G�
0 �−1

0 ,

PR := �−1
0 − �−1

0 G0(� − �Ṙ�(Ṙ�Ṙ�)−1 Ṙ�)G�
0 �−1

0 ,

Ṙ := ∂R(θ0)/∂θ� ∈ R
s×m and

� := �
−1/2
0 G0�Ṙ�(Ṙ�Ṙ�)−1 Ṙ�G�

0 �
−1/2
0 .

Noting that � is idempotent with rank s, we obtain the conclusion of the
theorem by [31, (3b.4)]. �
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Chapter 2
Excess Mean of Power Estimator
of Extreme Value Index

Ngai Hang Chan, Yuxin Li, and Tony Sit

Abstract We propose a new type of extreme value index (EVI) estimator, namely,
excess mean of power (EMP) estimator, which can be regarded as an average of the
existingmean of order p (MOP) estimators over different thresholds. The asymptotic
normalities of the MOP and EMP estimators for dependent observations are estab-
lished under some mild conditions. We also develop consistent estimators for the
asymptotic variances of the MOP and EMP estimators. Furthermore, the asymptotic
normality of the extreme quantile estimator is established for dependent observa-
tions from which confidence intervals for the extreme quantile can be constructed.
The proposed EMP estimator not only attains the best efficiency among typical EVI
estimators under the optimal threshold, but is also more robust with respect to the
choice of threshold.

2.1 Introduction

In various disciplines, such as insurance, finance and hydrology, we are concerned
about the tail behavior of the underlying distribution for the interest of better deci-
sions. For example, a substantial drawdown in returns poses threats to the stability
of financial institutions. Extremely high water levels are dangerous and may incur
tremendous losses. Therefore, it is of great significance to investigate the statistical
results of such extreme events.

Extremevalue theory (EVT) studies extreme events including the extremequantile
of a distribution and the probability of specific rare events, to name but a few. One
essential part in extreme value theory is the statistical inference of extreme value
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index (EVI) γ . Mathematically, a distribution F belongs to the domain of attraction
with γ , if there is a positive function a(t) such that for x > 0,

lim
t→∞

U (t x) − U (t)

a(t)
=
{

xγ −1
γ

, γ > 0,

log x γ = 0,
(2.1)

whereU (x) := F−1(1 − x−1). Throughout this paper, we focus on heavy-tailed dis-
tributions, where γ > 0; in this case, (2.1) is equivalent to U (x) ∈ RVγ , where the
symbol RVγ denotes the class of regularly varying functions at infinity, with an index
of regular variation equals γ ∈ R, i.e., positive measurable function U (·) such that
for all x > 0, limt→∞ U (t x)/U (t) = xγ (see, for example, Bingham et al. [4]).

Instead of the conventional Pareto quantile plots, Beirlant et al. [2] proposed
generalized quantile plots. To begin with, we consider the mean excess function
eU = E(X − U (t) | X > U (t)), which is regularly varying with index γ when
γ < 1. However, if γ ≥ 1, the conditional expectation does not exist. To remedy
this limitation, Beirlant et al. [2] replaced the empirical mean excess value evalu-
ated at t = nj−1 E j,n := j−1∑ j

i=1

(
Xn−i+1,n − Xn− j,n

)
by approximationU Hj,n :=

Xn− j,n

(
j−1∑ j

i=1 log(Xn−i+1,n) − log(Xn− j,n)
)

. Correspondingly, Beirlant et al.

[2] defined U H(x) := U (x)
∫∞
1 {log(U (wx)) − log(U (x))} w−2 dw, which is also

regularly varying with index γ with U Hj,n as the sample analog of U H(x) at
x = nj−1. One may estimate γ based on the slope of the generalized quantile plot,
which is defined as

(
log ((n + 1)/j) , log(U Hj,n)

)
, for j = 1, 2, . . . , kn . Echoing

the relationship betweenHill estimator and the slope of Pareto Quantile Plot, Beirlant
et al. [2] proposed a generalized Hill (GH) estimator, given by

γ̂ G H (kn) := 1

kn

kn∑
j=1

{
log(U Hj,n) − log(U Hkn+1,n)

}
.

In this paper, we consider an alternative approach to avoid the problem when
γ ≥ 1. Define

ep(t) := E
(
X p | X > U (t)

)
,

where p is a tuning parameter. The existence of ep(t) can be guaranteed provided
that pγ < 1; see Theorem2.7 in Sect. 2.6.1. With

e j,p = 1

j

j∑
i=1

X p
n−i+1,n,

as the sample analog of ep(t) valued at t = (n + 1)/j , one can now define the excess
mean of order-p Plot:
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Fig. 2.1 Pareto quantile plot (a), generalized quantile plot (b) and excess mean of order-p plot (c)
for T (1): n = 1000, kn = 100, γ = 1, p = 0.4

(
log

(
n + 1

j

)
,
log(e j,p)

p

)
, (2.2)

for j = 1, 2, . . . , kn . It is clear that the slope of the proposed plot can be used as an
estimate of γ as n → ∞, kn → ∞, and kn/n → 0. To illustrate the effectiveness
of the excess mean of order-p Plot, we compare it with Pareto quantile plot and
generalized quantile plot in Fig. 2.1, wherewe use T (1) as the underlying distribution
and take tuning parameter p = 0.4, where T (ν) denotes Student’s t distribution with
ν degrees of freedom.

As seen in Fig. 2.1, one advantage of the excess mean of order-p Plot is its relative
smoothness and robustness with respect to kn , compared with the Pareto quantile plot
as well as the generalized quantile plot. One of themain reasons is that adjacent terms
in
{
e j,p

}kn

j=1 contain similar information, which leads tomore continuity and stability
of the plot.

It is noteworthy that (2.2) cannot be directly applied to the case p = 0. Therefore,
we should consider the limit:

lim
p→0

1

p
log
(
e j,p

) = 1

j

j∑
i=1

log
(
Xn−i+1,n

)
. (2.3)
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Based on (2.3) and (2.21) in Sect. 2.6, we can now define a new extreme value index
estimator, namely, excess mean of power (EMP) estimator, which approximates the
slope of the excess mean of order-p (MOP) plot, as the estimation of γ . The proposed
estimator is given by

γ̂ EMP
mn ,p(kn) :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1
p(kn−mn)

[∑kn
j=mn+1

{
log(e j,p) − log(ekn+1,p)

}
+mn

{
log(emn+1,p) − log(ekn+1,p)

}]
, p �= 0,

1
kn−mn

[∑kn
j=mn+1

{
1
j
∑ j

i=1 log
(
Xn−i+1,n

)}
+ mn

mn+1
∑mn

i=1 log
(
Xn−i+1,n

)− kn
kn+1

∑kn+1
i=1 log

(
Xn−i+1,n

)]
, p = 0,

(2.4)
where mn = o(kn) and e j,p := j−1∑ j

i=1 X p
n−i+1,n .

In (2.4), the extreme terms (e1,p, . . . , emn ,n) are not taken into account as their large
variances and may introduce unnecessary instability. As we shall see in the sequel,
to ensure the asymptotic normality of γ̂ EMP

mn ,p (kn), one can choose a sequence mn such
that mn = O(k1−κ

n ) and k1−κ
n = O (mn), ∀ κ ∈ (0, 1 − (2 − 2pγ )−1

)
provided that

pγ < 1/2. We study its properties in this paper.
The rest of this paper is organized as follows: In Sect. 2.2, we investigate the

relationship between the EMP and MOP estimators and establish their asymptotic
normalities for dependent observations under some mild conditions. In Sect. 2.3,
we conduct asymptotic comparison of the EMP estimator with other contenders at
optimal thresholds for independent and identically distributed (i.i.d.) observations.
In Sect. 2.4, we focus on finite sample properties of the EMP estimator through
simulations. Section2.5 concludes this paper. Technical details are given in Sect. 2.6.

2.2 Asymptotic Properties

2.2.1 Asymptotic Property of the Empirical Tail Process
Qn(t) for Dependent Sequences

To facilitate our subsequent discussion, we first investigate the asymptotic property
of the empirical tail process Qn(t) for a stationary sequence (X1, X2, . . . , Xn), where
Qn(t) is defined as

Qn(t) := F−1
n

(
1 − kn

n
t

)
= Xn−�kn t	,n,

Fn(t) is the empirical distribution function for {Xi }n
i=1, �x
 represents the integer

part of x .
Assume that the β-mixing (absolutely regular) condition holds, namely, the β-

mixing coefficient β(k) satisfies
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β(k) := sup
l∈N

E

(
sup

A∈F ∞
l+k+1

∣∣∣P (A
∣∣F l

1

)− P(A)

∣∣∣
)

→ 0 as k → ∞,

where F l
1 and F∞

l+k+1 denote the σ -fields generated by {Ui }l
i=1 and {Ui }∞i=l+k+1

respectively.
As seen inDrees [12],many common time seriesmodels, including but not limited

to ARMA, ARCH, and GARCH models, can generate β-mixing sequences where
β(k) vanishes in an exponential rate, provided that some natural conditions are sat-
isfied.

Furthermore, we assume that there exists a constant ε > 0, a sequence (ln)n∈N as
well as a function r(x, y) such that the following are satisfied:

(C1) limn→∞ β(ln)

ln
n + lnk

− 1
2

n log2 kn = 0;
(C2) For any 0 ≤ x < y ≤ 1 + ε,

lim
n→∞

n

lnkn
Cov

⎛
⎝ ln∑

i=1

I

(
Xi > F−1

(
1 − kn

n
x

))
,

ln∑
i=1

I

(
Xi > F−1

(
1 − kn

n
y

))⎞⎠ = r(x, y),

where I (x) is the indicator function;
(C3) For some constants C, ε > 0, ∀ 0 ≤ x < y ≤ 1 + ε,

n

lnkn
E

(
ln∑

i=1

I

(
F−1

(
1 − kn

n
y

)
< Xi ≤ F−1

(
1 − kn

n
x

)))4

≤ C(y − x).

Before establishing the asymptotic property of Qn(t), we first present the results
in Drees [11].

Lemma 2.1 (Drees [11]) Suppose that {Ui }n
i=1 is a stationary, β-mixing sequence

according to the standard uniform distribution, and Conditions (C1)–(C3) hold.
Then, for any γ ∈ R,

sup
t∈[ 1

2kn
,1]

tγ+ 1
2 (1 + | log t |)− 1

2 k
1
2
n

∣∣∣∣ (Vn(t))
−γ − t−γ

γ
− k

− 1
2

n t−(γ+1)e(t)

∣∣∣∣ →p 0, (2.5)

where Vn(t) is defined as

Vn(t) := n

kn

(
1 − Un−[kn t],n

)
, t ∈ [0, 1],

and e(t) is a centered Gaussian Process with covariance function r(x, y), satisfying

lim
θ↓0 P

{
sup

t∈(0,θ]

∣∣∣∣∣ e(t)

t
1
2 (1 + | log t |) 1

2

∣∣∣∣∣ > δ

}
= 0, (2.6)

∀ δ > 0.



30 N. H. Chan et al.

To prove Lemma2.1, we need to partition the sequence {Ui }n
i=1 into blocks with

length ln . Condition (C1) not only guarantees that ln is large enough so that the non-
adjacent blocks tend to be independent, but also ensures that ln does not grow too
fast so that the effect of each block on en is insignificant. Condition (C2) is mainly
used to provide the covariance structure for the limiting process e(t). Condition (C3)
restricts the size of the cluster in extreme intervals so that for any extreme interval
it is not too clustered. As discussed in Drees [12], finite-order casual ARMA(p, q)
and ARCH(1) models satisfy Conditions (C1)–(C3) under some general conditions.
For further discussions on Conditions (C1)–(C3) and more concrete examples, we
refer the readers to Resnick and Stărică [19] and Drees [11, 12].

Lemma2.1 establishes the convergence property of the empirical tail process
for the uniform distribution. Furthermore, for an arbitrary heavy-tailed continuous
random variable X with U (x) := F−1(1 − x−1), because 1 − 1/U−1(X) follows
Uniform(0,1) distribution, we can extend the convergence property for heavy-tailed
distributions in general. Hence, based on Lemma2.1, we have the following theorem:

Theorem 2.1 Suppose that {Xi }i∈N is a stationary and β-mixing sequence with con-
tinuous marginal d.f. F ∈ D(Gγ ), γ > 0, and satisfies the second-order condition,
namely,

lim
x→∞

U (t x)

U (x)
− tγ

A(x)
= tγ 
(t), (2.7)

where 
(t) is given by


(t) =
{

tρ−1
ρ

, ρ < 0,

log t, ρ = 0.

Moreover, assume that conditions in Lemma2.1 hold, and kn is an intermediate

sequence satisfying k
1
2
n A (n/kn) → φ ∈ R. Then, there exists a centered Gaussian

process e(t) satisfying (2.6) with covariance function r(x, y) such that

sup
t∈(0,1]

tγ+ 1
2 (1 + | log t |)− 1

2

∣∣∣∣k 1
2

n

(
Qn(t)

U (n/kn)
− t−γ

)
− γ t−(γ+1)e(t) − φt−γ 
0(t)

∣∣∣∣ →p 0, (2.8)

where A(x) = γβxρ and 
0(t) is given by


0(t) =
{

t−ρ−1
ρ

, ρ < 0,

− log t, ρ = 0.

In the literature, the second-order condition is widely-adopted, which can lead to
the asymptotic normality of EVI estimators. The commonly used Hall–Welsh class
of models is a special case satisfying (2.7) and the function U (t) has the following
representation:
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U (t) = Ctγ (1 + γβtρ/ρ + o(tρ)) , as t → ∞,

with C > 0, ρ < 0. Note that Pareto, Fréchet, Student-t , Burr, and Extreme Value
distributions all belong to this class.

It is noteworthy that Drees ([11], Theorem 3.1) also provided a similar result.
However, it does not specify the second-order framework (2.7); a more strict restric-
tion on kn must be required, namely,

k
1
2
n sup

t∈(0,t0]
tγ+ 1

2 (1 + | log t |)− 1
2

∣∣∣∣∣∣
U
(

n
kn

t−1
)

− U
(

n
kn

)
a
(

n
kn

) − t−γ − 1

γ

∣∣∣∣∣∣ → 0, (2.9)

for some t0 > 1. In fact, given the second-order condition, we can immediately derive

from (2.9) that k
1
2
n A (n/kn) → 0, and the term φt−γ 
0(t) in (2.8) automatically

disappears; see De Haan and Ferreira ([8], Corollary 2.3.5). Under the second-order
condition, we have

lim
n→∞

U
(

n
kn

t−1
)
−U

(
n

kn

)
a
(

n
kn

) − t−γ −1
γ

A
(

n
kn

) = 
̃(t−1),

∀ t ∈ (0, 1], where


̃(t) =

⎧⎪⎨
⎪⎩

tγ+ρ−1
γ+ρ

, γ + ρ �= 0, ρ < 0,

log t, γ + ρ = 0, ρ < 0,
1
γ

tγ log t, ρ = 0 �= γ.

Hence, for any fixed t1 ∈ (0, 1), based on (2.9), we have

∣∣∣∣k 1
2
n A

(
n

kn

)∣∣∣∣ =

∣∣∣∣∣∣∣∣∣
k

1
2
n

U
(

n
kn

t−1
1

)
−U

(
n

kn

)
a
(

n
kn

) − t−γ −1
γ


̃(t−1
1 )

(1 + o(n)(1))

∣∣∣∣∣∣∣∣∣
<

2k
1
2
n


̃(t−1
1 )

∣∣∣∣∣∣
U
(

n
kn

t−1
1

)
− U

(
n
kn

)
a
(

n
kn

) − t−γ

1 − 1

γ

∣∣∣∣∣∣
→ 0.

Comparedwith the results inDrees [11], themain advantage of Theorem2.1 is that
by introducing the widely accepted second-order condition (2.7), it paves a way to

represent the asymptotic mean of the limiting distribution for k
1
2
n
(
γ̂ · − γ

)
as a more
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explicit expression of the second-order parameter ρ, which has been intensively
studied in the literature, see, for instance, Alves et al. [1], Goegebeur et al. [13]
and Ciuperca and Mercadier [6]. After obtaining explicit forms of asymptotic mean
and variance, we can construct confidence intervals, derive asymptotic RMSE, and
compare asymptotic performances among various estimators.

2.2.2 Connections Between EMP and MOP Estimators

In this subsection, we discuss the connection between EMP and MOP estimators to
offer another perspective of the proposed estimator. In the case p > 0, by using the
approximation log(1 + x) = x + o(x) as x → 0, we have

γ̂ EMP
mn ,p(kn) = 1

p(kn − mn)

⎡
⎣ kn∑

i=mn+1

log

(
ei,p

ekn+1,n

)
+ mn log

(
emn+1,p

ekn+1,n

)⎤⎦

= 1

p(kn − mn)

⎡
⎣ kn∑

i=mn+1

kn∑
j=i

log

(
e j,p

e j+1,p

)
+ mn log

(
emn+1,p

ekn+1,n

)⎤⎦

= 1

p(kn − mn)

kn∑
j=mn+1

j log

(
e j,p

e j+1,p

)

= 1

p(kn − mn)

kn∑
j=mn+1

j

⎧⎪⎨
⎪⎩log

(
1 + 1

j

)
− log

⎛
⎜⎝1 + 1∑ j

i=1

(
Xn−i+1,n
Xn− j,n

)p

⎞
⎟⎠
⎫⎪⎬
⎪⎭

= 1

kn − mn

kn∑
j=mn+1

⎛
⎜⎝1 − j

/∑ j
i=1

(
Xn−i+1,n
Xn− j,n

)p

p

⎞
⎟⎠ (1 + op(1)).

On the other hand, if p = 0, we have

γ̂ EMP
mn ,0 (kn) = 1

kn − mn

kn∑
j=mn+1

γ̂ Hill( j) + 1

kn − mn

{
γ̂ Hill(kn + 1) − γ̂ Hill(mn + 1)

+ log

(
Xn−kn ,n

Xn−mn ,n

)}
.

= 1

kn − mn

kn∑
j=mn+1

γ̂ Hill( j) + op

(
k

− 1
2

n

)
.

Meanwhile, the MOP estimator is defined as follows:
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γ̂MOP
p (kn) :=

⎧⎪⎨
⎪⎩

1−kn

/∑kn
i=1

(
Xn−i+1,n
Xn−kn ,n

)p

p , p �= 0,

γ̂ Hill(kn), p = 0.

Therefore, the EMP estimator may be regarded as an approximation of the average
of γ̂MOP

p ( j) over different thresholds j = mn + 1, . . . , kn , which can lead to more
stable estimates.

In the literature, there is usually a tradeoff between bias and variance in terms of
the choice of kn . A smaller kn can often lead to less bias, but brings more variance.
By taking average of MOP estimators over different thresholds, the EMP estimator
combines the oneswith less bias aswell as thosewith less variance.Hence, it can keep
the balance between these two factors within a wide range of choices of thresholds
kn , which can be regarded as the main source of robustness for the EMP estimator.
For a comparatively large kn , the EMP estimator still contains much information
from those γ̂MOP

p ( j) with j small enough, so the bias term grows more slowly than
other EVI estimators.

2.2.3 Asymptotic Normalities of the MOP and the EMP
Estimators

Regarding the existingMOP estimator, when p �= 0, we can rewrite it as a functional
of Qn(t):

γ̂MOP
p (kn) =

1 − 1
/∫ 1

0

(
Qn(t)
Qn(1)

)p
dt

p
. (2.10)

The asymptotic normality of MOP estimator for p ∈ (0, (2γ )−1) in the indepen-
dent case was established in Brilhante et al. [5]. In the following theorem, we utilize
(2.10) and the asymptotic property of Qn(t) established in (2.8) to extend the exist-
ing result in two aspects: Firstly, we allow the tuning parameter p to take negative
values. Secondly, we generalize the conclusion to dependent observations.

Theorem 2.2 Suppose that {Xi }i∈N is a stationary and β-mixing sequence satisfying
conditions in Lemma 2.1 and Theorem 2.1, and kn is an intermediate sequence satisfy-

ing k
1
2
n A (n/kn) → φ ∈ R. Furthermore, the tuning parameter p satisfies pγ < 1/2.

Then, we have

k
1
2
n
(
γ̂MOP

p (kn) − γ
) →d N

(
μMOP

p,γ,φ,ρ, σ 2
MOP,p,γ,r

)
,

where

μMOP
p,γ,φ,ρ = (1 − pγ )φ

1 − pγ − ρ
,
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and

σ 2
MOP,p,γ,r = γ 2(1 − pγ )4

∫ 1

0

∫ 1

0
(st)−pγ−1r(s, t) ds dt

−2γ 2(1 − pγ )3
∫ 1

0
t−pγ−1r(t, 1) dt + γ 2(1 − pγ )2 r(1, 1).

As a special case, if {Xi }n
i=1 are independent, then e(t) in (2.8) is a Brownian

motion and r(s, t) = min(s, t). We can deduce that

σ 2
MOP,p,γ,r = γ 2(1 − pγ )2

1 − 2pγ
,

which accords with the existing results in the literature for the MOP estimator.
In terms of the proposed the EMP estimator, recall that

γ̂ EMP
mn ,p (kn) ≈ 1

kn − mn

kn∑
j=mn+1

γ̂MOP
p ( j).

Hence, by applying the same techniques that we have used on MOP estimator, we
can likewise establish the asymptotic normality for the EMP estimator.

Theorem 2.3 Suppose that {Xi }i∈N is a stationary and β-mixing sequence satisfy-
ing conditions in Lemma2.1 and Theorem 2.2, and kn is an intermediate sequence

satisfying k
1
2
n A (n/kn) → φ ∈ R. Furthermore, the tuning parameter p satisfies

pγ < 1/2. Then, for all sequences mn such that mn = O(k1−κ
n ) and k1−κ

n = O (mn),
∀ κ ∈ (0, 1 − (2 − 2pγ )−1

)
, we have

k
1
2
n
(
γ̂ EMP

mn ,p (kn) − γ
) →d N (μEMP

p,γ,φ,ρ, σ 2
EMP,p,γ,r ),

where

μEMP
p,γ,φ,ρ = (1 − pγ )φ

(1 − pγ − ρ)(1 − ρ)
,

and

σ 2
EMP,p,γ,r = γ 2(1 − pγ )2

∫ 1

0

∫ 1

0
(us)−1r(u, s) du ds

−2γ 2(1 − pγ )3
∫ 1

0

∫ 1

0

∫ 1

0
(us)−1t−pγ−1r(st, u) du ds dt

+γ 2(1 − pγ )4
∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0
(us)−1(vt)−pγ−1r(uv, st) du dv ds dt.
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In the case that {Xi }n
i=1 are independent, we have r(s, t) = min(s, t), which leads

to the following corollary:

Corollary 2.1 Suppose that X1, X2, . . . , Xn are i.i.d. continuous random variables
following distribution F, with F ∈ D(Gγ ) and γ > 0. Moreover, F(x) satisfies

the second-order condition. Assume that kn → ∞, kn/n → 0 and k
1
2
n A (n/kn) →

φ ∈ (−∞,+∞) as n → ∞, and that the tuning parameter p satisfies pγ < 1/2.
Then, for all sequences mn such that mn = O(k1−κ

n ) and k1−κ
n = O (mn), ∀ κ ∈(

0, 1 − (2 − 2pγ )−1
)
, we have

k
1
2
n
(
γ̂ EMP

mn ,p (kn) − γ
) →d N (μp,γ,φ,ρ, σ 2

p,γ ),

where

μp,γ,φ,ρ = (1 − pγ )φ

(1 − pγ − ρ)(1 − ρ)
and σ 2

p,γ = 2γ 2(1 − pγ )

1 − 2pγ
.

2.2.4 Consistent Estimators of σ 2
MOP, p,γ,r and σ 2

EMP, p,γ,r

Constructions of the confidence interval of either EVI γ or extreme quantile xq

require estimations on variance of the corresponding the EVI estimator. Because the
covariance function r(x, y) is involved in both σ 2

MOP,p,γ,r and σ 2
EMP,p,γ,r , it is not

easy to estimate them in general. Avoiding direct estimation on r(x, y), Drees [12]
proposed three types of estimators for asymptotic variance,where stronger conditions
rather than (C1)–(C3) were assumed. Furthermore, the homogeneity of covariance
function r(x, y) was required, namely,

r(λx, λy) = λr(x, y), ∀ λ, x, y ∈ [0, 1], (2.11)

under which the corresponding Gaussian process e(t) is self-similar:

e(λt) =d λ
1
2 e(t), ∀ λ ∈ [0, 1].

However, the conditions in Drees [12] are somehow restrictive in terms of the
threshold kn , which can give rise to

k
1
2
n
(
γ̂ � − γ

) →d N (0, σ 2
γ̂ �),

where γ̂ �(·) denotes γ̂MOP
p (·) or γ̂ EMP

p (·) whenever appropriate. Under our settings,
namely, the more relaxed conditions regarding kn in Theorem2.3, the asymptotic

mean of k
1
2
n
(
γ̂ � − γ

)
is not necessarily to be 0. Therefore, the conclusions in Drees
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[12] cannot directly be applied to our case. In Theorem2.4, we make an assertion
that the estimator

σ̂ 2
γ̂ � :=

(
log

kn

jn

)−1 kn∑
i= jn

(
γ̂ �(i) − γ̂ �(kn)

)2
,

first proposed in Drees [12], is also valid for the MOP and EMP estimators under the
conditions in Theorem2.2 and (2.11).

Theorem 2.4 Suppose that the conditions in Lemma2.1 and Theorem2.2 hold, and
r(x, y) satisfies (2.11). Then, there exist sequences j (1)

n = o(kn) and j (2)
n = o(kn)

such that

σ̂ 2
MOP,1 :=

(
log

kn

j (1)
n

)−1 kn∑
i= j (1)

n

(
γ̂MOP

p (i) − γ̂MOP
p (kn)

)2 →p σ 2
MOP,p,γ,r ,

σ̂ 2
EMP,1 :=

(
log

kn

j (2)
n

)−1 kn∑
i= j (2)

n

(
γ̂ EMP

mn ,p (i) − γ̂ EMP
mn ,p (kn)

)2 →p σ 2
EMP,p,γ,r .

As discussed by Drees [12], any sequence jn such that jn/kn vanishes not too fast
can lead to the consistency. In practice, one may often choose jn to be rather small.
Specifically, one may take j (2)

n = mn + 1 for σ̂ 2
EMP,1, and take j (1)

n = 1 for σ̂ 2
MOP,1.

Furthermore, as seen in Sect. 2.6, the proof of Theorem2.4 involves a direct elimi-
nation of the term e

u
2 R̃(0). Though this approximation is correct in a theoretical way,

for moderate sample sizes it is too crude, which results in short confidence intervals
in practice. To handle this problem, we refer to (30)–(32) in Drees [12] and use the
following estimators as the alternatives for σ̂ 2

MOP,1 and σ̂ 2
EMP,1 respectively, which

give rise to more conservative confidence intervals:

σ̂ 2
MOP,2 :=

⎛
⎝ kn∑

i= j (1)
n

(
i− 1

2 − k
− 1

2
n

)2⎞⎠
−1

kn∑
i= j (1)

n

(
γ̂MOP

p (i) − γ̂MOP
p (kn)

)2
,

σ̂ 2
EMP,2 :=

⎛
⎝ kn∑

i= j (2)
n

(
i− 1

2 − k
− 1

2
n

)2⎞⎠
−1

kn∑
i= j (2)

n

(
γ̂ EMP

mn ,p (i) − γ̂ EMP
mn ,p (kn)

)2
.

Notice that since
kn∑

i= jn

(
i− 1

2 − k
− 1

2
n

)2
→ log

kn

jn
,
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as kn → ∞, σ̂ 2
MOP,2 and σ̂ 2

EMP,2 are also consistent estimators of σ 2
MOP,p,γ,r and

σ 2
EMP,p,γ,r , respectively. In the following, we focus on using σ̂ 2

MOP,2 and σ̂ 2
EMP,2 as the

asymptotic variance estimators.

2.3 Asymptotic Comparison of EMP with Existing
Contenders for I.I.D. Observations

In addition to the Hill, MOP, and generalized Hill (GH) estimators, moment (Mom)
estimator and mixed moment (MM) estimator are also well-known in the literature.
Define

M ( j)
kn ,n

:= 1

kn

kn∑
i=1

(
log(Xn−i+1,n) − log(Xn−kn ,n)

) j
,

L( j)
kn ,n

:= 1

kn

kn∑
i=1

(
1 − Xn−kn ,n

Xn−i+1,n

) j

,

where j ≥ 1. The Mom estimator, denoted as γ̂Mom(kn), is given by

γ̂Mom(kn) := M (1)
kn ,n

+ 1

2

[
1 −

{
M (2)

kn ,n

/(
M (1)

kn ,n

)2 − 1

}−1
]

.

The MM estimator, denoted as γ̂MM(kn), is given by

γ̂MM(kn) := φ̂kn ,n − 1

1 + 2min(φ̂kn ,n − 1, 0)
,

where

φ̂kn ,n := M (1)
kn ,n

− L(1)
kn ,n(

L(1)
kn ,n

)2 .

To the best of our knowledge, asymptotic comparisons of various EVI estimators
in the literature require the independence assumption. On the other hand, because the
asymptotic normalities of the EVI estimators established for dependent observations
involve an unknown covariance function r(x, y), it is very tedious to conduct asymp-
totic comparisons in the dependent framework. Therefore, in this section, we focus
on comparing asymptotic mean square errors (AMSEs) of different EVI estimators
for i.i.d. observations.

Combining the existing results in the literature and Corollary2.1, we have
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Table 2.1 Explicit expressions of b� and σ 2
� for different estimators

b� σ 2
�

Hill 1
1−ρ

γ 2

Mom γ−γρ+ρ

γ (1−ρ)2
1 + γ 2

GH γ−γρ+ρ

γ (1−ρ)2
1 + γ 2

MM (1+γ )(γ+ρ)
γ (1−ρ)(1+γ−ρ)

(1 + γ )2

MOP 1−pγ
1−pγ−ρ

γ 2(1−pγ )2

1−2pγ

EMP 1−pγ
(1−pγ−ρ)(1−ρ)

2γ 2(1−pγ )
1−2pγ

k
1
2
n
(
γ̂ �(kn) − γ

) →d N (φb�, σ 2
� ), as n → ∞, (2.12)

for the Hill, GH, Mom, MM, MOP, and EMP estimators, where the explicit expres-
sions of b� and σ 2

� are shown in Table2.1.
We observe that ⎧⎪⎨

⎪⎩
bHill ≥ bMOP ≥ bEMP > 0, p > 0,

bHill = bMOP ≥ bEMP > 0, p = 0,

bMOP ≥ bHill ≥ bEMP > 0, p < 0,

(2.13)

where any equality in (2.13) holds if and only if ρ = 0. Also,

⎧⎪⎨
⎪⎩

σ 2
EMP > σ 2

MOP ≥ σ 2
Hill, pγ > −1,

σ 2
EMP = σ 2

MOP > σ 2
Hill, pγ = −1,

σ 2
MOP > σ 2

EMP > σ 2
Hill, pγ < −1,

(2.14)

where the equality in (2.14) holds if and only if p = 0.
By (2.12), we can obtain the AMSE for the EVI estimators:

AMSE(γ̂ �(kn)) := σ 2
�

kn
+ b2

� A

(
n

kn

)
.

Furthermore, referring to Dekkers and De Haan [10], whenever b� �= 0, there exists
some function ψ(n, γ, ρ), such that under the optimal threshold k∗

n , we have

lim
n→∞ ψ(n, γ, ρ)AMSE(γ̂ �(k∗

n)) = {
(σ 2

� )−ρb�
} 2

1−2ρ =: LMSE(γ̂ �). (2.15)

Because the limiting MSE (LMSE) (2.15) may just involve the terms γ , ρ, and
tuning parameter p, comparison between different estimators becomes simpler. In
the literature, the LMSE is often used as the comparison criterion, see De Haan and
Peng [9], Gomes and Martins [15], Gomes and Neves [16], Gomes and Henriques-
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Rodrigues [14] and Brilhante et al. [5]. In this section, we also follow this way and
focus on the asymptotic comparison at the optimal threshold.

As discussed in Brilhante et al. [5], for the MOP estimator, the optimal LMSE is
attained at

p∗
MOP = 1 − ρ

2 −
√

ρ2−4ρ+2
2

γ
.

Furthermore, for the entire plane (γ, ρ) with γ > 0, ρ ≤ 0, it has been shown that
LMSE(γ̂MOP

p∗
MOP

) ≤ LMSE(γ̂ Hill) and the equality holds if and only if ρ = 0. In the
following, we mainly compare the EMP estimator with the MOP estimator. To begin
with, we give the explicit form of the optimal tuning parameter for the EMP estimator
that can minimize the corresponding LMSE.

Theorem 2.5 For γ > 0, ρ ≤ 0, the EMP estimator attains the minimum LMSE
when p = p∗

EMP := ργ −1.

While p∗
MOP is always positive, p∗

EMP always takes non-positive values. After
obtaining p∗

EMP,we can nowcompare theLMSE for theEMPand theMOPestimators
at optimal tuning parameters p.

Theorem 2.6 For γ > 0, ρ ≤ 0, we always have L M SE(γ̂ EMP
mn ,p | p = p∗

EMP) ≤
L M SE(γ̂MOP

p | p = p∗
MOP), and the equality holds if and only if ρ = 0.

To get a direct interpretation on the ratio

LMSE
(
γ̂MOP

p | p = p∗
MOP

)
LMSE

(
γ̂ EMP

mn ,p | p = p∗
EMP

) ,

we can refer to Fig. 2.2. Numerically, the ratio attains the maximum value
1.0430 at ρ0 = −1.0869. For any ρ < 0, we have LMSE

(
γ̂MOP

p | p = p∗
MOP

)
>

LMSE
(
γ̂ EMP

mn ,p | p = p∗
EMP

)
. Though the gain in efficiency is not very obvious, it is

acceptable because any little improvement in terms of LMSE is not easy, see De
Haan and Peng [9], Gomes and Henriques-Rodrigues [14] and Brilhante et al. [5].
Furthermore, for any fixed ρ, we take p = p∗

MOP for the MOP estimator, while for
the EMP estimator, we set different values of p. The corresponding contour map
of the ratio LMSE

(
γ̂MOP

p | p = p∗
MOP

) /
LMSE

(
γ̂ EMP

mn ,p

)
is shown in Fig. 2.3. We can

see that within a rather wide range of (ρ, pγ ) for the EMP estimator, it can still
outperform the MOP estimator at p∗

MOP.
We reproduce the overall comparison procedures in Sect. 4.2 of Brilhante et al.

[5]. Meanwhile, the EMP estimator is also considered. For each (γ, ρ), the one with
the lowest LMSE among Hill, maximum likelihood (ML), Mom, MM, MOP, and
EMP estimators is listed in Fig. 2.4. As expected, the EMP estimator now dominates
all the cases that the MOP originally does in Brilhante et al. [5]. Furthermore, when
ρ is close to 0, the problem becomes much more challenging because A(t) in (2.7)
vanishesmore slowly and the bias termb� is larger.Wecanfind that theEMPestimator
also dominates a large proportion of these most challenging cases—the top right part
of Fig. 2.4, where the MOP estimator is beaten by the Mom estimator.
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Fig. 2.2 The ratio ofLMSE
(
γ̂MOP

p | p = p∗
MOP

)/
LMSE

(
γ̂ EMP

mn ,p | p = p∗
EMP

)
forρ ∈ [−500, 0]

Fig. 2.3 The ratio LMSE
(
γ̂MOP

p | p = p∗
MOP

)/
LMSE

(
γ̂ EMP

mn ,p

)
under different ρ and pγ for the

EMP estimator

2.4 Simulations

Simulations are implemented based on the following underlying distributions:

1. Burr(a, b) distribution, where γ = (ab)−1, ρ = −b−1. The cumulative distribu-
tion function (c.d.f.) is given by

F(x; a, b) = 1 − (
1 + xa

)−b
, x ≥ 0,
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Fig. 2.4 Asymptotic comparison at optimal thresholds for different estimators under various (γ, ρ)

or equivalently, we can represent the c.d.f. in terms of parameters γ and ρ directly:

F(x; γ, ρ) = 1 −
(
1 + x− ρ

γ

) 1
ρ

, x ≥ 0.

2. Pareto(μ, σ, α)-Type II distribution, where γ = α−1 and ρ = −γ = −α−1 pro-
vided that μ �= σ . The c.d.f is given by

F(x;μ, σ, α) = 1 −
(
1 + x − μ

σ

)−α

, x ≥ μ.

3. Student-t distribution with ν degrees of freedom, T (ν), where γ = ν−1, ρ =
−2ν−1.

4. Fréchet(α) distribution, where γ = α−1, ρ = −1. The c.d.f. is given by

F(x;α) = e−x−α

, x > 0.

5. Extreme Value distribution EV(γ ), where ρ = −γ , and the c.d.f. is given by

F(x; γ ) = e−(1+γ x)
− 1

γ

, x > − 1

γ
.

In the following, we first implement sensitivity analysis on the term mn for
γ̂ EMP

mn ,p (kn). Then, we compare the performance of the EMP estimator with other
classical estimators under different choices of the thresholds as well as the tuning
parameters p. Finally, we investigate the potential efficiencies of the EMP and the
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Fig. 2.5 a Burr(1, 4), γ = 0.25, ρ = −0.25, n = 500, p = 1.6; b Burr(2, 2), γ = 0.25, ρ =
−0.50, n = 500, p = 1.6

MOP estimators at the simulated optimal thresholds under different tuning parame-
ters and sample sizes.

2.4.1 Sensitivity Analysis of mn for γ̂ EMP
mn, p(kn)

Theoretically, to guarantee the asymptotic normality of γ̂ EMP
mn ,p (kn), the termmn should

be large enough so that kκ0
n = o (mn), where κ0 = (2 − 2pγ )−1. Intuitively, a com-

paratively larger choice of mn may help to avoid the instability coming from the
most extreme terms e j,p when j is rather small. However, more information con-
tained in the extreme tail fraction may also be lost. In the following, we investigate
the effects of various choices ofmn on the root mean squared error RMSE

(
γ̂ EMP

mn ,p (kn)
)

for finite samples. In each case, we obtain RMSE under different thresholds kn as
well asmn(s) := skn for s ∈ (0, 0.6], based on J = 1000 runs. The contour maps are
shown in Figs. 2.5, 2.6 and 2.7. Due to space limitations, we only show a part of cases
as illustrations, where sample size n = 500 and p = 0.4γ −1. For other simulation
settings, similar results are obtained.

In contour maps, the areas with darker colors correspond to relatively lower
RMSE. Generally speaking, RMSE is less sensitive to mn compared with the thresh-
old kn , since the contour lines usually change smoothly in the horizontal direction. For
example, in Fig. 2.5a, where the underlying model is Burr(1,4), if we fixed kn = 50,
then the RMSE changes around 30% when mn rises from 0 up to 0.6kn . On the other
hand, if we fixed s = 0.1, then the RMSE increases more than 80%when kn changes
from 50 to 200, or equivalently, from 0.1 n to 0.4 n.

Since the effects of mn are comparatively less significant, we restrict ourselves to
the rule that

mn = min
(
�k κ̃+c0

n 	, kn − 1
)

with κ̃ := (2 − 2pγ )−1,
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Fig. 2.6 a Pareto(1, 2, 3), γ = 1/3, ρ = −1/3, n = 500, p = 1.2; b T (5), γ = 0.2, ρ = −0.4,
n = 500, p = 2

Fig. 2.7 a EV(0.5), γ = 0.5, ρ = −0.5, n = 500, p = 0.8; b Fréchet(2), γ = 0.5, ρ = −1, n =
500, p = 0.8

where c0 is a positive constant so that the asymptotic normality of γ̂ EMP
mn ,p (kn) is

guaranteed. In practice, one may choose c0 to be rather small. Hereinafter, we focus
on the specification that c0 = 0.01.

2.4.2 Simulation Results under Various Thresholds

We obtain estimates of γ based on stationary sequences generated by ARMA(1, 1)
and ARCH(1) models, where Conditions (C1)–(C3) as well as (2.11) have already
been verified in Drees [12]. To be specific, the models are listed as follows:

1. ARMA(1, 1) model:

Xt = 0.85 Xt−1 + Yt + 0.8 Yt−1, (2.16)

Xt = 0.85 Xt−1 + Yt + 0.3 Yt−1, (2.17)
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Xt = 0.85 Xt−1 + Yt − 0.3 Yt−1, (2.18)

Xt = 0.3 Xt−1 + Yt + 0.8 Yt−1, (2.19)

where Yt ∼ T (4) distribution, with γ = 0.25 and ρ = −0.5.
2. ARCH(1) model:

Xt = σt Zt , σ 2
t = 0.1 + 105− 1

4 X2
t , Zt ∼ N (0, 1). (2.20)

For finite-order casual ARMA(p, q) models with heavy-tailed innovations, the
observations and innovations share the same extreme value index γ . Hence, in
Models (2.16)–(2.19), the true γ for Xt is 0.25. Notice that for ARMA(1, 1) model,
the decaying rate of dependence is mainly determined by the AR part. Therefore, rel-
atively slower decaying rates of dependence exist in Models (2.16)–(2.18), whereas
Model (2.19) has a very short-memory but strong local dependence because of the
large MA parameter 0.8. Moreover, as the MA parameters decline in the first three
models, the degrees of dependence also decrease to a certain extent.

On the other hand, for ARCH(1) model

Xt = σt Zt , σ 2
t = α0 + α1 X2

t , Zt ∼ N (0, 1),

where α0 > 0, α1 ∈ (0, 1), there exists a constant θ > 0 such that αθ
1 E(Z2θ

t ) = 1.
With this constant θ , Xt is heavy-tailed with EVI γ = θ−1. In Model (2.20), we
choose α1 = 105− 1

4 ≈ 0.3124 so that the corresponding EVI for Xt is 0.25.
In Figs. 2.8, 2.9, 2.10, 2.11 and 2.12, we show the simulation results under

Models (2.16)–(2.20) respectively, based on J = 1000 runs. For each setting, we
choose sample size n = 1000 and threshold kn = 10, 11, . . . , 300. Red lines and
blue lines relate to the EMP estimator and the MOP estimator with different p,
respectively. Green, cyan, and gold lines correspond to the Mom, GH, and MM
estimators, respectively. For these five models, the EMP estimator has much lower
RMSE compared with theMOP estimator for moderately large choices of the thresh-
olds kn regardless of the tuning parameter p, whereas the MOP estimator can
slightly outperform the EMP estimator when kn is small. Roughly speaking, when
kn = 10, 11, . . . , 100, the RMSE of the MOP estimator is 0–0.04 lower than that of
the EMP estimator, whereas the EMP estimator can outperform MOP estimators by
0–0.5 regarding RMSE for kn = 101, 102, . . . , 300. Further, the RMSE and biases
of the EMP estimator with p = 0.4γ −1 are no more than 0.17 and 0.12 respectively,
which demonstrates the overall effectiveness of the EMP estimator for dependent
observations within the whole range where kn = 100, 101, . . . , 300. Regarding the
Mom,MM, and GH estimators, they seriously underestimate γ especially when kn is
smaller than 50 and even give rise to negative values. In these five models, the EMP
estimator with p = 0.4γ −1 has lower RMSE than these three types of estimators
for nearly all choices of thresholds kn , except when kn ≥ 293 in Model (2.18) and
kn ≥ 244 in Model (2.19).
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Fig. 2.8 Mean (left) and RMSE (right) of EVI estimators for Model (2.16), γ = 0.25

Fig. 2.9 Mean (left) and RMSE (right) of EVI estimators for Model (2.17), γ = 0.25

2.4.3 Simulation Results at Optimal Threshold

The performance of the EVI estimators at the simulated optimal thresholds using
RMSE is studied in this section. Though this is not relevant in practice, it can pro-
vide information of the potential efficiencies of the EVI estimators. To measure
the performance, one common indicator is the relative efficiency (REFF), which is
defined as
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Fig. 2.10 Mean (left) and RMSE (right) of EVI estimators for Model (2.18), γ = 0.25

Fig. 2.11 Mean (left) and RMSE (right) of EVI estimators for Model (2.19), γ = 0.25

REFF(γ̂ target | γ̂0) := RMSE(γ̂0 | k∗
0)

RMSE(γ̂ target | k∗
target)

,

where γ̂ target is the estimator of interest, γ̂0 is another estimator used as a benchmark,
and k∗

0 as well as k∗
target represent the optimal thresholds for these two estimators

respectively. Notice that the larger REFF is, the better the associated estimator per-
forms. It is common to adopt the Hill estimator as the benchmark. Hereinafter, we
will follow this practice, namely,
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Fig. 2.12 Mean (left) and RMSE (right) of EVI estimators for Model (2.20), γ = 0.25

REFF(γ̂ target) := RMSE(γ̂ Hill | k∗
Hill)

RMSE(γ̂ target | k∗
target)

.

On the other hand, the distributional properties of the indicators of performance,
such as mean values and REFF, are not easy to estimate in general. To tackle this
problem, multi-sample Monte Carlo simulations are often conducted; see Gomes
and Oliveira [17], Gomes and Pestana [18] and Brilhante et al. [5] to name but a
few. Suppose we are concerned about the parameter θ , like REFF. Then, in r × m
multi-sample simulations, we obtain r independent observations of θ , denoted as
θ̂1, θ̂2, . . . , θ̂r , with each computed based on m runs. Under mild conditions, we
have ¯̂

θ − θ

σ̂θ/
√

r
≈d N (0, 1),

for r large enough, where

¯̂
θ := 1

r

r∑
i=1

θ̂i and σ̂θ :=
√√√√ 1

r − 1

r∑
i=1

(
θ̂i − ¯̂

θ
)2

.

Hence, we can construct the confidence interval for θ as( ¯̂
θ − z1− α

2
σ̂θ /

√
r ,

¯̂
θ + z1− α

2
σ̂θ /

√
r
)

.
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Table 2.2 Simulated mean values and associated confidence intervals at optimal thresholds for
Model (2.16), γ = 0.25

n = 200 n = 500 n = 1000 n = 2000 n = 5000

EMP: pγ = −0.4 0.2599 ±
0.00215

0.2676 ±
0.00173

0.2613 ±
0.00112

0.2489 ±
0.00087

0.2476 ±
0.00070

MOP: pγ = −0.4 0.2785 ±
0.00312

0.2912 ±
0.00212

0.2625 ±
0.00149

0.2481 ±
0.00111

0.2449 ±
0.00078

EMP: pγ = −0.2 0.2585 ±
0.00206

0.2658 ±
0.00168

0.2603 ±
0.00108

0.2495 ±
0.00086

0.2477 ±
0.00070

MOP: pγ = −0.2 0.2730 ±
0.00307

0.2813 ±
0.00202

0.2738 ±
0.00139

0.2447 ±
0.00098

0.2473 ±
0.00070

EMP: p = 0 0.2573 ±
0.00192

0.2663 ±
0.00158

0.2603 ±
0.00103

0.2494 ±
0.00084

0.2479 ±
0.00069

MOP: p = 0 0.2583 ±
0.00263

0.2698 ±
0.00188

0.2672 ±
0.00125

0.2536 ±
0.00093

0.2465 ±
0.00070

EMP: pγ = 0.2 0.2525 ±
0.00180

0.2627 ±
0.00146

0.2597 ±
0.00098

0.2494 ±
0.00081

0.2482 ±
0.00067

MOP: pγ = 0.2 0.2545 ±
0.00241

0.2729 ±
0.00152

0.2656 ±
0.00115

0.2477 ±
0.00092

0.2494 ±
0.00061

EMP: pγ = 0.4 0.2564 ±
0.00162

0.2641 ±
0.00128

0.2591 ±
0.00095

0.2501 ±
0.00076

0.2489 ±
0.00062

MOP: pγ = 0.4 0.2653 ±
0.00156

0.2630 ±
0.00132

0.2610 ±
0.00100

0.2473 ±
0.00083

0.2490 ±
0.00064

For more details, we refer the readers to Gomes and Oliveira [17]. We investigate
the potential efficiencies of the MOP and EMP estimators at the simulated optimal
thresholds in Models (2.16)–(2.20), with sample size n = 200, 500, 1000, 5000 and
tuning parameter p = −0.4γ −1,−0.2γ −1, 0, 0.2γ −1 and 0.4γ −1, respectively. The
20 × 5000 multi-sampleMonte Carlo simulations are carried out to obtain simulated
mean values, RMSE, REFF as well as their associated 95% confidence intervals at
simulated optimal thresholds. The results are reported in Tables2.2, 2.3, 2.4, 2.5, 2.6,
2.7, 2.8, 2.9, 2.10 and 2.11.

We observe that the EMP estimator has lower biases and higher REFF than MOP
estimator for nearly all settings. The EMP estimator can mostly outperform the Hill
estimator at the optimal thresholds in the sense of lower RMSE, except the case with
p = −0.4γ −1 and n = 5000 under Model (2.17). Regarding the advantage of the
EMP estimator over the MOP estimator, it is more significant as the sample size
or the tuning parameter decreases. For instance, in Model (2.19) with sample size
n = 200, the REFF for the EMP and the MOP estimators are 1.7333 and 1.5402
when p = 0.4γ −1, whereas theses pairs of values become 1.2341 and 0.7872 when
p decreases to −0.4γ −1. Finally, for the ARCH(1) model, the EMP estimator can
outperform the MOP estimator by 8%–50% in the sense of the REFF under various
thresholds and tuning parameters.
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Table 2.3 Simulated mean values and associated confidence intervals at optimal thresholds for
Model (2.17), γ = 0.25

n = 200 n = 500 n = 1000 n = 2000 n = 5000

EMP: pγ = −0.4 0.2658 ±
0.00196

0.2629 ±
0.00118

0.2621 ±
0.00145

0.2524 ±
0.00108

0.2492 ±
0.00089

MOP: pγ = −0.4 0.2956 ±
0.00220

0.2823 ±
0.00219

0.2665 ±
0.00169

0.2496 ±
0.00109

0.2521 ±
0.00107

EMP: pγ = −0.2 0.2640 ±
0.00189

0.2631 ±
0.00114

0.2620 ±
0.00143

0.2520 ±
0.00107

0.2494 ±
0.00088

MOP: pγ = −0.2 0.2820 ±
0.00199

0.2730 ±
0.00197

0.2701 ±
0.00157

0.2515 ±
0.00111

0.2487 ±
0.00102

EMP: p = 0 0.2622 ±
0.00175

0.2625 ±
0.00111

0.2611 ±
0.00139

0.2517 ±
0.00105

0.2505 ±
0.00085

MOP: p = 0 0.2668 ±
0.00177

0.2675 ±
0.00151

0.2640 ±
0.00148

0.2528 ±
0.00106

0.2506 ±
0.00099

EMP: pγ = 0.2 0.2632 ±
0.00156

0.2620 ±
0.00104

0.2605 ±
0.00129

0.2523 ±
0.00099

0.2498 ±
0.00083

MOP: pγ = 0.2 0.2618 ±
0.00153

0.2687 ±
0.00118

0.2688 ±
0.00129

0.2519 ±
0.00111

0.2508 ±
0.00087

EMP: pγ = 0.4 0.2575 ±
0.00132

0.2616 ±
0.00083

0.2598 ±
0.00115

0.2523 ±
0.00090

0.2501 ±
0.00078

MOP: pγ = 0.4 0.2709 ±
0.00139

0.2635 ±
0.00085

0.2598 ±
0.00117

0.2527 ±
0.00097

0.2505 ±
0.00077

2.5 Conclusion

We have proposed a new type of EVI estimator—EMP estimator. The asymptotic
normalities of theMOP and the EMP estimators have been established for dependent
observations under somemild conditions.We also have developed consistent estima-
tors for the asymptotic variances of the MOP and the EMP estimators. Furthermore,
the asymptotic normality of the extreme quantile estimator has been established for
dependent observations, based on which we can construct the confidence interval for
the extreme quantile. Generally speaking, the proposed EMP estimator demonstrates
the following advantages: In a theoretical way, it outperforms the MOP and the Hill
estimators at the optimal thresholds in terms of the LMSE. For finite samples, our
numerical results reveal that the EMP estimator typically yields lower RMSE than
other classical estimators at optimal thresholds. It can give rise to more satisfactory
finite sample performances under a wide range of choices of thresholds, especially in
the case that γ ∈ (0, 1/2]. Last, but not least, our proposal is more robust with respect
to the threshold kn . Compared with the MOP estimator, the new EMP estimator is
also more robust with respect to the choice of the tuning parameter p.
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Table 2.4 Simulated mean values and associated confidence intervals at optimal thresholds for
Model (2.18), γ = 0.25

n = 200 n = 500 n = 1000 n = 2000 n = 5000

EMP: pγ = −0.4 0.2457 ±
0.00217

0.2554 ±
0.00158

0.2587 ±
0.00139

0.2546 ±
0.00078

0.2522 ±
0.00064

MOP: pγ = −0.4 0.2716 ±
0.00331

0.2541 ±
0.00228

0.2637 ±
0.00161

0.2590 ±
0.00087

0.2559 ±
0.00077

EMP: pγ = −0.2 0.2597 ±
0.00220

0.2587 ±
0.00155

0.2590 ±
0.00136

0.2544 ±
0.00078

0.2524 ±
0.00064

MOP: pγ = −0.2 0.2616 ±
0.00296

0.2590 ±
0.00160

0.2671 ±
0.00157

0.2586 ±
0.00083

0.2525 ±
0.00074

EMP: p = 0 0.2545 ±
0.00209

0.2605 ±
0.00149

0.2590 ±
0.00131

0.2547 ±
0.00077

0.2525 ±
0.00064

MOP: p = 0 0.2507 ±
0.00262

0.2720 ±
0.00183

0.2708 ±
0.00151

0.2536 ±
0.00081

0.2533 ±
0.00074

EMP: pγ = 0.2 0.2594 ±
0.00197

0.2616 ±
0.00142

0.2592 ±
0.00124

0.2546 ±
0.00073

0.2526 ±
0.00061

MOP: pγ = 0.2 0.2560 ±
0.00218

0.2635 ±
0.00170

0.2620 ±
0.00141

0.2541 ±
0.00070

0.2553 ±
0.00059

EMP: pγ = 0.4 0.2598 ±
0.00179

0.2597 ±
0.00130

0.2595 ±
0.00114

0.2543 ±
0.00066

0.2528 ±
0.00055

MOP: pγ = 0.4 0.2594 ±
0.00183

0.2580 ±
0.00137

0.2596 ±
0.00118

0.2575 ±
0.00063

0.2535 ±
0.00051

2.6 Technical Details

This section includes all the technical proofs of the results in Sects. 2.2 and 2.3.

2.6.1 Details on Existence of ep(t)

Theorem 2.7 Suppose that X1, X2, . . . , Xn are i.i.d. continuous random variables
with the EVI, γ > 0. If pγ < 1, then ep(t) is regularly varying with index pγ . In
other words, as t → ∞, we have

log(ep(t)) = log
(
E
(
X p | X > U (t)

)) = pγ log (t) + o (log (t)) . (2.21)

Proof Note that

1 − F(U (t)) = 1 − F

(
F−1

(
1 − 1

t

))
= 1

t
.
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Table 2.5 Simulated mean values and associated confidence intervals at optimal thresholds for
Model (2.19), γ = 0.25

n = 200 n = 500 n = 1000 n = 2000 n = 5000

EMP: pγ =
−0.4

0.2807 ±
0.00257

0.2716 ±
0.00197

0.2692 ±
0.00132

0.2604 ±
0.00130

0.2604 ±
0.00063

MOP: pγ =
−0.4

0.3295 ±
0.00348

0.2945 ±
0.00264

0.2863 ±
0.00190

0.2754 ±
0.00163

0.2652 ±
0.00059

EMP: pγ =
−0.2

0.2791 ±
0.00251

0.2725 ±
0.00191

0.2682 ±
0.00130

0.2634 ±
0.00125

0.2606 ±
0.00065

MOP: pγ =
−0.2

0.3169 ±
0.00317

0.2872 ±
0.00252

0.2810 ±
0.00182

0.2716 ±
0.00155

0.2626 ±
0.00060

EMP: p = 0 0.2780 ±
0.00238

0.2678 ±
0.00188

0.2676 ±
0.00126

0.2642 ±
0.00121

0.2612 ±
0.00066

MOP: p = 0 0.3089 ±
0.00288

0.2785 ±
0.00237

0.2747 ±
0.00171

0.2713 ±
0.00131

0.2598 ±
0.00066

EMP: pγ =
0.2

0.2761 ±
0.00212

0.2716 ±
0.00169

0.2672 ±
0.00119

0.2654 ±
0.00112

0.2610 ±
0.00068

MOP: pγ =
0.2

0.2908 ±
0.00248

0.2779 ±
0.00191

0.2705 ±
0.00151

0.2677 ±
0.00123

0.2613 ±
0.00066

EMP: pγ =
0.4

0.2646 ±
0.00183

0.2675 ±
0.00140

0.2648 ±
0.00106

0.2614 ±
0.00103

0.2604 ±
0.00069

MOP: pγ =
0.4

0.2744 ±
0.00204

0.2692 ±
0.00150

0.2722 ±
0.00107

0.2626 ±
0.00104

0.2604 ±
0.00069

Through a transformation s := U−1(x), we have

ep(t) = E
(
X p | X > U (t)

)
= 1

1 − F(U (t))

∫ +∞

U (t)
x p d F(x)

= t
∫ +∞

t
U p(s) d {F(U (s))}

= −t
∫ +∞

t
U p(s) d {1 − F(U (s))}

= t
∫ +∞

t
U p(s)s−2 ds. (2.22)

BecauseU (s) ∈ RVγ ,U p(s)s−2 ∈ RVpγ−2. Since py − 2 < −1, based on De Haan
and Ferreira ([8], Proposition B.1.9(4)), we know that

∫ +∞

t
U p(s)s−2 ds
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Table 2.6 Simulated mean values and associated confidence intervals at optimal thresholds for
Model (2.20), γ = 0.25

n = 200 n = 500 n = 1000 n = 2000 n = 5000

EMP: pγ =
−0.4

0.2575 ±
0.00137

0.2563 ±
0.00103

0.2547 ±
0.00066

0.2494 ±
0.00052

0.2492 ±
0.00034

MOP: pγ =
−0.4

0.2741 ±
0.00248

0.2571 ±
0.00189

0.2489 ±
0.00092

0.2508 ±
0.00064

0.2488 ±
0.00035

EMP: pγ =
−0.2

0.2580 ±
0.00128

0.2564 ±
0.00098

0.2545 ±
0.00064

0.2497 ±
0.00051

0.2490 ±
0.00034

MOP: pγ =
−0.2

0.2714 ±
0.00249

0.2593 ±
0.00157

0.2572 ±
0.00095

0.2492 ±
0.00067

0.2490 ±
0.00035

EMP: p = 0 0.2525 ±
0.00127

0.2574 ±
0.00093

0.2537 ±
0.00061

0.2497 ±
0.00050

0.2493 ±
0.00033

MOP: p = 0 0.2596 ±
0.00223

0.2506 ±
0.00140

0.2537 ±
0.00092

0.2504 ±
0.00057

0.2478 ±
0.00038

EMP: pγ =
0.2

0.2586 ±
0.00117

0.2580 ±
0.00090

0.2546 ±
0.00056

0.2496 ±
0.00048

0.2493 ±
0.00032

MOP: pγ =
0.2

0.2651 ±
0.00152

0.2585 ±
0.00103

0.2520 ±
0.00076

0.2495 ±
0.00051

0.2508 ±
0.00037

EMP: pγ =
0.4

0.2578 ±
0.00096

0.2552 ±
0.00083

0.2541 ±
0.00052

0.2496 ±
0.00042

0.2496 ±
0.00030

MOP: pγ =
0.4

0.2586 ±
0.00102

0.2594 ±
0.00096

0.2571 ±
0.00056

0.2514 ±
0.00046

0.2488 ±
0.00033

exists for t large enough and is regularly varying with index (pγ − 1). Hence, based
on (2.22), we can conclude that ep(t) ∈ RVpγ . �

2.6.2 Proof of Theorem 2.1

Hereinafter, we use the notation o(n)
p ( f (n)) to denote a term g(n) such that ∀ ε > 0,

lim
n→∞ P

(∣∣∣∣ g(n)

f (n)

∣∣∣∣ < ε

)
= 1.

Also, use o(t)
p ( f (t)) to denote a term g(t) such that ∀ ε > 0,

lim
t↓0 P

(∣∣∣∣ g(t)

f (t)

∣∣∣∣ < ε

)
= 1.

Define Ui := 1 − 1
/

U−1(Xi ). Then,
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Table 2.7 Simulated REFF and RMSE
(
γ̂Hill

)
, together with confidence intervals forModel (2.16),

γ = 0.25

n = 200 n = 500 n = 1000 n = 2000 n = 5000

Hill (RMSE) 0.0988 ±
0.00276

0.0734 ±
0.00237

0.0559 ±
0.00111

0.0412 ±
0.00096

0.0281 ±
0.00062

EMP: pγ =
−0.4

1.0967 ±
0.01883

1.0723 ±
0.01341

1.0639 ±
0.01453

1.0170 ±
0.00975

1.0167 ±
0.00677

MOP: pγ =
−0.4

0.7654 ±
0.01582

0.8065 ±
0.01005

0.8934 ±
0.01154

0.8939 ±
0.01375

0.9206 ±
0.01056

EMP: pγ =
−0.2

1.1379 ±
0.01987

1.1061 ±
0.01344

1.0826 ±
0.01757

1.0295 ±
0.01140

1.0207 ±
0.00811

MOP: pγ =
−0.2

0.8636 ±
0.00734

0.8915 ±
0.00606

0.9159 ±
0.00759

0.9150 ±
0.01294

0.9731 ±
0.00846

EMP: p = 0 1.2250 ±
0.02200

1.1492 ±
0.01359

1.1162 ±
0.02114

1.0488 ±
0.01455

1.0280 ±
0.01161

MOP: p = 0 1.0 1.0 1.0 1.0 1.0

EMP: pγ =
0.2

1.3579 ±
0.02409

1.2562 ±
0.01515

1.1882 ±
0.02376

1.0925 ±
0.01899

1.0485 ±
0.02071

MOP: pγ =
0.2

1.1858 ±
0.01934

1.1161 ±
0.01200

1.0976 ±
0.01201

1.0376 ±
0.01214

1.0545 ±
0.01561

EMP: pγ =
0.4

1.5769 ±
0.03452

1.4404 ±
0.02496

1.3449 ±
0.02490

1.2067 ±
0.02004

1.1145 ±
0.02788

MOP: pγ =
0.4

1.4630 ±
0.03299

1.3843 ±
0.02406

1.2944 ±
0.02284

1.1546 ±
0.02016

1.1022 ±
0.02763

P(Ui ≤ u) = P

(
U−1(xi ) ≤ 1

1 − u

)
= P

(
Xi ≤ U

(
1

1 − u

))
= P(Xi ≤ F−1(u)) = u,

for u ∈ [0, 1]. So Ui ∼ Uniform(0, 1). Denoting U1,n ≤ U2,n ≤ · · · ≤ Un,n as the
order statistics, we have

Xk,n = U

(
1

1 − Uk,n

)
.

Under the second-order condition, we have

Qn(t)

U ( n
kn

)
=

U
(

1
1−Un−[kn t],n

)
U ( n

kn
)

=
(

n

kn

(
1 − Un−[kn t],n

))−γ
{
1 + A

(
n

kn

)



(
kn

n
(
1 − Un−[kn t],n

)
) (

1 + o(n)
p (1)

)}
.

Denote
Vn(t) := n

kn

(
1 − Un−[kn t],n

)
,
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Table 2.8 Simulated REFF and RMSE
(
γ̂Hill

)
, together with confidence intervals forModel (2.17),

γ = 0.25

n = 200 n = 500 n = 1000 n = 2000 n = 5000

Hill (RMSE) 0.0995 ±
0.00214

0.0725 ±
0.00227

0.0553 ±
0.00150

0.0408 ±
0.00097

0.0270 ±
0.00062

EMP: pγ =
−0.4

1.0927 ±
0.01258

1.0749 ±
0.01107

1.0493 ±
0.01191

1.0311 ±
0.00789

0.9978 ±
0.00819

MOP: pγ =
−0.4

0.7574 ±
0.01074

0.8317 ±
0.01573

0.8830 ±
0.01706

0.8972 ±
0.01377

0.9279 ±
0.01245

EMP: pγ =
−0.2

1.1353 ±
0.01262

1.1042 ±
0.01419

1.0661 ±
0.01260

1.0400 ±
0.00975

1.0019 ±
0.00939

MOP: pγ =
−0.2

0.8589 ±
0.00621

0.9099 ±
0.00917

0.9240 ±
0.00945

0.9464 ±
0.01131

0.9526 ±
0.00948

EMP: p = 0 1.2243 ±
0.01362

1.1499 ±
0.01840

1.0998 ±
0.01413

1.0590 ±
0.01310

1.0155 ±
0.01302

MOP: p = 0 1.0 1.0 1.0 1.0 1.0

EMP: pγ =
0.2

1.3438 ±
0.01396

1.2493 ±
0.01881

1.1699 ±
0.01480

1.1068 ±
0.01709

1.0295 ±
0.02386

MOP: pγ =
0.2

1.1896 ±
0.00862

1.1244 ±
0.01262

1.0733 ±
0.00983

1.0633 ±
0.01210

1.0332 ±
0.01740

EMP: pγ =
0.4

1.5929 ±
0.02002

1.4428 ±
0.02264

1.3261 ±
0.01690

1.2216 ±
0.01729

1.0923 ±
0.02805

MOP: pγ =
0.4

1.4559 ±
0.02353

1.3733 ±
0.02520

1.2814 ±
0.01524

1.1932 ±
0.01676

1.0827 ±
0.02829

and rewrite Qn(t)
/

U ( n
kn

) as

Qn(t)

U ( n
kn

)
= (Vn(t))

−γ + (Vn(t))
−γ 


(
1

Vn(t)

)
A

(
n

kn

) (
1 + o(n)

p (1)
)
.

Denote
q(t) := t

1
2 (1 + | log t |) 1

2 .

By (2.5), we know that for (2kn)
−1 ≤ t ≤ 1 uniformly,

{Vn(t)}−γ = t−γ + k
− 1

2
n γ

{
t−(1+γ )e(t) + o(n)

p (1)t−γ−1q(t)
}
. (2.23)

Similarly, we have

{Vn(t)}−ρ = t−ρ + k
− 1

2
n ρ

{
t−(1+ρ)e(t) + o(n)

p (1)t−ρ−1q(t)
}
.

Hence,
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Table 2.9 Simulated REFF and RMSE
(
γ̂Hill

)
, together with confidence intervals forModel (2.18),

γ = 0.25

n = 200 n = 500 n = 1000 n = 2000 n = 5000

Hill (RMSE) 0.0871 ±
0.00337

0.0649 ±
0.00209

0.0506 ±
0.00182

0.0372 ±
0.00088

0.0246 ±
0.00074

EMP: pγ =
−0.4

1.1834 ±
0.02806

1.1500 ±
0.01247

1.1290 ±
0.01502

1.0798 ±
0.00898

1.0357 ±
0.01071

MOP: pγ =
−0.4

0.7807 ±
0.01829

0.8094 ±
0.02727

0.9068 ±
0.01642

0.9235 ±
0.01232

0.9333 ±
0.01141

EMP: pγ =
−0.2

1.2138 ±
0.02721

1.1583 ±
0.01304

1.1337 ±
0.01723

1.0798 ±
0.00918

1.0290 ±
0.01155

MOP: pγ =
−0.2

0.8803 ±
0.01067

0.9111 ±
0.01736

0.9574 ±
0.01034

0.9666 ±
0.00852

0.9682 ±
0.00918

EMP: p = 0 1.2836 ±
0.02522

1.1940 ±
0.01465

1.1515 ±
0.02045

1.0852 ±
0.01118

1.0209 ±
0.01396

MOP: p = 0 1.0 1.0 1.0 1.0 1.0

EMP: pγ =
0.2

1.3857 ±
0.02642

1.2683 ±
0.01547

1.1979 ±
0.02149

1.1050 ±
0.01470

1.0141 ±
0.02134

MOP: pγ =
0.2

1.1851 ±
0.02202

1.1343 ±
0.00916

1.1042 ±
0.01077

1.0496 ±
0.01167

1.0119 ±
0.01631

EMP: pγ =
0.4

1.5934 ±
0.04052

1.4387 ±
0.02347

1.3188 ±
0.01883

1.1805 ±
0.01614

1.0320 ±
0.02809

MOP: pγ =
0.4

1.4680 ±
0.03588

1.3567 ±
0.02497

1.2642 ±
0.01731

1.1475 ±
0.01571

1.0195 ±
0.02833

{Vn(t)}−ρ − 1

ρ
= t−ρ − 1

ρ
+ k

− 1
2

n
{
t−(1+ρ)e(t) + o(n)

p (1)t−ρ−1q(t)
}
. (2.24)

Letting ρ ↑ 0 in (2.24), we obtain

log (Vn(t)) = log t + k
− 1

2
n
{
t−1e(t) + o(n)

p (1)t−1q(t)
}
. (2.25)

So, combining (2.6) and (2.23)–(2.25), we have

{Vn(t)}−γ 


(
1

Vn(t)

)
= t−γ 
0(t) + o(n)

p (1)t−γ−1q(t)

uniformly for (2kn)
−1 ≤ t ≤ 1. Hence,

Qn(t)

U ( n
kn

)
= t−γ + γ k

− 1
2

n
{
t−(1+γ )e(t) + o(n)

p (1)t−γ−1q(t)
}

+A

(
n

kn

){
t−γ 
0(t) + o(n)

p (1)t−γ−1q(t)
}
.
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Table 2.10 Simulated REFF and RMSE
(
γ̂Hill

)
, together with confidence intervals for Model

(2.19), γ = 0.25

n = 200 n = 500 n = 1000 n = 2000 n = 5000

Hill (RMSE) 0.1148 ±
0.00341

0.0827 ±
0.00194

0.0634 ±
0.00179

0.0485 ±
0.00111

0.0342 ±
0.00080

EMP: pγ =
−0.4

1.2341 ±
0.01545

1.1957 ±
0.01747

1.1533 ±
0.01194

1.1142 ±
0.01065

1.1036 ±
0.01477

MOP: pγ =
−0.4

0.7872 ±
0.01167

0.8462 ±
0.01005

0.8675 ±
0.00610

0.8835 ±
0.00982

0.9165 ±
0.00722

EMP: pγ =
−0.2

1.2487 ±
0.01659

1.2103 ±
0.01675

1.1616 ±
0.01092

1.1224 ±
0.00988

1.0991 ±
0.01551

MOP: pγ =
−0.2

0.8837 ±
0.01078

0.9186 ±
0.00625

0.9315 ±
0.00405

0.9376 ±
0.00802

0.9621 ±
0.00543

EMP: p = 0 1.3070 ±
0.01852

1.2379 ±
0.01671

1.1765 ±
0.01032

1.1256 ±
0.01077

1.0957 ±
0.01672

MOP: p = 0 1.0 1.0 1.0 1.0 1.0

EMP: pγ =
0.2

1.4335 ±
0.02290

1.3058 ±
0.01624

1.2129 ±
0.01344

1.1408 ±
0.01594

1.0938 ±
0.02108

MOP: pγ =
0.2

1.1921 ±
0.00943

1.1368 ±
0.01344

1.0890 ±
0.01029

1.0585 ±
0.01372

1.0475 ±
0.01511

EMP: pγ =
0.4

1.7333 ±
0.03230

1.4956 ±
0.01897

1.3438 ±
0.01947

1.2147 ±
0.02332

1.1194 ±
0.02810

MOP: pγ =
0.4

1.5402 ±
0.02629

1.3782 ±
0.01896

1.2586 ±
0.01890

1.1591 ±
0.02142

1.0885 ±
0.02662

Combining with the assumption k
1
2
n A (n/kn) → φ ∈ (−∞,+∞), we have

sup
t∈[ 1

2kn
,1]

tγ+1

q(t)

∣∣∣∣k 1
2
n

(
Qn(t)

U (n/kn)
− t−γ

)
− γ t−(γ+1)e(t) − φt−γ 
0(t)

∣∣∣∣ → 0 in probability.

If t ∈ (0, (2kn)
−1], Qn(t) = Qn((2kn)

−1). Hence,

sup
0<t≤ 1

2kn

tγ+1

q(t)

∣∣∣∣∣k
1
2
n

(
Qn(t)

U ( n
kn

)
− t−γ

)
− γ t−(γ+1)e(t) − φt−γ 
0(t)

∣∣∣∣∣
≤ sup

0<t≤ 1
2kn

tγ+1

q(t)

∣∣∣∣∣∣k
1
2
n

⎛
⎝Qn

(
1
2kn

)
U ( n

kn
)

−
(

1

2kn

)−γ

⎞
⎠− γ

(
1

2kn

)−(γ+1)

e

(
1

2kn

)

−φ

(
1

2kn

)−γ


0

(
1

2kn

)∣∣∣∣∣
+ sup

0<t≤ 1
2kn

tγ+1

q(t)

∣∣∣∣k 1
2
n
{
t−γ − (2kn)

γ
}+ γ

{
t−(1+γ )e(t) − (2kn)

γ+1e

(
1

2kn

)}
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Table 2.11 Simulated REFF and RMSE
(
γ̂Hill

)
, together with confidence intervals for Model

(2.20), γ = 0.25

n = 200 n = 500 n = 1000 n = 2000 n = 5000

Hill (RMSE) 0.0693 ±
0.00138

0.0445 ±
0.00107

0.0316 ±
0.00044

0.0225 ±
0.00030

0.0146 ±
0.00033

EMP: pγ =
−0.4

1.2177 ±
0.01726

1.2015 ±
0.01704

1.1765 ±
0.01581

1.1663 ±
0.01279

1.1726 ±
0.01326

MOP: pγ =
−0.4

0.7700 ±
0.01479

0.8142 ±
0.01327

0.8180 ±
0.01654

0.8315 ±
0.01293

0.8498 ±
0.01289

EMP: pγ =
−0.2

1.2855 ±
0.01916

1.2384 ±
0.01757

1.2061 ±
0.01619

1.1945 ±
0.01353

1.1962 ±
0.01374

MOP: pγ =
−0.2

0.8676 ±
0.00511

0.8971 ±
0.00531

0.8952 ±
0.00789

0.9013 ±
0.00866

0.9237 ±
0.01001

EMP: p = 0 1.3554 ±
0.0195

1.2882 ±
0.01844

1.2555 ±
0.01716

1.2352 ±
0.01429

1.2370 ±
0.01528

MOP: p = 0 1.0 1.0 1.0 1.0 1.0

EMP: pγ =
0.2

1.4516 ±
0.01868

1.3606 ±
0.01961

1.3194 ±
0.01781

1.3007 ±
0.01451

1.3012 ±
0.01698

MOP: pγ =
0.2

1.1660 ±
0.01507

1.1437 ±
0.01838

1.1307 ±
0.01236

1.1211 ±
0.01062

1.1424 ±
0.01580

EMP: pγ =
0.4

1.6205 ±
0.02659

1.5056 ±
0.02366

1.4321 ±
0.01646

1.4005 ±
0.01323

1.4024 ±
0.01902

MOP: pγ =
0.4

1.4454 ±
0.02433

1.3565 ±
0.02534

1.3024 ±
0.02074

1.3094 ±
0.01595

1.2963 ±
0.01851

+φ

{
t−γ 
0(t) −

(
1

2kn

)−γ


0

(
1

2kn

)}∣∣∣∣∣
= o(n)

p (1) + O(n)
p

⎛
⎝ sup

0<t≤ 1
2kn

t

q(t)
k

1
2
n + sup

0<t≤ 1
2kn

∣∣∣∣ e(t)

q(t)

∣∣∣∣+ φ sup
0<t≤ 1

2kn

∣∣∣∣ t
0(t)

q(t)

∣∣∣∣
⎞
⎠

= o(n)
p (1),

due to (2.6) and


0(t) = o(t)(t−δ) ∀ δ > 0. (2.26)

This completes the proof of Theorem2.1.
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2.6.3 Proof of Theorem 2.2

First, we consider the case p �= 0.We can rewrite theMOP estimator as the following
form:

γ̂MOP
p (kn) =

1 − 1
/∫ 1

0

(
Qn(t)
Qn(1)

)p
dt

p
. (2.27)

By (2.8), we have

Qn(t)

U
(

n
kn

) = t−γ + k
− 1

2
n

{
o(n)

p (1)t−γ−1q(t) + γ t−γ−1e(t) + φt−γ 
0(t)
}

:= t−γ + k
− 1

2
n yn(t),

where

q(t) := t
1
2 (1 + | log t |) 1

2 , (2.28)

yn(t) := k
1
2
n

⎛
⎝ Qn(t)

U
(

n
kn

) − t−γ

⎞
⎠ = o(n)

p (1)t−γ−1q(t) + γ t−γ−1e(t) + φt−γ 
0(t).

By (2.6) and (2.26), we have yn(t) = o(t)
p

(
t−γ−1q(t)

)
.

To begin with, consider the term:

�n :=
∫ 1

0

(
Qn(t)

Qn(1)

)p

dt

= k−1
n

⎛
⎝Qn

(
1
2kn

)
Qn(1)

⎞
⎠

p

+
∫ k−1+α

n

k−1
n

(
Qn(t)

Qn(1)

)p

dt +
∫ 1

k−1+α
n

(
Qn(t)

Qn(1)

)p

dt

=: �(1)
n + �(2)

n + �(3)
n ,

where α is a constant such that

(1 − pγ )(1 − α) >
1

2
and α > 0. (2.29)

Because
yn(t) = o(t)

p

(
t−γ− 1

2 −ε
)

, ∀ ε > 0,

we have
k

− 1
2

n tγ yn(t) →p 0,

uniformly for t ∈ [k−1+α
n , 1]. Hence, we can deduce that
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�(3)
n =

∫ 1

k−1+α
n

⎛
⎝ Qn(t)/U

(
n
kn

)
Qn(1)/U

(
n
kn

)
⎞
⎠

p

dt

=
∫ 1

k−1+α
n

⎛
⎝ t−γ + k

− 1
2

n yn(t)

1 + k
− 1

2
n yn(1)

⎞
⎠

p

dt

=
∫ 1

k−1+α
n

t−pγ
(
1 + k

− 1
2

n tγ yn(t) − k
− 1

2
n yn(1) + o(n)

p (k
− 1

2
n )

)p
dt

=
∫ 1

k−1+α
n

t−pγ
(
1 + k

− 1
2

n ptγ yn(t) − k
− 1

2
n pyn(1) + o(n)

p (k
− 1

2
n )

)
dt

=
(
1 + o(n)

p (k
− 1

2
n )

) ∫ 1

k−1+α
n

t−pγ dt

+k
− 1

2
n p

∫ 1

k−1+α
n

(
o(n)

p (1)t−pγ−1q(t) + γ t−pγ−1e(t) + φt−pγ 
0(t)
)

dt

−k
− 1

2
n p

∫ 1

k−1+α
n

(
o(n)

p (1)t−pγ + γ t−pγ e(1)
)

dt.

Because (2.29), we have

∫ 1

k−1+α
n

t−pγ dt = 1

1 − pγ

(
1 − k(−1+α)(1−pγ )

n

) = 1

1 − pγ

(
1 + o

(
k

− 1
2

n

))
.

On the other hand, note that

∫ 1

k−1+α
n

t−pγ 
0(t) dt =
{∫ 1

k−1+α
n

t−pγ t−ρ−1
ρ

dt = 1
(1−pγ )(1−pγ−ρ)

+ o(1), ρ < 0,∫ 1
k−1+α

n
−t−pγ log t dt = 1

(1−pγ )2
+ o(1), ρ = 0.

So, we conclude that

∫ 1

k−1+α
n

t−pγ 
0(t) dt = 1

(1 − pγ )(1 − pγ − ρ)
+ o(1).

Furthermore, it can be shown that

∫ 1

0
t−pγ−1q(t) dt and

∫ 1

0
γ t−pγ−1e(t) dt

are integrable. Hence,
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�(3)
n = 1

1 − pγ

(
1 + o

(
k

− 1
2

n

))
+ k

− 1
2

n pγ

∫ 1

k−1+α
n

t−pγ
(
t−1e(t) − e(1)

)
dt

+k
− 1

2
n pφ

∫ 1

k−1+α
n

t−pγ 
0(t) dt + o(n)
p (k

− 1
2

n )

= 1

1 − pγ
+ k

− 1
2

n

{
pγ

∫ 1

0
t−pγ

(
t−1e(t) − e(1)

)
dt

+ pφ

(1 − pγ )(1 − pγ − ρ)
+ o(n)

p (1)

}
. (2.30)

For the term �(2)
n , note that for t ∈ [k−1

n , k−1+α
n ], ∀ ε > 0,

(
Qn(t)

Qn(1)

)p

=
⎛
⎝ t−γ + k

− 1
2

n yn(t)

1 + k
− 1

2
n yn(1)

⎞
⎠

p

= O(t)
p

(
t−pγ−pε

)
.

By (2.29), we have

�(2)
n = Op

(∫ k−1+α
n

0
t−pγ−pε dt

)
= Op

(
k(−1+α)(1−pγ−pε)

n

) = Op

(
k

− 1
2

n

)
. (2.31)

For the remaining term �(1)
n , we have for any ε > 0,

yn

(
1

2kn

)
= Op

(
k

γ+ 1
2 +ε

n

)
.

So,

�
(1)
n = k−1

n

⎛
⎜⎝
(

1
2kn

)−γ + k
− 1

2
n yn

(
1
2kn

)
1 + k

− 1
2

n yn(1)

⎞
⎟⎠

p

= Op

(
k−1+pγ+pε

n

)
= Op

(
k
− 1

2
n

)
.(2.32)

Combining (2.30)–(2.32), we have

�n = 1

1 − pγ
+ k

− 1
2

n

{
pγ

∫ 1

0
t−pγ

(
t−1e(t) − e(1)

)
dt

+ pφ

(1 − pγ )(1 − pγ − ρ)
+ o(n)

p (1)

}
. (2.33)

Plugging (2.33) into (2.27), we have
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γ̂MOP
p (kn)

= p−1

⎛
⎜⎝1 − 1

1
1−pγ

+ k
− 1

2
n

[
pγ
∫ 1
0 t−pγ (t−1e(t) − e(1)) dt + pφ

(1−pγ )(1−pγ−ρ)
+ o(n)

p (1)
]
⎞
⎟⎠

= γ + k
− 1

2
n

[
γ (1 − pγ )2

∫ 1

0
t−pγ (t−1e(t) − e(1)) dt + (1 − pγ )φ

1 − pγ − ρ

]
+ o(n)

p (k
− 1

2
n ).

Second, we consider the case p = 0; the MOP is degenerated into the Hill estimator:

γ̂MOP
0 (kn) := 1

kn

kn∑
i=1

{
log
(
Xn−i+1,n

)− log
(
Xn−kn ,n

)}
.

Divide γ̂MOP
0 (kn) into two parts:

γ̂MOP
0 (kn) =

∫ 1

0
log

(
Qn(t)

Qn(1)

)
dt

=
∫ k−1+α

n

0
log

(
Qn(t)

Qn(1)

)
dt +

∫ 1

k−1+α
n

log

(
Qn(t)

Qn(1)

)
dt

=: �̃(1)
n + �̃(2)

n ,

where α ∈ (0, 1/2). Note that

�̃(2)
n =

∫ 1

k−1+α
n

log

⎛
⎝ t−γ + k

− 1
2

n yn(t)

1 + k
− 1

2
n yn(1)

⎞
⎠ dt

=
∫ 1

k−1+α
n

[
−γ log t + log

{
1 + k

− 1
2

n (tγ yn(t) − yn(1)) + o(n)
p (k

− 1
2

n )
}]

dt

= γ + k
− 1

2
n

∫ 1

0

(
γ t−1e(t) − γ e(1) + φ
0(t)

)
dt + o(n)

p (k
− 1

2
n ).

Further, we have

∫ 1

0

0(t) dt =

{∫ 1
0

t−ρ−1
ρ

dt = 1
1−ρ

, ρ < 0,∫ 1
0 − log t dt = 1, ρ = 0.

Hence,

�̃(2)
n = γ + k

− 1
2

n

∫ 1

0

(
γ t−1e(t) − γ e(1)

)
dt + φ

1 − ρ
+ o(n)

p (k
− 1

2
n ). (2.34)
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For the term �̃(1)
n , note that for t ∈ (0, k−1+α

n ],

log

(
Qn(t)

Qn(1)

)
= log

⎛
⎝ t−γ + k

− 1
2

n yn(t)

1 + k
− 1

2
n yn(1)

⎞
⎠ = O(t)

p (log(t)) .

Hence,

�̃(1)
n = Op

(∫ k−1+α
n

0
log(t) dt

)
= O(k

− 1
2

n ). (2.35)

Combining (2.34) with (2.35), we have

γ̂MOP
0 (kn) = γ + k

− 1
2

n

∫ 1

0

(
γ t−1e(t) − γ e(1)

)
dt + φ

1 − ρ
+ o(n)

p (k
− 1

2
n ). (2.36)

In conclusion, for any p such that pγ < 1/2, we have

k
1
2
n
(
γ̂MOP

p (kn) − γ
) →d γ (1 − pγ )2

∫ 1

0
t−pγ (t−1e(t) − e(1)) dt + (1 − pγ )φ

1 − pγ − ρ
.

On the other hand, we have

E

{
γ (1 − pγ )2

∫ 1

0
t−pγ (t−1e(t) − e(1)) dt

}

= γ (1 − pγ )2
∫ 1

0
t−pγ E

(
t−1e(t) − e(1)

)
dt = 0

and

V ar

{
γ (1 − pγ )2

∫ 1

0
t−pγ

(
t−1e(t) − e(1)

)
dt

}

= γ 2(1 − pγ )4cov

(∫ 1

0
t−pγ

(
t−1e(t) − e(1)

)
dt,

∫ 1

0
s−pγ

(
s−1e(s) − e(1)

)
ds

)

= γ 2(1 − pγ )4
∫ 1

0

∫ 1

0
(st)−pγ−1r(s, t) ds dt

−γ 2(1 − pγ )4
∫ 1

0
s−pγ ds

∫ 1

0
t−pγ−1r(t, 1) dt

−γ 2(1 − pγ )4
∫ 1

0
t−pγ dt

∫ 1

0
s−pγ−1r(s, 1) ds

+γ 2(1 − pγ )4 r(1, 1)
∫ 1

0
s−pγ ds

∫ 1

0
t−pγ dt
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= γ 2(1 − pγ )4
∫ 1

0

∫ 1

0
(st)−pγ−1r(s, t) ds dt

−2γ 2(1 − pγ )3
∫ 1

0
t−pγ−1r(t, 1) dt + γ 2(1 − pγ )2 r(1, 1).

This completes the proof of Theorem2.2.

2.6.4 Proof of Theorem 2.3

First, we consider the case p �= 0. Recall that

γ̂ EMP
mn ,p(kn)

= 1

p(kn − mn)

⎡
⎣ kn∑

i=mn+1

kn∑
j=i

log

(
e j,p

e j+1,p

)
+ mn log

(
emn+1,p

ekn+1,n

)⎤⎦

= 1

p(kn − mn)

kn∑
j=mn+1

j log

(
e j,p

e j+1,p

)

= 1

p(kn − mn)

kn∑
j=mn+1

j

⎛
⎜⎝log

(
1 + 1

j

)
− log

⎛
⎜⎝1 + 1∑ j

i=1

(
Xn−i+1,n
Xn− j,n

)p

⎞
⎟⎠
⎞
⎟⎠ , (2.37)

where mn = O
(
k1−κ

n

)
with κ ∈ (0, 1 − (2 − 2pγ )−1

)
. To start with, consider the

following approximation form of (2.37):

1

p(kn − mn)

kn∑
j=mn+1

j

⎛
⎜⎝1

j
− 1∑ j

i=1

(
Xn−i+1,n

Xn− j,n

)p

⎞
⎟⎠

= 1

kn − mn

kn∑
j=mn+1

γ̂MOP
p ( j), (2.38)

where γ̂MOP
p ( j) is the MOP estimator with the threshold chosen as j . At first, we

focus on the term

�n, j := 1

j

j∑
i=1

(
Xn−i+1,n

Xn− j,n

)p

=
∫ 1

0

(
Qn(u j t)

Qn(u j )

)p

dt,

where u j = j/kn with j = mn + 1, . . . , kn . By (2.8), we have
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Qn(u j t)

U ( n
kn

)
= u−γ

j t−γ + k
1
2
n

(
γ u−(γ+1)

j t−(γ+1)e(u j t) + φu−γ

j t−γ 
0(u j t)

+o(n)
p (1)u−γ−1

j q(u j )t
−γ−1q(t)

)
=: u−γ

j

(
t−γ + k

− 1
2

n y( j)
n (t)

)
,

where q(t) is defined in (2.28), and

y( j)
n (t) := k

1
2
n

⎛
⎝uγ

j Qn(u j t)

U
(

n
kn

) − t−γ

⎞
⎠

= γ u−1
j t−(γ+1)e(u j t) + φt−γ 
0(u j t) + o(n)

p (1)u−1
j q(u j )t

−γ−1q(t)

= Op

(
t− 1

2 −γ | log(t)| 1
2 u

− 1
2

j | log(u j )| 1
2

)
.

Take any δ ∈ (κ, 1 − (2 − 2pγ )−1
)
, and divide �n, j into three parts:

�n, j = (u j kn)−1

⎛
⎝Qn

(
1
2kn

)
Qn(u j )

⎞
⎠

p

+
∫ k−1+δ

n

(u j kn )−1

(
Qn(u j t)

Qn(u j )

)p

dt +
∫ 1

k−1+δ
n

(
Qn(u j t)

Qn(u j )

)p

dt

=: �
(1)
n, j + �

(2)
n, j + �

(3)
n, j .

Note that for t ∈ [k−1+δ
n , 1] and u j ∈ [(mn + 1)/kn, 1] uniformly, we have

k
− 1

2
n tγ y( j)

n (t) = Op

(
k
− 1

2
n t−

1
2 | log(t)| 12 u

− 1
2

j | log(u j )| 12
)

= Op

(
k

κ
2 − δ

2
n |log(kn)|

)
= op(1).

Hence, for u j ∈ [(mn + 1)/kn, 1] uniformly,

�
(3)
n, j =

∫ 1

k−1+δ
n

(
uγ

j Qn(u j t)/U ( n
kn

)

uγ

j Qn(u j )/U ( n
kn

)

)p

dt

=
∫ 1

k−1+δ
n

t−pγ
(
1 + k

− 1
2

n ptγ y( j)
n (t) − k

− 1
2

n py( j)
n (1) + o(n)

p (k
− 1

2
n )

)
dt

=
(
1 + o(n)

p (k
− 1

2
n )

) ∫ 1

k−1+δ
n

t−pγ dt

+k
− 1

2
n p

∫ 1

k−1+δ
n

(
γ u−1

j t−(pγ+1)e(u j t) + φt−pγ 
0(u j t)

+o(n)
p (1)u−1

j q(u j )t
−pγ−1q(t)

)
dt

−k
− 1

2
n p

∫ 1

k−1+δ
n

(
γ u−1

j t−pγ e(u j ) + φt−pγ 
0(u j ) + o(n)
p (1)t−pγ u−1

j q(u j )
)

dt.
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Because pγ < 1/2, we can see that

∫ 1

0
t−(pγ+1)e(u j t) dt and

∫ 1

0
γ t−pγ−1q(t) dt

are integrable, and

∫ 1

ε

t−(pγ+1)e(u j t) dt →p 0,
∫ 1

ε

γ t−pγ−1q(t) dt →p 0,

as ε → 0. On the other hand, note that

∫ 1

0
t−pγ (
0(u j t) − 
0(u j )) dt =

⎧⎨
⎩
∫ 1
0 t−pγ u−ρ

j t−ρ−u−ρ
j

ρ
dt = u−ρ

j
(1−pγ )(1−pγ−ρ)

, ρ < 0,∫ 1
0 −t−pγ log t dt = 1

(1−pγ )2
, ρ = 0,

which can be summarized as

∫ 1

0
t−pγ (
0(u j t) − 
0(u j )) dt = u−ρ

j

(1 − pγ )(1 − pγ − ρ)
.

Furthermore, because δ < 1 − (2 − 2pγ )−1,

∫ 1

k−1+δ
n

t−pγ dt = 1

1 − pγ

(
1 − k(−1+δ)(1−pγ )

n

) = 1

1 − pγ

(
1 + o

(
k

− 1
2

n

))
.

Hence,

�
(3)
n, j = 1

1 − pγ
+ k

− 1
2

n

{
pγ u−1

j

∫ 1

0
t−pγ

(
t−1e(u j t) − e(u j )

)
dt

+pφ

∫ 1

0
t−pγ (
0(u j t) − 
0(u j )) dt

}
+ o(n)

p (k
− 1

2
n )

= 1

1 − pγ
+ k

− 1
2

n

{
pγ u−1

j

∫ 1

0
t−pγ

(
t−1e(u j t) − e(u j )

)
dt

+ u−ρ

j pφ

(1 − pγ )(1 − pγ − ρ)
+ o(n)

p (1)

}
. (2.39)

For the term �
(2)
n, j , note that for t ∈ [(u j kn)

−1, k−1+δ
n ] and u j ∈ [(mn + 1)/kn, 1]

uniformly,
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(
Qn(u j t)

Qn(u j )

)p

=
⎛
⎝ t−γ + k

− 1
2

n y( j)
n (t)

1 + k
− 1

2
n y( j)

n (1)

⎞
⎠

p

= Op

((
k

− 1
2

n t− 1
2 −γ |log(t)| 1

2 u
− 1

2
j

∣∣log(u j )
∣∣ 12 )p

)
= O

(|log(kn)|p t−pγ
)
.

So, we have

�
(2)
n, j =

∫ k−1+δ
n

(u j kn)−1

(
Qn(u j t)

Qn(u j )

)p

dt

= Op

(
|log(kn)|p

∫ k−1+δ
n

0
t−pγ dt

)

= o(k
− 1

2
n ). (2.40)

Finally, we consider the remaining term �
(1)
n, j . Note that

y( j)
n

(
1

2u j kn

)
= Op

(
k

γ+ 1
2

n |log(kn)| 1
2 uγ

j

∣∣log(u j )
∣∣ 12 ) .

So, for u j ∈ [(mn + 1)/kn, 1] uniformly, we have

�
(1)
n, j = (u j kn)

−1

⎛
⎜⎝
(

1
2kn

)−γ + k
− 1

2
n y( j)

n

(
1

2u j kn

)
1 + k

− 1
2

n y( j)
n (1)

⎞
⎟⎠

p

= Op

(
k−1+pγ

n |log(kn)|p u−1+pγ

j

)
= O

(
k

− 1
2

n

)
. (2.41)

Combining (2.39)–(2.41), we can conclude that

∫ 1

0

(
Qn(u j t)

Qn(u j )

)p

dt = 1

1 − pγ
+ k

− 1
2

n

{
pγ u−1

j

∫ 1

0
t−pγ

(
t−1e(u j t) − e(u j )

)
dt

+ u−ρ

j pφ

(1 − pγ )(1 − pγ − ρ)
+ o(n)

p (1)

}
, (2.42)

which leads to the following result:
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γ̂MOP
p ( j)

= p−1

⎛
⎜⎝1 − 1

1
j
∑ j

i=1

(
Xn−i+1,n
Xn− j,n

)p

⎞
⎟⎠

= p−1

⎛
⎜⎝1 − 1∫ 1

0

(
Qn(u j t)
Qn(u j )

)p
dt

⎞
⎟⎠

= p−1
(
1 − (1 − pγ )

[
1 + k

− 1
2

n (1 − pγ )

{
pγ u−1

j

∫ 1

0
t−pγ

(
t−1e(u j t) − e(u j )

)
dt

+
u−ρ

j pφ

(1 − pγ )(1 − pγ − ρ)
+ o(n)

p (1)

}]−1)

= p−1
[
1 − (1 − pγ )

{
1 − k

− 1
2

n (1 − pγ )

(
pγ u−1

j

∫ 1

0
t−pγ

(
t−1e(u j t) − e(u j )

)
dt

+
u−ρ

j pφ

(1 − pγ )(1 − pγ − ρ)
+ o(n)

p (1)

)}]

= γ + k
− 1

2
n

(
γ (1 − pγ )2u−1

j

∫ 1

0
t−pγ

(
t−1e(u j t) − e(u j )

)
dt

+
(1 − pγ )φu−ρ

j

1 − pγ − ρ
+ o(n)

p (1)

)
, (2.43)

uniformly for j ∈ [mn + 1, kn]. Note that the term∑kn
j=mn+1 γ̂MOP

p ( j) is the summa-
tion of the function

P(u) := p−1

(
1 − 1

/∫ 1

0

(
Qn(ut)

Qn(u)

)p

dt

)
,

over u = (mn + 1)/kn, (mn + 2)/kn, . . . , 1. So by the definition of the integral, we
have

1

kn − mn

kn∑
j=mn+1

γ̂MOP
p ( j)

= kn

kn − mn

⎛
⎝ 1

kn

kn∑
j=mn+1

γ̂MOP
p ( j)

⎞
⎠

= γ + k
− 1

2
n

1 − mnk−1
n

(
γ (1 − pγ )2

∫ 1

mn/kn

u−1
∫ 1

0
t−pγ

(
t−1e(ut) − e(u)

)
dt du

+ (1 − pγ )φ

1 − pγ − ρ

∫ 1

mn/kn

u−ρ du + o(n)
p (1)

)
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= γ + k
− 1

2
n

(
γ (1 − pγ )2

∫ 1

0
u−1

∫ 1

0
t−pγ

(
t−1e(ut) − e(u)

)
dt du

+ (1 − pγ )φ

(1 − pγ − ρ)(1 − ρ)
+ o(n)

p (1)

)
, (2.44)

since mn/kn → 0.
In the next step, we need to verify that (2.37) and (2.38) are asymptotically equiv-

alent, namely,

1

p(kn − mn)

∣∣∣∣∣∣∣
kn∑

j=mn+1

j

⎧⎪⎨
⎪⎩log

(
1 + 1

j

)
− log

⎛
⎜⎝1 + 1∑ j

i=1

(
Xn−i+1,n

Xn− j,n

)p

⎞
⎟⎠
⎫⎪⎬
⎪⎭

−
kn∑

j=mn+1

j

⎧⎪⎨
⎪⎩
1

j
− 1∑ j

i=1

(
Xn−i+1,n

Xn− j,n

)p

⎫⎪⎬
⎪⎭
∣∣∣∣∣∣∣

= o(n)
p

(
k

− 1
2

n

)
. (2.45)

Because |x − log(1 + x)| < x2/2 for x > 0, we have

1

p(kn − mn)

∣∣∣∣∣∣∣
kn∑

j=mn+1

j

⎧⎪⎨
⎪⎩log

(
1 + 1

j

)
− log

⎛
⎜⎝1 + 1∑ j

i=1

(
Xn−i+1,n

Xn− j,n

)p

⎞
⎟⎠
⎫⎪⎬
⎪⎭

−
kn∑

j=mn+1

j

⎧⎪⎨
⎪⎩
1

j
− 1∑ j

i=1

(
Xn−i+1,n

Xn− j,n

)p

⎫⎪⎬
⎪⎭
∣∣∣∣∣∣∣

≤ 1

p(kn − mn)

kn∑
j=mn+1

j

∣∣∣∣log
(
1 + 1

j

)
− 1

j

∣∣∣∣

+ 1

p(kn − mn)

∣∣∣∣∣∣∣
kn∑

j=mn+1

j

⎧⎪⎨
⎪⎩

1∑ j
i=1

(
Xn−i+1,n

Xn− j,n

)p − log

⎛
⎜⎝1 + 1∑ j

i=1

(
Xn−i+1,n

Xn− j,n

)p

⎞
⎟⎠
⎫⎪⎬
⎪⎭
∣∣∣∣∣∣∣

≤ 1

p(kn − mn)

kn∑
j=mn+1

1

2 j

+ 1

p(kn − mn)

∣∣∣∣∣∣∣
kn∑

j=mn+1

j

⎧⎪⎨
⎪⎩

1∑ j
i=1

(
Xn−i+1,n

Xn− j,n

)p − log

⎛
⎜⎝1 + 1∑ j

i=1

(
Xn−i+1,n

Xn− j,n

)p

⎞
⎟⎠
⎫⎪⎬
⎪⎭
∣∣∣∣∣∣∣

=: A(1)
n + A(2)

n .
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Note that

A(1)
n = 1

p(kn − mn)

kn∑
j=mn+1

1

2 j

<
1

2p(kn − mn)

∫ kn

1

1

t
dt = 1

2p(kn − mn)
log(kn) = o(k

− 1
2

n ).

Hence, it suffices to verify that A(2)
n = o(n)

p

(
k

− 1
2

n

)
.

If p > 0, we can easily see that

j∑
i=1

(
Xn−i+1,n

Xn− j,n

)p

≥ j.

So

A(2)
n ≤ 1

p(kn − mn)

kn∑
j=mn+1

j
1

2
(∑ j

i=1

(
Xn−i+1,n

Xn− j,n

)p)2

≤ 1

p(kn − mn)

kn∑
j=mn+1

j
1

2 j2
= o(k

− 1
2

n ).

If p < 0,

j∑
i=1

(
Xn−i+1,n

Xn− j,n

)p

≤ j. (2.46)

Define

Ã(2)
n := kn − mn

kn
A(2)

n

= 1

pkn

∣∣∣∣∣∣∣
kn∑

j=mn+1

j

⎧⎪⎨
⎪⎩

1∑ j
i=1

(
Xn−i+1,n

Xn− j,n

)p − log

⎛
⎜⎝1 + 1∑ j

i=1

(
Xn−i+1,n

Xn− j,n

)p

⎞
⎟⎠
⎫⎪⎬
⎪⎭
∣∣∣∣∣∣∣ .

Because A(2)
n = Ã(2)

n (1 + o(1)), it suffices to show that Ã(2)
n = o(n)

p

(
k

− 1
2

n

)
. Divide

Ã(2)
n into three parts:
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Ã(2)
n = 1

pkn

[k− 1
2 −δ0

n ]∑
j=mn+1

j

⎧⎪⎨
⎪⎩

1∑ j
i=1

(
Xn−i+1,n

Xn− j,n

)p − log

⎛
⎜⎝1 + 1∑ j

i=1

(
Xn−i+1,n

Xn− j,n

)p

⎞
⎟⎠
⎫⎪⎬
⎪⎭

+ 1

pkn

[k− 1
2 +δ0

n ]∑
j=[k− 1

2 −δ0
n ]+1

j

⎧⎪⎨
⎪⎩

1∑ j
i=1

(
Xn−i+1,n

Xn− j,n

)p − log

⎛
⎜⎝1 + 1∑ j

i=1

(
Xn−i+1,n

Xn− j,n

)p

⎞
⎟⎠
⎫⎪⎬
⎪⎭

+ 1

pkn

kn∑
j=[k− 1

2 +δ0
n ]+1

j

⎧⎪⎨
⎪⎩

1∑ j
i=1

(
Xn−i+1,n

Xn− j,n

)p − log

⎛
⎜⎝1 + 1∑ j

i=1

(
Xn−i+1,n

Xn− j,n

)p

⎞
⎟⎠
⎫⎪⎬
⎪⎭

=: B(1)
n + B(2)

n + B(3)
n ,

∀ δ0 ∈ (0, 0.125). By (2.42), we know that for j = mn + 1, . . . , kn ,

j∑ j
i=1

(
Xn−i+1,n

Xn− j,n

)p

= (1 − pγ ) − k
− 1

2
n (1 − pγ )2

{
pγ u−1

j

∫ 1

0
t−pγ

(
t−1e(u j t) − e(u j )

)
dt

+ u−ρ

j pφ

(1 − pγ )(1 − pγ − ρ)
+ o(n)

p (1)

}

=: (1 − pγ ) − k
− 1

2
n z1(u j ) + o(n)

p

(
k

− 1
2

n

)
,

where z1(u) is defined as

z1(u) := (1 − pγ )2
{

pγ u−1
∫ 1

0
t−pγ

(
t−1e(ut) − e(u)

)
dt

+ u−ρ pφ

(1 − pγ )(1 − pγ − ρ)

}
.

Note that ∀ ε > 0,

t−pγ
(
t−1e(ut) − e(u)

) = op

(
t−pγ− 1

2 −εu
1
2 −ε
)

,

so we have
z1(u) = op

(
u− 1

2 −ε
)

.

For the term B(1)
n , by (2.46) and log(1 + x) < x , we have
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B(1)
n ≤ 1

pkn

[k
1
2 −δ0

n ]∑
j=mn+1

j∑ j
i=1

(
Xn−i+1,n

Xn− j,n

)p

= 1

p

∫ k
− 1

2 −δ0
n

mn/kn

{
(1 − pγ ) − k

− 1
2

n z1(u)
}

dt + o(n)
p

(
k

− 1
2

n

)

≤ 1 − pγ

p
k

− 1
2 −δ0

n − k
− 1

2
n

p

∫ k
− 1

2 −δ0
n

0
z1(u) dt + o(n)

p (k
− 1

2
n )

= o(n)
p (k

− 1
2

n ). (2.47)

We then study the two remaining terms: B(2)
n and B(3)

n . Firstly note that k
− 1

2
n < u

1
2
j ,

so we have ∣∣∣∣∣∣∣
j∑ j

i=1

(
Xn−i+1,n

Xn− j,n

)p

∣∣∣∣∣∣∣
< (1 − pγ ) + (1 − pγ )2 pγ u

− 1
2

j

∫ 1

0
t−pγ

(
t−1e(u j t) − e(u j )

)
dt

+ k
− 1

2
n (1 − pγ )2u−ρ

j pφ

(1 − pγ )(1 − pγ − ρ)
+ o(n)

p (k
− 1

2
n )

=: (1 − pγ ) + z2(u j ) + k
− 1

2
n (1 − pγ )2u−ρ

j pφ

(1 − pγ )(1 − pγ − ρ)
+ o(n)

p (k
− 1

2
n ),

where

z2(u) := (1 − pγ )2 pγ u− 1
2

∫ 1

0
t−pγ

(
t−1e(ut) − e(u)

)
dt = op(u

−ε), ∀ ε > 0.

Hence, for B(2)
n , taking ε small enough, we have

B(2)
n ≤ 1

2pkn

[k− 1
2 +δ0

n ]∑
j=[k− 1

2 −δ0
n ]+1

1

j

⎛
⎜⎝ j∑ j

i=1

(
Xn−i+1,n

Xn− j,n

)p

⎞
⎟⎠

2

<
1

2pk
1
2 −δ0
n

∫ k
− 1

2 +δ0
n

0

{
(1 − pγ ) + z2(u) + k

− 1
2

n (1 − pγ )2u−ρ

j pφ

(1 − pγ )(1 − pγ − ρ)

+o(n)
p (k

− 1
2

n )

}2
du
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= 1

2pk
1
2 −δ0
n

⎧⎨
⎩O(n)

p

⎛
⎝∫ k

− 1
2 +δ0

n

0
u−ε du

⎞
⎠+ O(n)

p (k
− 1

2 +δ0
n )

⎫⎬
⎭

= O(n)
p

(
k(− 1

2 +δ0)(2−ε)
n

)
= o(n)

p

(
k

− 1
2

n

)
. (2.48)

For B(3)
n , we have

B(3)
n ≤ 1

2pkn

kn∑
j=[k− 1

2 +δ0
n ]+1

1

j

⎛
⎜⎝ j∑ j

i=1

(
Xn−i+1,n

Xn− j,n

)p

⎞
⎟⎠

2

≤ 1

2pk
3
2 +δ0
n

kn∑
j=[k− 1

2 +δ0
n ]+1

⎛
⎜⎝ j∑ j

i=1

(
Xn−i+1,n

Xn− j,n

)p

⎞
⎟⎠

2

= 1

2pk
1
2 +δ0
n

∫ 1

k
− 1

2
n +δ0

{
(1 − pγ ) + z2(u) + k

− 1
2

n (1 − pγ )2u−ρ

j pφ

(1 − pγ )(1 − pγ − ρ)

+o(n)
p (k

− 1
2

n )

}2
du

= 1

2pk
1
2 +δ0
n

O(n)
p (1)

= o(n)
p

(
k

− 1
2

n

)
. (2.49)

Combining (2.47)–(2.49), we have A(2)
n = o(n)

p

(
k

− 1
2

n

)
. By (2.37), (2.44) and (2.45),

we have

k
1
2
n (γ̂ EMP

mn ,p(kn) − γ )

= γ (1 − pγ )2
∫ 1

0
u−1

∫ 1

0
t−pγ

(
t−1e(ut) − e(u)

)
dt du + (1 − pγ )φ

(1 − pγ − ρ)(1 − ρ)
,

+o(n)
p (1) (2.50)

for pγ < 1/2 and p �= 0.
Second, we consider the case p = 0; γ̂ EMP

mn ,0 (kn) is defined as
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γ̂ EMP
mn ,0 (kn)

= 1

kn − mn

⎡
⎣ kn∑

j=mn+1

{
1

j

j∑
i=1

log
(
Xn−i+1,n

)}+ mn

mn + 1

mn+1∑
i=1

log
(
Xn−i+1,n

)

− kn

kn + 1

kn+1∑
i=1

log
(
Xn−i+1,n

)]

= 1

kn − mn

kn∑
j=mn+1

γ̂ Hill( j)

+ 1

kn − mn

{
γ̂ Hill(kn + 1) − γ̂ Hill(mn + 1) + log

(
Xn−kn ,n

Xn−mn ,n

)}
=: C (1)

n + C (2)
n ,

where mn = O
(
k1−κ

n

)
with κ ∈ (0, 1/2). Take any δ ∈ (κ, 1/2) and divide γ̂ Hill( j)

into two parts:

γ̂ Hill( j) =
∫ k−1+δ

n

0
log

(
Q
(
u j t
)

Q
(
u j
)
)

dt +
∫ 1

k−1+δ
n

log

(
Q
(
u j t
)

Q
(
u j
)
)

dt =: �̃
(1)
n, j + �̃

(2)
n, j .

As in �
(2)
n, j , we can similarly show that for u j ∈ [(mn + 1)/kn, 1] uniformly,

�̃
(2)
n, j =

∫ 1

k−1+δ
n

log

⎛
⎝ t−γ + k

− 1
2

n y( j)
n (t)

1 + k
− 1

2
n y( j)

n (1)

⎞
⎠ dt

=
∫ 1

k−1+δ
n

−γ log(t) + log
(
1 + k

− 1
2

n tγ y( j)
n (t) − k

− 1
2

n y( j)
n (1) + o(n)

p (k
− 1

2
n )

)
dt

=
∫ 1

k−1+δ
n

−γ log(t) dt + k
− 1

2
n

∫ 1

k−1+δ
n

(
γ u−1

j t−1e(u j t) + φ
0(u j t)

+o(n)
p (1)u−1

j q(u j )t
−1q(t)

)
dt

−k
− 1

2
n

∫ 1

k−1+δ
n

(
γ u−1

j e(u j ) + φ
0(u j ) + o(n)
p (1)u−1

j q(u j )
)

dt

= γ + k
− 1

2
n

{
u−1

j γ

∫ 1

0

{
t−1e(u j t) − e(u j )

}
dt + u−ρ

j φ

1 − ρ
+ o(n)

p (1)

}
.

Furthermore, take ε > 0 small enough, for t ∈ (0, k−1+δ
n ] and u j ∈ [(mn + 1)/kn, 1]

uniformly,

k
− 1

2
n y( j)

n (t) = Op

(
k

− 1
2

n t− 1
2 −γ−εu

− 1
2 −ε

j

)
= O

(
t− 1

2 −γ−ε
)

.
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Since δ < 1/2, we have

�̃
(1)
n, j =

∫ k−1+δ
n

0
log

⎛
⎝ t−γ + k

− 1
2

n y( j)
n (t)

1 + k
− 1

2
n y( j)

n (1)

⎞
⎠ dt = Op

(∫ k−1+δ
n

0
log(t) dt

)
= o

(
k

− 1
2

n

)
.

In conclusion, for u j ∈ [(mn + 1)/kn, 1] uniformly,

γ̂Hill( j) = γ + k
− 1

2
n

[
u−1

j γ

∫ 1

0

{
t−1e(u j t) − e(u j )

}
dt + u−ρ

j φ

1 − ρ
+ o(n)

p (1)

]
, (2.51)

which gives rise to

C (1)
n = γ + k

− 1
2

n γ

[∫ 1

mn/kn

u−1
∫ 1

0

{
t−1e(ut) − e(u)

}
dt du

+ φ

1 − ρ

∫ 1

mn/kn

u−ρ du + o(n)
p (1)

]

= γ + k
− 1

2
n γ

[∫ 1

0
u−1

∫ 1

0

{
t−1e(ut) − e(u)

}
dt du + φ

(1 − ρ)2
+ o(n)

p (1)

]
.

For the term C (2)
n , by (2.51), we have

γ̂ Hill(mn + 1) = γ + o(n)
p (1), γ̂ Hill(kn + 1) = γ + o(n)

p (1).

Moreover, ∀ ε > 0,

log

(
Xn−mn ,n

Xn−kn ,n

)
= γ log

(
kn

mn

)
(1 + op(1)) = o

(
kε

n

)
.

In addition,
1

kn − mn
= 1

kn
(1 + o(1)).

Hence,

C (2)
n = op

(
k

− 1
2

n

)
.

We conclude that for mn = O
(
k1−κ

n

)
with κ ∈ (0, 1/2),

γ̂ EMP
mn ,0 (kn) = γ + k

− 1
2

n γ

[∫ 1

0
u−1

∫ 1

0

{
t−1e(ut) − e(u)

}
dt du + φ

(1 − ρ)2
+ o(n)

p (1)

]
.

(2.52)
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Summarizing, in view of (2.50) and (2.52), for ∀ p < (2γ )−1, given mn =
O
(
k1−κ

n

)
with κ ∈ (0, 1 − (2 − 2pγ )−1

)
, we have

k
1
2
n (γ̂ EMP

mn ,p (kn) − γ )

= γ (1 − pγ )2
∫ 1

0
u−1

∫ 1

0
t−pγ

(
t−1e(ut) − e(u)

)
dt du

+ (1 − pγ )φ

(1 − pγ − ρ)(1 − ρ)
+ o(n)

p (1).

On the other hand, we have

E

{
γ (1 − pγ )2

∫ 1

0

∫ 1

0
u−1t−pγ

(
t−1e(ut) − e(u)

)
dt du

}

= γ (1 − pγ )2
∫ 1

0

∫ 1

0
u−1t−pγ E

(
t−1e(ut) − e(u)

)
dt du

= 0,

and

V ar

{
γ (1 − pγ )2

∫ 1

0

∫ 1

0
u−1t−pγ

(
t−1e(ut) − e(u)

)
dt du

}

= γ 2(1 − pγ )4
∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0
Cov

(
u−1t−pγ−1e(ut) − u−1t−pγ e(u),

s−1v−pγ−1e(vs) − s−1v−pγ e(s)
)

du dv ds dt

= γ 2(1 − pγ )4
∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0
(us)−1(vt)−pγ−1r(ut, vs) du dv ds dt

−γ 2(1 − pγ )4
∫ 1

0
v−pγ dv

∫ 1

0

∫ 1

0

∫ 1

0
(us)−1t−pγ−1r(ut, s) du ds dt

−γ 2(1 − pγ )4
∫ 1

0
t−pγ dt

∫ 1

0

∫ 1

0

∫ 1

0
(us)−1v−pγ−1r(vs, u) du dv ds

+ γ 2(1 − pγ )4
∫ 1

0
v−pγ dv

∫ 1

0
t−pγ dt

∫ 1

0

∫ 1

0

∫ 1

0
(us)−1r(u, s) du ds

= γ 2(1 − pγ )2
∫ 1

0

∫ 1

0
(us)−1r(u, s) du ds

−2γ 2(1 − pγ )3
∫ 1

0

∫ 1

0

∫ 1

0
(us)−1t−pγ−1r(st, u) du ds dt

+γ 2(1 − pγ )4
∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0
(us)−1(vt)−pγ−1r(uv, st) du dv ds dt.

This completes the proof of Theorem 2.3.
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2.6.5 Proof of Theorem 2.4

To start with, we concentrate on the EMP estimator; this case is more complicated.
Take mn = O

(
k1−κ

n

)
with κ ∈ (0, 1 − (2 − 2pγ )−1

)
. By (2.43) and (2.44), for s0 ∈

[ν, 1] uniformly, where ν ∈ (0, 1), we have

1

�s0kn	 − mn

�s0kn	∑
j=mn+1

γ̂MOP
p ( j)

= γ + k
1
2
n

�s0kn	 − mn

(
γ (1 − pγ )2

∫ s0

mn/kn

u−1
∫ 1

0
t−pγ

{
t−1e(ut) − e(u)

}
dt du

+ (1 − pγ )φ

1 − pγ − ρ

∫ s0

mn/kn

u−ρ du + o(n)
p (1)

)

= γ + k
1
2
n

�s0kn	 − mn

(
γ (1 − pγ )2

∫ 1

mn/(kns0)
w−1

∫ 1

0
t−pγ

{
t−1e(ut) − e(u)

}
dt dw

+ (1 − pγ )φs1−ρ
0

1 − pγ − ρ

∫ 1

mn/(kns0)
w−ρ dw + o(n)

p (1)

)

(use a change of variables, w = u

s0
)

= γ + s−1
0 k

− 1
2

n

(
γ (1 − pγ )2

∫ 1

0
w−1

∫ 1

0
t−pγ

{
t−1e(ut) − e(u)

}
dt dw

+ (1 − pγ )φs1−ρ
0

(1 − pγ − ρ)(1 − ρ)
+ o(n)

p (1)

)
,

since mn/(kns0) → 0. Furthermore, by (2.45), we can similarly show that

1

p(�s0kn	 − mn)

∣∣∣∣∣∣∣
�s0kn	∑

j=mn+1

j

⎧⎪⎨
⎪⎩log

(
1 + 1

j

)
− log

⎛
⎜⎝1 + 1∑ j

i=1

(
Xn−i+1,n

Xn− j,n

)p

⎞
⎟⎠
⎫⎪⎬
⎪⎭

−
�s0kn	∑

j=mn+1

j

⎧⎪⎨
⎪⎩
1

j
− 1∑ j

i=1

(
Xn−i+1,n

Xn− j,n

)p

⎫⎪⎬
⎪⎭
∣∣∣∣∣∣∣

= o(n)
p

(
(s0kn)

− 1
2

)
.

Hence, for all ν ∈ (0, 1) and s0 ∈ [ν, 1] uniformly, we have
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γ̂ EMP
mn ,p (�s0kn	)

= γ + s−1
0 k

− 1
2

n

(
γ (1 − pγ )2

∫ 1

0
w−1

∫ 1

0
t−pγ

{
t−1e(s0wt) − e(s0w)

}
dt dw

+ (1 − pγ )φs1−ρ
0

(1 − pγ − ρ)(1 − ρ)
+ o(n)

p (1)

)

=: γ + k
− 1

2
n R(s0) + k

− 1
2

n bEMPφs−ρ
0 + o(n)

p

(
k

− 1
2

n

)
,

where

R(s) := s−1γ (1 − pγ )2
∫ 1

0
w−1

∫ 1

0
t−pγ

{
t−1e(swt) − e(sw)

}
dt dw,

bEMP := 1 − pγ

(1 − pγ − ρ)(1 − ρ)
.

By a standard diagonal argument, there exists a sequence νn satisfying νn ↓ 0 and
mn/(νnkn) ↓ 0, such that

sup
νn≤s0≤1

∣∣∣k 1
2
n
(
γ̂ EMP

mn ,p (�s0kn	) − γ
)− R(s0) − bEMPφs−ρ

0

∣∣∣ →p 0.

Denoting j (1)
n := �νnkn	, we have

(
log

kn

j (1)
n

)−1 kn∑
i= j (1)

n

(
γ̂ EMP

mn ,p (i) − γ̂ EMP
mn ,p (kn)

)2

p→
(
log

kn

j (1)
n

)−1 ∫ 1

j (1)
n /kn

(R(s) − R(1))2 ds

+
(
log

kn

j (1)
n

)−1

b2
EMPφ

2
∫ 1

j (1)
n /kn

(
s−ρ − 1

)2
ds

+2

(
log

kn

j (1)
n

)−1 ∫ 1

j (1)
n /kn

(
s−ρ − 1

)
(R(s) − R(1)) ds

=: D(1)
n + D(2)

n + D(3)
n .

Define
R̃(x) := e

x
2 R(ex ), x ∈ (−∞, 0].

Based on the homogeneity of covariance function r(x, y): r(λx, λy) = λr(x, y) for
λ, x, y ∈ [0, 1], we have
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V ar
(

R̃(x), R̃(y)
)

= e− x+y
2 γ 2(1 − pγ )4Cov

(∫ 1

0
w−1

∫ 1

0
t−pγ

{
t−1e(ex wt) − e(ex w)

}
dt dw,

∫ 1

0
v−1

∫ 1

0
s−pγ

{
s−1e(eyvs) − e(eyv)

}
ds dv

)

= e− y−x
2 γ 2(1 − pγ )4

{∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0
(wv)−1(st)−pγ−1r

(
wt, ey−x vs

)
dt ds dw dv

−2
∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0
(wv)−1s−pγ−1t−pγ r

(
w, ey−x vs

)
dt ds dw dv

+
∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0
(wv)−1(st)−pγ r

(
w, ey−x v

)
dt ds dw dv

}

= e− y−x
2

{
γ 2(1 − pγ )4

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0
(wv)−1(st)−pγ−1r

(
wt, ey−x vs

)
dt ds dw dv

−2γ 2(1 − pγ )3
∫ 1

0

∫ 1

0

∫ 1

0
(wv)−1s−pγ−1r

(
w, ey−x vs

)
ds dw dv

+γ 2(1 − pγ )2
∫ 1

0

∫ 1

0
(wv)−1r

(
w, ey−x v

)
dw dv

}
, (2.53)

depending only on (y − x). Hence, R̃(x) is a strictly stationary centered Gaussian
process, with variance

V ar
(

R̃(x)
)

= σ 2
EMP,p,γ,r , ∀ x ∈ [0,+∞).

Referring to the proof of Drees ([12], Theorem 2.3), we have

D(1)
n =

(
log

kn

j (1)
n

)−1 ∫ 1

j (1)
n /kn

(R(s) − R(1))2 ds

=
(
log

kn

j (1)
n

)−1 ∫ 0

log( j (1)
n /kn)

(
R̃(u) − e

u
2 R̃(0)

)2
du

→
(
log

kn

j (1)
n

)−1 ∫ 0

log( j (1)
n /kn)

R̃2(u) du, (2.54)

because ∫ 0

log( j (1)
n /kn)

(
e

u
2 R̃(0)

)2
du = O(1).

Moreover, the ergodic theorem in [7, Sect. 5.5] gives rise to

(
log

kn

j (1)
n

)−1 ∫ 0

log( j (1)
n /kn)

R̃2(u) du → E R̃2(0) = σ 2
EMP,p,γ,r almost surely.
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Therefore,

D(1)
n →p σ 2

EMP,p,γ,r as j (1)
n /kn → 0. (2.55)

For the term D(3)
n , based on the ergodic theorem, we have

D(3)
n = 2

(
log

kn

j (1)
n

)−1 ∫ 1

j (1)
n /kn

(
s−ρ − 1

)
(R(s) − R(1)) ds

= 2

(
log

kn

j (1)
n

)−1 ∫ 0

log( j (1)
n /kn)

(
e−uρ − 1

) (
e

u
2 R̃(u) − eu R̃(0)

)
du

→ 0 almost surely. (2.56)

Furthermore, notice that

D(2)
n → 0 as j (1)

n /kn → 0. (2.57)

So, combining (2.55)–(2.57), we have

σ̂ 2
EMP,1 :=

(
log

kn

j (1)
n

)−1 kn∑
i= j (1)

n

(
γ̂ EMP

mn ,p (i) − γ̂ EMP
mn ,p (kn)

)2 →p σ 2
EMP,p,γ,r .

Next, we verify the results for the MOP estimator. By (2.43), we have, for all
ν ∈ (0, 1) and s0 ∈ [ν, 1] uniformly,

γ̂MOP
p (�s0kn	) = γ + k

− 1
2

n

(
γ (1 − pγ )2s−1

0

∫ 1

0
t−pγ

(
t−1e(s0t) − e(s0)

)
dt

+ (1 − pγ )φs−ρ
0

1 − pγ − ρ
+ o(n)

p (1)
)

=: γ + k
− 1

2
n P(s0) + k

− 1
2

n bMOPφs−ρ
0 + o(n)

p

(
k

− 1
2

n

)
,

where

P(s) := s−1γ (1 − pγ )2
∫ 1

0
t−pγ

{
t−1e(st) − e(s)

}
dt,

bMOP := 1 − pγ

1 − pγ − ρ
.

Similarly, there exists a sequence ν̃n satisfying ν̃n ↓ 0, such that
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sup
ν̃n≤s0≤1

∣∣∣k 1
2
n
(
γ̂MOP

p (�s0kn	) − γ
)− P(s0) − bMOPφs−ρ

0

∣∣∣ →p 0.

Define
P̃(x) := e

x
2 P
(
ex
)
, x ∈ (−∞, 0].

Similar as (2.53), we can show that

Cov
(

P̃(x), P̃(y)
)

= e− y−x
2

{
γ 2(1 − pγ )4

∫ 1

0

∫ 1

0
(st)−pγ−1r(s, ey−x t) ds dt

−2γ 2(1 − pγ )3
∫ 1

0
t−pγ−1r(t, ey−x ) dt + γ 2(1 − pγ )2 r(1, ey−x )

}
,

which is only determinedby (y − x).Hence, P̃(x) is also a strictly stationary centered
Gaussian process with variance

V ar
(

P̃(x)
)

= σ 2
MOP,p,γ,r , ∀ x ∈ [0,+∞).

The remaining of the proof is omitted; see the proof of the EMP estimator. Finally,
denoting j (2)

n := ν̃nkn , we can show that

σ̂ 2
MOP,1 :=

(
log

kn

j (2)
n

)−1 kn∑
i= j (2)

n

(
γ̂MOP

p (i) − γ̂MOP
p (kn)

)2 →p σ 2
MOP,p,γ,r .

2.6.6 Proof of Theorem 2.5

Since 2(1 − 2ρ)−1 > 0, we just need to minimize the term (σ 2
� )−ρb�. Note that

(σ 2
EMP)

−ρbEMP = 2−ργ −2ρ(1 − pγ )−ρ

(1 − 2pγ )−ρ

1 − pγ

(1 − pγ − ρ)(1 − ρ)

= 2−ργ −2ρ

1 − ρ

(1 − pγ )1−ρ

(1 − pγ − ρ)(1 − 2pγ )−ρ

:= 2−ργ −2ρ

1 − ρ
D(p).
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Taking the derivative of D(p), we have

d D(p)

dp

= −γ (1 − ρ)(1 − pγ )−ρ(1 − pγ − ρ)(1 − 2pγ )−ρ + γ (1 − pγ )1−ρ(1 − 2pγ )−ρ

(1 − pγ − ρ)2(1 − 2pγ )−2ρ

+−2γρ(1 − 2pγ )−1−ρ(1 − pγ − ρ)(1 − pγ )1−ρ

(1 − pγ − ρ)2(1 − 2pγ )−2ρ

= −γ (1 − pγ )−ρ(1 − 2pγ )−ρ−1(1 − ρ)(1 − pγ − ρ)(1 − 2pγ )

(1 − pγ − ρ)2(1 − 2pγ )−2ρ

+γ (1 − pγ )−ρ(1 − 2pγ )−ρ−1{(1 − pγ )(1 − 2pγ ) − 2ρ(1 − pγ − ρ)(1 − pγ )}
(1 − pγ − ρ)2(1 − 2pγ )−2ρ

= γ (1 − pγ )−ρ(1 − 2pγ )−ρ−1(ρ2 − pγρ)

(1 − pγ − ρ)2(1 − 2pγ )−2ρ .

We see that d D(p)/dp < 0 if p < ργ −1, and d D(p)/dp > 0 if p > ργ −1. Hence,
the EMP estimator attains the minimum LMSE at p∗

EMP := ργ −1.
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Chapter 3
Exclusive Topic Model

Hao Lei, Kailiang Liu, and Ying Chen

Abstract Digital documents are generated, disseminated, and disclosed in books,
research papers, newspapers, online feedback, and other content containing large
amounts of information, for which discovering topics becomes important but chal-
lenging. In the current field of topic modeling, there are limited techniques available
to deal with (1) the predominance of frequently occurring words in the estimated
topics and (2) the overlap of commonly used words in different topics. We propose
exclusive topic modeling (ETM) to identify field-specific keywords that typically
occur less frequently but are important for representing certain topics, and to pro-
vide well-structured exclusive terms for topics within each topic. Specifically, we
impose a weighted LASSO penalty to automatically reduce the dominance of fre-
quently occurring but less relevantwords and a pairwiseKullback–Leibler divergence
penalty to achieve topic separation. Numerical studies show that the ETM can detect
field-specific keywords and provide exclusive topics, which is more meaningful for
interpretation and topic detection than other models such as the latent Dirichlet allo-
cation model.

3.1 Introduction

Digital documents are generated, disseminated and disclosed in books, research
papers, newspapers, online feedback, and other contents containing large amounts
of information, for which topic discovery becomes very important. Given that the
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goal is to find hidden semantic structures in documents, this requires probabilistic
topic models that group similar phrases by learning large amounts of raw text in an
unsupervised manner. Unsupervised machine learning and natural language process-
ing algorithms are used for text data analysis, including topic modeling techniques
that have become popular in recent years.

Probabilistic topic modeling aims to uncover the latent structure of corpus from
large-scale words to topics, without any prior topic annotations [11]. It has been
widely adopted for information retrieval in various fields and its application goes
beyond just organizing textual data such as natural scene categories in computer
vision [17], genomic data in bioinformatics [15, 24, 26], public opinion on urban
issues in information management [27], market competition [50], service quality
[23], customer preferences [44] in marketing, financial analyst reports [22], 10-
K forms [5], and algorithmic trading engines [32, 42] in finance, to name just a
few. Despite its popularity, there are two well-known technical challenges in topic
modeling: (1) the estimated topics often overlap with commonly used words and
are therefore semantically similar, and (2) the predominance of frequently occurring
words in the estimated topics. The former makes interpretation uneasy, while the
latter poses computational challenges in terms of estimation and memory.

To alleviate the overlapping problem, there are two popular strategies: restrict the
number of topics or induce latent variables. Several approaches have been proposed
for selecting the number of topics, including, e.g., cross-validation using perplexity
[8–10], topic coherence [29, 31, 41], nested Chinese restaurant process as a prior
for the number of topics [18]. Word embedding information has also been used
to improve topic quality [16, 38, 47], where some latent variables are introduced
to increase flexibility [34]. Yet, these methods still yield many topics, where the
overlapping problem exists.

Previousworks address the predominance of frequentwords by incorporating syn-
tactic information [14, 19], using the asymmetric priors [45], and the “garbage collec-
tor” approach [39, 40]. Both the Hidden Markov Model-Latent Dirichlet Allocation
(HMM-LDA) model [19] and the syntactic topic model [14] incorporate syntactic
information into the thematic topic model. The effect of four different combinations
of symmetric and asymmetric priors in the Latent Dirichlet Allocation (LDA) model
on the estimated topics is investigated by Wallach et al. [45].

We propose exclusive topic modeling (ETM) to identify field-specific keywords
that typically occur less frequently but are important for representing certain topics
and to provide well-structured exclusive terms for topics within each topic. Specif-
ically, we impose a weighted LASSO penalty to handle corpus-specific common
words, where the weights are associated with their commonality in the underlying
corpus. The more common a word is, the larger the penalty and the smaller the
assigned probability are. Furthermore, the pairwise Kullback–Leibler (KL) diver-
gence penalty is able to separate the overlapped topics by maximizing a linear com-
bination of the posterior according to the Evidence Lower BOund (ELBO) [12].
We demonstrate the effectiveness of the proposed model in three simulation stud-
ies, where the ETM outperforms LDA in each case and recovers the ground truth
topics. We also apply the proposed method to the benchmark dataset of NIPS. The



3 Exclusive Topic Model 85

NIPS benchmarks and datasets are well-known in the machine learning community.
The benchmark dataset has been used in many previous works on probabilistic topic
modeling [3, 4, 6, 20, 36], as well as in network studies [21, 28, 37]. Compared
with the LDA, the ETM assigns lower weights to frequently occurring words and
deliver exclusive topics, making the topics easier to interpret. Our results show that
the topic coherence score improves by 22% and 10% on average for the ETM with
weighted LASSO penalty and pairwise KL divergence penalty, respectively.

The rest of the paper is structured as follows. Section 3.2 presents the details
of the proposed method and the algorithms to estimate the topics. In Sect. 3.3, we
conduct three simulation studies to demonstrate the effectiveness of the proposed
method in tackling the two common issues in topic modeling. In Sect. 3.4, we apply
the proposed method to the public NIPS dataset. The results show that the proposed
method improves topic interpretability and coherence scores. We conclude the paper
in Sect. 3.5.

3.2 Method

In this section, we present the details of the proposed methods, including the setting
of the ETM, the weighted LASSO penalty, and the pairwise KL divergence penalty.
We discuss the corresponding effects of the two penalties on topic estimation and
derivations. In the ETM framework, the objective function is no longer convex. We
use an algorithm combining gradient descent and Hessian descent to find updated
equations.

3.2.1 ETM

The model setup is as follows. Given a corpus C , we assume it contains K topics.
Every topic ηk is a multinomial distribution on the vocabulary. Every document d
contains one or more topics. The topic proportion in each document is governed
by the local latent parameter document-topic θ , which has a Dirichlet prior with
hyperparameter ζ . Every word in document d is generated from the contained topics
as follows:

• for every document d ∈ C , its topic proportion parameter θ is generated from a
Dirichlet distribution, i.e., θ ∼ Dirichlet(ζ ).

• for every word in the document d,

– a topic Z is first generated from the multinomial distribution with parameter θ ,
i.e., Z ∼ Multinomial(1, θ).

– a word W is then generated from the multinomial distribution with parameter
ηZ , i.e., W ∼ Multinomial(1, ηZ).
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Although the setting is the same as [10], the latent parameters in the ETM are
estimated by maximizing the following penalized posterior:

log p(θ, Z , ζ, η|W ) −
K∑

i=1

V∑

j=1

μimi j |ηi j | +
K∑

i=1,l �=i

νil DK L(ηi ||ηl), (3.1)

where p(θ, Z , ζ, η|W ) is

p(θ, Z , ζ, η|W ) = p(θ, Z , ζ, η,W )

p(W )
= p(θ, Z , ζ, η,W )∫

p(θ, Z , ζ, η,W ) dθ dZ dζ dη

and

p(θ, Z , ζ, η,W ) =
D∏

d=1

p(θd |ζ )

Nd∏

n=1

p(zn|θd)p(wn|zn, η)

=
D∏

d=1

�(
∑K

i=1 ζi )∏K
i=1 �(ζi )

θ
ζi−1
di

Nd∏

n=1

K∏

i=1

θ
1{zn=i}
di

V∏

j=1

η
1{wn=v j }1{zn=i}
i j .

The D, K , andV represent the total number of documents, topics, andwords, respec-
tively, in the corpus. Nd is the total number ofwords in document d.�(·) is the gamma
function. The second term in Eq. (3.1) is the weighted LASSO penalty, in which μi

is the penalty weight for topic i , mi j represents the weight for word j in topic i
and is known. The third term in Eq. (3.1) is the pairwise KL divergence penalty,
in which DKL(ηi ||ηl) = ∑V

j=1 ηi j (log ηi j − log ηl j ) represents the KL divergence
between topic i and l and νil is the corresponding penalty weight.

Unfortunately, the posterior is intractable to compute. Instead, a “variational EM
algorithm” is used to maximize the ELBO [10, 12], denoted as L(ζ, η, γ, φ) =∑D

d=1 Ld(ζ, η, γd , φd), where Ld is the ELBO for document d

Ld(ζ, η, γd , φd) = Eq [log p(θd , Zd ,Wd |ζ, η)] − Eq [log q(θd , Zd |γd , φd)]
≤ log p(Wd |ζ, η),

where p(·) is the density function derived from the LDA and q(θd , Zd |γd , φd) is the
mean-field variational distribution

q(θd , Zd |γd , φd) = q(θd |γd)
Nd∏

n=1

q(Zdn|φdn),

where q(θd |γd) ∼ Dirichlet(γd), and q(Zdn|φdn) ∼ Multinomial(1, φdn). Eq repre-
sents the expectation under the variational distribution. The inequality is a result by
applying Jensen’s inequality. The dataWd provides more evidence to our prior belief,
hence it is named as the ELBO. The exact form of Ld is as follows [10]:
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Ld(ζ, η, γ, φ) = log�(

K∑

i=1

ζi ) −
K∑

i=1

log(ζi ) +
K∑

i=1

(ζi − 1)(	(γi ) − 	(

K∑

i=1

γi ))

+
Nd∑

n=1

K∑

i=1

φni (	(γi ) − 	(

K∑

i=1

γi )) +
Nd∑

n=1

K∑

i=1

V∑

j=1

φniw
j
dn log ηi j

− log�(

K∑

i=1

γi ) +
K∑

i=1

log�(γi )

−
K∑

i=1

(γi − 1)(	(γi ) − 	(

K∑

i=1

γi )) −
Nd∑

n=1

K∑

i=1

φni logφni .

Therefore, in the actual optimization, we maximize the following penalized
ELBO:

L(ζ, η, γ, φ) −
K∑

i=1

V∑

j=1

μimi j |ηi j | +
K∑

i=1,l �=i

νil DK L(ηi ||ηl). (3.2)

Equation (3.2) is maximized following an “EM”-like procedure. In the E-step, the
ELBO is maximized w.r.t. the local variational parameter φ, γ for every document,
conditional on the global latent parameter η, ζ . Since the penalties do not contain
any local variational parameters, the updating equations will be the same as that of
the LDA.

φni ∝ ηiwn exp Eq [log(θi )|γ ],

γi = ζi +
N∑

n=1

φni ,
(3.3)

where

exp Eq [log(θi )|γ ] = 	(γi ) − 	(

K∑

l=1

γl)

and	(·) is the digamma function, i.e., the logarithmic derivative of the gamma func-
tion. Note that these are local variables and we omit the subscript d in φdni , θdi , γdi .

Then conditional on all the local latent variables φ, γ , the penalized ELBO is
maximized w.r.t. the latent global parameter η, ζ . The global parameter ζ can be
estimated using Newton’s method. In practice, ζ is often assumed to be a symmetric
Dirichlet parameter.
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3.2.2 Only Weighted LASSO Penalty: ν = 0

In this section, we consider the case where we only have the weighted LASSO
penalty, i.e., ν = 0:

max L(ζ, η, γ, φ) −
K∑

i=1

V∑

j=1

μimi j |ηi j | (3.4)

subject to
V∑

j=1

ηi j = 1,∀i ∈ {1, . . . , K },

ηi j ≥ 0,∀i, j,
K∑

i=1

γdi = 1,∀d,

where K and V represent the number of topics and vocabulary size respectively
and μi ≥ 0 is the penalty weight for topic i and is selected using cross-validation,
ηi j represents the probability of the j th word in the topic i , mi j is the weight for
ηi j and is known in advance, reflecting the prior information about the topic word
distribution. One possible candidate for the weight is the document frequency, i.e.,
mi j = d f j ,∀i, j , where d f j is the number of documents containing the word j . The
larger the document frequency for the word j , the larger the penalty. Consider an
extreme case that the word j appears in every document of the corpus. Because it
co-occurs with every other word, the LDA would assign a large probability to it in
every topic. As a result, the word j contains little information to distinguish one topic
from another. It’s barely useful in the dimension reduction process, i.e., from word
space to topic space. With the document frequency penalty, it will be penalized the
most and result in a low probability in the topic distributions.

We emphasize that the penalized model is not constrained to only solving the
frequent words dominance issue. Any weight reflecting the prior information about
the topic distribution can be used to achieve the practitioners’ goal. We give an
illustration here and in the simulation study; see also Sect. 3.3.2. Often practitioners
found the field-important words are not assigned large probabilities in the estimated
topics. One possible reason is that they appear infrequently in the underlying corpus.
But these keywords contain important information about the field and are crucial
to distinguish one topic from another. Practitioners might prefer they appear in the
top-T words for easy topic interpretation (in practice, T is usually set as 10 or 20).
In this situation, practitioners can utilize our proposed model by assigning negative
weights to these keywords and zero weights to all the other words. Section3.3.2 is
devoted to the situation.

To further understand the penalization, we rewrite the optimization problem (3.4)
in the following equivalent form:
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Fig. 3.1 The feasible region of topics of LDA (left) and ETM (right)

max L(ζ, η, γ, φ)

subject to
V∑

j=1

mi j |ηi j | ≤ νi ,∀i ∈ {1, . . . , K },

V∑

j=1

ηi j = 1,∀i ∈ {1, . . . , K },

ηi j ≥ 0,∀i, j,
K∑

i=1

γdi = 1,∀d,

where νi > 0 is a hyperparameter and there is a one-to-one correspondence between
μi and νi . The penalty alters the feasible region.

Figure3.1 plots the feasible regions of the topics of LDA and the df-weighted
LASSO penalized LDA for a simple case of having two words w1 and w2. The
document frequencies are 2 and 1 for the word w1 and w2, respectively. The black
solid line in the left subplot represents the feasible region of LDA. The feasible region
of the ETM is plotted in the right subplot. The blue dashed line is the penalty induced
constraint line 2η1 + η2 = 1.5. Due to the extra constraint, the feasible region is
reduced to the upper-left black solid line. As a result, the feasible probability range
η1 is reduced to (0, 0.5). A smaller weight will be assigned to the relatively more
frequently appearing word w1 in the estimated topic.
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As mentioned in Sect. 3.2.1, the optimization is done using the variational infer-
ence and the local latent parameters are updated the same as the LDA, as given in
Eq. (3.3). The global latent parameter η is estimated by maximizing the following
equation:

− f (η) =
D∑

d=1

Nd∑

n=1

K∑

i=1

V∑

j=1

φdniw
j
dn log(ηi j ) −

K∑

i=1

V∑

j=1

μimi j |ηi j |

subject to
V∑

j=1

ηi j = 1,∀i ∈ {1, . . . , K },

ηi j ≥ 0,∀i, j,

where the first term is by taking out all the terms containing η from the ELBO.
The problem can be further reduced to K sub-optimization problems below. Due
to log(ηi j ) in the target function, the constraint ηi j ≥ 0,∀i, j can be ignored. The
absolute value |ηi j | in the target function equals ηi j . We rewrite the maximization as
an equivalent minimization problem:

min fi (ηi ) = −
D∑

d=1

Nd∑

n=1

V∑

j=1

φdniw
j
dn log(ηi j ) +

V∑

j=1

μimi jηi j (3.5)

subject to
V∑

j=1

ηi j = 1.

We use the Newton method with equality constraints [13] to solve Eq. (3.5). The
updating direction 
ηi with a feasible starting point η0

i can be calculated using the
equation [∇2 fi 1

1T 0

] (

ηi
αi

)
=

(−∇ fi
0

)
.

The updating direction is


ηi j = − f ′
i j − αi

f ′′
i j

= ηi j − (αi + μimi j )η
2
i j∑D

d=1

∑Nd
n=1 φdniw

j
dn

, (3.6)

where f ′
i j and f ′′

i j are the first and second partial derivatives of fi with respect to η j ,
and
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Algorithm 1: Variational M-step
Result: Update the i th topic word distribution ηi
Initialize ηi with a feasible point;
Choose the stopping criteria ε and the line search parameter δ ∈ (0, 0.5), γ ∈ (0, 1);
while not reaching the maximum iteration do

Compute the feasible descent direction 
ηi and Newton decrement λ(ηi );
if λ(ηi )

2/2 ≤ ε then
Stop the algorithm;

else
Find step size t by backtracking line search:
Initialize the step size t := 1;
while fi (ηi + t
ηi ) > fi (ηi ) + δt∇ f Ti 
η do

t := γ t ;

ηi := ηi + t
ηi ;

αi = −∑V
j=1 f ′

i j/ f
′′
i j∑V

j=1 1/ f
′′
i j

=
∑V

j=1

(
ηi j − μi mi jη

2
i j∑D

d=1

∑Nd
n=1 φdniw

j
dn

)

∑V
j=1

η2
i j∑D

d=1

∑Nd
n=1 φdniw

j
dn

.

The Newton decrement is

λ(ηi ) = (
ηTi ∇2 fi
ηi )
1/2 =

⎛

⎝
V∑

j=1

(
∑D

d=1
∑Nd

n=1 φdniw
j
dn − (αi + μimi j )ηi j )

2

∑D
d=1

∑Nd
n=1 φdniw

j
dn

⎞

⎠
1/2

. (3.7)

We use the backtracking line search [13] to estimate the step size. The complete step
to estimate topics of the weighted LASSO penalized LDA is given in Algorithm1.

3.2.3 Only Pairwise Kullback–Leibler Divergence Penalty:
μ = 0

Practitioners often find some estimated topics are “close” to each other, in the sense,
they have similar semantic meaning and share several common words in their top-
N words. It makes the topic interpretation and the analyzing steps following topic
modeling, e.g., [25], difficult. In this section,we consider the casewherewe only have
a pairwise KL divergence penalty, i.e., μ = 0. The optimization takes the following
form:

max L(ζ, η, γ, φ) +
K∑

i=1,l �=i

νil DK L(ηi ||ηl) (3.8)

subject to
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V∑

j=1

ηi j = 1,∀i ∈ {1, . . . , K },

ηi j ≥ 0,∀i, j,
K∑

i=1

γdi = 1,∀d,

where DKL(ηi ||ηl) is the KL divergence between topic i and l, i.e.,

DKL(ηi ||ηl) =
V∑

j=1

ηi j log(
ηi j

ηl j
).

Since the penalty only involves the topic distribution η and thus only plays a role
in the M-step. The E-step is the same as Eq. (3.3). For the M-step, we solve

min g(η) = −
D∑

d=1

Nd∑

n=1

K∑

i=1

V∑

j=1

φdniw
j
dn log(ηi j ) −

K∑

i=1,l �=i

V∑

j=1

νilηi j log(
ηi j

ηl j
)

(3.9)
subject to

V∑

j=1

ηi j = 1,∀i ∈ {1, . . . , K },

ηi j ≥ 0,∀i, j.

There are two differences between the current optimization and the optimization in
Sect. 3.2.2: (1) the optimization can no longer be split into K sub-optimization prob-
lems, since the different topics are now intertwined by the penalty; (2) the objective
function is no longer convex. For the first difference, we borrow the idea of coordinate
descent and sequentially optimize one topic at a time while conditioning on all other
topics. The advantage of this approach instead of updating all topics simultaneously
is that it simplifies the constrained Newton updating equation involving the Hessian
matrix. Under the conditional approach, the Hessian matrix for a particular topic
∇2gi is diagonal. For the second difference, due to the non-convexity, the Hessian
matrix may not be positive semi-definite. As a result, the Newton decrement could
be a complex number.We use a combination of gradient descent and Hessian descent
algorithm to solve the second issue [2, 30]. The Hessian descent is invoked when the
Hessian is not positive semi-definite. The Hessian descent moves to a smaller value
along the Newton direction.

We now show the update equations for the gradient descent step. For topic i ,
conditioning on all other topics, we solve
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min gi (ηi |ηl, l �= i) = −
D∑

d=1

Nd∑

n=1

V∑

j=1

φdniw
j
dn log(ηi j ) −

∑

l �=i

V∑

j=1

νilηi j log(
ηi j

ηl j
)

−
∑

l �=i

V∑

j=1

νliηl j log(
ηl j

ηi j
)

(3.10)
subject to

V∑

j=1

ηi j = 1.

The updating direction 
ηi with a feasible starting point η0
i can be calculated

using the following equation:

[∇2gi 1
1T 0

](

ηi
αi

)
=

(−∇gi
0

)
. (3.11)

The updating direction is


ηi j = −g′
i j − αi

g′′
i j

= ηi j (
∑D

d=1
∑Nd

n=1 φdniw
j
dn − ∑

l �=i νliηl j ) + η2i j

( ∑
l �=i νil (log ηi j − log ηl j + 1) − αi

)

∑D
d=1

∑Nd
n=1 φdniw

j
dn − ∑

l �=i νliηl j − ηi j
∑

l �=i νil
,

(3.12)
where g′

i j and g′′
i j are the first and second partial derivatives of gi with respect to η j ,

and

αi = − ∑V
j=1 g

′
i j/g

′′
i j∑V

j=1 1/g
′′
i j

=
∑V

j=1
ηi j (

∑D
d=1

∑Nd
n=1 φdni w

j
dn−

∑
l �=i νliηl j )+η2i j

(∑
l �=i νil (log ηi j−log ηl j+1)

)
∑D

d=1
∑Nd

n=1 φdni w
j
dn−

∑
l �=i νliηl j−ηi j

∑
l �=i νil

∑V
j=1

η2i j
∑D

d=1
∑Nd

n=1 φdni w
j
dn−

∑
l �=i νliηl j−ηi j

∑
l �=i νil

.

(3.13)
The Newton decrement is

λ(ηi )

= (
ηT
i ∇2gi
ηi )

1/2

=
⎛

⎜⎝
V∑

j=1

( ∑D
d=1

∑Nd
n=1 φdniw

j
dn − ∑

l �=i νliηl j + ηi j
( ∑

l �=i νil (log ηi j − log ηl j + 1) − αi
))2

∑D
d=1

∑Nd
n=1 φdniw

j
dn − ∑

l �=i νliηl j − ηi j
∑

l �=i νil

⎞

⎟⎠

1/2

.

Due to the non-convexity, 
ηT
i ∇2gi
ηi could be negative at some points. When

it happens, the Hessian descent is invoked and finds a new position along 
ηi with
smaller values (see details in Algorithm2).
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To update all the topics, we optimize the topics sequentially and stops until an
overall convergence measured by the Frobenius norm of the successive updates, as
in Algorithm2.

Algorithm 2: Variational M-step for the pairwise KL Divergence
Result: Update the topic word distribution η

Initialize the topic word distribution η0 with a feasible point for every topic
η0
i , i = 1, . . . , K ;

Choose the stopping criterion ε;
while ||ηt+1 − ηt ||F > ε do

for topic i, i = 1, . . . , K do
if 
ηT

i ∇2 fi
ηi ≥ 0 then
Gradient Descent:
update topic word distribution ηi |η j , j �= i using Algorithm 1;

else
Hessian Descent:
find step size h satisfying ηi + h
ηi > 0 and ηi − h
ηi > 0; if
gi (ηi + h
ηi ) > gi (ηi − h
ηi ) then

ηi := ηi − h
ηi ;
else

ηi := ηi + h
ηi ;

3.2.4 Combination of Two Penalties

The combination of the two penalties in a single algorithm is straightforward. Algo-
rithm2 can be used for the combined penalties. Adding the weighted LASSO penalty
changes the updating direction 
η in Eq. (3.12) to


ηi j =
( D∑

d=1

Nd∑

n=1

φdniw
j
dn −

∑

l �=i

νliηl j − ηi j
∑

l �=i

νil

)−1

(
ηi j (

D∑

d=1

Nd∑

n=1

φdniw
j
dn −

∑

l �=i

νliηl j ) + η2i j
( ∑

l �=i

νil (log ηi j − log ηl j + 1) − μimi j − αi
))

,

and the Eq. (3.13) becomes

αi =
∑V

j=1
ηi j (

∑D
d=1

∑Nd
n=1 φdniw

j
dn−

∑
l �=i νliηl j )+η2

i j

(∑
l �=i νil (log ηi j−log ηl j+1)−μi mi j

)
∑D

d=1

∑Nd
n=1 φdniw

j
dn−

∑
l �=i νliηl j−ηi j

∑
l �=i νil

∑V
j=1

η2
i j∑D

d=1

∑Nd
n=1 φdniw

j
dn−

∑
l �=i νliηl j−ηi j

∑
l �=i νil
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and the Newton decrement λ(η) in the gradient descent, as it alters the first derivative
by subtracting the weights.

λ(ηi ) =
( V∑

j=1

( D∑

d=1

Nd∑

n=1

φdniw
j
dn −

∑

l �=i

νliηl j − ηi j
∑

l �=i

νil

)−1

( D∑

d=1

Nd∑

n=1

φdniw
j
dn −

∑

l �=i

νliηl j + ηi j
( ∑

l �=i

νil (log ηi j − log ηl j + 1) − μimi j − αi
))2)1/2

.

3.2.5 Dynamic Penalty Weight Implementation

Both Algorithms1 and 2 apply to the variational M-step. Recall that the ELBO is
maximized by an iterative variational EM algorithm. The M-step depends on the E-
step output, i.e., φdniw

j
dn in Eqs. (3.5) and (3.10). In each iteration, the E-step would

possibly produce φdniw
j
dn with different magnitudes, especially at the beginning of

the iterations. A penalty weight suitable for the current iteration may be too large
(small) for the next iteration. Therefore, we reparametrize the penalty weight μi as
νi ∗ max j (

∑
dn φdniw

j
dn) in the final variational EM algorithm. The reparameteriza-

tion makes the penalty similar scale as its ELBO part, and thus effective in every EM
iteration.

3.3 Simulation

In this section, we use simulated data to demonstrate the effectiveness of the proposed
the ETM. In Sect. 3.3.1, we simulate the situation where the corpus contains several
frequently appearing words. Compared to the LDA, the ETM effectively avoids the
frequent word dominance issue in the estimated topics. In Sect. 3.3.2, we simulate
the case where field-important words are rare in the underlying corpus. The ETM
is able to reveal the importance of these words and recover the true distribution by
using negative weights for these words and zero weights for all other words, while
the LDA cannot. In Sect. 3.3.3, we simulate a “close” estimated topic situation, by
adding several frequently occurring words. The LDA topics share these frequent
words in their corresponding top T words. When practitioners interpret topics based
on these top T words, they might misinterpret them as the same topic. The ETM is
able to separate the topics while restoring the true topics.
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3.3.1 Case 1: Corpus-Specific Common Words

The setup is as follows. The number of topics K is 2 and the prior ζ = 0.1. The topic
word distribution η is randomly drawn from a Dirichlet prior η ∼ Dirichlet(0.1 ∗ 1),
where 1 is a 300 × 1 vector of 1s. Then, we use the word generation process of the
LDA to generate the words for a corpus of 500 documents. During the word genera-
tion, we set an upper bound on the maximum number of words in each document to
100. Some words do not appear in the corpus because they have been assigned low
topic word probabilities. Therefore, the number of words generated is 202. We fur-
ther assume that the corpus contains 3 corpus-specific common words 301, 302, and
303 and each of them randomly appears in 50% of the documents. The appearance
frequency in a document is 3. These words are then added to the generated corpus.
In total, we have 205 words (202 generated words + 3 manually inserted words) in
our final corpus.

We apply the LDA and the ETM (ν = 0) to the simulated corpus. The weights
are the document frequencies of all words, scaled to a maximum of 100. The penalty
weight is selected to be μ = 0.3. In practice, the estimated topics are interpreted
using their corresponding top T words. We list the top 10 words of the true topics,
the LDA estimated topics, and the ETM topics in Table3.1. The corpus-specific
common words 301, 302, and 303 are assigned high probabilities in the LDA and
they appear in the top 10 words. The probabilities of these 3 words in the ETM
are about half of those in the LDA (further reduction is achievable with a larger
penalty). The high probabilities assigned to these frequently appearing words not
only complicate topic interpretation, but also distort the document-topic frequencies
θ , thus reducing the accuracy of information retrieval.

We repeat the above procedure 1000 times and record the number of corpus-
specific common words that occur in the top 10 words, as well as the ratio of the
average probabilities of these three words in the ETM and those in the LDA. The
summary statistics are given in Table3.2. Row 1 is the summary statistics for the
number of common words occurring in the top 10 words in the LDA topics. The
minimum andmaximum are 4 and 6, respectively. Themean is 5.989 and the variance

Table 3.1 Top 10 words of the true topics, LDA estimated topics, and ETM estimated topics of
the simulation case 1

Topic 1 Top 10 words

True 47 83 86 81 153 270 80 14 291 258

LDA 47 303 302 301 83 86 81 270 153 80

ETM 47 86 83 153 81 14 258 30 270 196

Topic 2 Top 10 words

True 170 256 206 0 219 286 243 114 132 82

LDA 170 206 256 0 301 303 302 219 243 114

ETM 170 206 256 219 243 114 0 286 82 132
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Table 3.2 Summary statistics of 1000 repetition

Min Max Mean Variance

LDA: number of common words 4 6 5.989 0.013

ETM: number of common words 0 6 0.585 1.410

Ratio of common words average
probabilities

0.113 0.547 0.322 0.004

is 0.013, indicating that these 3 corpus-specific commonwords almost always appear
in the top 10 words of the LDA estimated topics. Row 2 lists the summary statistics
of the number of common words appearing in the top 10 words of the document
frequency ETM. Their minimum and maximum are 0 and 6, respectively. The mean
is 0.585 and the variance is 1.410. It shows that the majority of the simulation does
not get any commonwords in the top 10words of ETM estimated topics. The last row
shows the summary statistics of the ratio of the average probabilities of these three
corpus-specific common words in the ETM and those in the LDA. The minimum and
maximum are 0.113 and 0.547. The mean is 0.322 and the variance is 0.004. This
shows that the probabilities assigned to these corpus-specific common words in the
ETM are on average about 1/3 of those in the LDA.

3.3.2 Case 2: Important Words Appear Rarely in Corpus

We consider another situation. In practice, certain words are important for this
domain. But unfortunately, they appear rarely in the current corpus. Practitioners
might find these words very important and want them to be assigned high probabili-
ties in the topic word distribution. The LDA word generating process is the same as
before. Namely, the corpus contains 2 topics and the prior ζ = 0.1. The topic word
distributionη is randomly drawn fromaDirichlet priorη ∼ Dirichlet(0.1 ∗ 1), where
1 is a 300 × 1 vector of 1s. We assume that the top 2 words in each topic appear
rarely in the current corpus for some reason. They only occur in 10% of the total
documents, i.e., we randomly select 50 documents that contain the top words and
delete them from the remaining documents that contain them.

We then apply the LDA and the ETM (ν = 0) to these words. Unlike the previous
setup, where corpus-specific common words are not known and we use document
frequencies as weights, these important words are known and we assign negative
weights to them and zero weights to all other words. In the simulation, the words 275
and 22 are important for Topic 1, and the words 73 and 195 are important for Topic
2; see also Table3.3. Their total appearance is limited to 50 documents, i.e., 10% of
the corpus size. Due to their rare appearance, the LDA is not able to capture their
importance and they are assigned small probabilities. They do not appear in the top
10 words of the LDA topics. By assigning these four words weight -100 and penalty
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Table 3.3 Top 10 words of the true topics, LDA estimated topics, and ETM estimated topics of
the simulation case 2

Topic 1 Top 10 words

True 275 22 110 251 291 151 171 18 253 187

LDA 110 251 151 291 171 253 18 187 35 287

ETM 275 22 110 251 151 291 171 253 18 187

Topic 2 Top 10 words

True 73 195 294 207 48 248 19 211 43 175

LDA 294 207 48 248 19 43 211 175 269 213

ETM 73 195 294 207 48 248 19 43 211 175

Table 3.4 Summary statistics of 1000 repetition

Min Max Mean Variance

LDA: number of rare important words 0 3 0.299 0.288

LASSO LDA: number of rare important
words

2 4 3.993 0.009

Ratio of rare important words average
probabilities

4.187 24.853 9.767 6.427

weight μ = 0.2, the ETM successfully restores their position in the top 10 words of
the estimated topics.

We repeat the above procedure 1000 times. The summary statistics are reported
in Table3.4. Row 1 reports the number of important words appearing in the top 10
topics estimated by LDA. Theminimum andmaximum are 0 and 3, respectively. The
mean is 0.299 and the variance is 0.288, indicating that these important but rarely
appearing words barely appear in the top 10 LDA topics, i.e., LDA is not able to
recover their importance. Row 2 reports the number of important but rarely appearing
words that occur in the top 10 ETM topics. The minimum and maximum are 2 and
4, respectively. The mean is 3.993 and the variance is 0.009, which shows that these
words are almost always recovered by the ETM. The last row reports the statistics
of the average ratio between the probabilities assigned to these important but rarely
appearing words in the ETM and those in the LDA. The minimum and maximum
are 4.187 and 24.857, respectively. The average is 9.767 and the variance is 6.427,
which shows that the probabilities assigned to these important but rarely appearing
words are on average about 10 times higher in the ETM than in the LDA.
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3.3.3 Case 3: “Close” Topics

Practitioners often find that some estimated topics are “close”. By “close” we mean
that the estimated topics share several common words and have similar semantic
meaning. The exact reason for this phenomenon is unclear. We hypothesize that
it is due to the exchangeability assumption of words in the LDA. Nevertheless,
we simulate the case with frequently occurring words. The basic setup is similar
to case 1. Namely, the corpus contains 2 topics. The prior ζ = 0.1. The topic word
distributionη is randomly drawn fromaDirichlet priorη ∼ Dirichlet(0.1 ∗ 1), where
1 is a 300 × 1 vector of 1s. To simulate the estimated “close” topics in the LDA,
we further add 6 common words 301, 302, 303, 304, 305, and 306 to the corpus and
assume that they occur in 80% of the documents. With this setup, we apply the LDA
and ETM (μ = 0) with penalty weight for pairwise KL divergence ν = 0.5 to the
simulated corpus. The true and estimated topics are listed in Table 3.5. Because of the
dominance of frequently appearing words, the LDA topics are “close” to each other
according to our design. The ETM clearly separates them from each other. Although
the appearance order of the ETM is slightly different from that of the true model, the
number of the same words appearing in both true and ETM is 8 for topics 1 and 2,
while the number of the same words for true topics and LDA is 4 and 5 for topics
1 and 2, respectively. The Jensen–Shannon divergence (JSD) of the true, LDA, and
ETM topics is 0.81, 0.63, and 0.88, respectively.

We repeat the simulation 1000 times and report the summary statistics in Table3.6.
The first column shows the number of top 10 words shared between topics 0 and 1.
The true topics share on average 0.34 words with a standard deviation of 0.57. The
LDA estimated topics share an average of 3.10 words with a standard deviation of
1.61. The ETM shares an average of 0.08 words with a standard deviation of 0.30.
This shows that the ETM is able to separate the “close” topics and ensure that they
have few words in common in their top words. While the first column focuses on
the top words, the second column deals with the overall topic distribution. It reports
the JSD of the topic distributions. The JSD of the true topic is on average 0.80 with
a standard deviation of 0.05, while the LDA is on average 0.64 with a standard

Table 3.5 Top 10 words of the true topics, LDA estimated topics, and ETM estimated topics of
the simulation case 3

Topic 1 Top 10 words

True 196 56 166 122 219 161 18 104 276 86

LDA 196 56 166 122 301 303 306 302 305 304

ETM 134 56 196 122 161 166 86 219 104 301

Topic 2 Top 10 words

True 46 165 115 140 53 280 138 19 174 290

LDA 46 165 115 304 140 305 302 306 280 303

ETM 85 46 165 140 115 280 53 19 304 138
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Table 3.6 Summary statistics of 1000 repetition

# of shared top 10
words between
topics 0 and 1

JSD # of shared top 10
words between
true topic 0 and
estimated topic 0

# of shared top 10
words between
true topic 1 and
estimated topic 1

True 0.34 0.80

(0.57) (0.05)

LDA 3.10 0.64 5.54 5.50

(1.61) (0.04) (1.24) (1.19)

KL Div 0.08 0.79 8.23 8.20

(0.30) (0.06) (1.25) (1.28)

deviation of 0.04 and the ETM is on average 0.79 with a standard deviation of 0.06.
It can be seen that the ETM separates the “close” topics. The last two columns report
the number of top 10 words in common between the true topics and the estimated
topics. It makes no sense if the ETM separates topics but the estimate is far from
the true topics. Because of the setup, the LDA topics and true topics share 5.54 and
5.50 words on average with standard deviations of 1.24 and 1.19 for topics 0 and 1,
respectively. The ETM and true topics share 8.23 and 8.20 words on average with
standard deviations of 1.25 and 1.28, respectively. This means that judging from the
top T words, the ETM topics are semantically close to the true model.

3.4 Real Data Application

To test the empirical performance of our proposed method, we apply the LDA,
the ETM with LASSO penalty only (ν = 0), and the ETM with the pairwise KL
divergence only (μ = 0) to the NIPS dataset, which consists of 11,463 words and
7,241 NIPS-conference posts from 1987 to 2017. The data is randomly split into two
parts: Training (80%) and Testing (20%). We choose the number of topics for the
LDA using cross-validation with perplexity [8–10] on the training dataset [10]. It is
assumed that the chosen number is the true number of topics in the dataset NIPS.
The candidates are {5, 10, 15, 20, 25, 30}. The choice K = 10 produces the lowest
average validation perplexity. For the ETM, we use homogeneous hyperparameters
in this experiment, i.e., μi = μ,∀i ∈ {1, . . . , K } for the weighted LASSO penalty
and νil = ν,∀i, l ∈ {1, . . . , K } and l �= i for the pairwise KL divergence penalty,
since we have no prior information about the subjects.

We perform cross-validation with the training data to select the penalty weight
μ. In selecting μ, perplexity is no longer an appropriate measure. Perplexity is
the negative probability per word. A higher probability for frequently occurring
words leads to a lower perplexity. As a result, μ = 0 is selected. Another commonly
used metric for hyperparameter selection is the Topic Coherence Score. Researchers
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have proposed several calculation methods of Topic Coherence Score [1, 29, 31,
35]. It was shown in [35] that among all these proposed topic coherence scores,
CV achieves the highest correlation with all available human topic ranking data
(see also [43]). Roughly speaking, CV takes into account both generalization and
localization of topics. Generalization means that CV measures performance on the
unseen test dataset. Localization means that CV uses a rolling window to measure
the co-occurrence of the word.

Here we describe the details of the CV calculation. The top N words of each
topic are selected as the representation of the topic, denoted as W = {w1, . . . ,wN }.
Each word wi is represented by an N -dimensional vector v(wi ) = {N PMI (wi ,

wj )} j=1,...,N , where the j-th entry is the Normalized Pointwise Mutual Information

(NPMI) between word wi and wj , i.e., N PMI (wi ,wj ) = log P(wi ,wj )−log(P(wi )P(wj ))

− log P(wi ,wj )
.

Here,W represents the sumof allwordvectors, v(W ) = ∑N
j=1 v(wj ). The calculation

of the NPMI between word wi and wj involves the marginal and joint probabilities
p(wi ), p(wj ), p(wi ,wj ). A sliding window of size 110, which is the default in the
Python package “gensim” and robust for many applications, is used to create pseudo-
documents and estimate the probabilities. The purpose of the sliding window is to
account for the distance between two words. For each word wi , a pair (v(wi ), v(W ))

is formed. A cosine similarity measure φi (v(wi ), v(W )) = v(wi )
T v(W )

‖v(wi )‖‖v(W )‖ is then cal-
culated for each pair. The final CV value for the topic is the average of all φi s.

We use CV to select the penalty weight from {0, 0.5, 1, 1.5, 2, 2.5, 3}. Choosing
μ = 0.5 gives the highest average coherence score 0.56 for the ETM, while μ = 0,
i.e., the LDA, gives the coherence score 0.51. We then refit both the LDA and the
ETM (μ = 0.5, ν = 0) to the entire training dataset and use the test dataset to com-
pute the coherence score CV as the final evaluation of performance on unseen data.
The results are presented in Table3.7. Overall, theCV score of the LDA topics is 0.51
and that of the ETM is 0.62, a 22% improvement. We highlight two common words
“data” and “using” in the top 20 words of both topics. They appear more frequently
in the LDA topics than in the ETM topics. Both words occur in 5 out of 10 LDA
topics and 1 out of 10 ETM topics. We also observe some large improvements for the
topics “Reinforcement Learning”, “Neural Network ”, “Computer Vision”, and some
other topics. Take “Reinforcement Learning ” as an example. If we compare the top
20 words, we find that the words time, value, function, model, based, problem appear
in the LDA topic, but not in the ETM topic. Certainly these words are associated
with reinforcement learning, but they are also associated with the “Neural Network”,
“Bayesian”, “Optimization”, etc. topics. We refer to these words as corpus-specific
common words, i.e., for the current corpus, they contain little information to distin-
guish one topic from another. Their positions in the ETM topic are filled by the words
game, trajectory, robot, control. These words are related to reinforcement learning
applications and represent the topics better than the previous corpus-specific com-
mon words. We see that the CV score has increased from 0.56 to 0.77, an increase of
38%. We observe that an LDA topic related to the NLP is missing in the ETM. One
possible reason is that the algorithm converges to different points for this topic on
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Table 3.7 Top 20 words of the topics estimated by the LDA and the ETM

Topics Top 20 words CV

LDA 0.51

Machine Learning Matrix data kernel problem algorithm sparse linear
method rank methods using dimensional analysis
vector space function norm error matrices set

0.42

Reinforcement
Learning

State learning policy action time value reward
function model optimal actions states agent control
reinforcement algorithm using based decision
problem

0.56

Neural Network Model time neurons figure spike neuron neural
response stimulus activity visual input information
cells signal fig cell noise brain synaptic

0.65

Computer Vision Image images learning model training deep using
layer neural object network networks features
recognition use models dataset feature results
different

0.57

NLP Model word models words features data set figure
using human topic speech object language objects
used recognition context based feature

0.50

Neural Network Network networks neural input learning output
training units hidden error weights time function
weight layer figure number set used memory

0.52

Bayesian Model distribution data models log gaussian
likelihood bayesian inference parameters posterior
prior using process distributions latent variables
mean time probability

0.49

Graph models Graph algorithm tree set clustering node nodes
number cluster structure problem data time variables
graphs edge clusters random algorithms edges

0.52

Optimization Algorithm bound theorem log function learning let
algorithms bounds problem convex loss optimization
case set convergence functions optimal gradient
probability

0.43

Classification Learning data training classification set class test
error examples function classifier using label feature
features loss problem kernel performance svm

0.46

ETM 0.62

Machine Learning Matrix rank sparse pca tensor LASSO subspace
spectral manifold norm matrices recovery sparsity
eigenvalues kernel principal eigenvectors singular
entries embedding

0.55

Reinforcement
Learning

Policy action reward agent state actions
reinforcement policies game agents states trajectory
robot planning control trajectories rewards games
exploration transition

0.77

Neural Network Neurons network neuron spike input neural synaptic
time firing activity dynamics output networks fig
circuit spikes cell signal analog patterns

0.71

(continued)
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Table 3.7 (continued)

Topics Top 20 words CV

Computer Vision Image images object objects segmentation scene pixel
face detection video pixels vision patches visual
shape recognition motion color pose patch

0.78

Neural Network Model visual stimulus brain response spatial human
stimuli responses subjects motion frequency cells
temporal cortex signals signal activity filter motor

0.73

Neural Network Layer network deep networks units hidden word
layers training convolutional trained neural speech
recognition architecture language recurrent net input
output

0.73

Bayesian Inference latent posterior tree variational bayesian
node models topic nodes variables model likelihood
Markov distribution graphical Gibbs prior Dirichlet
sampling

0.54

Graph models Convex graph algorithm optimization clustering
gradient convergence problem theorem solution
algorithms dual descent submodular stochastic
iteration graphs objective max problems

0.50

Optimization Bound theorem regret loss bounds algorithm risk
lemma log let proof online ranking bounded bandit
query setting hypothesis complexity learner

0.52

Classification Learning data model set using function algorithm
number time figure given results training used based
problem error models use distribution

0.37

the path of the variational algorithm. One way to avoid this is to initialize the ETM
with a rough estimate from the LDA.

For the ETM with only pairwise KL divergence penalty (μ = 0), we initialize
the subject with an estimate of the LDA due to non-convexity in the M-step opti-
mization. Coincidentally, ν = 0.5 also yields the largest coherence score 0.53, and
ν = 0 obtains 0.50. As before, both models are again applied to the entire training
dataset and their CV score is calculated using the test dataset as the final evaluation.
The results are presented in Table3.8. Overall, the topic estimated by the LDA has
a coherence score of 0.52, while that of the ETM is 0.57. To measure the “distance”
between the estimated topics, we calculate the JSD of both topics. The JSD of the
LDA topics is 0.93, while that of the ETM topics is 1.90. In terms of distance, the
ETM topics are more separated from each other. For the NIPS dataset, we don’t
observe similar topics. Although the third and eighth topics are both interpreted as
neural networks, they emphasize different aspects of the topic. The third topic is
from a biological point of view. It contains the words spike, neuron, stimulus, brain,
synaptic. The eighth topic is from a computer science point of view. It contains
the words network, learning, training, output, layer, hidden. When separating the
estimated topics, the ETM suppresses the appearance of less topic relevant words
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Table 3.8 Top 20 words of the topics estimated by the LDA and the ETM

Topics Top 20 words CV

LDA 0.52

Machine Learning Matrix data kernel sparse linear points problem rank
algorithm space using dimensional method analysis
matrices vector clustering error set methods

0.42

Reinforcement
Learning

State learning policy action time reward value
function algorithm optimal agent actions states
reinforcement problem control model decision using
based

0.56

Neural Network Model time neurons figure spike neuron neural
information response activity stimulus visual cells
cell input fig signal brain different synaptic

0.65

Computer Vision Image images model object training deep using
learning features recognition models layer feature
figure objects use visual different results vision

0.55

Theory Theorem bound algorithm let log learning function
probability bounds loss case distribution error set
proof lemma functions following sample given

0.42

Bayesian Model data distribution models gaussian log
likelihood parameters using posterior bayesian prior
inference process latent function mean time
distributions sampling

0.47

Graphical Models Graph tree model node nodes set algorithm structure
number variables models inference graphs clustering
cluster edge edges figure time topic

0.48

Neural Network Network neural networks input learning output
training units layer hidden time weights error figure
function weight used set using state

0.52

Optimization Algorithm optimization gradient problem function
convex algorithms method methods convergence
solution learning set time objective problems linear
stochastic step descent

0.54

Classification Learning data training classification set features
feature using class model test task classifier label
used based performance examples number labels

0.55

ETM 0.57

Machine Learning Clustering kernel matrix norm rank kernels spectral
pca matrices tensor subspace LASSO manifold
eigenvalues embedding principal singular completion
recovery eigenvalue

0.54

Reinforcement
Learning

Action policy reward agent actions state game
reinforcement regret arm planning policies
exploration robot games agents player states bandit
rewards

0.76

Neural Network Neural input time figure model neurons visual neuron
fig spike response information spatial signal activity
pattern cell different temporal cells

0.64

(continued)
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Table 3.8 (continued)

Topics Top 20 words CV

Computer Vision Faces image images layer object deep segmentation
layers convolutional objects pixel scene pixels video
architecture recognition vision networks face pose

0.73

Theory Bound algorithm theorem let function learning log
set case probability bounds functions loss error
following proof problem given optimal random

0.40

Neural Network Gates network units networks sonn recurrent net
hidden architecture layer analog feedforward
backpropagation chip nets connectionist gate modules
module feed

0.60a

Bayesian Data Model gaussian distribution prior models log
mean parameters likelihood noise estimation estimate
density using variance bayesian mixture samples
process

0.47

Graphical Models Graph model models tree nodes node inference
structure variables number Markov set graphs edge
time topic edges probability cluster graphical

0.47

Optimization Algorithm optimization problem algorithms gradient
method methods solution function convergence
objective problems step linear iteration stochastic
max update descent learning

0.54

Classification Learning data classification training set feature test
features task class classifier label using examples
performance used labels tasks based word

0.57

The 0.60a is computed by removing the word sonn. As sonn doesn’t appear in the testing dataset,
we get NaN for the CV score

and improves the topic coherence. For example, the LDA topic “Machine Learning”
contains the words points, problem, using, set, methods. The ETM suppresses the
appearance of these words. Instead, it promotes words spectral, pca, LASSO, man-
ifold, eigenvalues, embedding, principal, singular, which are better representatives
of the topic. As a result, theCV score improves from 0.42 to 0.54, an improvement of
29%. Similarly, the LDA topic “Reinforcement Learning” contains the words learn-
ing, time, value, function, problem, model, using, based, which are quite common and
may have high probabilities in other topics, such as “Neural Network”, “Computer
Vision”, “Theory”, and “Optimization”. The ETM replaces these words with more
specific and related words game, regret, planning, exploration, robot. The CV score
increases from 0.56 to 0.76, an improvement of 36%. The same is true for the topic
Computer Vision. Words model, training, using, learning, use, different, results are
suppressed in the ETM. The words faces, segmentation, convolutional, pixel, video
that are unique to the topic are promoted in the ETM topic. The CV score increases
from 0.55 to 0.73, an improvement of 33%. Although some corpus-specific com-
mon words are suppressed under both penalties, the underlying reasons are different.
Under the weighted LASSO penalty, common words are penalized because they
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appear in too many documents. Under the pairwise KL divergence penalty, some
common words are suppressed because they appear in other topics. To distance top-
ics from each other, the pairwise KL divergence penalty suppresses their appearance
in less relevant topics.

3.5 Conclusion

Motivated by the frequent word predominance in the discovered topics, we have
proposed an ETM containing a weighted LASSO penalty term and a pairwise KL
divergence term. The penalties destroy the closed form solution for the topic distri-
bution as in the LDA. Instead, we have estimated the topics using the constrained
Newton’s method for the case where only the weighted LASSO penalty is present,
and using a combination of gradient descent and Hessian descent for the case where
only the pairwise KL divergence is present. The combination of gradient descent and
Hessian descent algorithm is ready to be applied to the ETM with both penalties,
with a small twist to the gradient of the objective function. Although the intent is
to solve the problem of frequent word intrusion for the weighted LASSO penalty, it
is not limited to this sole purpose. Practitioners can use the weights to incorporate
their prior knowledge of the topics. We have demonstrated the effectiveness of the
proposed model on three simulation studies, where the ETM outperforms the LDA
in every case and recovers the true topics. We also have applied the proposed method
to the publicly available NIPS dataset. Compared to the LDA, our proposed method
assigns lower weights to frequently occurring words, making the topics easier to
interpret. The topic coherence score CV also shows that the topics are semantically
more consistent than those estimated by the LDA.

The ETM with only one weighted LASSO penalty is related to [7]. They claimed
that theDirichlet-Laplace priors have optimal posterior concentration and lead to effi-
cient posterior computation. The LASSO penalties can be considered as the Laplace
prior in the posterior. The weights control the mixture between Dirichlet prior for
topic drawing and Laplace prior. In our current setup, the topic distributions have
been treated as estimated parameters. With the Dirichlet-Laplace prior, we can adopt
the full Bayesian approach that the topics are generated from the Dirichlet-Laplace
prior. We would achieve a very similar posterior with our current setup, except for
an additional variational distribution for the topics. Instead of estimating the topic
parameters, we would estimate the variational parameters for the topics. The advan-
tage of the full Bayesian approach is that we can use the property of optimal posterior
concentration [7] and theoretical properties of variational inference [33, 46, 48, 49]
to show some properties of the proposed method. On the other hand, it is more
challenging to derive the theoretical properties related to the pairwise KL diver-
gence penalty because there is no ready prior distribution corresponding to it. The
non-convexity means that we are only able to obtain a local minimum for the topic
distributions.
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Chapter 4
A Simple Isotropic Correlation Family
in R

3 with Long-Range Dependence
and Flexible Smoothness

Victor De Oliveira

Abstract Most geostatistical applications use covariance functions that display
short-range dependence, in part due to the wide variety and availability of these
models in statistical packages, and in part due to spatial interpolation being the main
goal of many analyses. But when the goal is spatial extrapolation or prediction based
on sparsely located data, covariance functions that display long-range dependence
may be more adequate. This paper constructs a new family of isotropic correlation
functions whose members display long-range dependence and can also model dif-
ferent degrees of smoothness. This family is compared to a sub-family of the Matérn
family commonly used in geostatistics, and two other recently proposed families of
covariance functions with long-range dependence are discussed.

Keywords Fractal dimension · Geostatistics · Hurst coefficient · Mean square
differentiability · Radial distribution

4.1 Introduction

Random fields are ubiquitous for the modeling of spatial data in most natural and
earth sciences. When the main goal of the analysis is spatial prediction, an adequate
specification of the correlation function of the random field is of utmost importance.
In this paper, attention is restricted to correlation functions in Rd with the properties
of being isotropic, i.e., functions of the Euclidean distance which separates two
locations that decrease monotonically to zero as distance increases without bound.
These features are common inmany spatial phenomena.A largenumber of parametric
families of correlation functions with these properties have been proposed in the
literature and used in applications; see, for instance, [2, 3]. Most of these families
display short-term dependence, meaning that the correlation function decays to zero
fast, usually exponentially fast, so spatial association between far-away observations
is negligible. The Matérn family is a commonly used example. On the other hand,
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some spatial phenomena display long-term dependence, meaning that the correlation
function decays to zero slowly, usually hyperbolically fast, so the spatial association
between far-away observations is not negligible. An early example of this behavior
was provided by [4] using data from agricultural uniformity trials, who empirically
found that, for large distances r , the correlation function decays approximately as r−1

(a so-called power law). Similar behavior is commonly found in spatial geophysics
and hydrology data; see [8] and the references therein. Fewer models have been
proposed in the literature for phenomena that display this behavior.

Time series models displaying long-range dependence were discussed in [5] (dis-
crete time) and [12] (continuous time). Spatial data models displaying long-range
dependence were discussed in [10, 17] for the case when the index set is Zd (usually
d = 2). Some families of correlation functions for random fields in R

d that display
long-range dependence were constructed by [21], and more recently [8, 13] devel-
oped new families in this class. In this paper, we construct what appears to be a new
family using a correspondence between continuous isotropic correlation functions
in R3 and probability density functions (pdfs) in R with support [0,∞). In addition
to displaying long-range dependence, the new family of correlation functions allows
different degrees of smoothness, which is important for efficient spatial interpola-
tion under infill asymptotics [20]. After describing its main properties, this family
of correlation functions is contrasted with a sub-family of the Matérn family which
also provides flexibility regarding smoothness, but displays short-range dependence.
This paper ends with a discussion of two other families of correlations functions that
also display long-range dependence.

4.1.1 A Spectral Representation

Let K : [0,∞) → R be the correlation function of a mean square continuous and
isotropic random field {Z(s) : s ∈ D}, with D ⊂ R

d and d ≥ 1, and let �d denote
the class of all such functions. A characterization of �d is given in a classical result
by [18], who showed that any K ∈ �d can be written as

K (r) =
∫ ∞

0
�d(r x)dF(x), r ≥ 0,

where

�d(t) =
(2
t

) d
2 −1

�
(d
2

)
Jd

2 −1(t), t > 0,

�(·) is the gamma function, Jν(·) is the Bessel function of the first kind and order
ν, and F(·) is a cumulative distribution function on R with support [0,∞). Such a
function K (·) is also a radial positive definite function onRd , and can also be viewed
as the Hankel transform of F of order d

2 − 1. Any K ∈ �d is continuous on [0,∞),
and [(d − 1)/2]-times continuously differentiable on (0,∞), where [a] denotes the
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integer part of a, and limr→∞ K (r) = F(0) − F(0−); see [6, 15, 20, 22] for further
properties of such functions.

For all d ≥ 1, �d(t) is itself a continuous isotropic correlation function in Rd (so
�d(0) = 1), which can be written in terms of elementary functions when d is an odd
integer. For instance, for d = 1, 2, 3 it holds that

�1(t) = cos(t), �2(t) = J0(t), �3(t) = sin(t)

t
,

and�∞(t) := limd→∞ �d(t) = e−t2 . In particular, any isotropic correlation function
in R3 admits the representation

K (r) =
∫ ∞

0

sin(r x)

r x
dF(x), r ≥ 0,

and any such function is also an isotropic correlation function in R
2 and R

1, since
the classes of functions�d are decreasing in d. If F(·) is absolutely continuous, with
pdf f (·) say, then

K (r) =
∫ ∞

0

sin(r x)

r x
f (x)dx, r ≥ 0; (4.1)

the functions F and f are also called, respectively, the radial distribution and radial
pdf functions of the random field Z(·) [15]. Therefore, (4.1) establishes a bijection
between the class of continuous isotropic correlation functions inR3 and the class of
pdfs in R (w.r.t. Lebesgue measure) having support [0,∞). Consequently, choosing
a continuous isotropic correlation function K (·) amounts to choosing a pdf f (·)with
support in [0,∞).

4.2 A New Correlation Family

In this section, we use (4.1) with a particular family of radial pdfs to construct what
appears to be a new family of correlation functions in R

3 whose members display
long-range dependence and various degrees of smoothness. For σ > 0 and m ∈ N0,
let fσ,m(x) be the pdf of the t2m+1(0, σ 2) distribution1 truncated to [0,∞), i.e.,

1 The symbol tν(μ, σ 2) denotes the t distribution with ν degrees of freedom, location parameter μ

and scale parameter σ .
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fσ,m(x) = 2�(m + 1)

σ
√

π(2m + 1)�( 2m+1
2 )

(
1 + 1

2m + 1

( x

σ

)2
)−(m+1)

1(0,∞)(x)

= 2�(m + 1)

σ
√

π(2m + 1)�( 2m+1
2 )

(
(2m + 1)σ 2

)m+1(
(2m + 1)σ 2 + x2

)−(m+1)
,

when x > 0. Then from (4.1), the correlation function in R3 that corresponds to this
radial pdf is

Kσ,m(r) = 2�(m + 1)
(
(2m + 1)σ 2

)m+1

σ
√

π(2m + 1)�( 2m+1
2 )r

∫ ∞

0

sin(r x)

x
(
(2m + 1)σ 2 + x2

)m+1 dx

= 2�(m + 1)
(
(2m + 1)σ 2

)m+1

σ
√

π(2m + 1)�( 2m+1
2 )r

× π

2
(
(2m + 1)σ 2

)m+1

(
1 − e−σ

√
2m+1r

2mm! Pm
(
σ
√
2m + 1r

))

=
√

π�(m + 1)

σ
√

(2m + 1)�( 2m+1
2 )r

(
1 − e−σ

√
2m+1r

2mm! Pm
(
σ
√
2m + 1r

))
, (4.2)

where the second equality follows from [9, 3.737.3], and Pm(·) is the polynomial of
degree m obtained by the recursion

Pm(x) = (x + 2m)Pm−1(x) − x P ′
m−1(x), m ≥ 1, with P0(x) = 1.

For instance, for m = 1, 2, 3 we have

P1(x) = x + 2, P2(x) = x2 + 5x + 8, P3(x) = x3 + 9x2 + 33x + 48.

Reparametrizing (4.2) with θ := (σ
√
2m + 1)−1, we obtain the following two-

parameter family of continuous isotropic correlation functions in R3

D =
{
Kθ,m(r) := cm

θ

r

(
1 − e− r

θ

2mm! Pm
( r
θ

))
: θ > 0,m ∈ N0

}
, (4.3)

with2

cm =
√

π�(m + 1)

�( 2m+1
2 )

.

For instance, for r ≥ 0 and m = 0, 1, 2 we have

2 The fact Kθ,m(0) = 1 follows by continuity.
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Fig. 4.1 Plots of Kθ,m(r)
for m = 1 and three values
of θ
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4.3 Properties

In this section, we describe some of the properties of the new family of correlation
functions. First, any of the correlation functions in (4.3) displays long-range depen-
dence, as it decays slowly with increasing distance r . Specifically, for any θ > 0 and
m ∈ N0 it holds that Kθ,m(r) → 0 and Kθ,m(r) = O(1/r) as r → ∞, so

∫ ∞

0
rd−1Kθ,m(r)dr diverges (d = 1, 2, 3). (4.4)

For isotropic correlation functions, the above property defines long-range depen-
dence. Second, the interpretation of the parameters is the following. The parameter
θ is a range parameter that controls how fast the correlation function decays with
distance r . This is illustrated in Fig. 4.1 where plots Kθ,m(r) are displayed form = 1
and three values of θ . On the other hand, m is a smoothness parameter that controls
the mean square differentiability of the random field Z(·), as stated by the following
result.
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Fig. 4.2 Plots of the even extension of Kθ,m(r) (left) and corresponding realizations of zero-mean
Gaussian random fields with these correlation functions (right). In all θ = 0.25 and m = 0 (top), 1
(middle) and 2 (bottom)

Proposition 4.1 Let {Z(s) : s ∈ D}, with D ⊂ R
d and d ≤ 3, be an isotropic mean

square continuous random field with correlation function Kθ,m(r) from the family
(4.3). Then Z(·) is m-times mean square differentiable.

Proof For any k ∈ N0, an isotropic random field Z(·) is k-times mean square dif-
ferentiable if and only if its correlation function is 2k-times differentiable at zero3

[20]. In addition, for any radial positive definite function in R
d , K (r) say, K (2k)(0)

exists if and only if the radial pdf f in the representation (4.1) has a finite moment of
order 2k [6, Lemma 3]. Since the radial distribution associated with Kθ,m(r) is the
t2m+1(0, σ 2) distribution truncated to [0,∞) and this has finite moments up to order
2m, the above results imply that a random field with correlation function Kθ,m(r) is
exactly m-times mean square differentiable. �

To illustrate the above result, Fig. 4.2 plots the even extension of Kθ,m(r) (left)
and corresponding realizations of zero-mean Gaussian random fields in the real line
with these correlation functions (right), where θ = 0.25 andm = 0 (top), 1 (middle),

3 Differentiability of K (·) at zero refers to differentiability of its even extension over the real line,
defined as Ke(r) := K (|r |), r ∈ R. Also, the phrase ‘Z(·) is 0-times mean square differentiable’ is
used if Z(·) is mean square continuous.



4 Isotropic Correlation Family in R3 with Long-Range Dependence 117

and 2 (bottom). The plots show the smoothness of Kθ,m(r) at the origin increasing
withm, and its corresponding effect on the smoothness of the realizations. The three
realizations were obtained from the same seed. Together, Figs. 4.1 and 4.2 suggest
that D is a flexible family of correlation functions capable of describing different
degrees of spatial association and smoothness in random fields that display long-
range dependence.

4.4 Comparison With a Matérn Sub-family

The Matérn family of correlation functions [15, 20] is a two-parameter family of
correlation functions in R

d for all d ≥ 1 that is commonly used in geostatistical
applications. It is given by

Mθ,ν(r) = 1

2ν−1�(ν)

( r
θ

)ν

Kν

( r
θ

)
, (4.5)

where θ, ν > 0 andKν(.) is the modified Bessel function of second kind and order ν;
see [9, 8.40] for details on the behavior of this special function. This family contains
the exponential correlation function e−r/θ (obtained when ν = 0.5), and the squared
exponential correlation function e−(r/ϑ)2 is a limit case (obtained when θ = ϑ/2

√
ν

and ν → ∞). We consider here the following sub-family:

M = {Mθ,m+0.5(r) : θ > 0,m ∈ N0}. (4.6)

Like the familyD in (4.3), θ is a range parameter that controls how fast the correlation
function decreases with distance r , and m is a smoothness parameter that controls
the mean square differentiability of the random field Z(·). It was shown by [20]
that a random field Z(·) with correlation function Mθ,m+0.5(r) is exactly m-times
mean square differentiable. Additionally, Mθ,m+0.5(r) can be written as e−r/θ times
a polynomial in r of degree m [9, 8.468]. For instance, for r ≥ 0 and m = 0, 1, 2 we
have

Mθ,0.5(r) = e− r
θ ,

Mθ,1.5(r) = e− r
θ

( r
θ

+ 1
)
,

Mθ,2.5(r) = e− r
θ

(1
3

( r
θ

)2 + r

θ
+ 1

)
.

But unlike the familyD, the correlation functions in (4.6) display short-range depen-
dence, since for any θ > 0 and m ∈ N0

Mθ,m+0.5(r) ∼ arm− 1
2 e− r

θ , as r → ∞,
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Fig. 4.3 Plots of K0.25,1(r) and M1.285,1.5(r) (left) and corresponding realizations of zero-mean
Gaussian random fields with these correlation functions (right)

for some a > 0 [1, 9.7.2]. So Mθ,m+0.5(r) decreases to zero exponentially fast as
r → ∞, and consequently

∫ ∞
0 rd−1Mθ,m(r)dr converges. To illustrate the different

behaviors of correlation functions in the families D and M with the same smooth-
ness and similar rates of decay, Fig. 4.3 plots K0.25,1(r) and M1.285,1.5(r) (left) and
corresponding realizations of zero-mean Gaussian random fields in the real line with
these correlations functions (right); the two realizations were obtained from the same
seed. Both correlation functions correspond to random fields that are 1-time mean
square differentiable, and their range parameters are such that their correlations at
distance r = 5 is 0.1. Note thatM1.285,1.5(r) has larger correlations than K0.25,1(r) for
small distances, but the opposite holds for large distances. As a result, the realization
of the random field with correlation function K0.25,1(r) displays more ‘oscillatory’
behavior for small distances, but process values for large distances are more ‘alike’
than process values of the realization of the random field with correlation function
M1.285,1.5(r). Therefore, the families of correlationsD andM appear equally flexible
in terms of describing different degrees of spatial association and smoothness, but
are complementary in terms of the range of dependence, as one displays long-range
dependence while the other short-range dependence.



4 Isotropic Correlation Family in R3 with Long-Range Dependence 119

4.5 Other Correlation Families With Long-Range
Dependence

4.5.1 The Generalized Cauchy Family

The generalized Cauchy family [8, 11] is a three-parameter family of isotropic cor-
relation functions in Rd , for all d ≥ 1, given by

Cα,β,θ (r) =
(
1 +

( r
θ

)α)−β/α

,

whereα ∈ (0, 2],β > 0 and θ > 0.As in the previous families, θ is a rangeparameter.
The main virtue of this family is that it allows for independent choices of fractal
dimension andHurst coefficient, where the former is a measure of the ‘roughness’ of
realizations of random fields with this correlation function, and the latter is a measure
of ‘persistence’ or long-range dependence [7]. Specifically, realizations of a random
field in Rd with correlation function Cα,β,θ (r) have fractal dimension [11]

D = d + 1 − α/2 ∈ [d, d + 1),

with D = d (D > d) when the random field is (is not) mean square differentiable;
the larger D is, the rougher the realizations. So this property is entirely controlled
by the parameter α.

Additionally, Cα,β,θ (r) ∼ r−β as r → ∞, so it satisfies (4.4) when β ∈ (0, d],
and the random field has long-range dependence with Hurst coefficient [11, 16]

H = d + β

2
∈ (d/2, d];

the closer H is to d/2, the stronger the persistence. So this property is entirely
controlled by the parameterβ ∈ (0, d]. The randomfield has short-range dependence
when β > d. Hence, D and H can vary independently of each other, and they can
take any value in their respective ranges of possible values [8]. This property is
in sharp contrast with that of self-affine processes often used to model long-range
dependence [14] where the fractal dimension and Hurst coefficient are tied by the
relation D + H = d + 1.

The generalized Cauchy family allows a wide range of ‘roughness’ and ‘persis-
tence’ behaviors controlled by the parameters α and β, respectively. On the other
hand, this family does not allow a wide range of smoothness behaviors, since a ran-
dom field with correlation function Cα,β,θ (r) is non-differentiable in mean square
when α ∈ (0, 2) and infinitely differentiable when α = 2, with no possible interme-
diate behaviors [19].
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4.5.2 The Confluent Hypergeometric Family

Recently, [13] derived a new family of isotropic correlation functions in R
d , for

all d ≥ 1, that display long-range dependence. The construction involves mixing
the Matérn correlation functions (in a parametrization different than (4.5)) over the
(new) squared range parameter, with the IG(α, β2/2) distribution as the mixing
distribution4. Specifically, their correlation function is given by

Hα,β,ν(r) =
∫ ∞

0
Mφ/

√
2ν,ν(r)

β2α

2α�(α)
φ−2(α+1)e

− β2

2φ2 dφ2

= β2α�(ν + α)

�(ν)�(α)

∫ ∞

0
xν−1(x + β2)−(ν+α)e− νr2

x dx

= �(ν + α)

�(ν)
U

(
α, 1 − ν, ν

( r

β

)2)
,

where α, β, ν > 0 and U (a, b, c) is the confluent hypergeometric function of the
second kind ([1, 13.2]), so this family was named the Confluent Hypergeometric
family; see [13] for details.

It was shown by [13] that the Confluent Hypergeometric and Matérn covariance
functions with the same parameter ν have the same asymptotic behavior as r → 0.
Hence, like the Matérn family, a random field with correlation function Hα,β,ν(r) is
[ν]-times mean square differentiable [20], and the fractal dimension of realizations
from this random field is [7, 16]

D =
{
d + 1 − ν if ν ∈ (0, 1)
d if ν ≥ 1

(D ∈ [d, d + 1)).

So this model allows any degree of smoothness and roughness which is controlled
by the parameter ν.

Additionally, it was shown by [13] that

Hα,β,ν(r) ∼ ar−2αL(r2), as r → ∞,

for some a > 0, where L(x) := (
x/(x + β2/(2ν))

)ν+α
is a slowly varying function

at infinity. Then, for any d ∈ N, Hα,β,ν(r) satisfies (4.4) when α ∈ (0, d/2]. Hence,
unlike theMatérn family, theConfluentHypergeometric correlation functions display
long-range dependence when α ∈ (0, d/2]. In this case, they decay hyperbolically
fast with increasing distance, with the rate of decay controlled by the parameter α,
and the Hurst coefficient [16] is

H = d/2 + α ∈ (d/2, d].

4 The symbol IG(α, β2/2) denotes the inverse gamma distribution with shape parameter α and scale
parameter β2/2.
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The random field has short-term dependence when α > d/2. Like the generalized
Cauchy family, D and H in the Confluent Hypergeometric family can vary inde-
pendently of each other and they can take any value in their respective ranges of
possible values. But in contrast to the former, the latter family allows a wide range
of smoothness behaviors.

4.6 Discussion

Correlation functions displaying short-range dependence are the most often used in
geostatistical applications. This practice is mainly due to the following:

(I) Correlation families displaying long-range dependence are fewer and less
known in geostatistics than short-range correlation families.

(II) The detection of long-range dependence requires abundant data collected over
large regions, which is often not available.

(III) The main goal in many geostatistical applications is spatial interpolation based
on densely collected data, in which case the behavior of the correlation function
at short distances is much more important than the behavior at large distances.

Nevertheless, recent developments in theory and applications have shown that
correlation functions displaying long-range dependence have a role to play in geo-
statistics.

When the goal is spatial extrapolation or interpolation with sparsely located data,
short-range correlation models may provide less satisfactory predictive inferences.
In this case, the effect of the correlation function on the optimal linear predictor
is negligible, as this predictor is essentially the estimated mean function. This is
an unwanted outcome because it is rarely the case in applications that the modeler
has strong confidence in the proposed mean function, even when this is constant.
In an analysis of carbon dioxide measured in the United States by satellite, [13]
found that, for spatial extrapolation, predictive inference based on the Confluent
Hypergeometric family was better than that based on the Matérn family (when ν was
fixed at the same value in both families). On the other hand, for spatial interpolation,
predictive inference based on both families was about the same. These behaviors are
explained by the fact that both families are equally flexible in modeling smoothness
of the random field, while only the confluent hypergeometric family can model both
short- and long-range dependence.

Acknowledgements This work was partially supported by the U.S. National Science Foundation
grant DMS–2113375.
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Chapter 5
Portmanteau Tests for Semiparametric
Nonlinear Conditionally Heteroscedastic
Time Series Models

Christian Francq, Thomas Verdebout, and Jean-Michel Zakoian

Abstract A class of multivariate time series models is considered, with general
parametric specifications for the conditional mean and variance. In this general
framework, the usual Box–Pierce portmanteau test statistic, based on the sum of
the squares of the first residual autocorrelations, cannot be accurately approximated
by a parameter-free distribution. A first solution is to estimate from the data the
complicated asymptotic distribution of the Box–Pierce statistic. The solution pro-
posed by Li [23] consists of changing the test statistic by using a quadratic form of
the residual autocorrelations which follows asymptotically a chi-square distribution.
Katayama [21] proposed a distribution-free statistic based on a projection of the
autocorrelation vector. The first aim of this paper is to show that the three methods,
initially introduced for specific time series models, can be applied in our general
framework. The second aim is to compare the three approaches. The comparison is
made on (i) the mathematical assumptions required by the different methods and (ii)
the computations of the Bahadur slopes (in some cases viaMonte Carlo simulations).

5.1 Introduction

A crucial step in the Box–Jenkins methodology for ARMAmodel fitting is the model
diagnostic checking, see Brockwell and Davis [10]. This step aims at answering the
following question: is a given ARMA(p, q) model adequate for the time series at
hand? If the ARMA(p, q) model suitably describes the linear dependence structure
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of the time series, in particular, if the orders p and q are appropriately chosen, the
residuals should be close to the linear innovations, and thus approximately uncor-
related. The so-called portmanteau tests of Box and Pierce [9] and Ljung and Box
[27]—arguably the most widely used adequacy tests in time series—reject the can-
didate ARMA(p, q) model if a weighted sum of the squares of the first m residual
autocorrelations exceeds some critical value. Under the assumption that the ARMA
innovations are independent and identically distributed (iid), the critical value is
approximated by a quantile of a chi-square distribution. The iid assumption for the
linear innovations is, however, extremely restrictive, since it implies that the optimal
predictions are linear, and it precludes any form of conditional heteroscedasticity,
a typical stylized fact of the financial series, see, e.g., Tsay [36] and the references
therein.

Several authors have relaxed the iid assumption by studying ARMAmodels under
the more realistic assumption that the innovations are uncorrelated but could exhibit
conditional heteroskedasticity or another nonlinear dynamics of unknown form (see
in particular Romano and Thombs [33], Francq and Zakoian [16], Shao [34], Zhu
[40], Boubacar Maïnassara and Saussereau [8], and Wang and Sun [39], among
others). An ARMA equation with iid innovations is generally called strong ARMA
model, whereas it is called weak ARMA when its innovations are uncorrelated but
possibly dependent. Goodness-of-fit tests for weak ARMA models (see Francq et
al. [15], and Zhu and Li [41]) aim at answering the following question: is a given
ARMA(p, q) model adequate to take into account the linear dynamics of the time
series at hand?

In the present paper, we do not investigate exactly the same question. We follow
a more parametric approach, by considering a general d-dimensional time series
model with a parametric conditional mean and a parametric conditional variance,
and with iid (0, Idd) rescaled innovations, where Idd denotes the d × d identity
matrix. Our approach is, however, not fully parametric because we do not assume a
particular distribution for the iid noise. The ultimate goal of the diagnostic checking
tests studied in the present paper is to answer the following question: is a given
nonlinear model adequate to represent the level and volatility of a given time series?
However, we mainly focus on checking the adequacy of the conditional mean part.

The rest of the paper is organized as follows. In Sect. 5.2, we introduce a general
nonlinear multivariate parametric model driven by a sequence of iid errors.We derive
the asymptotic distributions of theQuasiMaximumLikelihood (QML) estimator and
of a vector of empirical correlations of the residuals. In Sect. 5.3, we first consider
portmanteau test statistics based on the residual autocorrelations. We compare the
usual Box–Piece [9] statistic whose asymptotic distribution is chi-bar-square, the Li
[23] statistic based on a quadratic form of the residual autocorrelationswhose asymp-
totic distribution is chi-square, and Katayama [21] distribution-free statistic based
on a projection of the autocorrelation vector. These test statistics are used to check
the adequacy of the conditional mean. We also consider portmanteau test statistics
based on autocorrelations of nonlinear transformation of the residuals, in order to
check the adequacy of the volatility component. The properties of the tests under
fixed alternatives are compared via the Bahadur approach. Numerical illustrations,
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including numerical evaluations of the Bahadur slopes andMonte Carlo experiments,
are displayed in Sect. 5.4. Section 5.5 concludes the paper, while Sect. 5.6 contains
the proofs and complementary results.

The following notations will be used throughout this paper. For a matrix A of
generic term a(i, j) we use the norm ‖A‖ = ∑ |a(i, j)|. The spectral radius of a
square matrix A is denoted by ρ(A), its trace is denoted by Tr(A), its transpose by
A′ while the diagonal matrix whose diagonal is that of A is denoted by diag A. We
denote by A ⊗ B the Kronecker product of two matrices A and B, vecA denotes the
vector obtained by stacking the columns of A, and A⊗2 stands for A ⊗ A (see, e.g.,

Harville [18] for more details about these matrix operators). The symbol
L→ denotes

the convergence in distribution.

5.2 Model and Preliminaries

Let X = (X t ) be a d-multivariate stationary process satisfying

X t = Mθ0(X t−1, X t−2, . . . ) + Sθ0(X t−1, X t−2, . . . )ηt , (5.1)

where θ0 is a s-dimensional vector of unknown parameters belonging to � ⊂ R
s ,

and Sθ0(·) is almost surely (a.s.) symmetric and positive definite. It is assumed that
the random variable ηt is independent of {Xu, u < t}, and that (ηt ) is an iid sequence
of random vectors with mean zero and variance Idd , which is denoted by

(ηt ) ∼ IID(0, Idd). (5.2)

The first and second conditional moments of (5.1) are given by

M t (θ0) := Mθ0(X t−1, X t−2, . . . ) = E(X t | Xu, u < t),

�t (θ0) := S2
θ0

(X t−1, X t−2, . . . ) = Var(X t | Xu, u < t).

Clearly, (5.2) is restrictive, but Model (5.1) is, however, quite general. Since it
includes almost all the existing time seriesmodels, the practitioner is faced to the diffi-
cult problemof the choice of an appropriate specification for the conditionalmoments
M t and �t . In particular, there exists a huge number of generalized autoregressive
conditional heteroscedastic (GARCH) models that can be employed to specify the
conditional variance �t (see Bollerslev [7] for an impressive list of more than one
hundred GARCH-type models).

When the distribution of η1 is not specified, the unknown parameter θ 0 is generally
estimated by QML. We first collect useful results concerning this estimator.
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5.2.1 Asymptotic Distribution of the QML Estimator

Given observations X1, . . . , Xn , and initial values X0 = x0, X−1 = x−1, . . . , at any
θ = (θ1, . . . , θs)

′ ∈ �, the conditional moments M t (θ) and �t (θ) =: S2
t (θ) can be

approximated by the measurable functions

M̃ t (θ) = Mθ (X t−1, . . . , X1, x0, . . . )

and
�̃t (θ) := S2

θ (X t−1, . . . , X1, x0, . . . ) =: S̃2
t (θ),

where the matrices St (θ) and S̃t (θ) are a.s. symmetric and positive definite. The
QML estimator of θ0 is defined as any measurable solution θ̂ of

θ̂ = argmin
θ∈�

Q̃n(θ),

where, omitting the term “(θ)” when there is no ambiguity,

Q̃n(θ) = 1

n

n∑

t=1

�̃t and �̃t = �̃t (θ) = ε̃′
t �̃

−1
t ε̃t + log det �̃t ,

with ε̃t = ε̃t (θ) = X t − M̃ t (θ). Let also Qn(θ) = n−1∑n
t=1 �t (θ), where

�t (θ) = ε′
t�

−1
t (θ)εt + log det�t (θ), with εt = εt (θ) = X t − M t (θ). In the sequel,

ρ denotes a generic constant belonging to [0, 1), and K > 0 denotes a positive con-
stant or a positive random variable measurable with respect to the σ -field generated
by {Xu, u ≤ 0}. It can be shown that the QML estimator is consistent and asymptot-
ically normal under the following assumption:

Assumption 5.1

(i) � is a compact set and the functions θ → M t (θ) and θ → �t (θ) > 0 are
continuous;

(ii) {X t } is a nonanticipative strictly stationary and ergodic solution of (5.1);
(iii) det�t (θ) > 0 a.s. and E log− det�t (θ) < ∞ for all θ ∈ �, and

E log+ det�t (θ0) < ∞ (log+ and log− are, respectively, the positive and
negative parts of the log);

(iv) E‖X t‖r < ∞ and E supθ∈� ‖M t (θ)‖r < ∞ for some r > 0. Furthermore,

supθ∈� ‖S̃−1
t (θ)‖ ≤ K , supθ∈� ‖S−1

t (θ)‖ ≤ K and for some ρ ∈ (0, 1),
ρ−t supθ∈�

∣
∣M t (θ) − M̃ t (θ)

∣
∣ → 0 and ρ−t supθ∈�

∣
∣St (θ) − S̃t (θ)

∣
∣ → 0 a.s.;

(v) if θ �= θ0 then M t (θ) �= M t (θ0) or �t (θ) �= �t (θ0) with non zero
probability;

(vi) θ0 belongs to the interior
◦
� of �;

(vii) θ → M t (θ) and θ → �t (θ) admit continuous second order derivatives;
(viii) for some neighborhood V(θ0) of θ0, we have
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sup
θ∈V(θ0)

√
n

∥
∥
∥
∥
∂ Qn(θ)

∂θ
− ∂ Q̃n(θ)

∂θ

∥
∥
∥
∥ = oP(1) (5.3)

and, for all i, j ∈ {1, . . . , m} and some rk > 0, k ∈ {1, . . . , 5}, such that
2r−1

2 + 2r−1
3 ≤ 1, r−1

1 + 2r−1
3 ≤ 1, r−1

2 + r−1
3 + r−1

5 ≤ 1, r−1
3 + r−1

4 ≤ 1, and
r5 ≥ 2, we have

E sup
θ∈V(θ0)

∥
∥
∥
∥S

−1
t (θ)

∂2�t (θ)

∂θi∂θ j
S−1

t (θ)

∥
∥
∥
∥

r1

< ∞, (5.4)

E sup
θ∈V(θ0)

∥
∥
∥
∥S

−1
t (θ)

∂�t (θ)

∂θi
S−1

t (θ)

∥
∥
∥
∥

r2

< ∞, (5.5)

E sup
θ∈V(θ0)

∥
∥S−1

t (θ)St (θ0)
∥
∥r3

< ∞, (5.6)

E sup
θ∈V(θ0)

∥
∥
∥
∥S

−1
t (θ)

∂2M t (θ)

∂θi∂θ j

∥
∥
∥
∥

r4

< ∞, (5.7)

E sup
θ∈V(θ0)

∥
∥
∥
∥S

−1
t (θ)

∂M t (θ)

∂θi

∥
∥
∥
∥

r5

< ∞, (5.8)

where θi denotes the i-th component of the vector θ ;
(ix) E‖η0‖4 < ∞, and the information matrices

I = E
[{∂�t (θ0)/∂θ} {∂�t (θ0)/∂θ ′}] and J = E

{
∂2�t (θ0)/∂θ∂θ ′}

are non singular.

To illustrate Assumption 5.1, let us consider the following simple example.

Example 5.1 Consider the univariate ARMA(1,1)-GARCH(1,1) model defined by

{
Xt − a0Xt−1 = c0 + εt + b0εt−1,

εt = σtηt , σ 2
t = ω0 + α0ε

2
t−1 + β0σ

2
t−1.

Since d = 1, the random variables are not written in boldface. When the unknown
parameter θ0 = (c0, a0, b0, ω0, α0, β0)

′ belongs to the compact set

� ⊂ (−∞,+∞) × (−1, 1)2 × (0,+∞)2 × [0, 1),

with E log(α0η
2
1 + β0) < 0 and a0 �= b0, and when the support of the law of η1

contains more than 2 points, Assumption 5.1(i)–(v) required for the consistency are
satisfied. If, in addition, θ0 belongs to the interior of � and

2α0β0 + β2
0 + α2

0 Eη4
1 < 1, (5.9)
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it can be shown, using Francq and Zakoïan [17], that Assumption 5.1 is entirely
satisfied. In particular, (5.4)–(5.6) hold true for arbitrary large values of r1, r2, and
r3 (see Francq and Zakoïan ([17]; (4.25) and (4.29))) and for r3 = r4 = 4. Note
that (5.9) is the necessary and sufficient condition for Eε41 < ∞, and that moments
assumptions are indeed required for the existence of I and J in this framework (see
Francq and Zakoïan ([17]; Remark 3.5)).

Write a
c= b when a = b + c. The following lemma states the asymptotic behavior

of the QMLE. Similar results can be found elsewhere in the literature under slightly
different assumptions (see, e.g., Pötscher and Prucha [32]). For the sake of self-
containedness, the proof is however given in Sect. 5.6.

Lemma 5.1 Assume (5.1)–(5.2). Under Assumption 5.1(i)–(v), θ̂ → θ0 a.s. while
under Assumption 5.1,

√
n(̂θ − θ0)

oP (1)= −J−1 1√
n

n∑

t=1

Zt
L→ N (0,�θ ) (5.10)

as n → ∞, where �θ := J−1 I J−1 and Zt = ∂�t (θ0)/∂θ . Letting Zt = (Z1t , . . . ,

Zst )
′, we have

Zit = −2
∂M ′

t (θ0)

∂θi
S−1

t (θ0)ηt + Tr

{

S−1
t (θ0)

∂�t (θ0)

∂θi
S−1

t (θ0)
(
Idd − ηtη

′
t

)
}

.

5.2.2 Asymptotic Distribution of the Residuals Empirical
Autocorrelations

Define the standardized residuals

η̂t = S̃
−1
t (̂θ )̃εt (̂θ), t = 1, . . . , n.

For some m ≥ 1, define the vectors of sample autocovariances and autocorrelations

γ̂ m =
({

vec�̂(1)
}′

, . . . ,
{
vec�̂(m)

}′)′
,

ρ̂m =
({

vecR̂(1)
}′

, . . . ,
{
vecR̂(m)

}′)′
,

where, for 0 ≤ � < n,

�̂(�) = 1

n

n∑

t=�+1

η̂t η̂
′
t−� and R̂(�) = {

diag �̂(0)
}−1/2

�̂(�)
{
diag �̂(0)

}−1/2
.
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Letϒ t = ηt−1:t−m ⊗ ηt , whereηt−1:t−m = (η′
t−1, . . . , η

′
t−m)′ and define the s × md2

and d2 × s matrices

�θϒ = −J−1EZtϒ
′
t and c� = −Eηt−� ⊗ S−1

t (θ0)
∂M t (θ0)

∂θ ′ . (5.11)

Define also the md2 × s matrix Cm = (c′
1c

′
2 · · · c′

m)′.
The portmanteau tests studied in the next section are quadratic forms of γ̂ m and

ρ̂m . The following proposition gives the asymptotic distribution of these vectors. Its
proof is given in Sect. 5.6.

Proposition 5.1 Under the assumptions of Lemma 5.1, we have

√
nγ̂ m

L→ N
{
0,�γ m

}
and

√
nρ̂m

L→ N
{
0,�ρm

}
(5.12)

as n → ∞, where

�ρm
= �γ m

= Idmd2 + Cm�θC ′
m + Cm�θϒ + �′

θϒC
′
m . (5.13)

As usual, the information matrices I and J are consistently estimated by their
empirical counterparts

Î = 1

n

n∑

t=1

∂�̃t (̂θ)

∂θ

∂�̃t (̂θ)

∂θ ′ and Ĵ = 1

n

n∑

t=1

∂2�̃t (̂θ)

∂θ∂θ ′ .

A strongly consistent estimator �̂ρm
is obtained by using similar empirical estimators

for the other matrices involved in �ρm
. More precisely, letting

Ĉm = (̂c′
1̂c

′
2 · · · ĉ′

m)′, ĉ� = −1

n

n∑

t=�+1

η̂t−� ⊗ S̃
−1
t (̂θ)

∂ M̃ t (̂θ)

∂θ ′ ,

one can use the estimator

�̂ρm
= (

ĈmIdmd2

) 1

n

n∑

t=1

(
− Ĵ

−1 ∂�̃t (̂θ)

∂θ
̂ϒ t

)
(

− ∂�̃t (̂θ)

∂θ ′ Ĵ
−1

̂ϒ
′
t

)( Ĉ
′
m

Idmd2

)

, (5.14)

where ̂ϒ t = η̂t−1:t−m ⊗ η̂t with η̂t−1:t−m = (̂η′
t−1, . . . , η̂

′
t−m)′ and η̂t = 0 for t ≤ 0.

By construction, the estimator of �ρm
defined in (5.14) is a semi-positive definite

matrix for finite n. On the other hand, the plug-in estimator of �ρm
obtained by

using consistent estimators of the matrices involved in the right-hand side of (5.13)
may result in a matrix that is not semi-positive definite in finite sample, and even
asymptotically when the model is misspecified (see Sect. 5.4.1).
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5.3 Different Portmanteau Goodness-of-Fit Tests

In order to determine whether or not the parametric specifications chosen for M t and
�t are appropriate, a common practice in time series is to look at the residuals. Visual
inspection of the residuals autocorrelograms, as well as more formal portmanteau
tests based on quadratic forms of the residual autocorrelations, have been found
useful for checking the adequacy of M t . We first consider such tests, and then turn
to portmanteau tests based on autocorrelations of nonlinear transformations of the
residuals for checking the adequacy of the volatility component �t .

5.3.1 Portmanteau Test Statistics

For goodness-of-fit checking of univariate ARMAmodels, Box and Pierce [9] intro-
duced the so-called portmanteau test statistics

Q B P
m = nρ̂ ′

m ρ̂m . (5.15)

McLeod [29] showed that, for an ARMA(p, q) model with iid errors, the distribution
of Q B P

m can be approximated by a χ2
m−(p+q), for m sufficiently large. Ljung and

Box [27] proposed a modified portmanteau test which has the same asymptotic
distribution as Q B P

m . Multivariate versions of these portmanteau statistics have been
introduced by Chitturi [11] and Hosking [19].

For general nonlinear models, the (asymptotic) distribution of Q B P
m is often badly

approximated by a χ2 (see, e.g., Duchesne and Francq [12]). To solve this problem,
Li [23, 24] considered, in a univariate framework, the test statistic

QLi
m = nρ̂ ′

m�̂
−1
ρm

ρ̂m, (5.16)

which follows asymptotically a χ2
md2 distribution under the assumption of Proposi-

tion 5.1 when �ρm
is invertible.

In the strong ARMA framework, Katayama [12] proposed a test statistic based on
the fact that the projection of γ̂ m on the orthogonal of the column space ofCm does not
depend on θ̂ , and thus has a simple asymptotic distribution. To state this result more
precisely,weneed to introduce somenotation.Assume thatCm has full rank s. Let Dm

be anothermd2 × s matrix with rank s, such that D′
mCm be invertible. The projection

on the column space of Cm orthogonally to the column space of Dm is defined by
PC⊥D = Cm(D′

mCm)−1D′
m . Define the projection MC⊥D = Idmd2 − PC⊥D and let

M̂C⊥D be the empirical estimator of MC⊥D (or any weakly consistent estimator of
this matrix). The following result shows that Katayama’s test statistic can by used
for the general nonlinear model (5.1)–(5.2).

Proposition 5.2 Under the assumptions of Lemma 5.1, if Cm and Dm have full rank
s, the test statistic
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QK
m = nρ̂ ′

m M̂C⊥Dρ̂m

converges weakly to a χ2
md2−s random variable as n → ∞.

Katayama [12] employed orthogonal projections (i.e., Dm = Cm), but it will be
shown in Sect. 5.3.2 that the use of oblique projections can lead to efficiency gains.
The assumption that Cm has full rank s is quite restrictive. In particular, it precludes
the use of the test statistic QK

m for md2 < s. Another frequent situation where the
rank of Cm is strictly smaller than s is when, as for an ARMA-GARCH model, M t

and �t depend, respectively, of the first s0 and last s1 components of θ0. In such a
case, the rank of Cm is not larger than s0. To solve this problem, let us introduce the
projection

M̂+ = Idmd2 − P̂+, lim
n→∞ P̂+ = P+ := Cm(C ′

mCm)+C ′
m a.s.,

where A+ denotes the Moore–Penrose pseudoinverse of a matrix A. Note that the
estimator P̂+ cannot be defined by directly substituting Ĉm forCm in P+. Indeed, the
convergence of An to A does not entail the convergence of A+

n to A+ (see Andrews
[3]). For a m × m positive semidefinite symmetric matrix A with eigenvalues λ1 ≥
· · · ≥ λm and spectral decomposition A = P�P ′, where� = diag(λ1, . . . , λm) and
P P ′ = Idm , and for any i ≤ s0 = rank(A), define the so-called {2}-inverse A−i =
Pdiag(λ−1

1 , . . . , λ−1
i , 0′

m−i )P
′. The name “{2}-inverse” comes from the property

A−i AA−i = A−i , which is the second of the four requirements of the definition
of the Moore–Penrose pseudoinverse. Using the fact that limn→∞ An = A entails
limn→∞ A

−s0
n = A−s0 = A+, one can take the estimator

P̂+ = Ĉm(Ĉ
′
m Ĉm)−s0 Ĉ

′
m .

Proposition 5.3 Under the assumptions of Lemma 5.1, if Cm has the rank s0, the
test statistic

QK+
m = nρ̂ ′

m M̂+ρ̂m (5.17)

converges weakly to a χ2
md2−s0

random variable as n → ∞.

5.3.2 Bahadur Asymptotic Relative Efficiency

We now compare the asymptotic behaviors of the previous portmanteau tests by
using Bahadur’s approach. This approach considers fixed alternatives, and compares
the rates at which the p-values converge to zero (see, e.g., van der Vaart [37] for
details).

The approximate p-values of two tests Q1 and Q2 are defined by �i (Qi ), where
�i (t) = limt→∞ PH0(Qi > t), for i = 1, 2. In the sense of Bahadur [4], the (approxi-



132 C. Francq et al.

mate) slope of the test Qi is defined by ci := limn→∞ −2 log�i (Qi )/n, under alter-
natives such that this limit exits in probability. The asymptotic relative efficiency
(ARE) of the test Q1 with respect to Q2 is then defined as the ratio of the slopes:
ARE(Q1 | Q2) = c1/c2. We say that Q1 is asymptotically more efficient than Q2

when ARE(Q1 | Q2) > 1.
In view of Lemma 5.1, the residual autocorrelations of the estimated model (5.1)

generally satisfy, as n → ∞

ρ̂m → ρ∗
m and �̂ρm

→ �ρ∗
m

�= 0 a.s. (5.18)

for some ρ∗
m such that ρ∗

m = 0when X does satisfy (5.1). In general, (5.18) still holds
true when the model is misspecified, but possibly with ρ∗

m �= 0 (and �ρ∗
m

�= �ρm
).

We now give a very simple example of such a situation.

Example 5.2 Assume that an AR(1) model Xt = aXt−1 + σηt is fitted to a non-
degenerated stationary and ergodic sequence (Xt ) that admits finitemoments of order
two, but is not necessarily an AR(1) process. By the ergodic theorem, the QMLE of
the AR(1) coefficient a converges to ρX (1), where ρX (·) denotes the autocorrelation
function of (Xt ), and the QMLE of σ 2 converges to

σ 2
0 := E(Xt − ρX (1)Xt−1)

2 > 0.

For t ≥ 2, the QML residuals thus satisfy η̂t = σ−1
0 {Xt − ρX (1)Xt−1} + op(1) as

n → ∞. The first convergence in (5.18) thus holds with ρ∗
m = (ρη(1), . . . , ρη(m))′

and

ρη(h) = γX (h) − ρX (1)γX (h − 1) + ρ2
X (1)γX (h) − ρX (1)γX (h + 1)

γX (0) − 2ρX (1)γX (1) + ρ2
X (1)γX (0)

.

Obviously, when Xt follows a weak AR(1) model, we retrieve ρ∗
m = 0. If, for

instance, Xt follows a MA(1) model of the form Xt = εt + bεt−1, then we have

ρ∗
m =

(
b3

(1 + b2)(1 + b2 + b4)
,

−b2

1 + b2 + b4
, 0, . . . , 0

)′
.

We now give a simple example that is not related to ARMA processes.

Example 5.3 Assume that Xt = ∏k
�=0 |ηt−�| j , where k and j are positive integers

and (ηt ) is an independent sequence of N(0, 1) distributed random variables. We
then have, for h = 0, . . . , k,

γX (h) = μ2h
j

(
μk+1−h
2 j − μ

2(k+1−h)
j

)
, μ j = 2 j/2�(

j+1
2 )√

π
,

and γX (h) = 0 for h > k, from which ρ∗
m is obtained as a function of j , k, and m.

The previous discussion leads us to consider the testing problem
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H0 : ρ∗
m = 0 against H1 : ρ∗

m �= 0. (5.19)

Let N1, . . . , Nmd2 be independentN(0, 1) randomvariables, and let λ̂1 ≥ · · · ≥ λ̂md2

be the eigenvalues of �̂ρm
. Denote by kα = kα

(
λ̂1, . . . , λ̂md2

)
the (1 − α)-quantile

of
∑md2

i=1 λ̂i N 2
i , and by χ2

ν,α the α-quantile of the χ2
ν distribution. The algorithm

developed by Imhof [20] can be used to compute kα (see Duchesne and Lafaye
de Micheaux [13]). The following proposition specifies the critical regions of the
portmanteau tests and gives their Bahadur slopes.

Proposition 5.4 Under the assumptions of Lemma 5.1, the following statements
hold:

(i) Under H0 in (5.19), (5.18) holds and the tests with critical regions

{
Q B P

m > kα

}
and

{
QK+

m > χ2
md2−s0,α

}

have asymptotic level α ∈ (0, 1). Under the additional assumption that Cm and
Dm have full rank s, the test

{
QK

m > χ2
md2−s,α

}
,

and under the assumption that �ρ∗
m

is invertible, the test

{
QLi

m > χ2
md2,α

}

also have the asymptotic level α;
(ii) Under H1 and assuming that (5.18) holds, the BP and Li tests are consistent and

have the respective Bahadur slopes

cB P = ρ∗
m

′ρ∗
m

λ1
and cLi = ρ∗

m
′
�−1

ρ∗
m
ρ∗

m,

where λ1 �= 0 is the largest eigenvalue of �ρ∗
m
. The test based on QLi

m is asymp-
totically more efficient than that based on Q B P

m in the sense that ARE(QLi |
Q B P) ≥ 1 for all ρ∗

m �= 0, with equality if and only if ρ∗
m belongs to the

first eigenvector space of �ρ∗
m
. On the other hand, assume that a.s. M̂C⊥D =

Idmd2 − Ĉm( D̂
′
m Ĉm)−1 D̂

′
m, with D̂m → D∗

m and Ĉm → C∗
m. Then if D∗

m and
C∗

m have full rank s, for alternatives ρ∗
m that do not belong to the column space

of C∗
m, the QK

m -test is consistent and has Bahadur slope

cK = ρ∗
m

′MC∗⊥D∗ρ∗
m, MC∗⊥D∗ = Idmd2 − C∗

m(D∗′
mC

∗
m)−1D∗′

m .

The optimal slope cK ,opt = ρ∗
m

′ρ∗
m is obtained when D∗

m belongs to the orthogo-
nal of the linear space generated by ρ∗

m . For alternatives, ρ∗
m that do not belong to

the column space of C∗
m(C∗′

mC
∗
m)+, the QK+

m -test is consistent and has Bahadur
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slope
cK+ = ρ∗

m
′M∗

+ρ∗
m, M∗

+ = Idmd2 − C∗
m(C∗′

mC
∗
m)+C∗′

m .

5.3.3 Nonlinear Transformations of the Residuals

The portmanteau tests based on the residual autocovariances are irrelevant for
detecting certain nonlinearities in the conditional mean or for testing the adequacy
of the volatility model �t (θ). Indeed, assuming for simplicity that there is no
conditional mean in the model (i.e., M̃ t (θ) ≡ 0) and that X t = S0tηt , the process

η̂t = S̃
−1
t (̂θ)X t is uncorrelated whatever the volatility model St (·), since S̃−1

t (̂θ)S0t

is always independent of ηt . For detecting nonlinearities in the conditional mean,
McLeod and Li [30] proposed portmanteau tests based on the autocorrelations of
squared ARMA residuals. For checking the adequacy of ARCH-type models, Li
and Mak (1994) and Ling and Li [18] proposed portmanteau tests based on the
autocovariances of the squared rescaled residuals. Other authors suggested using
portmanteau tests based on transformations of the residuals, such as the absolute val-
ues or the log of the squared (see Pérez and Ruiz [31] and Fisher and Gallagher [14]).
The idea behind these tests is that for any function g : Rd → R

d0 with d0 ≥ 1, the
autocorrelations of ĝt = g

(
η̂t

)
should be close to zero when the model is well speci-

fied.We thus define the d0 × d0 matrices �̂g(�) = 1
n

∑n
t=�+1

(
ĝt − gn

) (
ĝt−� − gn

)′

and R̂g(�) = {
diag �̂g(0)

}−1/2
�̂g(�)

{
diag �̂g(0)

}−1/2
for 0 ≤ � < n,

where gn = 1
n

∑n
t=1 ĝt . Let γ̂ g

m =
({

vec�̂g(1)
}′

, . . . ,
{
vec�̂g(m)

}′)′
,

ρ̂ g
m =

({
vecR̂g(1)

}′
, . . . ,

{
vecR̂g(m)

}′)′
and ϒ

g
t = η

g
t−1:t−m ⊗ η

g
t , with

η
g
t = g(ηt ) − E g(η1). Define the md2

0 × md2
0 , s × md2

0 and d2
0 × s matrices

�g = Eη
g
t η

g′
t , �θϒ g = −J−1EZtϒ

g′
t and cg� = Eη

g
t−� ⊗ ∂η

g
t

∂θ ′ . (5.20)

Define also the md2
0 × s matrix Cg

m = (cg
′

1 cg
′

2 · · · cg
′

m )′. The following proposition
gives the asymptotic distributions of γ̂ g

m and ρ̂ g
m .

Proposition 5.5 Under the assumptions of Lemma 5.1, assume that g is continuously
differentiable, E‖ηg

t ‖2 < ∞ and E‖ ∂η
g
t

∂θ
‖2 < ∞, and there exists a neighborhood

V(θ0) of θ0, such that

E sup
θ∈V(θ0)

∣
∣
∣
∣
∂η

g
t (θ)

∂θi

∣
∣
∣
∣ < ∞, E sup

θ∈V(θ0)

∣
∣
∣
∣
∂2η

g
t (θ)

∂θi∂θ j

∣
∣
∣
∣ < ∞, E sup

θ∈�

∣
∣
∣
∣

∂3η
g
t (θ)

∂θi∂θ j∂θk

∣
∣
∣
∣ < ∞.

Then √
nγ̂ g

m
L→ N

{
0,� g

γ m

}
and

√
nρ̂ g

m
L→ N

{
0,� g

ρm

}
(5.21)
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as n → ∞, where

� g
γ m

= Im ⊗ �⊗2
g + Cg

m�θCg′
m + Cg

m�θϒ g + �′
θϒ g C g′

m ,

�ρm
= {

Im ⊗ {diag(�⊗2
g )}−1/2

}
� g

γ m

{
Im ⊗ {diag(�⊗2

g )}−1/2
}
.

5.4 Illustrations

Proposition 5.4 shows that the Bahadur slope of the Li test is always greater than
that of the BP test. It was not possible to obtain a general comparison of these two
slopes with that of Katayama’s test. We, therefore, begin with a very simple example
for which the computation of the Bahadur slopes is tractable. We then give some
numerical evaluations of the slopes of the 3 tests for an ARMA-GARCH model. We
then study whether the finite sample empirical behaviors of the three tests reflect the
theoretical ranking provided by the Bahadur slopes.

5.4.1 Computation of Bahadur’s Slopes in a Particular
Example

As in Example 5.2, assume that an AR(1) model Xt = aXt−1 + σηt is fitted to a
MA(1) model Xt = εt + bεt−1. Assume in addition that (εt ) is a Gaussian noise of
variance σ 2

ε . For θ = (a, σ 2), we have

∂�̃t (θ)

∂θ
=
(

−2Xt−1
Xt −aXt−1

σ 2

− (Xt −aXt−1)
2

σ 4 + 1
σ 2

)

and
∂2�̃t (θ)

∂θ∂θ ′ =
(

2
X2

t−1

σ 2 2 Xt−1(Xt −aXt−1)

σ 4

2 Xt−1(Xt −aXt−1)

σ 4 2 (Xt −aXt−1)
2

σ 6 − 1
σ 4

)

.

By the ergodic theorem and tedious computations (see Sect. 5.6), it can be shown
that, as n → ∞, Î and Ĵ jointly converge a.s. to

I =
(
4 (1+b2)2

1+b4+b2 0

0 2 (1+b2)2

σ 4
ε (1+b4+b2)2

)

, J = I/2.

Similarly, ĉ� converges to c∗
� = (c∗

� , 0), with

c∗
1 = −1, c∗

2 = −b(1 + b2)

1 + b2 + b4
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and c∗
� = 0 for � ≥ 3. If follows that Cm and P+ have rank 1, with

P+ = 1

k

⎛

⎝
c∗
1

c∗
2

0′
m−2

⎞

⎠
(
c∗
1 c∗

2 0m−2
)
, k = c∗2

1 + c∗2
2 .

Using the form of ρ∗
m = (

ρ∗
1 , ρ

∗
2 , 0, . . . , 0

)′
obtained in Example 5.2, it follows

that

cK+ = (ρ∗
1c∗

1 + ρ∗
2c∗

2)
2

k
= b10

(1 + b2)2 (1 + b2 + b4)2(1 + 3b2 + 5b4 + 3b6 + b8)
.

We also have

Im + Cm�θϒ + �′
θϒC

′
m + Cm�θC ′

m =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

b2

(1+b2)2
−b
1+b2 0 . . . 0

−b
1+b2

1+b4

1+b2+b4 0 . . . 0
0 0 1 . . . 0
...

...
. . .

0 . . . 0 . . . 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

It is worth noting that this matrix is not positive definite. However, this is not surpris-
ing since, in this misspecified framework, the latter matrix cannot be interpreted as an
asymptotic covariance matrix. Therefore, the plug-in estimator of �ρm

obtained by
using consistent estimators of the matrices involved in the r.h.s. of (5.13) converges
to a matrix that is not semi-positive definite.

Let us now consider the consistent estimator in (5.14). Tedious computations (see
Sect. 5.6) show that the limiting covariance matrix is

�ρ∗
m

= E(ϒ tϒ
′
t ) + Cm�θϒ + �′

θϒC
′
m + Cm�θC ′

m

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

b2(1+2b2+5b4+2b6+b8)

(1+b2)2(1+b2+b4)2
−b(1+b2+4b4+b6+b8)

(1+b2)(1+b2+b4)2
0 . . . 0

−b(1+b2+4b4+b6+b8)

(1+b2)(1+b2+b4)2
1+b2+5b4+b6+b8

(1+b2+b4)2
0 . . . 0

0 0 1 . . . 0
...

...
. . .

0 . . . 0 . . . 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

It follows that the Bahadur slope of the Li test is

cLi = ρ∗
m

′
�−1

ρ∗
m
ρ∗

m = b4(1 + b2)2

1 + 3b2 + 8b4 + 11b6 + 8b8 + 3b10 + b12
.

Moreover, the Bahadur slope of the BP test is
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Fig. 5.1 Difference
between Bahadur slopes
(cLi − cK ) as a function of
the MA parameter
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cB P = ρ∗
m

′ρ∗
m

λ1
= b4(1 + 3b2 + b4)

λ1(1 + b2)2(1 + b2 + b4)2
.

Numerical calculations (not reported here) show that, in this example, the difference
between cLi and cB P is close to zero, though positive as shown in the general case. The
difference in asymptotic efficiencies between the Li and Katayama tests is illustrated
in Fig. 5.1. It can be seen that the difference is all themore important as the alternative
is far from the null assumption (i.e., as |b| approaches 1).

The conclusion on this example is that the ranking in terms of Bahadur slope is
Li � B P � K . Numerical illustrations on more complex models displayed in Sect.
5.4 confirm this ranking.

5.4.2 Numerical Evaluation of Bahadur’s Slopes

Consider the ARMA(1,1)-GARCH(1,1) model defined by

{
xt = axt−1 + εt − bεt−1 + c
εt = σtηt , σ 2

t = ω + αε2t−1 + βσ 2
t−1,

(5.22)

and first assume that the data generating process is the ARMA(2,1)-GARCH(1,1)
model defined by

{
xt = a1xt−1 + a2xt−2 + εt − bεt−1 + c
εt = σtηt , σ 2

t = ω + αε2t−1 + βσ 2
t−1,

(5.23)

with θ ′
0 = (a1, a2, b, c, ω, α, β) = (1,−0.16,−0.4, 1, 1, 0.05, 0.93) and ηt follow-

ing a standardized Student t-distribution with ν = 10 degrees of freedom. Consider
the Bahadur slopes of the portmanteau tests based on m = 6 residuals autocorrela-
tions. For Katayama’s portmanteau test, we used the version defined by (5.17). The
matrices I , J , Cm and �ρm

and the vector ρ∗
m cannot be computed exactly. In the

very simple model of Sect. 5.4.1, these quantities are obtained explicitly, but such
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Fig. 5.2 Estimated Bahadur
slopes of the three tests when
the DGP is (5.23) and the
model is (5.22)
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computations are impossible in the presence of a GARCH component. We, there-
fore, evaluated the unknownmathematical expectations by correspondingmeans over
very long simulations of the Model (5.22); we took 10 simulations of length n =
200, 000.Numerical approximations of the slopes ofBahadur are deduced therefrom.
Figure 5.2 displays the estimated Bahadur slopes. Note first that, even if the sample
size n = 200, 000 is quite large, the slopes are not estimated with great precision.
Indeed, the estimates vary a lot from one replication to another. The ranking is, how-
ever, clear, i.e., Li � B P � K in terms of the Bahadur efficiency. Similar results
(we omit here) have been obtained for ηt ∼ N(0, 1) and for different values of m.

5.4.3 Monte Carlo Experiments

In a first set of Monte Carlo experiments, we simulated N = 1, 000 inde-
pendent replications of simulations of size n = 1,000 and n = 4,000 of
the ARMA(1,1)-GARCH(1,1) process (5.22) where θ ′

0 = (a, b, c, ω, α, β) =
(0.8,−0.4, 1, 1, 0.05, 0.93) and ηt follows a Gaussian N(0, 1) or a standardized
Student t-distribution with ν = 10 degrees of freedom. The upper part of Table 5.1
gives the empirical relative frequencies of rejection of Model (5.22) by the Box–
Pierce, Li, and Katayama portmanteau tests, for several nominal levels, when ηt is
Gaussian (H0−N ) or when it has a Student t-distribution (H0−t ). For all the portman-
teau tests, we took m = 6 residuals autocorrelations. Type I error is generally well
controlled, for both distributions and sample sizes, with a slight disadvantage for the
Li test which seems a bit too liberal when n = 1000 and ηt ∼ N(0, 1).
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We then simulated alternative models to (5.22). We first considered an
ARMA(2,1)-GARCH(1,1) process with the same volatility as (5.22) (with the two
noise distributions), but with the level equation satisfying xt = a1xt−1 + a2xt−2 +
εt − bεt−1 + c with (a1, a2, b, c) = (1,−0.16,−0.4, 1). The lines corresponding to
H1−N and H1−t show that, for this alternative model, we have Li � B P � K in
terms of empirical power. Note that the ranking coincides with that of the Bahadur
slopes, in particular, Li � B P agrees with the corresponding theoretical result of
Proposition 5.4.

We then considered the alternative nonlinear model Xt = ∏k
�=0 |ηt−�| j of Exam-

ple 5.3: with k = 4 and j = 3 positive integers and ηt ∼ N(0, 1). The lines of
Table 5.1 corresponding to H1−N L show that the ranking of the methods remains the
same, i.e., Li � B P � K , with a particularly poor performance of the Katayama
test.

Table 5.2 shows the same outputs as Table 5.1, but m = 12 instead of m = 6
residual autocorrelations. The results of the two tables are very similar and lead to
the same empirical ranking of the tests.

5.5 Conclusion

Table 5.3 summarizes our comparison of the 3 methods for checking validity of the
general nonlinear model (5.1)–(5.2). The BP test is ranked last in terms of simplicity
since the computation of the critical value requires the use of an algorithm for com-
puting the distribution of a quadratic form of normal distributions. This is not a big
issue because the R package CompQuadForm developed by Lafaye de Micheaux
(2017) is a handy tool that provides such algorithms. The Li test ismore demanding in
terms of assumptions since it requires the invertibility of the matrix�ρm

. In contrast,
this test has the highest Bahadur slope and is also empirically the most powerful in
Monte Carlo experiments, but rejects a bit too often in finite samples. Overall, the
BP test seems to be the best compromise since it controls well the first kind error
and displays good power, while it is not complicated to implement thanks to the R
package CompQuadForm.

5.6 Technical Details

We first state elementary derivative rules, which can be found in Lütkepohl ([28];
Appendix A.13).

Lemma 5.2 If f (A) is a scalar function of a matrix A whose elements ai j are
function of a variable x, then
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Table 5.1 Empirical relative frequency of rejection of the null of correct specification using the
Box–Pierce (BP), Li, and Katayama (K) tests, for nominal levels varying from 0.1% to 20%. The
number of residual autocorrelations is m = 6

DGP n 0.1% 1% 2% 3% 4% 5% 6% 7% 10% 20%

H0−N 1000 BP 0.4 1.6 2.9 4.0 4.7 6.1 6.8 7.7 11.3 21.2

Li 0.6 2.6 3.4 4.5 5.2 6.9 7.7 9.6 12.8 24.5

K 0.3 1.9 2.6 3.2 4.3 5.2 6.6 7.8 10.6 19.9

4000 BP 0.0 0.5 1.5 2.9 3.9 5.0 6.0 7.4 10.5 20.2

Li 0.1 0.8 1.7 3.1 4.7 5.5 6.6 7.6 11.4 22.3

K 0.0 0.4 0.9 2.2 3.5 4.5 5.9 7.0 9.7 20.5

H0−t 1000 BP 0.0 0.5 1.5 2.7 4.6 5.3 6.9 7.7 10.6 20.8

Li 0.6 1.3 2.3 3.6 4.4 5.2 6.3 7.1 10.8 22.4

K 0.0 0.7 1.5 2.6 3.2 4.7 5.9 6.7 8.7 20.0

4000 BP 0.1 0.8 1.8 2.6 3.5 4.8 6.2 7.6 10.2 21.1

Li 0.2 0.6 1.5 2.5 3.7 5.2 6.4 7.1 10.0 20.1

K 0.1 0.9 2.1 2.7 4.2 5.6 6.8 8.2 10.5 19.5

H1−N 1000 BP 60.5 77.1 81.5 84.7 86.5 88.5 89.5 90.6 92.8 97.2

Li 77.0 86.4 90.0 91.1 91.9 92.5 93.7 94.2 95.6 98.2

K 21.9 42.7 50.5 56.4 59.8 63.4 66.2 69.1 72.8 83.1

4000 BP 99.4 99.9 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Li 99.7 99.8 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

K 91.7 94.1 95.1 95.8 95.8 96.0 96.4 96.6 97.0 98.2

H1−t 1000 BP 62.1 82.0 86.9 89.2 90.8 92.2 92.9 93.6 95.8 97.7

Li 64.0 82.8 87.4 89.9 91.6 93.0 93.8 94.4 95.9 97.4

K 41.3 64.7 72.4 76.5 79.2 81.2 83.4 85.3 88.9 93.1

4000 BP 99.7 99.8 99.9 99.9 99.9 99.9 99.9 99.9 99.9 99.9

Li 99.9 99.9 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

K 74.6 89.7 92.4 94.1 94.8 96.2 96.7 97.3 98.2 99.7

H1−N L 1000 BP 9.0 21.2 26.8 30.3 32.9 35.2 37.0 39.4 44.3 56.8

Li 26.4 39.4 44.5 48.3 50.8 53.6 55.6 56.9 62.2 71.6

K 4.0 6.5 7.9 8.9 9.5 10.4 11.3 12.2 13.6 17.9

4000 BP 32.2 45.2 51.2 54.1 56.7 58.6 60.3 62.2 66.2 75.0

Li 66.0 76.3 80.3 82.3 84.0 84.9 85.7 86.2 88.1 92.7

K 9.9 14.1 15.5 16.9 17.9 19.0 19.9 21.0 22.8 28.1

∂ f (A)

∂x
=
∑

i, j

∂ f (A)

∂ai j

∂ai j

∂x
= Tr

{
∂ f (A)

∂A′
∂A
∂x

}

.

When A is invertible, then

∂ log |det(A)|
∂A′ = A−1,

∂Tr(CA−1B)

∂A′ = −A−1BCA−1,
∂Tr(CAB)

∂A′ = BC.



5 Portmanteau Tests for Nonlinear Models 141

Table 5.2 Empirical relative frequency of rejection of the null of correct specification using the
Box–Pierce (BP), Li, and Katayama (K) tests, for nominal levels varying from 0.1% to 20%. The
number of residual autocorrelations is m = 12

DGP n 0.1% 1% 2% 3% 4% 5% 6% 7% 10% 20%

H0−N 1000 BP 0.2 1.4 2.8 4.5 5.3 6.2 7.4 8.6 12.5 21.0

Li 0.5 2.3 3.0 4.9 5.8 7.3 8.7 10.0 13.5 23.9

K 0.2 1.8 2.7 4.1 4.9 5.7 6.8 7.8 10.7 20.6

4000 BP 0.2 0.6 1.6 2.9 3.9 5.1 5.7 6.7 10.1 22.2

Li 0.1 1.1 2.3 3.1 3.7 4.9 6.4 7.2 11.5 23.2

K 0.1 0.7 1.9 2.7 3.4 4.7 6.0 6.7 9.7 20.9

H0−t 1000 BP 0.0 0.6 1.3 2.4 4.0 5.2 6.1 7.4 11.0 23.3

Li 0.6 1.7 2.5 3.7 5.2 5.8 7.1 7.8 11.3 23.5

K 0.0 0.4 1.2 2.7 3.6 4.5 6.1 7.3 10.2 21.4

4000 BP 0.0 0.7 2.1 3.4 4.4 5.3 6.1 6.6 10.3 20.7

Li 0.0 1.4 2.3 3.2 4.4 5.2 6.1 7.0 9.9 20.6

K 0.0 1.1 2.0 3.0 3.9 4.5 6.0 7.0 11.2 20.9

H1−N 1000 BP 5.4 18.2 25.6 31.3 35.3 37.6 39.9 43.7 51.7 68.2

Li 4.4 14.2 22.9 29.5 33.1 36.4 39.9 43.1 49.2 65.9

K 3.8 15.8 21.9 24.9 27.9 31.0 34.4 37.7 43.6 59.4

4000 BP 70.3 89.2 93.3 95.3 96.1 96.9 97.2 97.7 98.4 99.3

Li 64.4 87.1 91.2 93.3 94.5 95.1 96.7 97.2 98.0 99.1

K 57.4 79.6 84.5 86.6 88.3 89.3 90.4 91.6 93.6 97.4

H1−t 1000 BP 4.4 18.5 25.4 30.1 33.9 36.5 39.8 42.2 48.4 64.0

Li 3.4 15.1 22.5 27.1 30.6 35.0 38.5 41.6 48.0 63.6

K 3.9 13.9 20.0 24.3 26.9 29.9 32.7 35.4 41.4 56.2

4000 BP 69.6 87.3 91.9 93.8 94.9 95.5 96.2 96.5 97.7 98.8

Li 64.1 84.7 89.9 91.9 93.5 94.2 95.3 95.8 97.1 98.9

K 54.2 76.2 82.3 85.5 87.5 89.2 90.1 91.8 94.0 96.7

H1−N L 1000 BP 7.8 18.5 24.2 28.0 30.5 34.0 35.7 37.7 43.2 57.4

Li 27.6 37.4 41.3 44.9 47.0 49.3 51.0 52.3 54.7 64.5

K 4.4 6.8 7.7 8.4 9.0 9.3 10.0 10.6 12.3 15.6

4000 BP 7.8 13.1 17.5 19.9 22.1 24.3 25.5 26.9 31.9 44.5

Li 39.7 47.5 50.1 51.6 53.3 54.6 56.8 57.4 59.7 67.5

K 7.1 9.6 10.2 11.1 11.9 12.4 12.8 13.0 14.1 16.4

Table 5.3 Ranking of the three methods in terms of simplicity of implementation, mathematical
assumptions, asymptotic Bahadur’s efficiency, and finite sample empirical efficiency

Simplicity Assumptions Bahadur’s slope Empirical
efficiency

BP 3 1 2 1

Li 1 3 1 2

K 2 2 3 3
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Proof of Lemma 5.1 We have supθ∈�

∣
∣�t − �̃t

∣
∣ ≤ ∑4

i=1 ati , with

at1 = sup
θ∈�

∣
∣
∣
{
M t − M̃ t

}′
�−1

t εt

∣
∣
∣ , at2 = sup

θ∈�

∣
∣
∣̃ε′

t

(
�−1

t − �̃
−1
t

)
εt

∣
∣
∣ ,

at3 = sup
θ∈�

∣
∣
∣̃ε′

t �̃
−1
t

{
M̃ t − M t

}∣∣
∣ , at4 = sup

θ∈�

∣
∣log |�t | − log |�̃t |

∣
∣ .

By Assumption 5.1(iii) and (iv), we have

at2 = sup
θ∈�

∣
∣
∣̃ε′

t�
−1
t

(
�̃t − �t

)
�̃

−1
t εt

∣
∣
∣ = sup

θ∈�

∣
∣
∣ Tr

{
�−1

t

(
�̃t − �t

)
�̃

−1
t εt ε̃

′
t

}∣
∣
∣

≤ K sup
θ∈�

∥
∥�−1

t

∥
∥
∥
∥�̃t − �t

∥
∥
∥
∥
∥�̃

−1
t

∥
∥
∥
∥
∥εt ε̃

′
t

∥
∥ ≤ Kρ t sup

θ∈�

∥
∥εt ε̃

′
t

∥
∥ a.s.

as n → ∞. Note that
∑∞

t=1 at2 is finite a.s. since, for some r < 1,

E

( ∞∑

t=1

ρ t sup
θ∈�

∥
∥εt ε̃

′
t

∥
∥

)r

≤K
∞∑

t=1

ρr t

{

E ‖X t‖2r + E sup
θ∈�

‖M t‖2r + ρr t

(

E ‖X t‖r + E sup
θ∈�

‖M t‖r

)}

< ∞

by Assumption 5.1(iv). Similarly, it can be shown that
∑∞

t=1 ati < ∞ a.s. for all
i ∈ {1, . . . , 4}. It follows that

sup
θ∈�

∣
∣Q̃n(θ) − Qn(θ)

∣
∣ → 0 a.s. as n → ∞. (5.24)

By Assumption 5.1(iii), E�−
1 (θ) ≤ log− det�1(θ) < ∞. Now, Assumption 5.1(i)

and (ii) and the ergodic theorem (see Billingsley [6], pp. 284 and 495) show that
Qn(θ) → E�1(θ) ∈ R ∪ {+∞} a.s. Note also that �1(θ0) = η′

1η1 + log det�1(θ0)

admits a finite expectation, using Eη′
1η1 = d and Assumption 5.1(iii). We thus have

shown that the criterion Q̃n(θ) tends a.s. to the limit criterion E�1(θ)which is defined
a priori inR ∪ {+∞}, and is valued inR at θ = θ0. The limit criterion is minimized
at the true value since

E�1(θ) − E�1(θ0) = Eε′
t (θ)�−1

t (θ)εt (θ) + E log
det�t (θ)

det�t (θ0)
− d

= E {M t (θ) − M t (θ0)}′ �−1
t (θ) {M t (θ) − M t (θ0)}

+ Eη′
t St (θ0)�

−1
t (θ)St (θ0)ηt + E log

det�t (θ)

det�t (θ0)
− d

= E {M t (θ) − M t (θ0)}′ �−1
t (θ) {M t (θ) − M t (θ0)}

+ E Tr
(
�−1

t (θ)�t (θ0) − Idd
) + E log det�t (θ)�−1

t (θ0) ≥ 0
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with equality if and only if M t (θ) = M t (θ0) and �t (θ) = �t (θ0). For the
last inequality, we used the elementary inequality Tr(A−1B) − log det(A−1B) ≥
Tr(A−1A) − log det(A−1A) = d for all symmetric positive definite matrices of order
d × d. In viewofAssumption 5.1(v), it follows that E�1(θ) > E�1(θ0)when θ �= θ0.
To show the consistency, the convergence of the criterion needs to be established uni-
formly in some neighborhood of any θ ∈ � (see, e.g., Amendola and Francq ([2];
Section 5.1).

Let θ1 �= θ0 and let V d(θ1) be the open sphere with center θ1 and radius 1/d. The
process

{
infθ∈V d (θ1)∩� �t (θ)

}
t is stationary and ergodic. We thus have

inf
θ∈V d (θ1)∩�

Qn(θ) ≥ 1

n

n∑

i=1

inf
θ∈V d (θ1)∩�

�t (θ) → E inf
θ∈V d (θ1)∩�

�t (θ) a.s.

In view of the continuity of �t (·), the sequence infθ∈V d (θ1)∩� �t (θ) increases to �t (θ1)

when d → ∞. By the Beppo–Levi theorem

lim
d→∞ ↑ E inf

θ∈V d (θ1)∩�
�t (θ) = E lim

d→∞ ↑ inf
θ∈V d (θ1)∩�

�t (θ) = E�t (θ1) > Q∞(θ0).

In view of (5.24), it follows that, for all θ i �= θ0, there exists a neighborhoodV(θ i ),
such that

lim inf
n→∞ inf

θ∈V(θ i )∩�
Q̃n(θ) > lim

n→∞ Q̃n(θ0). (5.25)

The rest of the proof of the consistency is standard and relies on the argu-
ments of Wald [38]. The compact set � is covered by a finite number of open
sets V(θ1), . . . ,V(θm), and V(θ0), where V(θ0) is any neighborhood of θ0, and
the neighborhoods V(θ i ) i = 1, . . . , m satisfy (5.25). Then, with probability 1, we
have

inf
θ∈�

Q̃n(θ) = min
i=0,1,...,m

inf
θ∈V(θ i )

Q̃n(θ) = inf
θ∈V(θ0)

Q̃n(θ)

for n large enough. SinceV(θ0) can be an arbitrarily small neighborhood of θ0, the
consistency follows.

We now turn to the proof of the asymptotic normality. The strong consistency and
Assumption 5.1(vi) entail that we have a.s. ∂ Q̃n (̂θ)/∂θ = 0 for sufficiently large n.
In view of (5.3), we thus have

0
o(1)= √

n
∂ Qn (̂θ)

∂θ
a.s.

Now, Taylor expansions of the functions ∂ Qn(·)/∂θ i , for i = 1, . . . , s, give

0
o(1)= √

n
∂ Qn(θ0)

∂θ
+
[
∂2Qn(θ

∗
i )

∂θi∂θ j

]√
n
(
θ̂ − θ0

)
a.s. (5.26)
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for some θ∗
i ’s between θ̂ and θ0.

By Lemma 5.2, we have

∂

∂θi
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t εtε
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The generic element of J , whose existence is shown by (5.27) below, is thus

E

{
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∂θi∂θ j
�t (θ0)
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=Tr
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To show that the matrix into brackets in (5.26) converges a.s. to J it suffices to
use the ergodic theorem, the continuity of the derivatives, and to show that

E sup
θ∈V(θ0)

∣
∣
∣
∣
∂2�t (θ)

∂θi∂θ j

∣
∣
∣
∣ < ∞ (5.27)

for some neighborhood V(θ0) of θ0. Note that
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E sup
θ∈V(θ0)

|c1| ≤ E sup
θ∈V(θ0)

∥
∥
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t (θ)St (θ0)

∥
∥
∥
2
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∂�t (θ)

∂θi
S−1

t (θ)

∥
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2

,

which is finite by (5.5), (5.6) and Hölder’s inequality. Silmilary, it can be shown
that E supθ∈V(θ0)

|ci | < ∞ for all i ∈ {1, . . . , 8}, which entails (5.27). By (5.2) and
Assumption 5.1(viii), the sequence (Zt ) is a square integrable stationary martingale
difference. By the central limit theorem of Billingsley [5]

√
n
∂ Qn(θ0)

∂θ
= 1√

n

n∑

t=1

Zt
L→ N (0, I) as n → ∞.

The conclusion follows. �
Proof of Proposition 5.1 Note that η̂t = η̃t (̂θ) and ηt = ηt (θ0), where

η̃t (θ) = S̃
−1
t (θ )̃εt (θ) and ηt (θ) = S−1

t (θ)εt (θ).

Denote by η̃i t (θ) (resp. ηi t (θ)) the i-th component of η̃t (θ) (resp. ηt (θ)).

Lemma 5.3 Under the assumptions of Lemma 5.1, for all i, j ∈ {1, . . . , s} and
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It follows from Assumption 5.1(iv) that

E

(
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θ∈�

∣
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which entails that the supremum inside the parentheses is a.s. finite. The conclusion
follows. �

Lemma 5.4 Under the assumptions of Lemma 5.1, for all i, j, k ∈ {1, . . . , s}, there
exists a neighborhood V(θ0) of θ0 such that
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Proof The derivation rules of Lemma 5.2 give
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Noting in particular that

S−1
t (θ)

∂�t (θ)

∂θi
S−1

t (θ) = 2
∂St

∂θi
S−1

t ,

the conclusion follows from (5.4)–(5.8). �
Note that

γ̂ m = 1

n

n∑

t=1

̂ϒ t .

Let γ m = n−1∑n
t=1 ϒ t . We also need to introduce the notation

ηt (θ) = (η1t (θ), . . . , ηst (θ))′ = S−1
t (θ)εt (θ).
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Lemma 5.5 Under the assumptions of Lemma 5.1, as n → ∞

ρ̂m
oP (n−1/2)= γ̂ m

oP (n−1/2)= γ m + Cm (̂θ − θ0) (5.29)

with √
n

(
θ̂ − θ0

γ m

)
L→ N

{

0,
(

�θ �θϒ

�′
θϒ Idmd2

)}

. (5.30)

Proof In view of (5.10) and (5.11), the convergence (5.30) is a direct consequence
of the central limit theorem applied to the martingale difference

{
(Z′

t ,ϒ
′
t )

′, σ (ηu, u ≤ t)
}
.

The first equality of (5.29) comes from the consistency of �̂(0) to Eη1η
′
1 = Idd .

Now note that, in view of (5.28) we have

E
∂ηt−� ⊗ ηt

∂θ ′ (θ0) = Eηt−� ⊗ ∂ηt

∂θ ′ (θ0) = c�, (5.31)

as defined in (5.11). Letting �(�) = n−1∑n
t=�+1 ηtη

′
t−�, Lemma 5.3 and a Taylor

expansion of the function θ �→ n−1∑n
t=�+1 ηt−�(θ) ⊗ ηt (θ) around θ̂ and θ0 entail

vec�̂(�)
oP (1)= vec�(�) + ĉn,�(̂θ − θ0), (5.32)

where ĉn,� is a d2 × s matrix whose is + j-th row, i, j ∈ {1, . . . , s}, is of the form

1

n

n∑

t=�+1

∂ηi t−�η j t

∂θ ′ (θ∗
i j ),

and θ∗
i j lies between θ̂ and θ0. Using again a Taylor expansion, the k-th element of

the previous vector is equal to

1

n

n∑

t=�+1

∂ηi t−�η j t

∂θk
(θ0) + 1

n

n∑

t=�+1

∂2ηi t−�η j t

∂θ ′∂θk
(θ∗

i j, k)(̂θ − θ0), (5.33)

for some θ∗
i j, k between θ̂ and θ0. Lemma 5.4, the ergodic theorem and the strong

consistency of θ̂ show that the second term of (5.33) tends a.s. to zero. By (5.31),
it follows that ĉn,� → c� a.s. as n → ∞, and the second equality of (5.29) follows
from (5.32). �
Proof of Proposition 5.1 This is a direct consequence of Lemma 5.5. �
Proof of Proposition 5.2 In view of (5.29)–(5.30), we have
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M̂C⊥D
√

nρ̂m
oP (1)= MC⊥D

√
nγ m

L→ N {0, MC⊥D} .

Using Slutsky’s lemma and a well-known result on quadratic forms of Gaussian
vectors (see, e.g., van der Vaart ([37], Lemma 17.1)), and noting that MC⊥D

has s eigenvalues equal to 0 and md2 − s eigenvalues equal to 1, the conclusion
follows. �
Proof of Proposition 5.3 It comes from the fact that P+ = Cm(C ′

mCm)+C ′
m =

Bm(B′
m Bm)−1B′

m , where the s0 columns of Bm form a basis of the range of Cm . �
Proof of Proposition 5.4 That α is the asymptotic level of these tests is a direct
consequence of (5.12) and of well-known results on the quadratic forms of Gaussian
vectors.

By a standard large deviation result (see Zolotarev [42]), we have

log P

(
r∑

i=1

λi N 2
i > x

)

∼ −x

2λ1
as x → ∞,

when λ1 ≥ λ2 ≥ · · · ≥ λr > 0. The Bahadur slope cB P follows from this result and
the fact that, under H1, Q B P

m /n → ρ∗
m

′ρ∗
m . The two otherBahadur slopes are obtained

similarly. For two symmetric and invertible matrices A and B, it is well known that
A − B is positive semidefinite iff B−1 − A−1 is positive semidefinite. We thus have
cLi ≥ cB P because λ1 Imd2 − �ρ∗

m
is positive semidefinite, by definition of λ1.

Since the projections are contractions, we have cK ≤ ρ∗
m

′ρ∗
m with equality if and

only if D′
mρ∗

m = 0. Note that the condition that D′
mCm is invertible is equivalent

to Col⊥(Dm) ∩ Col(Cm) = ∅ (Col(A) denotes here the span of the columns of A).
This condition and the additional condition that ρ∗

m /∈ Col(Cm), required for the con-
sistency of the QK

m -test, are compatible with the condition ρ∗
m ∈ Col⊥(Dm) required

for the optimality of the test. The Bahadur slope cK+ is obtained similarly. �
Proof of Proposition 5.5 Let mg = mg(θ0) = E g(η1) and let η̌t

g = η
g
t (̂θ) with

η
g
t (θ) = g

(
ηt (θ)

) − E g(η1). Using Taylor expansions

1√
n

n∑

t=1

η̌
g
t η̌

g
t−�

oP (1)= 1√
n

n∑

t=1

η
g
t η

g
t−�

+
[

∂

∂θ ′
1

n

n∑

t=1

η
g
t (θ)η

g
t−�

(θ)

]

θ0

√
n(̂θ − θ0),

√
n{E g(η1) − gn} oP (1)= √

n

(

E g(η1) − 1

n

n∑

t=1

η
g
t

)

+
[

∂

∂θ ′
1

n

n∑

t=1

η
g
t (θ)

]

θ0

√
n(̂θ − θ0),

we deduce

1√
n

n∑

t=1

η̌
g
t η̌

g
t−� = OP(1), xn := √

n{E g(η1) − gn} = OP(1).

It follows that
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�̂g(�) = 1

n

n∑

t=1

η̌
g
t η̌

g′
t−� + 1

n

n∑

t=1

η̌
g
t x

′
n + xn

1

n

n∑

t=1

η̌
g′
t + xnx′

n

oP (n−1/2)= 1

n

n∑

t=1

η̌
g
t η̌

g′
t−�.

Letting �g(�) = n−1∑n
t=�+1 η

g
t η

g
t−�, a Taylor expansion of θ �→ n−1∑n

t=�+1

η
g
t−�(θ) ⊗ η

g
t (θ) around θ̂ and θ0 gives

vec�̂g(�)
oP (1)= vec�g(�) + ĉgn,�(̂θ − θ0), (5.34)

where ĉgn,� is a d2
0 × s matrix. The conclusion follows by arguments given in the

proof of Lemma 5.5. �
Tedious Computations for Sect. 5.4.1
For the MA(1) model Xt = εt + bεt−1, we have

γX (0) = σ 2
ε (1 + b2), γX (1) = σ 2

ε b, ρX (1) = b

1 + b2
= a0,

σ 2
0 = γX (0) + ρ2

X (1)γX (0) − 2ρX (1)γX (1) = σ 2
ε

1 + b2 + b4

1 + b2
.

Letting ηt = (Xt − a0Xt−1)/σ0, we have

γη(1) = E(Xt − a0Xt−1)(Xt−1 − a0Xt−2)

σ 2
0

,

= γX (1) − a0γX (0) − a0γX (2) + a2
0γX (1)

σ 2
0

= b3

(1 + b2)(1 + b2 + b4)
,

γη(2) = E(Xt − a0Xt−1)(Xt−2 − a0Xt−3)

σ 2
0

= −a0γX (1)

σ 2
0

= −b2

1 + b2 + b4
,

E X2
t X2

t−1 = E(ε22 + b2ε21 + 2bε2ε1)(ε
2
1 + b2ε20 + 2bε1ε0) = σ 4

ε (1 + 4b2 + b4),

E X4
t = E(ε41 + 4bε31ε0 + 6b2ε21ε

2
0 + 4b3ε1ε

3
0 + b4ε40 ) = 3σ 4

ε (1 + b2)2,

E X3
t Xt−1 = E(ε32 + 3bε22ε1 + 3b2ε2ε

2
1 + b3ε31 )(ε1 + bε0) = 3σ 4

ε b(1 + b2),

E Xt Xt−1X2
t−2 = E(ε3 + bε2)(ε2 + bε1)(ε

2
1 + b2ε20 + 2bε1ε0) = σ 4

ε b(1 + b2),

E Xt X2
t−1Xt−2 = E(ε3 + bε2)(ε

2
2 + b2ε21 + 2bε2ε1)(ε1 + bε0) = 2σ 4

ε b2,

E Xt X3
t−1 = E(ε2 + bε1)(ε

3
1 + 3bε21ε0 + 3b2ε1ε

2
0 + b3ε30 ) = 3σ 4

ε b(1 + b2),

E X2
t X2

t−2 = E(ε23 + b2ε22 + 2bε3ε2)(ε
2
1 + b2ε20 + 2bε1ε0) = σ 4

ε (1 + b2)2,

E X2
t Xt−1Xt−2 = E(ε23 + b2ε22 + 2bε3ε2)(ε2 + bε1)(ε1 + bε0) = σ 4

ε b(1 + b2),

Eηt Xt−1 = E X1η
3
2 = 0,

Eη2t X2
t−1 = σ 2

ε

1 + b2 + b6 + b8

(1 + b2)(1 + b2 + b4)
,
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Eη2t Xt−1Xt−2 = Eη2t ηt−1Xt−2 = σ 4
ε

σ 2
0

b(1 + b2 + b4)

1 + b2
= bσ 2

ε ,

E X2
t Xt−1ηt−1 = σ 4

ε (1 + 3b2 + b4)/σ0,

Eη2t Xt−1ηt−1 = σ0, Eη2t Xt−1ηt−2 = σ0b
1 + b2

1 + b2 + b4

Eηt (1 − η2t )ηt−1 = −2b3

(1 + b2)(1 + b2 + b4)
, Eηt (1 − η2t )ηt−2 = 2b2

1 + b2 + b4
,

Eη2t ηt−1ηt−2 = b3(1 − b2 + b4)

(1 + b2)(1 + b2 + b4)2
.

Moreover, Eη4
2 = 3 noting that η2 is Gaussian. The formulas for matrices I

and J follow. With ϒ t = (ηt−1ηt , ηt−2ηt , . . . , ηt−mηt )
′ and Zt = ∂�t (θ0)/∂θ =(−2Xt−1ηt/σ0

(1 − η2
t )/σ

2
0

)

we have

�θϒ = −J−1EZtϒ
′
t

= −J−1

( − 2
σ0

Eηt
2Xt−1ηt−1 − 2

σ0
Eηt

2Xt−1ηt−2 0 · · · 0
1
σ 2
0

Eηt (1 − η2
t )ηt−1

1
σ 2
0

Eηt (1 − η2
t )ηt−2 0 · · · 0

)

= −
(

1
2
1+b2+b4

(1+b2)2
0

0 σ 4
ε (1+b4+b2)2

(1+b2)2

)(
−2 −2b 1+b2

1+b2+b4 0 · · · 0
1
σ 2
0

−2b3

(1+b2)(1+b2+b4)
1
σ 2
0

2b2

1+b2+b4 0 · · · 0

)

=
(

1+b2+b4

(1+b2)2
b

1+b2 0 · · · 0
−2b3

(1+b2)2
σ 2

ε
2b2

1+b2 σ
2
ε 0 · · · 0

)

.

It follows that

Cm�θϒ =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

−1 0
−b(1+b2)

1+b2+b4 0
0 0
...

...

0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

(
1+b2+b4

(1+b2)2
b

1+b2 0 · · · 0
−2b3

(1+b2)2
σ 2

ε
2b2

1+b2 σ
2
ε 0 · · · 0

)

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

− 1+b2+b4

(1+b2)2
−b
1+b2 0 · · · 0

−b
1+b2

−b2

1+b2+b4 0 · · · 0
0 0 0 · · · 0
...

. . .

0 · · · 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.
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Moreover

Cm�θC ′
m = 1 + b2 + b4

(1 + b2)2

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 −c∗
2 0 · · · 0

−c∗
2 (c∗

2)
2 0 · · · 0

0 0 0 · · · 0
...

. . .

0 · · · 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1+b2+b4

(1+b2)2
b

1+b2 0 · · · 0
b

1+b2
b2

1+b2+b4 0 · · · 0
0 0 0 · · · 0
...

. . .

0 · · · 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Thus, we can obtain the expression of Im + Cm�θϒ + �′
θϒC

′
m + Cm�θC ′

m . We
have

E(ϒ tϒ
′
t ) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 + 2b6

(1+b2)2(1+b2+b4)2
b3(1−b2+b4)

(1+b2)(1+b2+b4)2
0 · · · 0

b3(1−b2+b4)

(1+b2)(1+b2+b4)2
1 + 3b4

(1+b2+b4)2
0 · · · 0

0 0 1 · · · 0
...

...
. . .

0 · · · 0 · · · 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

so that we also have the expression of �ρ∗
m
. We thus have

�−1
ρ∗

m
=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

c(1 + b2)2(1 + b2 + 5b4 + b6 + b8) cb(1 + b2 + 4b4 + b6 + b8)(1 + b2) 0 · · · 0
cb(1 + b2 + 4b4 + b6 + b8)(1 + b2) cb2(1 + 2b2 + 5b4 + 2b6 + b8) 0 · · · 0

0 0 1 · · · 0
.
.
.

.

.

.
. . .

0 · · · 0 · · · 1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

where c = (1+b2+b4)2

b4(1+3b2+8b4+11b6+8b8+3b10+b12)
. The Bahadur slope of the Li test follows.
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Chapter 6
Parameter Estimation of Standard AR(1)
and MA(1) Models Driven by a
Non-I.I.D. Noise

Violetta Dalla, Liudas Giraitis, and Murad S. Taqqu

Abstract The use of a non-i.i.d. noise in parametric modeling of stationary time
series can lead to unexpected distortions of the standard errors and confidence inter-
vals in parameter estimation. We consider AR(1) and MA(1) models and motivate
the need for correction of standard errors when these are generated by a non-i.i.d.
noise. The impact of the noise on the standard errors and confidence intervals is
illustrated with Monte Carlo simulations using various types of noise.

6.1 Introduction

Many applications in statistics and econometrics involve the use of parametric sta-
tionary time series models. The well-known parametric ARMA models popularized
by [2] and long-memory ARFIMA models introduced by [6, 7] can be represented
as a linear process

Xt =
∞∑

j=0

aθ, jηt− j , t = ...,−1, 0, 1, ..., (6.1)

where {η j } is an underlying uncorrelated noise with E[η j ] = 0, E[η2
j ] = σ 2

η , and
weights aθ, j . Theseweights are parameterized by a parameter θ and satisfy

∑∞
j=0 a2

θ, j
< ∞, with aθ,0 = 1.
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Our contribution is built on the work by [5], who analyzed the impact of a non-
i.i.d. noise on the asymptotic properties of the Whittle estimator of the parameter
θ for time series as in (6.1). The paper [5] extended the literature on the Whittle
estimation by deriving analytical expressions for the standard errors when using the
normal approximation for theWhittle estimator of the parameter θ , for a class of time
series which includes stationary ARMAmodels. They showed that the distortions of
the standard errors, caused by the presence of a non-i.i.d. noise {η j }, can be large.
They showed further that the standard errors of the estimators are related to the
dependence structure of an underlying uncorrelated noise {η j } in a complex manner.
The paper [5] provided the estimators of the standard errors for dynamic parameters
of AR(1) and MA(1) models with zero mean, E[Xt ] = 0. The estimation of the
standard errors for other ARMA models remains an open problem.

In this paper, we focus solely on the estimation of AR(1) and MA(1) models and
extend thework [5] in a number of directions. Firstly, we derive asymptotic normality
and analytical expressions of the standard errors for the estimators of the parameters
for the case of a non-zero mean. Secondly, we provide an extensive simulation study
on coverage intervals for the parameters based on the estimated standard errors. This
study shows that the empirical confidence intervals adjusted for a non-i.i.d. noise
produce coverage probabilities that are close to the nominal. Simulations confirm
that significant coverage distortionsmayarisewhen the standard confidence intervals,
valid for an i.i.d. noise, are employed and the noise is not i.i.d. We show finally that
the estimation of the mean of Xt is not affected by a potential latent dependence in
the noise and it does not require adjustment.

Throughout this paper, we denote by →p and →D the convergence in probability
and distribution, respectively, while C denotes generic constants.

6.2 Main Results

It has long been known that theWhittle estimation method is a convenient alternative
to the maximum-likelihood method for estimating stationary parametric time series
models with a linear representation as in (6.1), see [3, 8, 10] and [4, Chap. 8]. While
the existing literature on the Whittle estimation enables us to understand the impact
of dependence on the estimation, in order to obtain the asymptotic distribution of the
Whittle estimator, one typically assumes that the noise {η j } is i.i.d.

Recently, [5] presented the corresponding asymptotic results on the Whittle esti-
mation for linear time serieswith a non-i.i.d. noise. They imposed strong assumptions
on the weights aθ, j , which are satisfied by stationary ARMA models. The paper [5,
Theorem 2.2] also showed that in the presence of a non-i.i.d. noise, the asymptotic
variance of the Whittle estimator has an infeasible structure. This variance might be
substantially different from the variance derived for the case of i.i.d. noise, which
subsequently complicates the estimation of the standard errors and building confi-
dence intervals for parameters. In addition, [5] examined estimation of parameters
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of stationary AR(1) andMA(1) models with zero mean, and showed how to estimate
the standard errors from the data.

Our primary interest is to provide asymptotic theory and feasible confidence inter-
vals for parameters of theAR(1) andMA(1)modelswith non-zeromean, and to verify
the accuracy of the theoretical asymptotic results usingMonte Carlo simulations.We
focus on the models:

AR(1) model : Xt = α0 + φ0Xt−1 + ηt , |φ0| < 1, (6.2)

MA(1) model : Xt = α0 + ηt − θ0ηt−1, |θ0| < 1, (6.3)

where {ηt } is a stationary uncorrelated noise with E[ηt ] = 0 and E[η2
t ] = σ 2

η . We
make the following assumptions:

– A1: {η j } is a stationary ergodic martingale difference sequence with respect to
some natural filtration Fj , namely E[η j |F j−1] = 0,

– A2: E[η4
j ] < ∞.

For example, F j could denote the σ -field generated by (η j , η j−1, ...).
We estimate the unknown mean E Xt by the sample mean X̄ = n−1 ∑n

j=1 X j . If

E X j �= 0, then the Whittle estimator based on the demeaned data X j − X̄ has the
same asymptotic properties as that based on the centered data X j − E X j , see [4,
Chap. 8].

Estimation of AR(1)model. TheWhittle estimator of the parameter φ0 is the sample
autocorrelation at the lag 1, see [5]:

φ̂ =
∑n

t=2(Xt − X̄)(Xt−1 − X̄)
∑n

t=2(Xt−1 − X̄)2
.

We derive an estimator for the intercept α0 by combining (6.2) and φ̂, as follows:

α̂ = (n − 1)−1
n∑

t=2

(Xt − φ̂Xt−1).

Recall that E[X j ] = α0(1 − φ0)
−1 and var(X j ) = σ 2

η (1 − φ2
0)

−1. We estimate the
mean E X j by the sample mean X̄ .

Theorem 6.1 The estimators φ̂, α̂ of the parameters φ0, α0 in the AR(1) model (6.2)
have the following properties:

n1/2(φ̂ − φ0) →D N(0, v2φ), (6.4)

v2φ := E[η2
1 (X0 − E X0)

2]
var2(X1)

= (1 − φ2
0) + cov(η2

1, (X0 − E X0)
2)

var2(X1)
,

n1/2(̂α − α0) →D N(0, v2α), (6.5)

v2α := E
[
η2
1

( E[X1](X0 − E X0)

var(X1)
+ 1

)2]
.
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Moreover,
n1/2(X̄ − E X1) →D N(0, s2x ), (6.6)

where

s2x :=
∞∑

k=−∞
cov(Xk, X0) = σ 2

η

(1 − φ0)2
.

The impact of the noise on the asymptotic variances in (6.4) and (6.5) is complex.
If {η j } is an i.i.d. noise, then in Theorem 6.1,

v2φ = 1 − φ2
0 , (6.7)

v2α = E[η2
1]

( (E[X1])2
var(X1)

+ 1
) = α2

0(1 + φ0)

1 − φ0
+ σ 2

η .

The long-run variance s2x in (6.6) depends on the variance σ 2
η of the noise and is not

affected by the hidden dependence in {η j }.
The unknown variances v2φ and v2α can be consistently estimated by

v̂2φ = n−1 ∑n
t=2 η̂2

t (Xt−1 − X̄)2

σ̂ 4
x

, σ̂ 2
x = n−1

n∑

t=1

(Xt − X̄)2, (6.8)

v̂2α = (n − 1)−1
n∑

t=2

η̂2
t

( (Xt−1 − X̄)X̄

σ̂ 2
x

+ 1
)2

,

where

η̂t = Xt − X̄ − φ̂(Xt−1 − X̄).

These estimators can be used to evaluate the standard errors SEφ = vφ/
√

n and
SEα = vα/

√
n required to build the confidence intervals for the parameters φ and α.

Corollary 6.1 Under the assumptions of Theorem 6.1, as n → ∞,

v̂2φ →p v2φ, v̂2α →p v2α. (6.9)

In the proof of Theorem 6.1, we will use the following useful result.

Lemma 6.1 ([1, Theorem 2.1]) Suppose that {Yt } is a linear process

Yt =
∞∑

j=0

b jξt− j , (6.10)
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where {ξ j } is a stationary ergodic martingale difference noise with E[ξ j ] = 0,
E[ξ 2

j ] < ∞ and the b j ’s are non-random weights,
∑∞

j=0 b2
j < ∞. Then

v2n = var
( n∑

t=1

Yt
) → ∞, n → ∞, (6.11)

implies

v−1
n

n∑

t=1

Yt →D N(0, 1). (6.12)

Proof of Theorem 6.1 We start with the proof of (6.4). The AR(1) model (6.2) can
be written as a linear process

Xt − E Xt =
∞∑

j=0

φ
j
0ηt− j , (6.13)

where

n−1var
( n∑

t=1

(Xt − E Xt )
) → s2x =

∞∑

k=−∞
cov(Xk, X0) = σ 2

η

(1 − φ0)2
. (6.14)

It is well known that centering the data Xt by the sample mean X̄ does not change
the asymptotic properties of the Whittle estimators of the parameters of the AR(1)
model, see [4, Chap. 8]. Therefore, the claim (6.4) follows from [5, Corollary 5.1].

Next, we prove (6.5). Since Xt − φ̂Xt−1 = α0 + (φ0 − φ̂)Xt−1 + ηt , then by def-
inition of α̂,

α̂ − α0 = (n − 1)−1
n∑

t=2

{(φ0 − φ̂)Xt−1 + ηt }

= (φ0 − φ̂)E[X1] + (n − 1)−1
n∑

t=2

ηt + op(n
−1/2), (6.15)

noting that φ0 − φ̂ = Op(n−1/2) by (6.4) and

(n − 1)−1
n∑

t=2

Xt−1 = E[X1] + op(1)

by (6.14). We will show below that
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φ̂ − φ0 = (n − 1)−1
n∑

t=2

ηt
Xt−1 − E Xt−1

var(X1)
+ op(1). (6.16)

Set γ = E[X1]/var(X1). Together with (6.15), this implies

α̂ − α0 = (n − 1)−1
n∑

t=2

zt + op(1), (6.17)

where
zt := ηt {γ (Xt−1 − E Xt−1) + 1}.

The sequence {zt } is a stationary martingale difference sequence. Since {Xt } is a
causal linear process (6.13), by [9, Theorem 3.5.8], {zt } is an ergodic sequence. As
seen below, E[X4

t ] < ∞. Therefore, E[z2t ] < ∞, and

v2n = E(

n∑

t=2

zt )
2 =

n∑

t=2

E[z2t ] = (n − 1)E[z21] → ∞.

Hence, by Lemma 6.1,

(nE[z21])−1/2
n∑

t=2

zt →D N(0, 1),

where

E[z21] = E
[
η2
1

( E[X1](X0 − E X0)

var(X1)
+ 1

)2]
,

which together with (6.17) proves (6.5).

Proof of (6.16). Recall μ = E[Xt ] = α0(1 − φ0)
−1. Then we can write

Xt − X̄ = α0 + φ0Xt−1 + ηt − X̄

= α0 + φ0(Xt−1 − X̄) + ηt + (X̄ − E Xt )(φ0 − 1) + E[Xt ](φ0 − 1)

= φ0(Xt−1 − X̄) + ηt + an,

where an = (X̄ − E Xt )(φ0 − 1). This together with the definition of φ̂ gives

φ̂ − φ0 =
∑n

t=2(Xt − X̄)(Xt−1 − X̄)
∑n

t=2(Xt−1 − X̄)2
− φ0

=
∑n

t=2 ηt (Xt−1 − X̄)
∑n

t=2(Xt−1 − X̄)2
+ an

∑n
t=2(Xt−1 − X̄)

∑n
t=2(Xt−1 − X̄)2

.

We will show that
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n∑

t=2

ηt (Xt−1 − X̄) =
n∑

t=2

ηt (Xt−1 − μ) + op(n), (6.18)

an

n∑

t=2

(Xt−1 − X̄) = op(n), (6.19)

(n − 1)−1
n∑

t=2

(Xt−1 − X̄)2 →p var(X1), (6.20)

which implies (6.16).
To verify (6.18), it suffices to note that

(μ − X̄)(

n∑

t=2

ηt ) = Op(n
−1/2)Op(n

1/2) = Op(1)

by (6.6), and noting that

E[(
n∑

t=2

ηt )
2] = (n − 1)σ 2

η

implies
∑n

t=2 ηt = Op(n1/2). Also, (6.19) holds because (6.6) implies an =
Op(n−1/2) and

n∑

t=2

(Xt−1 − X̄) =
n+1∑

t=2

(Xt−1 − X̄) − (Xn − X̄)

= −(Xn − X̄) = Op(1).

Finally, to prove (6.20), it suffices to notice that

n−1
n∑

t=1

Xk
t →p E[Xk

1], for k = 1, 2, 4, (6.21)

which follows from [9, Theorem 3.5.7] using the following facts:

– {Xt } has the MA representation (6.13),
– {Xk

t } is a stationary ergodic sequence, see [9, Theorem 3.5.8],
– E[X4

t ] < ∞ by [1, Lemma 3.1]

using (6.13) and E[η4
j ] < ∞.

Further, convergence (6.6) follows using the equality

n1/2(X̄ − E X1) = n−1/2
n∑

t=1

(Xt − E Xt ),
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Equation (6.13) and Lemma 6.1. This completes the proof of Theorem 6.1. �
Proof of Corollary 6.1 The same argument as in the proof of (6.21) implies that
sequences {η2

t Xk
t−1}, k = 1, 2 are stationary and ergodic, and

E[η2
t Xk

t−1] ≤ (E[η4
t ]E[X2k

t−1])1/2 < ∞.

By [9, Theorem 3.5.7], we have

n−1
n∑

t=1

η2
t Xk

t−1 →p E[η2
1 Xk

0], for k = 1, 2. (6.22)

Using (6.8), (6.21), (6.22) and the property φ̂ − φ0 = Op(n−1/2), we obtain (6.9). �

Estimation of MA(1) model. The model (6.3) has the spectral density

f (u) = σ 2
η kθ0(u),

kθ (u) = 1 − 2θ cos(u) + θ2.

TheWhittle estimator of parameter θ0 in theMA(1) model is obtained byminimizing
the Whittle objective function, see [5]:

θ̂ = argminθ∈[−a, a] Qn(θ), (6.23)

where

Qn(θ) =
∫ π

−π

In(u)

kθ (u)
du,

In(u) = (2πn)−1
∣∣

n∑

t=1

(Xt − X̄)eitu
∣∣2, |u| ≤ π,

and [−a, a] ⊂ (−1, 1). Recall that μ = E[X j ] = α0 and var(X j ) = σ 2
η (1 + θ2

0 ).

We estimate the mean E[Xt ] = α0 by the sample mean X̄ . Denote

Zt =
∞∑

s=0

θ s
0ηt−s, t = ...,−1, 0, 1, ....

Theorem 6.2 The estimators θ̂ , X̄ of the parameters θ0, α0 in the MA(1) model (6.3)
have the following properties:
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n1/2(θ̂ − θ0) →D N(0, v2θ ), (6.24)

v2θ := E[η2
1 Z2

0]
var2(Z0)

= (1 − θ2
0 ) + cov(η2

1, Z2
0)

var2(Z0)
,

n1/2(X̄ − E X1) →D N(0, s2x ), (6.25)

s2x =
∞∑

k=−∞
cov(Xk, X0) = σ 2

η (1 − θ0)
2.

The impact of the noise {η j } on v2θ in (6.24) is complex, while for an i.i.d. noise,
v2θ = 1 − θ2

0 . The long-run variance s2x in (6.25) depends on the variance σ 2
η of the

noise and is not affected by its latent dependence structure.
The paper [5] showed that the unknown variance v2θ can be estimated consistently.

They assumed E Xt = α0 = 0. Notice that

ηt = (1 − θ0L)−1(Xt − E Xt ) =
∞∑

s=0

θ s
0 (Xt−s − E Xt−s),

Zt = (1 − θ0L)−1ηt =
∞∑

s=0

(s + 1)θ s
0 (Xt−s − E Xt−s).

The following estimator of v2θ extends [5] to the case E X j �= 0:

v̂2θ = n−1 ∑n
j=2 Ẑ2

j−1η̂
2
j

(
n−1

∑n
j=1 Ẑ2

j

)2 , (6.26)

where

Ẑt =
t−1∑

s=0

(s + 1)θ̂ s(Xt−s − X̄), η̂t =
t−1∑

s=0

θ̂ s(Xt−s − X̄).

This estimator allows us to evaluate the standard error SEθ = vθ /
√

n and hence to
build confidence intervals for the parameter θ0.

Corollary 6.2 Under the assumptions of Theorem 6.2, as n → ∞,

v̂2θ →p v2θ . (6.27)

Proof of Theorem 6.2 The MA(1) model (6.3) satisfies

Xt − E Xt = ηt − θ0ηt−1, (6.28)

n−1var
( n∑

t=1

(Xt − E Xt )
) → s2x =

∞∑

k=−∞
cov(Xk, X0) = σ 2

η (1 − θ0)
2.
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Hence, similarly to the AR(1) model, centering X j by the sample mean X̄ does
not affect the asymptotic properties of the Whittle estimator of the parameter θ0 of
the MA(1) model, see [4, Chap. 8]. Therefore, the claim (6.24) follows from [5,
Corollary 5.2].

The proof of (6.25) is the same as that of (6.6) in Theorem 6.1. This completes
the proof of Theorem 6.2. �
Proof of Corollary 6.2 By assumption, the noise {η j } is a stationary ergodic process
with E[η4

j ] < ∞. Therefore, by [9, Theorem 3.5.7 and 3.5.8], {Xt } is a stationary
ergodic process with E[X4

t ] < ∞. These theorems also imply that the processes

Zt =
∞∑

s=0

(s + 1)θ s
0 (Xt−s − μ), ηt =

∞∑

s=0

θ s
0 (Xt−s − μ),

and {Z2
t−1η

2
t }, {Z2

t } are stationary and ergodic. Since |θ0| < 1, then

E[Z4
t ] ≤ ( ∞∑

s=0

(s + 1)|θ0|s
)4

E[X4
1] < ∞, (6.29)

E[η4
t ] ≤ ( ∞∑

s=0

|θ0|s
)4

E[X4
1] < ∞, E[Z2

t−1η
2
t ] < ∞.

Then, by [9, Theorem 3.5.7 and 3.5.8] again,

n−1 ∑n
t=2 Z2

t−1η
2
t(

n−1
∑n

t=1 Z2
t

)2 →p
E[η2

1Z2
0]

(E[Z2
0])2

= v2η. (6.30)

It suffices to show that

n−1
n∑

t=2

(Ẑ2
t−1η̂

2
t − Z2

t−1η
2
t ) = op(1), (6.31)

n−1
n∑

t=1

(Ẑ2
t − Z2

t ) = op(1),

which together with (6.30) proves (6.27).
In view of the definition of Ẑt and Zt , we can bound

|Ẑt − Zt | ≤ rt,1 + rt,2, rt,1 =
t−1∑

s=0

(s + 1)|θ̂ s − θ s
0 | |Xt−s − μ|,

rt,2 =
∞∑

s=t

(s + 1)|θ s
0 | |Xt−s − μ|.
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Observe that |θ0| < δ < 1 for some δ. By (6.24), θ̂ − θ0 = Op(n−1/2). Therefore,
P(|θ̂ | ≥ δ) = o(1). Hence, without loss of generality, we can assume that |θ̂ | ≤ δ.
First we bound rt,1. By the mean value theorem,

|θ̂ s − θ s
0 | ≤ |θ̂ − θ0|s(|θ̂ |s−1 + |θ0|s−1) ≤ |θ̂ − θ0|2sδs−1, s ≥ 1.

Therefore,

rt,1 ≤ |θ̂ − θ0|ht,1, ht,1 =
∞∑

s=1

(s + 1)2sδs−1|Xt−s − μ|.

On the other hand, rt,2 ≤ δt/2ht,2 and

ht,2 =
∞∑

s=0

(s + 1)δs/2|Xt−s − μ|.

So,

|Ẑt − Zt | ≤ |θ̂ − θ0|ht,1 + δt/2ht,2, |Ẑt | ≤ ht,2,

|̂ηt − ηt | ≤ |θ̂ − θ0|ht,1 + δt/2ht,2, |̂ηt | ≤ ht,2,

where stationary processes {ht,1}, {ht,2} satisfy E[h4
t,1] < ∞, E[h4

t,2] < ∞. Together
with (6.29), these facts imply (6.31). This completes the proof of corollary. �

6.3 Monte Carlo Experiments

In this section, we conduct simulations to verify the theoretical properties of the
estimators of the AR(1) and MA(1) models, derived in [5] and in this paper. We use
95% coverage intervals for the parameters based on the estimated standard errors,
to examine the potential impact of a non-i.i.d. noise on the coverage probabilities in
finite samples, and to show that the use of the standard errors corresponding to i.i.d.
noise may lead to significant coverage distortions.

We set the nominal coverage probability to 95% and conduct 1000 replications.
We consider sample sizes n = 300, 500 and generate data using the following three
uncorrelated stationary noises:

1. ηt = εt ∼ i.i.d. N(0, 1) – i.i.d. noise,
2. ηt = εtεt−1 – martingale difference noise,
3. ηt = σtεt , σ 2

t = 0.1 + 0.2η2
t−1 + 0.7σ 2

t−1 – GARCH(1, 1) noise.

They have properties var(ηt ) = 1 and E[η4
t ] < ∞. Only the first noise is i.i.d.
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Simulation results for AR(1) model. We generate an array of samples X1, ..., Xn

following the AR(1) model

Xt = α0 + φ0Xt−1 + ηt , (6.32)

with parameters α0 = 1 and φ0 = 0, 0.5, 0.8,−0.5,−0.8 and {ηt } as above. Define
the t-statistics,

tφ = φ̂ − φ0

ŜEφ

, tα = α̂ − α0

ŜEα

,

computed using the standard errors ŜEφ = v̂φ/
√

n and ŜEα = v̂α/
√

n which permit
for a non-i.i.d. noise. By Theorem 6.1 and Corollary 6.1, for the chosen set of the
parameter values and all three noises, these statistics have property:

tφ →D N(0, 1), tα →D N(0, 1).

Define also the t-statistics

t0,φ = φ̂ − φ0

ŜE0,φ
, t0,α = α̂ − α0

ŜE0,α
.

Here, the standard errors, ŜE0,φ = v̂0,φ/
√

n and ŜE0,α = v̂0,α/
√

n, are computed
under the assumption that the noise is i.i.d., using (6.7),

v̂20,φ = 1 − φ̂2, v̂20,α = α̂2 1 + φ̂

1 − φ̂
+ σ̂ 2

η , σ̂ 2
η = (n − 1)−1

n∑

t=2

η̂2
t .

These statistics have the standard normal limiting distribution when the noise is i.i.d.
In addition, we conduct the simulations to evaluate the standard deviations sd(νφ)

and sd(να) of the statistics

νφ = √
n
(
φ̂ − φ0

)
, να = √

n
(
α̂ − α0

)
.

We use three types of noise ηt all with variance σ 2
η = 1. The difference in values

of sd for i.i.d. and non-i.i.d. noises will reveal the impact of the latent dependence
in the noise on the standard deviation of the estimators of the parameters, shown in
Theorem 6.1.

We recall from Theorem 6.1 that the asymptotic distribution of the sample mean
X̄ of μ = E Xt does not depend on the latent dependence structure of the noise. To
confirm this theoretical finding in simulations, we define the t-statistic

tμ =
√

n
(
X̄ − μ

)

ŜEμ

, ŜEμ = σ̂η

1 − φ̂
.
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By (6.6), tμ →D N(0, 1) irrespective of whether or not the noise {η j } is i.i.d.
In Tables 6.1 and 6.2, we examine the accuracy of the theoretical results on the

estimation of the parameters φ, α in the AR(1) model in finite samples. We report
the standard deviations sd(νφ) and sd(να) and the empirical coverage probabilities for
95% confidence intervals. Table 6.1 presents the coverage probabilities CP(tφ) and
CP(t0,φ) for confidence intervals for φ0, constructed using the approximations tφ ∼
N(0, 1) and t0,φ ∼ N(0, 1). Table 6.2 reports the empirical coverage probabilities
CP(tα) and CP(t0,α) for confidence intervals for α0, built using the approximations
tα ∼ N(0, 1) and t0,α ∼ N(0, 1).

TheMonte Carlo experiments confirm the theoretical findings of [5] on properties
of the estimator φ̂ presented in Sect. 6.2. In Table 6.1, for fixed value of φ0, the
standard deviation sd(νφ) varies depending on whether or not the noise {ηt } is i.i.d. It
shows that sd(νφ) takes different values for i.i.d. and non-i.i.d. noises. The empirical
coverage probabilityCP(tφ) for 95%confidence interval forφ0 that takes into account
potential latent dependence in the noise, is close to 94% for sample size n = 300 and
tends to reach the 95% level for n = 500. However, the coverage for the confidence
intervals, built upon the assumption that the noise is i.i.d., is close to the nominal
only for i.i.d. noise, and drops to 80%–90% when the noise is non i.i.d. The problem
of the coverage distortion persists even when the sample size increases from 300 to
500. The coverage probability CP(t0,φ) of the 95% confidence interval for φ0 built
upon the assumption that the noise is i.i.d. is close to CP(tφ) only for i.i.d. noise. The
coverage may drop to 80%–90% when the noise is not i.i.d.

Table 6.2 exposes similar patterns of the empirical coverage for 95% confidence
intervals for the AR(1) parameter α0. The coverage CP(tα) for intervals that account
for non-i.i.d. property of the noise is close to the nominal 95% for n = 500 and is in
the range of 93%–95% for n = 300. If the noise is not i.i.d., the coverage distortion
for confidence intervals forα0 built upon the assumption that the noise is i.i.d. appears
to be slightly milder than that for the dynamic parameter φ0.

In Table 6.3, the empirical coverage probabilities for 95% confidence interval for
the mean μ = E Xt , built using the normal approximation tμ ∼ N(0, 1) are close
to the nominal 95% coverage irrespective of whether or not the noise is i.i.d. Given
that, the standard errors and the long-run variance s2x depend only on the variance of
the noise which is set to 1, this result on coverage is expected.

Simulation results for MA(1) model.We perform a similar simulation on the coverage
precision of the confidence intervals for the parameters in the MA(1) model:

Xt = α0 + ηt − θ0ηt−1. (6.33)

We generate 1000 samples X1, ..., Xn following the MA(1) model with the parame-
ters α0 = 1 and θ0 = 0,−0.5,−0.8, 0.5, 0.8, and we consider three types of uncor-
related noise {ηt } as above.

Similarly to the AR(1) model, we define the t-statistics,
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Table 6.1 Estimation of the parameter φ0 in the AR(1) model (6.32). Standard deviation sd(νφ),
empirical coverage probabilities CP(tφ) and CP(t0,φ) (in %) of 95% confidence intervals

ηt = εt

n = 300 n = 500

φ0 sd(νφ) CP(tφ) CP(t0,φ) sd(νφ) CP(tφ) CP(t0,φ)

0 0.97 95.5 96.2 0.97 95.2 95.7

0.5 0.86 94.4 94.9 0.85 95.1 95.3

0.8 0.63 93.7 94.0 0.61 95.0 95.2

-0.5 0.85 94.9 95.3 0.84 95.9 96.0

-0.8 0.60 94.2 94.5 0.59 95.5 95.9

ηt = εtεt−1

n = 300 n = 500

φ0 sd(νφ) CP(tφ) CP(t0,φ) sd(νφ) CP(tφ) CP(t0,φ)

0 1.68 93.9 74.4 1.66 95.0 75.0

0.5 1.33 93.6 80.1 1.33 94.6 78.9

0.8 0.79 94.2 87.2 0.80 95.1 87.1

-0.5 1.35 93.4 79.3 1.33 94.9 79.4

-0.8 0.81 94.8 87.0 0.80 94.9 86.7

ηt = σtεt GARCH

n = 300 n = 500

φ0 sd(νφ) CP(tφ) CP(t0,φ) sd(νφ) CP(tφ) CP(t0,φ)

0 1.27 93.9 87.5 1.31 94.9 86.5

0.5 1.11 93.8 88.1 1.14 94.5 86.9

0.8 0.77 94.1 88.1 0.77 95.6 88.8

-0.5 1.10 93.8 87.9 1.10 94.8 87.2

-0.8 0.74 94.5 89.9 0.73 95.2 89.6

tθ = θ̂ − θ0

ŜEθ

, t0,θ = θ̂ − θ0

ŜE0,θ

computed using the standard errors ŜEθ = v̂θ /
√

n and ŜE0,θ = v̂0,θ /
√

n with v̂θ as
in (6.26) and v̂20,θ = 1 − θ̂2. The standard error ŜEθ permits the presence of a non-
i.i.d. noise in the model (6.33). By Theorem 6.2 and Corollary 6.2, the convergence
tθ →D N(0, 1) holds for all values of θ0 and all three noises {ηt }. The standard error
ŜE0,θ yields the convergence t0,θ →D N(0, 1) when the noise {ηt } is i.i.d.
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Table 6.2 Estimation of the parameter α0 in the AR(1) model (6.32). Standard deviation sd(να),
empirical coverage probabilities CP(tα) and CP(t0,α) (in %) of 95% confidence intervals

ηt = εt

n = 300 n = 500

φ0 sd(να) CP(tα) CP(t0,α) sd(να) CP(tα) CP(t0,α)

0 1.44 94.8 95.1 1.40 95.2 95.1

0.5 2.05 93.8 94.0 1.98 94.9 95.3

0.8 3.34 93.6 94.4 3.21 95.0 95.3

–0.5 1.18 93.9 94.1 1.14 94.9 94.5

–0.8 1.06 95.4 95.9 1.04 95.0 94.9

ηt = εtεt−1

n = 300 n = 500

φ0 sd(να) CP(tα) CP(t0,α) sd(να) CP(tα) CP(t0,α)

0 1.94 94.3 84.3 1.93 95.3 84.7

0.5 2.83 94.0 82.7 2.83 94.7 83.9

0.8 4.08 93.8 87.8 4.08 94.8 86.8

–0.5 1.32 93.9 90.7 1.31 94.8 92.4

–0.8 1.06 95.4 95.4 1.07 95.8 95.2

ηt = σtεt GARCH

n = 300 n = 500

φ0 sd(να) CP(tα) CP(t0,α) sd(να) CP(tα) CP(t0,α)

0 1.68 93.2 89.8 1.68 94.8 89.7

0.5 2.51 93.1 87.4 2.53 94.4 87.1

0.8 4.04 93.8 88.1 4.02 94.9 89.3

–0.5 1.27 93.6 91.9 1.26 94.4 92.4

–0.8 1.10 94.5 94.3 1.08 94.8 93.8

Table 6.3 Estimation of the mean μ = E Xt in the AR(1) model (6.32). Empirical coverage prob-
abilities CP(tμ) (in %) of 95% confidence intervals

ηt = εt ηt = εtεt−1 ηt = σtεt GARCH

φ0 n = 300 500 300 500 300 500

0 94.7 94.8 96.6 95.9 94.0 94.7

0.5 94.2 94.7 95.7 95.7 93.8 94.7

0.8 93.5 94.1 94.5 95.2 93.1 94.9

–0.5 95.1 94.9 96.6 95.7 94.4 94.7

–0.8 95.2 94.6 95.9 95.6 94.6 95.0
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We also evaluate the standard deviation sd(νφ) of the statistic νθ = √
n
(
θ̂ − θ0

)

to confirm the theoretical finding that the dependence in the noise {ηt } has impact
on the variance of the estimator θ̂ , established in Theorem 6.2.

Recall from Theorem 6.2 that the asymptotic variance s2x of the sample mean X̄
of μ = E Xt depends only on the variance σ 2

η of the noise, and the t-statistic

tμ =
√

n
(
X̄ − μ

)

ŜEμ

, ŜEμ = σ̂η(1 − θ̂ )

has property tμ →D N(0, 1). We use it to build confidence intervals for the mean
E Xt and to show that they are not affected by the latent dependence in the noise.

Table 6.4 reveals similar patterns of the empirical coverage for the MA(1) param-
eter θ0 as for the AR(1) parameter φ0 above. The empirical coverage CP(tθ ) of the
confidence intervals built to accommodate the potential dependence in the noise
{ηt } is close to the nominal 95%, and the coverage improves when the sample size
increases. Some coverage distortions are observed for the parameter θ0 = 0.8 disap-
pear when data is centered by the true mean (simulations not presented here).

As seen from CP(t0,θ ), the coverage distortions for the confidence intervals based
on the assumption that the noise is i.i.d. range from mild to severe. Simulations
confirm that such intervals do not produce adequate coverage CP(t0,θ ), unless the
noise is i.i.d. Table 6.4 also shows that the standard deviation sd(νθ ) varies depending
onwhether the noise is i.i.d. or not, which affirms the theoretical findings of Theorem
6.2. Table 6.5 confirms that the confidence intervals for the mean E[Xt ] are not
affected by the latent dependence on the noise.

In summary, the simulation experiments clearly demonstrate some standardiza-
tion problems in the estimation of the AR(1) and MA(1) models and overall in the
Whittle estimation of linear processes generated by a noise which is not i.i.d. Param-
eter estimation and building of confidence intervals need corrected standardization.
For the AR(1) andMA(1) models, the corrected standard errors and asymptotic vari-
ances can be estimated. Simulations show that the empirical coverage for confidence
intervals with the estimated standard errors is close to the nominal which confirms
the theoretical findings of [5]. The problem of the estimation of the standard errors
and asymptotic variances of the Whittle estimators for the AR(p), p ≥ 2 and other
ARMA models remains open.
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Table 6.4 Estimation of the parameter θ0 in the MA(1) model (6.33). Standard deviation sd(νθ ),
empirical coverage probabilities CP(tθ ) and CP(t0,θ ) (in %) of 95% confidence intervals

ηt = εt

n = 300 n = 500

θ0 sd(νθ ) CP(tθ ) CP(t0,θ ) sd(νθ ) CP(tθ ) CP(t0,θ )

0 1.01 94.6 94.6 0.99 94.9 95.0

–0.5 0.89 93.8 94.5 0.85 95.6 95.3

–0.8 0.63 94.8 94.7 0.60 95.4 95.3

0.5 0.88 92.4 92.5 0.87 94.1 94.0

0.8 0.67 91.6 91.2 0.67 92.2 92.6

ηt = εtεt−1

n = 300 n = 500

θ0 sd(νθ ) CP(tθ ) CP(t0,θ ) sd(νθ ) CP(tθ ) CP(t0,θ )

0 1.70 91.5 73.5 1.67 93.9 74.5

–0.5 1.40 93.0 77.2 1.37 93.9 77.6

–0.8 0.93 90.8 82.9 0.88 93.3 83.2

0.5 1.36 92.3 79.5 1.35 93.4 79.8

0.8 0.91 89.8 81.8 0.85 91.9 83.8

ηt = σtεt GARCH

n = 300 n = 500

θ0 sd(νθ ) CP(tθ ) CP(t0,θ ) sd(νθ ) CP(tθ ) CP(t0,θ )

0 1.33 92.0 86.7 1.33 93.8 86.3

–0.5 1.21 92.3 87.2 1.11 94.0 87.0

–0.8 0.76 94.5 88.6 0.75 95.1 89.3

0.5 1.13 93.0 85.3 1.15 93.6 85.1

0.8 0.81 90.1 85.4 0.81 93.2 86.9

Table 6.5 Estimation of the mean μ = E Xt in the MA(1) model (6.33). Empirical coverage prob-
abilities CP(tμ) (in %) of 95% confidence intervals

ηt = εt ηt = εtεt−1 ηt = σtεt GARCH

θ0 n = 300 500 300 500 300 500

0 94.5 94.8 96.4 95.6 94.1 94.6

–0.5 95.1 94.8 96.5 95.4 94.0 94.5

–0.8 95.3 94.9 96.1 95.6 94.2 94.5

0.5 94.1 94.6 95.5 95.8 93.3 94.1

0.8 92.6 93.4 93.7 95.2 92.2 93.8
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Chapter 7
Tests for a Structural Break
for Nonnegative Integer-Valued Time
Series

Yuichi Goto

Abstract We investigate tests for a structural break for nonnegative integer-valued
time series. This topic has been intensively studied in recent years. We deal with
the model whose conditional expectation is endowed with dependence structures.
Unknown parameters of the model are estimated by an M-estimator. Then, we study
three types of test statistics: the Wald type, score type, and residual type. First, we
show the asymptotic null distributions of these three test statistics, which enable us
to construct asymptotically size α tests. Next, we show the consistency of the tests,
that is, the power of the tests converges to one as sample size increases. Finally,
numerical study illustrates the finite-sample performance of the tests.

7.1 Introduction

Nonnegative integer-valued time series have attracted great attention and appeared
in a variety of fields, for example, the number of corporate defaults [1], transactions
of stocks [14], earthquakes [34], and the infected people [13, 31–33].

Sufficient conditions for stationarity, ergodicity, and β-mixing for nonlinear Pois-
son integer-valued generalized autoregressive conditional heteroskedastic models
with orders 1 and 1 (INGARCH(1,1)) were given by [26]. The existence of sta-
tionary and ergodic solutions of general nonlinear Poisson AR models with any
finite moment under a contractive condition was clarified by [12]. Nonlinear Pois-
son INGARCH(p,q) models with exogenous variables were dealt by [1]. A one-
parameter exponential family for nonnegative integer-valued time series, which
includes the Poisson, negative binomial (NB), and Bernoulli distributions was intro-
duced by [8] together with fundamental properties of the models.

Tests for structural breaks have been studied from the 1950s. A pioneer study of
the detection of structural breaks was given by [30]. A cumulative sum (CUSUM)
test for time series models was proposed by [21]. For nonnegative integer-valued
time series, the residual-based CUSUM test using a conditional least square esti-
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mator for non-linear Poisson AR(1) models was proposed by [15]. The Wald type
and residual type of the tests using a conditional maximum likelihood estimator
were constructed for nonlinear Poisson INGARCH(1,1) models [19]. Change tests
for nonlinear zero-inflated generalized Poisson INGARCH(1,1) models and linear
bivariate Poisson INGARCH(1,1) models were studied by [22, 24], respectively.
Several tests including the Wald type, score type, and residual type of CUSUM tests
were compared by [23]. A change test for general nonlinear Poisson ARmodels was
developed by [11]. The paper also investigated asymptotics under the null and alter-
native. A change detection problem for one-parameter exponential INGARCH(1,1)
models was studied by [9]. The paper also constructed a consistent test. A test for
a structural break using probability generating functions for the first-order integer-
valued autoregressive (INAR(1)) models was advocated by [17]. The estimator of
a change point for an one-parameter exponential family as well as its asymptotic
behavior was investigated by [7].

However, in practice, it is unrealistic to assume the knowledge of the underlying
conditional distribution. To the best of my knowledge, a change detection problem
withoutmaking assumptions on the conditional distributions for nonnegative integer-
valued time series has not yet been investigated except for [10]. Few studies have
examined the consistency of tests. The exceptions were [10, 11]. Moreover, although
several change test procedures for INGARCH(1,1) models and other simple mod-
els were well studied, those procedures for higher order models have not yet been
discussed except for [11].

On the other hand, the assumptions on conditional distributions were relaxed, and
Poisson quasi-maximum likelihood estimators (QMLE) were proposed for general
nonlinearARmodels in [2]. They showed strong consistency and asymptotic normal-
ity (CAN) of PoissonQMLE. In addition, negative binomial QMLEs and exponential
QMLEswere proposed and CANwas shown in [3, 4]. Sufficient conditions for count
time series to have the properties of strictly stationarity, ergodicity, and β-mixing
were elucidated by [3]. The essential condition is called a stochastic-equal-mean
order property many models satisfy.

In this paper, we tackle a change detection problem using the M-estimator pro-
posed by [16] for general models. We emphasize our model includes the nonlinear
INGARCH(p,q) models and need not specify a conditional distribution. We investi-
gate the Wald type, score type, and residual type of CUSUM tests and derive asymp-
totic null distributions. As a result, we obtain asymptotically size α tests. Moreover,
we establish the consistency of these tests, which is our main result.

The rest of the paper is organized as follows. In Sect. 7.2,we introduce nonnegative
integer-valued time series with a conditional expectation endowed with dependence
structures. Next, we review the M-estimator, which includes the Poisson QMLE as a
special case, and make some assumptions for CAN of the M-estimator. In Sect. 7.3,
we formulate a test for a structural break and define three test statistics; theWald type,
score type, and residual type. We derive asymptotic distributions of these statistics
under the null hypothesis. These results enable us to construct asymptotically size
α tests. Next, we show the consistency of the tests. We illustrate the finite-sample
performance in Sect. 7.4 and reveal that the classical Wald type test is sensitive to
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the misspecification of conditional distributions and has size distortion because of
the instability of the estimator for small samples. In contrast, the score type and
residual type tests provide good empirical size. Our simulation study suggests the
residual type test is superior to the score type test in terms of the power. All proofs
of theorems are provided in Sect. 7.5.

In what follows, the following notations will be used. The symbol � is the
transpose of vector or matrix. For x = (x1, . . . , xd)

� ∈ R
d , ‖x‖ := ∑d

i=1 |xi | and
‖x‖2 :=

(∑d
i=1 x2

i

)1/2
, and for amatrix A = (ai j )i, j=1,...,d , ‖A‖ := ∑d

i, j=1 |ai j |. For
a sequence of random variables {Xn} and a random variable X , let Xn → X in prob-
ability, Xn → X a.s., and Xn ⇒ X denote Xn converges in probability to X , Xn

converges to X a.s., and Xn converges in distribution to X , respectively.

7.2 Settings

In this section, we introduce general models which encompass popular models such
as INGARCH models and INAR models for count data and review the M-estimator
introduced by [16].

Let {Zt } be a nonnegative integer-valued time series whose conditional expecta-
tion is given by, for any t ∈ Z,

E (Zt |Ft−1) := λ(Zt−1, Zt−2, . . . , ; θ0),

whereFt−1 is theσ -field generated by {Zs, s ≤ t − 1}, θ0 is an unknownparameter in
a parameter space � ⊂ R

d , and λ is a known measurable function on [0,∞)∞ × �

to (δ,∞) for some δ > 0.
For the sake of notational simplicity, we define, for any θ ∈ � and t ∈ N ∪ {0},

λt (θ) := λ(Zt−1, Zt−2, . . . , ; θ) and λ̃t (θ) := λ(Zt−1, Zt−2, . . . , Z1, x0; θ),

where x0 ∈ [0,∞)∞ is an initial value. The function λ̃t , which can be calculated from
observations, is a proxy for λt , which includes unobservable values. Since we use
specificmodels like the linear INGARCH(p,q) model as λ in practice, x0 ∈ [0,∞)∞
reduces to a finite dimensional vector. Some examples of an initial value x0 were
given by [2, 11]. Note that the impact of a choice x0 ∈ [0,∞)∞ is asymptotically
negligible as n → ∞ by the assumptions we impose afterward. Instead of making
assumptions on conditional distributions, we assume stationarity and ergodicity of
{Zt }.
Assumption 7.1 {Zt } is ergodic and strictly stationary.

Remark 7.1 This assumption is satisfied by a broad class of the time series of counts.
Sufficient conditions of Assumption 1 for the non-linear INGARCH(p,q) models
were givenby [3], including the exponential family and the zero-inflateddistributions.
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The strictly stationarity and ergodicity ofmultivariate generalized INARmodelswere
shown by [20].

The M-estimator for nonnegative integer-valued time series, proposed by [16], is
defined as follows:

θ̂n := arg max
θ∈�

L̃n(θ), L̃n(θ) := 1

n

n∑

t=1

�(Zt ,λ̃t (θ)),

where �(·,·) is a measurable function. TheM-estimator reduces to Poisson QMLE or
conditional least square estimator if we choose �(Zt ,λt (θ)) as−λt (θ) + Zt log λt (θ)

or −(Zt − λt (θ))2, respectively. Let �′(·, ·) and �′′(·, ·) denote the first and second
derivatives of �(·, ·) with respect to the second component, respectively.

We make the following assumptions to ensure the CAN of the M-estimator.

Assumption 7.2 (B1) The functions �(·, ·) with respect to its second component
and λt (θ) are continuous a.s.

(B2) The quantity
∣
∣
∣supθ∈� �(Zt ,λ̃t (θ)) − supθ∈� �(Zt ,λt (θ))

∣
∣
∣ converges to 0 a.s.,

as t → ∞.
(B3) There uniquely exists θ0 ∈ �̊ such that E�(Zt ,λt (θ)) < E�(Zt ,λt (θ0)) < ∞

for any θ ∈ �, where �̊ denotes the interior of �.
(B4) The parameter space � is compact.
(C5) The functions �(·, ·)with respect to its second component and λt (θ) are twice

continuously differentiable.
(C6) For some δ > 0,

sup
θ∈�

∥
∥
∥∂λt(θ)/∂θ

(
�′(Zt , λ̃t (θ)) − �′(Zt , λt (θ))

)∥
∥
∥ ,

sup
θ∈�

∥
∥
∥�′(Zt , λ̃t (θ))

(
∂λ̃t (θ)/∂θ − ∂λt (θ)/∂θ

)∥
∥
∥

are of order O(t−1/2−δ) a.s., as n → ∞.
(C7) There exist a neighborhood V(θ0) of θ0 and some δ > 0 such that

d∑

i, j=1

E
(∣
∣∂�(Zt ,λt (θ0))/∂θi∂�(Zt ,λt (θ0))/∂θ j

∣
∣1+δ

)
< ∞,

d∑

i, j=1

E

(

sup
θ∈V(θ0)

∣
∣∂2�(Zt ,λt (θ))/(∂θi∂θ j )

∣
∣

)

< ∞.

(C8) The sequence {�′(Zt , λt (θ0))}t∈Z is martingale difference relative to {Ft }t∈Z.
(C9) The quantity E

(
�′′(Zt , λt (θ0))|Ft−1

)
is not equal to zero a.s. for any t ∈ Z,

and if s�∂λt (θ0)/∂θ = 0, then s = 0.
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Remark 7.2 The asymptotic normality of θ̂n is ensured by (C8), and (C9) guarantees
J is a positive definite matrix.

Lemma 7.1 Under Assumptions 7.1 and 7.2 (B1)–(B4),

θ̂n → θ0 a.s., as n → ∞.

Lemma 7.2 Under Assumptions 7.1 and 7.2,

√
n

(
θ̂n − θ0

)
⇒ N (0, J−1 I J−1) as n → ∞,

where

I :=E

(
∂

∂θ
�(Zt ,λt (θ0))

∂

∂θ� �(Zt ,λt (θ0))

)

= E

(
(
�′(Zt , λt (θ0))

)2 ∂

∂θ
λt (θ0)

∂

∂θ� λt (θ0)

)

,

J := − E

(
∂2

∂θ∂θ� �(Zt ,λt (θ0))

)

= −E

(

�′′(Zt , λt (θ0))
∂

∂θ
λt (θ0)

∂

∂θ� λt (θ0)

)

.

7.3 Detection of a Structural Break

In this section, we consider tests for structural breaks, which is the main contribution
of this paper. The null hypothesis H0 is that there is no change in the true parameter,
and the alternative H1 is that the true parameter changes after an unknown point
nτ�, where τ ∈ (0, 1). This can be formulated as follows: The null hypothesis and
the alternative hypothesis are defined, for some θ0 ∈ � and θ1( �= θ0) ∈ �, as

H0 : E (Zt |Ft−1) := λ(Zt−1, Zt−2, . . . ; θ0) for any t ∈ {1, . . . , n}

and

H1 : E (Zt |Ft−1) := λ(Zt−1, Zt−2, . . . ; θ0) for any t ∈ {1, . . . , nτ�},
E

(
Z ′

t |F ′
t−1

) := λ(Z ′
t−1, Z ′

t−2, . . . ; θ1) for any t ∈ {nτ� + 1, . . . , n},

whereFt−1 andF ′
t−1 are theσ -field generatedby {Zs, s ≤ t − 1} and {Z ′

s, s ≤ t − 1},
respectively. Let vn be a nonnegative integer-valued sequence such that vn → ∞ and
vn/n → 0 as n → ∞.

To investigate tests for structural break, we introduce the following three test
statistics. The Wald type test was investigated by [19, 22, 24]:
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Tn,Wald := max
vn≤k≤n

k2

n
(θ̂ k − θ̂n)

� Ĵn Î −1
n Ĵn(θ̂ k − θ̂n),

where

În := 1

n

n∑

t=1

Ĩt (θ̂n), Ĵn := 1

n

n∑

t=1

J̃t (θ̂n),

Ĩt (θ) := ∂�(Zt ,λ̃t (θ))

∂θ

∂�(Zt ,λ̃t (θ))

∂θ� , and J̃t (θ) := ∂2�(Zt ,λ̃t (θ))

∂θ∂θ� .

The score-type test was studied by [5, 23, 28]:

Tn,score := max
vn≤k≤n

1

n

(
k∑

t=1

∂

∂θ
�(Zt ,λ̃t (θ̂n))

)�
Î −1
n

(
k∑

t=1

∂

∂θ
�(Zt ,λ̃t (θ̂n))

)

.

The residual-type test was discussed by [15, 19]:

Tn,res := max
vn≤k≤n

1
√

1
n

∑n
t=1 ε̃2t (θ̂n)

1√
n

∣
∣
∣
∣
∣

k∑

t=1

ε̃t (θ̂n) − k

n

n∑

t=1

ε̃t (θ̂n)

∣
∣
∣
∣
∣
,

where ε̃t (θ̂n) := Zt − λ̃t (θ̂n).
The following assumptions are required to establish theoretical results.

Assumption 7.3 (D10) The following conditions hold true:

sup
θ∈�

∥
∥
∥
∥

(
�′(Zt , λ̃t (θ))

)2 (
∂λ̃t (θ)/∂θ∂λ̃t (θ)/∂θ� − ∂λt (θ)/∂θ∂λt (θ)/∂θ�)∥

∥
∥
∥ ,

sup
θ∈�

∥
∥
∥
∥∂λt (θ)/∂θ∂λt (θ)/∂θ�

((
�′(Zt , λ̃t (θ))

)2 − (
�′(Zt , λt (θ))

)2
)∥

∥
∥
∥ ,

sup
θ∈�

∥
∥
∥�′′(Zt , λ̃t (θ))

(
∂λ̃t (θ)/∂θ∂λ̃t (θ)/∂θ� − ∂λt (θ)/∂θ∂λt (θ)/∂θ�)∥

∥
∥ ,

sup
θ∈�

∥
∥
∥
(
�′′(Zt , λ̃t (θ)) − �′′(Zt , λt (θ))

)
∂λt (θ)/∂θ∂λt (θ)/∂θ�

∥
∥
∥ ,

sup
θ∈�

∥
∥
∥�′(Zt , λ̃t (θ))

(
∂2λ̃t (θ)/(∂θ∂θ�) − ∂λt (θ)/(∂θ∂θ�)

)∥
∥
∥ ,

and

sup
θ∈�

∥
∥
∥
(
�′(Zt , λ̃t (θ)) − �′(Zt , λt (θ))

)
∂λt (θ)/(∂θ∂θ�)

∥
∥
∥
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are of order O(t−1/2−δ) a.s., as n → ∞, and there exist a neighborhood
V(θ0) of θ0 and some δ > 0 such that

d∑

i, j=1

E sup
θ∈V(θ0)

∣
∣∂�(Zt ,λt (θ))/∂θi∂�(Zt ,λt (θ))/∂θ j

∣
∣ < ∞.

(D11) There exist a neighborhood V(θ0) of θ0 and some δ > 0 such that

d∑

i, j=1

E

(

sup
θ∈V(θ0)

|∂λt(θ)/∂θi |2
)

< ∞, E |Zt − λt (θ0)|2 < ∞,

and, as n → ∞,

sup
θ∈�

∣
∣
∣λ̃t (θ) − λt (θ)

∣
∣
∣ = O(t−1/2−δ) a.s.

(D12) The matrix I is positive definite.

Remark 7.3 In conjunction with Assumptions 7.1 and 7.2, (D10) is sufficient to
ensure that În and Ĵn converge to I and J a.s., as n → ∞, respectively. Also, (D11)
guarantees a convergence of Tn,res under H0.

We are ready to state the asymptotic null distributions.

Theorem 7.1 Suppose Assumptions 7.1–7.3. Then, under the null hypothesis H0,
we have, as n → ∞,

Tn,Wald, Tn,score ⇒ sup
0≤s≤1

‖B◦
d (s)‖22, Tn,res ⇒ sup

0≤s≤1
|B◦

1 (s)|2,

where B◦
d (s) is a d-dimensional standard Brownian bridge.

From Theorem 7.1, we can construct the asymptotically distribution-free tests,
which reject the null hypothesis H0 when Tn,Wald > C , Tn,score > C , and Tn,res > C ′,
respectively, where C and C ′ are critical values satisfying, for significance level α,
P

(
sup0≤s≤1 ‖B◦

d (s)‖22 > C
) = α and P

(
sup0≤s≤1 |B◦

1 (s)|22 > C ′) = α. Then, these
tests have asymptotic size α, respectively.

Next, the power of the tests under the alternative H1 is scrutinized. For notational
simplicity, let λ′

t (θ):=λ(Z ′
t−1, Z ′

t−2, . . . ; θ). From the compactness of the parameter
space (B4), the extreme value theorem in calculus ensures the existence of one or
more maximizers of τE�(Zt , λt (θ)) + (1 − τ)E�(Z ′

t , λ
′
t (θ)).

The following lemma can be shown along the lines with [16, Theorem 1].

Lemma 7.3 Suppose that τE�(Zt , λt (θ)) + (1 − τ)E�(Z ′
t , λ

′
t (θ))has a unique max-

imum at θ̄ . Under Assumptions 7.1 and 7.2 (B1)–(B4) and those corresponding
assumptions for Z ′

t and λ′
t ,

θ̂n → θ̄ a.s.
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Remark 7.4 The uniqueness of maximizers for τE�(Zt , λt (θ)) + (1 − τ)E
�(Z ′

t , λ
′
t (θ)) can be relaxed to a finite number of minimizers. In that case, we can

show that θ̂n belongs to the set of maximizers a.s., as n → ∞.

To prove the consistency of the tests, we define the following quantities:

J ∗ := τ J (θ̄) + (1 − τ)J ′(θ̄), I ∗ := τ I (θ̄) + (1 − τ)I ′(θ̄),

where

I (θ) := E

(
∂

∂θ
�(Zt ,λt (θ))

∂

∂θ� �(Zt ,λt (θ))

)

, J (θ) := −E

(
∂2

∂θ∂θ� �(Zt ,λt (θ))

)

,

I ′(θ) := E

(
∂

∂θ
�(Z ′

t ,λ
′
t (θ))

∂

∂θ� �(Z ′
t ,λ

′
t (θ))

)

,

J ′(θ) := −E

(
∂2

∂θ∂θ� �(Z ′
t ,λ

′
t (θ))

)

.

To state the consistency of the tests, we make the following assumptions.

Assumption 7.4 (E13) The matrices I ∗ and J ∗ are non-singular.
(E14) Appropriate moment conditions such that În and Ĵn converge to I ∗ and J ∗

a.s., respectively.
(E15) The following conditions hold true: θ0 �= θ̄, E

(
∂�t (Zt , λt (θ̄))/∂θ

) �= 0,
and Eεt (θ̄) �= Eε′

t (θ̄), where εt (θ) := Zt − λt (θ) and ε′
t (θ) := Z ′

t − λ′
t (θ).

Now, we are ready to state the consistency of the tests.

Theorem 7.2 Suppose the assumptions of Lemma 7.3 and Assumption 7.4. Then,
the Wald-type, score-type, and residual type tests are consistent, that is, under the
alternative hypothesis H1, the powers of the tests converge to one as n → ∞.

Remark 7.5 Existing papers did not investigate the consistency of tests for a struc-
tural break for nonnegative integer-valued time series except for [11] for Poisson
INGARCH models and [10] for general INGARCH models. They considered the
following test statistic:

Tn,DK := max
vn≤k≤n−vn

1

q2
(

k
n

)
k2(n − k)2

n3
(θ̂1:k − θ̂ k+1:n)� ĴDK Î −1

DK ĴDK(θ̂1:k − θ̂ k+1:n),

where
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ÎDK := 1

2

(
un∑

t=1

Ĩt (θ̂1:un )/un +
n∑

t=un+1

Ĩt (θ̂un+1:n)/(n − un)

)

,

ĴDK := 1

2

(
un∑

t=1

J̃t (θ̂1:un )/un +
n∑

t=un+1

J̃t (θ̂un+1:n)/n − un

)

,

un and vn are nonnegative integer-valued sequences such that un, vn → ∞ and
un/n, vn/n → 0 as n → ∞, q(·) is an appropriate weight function, and θ̂a:b is the
Poisson QMLE based on {Za, . . . , Zb}.
Remark 7.6 The score type test statistic under general conditions was discussed
by [25]. The residual type test statistic for ARMA-GARCH models was considered
by [29].

7.4 Numerical Study

In this section, we investigate the finite-sample performance of the proposed tests.
We use the linear INGARCH(1,1) model λt = ω + αZt−1 + βλt−1, i.e., Poisson
distribution and negative binomial distribution with the parameter r , denoted by
Pois(λt ) and NB(4, r/(r + λt )), respectively.

The critical values are calculated by generating 10000 realizations of the
standard Brownian bridge by the R function BBridge in the R package sde [18] and
these are 1.336995 and 3.011263 for maxk=1,...,10000 |B◦

1 (k/10000)| and
maxk=1,...,10000 ‖B◦

3 (k/10000)‖22 at a significance level of 0.05, respectively. Set
vn = (log n)2�. As a competitor, we use the following test statistic:

Tn,KL := max
vn≤k≤n

k2

n
(θ̂ k − θ̂n)

� În(θ̂ k − θ̂n),

proposed by [19] for the situation where the conditional distribution of a process is
the Poisson.

The simulation procedure is as follows: First, we investigate the empirical sizes of
the tests. Generate n (n = 300, 600, 900) samples from the Poisson or negative bino-
mial INGARCH(1,1) with r = 4 and (ω, α, β) = (1, 0.3, 0.2), and estimate param-
eters by the Poisson QMLE. Then, we calculate the test statistics and replicate these
steps 200 times to get rejection probabilities. Second, we simulate the cases that true
parameters change from (ω, α, β) = (1, 0.3, 0.2) to (1, 0.3, 0.4) and (1.5, 0.3, 0.2)
at n/2� + 1, respectively, to study the empirical powers of the tests. The rest of the
procedure is the same as the null case.

The results are summarized in Tables 7.1 and 7.2. The existing test statistic Tn,KL

is sensitive to the misspecification for the non-Poisson case. Our test based on Tn,Wald

works better than the test based on Tn,KL since we do not assume underlying con-
ditional distribution of the process. However, as [23] pointed out, the tests based on
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Table 7.1 Empirical size at a nominal size α = 0.05

λt = 1 + 0.3Zt−1 + 0.2λt−1 for all n

Conditional
distribution

n Tn,KL Tn,Wald Tn,score Tn,res

300 0.175 0.155 0.035 0.015

Pois(λt ) 600 0.170 0.180 0.025 0.025

900 0.130 0.135 0.055 0.080

300 0.585 0.180 0.040 0.030

NB(4, 4/(4 + λt )) 600 0.590 0.145 0.025 0.005

900 0.575 0.115 0.045 0.045

Table 7.2 The empirical power at the nominal size α = 0.05

λt = 1 + 0.3Zt−1 + 0.2λt−1 for the first half of n

λt = 1 + 0.3Zt−1 + 0.4λt−1 for the latter half of n

Conditional
distribution

n Tn,KL Tn,Wald Tn,score Tn,res

300 0.960 0.950 0.435 0.755

Pois(λt ) 600 1.000 1.000 0.970 1.000

900 1.000 1.000 1.000 1.000

300 0.985 0.850 0.315 0.445

NB(4, 4/(4 + λt )) 600 1.000 0.990 0.840 0.945

900 1.000 1.000 0.990 1.000

λt = 1 + 0.3Zt−1 + 0.2λt−1 for the first half of n

λt = 1.5 + 0.3Zt−1 + 0.2λt−1 for the latter half of n

Conditional
distribution

n Tn,KL Tn,Wald Tn,score Tn,res

300 0.780 0.775 0.510 0.670

Pois(λt ) 600 0.985 0.980 0.950 0.990

900 1.000 1.000 1.000 1.000

300 0.950 0.735 0.375 0.595

NB(4, 4/(4 + λt )) 600 1.000 0.865 0.865 0.905

900 1.000 0.975 0.975 0.990

Tn,KL and Tn,Wald show severe size distortions in Table 7.1. This can be explained
from the instability of the Poisson QMLE and the fact that theWald type test statistic
is calculated using the Poisson QMLE based on small samples (see Fig. 7.1). In con-
trast, the tests based on Tn,score and Tn,res provide good size. Regarding the empirical
power, Table 7.2 shows the test based on Tn,res has better power than the test based
on Tn,score.
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Fig. 7.1 Estimated values of Poisson QMLE based on {Z1, . . . , Zk} for λt = 1 + 0.3Zt−1 +
0.2λt−1: X-axis represents the number of observations (k). Y-axis represents estimated values θ̂k :=
(θ̂k,1,θ̂k,2,θ̂k,3) for (0.1,0.3,0.2). The solid line, the dashed line, and the dotted line correspond to
θ̂k,1, θ̂k,2, and θ̂k,3, respectively

7.5 Proof

This section provides proofs of Theorems 7.1 and 7.2. An essential tool to prove
Theorem 7.1 is the multi-dimensional martingale FCLT. The one-dimensional
martingale FCLT on the Skorokhod space was shown by [6, Theorem 18.2].
For any d-dimensional bounded functions x(s) := (x1(s), . . . , xd(s)) and y(s) :=
(y1(s), . . . , yd(s)), we define the uniform metric d(·, ·) as

d(x, y) := sup
s∈[0,1]

i∈{1,...,d}
|xi (s) − yi (s)|.

The multi-dimensional martingale FCLT on the space of real-valued bounded func-
tions �∞([0, 1] × {1, . . . , d}) with the uniform metric d(·, ·) was given by [27]. The
following lemma is due to [27, Theorem 7.2.3].

Lemma 7.4 Let {mt ∈ R
d : t ∈ Z} be a martingale difference sequence, i.e.

E (mt |Mt−1) = 0, where Mt−1 is the σ -field generated by {ms, s ≤ t − 1} and
Mn(s) := ∑ns�

j=1 m j/
√

n. If, for any ε > 0,

1

n

n∑

t=1

E
(
‖mt‖22I{‖mt ‖2>√

nε} | Mt−1

)
→ 0 in probability, as n → ∞,

and
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1

n

n∑

t=1

E
(
mtm�

t | Mt−1
) → � in probability, as n → ∞,

where � is a positive definite matrix, then,

�−1/2Mn(s) ⇒ Bd(s) in �∞([0, 1] × {1, . . . , d}) as n → ∞,

where Bd is a d-dimensional standard Brownian motion.

The multi-dimensional martingale FCLT holds for any ergodic, stationary, and
martingale difference process {ξ t ∈ R

d : t ∈ Z} with a positive definite covariance
matrix and E‖ξ 1‖2+δ

2 < ∞ for some δ > 0. Actually, the conditions of Lemma 7.4
can be easily checked: for the σ -field Ft−1 generated by {ξs, s ≤ t − 1},

1

n

n∑

t=1

E
(
‖ξt‖22I{‖ξt ‖2>√

nε} | Ft−1

)
≤ 1

ε2n1+δ

n∑

t=1

E
(‖ξt‖2+δ

2 | Ft−1
)
,

which, by the ergodic theorem, converges to 0. The second condition follows from
the ergodic theorem. Therefore, we have

(
Eξ 1ξ

�
1

)−1/2 1√
n

ns�∑

j=1

ξ j ⇒ Bd(s) in �∞([0, 1] × {1, . . . , d}), as n → ∞.

Hence,

(
Eξ 1ξ

�
1

)−1/2

⎛

⎝ 1√
n

ns�∑

j=1

ξ j − s√
n

n∑

j=1

ξ j

⎞

⎠ ⇒ Bd(s) − sBd(1)

in �∞([0, 1] × {1, . . . , d}), as n → ∞.

7.5.1 Proof of Theorem 7.1

The Wald Type Test Statistic
First, from the definition of the M-estimator and Taylor’s expansion, it follows that

0 = √
n

∂

∂θ
L̃n(θ̂n)

= √
n

∂

∂θ
L̃n(θ0) + ∂

∂θ∂θ� L̃n(θn
∗)

√
n(θ̂n − θ0),

where θ0 ≶ θn
∗ ≶ θ̂n . Then, we can write the above equation as
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J
√

n(θ̂n − θ0) = √
n

∂

∂θ
L̃n(θ0) + �n,

where

�n

:=

⎧
⎪⎨

⎪⎩

−
(

J + ∂

∂θ∂θ� L̃n(θn
∗)

) (
∂

∂θ∂θ� L̃n(θn
∗)

)−1 √
n ∂

∂θ
L̃n(θ0) if

(
∂

∂θ∂θ� L̃n(θn
∗)

)−1
exists,

(
J + ∂

∂θ∂θ� L̃n(θn
∗)

)√
n(θ̂n − θ0) otherwise.

Hence, we obtain the following equation:

J
ns�√

n
(θ̂ ns� − θ̂n) = 1√

n

ns�∑

t=1

∂

∂θ
�̃(Zt ,λ̃t (θ0)) − ns�

n

1√
n

n∑

t=1

∂

∂θ
�̃(Zt ,λ̃t (θ0))

+
√ns�

n
�nτ� − ns�

n
�n. (7.1)

Second, from (C6),

sup
0≤s≤1

sup
θ∈�

∥
∥
∥
∥
∥

1√
n

ns�∑

t=1

∂

∂θ
�(Zt ,λ̃t (θ)) − 1√

n

ns�∑

t=1

∂

∂θ
�(Zt ,λt (θ))

∥
∥
∥
∥
∥

≤ 1√
n

n∑

t=1

sup
θ∈�

∥
∥
∥
∥

∂

∂θ
�(Zt ,λ̃t (θ)) − ∂

∂θ
�(Zt ,λt (θ))

∥
∥
∥
∥ → 0 a.s., as n → ∞. (7.2)

Third, we shall show that

max
1≤k≤n

√
k

n
‖�k‖ = op(1) as n → ∞. (7.3)

We follow the proof of [19, Lemma 9]. By Assumption (C7), it can be shown that

−1

n

∂

∂θ∂θ� L̃n(θn
∗) → J a.s., as n → ∞

in the same way as [2, Theorem 2.2]. We can apply Egorov’s theorem, that is, for
any ε > 0, there exists some Borel set A ∈ F such that P(A) < ε and

−1

n

∂

∂θ∂θ� L̃n(θn
∗) → J uniformly on �\A, as n → ∞.

There exists N1 such that, for any n ≥ N1,
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∣
∣
∣
∣det (J ) − det

(

−1

n

∂

∂θ∂θ� L̃n(θn
∗)

)∣
∣
∣
∣ <

1

2
|det (J ) | on �\A,

and then ∣
∣
∣
∣det

(

−1

n

∂

∂θ∂θ� L̃n(θn
∗)

)∣
∣
∣
∣ >

1

2
|det (J ) | on �\A.

Therefore,
(
−∂2/(∂θ∂θ�)L̃n(θn

∗)/n
)−1

exists on �\A for any n ≥ N1. For any

invertible matrix Bn and B such that Bn → B as n → ∞, ‖B−1
n − B−1‖ =

‖B−1
n (Bn − B)B−1‖ ≤ ‖B−1

n ‖‖(Bn − B)‖‖B−1‖ → 0. Thus, there exists N2 ∈ N

such that, for any n ≥ N2 ≥ N1,

∥
∥
∥
∥
∥

(

−1

n

∂

∂θ∂θ� L̃n(θn
∗)

)−1
∥
∥
∥
∥
∥

<
3

2

∥
∥J−1

∥
∥ on �\A.

For any η > 0,

P

(

max
1≤k≤n

√
k

n
‖�k‖ > η

)

≤P

(

max
1≤k≤N2

√
k

n
‖�k‖ > η, �\A

)

+ P

(

max
N2+1≤k≤n

√
k

n
‖�k‖ > η, �\A

)

+ P (A) .

(7.4)

From the definition of the tightness in R, for large n,

P

(

max
1≤k≤N2

√
k ‖�k‖ > nη, �\A

)

< ε.

Therefore, the first term of (7.4) converges to 0. The second term of (7.4) is asymp-
totically negligible along the line of [19, Lemma 9], which concludes (7.2).

Fourth, the multi-dimensional martingale FCLT (Lemma 7.4) yields

Î −1/2
n

1√
n

ns�∑

t=1

∂

∂θ
�(Zt ,λt (θ)) − Î −1/2

n

ns�
n

1√
n

n∑

t=1

∂

∂θ
�(Zt ,λt (θ))

= I −1/2 1√
n

ns�∑

t=1

∂

∂θ
�(Zt ,λt (θ)) − I −1/2 ns�

n

1√
n

n∑

t=1

∂

∂θ
�(Zt ,λt (θ)) + op(1)

⇒Bd(s) − sBd(1) in �∞([0, 1] × {1, . . . , d}), as n → ∞. (7.5)

Hence, from (7.1)–(7.3), (7.5), and the continuous mapping theorem, we obtain,
for ιn := inf{s ∈ [0, 1] : vn ≤ ns�},
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Tn,Wald

= max
vn≤k≤n

∥
∥
∥
∥

k√
n

Î−1/2
n Ĵn(θ̂k − θ̂n)

∥
∥
∥
∥

2

2

= sup
ιn≤s≤1

∥
∥
∥
∥
∥
∥

I−1/2 Ĵn J−1

⎛

⎝ 1√
n

ns�∑

t=1

∂

∂θ
�̃(Zt ,λ̃t (θ)) − ns�

n

1√
n

n∑

t=1

∂

∂θ
�(Zt ,λ̃t (θ))

⎞

⎠

∥
∥
∥
∥
∥
∥

2

2

+ op(1)

= sup
ιn≤s≤1

∥
∥
∥
∥
∥
∥

I−1/2

⎛

⎝ 1√
n

ns�∑

t=1

∂

∂θ
�(Zt ,λ̃t (θ)) − ns�

n

1√
n

n∑

t=1

∂

∂θ
�(Zt ,λt (θ))

⎞

⎠

∥
∥
∥
∥
∥
∥

2

2

+ op(1)

⇒ sup
0≤s≤1

‖B◦
d (s)‖22,

as n → ∞.

The Score-Type Test Statistic
First, we show that

max
1≤k≤n

1√
n

∥
∥
∥
∥

k∑

t=1

∂

∂θ
�(Zt ,λ̃t (θ̂n))

−
(

k∑

t=1

∂

∂θ
�(Zt ,λ̃t (θ0)) − k

n

n∑

t=1

∂

∂θ
�(Zt ,λ̃t (θ0))

)∥
∥
∥
∥ = op(1) (7.6)

as n → ∞.
By Taylor’s expansion, there exist θn

∗ and θn
∗∗ such that θ0 ≶ θn

∗ ≶ θ̂n , θ0 ≶
θn

∗∗ ≶ θ̂n ,

k∑

t=1

∂

∂θ
�(Zt ,λ̃t (θ̂n)) −

k∑

t=1

∂

∂θ
�(Zt ,λ̃t (θ0)) =

k∑

t=1

∂

∂θ∂θ� �(Zt ,λ̃t (θ
∗∗
n ))

(
θ̂n − θ0

)
,

and

n∑

t=1

∂

∂θ
�(Zt ,λ̃t (θ̂n)) −

n∑

t=1

∂

∂θ
�(Zt ,λ̃t (θ0)) =

n∑

t=1

∂

∂θ∂θ� �(Zt ,λ̃t (θ
∗
n))

(
θ̂n − θ0

)
.

Then, we have
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max
1≤k≤n

1√
n

∥
∥
∥
∥

k∑

t=1

∂

∂θ
�(Zt ,λ̃t (θ̂n))

−
(

k∑

t=1

∂

∂θ
�(Zt ,λ̃t (θ0)) − k

n

n∑

t=1

∂

∂θ
�(Zt ,λ̃t (θ0))

) ∥
∥
∥
∥

= max
1≤k≤n

1

n

∥
∥
∥
∥

k∑

t=1

∂

∂θ∂θ� �(Zt ,λ̃t (θ
∗∗
n ))

√
n

(
θ̂n − θ0

)

− k

n

n∑

t=1

∂

∂θ∂θ� �(Zt ,λ̃t (θ
∗
n))

√
n

(
θ̂n − θ0

) ∥
∥
∥
∥

≤
∥
∥
∥
√

n
(
θ̂n − θ0

)∥
∥
∥ max
1≤k≤n

k

n

∥
∥
∥
∥
∥

1

k

k∑

t=1

∂

∂θ∂θ� �(Zt ,λ̃t (θ
∗∗
n )) + J

∥
∥
∥
∥
∥

+
∥
∥
∥
∥
∥

1

n

n∑

t=1

∂

∂θ∂θ� �(Zt ,λ̃t (θ
∗
n)) + J

∥
∥
∥
∥
∥

∥
∥
∥
√

n
(
θ̂n − θ0

)∥
∥
∥ .

Since
∥
∥
∥
√

n
(
θ̂n − θ0

)∥
∥
∥ = Op(1) and

∥
∥
∥
∥
∥

1

n

n∑

t=1

∂

∂θ∂θ� �̃t (θn
∗∗) + J

∥
∥
∥
∥
∥

→ 0 a.s., as n → ∞, (7.7)

the second term is asymptotically negligible. From (7.7), for any ε > 0, there exists
N4 > 0 such that, for k ≥ N4,

P

(∥
∥
∥
∥
∥

1

k

k∑

t=1

∂

∂θ∂θ� �(Zt ,λ̃t (θ
∗∗
n )) + J

∥
∥
∥
∥
∥

> ε

)

= 0.

Hence,

max
1≤k≤n

k

n

∥
∥
∥
∥
∥

1

k

k∑

t=1

∂

∂θ∂θ� �(Zt ,λ̃t (θ
∗∗
n )) + J

∥
∥
∥
∥
∥

= max
1≤k≤N4

k

n

∥
∥
∥
∥
∥

1

k

k∑

t=1

∂

∂θ∂θ� �(Zt ,λ̃t (θ
∗∗
n )) + J

∥
∥
∥
∥
∥

+ max
N4≤k≤n

k

n

∥
∥
∥
∥
∥

1

k

k∑

t=1

∂

∂θ∂θ� �(Zt ,λ̃t (θ
∗∗
n )) + J

∥
∥
∥
∥
∥

≤ N4

n

N4∑

t=1

∥
∥
∥
∥

∂

∂θ∂θ� �(Zt ,λ̃t (θ
∗∗
n ))

∥
∥
∥
∥ + N4

n
‖J‖
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+ max
N4≤k≤n

∥
∥
∥
∥
∥

1

k

k∑

t=1

∂

∂θ∂θ� �(Zt ,λ̃t (θ
∗∗
n )) + J

∥
∥
∥
∥
∥

,

which tends to 0 in probability since, for any ε′, there exists M such that

P

(
N4∑

t=1

∥
∥
∥
∥

∂

∂θ∂θ� �(Zt ,λ̃t (θ
∗∗
n ))

∥
∥
∥
∥ > M

)

≤ ε′.

Consequently, (7.6) is established.
Second, we know that

∣
∣
∣
∣ sup
0≤s≤1

∥
∥
∥
∥
∥
∥

Î−1/2
n

1√
n

⎛

⎝
ns�∑

t=1

∂

∂θ
�(Zt ,λ̃t (θ̂n))

⎞

⎠

∥
∥
∥
∥
∥
∥

− sup
0≤s≤1

∥
∥
∥
∥
∥
∥

Î−1/2
n

1√
n

ns�∑

t=1

∂

∂θ
�(Zt ,λt (θ̂n))

∥
∥
∥
∥
∥
∥

∣
∣
∣
∣

≤
∥
∥
∥ Î−1/2

n

∥
∥
∥

1√
n

n∑

t=1

∥
∥
∥
∥

(
∂

∂θ
�(Zt ,λ̃t (θ̂n))

)

−
(

∂

∂θ
�(Zt ,λt (θ̂n))

)∥
∥
∥
∥ → 0 a.s., as n → ∞.

(7.8)

Third, by employing the multi-dimensional martingale FCLT, we can see that

Î −1/2
n

1√
n

ns�∑

t=1

∂

∂θ
�t (θ0) − Î −1/2

n

ns�
n

1√
n

n∑

t=1

∂

∂θ
�t (θ0)

⇒Bd(s) − sBd(1) in �∞([0, 1] × {1, . . . , d}), as n → ∞. (7.9)

Hence, (7.6), (7.8), (7.9), the ergodic theorem, and the continuous mapping the-
orem yield, for ιn := inf{s ∈ [0, 1] : vn ≤ ns�},

sup
ιn≤s≤1

∥
∥
∥
∥
∥

Î −1/2
n

1√
n

(ns�∑

t=1

∂

∂θ
�(Zt ,λ̃t (θ̂n))

)∥
∥
∥
∥
∥

2

2

⇒ sup
0≤s≤1

∥
∥B◦

d(s)
∥
∥2
2 ,

as n → ∞.

The residual type test statistic
First, we shall show that, for εt := Zt − λ(θ0),

max
1≤k≤n

1√
n

∣
∣
∣
∣
∣

k∑

t=1

(ε̃t (θ̂n) − εt ) − k

n

n∑

t=1

(ε̃t (θ̂n) − εt )

∣
∣
∣
∣
∣
= op(1) as n → ∞. (7.10)
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By Taylor’s expansion, we have, for at := supθ∈�

∣
∣
∣λt (θ) − λ̃t (θ)

∣
∣
∣,

max
1≤k≤n

1√
n

∣
∣
∣
∣
∣

k∑

t=1

(ε̃t (θ̂n) − εt ) − k

n

n∑

t=1

(ε̃t (θ̂n) − εt )

∣
∣
∣
∣
∣

≤ 2√
n

n∑

t=1

at + max
1≤k≤n

1√
n

∣
∣
∣
∣
∣

k∑

t=1

(λt (θ̂n) − λt (θ0)) − k

n

n∑

t=1

(λt (θ̂n) − λt (θ0))

∣
∣
∣
∣
∣

≤ 2√
n

n∑

t=1

at + max
1≤k≤n

1√
n

∣
∣
∣
∣
∣

k∑

t=1

(θ̂n − θ0)
� ∂

∂θ
λt (θ0) − k

n

n∑

t=1

(θ̂n − θ0)
� ∂

∂θ
λt (θ0)

∣
∣
∣
∣
∣

+ max
1≤k≤n

1√
n

∣
∣
∣
∣

k∑

t=1

(θ̂n − θ0)
�

(
∂

∂θ
λt (θn

∗) − ∂

∂θ
λt (θ0)

)

− k

n

n∑

t=1

(θ̂n − θ0)
�

(
∂

∂θ
λt (θn

∗) − ∂

∂θ
λt (θ0)

) ∣
∣
∣
∣

≤ 2√
n

n∑

t=1

at + √
n‖θ̂n − θ0‖ max

1≤k≤n

k

n

∥
∥
∥
∥
∥

1

k

k∑

t=1

∂

∂θ
λt (θ0) − 1

n

n∑

t=1

∂

∂θ
λt (θ0)

∥
∥
∥
∥
∥

+ √
n‖θ̂n − θ0‖2

n

n∑

t=1

∥
∥
∥
∥

∂

∂θ
λt (θn

∗) − ∂

∂θ
λt (θ0)

∥
∥
∥
∥ ,

where θ0 ≶ θn
∗ ≶ θ̂n . Under the assumption (D11), we can show that

2

n

n∑

t=1

∥
∥
∥
∥

∂

∂θ
λt (θn

∗) − ∂

∂θ
λt (θ0)

∥
∥
∥
∥ → 0 a.s., as n → ∞

along the line of [2, Theorem 2.2] and, by the ergodic theorem, it is easy to see that

max
1≤k≤n

k

n

∥
∥
∥
∥
∥

1

k

k∑

t=1

∂

∂θ
λt (θ0) − 1

n

n∑

t=1

∂

∂θ
λt (θ0)

∥
∥
∥
∥
∥

→ 0 a.s., as n → ∞.

Using
√

n‖θ̂n − θ0‖ = Op(1), the proof of (7.10) is completed.
Second, we prove that

1

n

n∑

t=1

ε̃2t (θ̂n) → Eε2t in probability as n → ∞. (7.11)

By Taylor’s expansion, we obtain
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∣
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∣
∣
∣
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1
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∣
∣
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)
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(
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∥
∥
∥
∥
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∥
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∥
∥
∥
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n
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√
√
√
√1

n
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t

√
√
√
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n

n∑
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∥
∥
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∥
∥
∥

√
√
√
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n

n∑
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t

√
√
√
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n
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∥
∥
∥
∥
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∗
n)

∥
∥
∥
∥

2
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∥
∥
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∥
∥
∥

√
√
√
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n
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√
√
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∥
∥
∥
∥

∂
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λt (θ

∗
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∥
∥
∥
∥

2

+
∥
∥
∥θ̂n − θ0

∥
∥
∥
2 1

n

n∑
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∥
∥
∥
∥

∂

∂θ
λt (θ

∗
n)

∥
∥
∥
∥

2

,

where θ0 ≶ θn
∗ ≶ θ̂n . By the ergodic theorem, we observe

1

n

n∑

t=1

|Zt − λt (θ0)|2 → Eε2t a.s., as n → ∞

and, by Assumption (D10), we can show

1

n

n∑

t=1

∥
∥
∥
∥

∂

∂θ
λt (θ

∗
n)

∥
∥
∥
∥

2

→E

∥
∥
∥
∥

∂

∂θ
λt (θ0)

∥
∥
∥
∥

2

a.s., as n → ∞,

which shows (7.11).
Since εt is strictly stationary, ergodic, and martingale difference, we can apply

the multi-dimensional martingale FCLT. From (7.10) and (7.11), we have, for
ιn := inf{s ∈ [0, 1] : vn ≤ ns�},
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max
1≤k≤n

1
√

1
n

∑n
t=1 ε̂2t (θ̂n)

1√
n

∣
∣
∣
∣
∣

k∑

t=1

ε̃t − k

n

n∑
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ε̃t

∣
∣
∣
∣
∣

= sup
ιn≤s≤1

1
√
Eε2t

1√
n

∣
∣
∣
∣
∣

ns�∑

t=1

εt − ns�
n

n∑

t=1

εt

∣
∣
∣
∣
∣
+ op(1)

⇒ sup
0≤s≤1

|B◦
1 (s)|,

as n → ∞. �

7.5.2 Proof of Theorem 7.2

For the test based on Tn,Wald, it is easy to see that

P

(
1

n
Tn,Wald >

C

n

)

≥ P

(nτ�2
n2

(θ̂ nτ� − θ̂n)
� Ĵ Î −1 Ĵ (θ̂ nτ� − θ̂n) >

C

n

)

= P
(
τ 2(θ0 − θ̄)� J ∗(I ∗)−1 J ∗(θ0 − θ̄) > 0

) + o(1)

≥ P
(
τ 2�min

(
J ∗(I ∗)−1 J ∗) ‖θ0 − θ̄‖22 > 0

) + o(1), (7.12)

where �min(A) denotes a minimum eigenvalue of a matrix A. The assumptions that
J ∗ and I ∗ are positive definite matrices imply J ∗(I ∗)−1 J ∗ is a positive definite
matrix. Thus, �min(J ∗(I ∗)−1 J ∗) > 0, which concludes that (7.12) converges to 1 as
n → ∞.

For the test based on Tn,score, we observe that

P

(
1

n
Tn,score >

C

n

)

≥ P

⎛

⎝

(
1

n

nτ�∑
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∂
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�̃t (Zt , λt (θ̂n))

)�
Î −1

(
1

n
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∂
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�̃t (Zt , λt (θ̂n))

)

>
C

n

⎞

⎠
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(

τ 2E
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∂
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)
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(
∂
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> 0

)

+ o(1)

≥ P

(

τ 2�min
(
(I ∗)−1

)
∥
∥
∥
∥E

(
∂

∂θ
�t (Zt , λt (θ̄))

)∥
∥
∥
∥

2

2

> 0

)

+ o(1),

which converges to 1 as n → ∞, since I ∗ is a positive definite matrix.
For the test based on Tn,res, with εt (θ) := Zt − λt (θ) and ε′

t (θ) := Z ′
t − λ′

t (θ), we
have
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P
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⎞
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⎛

⎝ τ(1 − τ)
√
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t
2
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∣
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t (θ̄)
∣
∣ > 0

⎞

⎠ + o(1),

which converges to 1 as n → ∞. �
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Chapter 8
M-Estimation in GARCHModels
in the Absence of Higher-Order Moments

Marc Hallin, Hang Liu, and Kanchan Mukherjee

Abstract We consider a class ofM-estimators of the parameters of a GARCH(p, q)

model. These estimators are asymptotically normal, depending on score functions,
under milder moment assumptions than the usual quasi-maximum likelihood, which
makes them more reliable in the presence of heavy tails. We also consider weighted
bootstrap approximations of the distributions of these M-estimators and establish
their validity. Through extensive simulations, we demonstrate the robustness of these
M-estimators under heavy tails and conduct a comparative study of the performance
(biases and mean squared errors) for various score functions and the accuracy (con-
fidence interval coverage probabilities) of their bootstrap approximations. In addi-
tion to the GARCH(1,1) model, our simulations also involve higher-order models
such as GARCH(2,1) and GARCH(1,2) which so far have received relatively little
attention in the literature. We also consider the case of order-misspecified models.
Finally, we analyze two real financial time series datasets by fitting GARCH(1,1) or
GARCH(2,1) models with our M-estimators.
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8.1 Introduction

Generalized AutoRegressive Conditional Heteroscedastic (GARCH) models have
been used extensively to analyze the volatility or the instantaneous variability in
financial time series. This is a domain in which Prof. Masanobu Taniguchi and his
coauthors published impactful papers [6, 10] and two influential monographs [11,
12].

A stochastic processX := {Xt ; t ∈ Z} is said to follow a GARCH(p, q) model if

Xt = σtεt , t ∈ Z, (8.1)

where {εt ; t ∈ Z} is a sequence of (unobservable) i.i.d. errors with symmetric distri-
bution around zero and {σt ; t ∈ Z} is a solution of

σt =
⎛
⎝ω0 +

p∑
i=1

α0i X2
t−i +

q∑
j=1

β0 jσ
2
t− j

⎞
⎠

1/2

, t ∈ Z, (8.2)

for some ω0 > 0, α0i > 0, i = 1, . . . , p, and β0 j > 0, j = 1, . . . , q. Mukherjee [7]
introduced a class of M-estimators for estimating the GARCH parameter

θ0 := (ω0, α01, . . . , α0p, β01, . . . , β0q)
′ (8.3)

based on an observed finite realization {Xt ; 1 ≤ t ≤ n} of X. Depending on the
choice of a score function, these M-estimators are asymptotically normal under
milder moment assumptions on the error distribution than the commonly used quasi-
maximum likelihood estimator (QMLE). Mukherjee [8] further considered a class
of weighted bootstrap methods to approximate the distributions of these estimators
and established their asymptotic validity. In this paper, we discuss an iteratively re-
weighted algorithm to compute these M-estimators and the corresponding bootstrap
estimators with emphasis on the so-called Huber, μ-, and Cauchy estimators, which
so far were not given much attention in the literature. This iteratively re-weighted
algorithm turns out to be particularly useful in the computation of bootstrap replicates
since it avoids re-evaluating some core quantities for each new bootstrap sample.

The class of M-estimators in Mukherjee [7] includes the (Gaussian) QMLE as a
special case. The asymptotic normality of the QMLE and the asymptotic validity of
bootstrapping it are well-known classical results which, however, require the exis-
tence of fourth-order moment of the error distribution. The same class also contains
other less-knownM-estimators, such as theμ-estimator andCauchy estimator, which
are asymptotically normal under milder moment assumptions and hence should be
considered as attractive alternatives to the QMLE. One of the objectives of this paper
is to study the performance of these estimators through simulations and use them for
the empirical study of some interesting datasets.
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In an earlier work, Muler and Yohai [9] analyzed the Electric Fuel Corporation
(EFCX) time series by fitting a GARCH(1,1) model to the data. Using exploratory
analysis, they detected the presence of outliers and considered the estimation of
the GARCH parameters based on various robust methods. It turned out that the
estimates based on differentmethods varywidely, whichmakes their study somewhat
inconclusive as to which robust methods should be preferred in similar situations. In
this paper, we show how M-estimators can be used for making such choices.

In a different direction, Francq and Zakoïan [4] stressed the importance of consid-
ering higher-order GARCHmodels such as the GARCH(2,1) in the context of finan-
cial data. Computational results and simulation studies for such models, however,
are rather scarce in the literature. Our simulation study and empirical applications
therefore include higher-order models such as GARCH(2,1) and GARCH(1,2).

The main contributions of the paper are as follows. We implement a very general
algorithm for computing a variety of M-estimators and demonstrate their importance
in the analysis of real data. We consider situations when the error distributions are
possibly heavy-tailed or require a higher-order GARCH model fitting. We provide
results and analysis of an extensive simulation study based on M-estimators which
are asymptotically normal under weak moment assumptions on error distribution.
Finally, we study the effectiveness of the bootstrap approximation of the distribution
of M-estimators.

The rest of the paper is organized as follows. Sections 8.2 and 8.3 set the back-
ground. In particular, Sect. 8.2 considers the class of M-estimators and provides
several examples. Section 8.3 contains the bootstrap formulation and its asymptotic
validity. Section 8.4 discusses some of the computational aspects of M-estimators
and their bootstrapped versions. Section 8.5 reports simulation results for various
M-estimators. Section 8.6 compares the bootstrap approximations of M-estimators
with the classical asymptotic normal approximation. Section 8.7 analyzes two real
financial time series data.

8.2 M-Estimation of GARCH Parameters

8.2.1 A Class of M-Estimators

Throughout the paper,wewrite ġ for the derivative and ġ for the gradient of a differen-
tiable function g, sign(x) for I (x > 0) − I (x < 0), and log+(x) for I (x > 1) log(x)

when x > 0, where the symbol I stands for the indicator. Also, ε represents a generic
random variable with the same distribution as the errors {εt } in (8.1).

Consider H(x) := xψ(x), x ∈ R, where ψ : R → R is an odd and differentiable
function at all but possibly afinite number of points; denote byD ⊆ R the set of points
where ψ is differentiable and by D̄ its complement. Since ψ is an odd function, H
is an even function. Functions H of this type will be used as score functions in the
M-estimation procedures described below. Examples are as follows.
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Example 8.1

(i) QMLE score function: ψ(x) = x ; D̄ = φ (the empty set), H(x) = x2.
(ii) Least absolute deviation (LAD) score function: ψ(x) = sign (x); D̄ = {0},

and H(x) = |x |.
(iii) Huber’s k score function: ψ(x) = x I (|x | ≤ k) + k sign (x)I (|x | > k), where

k > 0 is a known constant (D̄ = {−k, k}), and

H(x) = x2 I (|x | ≤ k) + k|x |I (|x | > k).

(iv) Maximum likelihood score function: ψ(x) = − ḟ (x)/ f (x), where f is the
actual density of ε, assumed to be known, and H(x) = x{− ḟ (x)/ f (x)}.

(v) μ score function: ψ(x) = μ sign(x)/(1 + |x |), where μ > 1 is a known con-
stant (D̄ = {0}), and H(x) = μ|x |/(1 + |x |) (a bounded score function).

(vi) Cauchy score function: ψ(x) = 2x/(1 + x2), H(x) = 2x2/(1 + x2)

(a bounded score function).
(vii) Exponential pseudo-maximum likelihood score function:

ψ(x) = δ1|x |δ2−1sign(x),

where δ1 > 0 and 1 < δ2 ≤ 2 are known constants; D̄ = {0}, and H(x) =
δ1|x |δ2 .

Assume that for some κ1 ≥ 2 and κ2 > 0,

E[|ε|κ1] < ∞ and lim
t→0

P[ε2 < t]/tκ2 = 0. (8.4)

Then σ 2
t (see (8.2)) admits the unique almost sure representation

σ 2
t = c0 +

∞∑
j=1

c j X2
t− j , t ∈ Z, (8.5)

where {c j ; j ≥ 0} are defined in Berkes et al. ([1]; (2.9)–(2.16)). Let � be a com-
pact subset of (0,∞)1+p × (0, 1)q and denote by θ = (ω, α1, . . . , αp, β1, . . . , βq)

′
a typical element in �. Define the variance function vt : � → R

+ by

vt (θ) = c0(θ) +
∞∑
j=1

c j (θ)X2
t− j , θ ∈ �, t ∈ Z, (8.6)

where the coefficients {c j (θ); j ≥ 0} are such that, for θ = θ0,

c j (θ0) = c j , j ≥ 0 (8.7)
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(Berkes et al. ([1]; (3.1))). Hence the variance function satisfies vt (θ0) = σ 2
t , t ∈ Z

and (8.1) can be rewritten as

Xt = {vt (θ0)}1/2εt , 1 ≤ t ≤ n. (8.8)

Let H denote a score function. The M-estimators are defined as the solutions θ̂n

of M̂n,H (θ) = 0, where

M̂n,H (θ) :=
n∑

t=1

{
1 − H{Xt/v̂

1/2
t (θ)}

}
{ ˙̂vt (θ)/v̂t (θ)} (8.9)

and

v̂t (θ) := c0(θ) + I (2 ≤ t)
t−1∑
j=1

c j (θ)X2
t− j , θ ∈ �, 1 ≤ t ≤ n (8.10)

is the observable approximation of the variance function vt (θ) defined in (8.6).
The recursive nature of the coefficients {c j (θ)} greatly simplifies the computation

of M-estimators, as discussed in Sect. 8.4. For p, q = 1 or 2, these coefficients, for
instance, satisfy the following recursions.

Example 8.2

(i) GARCH(1,1) model: with θ = (ω, α, β)′,

c0(ω, α, β) = ω/(1 − β), c j (ω, α, β) = αβ j−1, j ≥ 1.

(ii) GARCH(2,1) model: with θ = (ω, α1, α2, β)′,

c0(θ) = ω/(1 − β), c1(θ) = α1, c2(θ) = α2 + βc1(θ) = α2 + βα1,

and
c j (θ) = βc j−1(θ), j ≥ 3.

(iii) GARCH(1, 2) model: with θ = (ω, α, β1, β2)
′,

c0(θ) = ω/(1 − β1 − β2), c1(θ) = α, c2(θ) = β1c1(θ) = β1α,

and
c j (θ) = β1c j−1(θ) + β2c j−2(θ), j ≥ 3.

(iv) GARCH(2,2) model: with θ = (ω, α1, α2, β1, β2)
′,

c0(θ) = ω/(1 − β1 − β2), c1(θ) = α1, c2(θ) = α2 + β1α1,
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and
c j (θ) = β1c j−1(θ) + β2c j−2(θ), j ≥ 3.

8.2.2 Asymptotic Distribution of M-Estimators

The asymptotic distribution of M-estimators is derived under the following assump-
tions.

Assumption 8.1 (Model assumptions) The parameter space � is compact and θ0

defined in (8.3) belongs to its interior; (8.4), (8.6), and (8.8) hold; {Xt } is stationary
and ergodic.

Assumption 8.2 (Score function assumptions)
(8.2.1) Associated with the score function H , there exists a unique number cH > 0
such that

E[H(ε/c1/2H )] = 1, E[H(ε/c1/2H )]2 < ∞, and 0 < E{(ε/c1/2H )Ḣ(ε/c1/2H )} < ∞;
(8.11)

and the transformed parameter

θ0H := (cHω0, cHα01, . . . , cH α0p, β01, . . . , β0q)
′ (8.12)

is in the interior of �.
(8.2.2) (Smoothness conditions)1

(i) There exists a function L satisfying

|H(es) − H(e)| ≤ L(e)|s2 − 1|, e ∈ R
1, s > 0,

where E log+{L(ε/c1/2H )} < ∞;
(ii) there exists a function � such that for e ∈ R

1, s > 0, es, e ∈ D,

|Ḣ(es) − Ḣ(e)| ≤ �(e)|s − 1|,

where E{|ε/c1/2H |�(ε/c1/2H )} < ∞;
(iii) there exists a function �∗ satisfying

|�(e + es) − �(e)| ≤ �∗(e)s, e ∈ R
1, s > 0,

where E log+{�∗(ε/c1/2H )} < ∞.

Define the score function factor

1 These conditions are trivially satisfied by all the examples of score functions H considered above.
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Table 8.1 Values of cH for various M-estimators (Huber, μ-, Cauchy) under normal, double expo-
nential, logistic, t (3), and t (2.2) error distributions, where t (d) is the t-distribution with d degrees
of freedom

Huber μ-estimator Cauchy

Normal 0.825 1.692 0.377

Double exponential 0.677 1.045 0.207

Logistic 0.781 1.487 0.316

t (3) 0.533 0.850 0.172

t (2.2) 0.204 0.274 0.053

σ 2(H) := 4 Var{H(ε/c1/2H )}/[E{(ε/c1/2H )Ḣ(ε/c1/2H )}]2,

and the matrix
G := E{v̇1(θ0H )v̇′

1(θ0H )/v2
1(θ0H )},

the following result on the asymptotic distribution of the M-estimator θ̂n defined
in (8.9) and (8.10) holds (Mukherjee [7]).

Theorem 8.1 Suppose that Assumptions 8.1 and 8.2 hold. Then, as n → ∞,

n1/2(θ̂n − θ0H ) → N(0, σ 2(H)G−1).

Remark 8.1 The coefficients cH in Assumption (8.2.1) take the values cH = E(ε2)

for the QMLE and cH = (E|ε|)2 for the LAD. For the Huber, μ-, Cauchy, and other
scores, cH does not have a closed-form expression but the corresponding numerical
values can be computed from (8.11) for various error distributions as follows. Fix
a large positive integer I and generate {εi ; 1 ≤ i ≤ I } from the error distribution.
Then, using the bisection method on c > 0, solve the equation

(1/I )
I∑

i=1

{
H

(
εi/c1/2

)} − 1 = 0.

In Table 8.1,we provide cH for some further error distributions and score functions
such asHuber’s k-scorewith k = 1.5 and theμ-estimator withμ = 3, which are used
in simulations and data analysis in subsequent sections.

8.3 Bootstrapping M-Estimators

Let {wnt ; 1 ≤ t ≤ n, n ≥ 1} be a triangular array of random variables such that

(i) for each n ≥ 1, {wnt ; 1 ≤ t ≤ n} are exchangeable and independent of {Xt ; t ≥
1} and {εt ; t ≥ 1}, and
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(ii) wnt ≥ 0 and E(wnt ) = 1 for all t ≥ 1.

Based on these weights wnt , a bootstrap estimator θ̂∗n is defined as a solution
of M̂

∗
n,H (θ) = 0, where

M̂
∗
n,H (θ) :=

n∑
t=1

wnt

{
1 − H{Xt/v̂

1/2
t (θ)}

}
{ ˙̂vt (θ)/v̂t (θ)}. (8.13)

From various available choices of bootstrap weights, we consider, for the sake of
comparison, the following three bootstrapping schemes.

Scheme M. The sequence {wn1, . . . , wnn} has a multinomial (n, 1/n, . . . , 1/n)

distribution, which essentially yields the classical paired bootstrap.
Scheme E. The weights are of the form wnt = (nEt )/

∑n
i=1 Ei , where {Et } are

i.i.d. exponential with mean 1.
Scheme U. The weights are of the form wnt = (nUt )/

∑n
i=1 Ui , where {Ut } are

i.i.d. uniform on (0.5, 1.5).

A large number of other bootstrap methods in the literature are special cases
of the above formulation. Such general formulation of weighted bootstrap offers a
unified way of studying several bootstrap schemes simultaneously. See, for instance,
Chatterjee and Bose [3] for details in different contexts.

We assume that the weights satisfy the basic conditions

E(wn1) = 1, 0 < k3 < σ 2
n = o(n), and Corr (wn1, wn2) = O(1/n), (8.14)

where σ 2
n = Var(wni ) and k3 > 0 is a constant (Chatterjee and Bose ([3]; Conditions

BW)). We also assume additional smoothness and moment conditions.

Assumption 8.3 H(x) is twice differentiable at all but a finite number of points and
for some δ > 2, E[H(ε/c1/2H )]δ < ∞.

Under Assumptions 8.1–8.3 and (8.14), the weighted bootstrap is asymptotically
valid (Mukherjee [8]).

Theorem 8.2 Suppose that Assumptions 8.1–8.3 and (8.14) hold. Then, for almost
all data,2 as n → ∞,

σ−1
n n1/2(θ̂∗n − θ̂n) → N(0, σ 2(H)G−1). (8.15)

Since 0 < 1/σn < 1/
√

k3, the probability of convergence of the bootstrap estima-
tor is the same as that of the original M-estimator, although the scaling σ−1

n reflects
the impact of the chosen weights.

The distributional result of (8.15) is useful for constructing confidence intervals
for the GARCH parameters. Let B be the number of bootstrap replicates. Con-
sider the true value γ0 of a generic parameter (either ω0, α0i , or β0 j ), and let γ̂n

2 Namely, outside a set of probability zero in the bootstrap distribution induced by the data.
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and γ̂∗nb denote its M-estimator and b-th bootstrap estimator (1 ≤ b ≤ B), respec-
tively. Let γ0H denote the corresponding transformed parameter (either cHω0, cHα0i ,
or β0 j ; see (8.12)); the value of this γ0H is known in simulation experiments.

Using the approximation of
√

n(γ̂n − γ0H ) by σ−1
n n1/2(γ̂∗n − γ̂n), the bootstrap

confidence interval (with level 1 − α) for γ0H is of the form

[
γ̂n − n−1/2{σ−1

n n1/2(γ̂∗n,α/2 − γ̂n)}, γ̂n + n−1/2{σ−1
n n1/2(γ̂∗n,1−α/2 − γ̂n)}

]
,

(8.16)
where γ̂∗n,β is the β-th quantile of the numbers {γ̂∗nb, 1 ≤ b ≤ B}. Consequently,
the bootstrap coverage probability is evaluated by the proportion of intervals of the
form (8.16) containing γ0H .

The asymptotic normality result of Theorem 8.1 also yields a confidence interval

[
γ̂n − n−1/2d̂z1−α/2, γ̂n + n−1/2d̂z1−α/2

]
(8.17)

(with level 1 − α) for γ0H , where d̂2 is the estimated variance of γ̂n obtained as the
appropriate diagonal entry of the estimator of σ 2(H)G−1 and z1−α/2 is the quantile
of order (1 − α/2) of the standard normal distribution. Call it the normal confidence
interval.

In Sect. 8.6, we compare the accuracy of the bootstrap-based and normal confi-
dence intervals (8.16) and (8.17).

8.4 Computational Issues

This section discusses, in detail, the implementation of an iteratively re-weighted
algorithm for the computation of M-estimators proposed in Mukherjee [8]. In
particular, we highlight the μ- and Cauchy estimators, since their asymptotic distri-
butions are derived under mild moment assumptions. We also consider the bootstrap
estimators based on the corresponding score functions.

8.4.1 Computation of the M-Estimators

For notational convenience, let α(c) := E[H(cε)] for c > 0. Using a Taylor expan-
sion of M̂n,H , we obtain the updating equation
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θ̃ = θ̌ + {α̇(1)/2}−1
[ n∑

t=1

˙̂vt (θ̌) ˙̂v′
t (θ̌)/v̂2

t (θ̌)
]−1

×
n∑

t=1

{
H{Xt/v̂

1/2
t (θ̌)} − 1

}
{ ˙̂vt (θ̌)/v̂t (θ̌}, (8.18)

where α̇(1) = E{ε Ḣ(ε)} (this expectation exists under the smoothness conditions in
Assumption 8.2) and θ̃ is the updated estimator of θ̂n as a function of the current
one θ̌ , say. We now discuss two aspects regarding the implementation of the algo-
rithm in (8.18). First, the initial value of θ̌ for the iteration, in principle, should be
a

√
n-consistent estimator of θ0H . However, we observe in our extensive simulation

study that, irrespective of the choice of the QMLE, LAD, θ0 or even values very
different from θ0H as initial estimates, only few iterations are needed for the con-
vergence to the same estimates. Second, we cannot, in general, estimate α̇(1) from
the data using the GARCH residuals {Xt/v̂

1/2
t (θ̂n)} as they are close to {εt/c1/2H },

an unknown multiplicative factor of the errors. Therefore, we use ad-hoc techniques
such as simulating {ε̃t ; 1 ≤ t ≤ n} fromN(0, 1) or standardized double exponential
distributions and then use n−1 ∑n

t=1 ε̃ Ḣ(ε̃) to carry out the iterations. Note that if
the iterations in (8.18) converge, then θ̃ − θ̌ ≈ 0, hence M̂n,H (θ̌) ≈ 0, and θ̃ is the
desired θ̂n . Based on our extensive simulation study and real data analysis, this algo-
rithm appears to be robust enough to converge to the same value of θ̂n irrespective
of the evaluations of the unknown value of α̇(1) used in the computation.

In the following examples, we discuss (8.18)when specialized to theM-estimators
computed in this paper.

(a) QMLE. Let H(x) = x2 and α(c) = c2E(ε2). Hence α̇(1)/2 = E(ε2) and (8.18)
takes the form

θ̃ = θ̌ +
{
E(ε2)

}−1[ n∑
t=1

{ ˙̂vt (θ̌) ˙̂v′
t (θ̌)/v̂2

t (θ̌)
}]−1

×
n∑

t=1

[
{X2

t /v̂t (θ̌)} − 1
]
{ ˙̂vt (θ̌)/v̂t (θ̌)}.

With Wt = 1/v̂2
t (θ̃ (r)), xt = ˙̂vt (θ̃ (r)), and yt = X2

t − v̂t (θ̃ (r)), we compute (itera-
tion r + 1)

θ̃ (r+1) = θ̃ (r) +
{
E(ε2)

}−1
{∑

t

Wt xt x
′
t

}−1 {∑
t

Wt xt yt

}
.
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Note that when E(ε2) = 1, this coincides with the formula obtained through the
BHHH algorithm proposed by Berndt et al. [2].

(b)LAD. Let H(x) = |x | and α(c) = cE|ε|. Hence α̇(1) = E|ε| and (8.18) takes the
form

θ̃ = θ̌ + {2/E|ε|}
[ n∑

t=1

{ ˙̂vt (θ̌)) ˙̂v′
t (θ̌))/v̂2

t (θ̌))
}]−1

×
n∑

t=1

[
|Xt |/v̂1/2

t (θ̌)) − 1
]
{ ˙̂vt (θ̌))/v̂t (θ̌))}

= θ̌ + {2/E|ε|}
[ n∑

t=1

{ ˙̂vt (θ̌) ˙̂v′
t (θ̌)/v̂2

t (θ̌)
}]−1

×
n∑

t=1

{
|Xt | − v̂

1/2
t (θ̌)

}
{ ˙̂vt (θ̌)/v̂

3/2
t (θ̌)}

= θ̌ + {2/E|ε|}
[ n∑

t=1

{ ˙̂vt (θ̌) ˙̂v′
t (θ̌)/v̂2

t (θ̌)
}]−1

×
n∑

t=1

{
v̂
1/2
t (θ̌)(|Xt | − v̂

1/2
t (θ̌))

}
{ ˙̂vt (θ̌)/v̂2

t (θ̌)}.

WithWt = 1/v̂2
t (θ̃ (r)), xt = ˙̂vt (θ̃ (r)), and yt = v̂

1/2
t (θ̃ (r))(|Xt | − v̂

1/2
t (θ̃ (r))),we com-

pute (iteration r + 1)

θ̃ (r+1) = θ̃ (r) + {2/E|ε|}
{∑

t

Wt xt x
′
t

}−1 {∑
t

Wt xt yt

}
.

(c) Huber. Let H(x) = x2 I (|x | ≤ k) + k|x |I (|x | > k) and

α(c) = E
[
(cε)2 I (|cε| ≤ k) + k|cε|I (|cε| > k)

]
.

Hence
α̇(1) = E

[
2ε2 I (|ε| ≤ k) + k|ε|I (|ε| > k)

]

and (8.18) takes the form

θ̃ = θ̌ −
{
α̇(1)/2

}−1[ n∑
t=1

{ ˙̂vt (θ̌) ˙̂v′
t (θ̌)

v̂2
t (θ̌)

}]−1

×
n∑

t=1

[
1 − X2

t

v̂t (θ̌)
I

(
|Xt |

v̂
1/2
t (θ̌)

≤ k

)
− k

|Xt |
v̂
1/2
t (θ̌)

I

(
|Xt |

v̂
1/2
t (θ̌)

> k

)] { ˙̂vt (θ̌)

v̂t (θ̌)

}
.
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With Wt = 1/v̂2
t (θ̃ (r)), xt = ˙̂vt (θ̃ (r)) and

yt = X2
t I

(
|Xt |/v̂1/2t (θ̃ (r)) ≤ k

)
+ k|Xt |v̂1/2t (θ̃ (r))I

(
|Xt |/v̂1/2t (θ̃ (r)) > k

)
− v̂t (θ̃ (r)),

we compute (iteration r + 1)

θ̃ (r+1) = θ̃ (r) +
{
α̇(1)/2

}−1
{∑

t

Wt xt x
′
t

}−1 {∑
t

Wt xt yt

}
.

(d) μ-estimator. Let H(x) = μ|x |/(1 + |x |) and α(c) = μ − μE [1/(1 + |cε|)].
Hence

α̇(1) = μE
[|ε|/(1 + |ε|)2]

and (8.18) takes the form

θ̃ = θ̌ +
{

μ

2
E

[ |ε|
(1 + |ε|)2

]}−1

×
[ n∑

t=1

{ ˙̂vt (θ̌) ˙̂v′
t (θ̌)

v̂2t (θ̌)

}]−1 n∑
t=1

[
μ|Xt |

v̂
1/2
t (θ̌) + |Xt |

− 1

]{ ˙̂vt (θ̌)

v̂t (θ̌)

}
.

WithWt = 1/v̂2
t (θ̃ (r)), xt = ˙̂vt (θ̃ (r)), and yt = μ|Xt |v̂t (θ̃ (r))

v̂
1/2
t (θ̃ (r)) + |Xt |

− v̂t (θ̃ (r)),wecom-

pute (iteration r + 1)

θ̃ (r+1) = θ̃ (r) +
{

μ

2
E

[ |ε|
(1 + |ε|)2

]}−1
{∑

t

Wt xt x
′
t

}−1 {∑
t

Wt xt yt

}
.

(e)Cauchy estimator.Let H(x) = 2x2/(1 + x2) and α(c) = E
[
2c2ε2/(1 + c2ε2)

]
.

Hence
α̇(1) = E

[
4ε2/(1 + ε2)2

]

and

θ̃ = θ̌ −
{
2E

[
ε2

(1 + ε2)2

]}−1 [ n∑
t=1

{ ˙̂vt (θ̌) ˙̂v′
t (θ̌)

v̂2t (θ̌)

}]−1 n∑
t=1

[
1 − 2X2

t

v̂t (θ̌) + X2
t

]{ ˙̂vt (θ̌)

v̂t (θ̌)

}
.

With Wt = 1/v̂2
t (θ̃ (r)), xt = ˙̂vt (θ̃ (r)), and yt = 2X2

t v̂t (θ̃ (r))

v̂t (θ̃ (r)) + X2
t

− v̂t (θ̃ (r)), we com-

pute (iteration r + 1)
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θ̃ (r+1) = θ̃ (r) +
{
2E

[
ε2

(1 + ε2)2

]}−1
{∑

t

Wt xt x
′
t

}−1 {∑
t

Wt xt yt

}
.

8.4.2 Computation of the Bootstrap M-Estimators

The relevant function here is M̂
∗
n,H (θ) defined in (8.13) and the bootstrap estima-

tor θ̂∗n can be computed from the current one θ̌∗, say, using the updating equation

θ̃∗ = θ̌∗ − {2/α̇(1)}
[ n∑

t=1

wnt

{ ˙̂vt (θ̌∗) ˙̂v′
t (θ̌∗)/v̂2

t (θ̌∗)
}]−1

×
n∑

t=1

wnt

{
1 − H{Xt/v̂

1/2
t (θ̌∗)}

}
{ ˙̂vt (θ̌∗)/v̂t (θ̌∗)}, (8.19)

where the M-estimator θ̂n obtained via the iteration process (8.18) is chosen as the
initial value.

We remark that the weighted bootstrap is computationallymore friendly and easy-
to-implement than the commonly-applied residual bootstrap (see, e.g., Jeong [5])
for GARCH models, since it avoids the computation of residuals at each iteration.
In particular, one simply needs to generate weights once to compute a bootstrap
estimator.

8.5 Monte Carlo Comparison of Performance

To compare the finite-sample performance of various M-estimators via their biases
and mean squared errors (MSEs), we simulate n observations from GARCHmodels
with specific choices of parameters and error distributions and compute the result-
ing M-estimators based on various score functions. This procedure is replicated R
times to enable the estimation of the bias and MSE. For instance, with p = 1 = q,
let θ̂n = (ω̂r , α̂r , β̂r )

′ be the M-estimator of θ0 = (ω0, α01, β01)
′ based on the score

function H at the r -th replication, 1 ≤ r ≤ R. However, (ω̂r , α̂r , β̂r ) is a consis-
tent estimator of (cHω0, cH α0, β0), where cH depends on the score function and the
underlying error distribution (which are known in a simulation scenario). Therefore,
we compare the performance at a specified error distribution across various score
functions in terms of the adjusted bias and adjusted MSE defined by

E(ω̂/cH − ω0), E(α̂/cH − α0), E(β̂ − β0)

and
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E(ω̂/cH − ω0)
2, E(α̂/cH − α0)

2, E(β̂ − β0)
2.

We consider R replicates of

(ω̂r/cH − ω0, α̂r/cH − α0, β̂r − β0)
′

and use the averaged quantities

R−1
R∑

r=1

{ω̂r/cH − ω0}, R−1
R∑

r=1

{α̂r/cH − α0}, R−1
R∑

r=1

{β̂r − β0} (8.20)

to estimate the adjusted biases and, for the adjusted MSEs,

R−1
R∑

r=1

{ω̂r/cH − ω0}2, R−1
R∑

r=1

{α̂r/cH − α0}2, R−1
R∑

r=1

{β̂r − β0}2.

We consider the GARCH(1,1) model in Sect. 8.5.1 and higher-order GARCH(2,1)
and GARCH(1,2) models in Sect. 8.5.2 and 8.5.4, respectively. Section 8.5.3 con-
siders a case of misspecified GARCH orders.

8.5.1 GARCH(1,1) Models

In Tables 8.2 and 8.3, we report the adjusted biases and MSEs of the Huber and
μ-type M-estimators to guide our choice of the tuning parameters k and μ. The
underlying data-generating process (DGP) is the GARCH(1,1) model with θ0 =
(1.65 × 10−5, 0.0701, 0.901)′, under three types of innovation distributions: normal,
double exponential, and logistic. The sample size is n = 1000, and we used R = 150
replications.

Results from Tables 8.2 and 8.3 reveal that the adjusted bias and MSE of Huber’s
k-estimator and the μ-estimator do not vary much with k and μ. Therefore, k = 1.5
and μ = 3 are chosen for subsequent computations. Notice also that the minimum
bias and MSE are obtained for the μ-estimator with μ = 3 in most cases.

8.5.2 GARCH(2,1) Models

In this section, we consider GARCH(2,1) models with five types of innovation dis-
tributions: the normal, double exponential, logistic, and t (d) with d = 2.2, 3, where
the symbol t (d) is the t-distribution with d degrees of freedom. The sample size is
still n = 1000, and R = 1000 replications were generated from the GARCH(2,1)
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Table 8.2 The adjusted bias and MSE of Huber estimators for various values of k under a
GARCH(1,1) model with various error distributions (normal, double exponential, logistic); sample
size n = 1000; R = 150 replications

Adjusted bias Adjusted MSE

ω α β ω α β

Normal

k = 1 1.03 ×10−5 –2.44×10−3 –1.96×10−2 2.62×10−10 4.20×10−4 1.54×10−3

k = 1.5 1.22×10−5 2.47×10−3 –1.98×10−2 3.33×10−10 4.55×10−4 1.58×10−3

k = 2.5 1.14×10−5 –4.33×10−4 –2.02×10−2 3.10×10−10 3.71×10−4 1.58×10−3

Double exponential

k = 1 7.24×10−6 1.29×10−3 –1.57×10−2 1.87×10−10 4.65×10−4 1.58×10−3

k = 1.5 7.32×10−6 1.67×10−3 –1.63×10−2 2.00×10−10 4.82×10−4 1.68×10−3

k = 2.5 8.27×10−6 2.94×10−3 –1.92×10−2 2.79×10−10 5.60×10−4 2.22×10−3

Logistic

k = 1 9.87×10−6 2.15×10−3 –2.03×10−2 3.18×10−10 5.25×10−4 2.28×10−3

k = 1.5 1.00×10−5 2.04×10−3 –2.04×10−2 3.11×10−10 4.89×10−4 2.22×10−3

k = 2.5 1.06×10−5 2.18×10−3 –2.16×10−2 3.18×10−10 4.84×10−4 2.17×10−3

Table 8.3 The adjusted bias andMSE ofμ-estimators for various values ofμ under a GARCH(1,1)
model with various error distributions (normal, double exponential, logistic); sample size n = 1000;
R = 150 replications

Adjusted bias Adjusted MSE

ω α β ω α β

Normal

μ = 2 1.17×10−5 2.97×10−3 –2.13×10−2 4.05×10−10 6.73×10−4 2.16×10−3

μ = 2.5 1.14×10−5 1.80×10−3 –2.12×10−2 3.77×10−10 5.71×10−4 2.04×10−3

μ = 3 1.14×10−5 1.36×10−3 –2.11×10−2 3.68×10−10 5.21×10−4 1.97×10−3

Double exponential

μ = 2 7.39×10−6 2.23×10−3 –1.49×10−2 2.74×10−10 7.20×10−4 2.21×10−3

μ = 2.5 7.36×10−6 1.50×10−3 –1.52×10−2 2.68×10−10 6.56×10−4 2.16×10−3

μ = 3 7.40×10−6 1.25×10−3 –1.53×10−2 2.62×10−10 6.17×10−4 2.09×10−3

Logistic

μ = 2 7.73×10−6 2.22×10−3 –1.37×10−2 2.45×10−10 6.79×10−4 1.99×10−3

μ = 2.5 7.66×10−6 9.77×10−4 –1.41×10−2 2.48×10−10 5.88×10−4 1.97×10−3

μ = 3 7.72×10−6 5.99×10−4 –1.42×10−2 2.54×10−10 5.44×10−4 1.94×10−3
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model with parameter

θ0 = (4.46 × 10−6, 0.0525, 0.108, 0.832)′,

and this choice is motivated by the QMLE computed from the FTSE 100 dataset
analyzed in Sect. 8.7.1 using the R package fGarch.

The adjusted biases and MSEs of various M-estimators are reported in Table 8.4.
It turns out that the biases and MSEs of all M-estimators are quite close to those of
the QMLE under normal errors. However, the QMLE produces biases andMSEs that
are sizably larger than those of the other M-estimators under heavier tail distribu-
tions. Under the t (3) and t (2.2) distributions with infinite fourth-order moments, the
advantage of theM-estimators over theQMLEbecomesmore prominent. Also, under
the t (2.2) the distribution, the LAD and Huber estimators perform poorly compared
with the μ- and Cauchy estimators since the former two yield significantly larger
MSE than the latter two. This provides some evidence to support the following:

(i) under normal error distributions, all M-estimators have similar performance;
(ii) the better performance of some M-estimators under heavy-tail error distribu-

tions does not come at the cost of a loss of efficiency under normal error distri-
bution; and

(iii) the μ- and Cauchy estimators are less sensitive to heavy-tailed errors than the
LAD and Huber estimators.

8.5.3 A Misspecified GARCH Case

It is of interest to check whether the M-estimators remain consistent when the
order of a GARCH model is misspecified. In particular, we consider overfitting
a GARCH(p0, q0) with a higher-order GARCH(p, q) model when at least one
of p > p0 or q > q0 holds. In this case, we are essentially fitting a GARCH model
with some component(s) of the parameter θ equal to zero (hence lying on the bound-
ary of the parameter space, a case which is not covered by the consistency results
available so far). However, a numerical exploration of a GARCH(1,1) misspeci-
fied as GARCH(2,1) indicates that consistency can be expected to hold under such
overfitting as provided below.

Various M-estimators of a GARCH(2,1) were computed when the data are gen-
erated from GARCH(1,1) with parameter value θ0 = (1.65 × 10−5, 0.0701, 0.901)′
and various error distributions (sample size n = 1000 and R = 1000 replications).
The adjusted bias and MSE of the M-estimators are shown in Table 8.5 by wrongly
fitting a GARCH(2,1) with parameter value (1.65 × 10−5, 0.0701, 0, 0.901)′. For
all distributions considered, the M-estimators of the spurious parameter α2 are close
to zero, and the bias and the MSE are quite small, indicating good performance of
the M-estimators despite the misspecification. As in Table 8.4, however, the QMLE
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appears to be sensitive to the heavy-tailed distributions while other M-estimators are
more robust.

8.5.4 GARCH(1,2) Models

Simulations for the GARCH(1,2) (with parameter θ0 = (0.1, 0.1, 0.2, 0.6)′,
R = 1000, and n = 1000) were conducted in the same way as for GARCH(2,1)
in Sect. 8.5.2. The results are shown in Table 8.6; we do not report the results for
the QMLE under the t (3) and t (2.2) error distributions, since the algorithm did not
converge for most replications, a failure of the QMLE.

Inspection of Table 8.6 reveals that under the normal error distribution, the LAD
and Huber estimators produce MSEs that are close to the QMLE ones while the μ-
andCauchy estimators yield largerMSEs for the estimation ofω andα. For the double
exponential and logistic distributions, there is no significant difference between the
various estimators. The clear difference emerges under heavy-tailed distributions
though; the μ- and Cauchy estimators produce smaller MSEs than the LAD and
Huber estimators of ω and α under the t (3) and t (2.2) distributions, respectively.

8.6 Performance of the Bootstrap Confidence Intervals

The performance of bootstrap and classical confidence intervals (based on the
QMLE) can be assessed and compared in terms of coverage probabilities. We gene-
rated R = 500 series of length n = 1000 from the GARCH(1, 1) model with para-
meter θ0 = (0.1, 0.1, 0.8)′, under the normal and t (3) errors. For each simulated
series, we computed B = 2000 bootstrap estimators based on the schemes in
Sect. 8.3 and constructed the bootstrap and asymptotic confidence intervals (8.16)
and (8.17), respectively. The coverage probabilities are computed as the proportions
of the confidence intervals covering the actual parameter value. In Table 8.7, we
report these coverage probabilities (in percentage) for nominal confidence levels
90% and 95%.

Under the normal distribution, the coverage probabilities of the bootstrap approx-
imation are generally close to the nominal levels. Also, the bootstrap approximation
works better for the QMLE, LAD, and Huber estimators than for the μ- and Cauchy
ones.However, under the t (3) distribution, the bootstrap approximationworks poorly
for the QMLE while the coverage probabilities are reasonably good for all other M-
estimators. For both distributions, Scheme U outperforms Schemes M and E. Except
for the normal error case, thus, in terms of coverage probabilities, the classical con-
fidence intervals based on the asymptotics of the QMLE are outperformed by the
bootstrap confidence intervals based on the bootstrap SchemeU and is recommended
in the analysis of the financial data.
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Table 8.7 The coverage probabilities (in percentage) of the bootstrap schemes M, E, and U and
asymptotic normal approximations for the M-estimators QMLE, LAD, Huber’s, μ-, and Cauchy;
the error distributions are normal and t (3)

90% nominal level 95% nominal level

ω α β ω α β

Normal QMLE Scheme M 89.0 86.2 88.2 91.0 92.2 91.4

Scheme E 87.2 83.8 86.8 90.2 88.4 91.2

Scheme U 90.2 87.4 87.2 94.4 92.6 93.2

Asymptotic 82.6 91.0 85.8 87.0 95.2 89.0

Normal LAD Scheme M 86.0 83.4 84.2 88.2 87.2 88.4

Scheme E 88.0 87.2 87.2 91.0 91.2 90.2

Scheme U 88.6 88.4 88.0 93.2 91.8 91.8

Asymptotic 94.0 98.8 87.0 96.4 99.4 90.4

Normal Huber’s Scheme M 88.8 85.4 86.6 91.2 89.8 91.2

Scheme E 88.2 89.0 88.0 91.4 92.4 90.0

Scheme U 89.6 90.4 88.4 93.6 93.6 91.8

Asymptotic 87.6 95.4 86.2 90.6 96.6 90.4

Normal μ-estimator Scheme M 88.0 84.6 86.8 89.6 87.8 88.6

Scheme E 87.4 84.8 86.6 89.4 88.4 88.4

Scheme U 88.6 88.4 87.6 91.8 91.8 90.6

Asymptotic 71.4 69.6 86.8 77.4 78.2 90.8

Normal Cauchy Scheme M 85.6 84.0 84.4 87.8 85.8 87.6

Scheme E 81.4 82.2 80.2 82.8 86.2 84.2

Scheme U 88.4 88.2 87.0 90.4 91.4 89.4

Asymptotic 97.8 99.8 85.0 98.2 100.0 89.6

t (3) QMLE Scheme M 71.0 75.4 74.8 75.0 79.0 78.0

Scheme E 67.6 72.4 66.8 73.4 76.2 72.4

Scheme U 75.6 84.6 75.0 81.6 87.2 80.0

Asymptotic – – – – – –

t (3) LAD Scheme M 84.4 80.6 83.0 85.4 83.8 87.8

Scheme E 84.6 85.0 81.4 87.6 87.0 86.6

Scheme U 81.6 86.2 79.2 87.4 89.2 84.8

Asymptotic 98.0 99.8 88.8 99.6 100.0 91.2

t (3) Huber’s Scheme M 83.0 80.6 81.8 85.6 83.2 86.6

Scheme E 81.8 79.2 80.8 85.8 81.6 85.8

Scheme U 86.2 88.0 86.0 90.2 91.4 90.2

Asymptotic 96.8 99.0 88.4 97.8 99.6 92.8

t (3) μ-estimator Scheme M 82.4 84.8 83.8 86.2 88.4 88.2

Scheme E 84.6 84.0 84.6 87.4 88.0 88.8

Scheme U 82.6 83.6 80.4 88.8 88.2 86.4

Asymptotic 86.6 91.8 80.8 90.6 95.6 86.4

t (3) Cauchy Scheme M 78.2 83.4 78.4 81.8 86.2 82.0

Scheme E 83.4 85.6 82.6 85.4 89.0 87.2

Scheme U 85.0 85.0 84.8 90.0 88.6 89.2

Asymptotic 100.0 100.0 85.6 100.0 100.0 90.8
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8.7 Real Data Analysis

In this section, we analyze two financial series of daily log-returns, the FTSE 100
Index data from January 2007 to December 2009 (n = 783) and the Electric Fuel
Corporation (EFCX) data from January 2000 toDecember 2001 (n = 498). Based on
exploratory data analysis, a GARCH(1,1) model has been selected for the EFCX. A
GARCH(2,1)modelwas preferred for the FTSE 100 data for two reasons. First, when
fitted by the GARCH(2,1) model (via the fGarch package in R), the parameter α2,
with p-value 0.019, is highly significant; second, the Akaike information criterion
(AIC) for the GARCH(2,1) model is smaller than that for the GARCH(1,1) model.

8.7.1 The FTSE 100 Data

Table 8.8 shows the estimates given by fGarch and by our M-estimators when
fitting a GARCH(2,1) model to the FTSE 100 data. The QMLE (based on (8.18))
and fGarch provide similar results for all components of the parameter. Also, the
M-estimates of β do not vary much. For ω, α1, and α2, the M-estimates are quite
different since cH in (8.12) depends on the score function H used for the estimation.

For a GARCH(p, q) model, using (8.10) and the formulas for {c j (θ); j ≥ 0} in
Berkes et al. ([1]; Sect. 3), we have v̂t (θ0H ) = cH v̂t (θ0). Since an M-estimator θ̂n

is an estimator of θ0H , v̂t (θ̂n) estimates cHvt (θ0), which is a scale-transformation
of the conditional variance. To examine the behavior of the market volatility after
eliminating the effect of any particular M-estimator used, we define the normalized
volatilities as

ût (θ̂n) := v̂t (θ̂n)/

n∑
i=1

v̂i (θ̂n); 1 ≤ t ≤ n. (8.21)

Figure 8.1 shows the plot of {ût (θ̂n); 1 ≤ t ≤ n} based on various M-estimators
against the squared returns. Notice that although the M-estimators in Table 8.8 are
distinct, the plot of their normalized volatilities in Fig. 8.1 almost overlap. Also, large

Table 8.8 FTSE 100 data. The M-estimates (QMLE, LAD, Huber’s, μ-, and Cauchy) of the
GARCH(2,1) model using the FTSE 100 data; the QMLEs are obtained by using fGarch
and (8.18)

fGarch QMLE LAD Huber’s μ-estimator Cauchy

ω 4.46×10−6 4.65×10−6 3.13×10−6 3.55×10−6 1.02×10−5 2.51×10−6

α1 5.25×10−2 4.51×10−2 2.46×10−2 3.45×10−2 4.95×10−2 6.83×10−3

α2 0.11 9.00×10−2 5.57×10−2 6.42×10−2 0.17 4.18×10−2

β 0.83 0.85 0.84 0.86 0.81 0.80
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Fig. 8.1 FTSE 100 data. The plot of the squared returns and the estimated normalized conditional
variances using various M-estimators for the FTSE 100 data

values of the normalized volatilities and large squared returns occur at the same time.
In this sense, the volatilities are well-modeled by the resulting GARCH(2,1).

8.7.2 The Electric Fuel Corporation (EFCX) Data

Fitting a GARCH(1,1) model to the EFCX data, Muler and Yohai [9] note that the
QMLE and LADestimates of the parameter β are significantly different. In Table 8.9,
we report estimates given by thefGarch andM-estimators.Note that in our previous
analysis of the FTSE 100 data, fGarch estimates and the QMLE were quite close,
while their differences, for this EFCXdata, aremuchmore prominent. It is alsoworth
noting that while the LAD, Huber, μ−, and Cauchy estimates of β are close to each
other, they are all quite different from the corresponding value 0.84 of the QMLE.
That difference might be related to the infinite fourth moment of the underlying
innovation distribution and the non-robustness of the QMLE.

To determinewhether the innovation distributionmay have a finite fourthmoment,
we examine QQ-plots of the residuals {Xt/v̂

1/2
t (θ̂n); 1 ≤ t ≤ n} based on the μ-

estimator θ̂n against t (d) distributions for various degrees of freedom d. We consider

Table 8.9 EFCXdata. TheM-estimates (QMLE,LAD,Huber,μ-, andCauchy) of theGARCH(1,1)
model for the EFCX data; the QMLEs are obtained by using fGarch and (8.18)

fGarch QMLE LAD Huber’s μ-estimator Cauchy

ω 1.89×10−4 6.28×10−4 6.43×10−4 8.37×10−4 1.42×10−3 2.97×10−4

α 4.54×10−2 7.20×10−2 8.87×10−2 0.10 0.27 6.35×10−2

β 0.92 0.84 0.66 0.67 0.61 0.60
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Fig. 8.2 EFCX and FTSE 100 data. The QQ-plot of the residuals against t (d) distributions for the
EFCX (left column, d = 4.01 and 3.01) and FTSE 100 (right column, d = 4.01 and 12.01) data

the μ-estimator, which requires the mildest moment assumptions on the innovation
distribution.

The top-left panel of Fig. 8.2 shows theQQ-plot of the residuals against the t (4.01)
distribution for the EFCX data. The plot indicates a heavier-than-t (4.01) upper
tail, which implies that the fourth moment of the error term may not be finite. On
the other hand, the QQ-plot against the t (3.01) distribution (bottom-left panel of
Fig. 8.2) yields a lighter-than-t (3.01) lower tail—an indication that E|ε|3 < ∞.

For the FTSE 100 data, the QQ-plot against the t (4.01) distribution in the
top-right panel of Fig. 8.2 shows that the residuals may have lighter-than-t (4.01)
tails. The fit in the QQ-plot against the t (12.01) distribution (bottom-right panel of
Fig. 8.2) looks quite good, from which we may conclude that Eε4 < ∞ holds for
the FTSE 100 data. This might explain why all M-estimators of β in Table 8.8 yield
similar values.
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8.8 Conclusion

We have considered a class of M-estimators and the weighted bootstrap approxima-
tion of their distributions for the GARCHmodels. Iteratively re-weighted algorithms
for computing the M-estimators and their bootstrap replicates have been imple-
mented. Both simulation and real data analysis demonstrate superior performance
of the M-estimators for the GARCH(1,1), GARCH(2,1), and GARCH(1,2) mod-
els. Under heavy-tailed error distributions, we have shown that the M-estimators are
more robust than the routinely applied QMLE. We also have demonstrated through
simulations that the M-estimators work well when the true GARCH(1,1) model is
misspecified as the GARCH(2,1) model. Simulation results indicate that under the
finite sample size, the bootstrap approximation is better than the asymptotic normal
approximation of the M-estimators.
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Chapter 9
Rank Tests for Randomness Against
Time-Varying MA Alternative

Junichi Hirukawa and Shunsuke Sakai

Abstract In this paper, we extend the idea of the problem of testing randomness
against ARMA alternative to a class of locally stationary processes introduced by [1,
2]. We use the linear serial rank statistics and apply the notion of the contiguity [12]
for the testing problem. Under the null hypothesis, the joint asymptotic normality of
the proposed rank test statistics and log-likelihood ratio is established by making use
of the local asymptotic normal property. Then, applying LeCam’s third lemma, the
asymptotic normality of test statistic under the alternative is shown automatically.

9.1 Introduction

The stationary process has been widely used for many statistical problems in time
series analysis. Various properties of stationary model have been established and
applied in many fields. Although these models play an important role in statistical
analyses, the assumption of stationarity is severe in practice. Many empirical studies
showed that actual time series data generally behave like non-stationary. There-
fore, there is a natural need for a time series analysis method without the stationary
assumption. In order to develop the asymptotic theory, [1, 2] proposed an important
model of a non-stationary process that is referred to as locally stationary processes.
The locally stationary processes have time-varying spectral density functions whose
spectral structures change slowly in time.

In the asymptotic theory of statistical analyses, the locally asymptotic normality
(LAN) (see, e.g., [12, 13]) is one of the most fundamental concepts and describes the
optimal solution of virtually all asymptotic inference and testing problems. The LAN
approach has been introduced in time series settings. The paper [14] established the
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LAN forARmodels of finite order with a regression trend and applied it in the deriva-
tion of the local power of theDurbin–Watson test. The papers [10, 11] also proved the
LAN property for ARMA and AR(∞) models, and constructed locally asymptoti-
callyminimax (LAM) adaptive estimators, aswell as locally asymptoticallymax-min
tests. For time series regression models with long memory disturbance, [7] showed
LAN theorem and discussed an adaptive estimation.

ARMA models are widely used to describe time series data. Testing for ARMA
model (or randomness) against other ARMA models is certainly a very important
problem in time series analysis, because of its implication in the various identification
and validation steps of time series model-building procedures. The paper [3] gave the
fundamental contribution to the classical theory of rank-based inference. The paper
[6] proposed the linear serial rank statistics for the problem of testing randomness
against ARMA model. The paper [5] derived the asymptotic distribution of the log-
likelihood ratio when an alternative ARMA model is contiguous to another null
ARMAmodel. They also proposed a test based on the linear serial rank statistics and
derived its asymptotic normality under both null and alternative hypotheses.

Based on the ideas of these previous studies, we consider the problem of testing
randomness against locally stationary MA (time-varying MA) alternative models.
We use the linear serial rank statistics and contiguity of LeCam’s notion for the
testing problem. In the contiguous case, the derivations of the limiting distributions
of the test statistics are automatic by virtue of LeCam’s third lemma. Then, our main
purpose is establishing the asymptotic normality of the linear serial rank statistics
under both randomness (null hypothesis) and time-varying MA models (alternative
hypothesis).

The rest of this paper is organized as follows. In Sect. 9.2, we review two previous
studies on which the methods and results of this paper are based. We introduce the
linear serial rank statistics for the problem of testing randomness against ARMA
alternative model (see [6]). We also state the LAN property for locally stationary
processes (see [8]). In Sect. 9.3, we formulate the problem of testing randomness
against time-varying MA alternative and show LAN property to this setting. That
is, we derive the central sequence and the Fisher information matrix for hypotheses
between randomness and time-varying MA alternative. Finally, in Sect. 9.4, we pro-
pose U-statistics which approximate the linear serial rank statistics and the central
sequence, respectively. In addition, we show the asymptotic normality of the linear
serial rank statistics under both null and alternative hypotheses.

9.2 Preceding Studies

In this section, we review two previous researches that form the basis for the results
of this paper. In Sect. 9.2.1, we look back at the linear serial rank statistics for the
problem of testing randomness against ARMA alternative model (see [6]). We also
state the LAN property for locally stationary processes (see [8]) in Sect. 9.2.2.
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9.2.1 Linear Serial Rank Tests for White Noise Against
Stationary ARMA Alternatives

Nonparametric methods have been widely developed for the analysis of univariate
and multivariate observations without the distributional assumption (e.g., Gaussian
assumption). The nonparametric procedures are also powerful tools even in time
series analysis. The paper [6] considered the study of testing for randomness against
ARMA alternatives. They proposed the statistics of the form

ST = 1

T − q

T∑

t=1

cT

(
R(T )

t , R(T )
t−1, . . . , R(T )

t−q

)
,

where R(T )
t denotes the rank of the observation X (T )

t among the observed stretch

X (T ) =
(

X (T )
1 , . . . , X (T )

T

)�
of lengthT . These statistics are the so-called linear serial

rank statistics (of order q). The special cases of the score functions cT include
traditional test statistics, which are listed in [6], i.e.,

(i) the run statistic (with respect to median)

cT (i1, i2) =
{
1 if (2i1 − T − 1) (2i2 − T − 1) < 0

0 if (2i1 − T − 1) (2i2 − T − 1) ≥ 0,

(ii) the turning point statistic

cT (i1, i2, i3) =

⎧
⎪⎨

⎪⎩

1 if i1 > i2 < i3
1 if i1 < i2 > i3
0 elsewhere,

(iii) Spearman’s rank correlation coefficient of order q (up to additive and multi-
plicative constants)

cT
(
i1, i2, . . . , iq+1

) = i1iq+1

(T + 1)2
.

Inwhat follows, we assume that there exists a function J = J
(
vq+1, . . . , v1

)
, defined

over [0, 1]q+1, such that

0 <

∫

[0,1]q+1
J 2 (vq+1, . . . , v1

)
dvq+1 · · · dv1 < ∞ (9.1)

and
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lim
T →∞ E

[{
J
(

U (T )
q+1, . . . , U (T )

1

)
− cT

(
R(T )

q+1, . . . , R(T )
1

)}2 | H (T )
0

]
= 0,

where cT (. . .) is the score function. This assumption is satisfied when cT is of the
form

cT
(
i1, i2, . . . , iq+1

) = J
(
i1/ (T + 1) , i2/ (T + 1) , . . . , iq+1/ (T + 1)

)
.

Such a function J is called a score-generating function (associated with the linear
serial rank statistics ST ).

Let a1, . . . , aq1 , b1, . . . , bq2 be an arbitrary (q1 + q2)-tuple of the real numbers,
and consider stochastic difference equations

X (T )
t − 1√

T

q1∑

i=1

ai X (T )
t−i = εt + 1√

T

q2∑

i=1

biεt−i , t ∈ Z, T ≥ 1,

where {εt | t ∈ Z} is a sequence of i.i.d. randomvariableswithmean zero, varianceσ 2

and density function p. We assume that {εt | t ∈ Z} satisfies the following regularity
conditions.

Assumption 9.1 ([6, Sect. 2])

(i) εt has finite moments up to the third order.
(ii) p is a.e. differentiable and its derivative p′ satisfies

∫∞
−∞
∣∣p′ (x)

∣∣ dx < ∞.

(iii) p is absolutely continuous on finite intervals and satisfies E

{∣∣∣ p′(εt )

p(εt )

∣∣∣
2+δ
}

< ∞
for some δ > 0. This implies the finiteness of Fisher information F (p), i.e.,

0 < F (p) :=
∫

φ2 (x) p (x) dx =
∫ ∞

−∞

{
p′ (x)

p (x)

}2
p (x) dx < ∞,

where φ (x) = −p′ (x) /p (x), x ∈ R.
(iv) φ is a.e. differentiable and satisfies a Lipschitz condition |φ (x) − φ (y)| <

K |x − y| a.e., where K is a constant. Further, let P be distribution function of
p, and P−1 (u) = inf {x | P (x) ≥ u}, 0 < u < 1. Put

φ
(
P−1 (u)

) = − p′ {P−1 (u)
}

p
{

P−1 (u)
} , 0 < u < 1.

Denote by H (T )
0 the sequence of simple (null) hypotheses which satisfies a1 =

· · · = aq1 = b1 = · · · = bq2 = 0. Then, the process
{

X (T )
t

}
all coincide with the

white noise process {εt } which has a likelihood function
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l0T
(
x(T )

) =
T∏

t=1

p
(

x (T )
t

)
,

where x(T ) =
(

x (T )
1 , . . . , x (T )

T

)�
is a value of an observed stretch X (T ). On the other

hand, denote by H (T )
1 the corresponding sequence of alternative hypotheses which

satisfies that both aq1 and bq2 are different from zero. Then, the processes
{

X (T )
t

}

are ARMA(q1, q2) processes whose likelihood function is denoted by l1T
(
x(T )

)
. The

exact expression of this likelihood function can be found in [6, Eq. (3.3)].
In what follows, we shall omit the superscript (T ), i.e., write x, xt , X and Xt ,

in place of x(T ), x (T )
t , X (T ) and X (T )

t , respectively. Now, we consider the likelihood
ratio

LT (x) =

⎧
⎪⎨

⎪⎩

l1T (x) / l0T (x) if l0T (x) > 0

1 l1T (x) = l0T (x) = 0

∞ l1T (x) > l0T (x) = 0

between hypotheses H (T )
0 and H (T )

1 . Then we have the following lemma.

Lemma 9.1 ([6, Proposition 3.1]) Suppose that Assumption 9.1 holds. Under H (T )
0 ,

the log-likelihood ratio has the stochastic expansion

log LT (X) = L0
T (X) − d2

2
+ oP (1) ,

where

L0
T (X) = 1√

T

T∑

t=q+1

φ (Xt )

q∑

i=1

di Xt−i ,

di =

⎧
⎪⎨

⎪⎩

ai + bi 1 ≤ i ≤ min (q1, q2)

ai q2 < i ≤ q1 if q2 < q1

bi q1 < i ≤ q2 if q1 < q2,

q = max (q1, q2), d2 =
q∑

i=1

d2
i σ 2F (p) .

Furthermore, L0
T (X) is asymptotically normal, with mean zero and variance d2.
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From LeCam’s first lemma (see, e.g., [4, Sect. 7.1.2]), we can see that this lemma
implies that H (T )

1 is contiguous to H (T )
0 .

Let

J ∗ (uq+1, . . . , u1
) = J

(
uq+1, . . . , u1

)

−
q+1∑

k=1

∫

[0,1]q
J
(
νq , . . . , νk, u1, νk−1, . . . , ν1

)
dν1 · · · dνq

+ q
∫

[0,1]q+1
J
(
νq+1, . . . , ν1

)
dν1 · · · dνq+1, (9.2)

and

mT = E
(

ST | H (T )
0

)
= 1

T (T − 1) · · · (T − q)

∑

1≤i1 �=···�=iq+1≤T

cT
(
i1, . . . , iq+1

)
.

We also have the following lemma.

Lemma 9.2 ([6, Proposition 4.1]) Suppose that Assumption 9.1 holds. Under H (T )
0 ,

(√
T (ST − mT )

log LT

)
L→ N (m,�) ,

with

m =
(

0
− 1

2

∑q
j=1 d2

j σ
2F (p)

)

and

� =
(

V 2 ∑q
j=1 d j C j∑q

j=1 d j C j
∑q

j=1 d2
j σ

2F (p)

)
,

where
L→ stands for the convergence in distribution,

V 2 :=
∫

[0,1]q+1

{
J ∗ (νq+1, . . . , ν1

)}2
dν1 · · · dνq+1

+ 2
q∑

l=1

∫

[0,1]q+l+1
J ∗ (νq+1, . . . , ν1

)
J ∗ (νq+l+1, . . . , νl+1

)
dν1 · · · dνq+l+1

and
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C j =
∫

[0,1]q+1
J ∗ (νq+1, . . . , ν1

) q− j∑

l=0

φ
(
P−1

(
νq−l+1

))
P−1

(
νq−l− j+1

)
dν1 · · · dνq+1.

The asymptotic normality of the rank test statistics under H (T )
1 then follows from

LeCam’s third lemma (see, e.g., [4, Sect. 7.1.4]).

Corollary 9.1 ([6, Proposition 4.2]) Suppose that Assumption 9.1 holds. Under
H (T )

1 ,

√
T (ST − mT )

L→ N

⎛

⎝
q∑

j=1

d j C j , V 2

⎞

⎠ .

9.2.2 Locally Asymptotic Normality of Time-Varying AR
Models

In dealing with non-stationary processes, one of the difficult problems to be solved
is how to set up an adequate asymptotic theory. To meet this, [1, 2] introduced an
important class of non-stationary processes and developed the statistical inference.
We give the precise definition which is due to [1, 2].

Definition 9.1 A sequence of stochastic processes Xt,T (t = 1, . . . , T ; T ≥ 1) is
called locally stationary with transfer function A◦, if there exists a representation

Xt,T =
∫ π

−π

exp (iλt) A◦
t,T (λ) dζ (λ) ,

such that

(i) ζ (λ) is a stochastic process on [−π, π ] with ζ (λ) = ζ (−λ) and

cum {dζ (λ1) , . . . , dζ (λk)} = η

⎛

⎝
k∑

j=1

λ j

⎞

⎠ hk (λ1, . . . , λk−1) dλ1 · · · dλk−1,

where cum {. . .} denotes the cumulant of kth order, h1 = 0, h2 (λ) = 1
2π ,

hk (λ1, . . . , λk−1) = hk

(2π)k−1 for all k ≥ 3 and η (λ) =∑∞
j=−∞ δ (λ + 2π j) is the

2π -periodic extension of the Dirac delta function;
(ii) there exists a constant K and a 2π -periodic function A : [0, 1] × R → C with

A (u,−λ) = A (u, λ),

sup
t,λ

∣∣∣∣A
◦
t,T (λ) − A

(
t

T
, λ

)∣∣∣∣ ≤ K T −1
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for all T , and A (u, λ) is continuous in u.

Let X1,T , . . . , XT,T be realizations of a locally stationary process with transfer
function A◦

θ ,where the corresponding Aθ is uniformlybounded fromabove andbelow
and time-varying spectral density fθ (u, λ) := |Aθ (u, λ)|2 depends on a param-
eter vector θ = (θ0, . . . , θq

)� ∈ � ⊂ R
q+1. Introducing the notations ∇i = ∂

∂θi
,

∇ = (∇0, . . . ,∇q
)�
, ∇i, j = ∂

∂θi

∂
∂θ j

, ∇2 = (∇i, j
)

i, j=0,...,q , we make the following
assumption.

Assumption 9.2 ([8, Assumption 1]) There exists a constant K with

sup
t,λ

∣∣∣∣∇s

{
A◦

θ,t,T (λ) − Aθ

(
t

T
, λ

)}∣∣∣∣ ≤ K T −1

for s = 0, 1, 2. The components of Aθ (u, λ), ∇ Aθ (u, λ) and ∇2 Aθ (u, λ) are dif-
ferentiable in u and λ with uniformly continuous derivatives ∂

∂u
∂
∂λ
.

Writing εt = ∫ π

−π
exp (iλt) dζ (λ), we assume.

Assumption 9.3 ([8, Assumption 2])

(i) εt ’s are i.i.d. random variables withmean zero, variance 1 and finite fourth order
moment E

(
ε4t
)
. Furthermore, the distributionof εt is absolutely continuouswith

respect to the Lebesgue measure and has the probability density p (z) > 0 on
R.

(ii) p satisfies

lim|z|→∞
p (z) = 0, and lim|z|→∞

zp (z) = 0.

(iii) The continuous derivatives p′ and p′′ of p exist on R, and p′′ satisfies the
Lipschitz condition.

(iv) Writing ϕ (z) = p′(z)
p(z) ,

F (p) =
∫

ϕ2 (z) p (z) dz < ∞,

E
{
εtϕ

2 (εt )
}

< ∞, E
{
ε2t ϕ

2 (εt )
}

< ∞, E
{
ϕ4 (εt )

}
< ∞

and
∫

p′′ (z) dz = 0, lim||→∞
p′ (z) z2 = 0.

Note that φ (x) = −ϕ (x) in Assumption 9.1.

This assumption partially overlaps with Assumption 9.1, but we leave them here
to describe their respective preceding studies.
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The paper [1] developed the asymptotic theory for Gaussian locally stationary
processes, including LAN property. On the other hand, [8] derived the LAN result
for non-Gaussian locally stationary processes. The paper [8] assumed the following
type representations for locally stationary processes.

Assumption 9.4 ([8, Assumption 3])

(i) The sequence of the processes
{

Xt,T
}
has the MA(∞) and AR (∞) represen-

tations

Xt,T =
∞∑

j=0

β◦
θ,t,T ( j)εt− j and β◦

θ,t,T (0)εt =
∞∑

k=0

α◦
θ,t,T (k)Xt−k,T , (9.3)

where β◦
θ,t,T ( j), α◦

θ,t,T (k) ∈ R, α◦
θ,t,T (0) ≡ 1 and β◦

θ,t,T ( j)=β◦
θ,0,T ( j)=β◦

θ ( j)
for t ≤ 0.

(ii) Every β◦
θ,t,T ( j) is continuously three times differentiable with respect to θ and

the derivatives satisfy

sup
t,T

⎧
⎨

⎩

∞∑

j=0

(1 + j)
∣∣∇i1 · · · ∇is β

◦
θ,t,T ( j)

∣∣

⎫
⎬

⎭ < ∞ for s = 0, 1, 2, 3.

(iii) Every α◦
θ,t,T (k) is continuously three times differentiable with respect to θ and

the derivatives satisfy

sup
t,T

{ ∞∑

k=0

(1 + k)
∣∣∇i1 · · · ∇is α

◦
θ,t,T (k)

∣∣
}

< ∞ for s = 0, 1, 2, 3.

(iv) Writing f ◦
θ,t,T (λ) = ∣∣A◦

θ,t,T (λ)
∣∣2,

β◦
θ,t,T (0) = exp

{
1

4π

∫ π

−π

f ◦
θ,t,T (λ) dλ

}
.

Let Pθ,T and Pε be the probability distributions of
(
εs, s ≤ 0, X1,T , . . . , XT,T

)

and (εs, s ≤ 0), respectively. Denote by H (p; θ) the hypothesis under which the
underlying parameter is θ ∈ � and the probability density of εt is p. We define

θT = θ + 1√
T

h, h = (h1, . . . , hq
)� ∈ H ⊂ R

q .

For two hypothetical values θ and θT , we define the log-likelihood ratio as

�T (θ, θT ) ≡ log
dPθT ,T

dPθ,T
.



230 J. Hirukawa and S. Sakai

Then, we have the following LAN result.

Lemma 9.3 ([8, Theorem 1]) Suppose that Assumptions 9.2–9.4 hold. Then the
sequence of experiments

ET = {RZ,BZ,
{Pθ,T | θ ∈ � ⊂ R

q
}}

, T ∈ N,

where BZ denotes the Borel σ -field on R
Z, is LAN and equicontinuous on compact

subset C of H . That is,

(i) For all θ ∈ �, the log-likelihood ratio �T (θ, θT ) admits, under H (p; θ), as
T → ∞, the asymptotic representation

�T (θ, θT ) = h��T (θ) − 1

2
h�� (θ) h + oP (1) ,

where

�T (θ) =
T∑

t=1

[
ϕ (εt )√

T β◦
θ,t,T (0)

t−1∑

k=1

∇α◦
θ,t,T (k)Xt−k,T − ∇β◦

θ,t,T (0)√
T β◦

θ,t,T (0)
{1 + ϕ (εt ) εt }

]
,

� (θ) =
∫ 1

0

[F (p)

4π

∫ π

−π

{∇ fθ (u, λ)} {∇ fθ (u, λ)}�
| fθ (u, λ)|2 dλ

+ 1

16π2

[
E
{
ε2t ϕ

2 (εt )
}− 2F (p) − 1

]

{∫ π

−π

∇ fθ (u, λ)

fθ (u, λ)
dλ

}{∫ π

−π

∇ fθ (u, λ)

fθ (u, λ)
dλ

}� ]
du

and fθ (u, λ) is the time-varying spectral density of the process (9.3).
(ii) Under H (p; θ),

�T (θ)
L→ N (0, � (θ)) .

(iii) For all T ∈ N and all h ∈ H , the mapping h → PθT ,T is continuous with
respect to the variational distance

‖P − L‖ = sup
{|P (A) − L (A)| : A ∈ BZ

}
.

Hereafter, �T (θ) is referred to as the central sequence, and � (θ) the Fisher
information matrix of the time series.
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9.3 Local Asymptotic Normality for Time-Varying MA
Processes

In this section, we describe the LAN property for time-varying MA(q) processes as
a special case of Lemma 9.3.

9.3.1 Contiguous Hypotheses for Time-Varying MA Models

We formulate the contiguous hypotheses for time-varying MA(q) models. Let us
consider the sequence of time-varying MA(q) models

X (T )
t,T =

q∑

k=0

bθ(k)

(
t

T

)
εt−k, t ∈ Z, (9.4)

where
{
εt | t ∈ Z

}
is a sequence of i.i.d. random variables with mean zero, variance

1 and density function p. Let

bθ(0) (u) = σ + (θ(0) − σ
)

b̃0 (u) , bθ(k) (u) = θ(k)b̃k (u) (k = 1, . . . , q),

where the functions b̃k (u) (k = 0, . . . , q) are sufficiently smooth bounded functions
in u. Therefore, the coefficient functions bθ(k) (u) (k = 0, . . . , q) are also sufficiently
smooth in u. We suppose that Assumptions 9.2–9.4 are satisfied for bθ(k) (u) (k =
0, . . . , q).

Now, we consider the null and the alternative hypotheses as follows. Given

θ = (θ0, . . . , θq
)� ∈ � ⊂ R

q+1, h = (h0, . . . , hq
)� ∈ H ⊂ R

q+1,

the null hypothesis H (p; θ) is

H (p; θ) : θ(0) = θ0 = σ, θ(k) = θk = 0 (k = 1, . . . , q)

and the alternative hypothesis K (p; θT ) is

K (p; θT ) : θ(0) = θ
(0)
T = σ + h0√

T
, θ (k) = θ

(k)
T = hk√

T
(k = 1, . . . , q).

Then, we can write

θT =
(
θ

(0)
T , . . . , θ

(q)

T

)� = θ + 1√
T

h ∈ R
q+1.
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Under the two hypotheses, the coefficient functions bθ(k) (u) (k = 0, . . . , q) are given
by

bθ(0) (u) =
{

σ under H (p; θ)

σ + h0√
T

b̃0 (u) under K (p; θT )

and

bθ(k) (u) =
{
0 under H (p; θ)
hk√

T
b̃k (u) under K (p; θT )

(k = 1, . . . , q).

Furthermore, we note that the time-varying MA(q) process defined in (9.4) has
time-varying spectral density

fθ(·) (u, λ) =
∣∣∣∣∣

q∑

k=0

bθ(k) (u) eikλ

∣∣∣∣∣

2

= bθ(0) (u)2
∣∣Bθ(·)

(
u, eiλ

)∣∣2 ,

where

Bθ(·)
(
u, eiλ

) :=
q∑

k=0

bθ(k) (u)

bθ(0) (u)
eikλ

and θ(·) = (θ(0), . . . , θ (q)
)�
.

9.3.2 Fisher Information Matrix for Time-Varying MAModel

We derive the Fisher information matrix � (θ) of Lemma 9.3 for time-varying MA
model in (9.4). We denote the partial derivative in θ( j) by ∇ j = ∂

∂θ( j) ( j = 0, . . . , q).
Noting that

∇ j bθ(k) (u) =
{

b̃ j (u) ( j = k)

0 ( j �= k) ,

we see that

∇ j fθ(·) (u, λ)

fθ(·) (u, λ)
= b̃ j (u)

bθ(0) (u)2

q∑

k=0

∞∑

l,m=0

bθ(k) (u) gθ(·),l (u) gθ(·),m (u)

{
ei(k− j+l−m)λ + ei( j−k+l−m)λ

}
( j = 0, . . . , q),
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where

Gθ(·)
(
u, eiλ

) :=
∞∑

l=0

gθ(·),l (u) eilλ (9.5)

(let gθ(·),0 := 1) satisfies

Gθ(·)
(
u, eiλ

)
Bθ(·)

(
u, eiλ

) =
( ∞∑

l=0

gθ(·),l (u) eilλ

)(
q∑

k=0

bθ(k) (u)

bθ(0) (u)
eikλ

)
= 1. (9.6)

Conventionally defining gθ(·),l (u) := 0 for l < 0 in (9.5), we can derive the difference
equations

q∑

k=0

bθ(k) (u)

bθ(0) (u)
gθ(·),t−k (u) = δt , t ∈ Z (9.7)

from the relationship in (9.6), where δt is the dirac delta function. Combing the fact
that

∫ π

−π
eiλdλ = 2πδn with (9.7), we obtain

∫ π

−π

∇ j fθ(·) (u, λ)

fθ(·) (u, λ)
dλ =

{
4π b̃0(u)

b
θ(0) (u)

( j = 0)

0 ( j = 1, . . . , q)

and therefore,

(∫ π

−π

∇ j fθ(·) (u, λ)

fθ(·) (u, λ)
dλ

)(∫ π

−π

∇k fθ(·) (u, λ)

fθ(·) (u, λ)
dλ

)
=
{

16π2 b̃0(u)2

b
θ(0) (u)2

(( j, k) = (0, 0))

0 (( j, k) �= (0, 0)) .

Similarly, we can evaluate

∫ π

−π

{∇ j fθ(·) (u, λ)
} {∇k fθ(·) (u, λ)}

| fθ(·) (u, λ)|2 dλ

= 4π b̃ j (u) b̃k (u)

bθ(0) (u)2

(
δkδ j +

∞∑

l=0

gθ(·),l (u) gθ(·),l− j+k (u)

)
.

Recalling bθ(0) (u) = σ and bθ(k) (u) = 0 (k = 1, . . . , q), i.e., gθ(·),l (u) = δl under the
null hypothesis H (p; θ), we conclude that

− 1

2
h�� (θ) h = −F (p)

2σ 2

q∑

j=0

∫ 1

0
d̃ j (u)2 du, (9.8)

where
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d̃ j (u) =
{√

E{ε2t ϕ2(εt )}−1
F (p)

h0b̃0 (u) ( j = 0)

h j b̃ j (u) ( j = 1, . . . , q) .
(9.9)

9.3.3 Central Sequence for Time-Varying MA Model

We derive the central sequence �T (θ) in Lemma 9.3 for time-varying MAmodel in
(9.4). Rewrite MA to AR representation, i.e.,

bθ(0)

(
t

T

)
εt =

∞∑

l=0

gθ(·),l

(
t

T

)
Xt−l,T . (9.10)

Comparing (9.10) with (9.3), we see that

β◦
θ,t,T (0) = bθ(0)

(
t

T

)
and α◦

θ,t,T (l) = gθ(·),l

(
t

T

)
.

Recalling the difference equations (9.7), the partial derivatives satisfy

∇ j gθ(·),t (u)

=
⎧
⎨

⎩

∑q
k=1

b
θ(k) (u)̃b0(u)

b
θ(0) (u)2

gθ(·),t−k (u) −∑q
k=1

b
θ(k) (u)

b
θ(0) (u)

∇0gθ(·),t−k (u) ( j = 0)

− b̃ j (u)

b
θ(0) (u)

gθ(·),t− j (u) −∑q
k=1

b
θ(k) (u)

b
θ(0) (u)

∇ j gθ(·),t−k (u) ( j = 1, . . . , q) .

Therefore, we obtain, under the null hypothesis H (p; θ),

h��T (θ) = −1√
T σ

T∑

t=q+1

⎡

⎣ϕ (εt )

q∑

j=1

h j b̃ j
( t

T

)

σ
Xt− j,T + h0b̃0

(
t

T

)
{1 + ϕ (εt ) εt }

⎤

⎦

+ oP (1) . (9.11)

9.4 Main Results

In this section, we derive the asymptotic properties of linear serial rank statistics for
time-varying MA model in (9.4) under both null and alternative hypotheses, which
is the main contribution of this paper.1

1 The limiting distributions of test statistics under the alternative are important when we consider
the power properties of the respective tests. Generally speaking, their derivations are considerably
more difficult than those of the limiting distributions under the null hypotheses. Fortunately, in the
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9.4.1 Linear Serial Rank Statistics for Time-Varying MA
Model

Associated with the observed stretch X (T ) =
(

X (T )
1,T , . . . , X (T )

T,T

)
, we define the fil-

tered series Z(T ) =
(

Z (T )
1,T , . . . , Z (T )

T,T

)
as

Z (T )
t,T = B̃θ(·)

(
t

T
, L

)−1

X (T )
t,T ,

where

B̃θ(·) (u, L) :=
q∑

k=0

bθ(k) (u) Lk

and L is the lag operator. Under the null hypothesis H (T )
0 := H (p; θ), this filtered

process becomes

Z (T )
t,T = σ−1X (T )

t,T .

Then, we consider linear serial rank statistics, of order q, in the form

S(T ) := 1

T − q

T∑

t=q+1

cT

(
R(T )

t,T , R(T )
t−1,T , . . . , R(T )

t−q,T

)
, (9.12)

where R(T )
t,T denotes the rank of the filtered process Z (T )

t,T in the filtered series Z(T ) =(
Z (T )
1,T , . . . , Z (T )

T,T

)
of length T , and cT (. . .) is some given score function. This test

statistic is available even if the innovation variance σ 2 is unknown. We assume that
the innovation process {εt | t ∈ Z} in (9.4) satisfies the following assumption, which
is somewhat stronger assumption than that imposed for [6, Proposition 4.1] (see
Assumption 9.1). Note that they assumed εt has finite moments up to the third order.

Assumption 9.5 εt has finite moments of all orders.

contiguous case, the difficulties are essentially diminished by LeCam’s third lemma (see, e.g., [4,
Sect. 7.1.4]).
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9.4.2 Asymptotic Normality of Test Statistics
for Time-Varying MA Model

We derive the asymptotic distribution under alternative hypothesis K (p; θT ) of the
linear serial rank statistics S(T ) defined in (9.12). For this purpose, we first study the
joint asymptotic normality of

(√
T
(
S(T ) − m(T )

)

�T (θ, θT )

)

under the null hypothesis H (T )
0 , where

m(T ) := E
{

S(T ) | H (T )
0

}
= 1

T (T − 1) · · · (T − q)

∑

1≤i1 �=···�=iq+1≤T

cT
(
i1, . . . , iq+1

)
.

Then, the asymptotic normality of the rank statistics under K (p; θT ) is automatically
shown from LeCam’s third lemma (see, e.g., [4, Sect. 7.1.4]).

Remember that under the null hypothesis H (T )
0 := H (p; θ), the observations

satisfy X (T )
t,T = σεt . Let U (T )

t = P
(

X (T )
t,T /σ

)
and U (T ) =

(
U (T )

1 , . . . , U (T )
T

)�
.

The approximated statistics of S(T ) and m(T ) are proposed in [6, Sect. 4.1]
and they showed that the asymptotic equivalence of (T − q)1/2

(
S(T ) − m(T )

)
and(S(T ) − M(T )

)
(under H (T )

0 ), where

S(T ) := (T − q)−1/2
T∑

t=q+1

J
(

P
(

X (T )
t,T /σ

)
, . . . , P

(
X (T )

t−q,T /σ
))

and

M(T ) := (T − q)−1/2

T (T − 1) · · · (T − p)

∑

1≤t1 �=···�=tq+1≤T

J
(

P
(

X (T )
t1,T

/σ
)

, . . . , P
(

X (T )
tq+1,T

/σ
))

.

On the other hand, from the LAN result for time-varying MA model in (9.4) with
the central sequence �T (θ) and the Fisher information matrix � (θ) given in (9.11)
and (9.8), we obtain

�T (θ, θT ) = L(T ) − F (p)

2σ 2

q∑

j=0

∫ 1

0
d̃ j (u)2 du + oP (1) ,

where
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L(T ) := −1√
T σ

T∑

t=q+1

⎡

⎣ϕ (εt )

q∑

j=1

h j b̃ j

(
t

T

)
X (T )

t− j,T

σ
+ h0b̃0

(
t

T

)
{1 + ϕ (εt ) εt }

⎤

⎦

and d̃ j (u) is defined in (9.9).

9.4.2.1 U-Statistics for the Score-Generating Function

We propose the U -statistics U(T )

S and U(T )

M such that U(T )

S − U(T )

M is asymptoti-
cally equivalent to T −1/2

(S(T ) − M(T )
)
. Define the (q + 1)-dimensional random

variables

Y (T )
t =

(
Y (T )

t,1 , . . . , Y (T )
t,q+1

)� =
(

U (T )
t , . . . , U (T )

t−q

)�
, q + 1 ≤ t ≤ T .

The Y (T )
t ’s are identically distributed under H (T )

0 (uniformly over [0, 1]q+1). Clearly,
they are not independent—but, being q-dependent, and satisfy various mixing con-
ditions. In [6, Sect. 4.2], the kernel

�S
(
Y (T )

t1 , . . . ,Y (T )
tq+1

)
= 1

q + 1

q+1∑

j=1

J
(
Y (T )

t j

)

= 1

q + 1

q+1∑

j=1

J
(

Y (T )
t j ,1 , . . . , Y (T )

t j ,q+1

)

provides a U -statistic which is asymptotically equivalent to T −1/2S(T );

U(T )

S =
(

T − q
q + 1

)−1 ∑

q+1≤t1<···<tq+1≤T

�S
(
Y (T )

t1 , . . . ,Y (T )
tq+1

)

= T −1/2S(T ) + oP
(
T −1/2) .

On the other hand, the kernel

�M
(
Y (T )

t1 , . . . ,Y (T )
tq+1

)
= 1

(q + 1)!
∑

j

J
(

Y (T )
j1,1, . . . , Y (T )

jq+1,1

)
,

where the summation
∑

j extends over all possible (q + 1)! permutations(
j1, . . . , jq+1

)
of
(
t1, . . . , tq+1

)
, defines the corresponding U -statistic
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U(T )

M =
(

T − q
q + 1

)−1 ∑

q+1≤t1<···<tq+1≤T

�M
(
Y (T )

t1 , . . . ,Y (T )
tq+1

)

= 1

(T − q) · · · (T − 2q)

∑

q+1≤t1 �=···�=tq+1≤T

J
(

U (T )
t1 , . . . , U (T )

tq+1

)

= T −1/2M(T ) + oP
(
T −1/2) .

Note that E
{

J ∗ (Uq+1, . . . , U1
)} = 0, where J ∗ is defined in (9.2).

9.4.2.2 U-Statistics for the Central Sequence

We define the U -statistic U(T )

L associated with the central sequence �T (θ), which
satisfies

U(T )

L = T −1/2h��T (θ) + oP
(
T −1/2

) = T −1/2L(T ) + oP
(
T −1/2

)
.

Consider the function Wt,T ( y) (of (q + 1) arguments y = (y1, . . . , yq+1
) ∈

[0, 1]q+1) where

Wt,T (y) = Wt,T
(
y1, . . . , yq+1

)

= −
[
ϕ
(
P−1 (y1)

) q∑

j=1

h j

σ
b̃ j

(
t

T

)
P−1

(
y j+1

)

+ h0

σ
b̃0

(
t

T

){
1 + ϕ

(
P−1 (y1)

)
P−1 (y1)

} ]
.

Using this function Wt,T , we define a kernel of degree (q + 1) as

�L
(t1,...,tq+1),T

(
Y (T )

t1 , . . . ,Y (T )
tq+1

)
= 1

q + 1

q+1∑

j=1

Wt j ,T

(
Y (T )

t j

)

to provide a U -statistic which is asymptotically equivalent to T −1/2L(T );

U(T )

L =
(

T − q
q + 1

)−1 ∑

q+1≤t1<···<tq+1≤T

�L
(t1,...,tq+1),T

(
Y (T )

t1 , . . . ,Y (T )
tq+1

)

= T −1/2L(T ) + oP
(
T −1/2

)
.
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9.4.2.3 Asymptotic Normality

From the above,V(T )
α,β = T −1/2

{
α
(S(T ) − M(T )

)+ βL(T )
}
is asymptotically equiv-

alent (up to oP
(
T −1/2

)
terms) to a sequence of U -statistics

U(T )
α,β =

(
T − q
q + 1

)−1 ∑

q+1≤t1<···<tq+1≤T

�
α,β

(t1,...,tq+1),T

(
Y (T )

t1 , . . . ,Y (T )
tq+1

)

= 1

(T − q) · · · (T − 2q)

∑

q+1≤t1 �=···�=tq+1≤T

∫

[0,1](q+1)2
�

α,β

(t1,...,tq+1),T

(
yt1 , . . . , ytq+1

) q+1∏

j=1

dδ
(
yt j

− Y (T )
t j

)
(9.13)

with kernel

�
α,β

(t1,...,tq+1),T
= α

(
�S − �M)+ β�L

(t1,...,tq+1),T
,

where α and β are arbitrary coefficients. Note that

T 1/2
{
U(T )

α,β − E
(
U(T )

α,β

)}

= αT 1/2
{

S(T ) − m(T )
}+ β

⎧
⎨

⎩�T (θ, θT ) + F (p)

2σ 2

q∑

j=0

∫ 1

0
d̃ j (u)2 du

⎫
⎬

⎭+ oP (1) .

For every c (1 ≤ c ≤ q + 1), let

gα,β,(c)

(t1,...,tq+1),T

(
yt1 , . . . , ytc

)

:=
∫

[0,1](q−c+1)(q+1)
�

α,β

(t1,...,tq+1),T

(
yt1 , . . . , ytc , ytc+1

, . . . , ytq+1

)
d ytc+1

· · · d ytq+1
,

so that gα,β,(q+1)

(t1,...,tq+1),T
= �

α,β

(t1,...,tq+1),T
,

U(T,c)
α,β = 1

(T − q) · · · (T − q − c + 1)

∑

q+1≤t1 �=···�=tc≤T∫

[0,1](q+1)2
�

α,β

(t1,...,tq+1),T

(
yt1 , . . . , ytq+1

)

c∏

j=1

{
dδ
(
yt j

− Y (T )
t j

)
− d yt j

}
d ytc+1

· · · d ytq+1
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= 1

(T − q) · · · (T − q − c + 1)

∑

q+1≤t1 �=···�=tc≤T

∫

[0,1]c(q+1)
gα,β,(c)

(t1,...,tq+1),T

(
yt1 , . . . , ytc

) c∏

j=1

{
dδ
(
yt j

− Y (T )
t j

)
− d yt j

}

and

U(T,0)
α,β := gα,β,(0)

(t1,...,tq+1),T
:=
∫

[0,1](q+1)2
�

α,β

(t1,...,tq+1),T

(
yt1 , . . . , ytq+1

)
d yt1 · · · d ytq+1

= E
{
�

α,β

(t1,...,tq+1),T

(
Y (T )

t1 , . . . ,Y (T )
tq+1

)}
= 0,

where d yt stands for dyt,1 · · · dyt,q+1. We rewrite the U -statisticU(T )
α,β in (9.13) as

U(T )
α,β = U(T,0)

α,β +
q+1∑

c=1

(
q + 1

c

)
U(T,c)

α,β (9.14)

with

U(T,1)
α,β = 1

(T − q)

T∑

t=q+1

∫

[0,1](q+1)
gα,β,(1)

(t,t2...,tq+1),T

(
yt

) {
dδ
(
yt − Y (T )

t

)
− d yt

}

= 1

(T − q)

T∑

t=q+1

gα,β,(1)

(t,t2,...,tq+1),T

(
Y (T )

t

)

and

gα,β,(1)

(t,t2,...,tq+1),T

(
Y (T )

t

)

=
∫

[0,1]q(q+1)
�

α,β

(t,t2,...,tq+1),T

(
Y (T )

t , yt2 , . . . , ytq+1

)
d yt2 · · · d ytq+1

.

We are ready to state our main theorem.

Theorem 9.1 Suppose that Assumptions 9.1–9.5 hold. Under the null hypothesis
H (T )

0 = H (p; θ),

(√
T
(
S(T ) − m(T )

)

�T (θ, θT )

)
L→ N

(
m̃, �̃

)
,
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with

m̃ =
(

0
−F (p)

2σ 2

∑q
j=0

∫ 1
0 d̃ j (u)2 du

)

and

�̃ =
(

V 2 −∑q
j=0

C j h j

σ

∫ 1
0 b̃ j (u) du

−∑q
j=0

C j h j

σ

∫ 1
0 b̃ j (u) du F (p)

σ 2

∑q
j=0

∫ 1
0 d̃ j (u)2 du

)
, (9.15)

where

V 2 :=
∫

[0,1]q+1

{
J ∗ (νq+1, . . . , ν1

)}2
dν1 · · · dνq+1

+ 2
q∑

l=1

∫

[0,1]q+l+1
J ∗ (νq+1, . . . , ν1

)
J ∗ (νq+l+1, . . . , νl+1

)
dν1 · · · dνq+l+1

(9.16)

and

C j =
∫

[0,1]q+1
J ∗ (νq+1, . . . , ν1

) q− j∑

l=0

ϕ
(
P−1 (νq−l+1

))
P−1 (νq−l− j+1

)
dν1 · · · dνq+1.

(9.17)

Remark 9.1 Comparing Theorem 9.1 with Lemma 9.2, the asymptotic variance �̃

in (9.15) includes the affect of time-varying coefficients b̃ j (u). In addition, the term
b̃0 (u) corresponding to j = 0 is also contained,which is the result of the time-varying
(unconditional) variance {bθ(0) (u)}2 of innovation in the alternative time-varyingMA
process. This nontrivial effect has already appeared in the central sequence (9.11)
and the Fisher information (9.8).

From LeCam’s third lemma, we immediately obtain the following result.

Corollary 9.2 Suppose that Assumptions 9.1–9.5 hold. Under K (p; θT ),

√
T
(
S(T ) − m(T )

) L→ N

⎛

⎝−
q∑

j=0

C j h j

σ

∫ 1

0
b̃ j (u) du, V 2

⎞

⎠ .

Proof of Theorem 9.1 Since

∫

[0,1]q(q+1)
�L

(t,t2,...,tq+1),T

(
Y (T )

t , yt2 , . . . , ytq+1

)
d yt2 · · · d ytq+1
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= 1

q + 1

⎡

⎣Wt,T

(
Y (T )

t

)
+

q+1∑

j=2

E
{

Wt j ,T

(
Y (T )

t j

)}
⎤

⎦

= − 1

q + 1

[
ϕ
(
P−1 (Ut )

) q∑

j=1

h j

σ
b̃ j

(
t

T

)
P−1 (Ut− j

)

+ h0

σ
b̃0

(
t

T

){
1 + ϕ

(
P−1 (Ut )

)
P−1 (Ut )

} ]
,

∫

[0,1]q(q+1)
�S
(
Y (T )

t , yt2 , . . . , ytq+1

)
d yt2 · · · d ytq+1

= 1

q + 1

{
J
(
Y (T )

t

)
+ q

∫

[0,1]q+1
J
(
νq+1, . . . , ν1

)
dν1 · · · dνq+1

}

and
∫

[0,1]q(q+1)
�M

(
Y (T )

t , yt2 , . . . , ytq+1

)
d yt2 · · · d ytq+1

= 1

q + 1

q+1∑

k=1

∫

[0,1]q
J
(
νq , . . . , νk, Ut , νk−1, . . . , ν1

)
dν1 · · · dνq ,

we obtain

gα,β,(1)

(t,t2,...,tq+1),T

(
Y (T )

t

)
= gα,β,(1)

t,T

(
Y (T )

t

)
= gα,β,(1)

t,T

(
Ut , . . . , Ut−q

)

= 1

q + 1

{
α J ∗ (Ut , . . . , Ut−q

)+ βdt,T
(
Ut , . . . , Ut−q

)}
,

where

dt,T
(
Ut , . . . , Ut−q

) := −
[
ϕ
(
P−1 (Ut )

) q∑

j=1

h j

σ
b̃ j

(
t

T

)
P−1 (Ut− j

)

+ h0

σ
b̃0

(
t

T

){
1 + ϕ

(
P−1 (Ut )

)
P−1 (Ut )

} ]

= −
⎡

⎣ϕ
(
P−1 (Ut )

) q∑

j=0

h j

σ
b̃ j

(
t

T

)
P−1 (Ut− j

)+ h0

σ
b̃0

(
t

T

)⎤

⎦ .

Clearly, E
{

gα,β,(1)
t,T

(
Y (T )

t

)}
= 0. The variance of gα,β,(1)

t,T

(
Y (T )

t

)
is
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E

[{
gα,β,(1)

t,T

(
Y (T )

t

)}2]

= 1

(q + 1)2

[
α2
∫

[0,1]q+1

{
J ∗ (νq+1, . . . , ν1

)}2
dν1 · · · dνq+1

− 2αβ

q∑

j=0

h j

σ
b̃ j

(
t

T

)∫

[0,1]q+1
J ∗ (νq+1, . . . , ν1

)
ϕ
(
P−1

(
νq+1

))
P−1

(
νq− j+1

)

dν1 · · · dνq+1

+ β2

[
F (p)

q∑

j=1

h2
j

σ 2

{
b̃ j

(
t

T

)}2
+ h2

0

σ 2

{
b̃0

(
t

T

)}2 [
E
{
ε2t ϕ

2 (εt )
}− 1

] ]]
.

Further, the covariances between gα,β,(1)
t,T

(
Y (T )

t

)
and gα,β,(1)

t+l,T

(
Y (T )

t+l

)
(1 ≤ l ≤ q)

become

E
[
gα,β,(1)

t,T

(
Y (T )

t

)
gα,β,(1)

t+l,T

(
Y (T )

t+l

)]

= 1

(q + 1)2

[
α2
∫

[0,1]q+l+1
J ∗ (νq+1, . . . , ν1

)
J ∗ (νq+l+1, . . . , νl+1

)
dν1 · · · dνq+l+1

− αβ

q−l∑

j=0

h j

σ
b̃ j

(
t

T

)∫

[0,1]q+1
J ∗ (νq+1, . . . , ν1

)
ϕ
(
P−1 (νq−l+1

))
P−1 (νq−l− j+1

)

dν1 · · · dνq+1

]
.

On the account of Assumptions 9.1(iii), 9.5 and (9.1),

σ 2
α,β := 1

T
E

⎛

⎝
T∑

t=q+1

gα,β,(1)
t,T

(
Y (T )

t

) T∑

s=q+1

gα,β,(1)
s,T

(
Y (T )

s

)
⎞

⎠

= 1

T

T∑

t=q+1

⎡

⎣E

[{
gα,β,(1)

t,T

(
Y (T )

t

)}2]+ 2
q∑

l=1

E
[
gα,β,(1)

t,T

(
Y (T )

t

)
gα,β,(1)

t+l,T

(
Y (T )

t+l

)]
⎤

⎦

= 1

T (q + 1)2

T∑

t=q+1

[
α2V 2 − 2αβ

q∑

j=0

C j h j

σ
b̃ j

(
t

T

)
+ β2F (p)

σ 2

q∑

j=0

{
d̃ j

(
t

T

)}2 ]

= 1

(q + 1)2

(
α2V 2 − 2αβ

q∑

j=0

C j h j

σ

∫ 1

0
b̃ j (u) du

+ β2F (p)

σ 2

q∑

j=0

∫ 1

0
d̃ j (u)2 du

)
+ o (1) ,
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where d̃ j (u), V 2 and C j are defined in (9.9), (9.16) and (9.17), respectively, and

T 1/2
{
U(T,1)

α,β − E
(
U(T,1)

α,β

)}
(9.18)

is asymptotically normal with mean zero and variance σ 2
α,β .

Since U(T,c)
α,β (c = 2, . . . , q + 1) in (9.14) satisfy

T 1/2
{
U(T,c)

α,β − E
(
U(T,c)

α,β

)}
= oP (1)

(see [9, 15]), this complete the proof. �

9.5 Concluding Remarks

As mentioned before, Assumption 9.5 was somewhat stronger assumption than that
imposed for [6, Proposition 4.1] (see Assumption 9.1), which is needed for the
asymptotic normality of (9.18).We can expect to relax this assumption if we describe
the proof in more detail, but we impose it for the sake of simplicity.

The extensions to the rank tests for randomness against time-varying ARMA
alternative (see [6]) and those for a stationary ARMA model against time-varying
ARMA alternative (see [5]) are also expected. In addition, the discussion about the
asymptotic efficiency of linear rank statistics will develop the results. If we can add
numerical experiments, it will be easier to see the results visually.
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Chapter 10
Asymptotic Expansions for Several
GEL-Based Test Statistics and Hybrid
Bartlett-Type Correction with Bootstrap

Yoshihide Kakizawa

Abstract This paper mainly discusses two issues about asymptotic expansions for
the distributions of χ2-type test statistics. First, it is shown that the generalized
empirical likelihood ratio, Wald-type, and score-type test statistics for a subvector
hypothesis in the possibly over-identified moment restrictions are, in general, not
Bartlett-correctable, except for the empirical likelihood ratio test statistic. Second,
starting with the classical likelihood or the modern generalized empirical likelihood,
the Bartlett-type corrected test statistics, with the bootstrap procedure, are proposed
to achieve a higher-order accurate testing inference for the nonparametric setup as
well as the parametric setup.

10.1 Introduction

Higher-order accurate testing inference is a long-standing issue in the literature.
This is one of the research questions that the author’s teachers Professor Masanobu
Taniguchi and Professor Minoru Siotani have continuously engaged. We refer the
readers to, e.g., influential books [70, 71] on multivariate analysis and time series
analysis.

Given a parametric model with suitable regularity conditions, the likelihood ratio
(LR) test statistic LR(N ) is, under the null hypothesis, asymptotically chi-squared
distributed, whose expectation is given in the form of

E (N )[LR(N )] = f
(
1 − b

N

)
+ o(N−1) ,

where N is the sample size, f is the degrees of freedom of the test, and b is some
constant. Hereafter, the symbol χ2

ν stands for the chi-squared random variable with
ν degrees of freedom. A simple mean adjustment of LR(N ) through multiplication
by a constant 1 + b/N (equivalently, division by a constant 1 − b/N ) implies not
only
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E (N )
[(

1 + b

N

)
LR(N )

]
= f + o(N−1)

but also

P (N )
[(

1 + b

N

)
LR(N ) ≤ x

]
= Pr[χ2

f ≤ x] + o(N−1) .

The discovery of this kind of a phenomenon dates back to Bartlett [4] in his test for
homogeneity of variances among two or more groups. Nowadays, such a mysterious
statement (not merely the former meaning) for getting an accurate χ2 approximation
is widely known as the Bartlett-correctability (B-correctability) after Lawley [53]
(see also Hayakawa [37] and Jensen [40]). Even in the case where the Bartlett factor
b is unknown, the same technique can be applied by substituting a suitable estimator
b(N ) for b.

The B-correctability is a unique feature of LR(N ), and it does not hold for other
test statistics, in general. As Cox [21] posed (see also Barndorff-Nielsen and Cox
[3, p. 132]), it was an open issue (at that time) whether there is an effective general
way of improving the large sample χ2 approximations to the test statistics other
than LR(N ). Possible solutions are “Bartlett-type corrections”, whichwere developed
in the three papers by CM, CF, and T (in alphabetical order), i.e., Chandra and
Mukerjee [14], Cordeiro and Ferrari [20], and Taniguchi [71] from the likelihood
inference of iid/non-identicalmodels andGaussian stationary time seriesmodels. The
CM/T approaches were originally designed for a simple hypothesis about a scalar
parameter in the absence of the nuisance parameter. Cribari-Neto and Cordeiro [23]
gave an extensive historical review on Bartlett/Bartlett-type corrections, until 1996.
We emphasize that the CM/Tmethods have been expanded to a subvector hypothesis
even in the presence of the nuisance parameter (see Kakizawa [45–49]), parallel to
the CF method.

In the above-mentioned works, Fisher’s [26] likelihood was a starting point.
Empirical likelihood (EL) method enables us to make a likelihood-type inference
even in the nonparametric setup. Building on an earlier suggestion of Thomas and
Grunkemeier [74], Owen [57] (see also his monograph [60]) developed the EL for
univariate means, including certain univariate M-functionals. Hall and La Scala
[31] and Owen [58] made an extension to smooth functions of mean vectors or
M-functionals. Owen [59] discussed a triangular array version of the EL, where the
one-way ANOVA and heteroscedastic regression models were considered in details.
See also Kolaczyk [52] for a further application to generalized linear models. As
a desirable large sample property, the EL ratio (ELR) was shown to be asymptoti-
cally χ2 distributed, in parallel to Wilk’s [76] theorem on the LR for the parametric
models. The B-correctability of the EL was first established by DiCiccio et al. [24]
for smooth functions of mean vectors. Zhang [77] examined the B-correctability of
Owen’s [57] EL for univariateM-functionals. Chen [15, 16] andBravo [9] proved the
B-correctability of Owen’s [59] EL for linear regression models in the absence/
presence of the nuisance parameter.
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The EL method has been increasingly applied since Qin and Lawless [62, 63].
Their main focus was a general situation where the number of estimating equations
(or moment restrictions)1 is larger than the number of parameters to be inferenced.
Chen and Cui [17] established the B-correctability of the ELR test statistic for testing
a subvector hypothesis in the case of the just-identified moment restrictions (see
Bravo [12] for testing a simple full vector parameter hypothesis). Even in the over-
identified case, Chen and Cui [18] showed that the ELR test statistic for testing the
full parameter vector is still B-correctable.

Continuous updating (CU) method and exponential tilting (ET) method, studied
byHansen et al. [33], Kitamura and Stutzer [50], respectively, are famous alternatives
to the ELmethod. Generalized empirical likelihood (GEL), developed byNewey and
Smith [56], encompasses an empirical counterpart of the Cressie and Read [22] class
of power divergences, which includes the EL, CU, and ET as special cases. Here, we
use the terminology of “the empirical Cressie–Read (ECR)” as theGELdual problem
rather than the minimum divergence problem; see Ragusa [64]. Several GEL-based
test statistics have the same limiting χ2 distribution.

The contribution of this paper is twofold: first, to study a valid N−1-asymptotic
expansion of severalGEL-based test statistics for testing a subvector hypothesis in the
possibly over-identified moment restrictions. After reviewing the GEL framework
in Sect. 10.2, together with the required notations and assumptions, we show, in
Sect. 10.3, that the ELR test statistic is, in general, the only member within the
ECR-based test statistics that is B-correctable.2 The finding is a nontrivial extension
of Baggerly [2] to the GEL framework. See also Jing and Wood [41], Corcoran
[19], Bravo [12], Camponovo and Otsu [13]. Second, in order to achieve the N−1-
accurate testing inference for the modern nonparametric setup as well as the classical
parametric setup, we suggest, in Sect. 10.4, a hybrid Bartlett-type correction with the
bootstrap procedure,3 which is of independent interest.4

In the remainder of this paper, the symbol � is the transpose of any matrix. We
denote by Iν , 0ν , and Oν1,ν2 the ν × ν identity matrix, the ν × 1 zero vector, and the
ν1 × ν2 zero matrix, respectively. Let ||v|| = (v�v)1/2 be the Euclidean norm of any

1 The idea of using “estimating equations” has a long history in the literature, at least since Karl
Pearson’s introduction of the so-called method of moments. It seems that a motivation behind Qin
and Lawless [62] is Godambe’s optimal estimating equations theory. In the econometric literature,
Hansen’s [32] generalized method of moments is a basic inferential technique. We do not mention
these two big methodologies anymore, to save space.
2 The finding was first announced by the author at The Mathematical Society of Japan (Spring
Meeting 2012).
3 The bootstrap method was introduced by Efron [25], inspired by an earlier work on the jackknife.
The methodology of the bootstrap is a computer-intensive technique that provides a basis for every
field from modern statistical science. It is well recognized that its theoretical validity, as well as
a deep understanding of the bootstrap procedure, is closely related to higher-order asymptotic
statistical theory (e.g., Hall [30]); the details are omitted here.
4 A hybrid method of “the bootstrap-based Bartlett-type adjustment” from the ordinary parametric
likelihood/GEL testing inference was reported by the author at Nara-Symposium (September 2014)
that Professor Taniguchi organized, and also at the Japanese Joint Statistical Meeting (September
2014).
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finite-dimensional vector v. For any ν × ν symmetricmatrixM = [mii ′ ]i,i ′∈{1,...,ν}, let
ρ

↑
1 (M) ≤ · · · ≤ ρ↑

ν (M) be the eigenvalues ofM, arranged in increasing order, and the
spectral radius ofM is defined by ρ(M) = max{|ρ↑

1 (M)|, |ρ↑
ν (M)|}. We also define

the spectral norm of M (here, M is not necessary a symmetric matrix) as ||M|| =
max||z||=1 ||Mz||, which is equal to {ρ↑

ν (M�M)}1/2(= ρ(M) if M = M�). It is easy
to see that ||M|| ≤ (

∑ν
i,i ′=1 m

2
i i ′)

1/2 ≤ ∑ν
i,i ′=1 |mii ′ | and that, for any nonsingular

matrix M, ||M−1|| = 1/{ρ↑
1 (M�M)}1/2. For ease of reference, a variant of Weyl’s

theorem (e.g., Horn and Johnson [38, p. 198]) states that

max
j∈{1,...,ν} |ρ

↑
j (M + D) − ρ

↑
j (M)| ≤ ρ(D) = ||D|| (10.1)

for any ν × ν symmetric matrices M and D. Also, we recall the basic formula for
the inverse of the partitioned (nonsingular) matrix

M =
(
M(11) M(12)

M(21) M(22)

)

(we assume the nonsingularity of M(22)):

M−1 =
(

Iν1
−M−1

(22)M(21)

)
M−1

(11·2)(Iν1 − M(12)M−1
(22)) +

(
Oν1,ν1 Oν1,ν2

Oν2,ν1 M
−1
(22)

)
,

where M(11·2) = M(11) − M(12)M−1
(22)M(21) is called the Schur complement of M(22)

inM. Then,

(
M(11) M(12)

M(21) M(22)

)−1 (z(1)

0ν2

)
=
(

Iν1
−M−1

(22)M(21)

)
M−1

(11·2)z(1)

and

(z�
(1) 0

�
ν2

)

(
M(11) M(12)

M(21) M(22)

)−1 (z(1)

0ν2

)
= z�

(1)M
−1
(11·2)z(1) .

10.2 Preliminaries

10.2.1 Statistical Setup and GEL

Let {X1, . . . ,XN } be an iid sample of dX-dimensional random vectors, drawn from
an unknown distribution F . The symbol P (N )

F (and PF ) denotes the distribution of
{X1, . . . ,XN } (andX ∼ F), and the phrase “as the sample size N goes to the infinity”
is dropped (it is implicit, unless otherwise stated).
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Suppose that there is a p-dimensional parameter θ ∈ � associated with F , for
which the interest is in a p1-dimensional parameter θ (1) ∈ �(1) under the pres-
ence of a p2-dimensional nuisance parameter θ (2) ∈ �(2), where p = p1 + p2,
θ = (θ�

(1), θ
�
(2))

�, and � = �1 × �2 ⊂ R
p1 × R

p2 . More precisely, given a known
function

g(x, θ) = [gβ(x, θ)]β∈{1,...,M} ,

the information about θ is summarized through the moment restrictions, such that

EF [g(X, θ0)] = 0M for a unique θ0 = (θ�
(1)0, θ

�
(2)0)

� ∈ � ,

where the symbol EF stands for expectation takenwith respect toX ∼ F .We assume
M ≥ p, i.e., the just-identified case M = p or the over-identified case M > p.

To describe the GEL objective function (Newey and Smith [56]), let ρ(·) be a
(smooth) function that is concave on its domain Vρ ; an open interval containing
zero. With ρi (v) = (di/dvi )ρ(v), we assume that ρ(0) = 0 and ρ1(0) = ρ2(0) =
−1, since, as long as ρ1 
= 0 and ρ2 < 0, where ρ1 = ρ1(0) and ρ2 = ρ2(0), we can
replace ρ(v) by −(ρ2/ρ

2
1 )[ρ{(ρ1/ρ2)v} − ρ(0)]. Here are a few practical examples:

[EL] ρEL(v) = log(1 − v) and VEL = (−∞, 1);
[CU] ρCU(v) = −(v + v2/2) and VCU = R;
[ET] ρET(v) = −ev + 1 and VET = R.

The GEL is a comprehensive framework, indexed by such a normalized ρ-function,
hence, the resulting GEL-based test statistics are necessarily equivalent in the large
sample theory, but possess different N−1-asymptotics via ρ3 = ρ3(0) and ρ4 = ρ4(0)
generally, as will be shown later.

Introducing an M × 1 vector of auxiliary parameters λ, let η = (θ�,λ�)� be a
(p + M) × 1 vector of augmented parameters to be inferenced. A GEL saddlepoint
problem infθ∈� supλ∈	

ρ

θ,N

(N )ρ(η) was formulated by Newey and Smith [56], where


(N )ρ(η) = 1

N

N∑
i=1

ρ{λ�g(Xi , θ)} ,

with	
ρ

θ,N = {λ ∈ R
M : λ�g(Xi , θ) ∈ Vρ , i ∈ {1, . . . , N }}. Newey and Smith [56]

and Ragusa [64] pointed out that a subclass of criteria based on the Cressie and Read
[22] power divergence can be treated by using the following ρ-function;

ρCR(v) =

⎧
⎪⎨
⎪⎩

− 1

ω + 1
{(1 + ωv)(ω+1)/ω − 1} , ω ∈ R\{−1, 0} ,

log(1 − v) , ω = −1 ; EL,
−ev + 1 , ω = 0 ; ET,

whose domainVCR depends on the parameter ω (the CU is a special case of ω = 1).
Note that
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ρ ′′′
CR(0) = −(1 − ω) and ρ ′′′′

CR(0) = −(1 − ω)(1 − 2ω).

For testing a null hypothesis θ (1) = θ (1)0, we solve the unrestrictedGELfirst-order
condition

�(N )ρ

⎛
⎜⎝

θ̂
(N )ρ

(1)

θ̂
(N )ρ

(2)

λ̂
(N )ρ

⎞
⎟⎠ = 0p+M

or the restricted GEL first-order condition

�
(N )ρ

(2)

⎛
⎜⎝

θ (1)0

θ̃
(N )ρ

(2)

λ̃
(N )ρ

⎞
⎟⎠ = 0p2+M

(by the hat, it is meant to be unrestricted; η̂(N )ρ = ((̂θ
(N )ρ

(1) )�, (̂θ
(N )ρ

(2) )�, (̂λ
(N )ρ

)�)�,
and, by the tilde, it is meant to be restricted; η̃(N )ρ = (θ�

(1)0, (̃θ
(N )ρ

(2) )�, (̃λ
(N )ρ

)�)�),
where �(N )ρ(η) = [
(N )ρ

j (η)] j∈{1,...,p+M}, �
(N )ρ

(2) (η) = [
(N )ρ
r (η)]r∈{p1+1,...,p+M}, with


(N )ρ
α (η) = 1

N

N∑
i=1

ρ1{λ�g(Xi , θ)}λ� ∂

∂θα

g(Xi , θ) , α ∈ {1, . . . , p} ,



(N )ρ

[β] (η) = 1

N

N∑
i=1

ρ1{λ�g(Xi , θ)}gβ(Xi , θ) , β ∈ {1, . . . , M}

(we set [β] = p + β). A crucial point of the N−1-asymptotic theory is that, under cer-
tain conditions, both η̂(N )ρ and η̃(N )ρ are well defined, with probability 1 − o(N−1),
lying in an ε(N )ρ-neighborhood of η0 = (θ�

0 , 0�
M)�, where ε(N )ρ ∝ N−1/2(log N )1/2.

See Lemma10.4 of Sect. 10.6.1 for more details, including the stochastic expansions
of η̂(N )ρ and η̃(N )ρ based on Bhattacharya and Ghosh’s [6] argument and Taniguchi
[71, p. 76]. If there is no confusion, for any (nonrandom or random) scalar or vector
ormatrix function; H(·) or H (N )(·), wewrite, e.g., Ĥ , H̃ , and H instead of H (̂η(N )ρ),
H (̃η(N )ρ), and H(η0), respectively.

Not surprisingly, in parallel to the trinity of the three test statistics from the classical
likelihood, the GELR test statistic ELR(N )ρ = 2N (
̃(N )ρ − 
̂(N )ρ), and the Wald-
type and score-type test statistics W(N )ρ and S(N )ρ , defined as quadratic forms of

θ̂
(N )ρ

(1) − θ (1)0 and [
̃(N )ρ
a ]a∈{1,...,p1}, respectively, are available even from the present

GEL framework, and they have the same limiting χ2 distribution under suitable
regularity conditions. For more details, see Sect. 10.3.

Remark 10.1 Unless otherwise stated, we use the letter “ j” or “k” as the indices of
the full vector η = (θ�

(1), θ
�
(2),λ

�)� that runs from 1 to p + M , the letter “a” or “b” as
the indices of the subvector η(1) = θ (1) of η that runs from 1 to p1, and the letter “r” as
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the indices of the subvector η(2) = (θ�
(2),λ

�)� of η that runs from p1 + 1 to p + M .
These distinctions are useful for two purposes in the present paper, first to denote a
typical element of any (nonrandomor random) R-way array [Hj1··· jR ] j1,..., jR∈{1,...,p+M}
or [H (N )

j1··· jR ] j1,..., jR∈{1,...,p+M}, and second to indicate the range of a sum in the Einstein
summation convention.

10.2.2 Notation

The Rth partial derivatives of 
ρ(η) = ρ{λ�g(X, θ)} and 
(N )ρ(η) with respect to
η = (η1, . . . , ηp+M )�(= (θ�,λ�)�) are denoted by



ρ

j1··· jR (η) = ∂ R
ρ(η)

∂η j1 · · · ∂η jR

and 

(N )ρ

j1··· jR (η) = ∂ R
(N )ρ(η)

∂η j1 · · · ∂η jR

,

respectively, where j1, . . . , jR ∈ {1, . . . , p + M}. For the sake of brevity, we may
write IR = j1 · · · jR , where R = |IR| is the length of IR .

In order to distinguish (η1, . . . , ηp)
�(= θ ) and (ηp+1, . . . , ηp+M )�(= λ), we use

the letter “α” as the indices running from 1 to p, compared with the definition [β] =
p + β, in which “β” runs from 1 toM . After some algebra, we can see that the partial
derivatives (up to four) of 
ρ(η) evaluated at η = η0(= (θ�

0 , 0�
M)�) are explicitly

given, as follows (we sometimes suppress the superscript “ρ” for the quantities
that are independent of the ρ-function): For α1 ∈ {1, . . . , p} and β1, β2, β3, β4 ∈
{1, . . . , M}, 
α1 = 
α1α2 = 
α1α2α3 = 
α1α2α3α4 = 0,


[β1] = −gβ1(X, θ0) , 
[β1][β2] = −
2∏

i=1

gβi (X, θ0) ,



ρ

[β1][β2][β3] = ρ3

3∏
i=1

gβi (X, θ0) , 

ρ

[β1][β2][β3][β4] = ρ4

4∏
i=1

gβi (X, θ0) ,


α1[β2] = −∂gβ2(X, θ0)

∂θα1

, 
α1[β2][β3] = −∂
∏3

i=2 gβi (X, θ0)

∂θα1

, (10.2)



ρ

α1[β2][β3][β4] = ρ3
∂
∏4

i=2 gβi (X, θ0)

∂θα1

, 
α1α2[β3] = −∂2gβ3(X, θ0)

∂θα2∂θα2

,


α1α2[β3][β4] = −∂2∏4
i=3 gβi (X, θ0)

∂θα1∂θα2

, 
α1α2α3[β4] = − ∂3gβ4(X, θ0)

∂θα1∂θα2∂θα3

.

For v ∈ {1, 2, 3, 4} and 1 ≤ ∑v
i=1 Ri ≤ 4, the joint cumulants of the 


ρ

IRi
’s, defined

by
νρ

IR1 ,...,IRv
= CumF (


ρ

IR1
, . . . , 


ρ

IRv
) ,
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Table 10.1 The vth cumulants νρ
IR1 ,...,IRv , for v ∈ {1, 2, 3, 4} and 1 ≤ ∑v

i=1 Ri ≤ 4, where the
arguments “X, θ0” from g# and its higher-order derivatives, e.g., gβ/α , are omitted here, for sim-
plicity

Means

να1 = να1α2 = να1α2α3 = να1α2α3α4 = ν[β1] = 0, ν[β1][β2] = −EF [gβ1gβ2 ],
νρ [β1][β2][β3] = ρ3EF [gβ1gβ2gβ3 ], νρ [β1][β2][β3][β4] = ρ4EF [gβ1gβ2gβ3gβ4 ],
να1[β2] = −EF [gβ2/α1 ], να1[β2][β3] = −EF

[
∂(gβ2 gβ3 )

∂θα1

]
,

νρ
α1[β2][β3][β4] = ρ3EF

[
∂(gβ2 gβ3 gβ4 )

∂θα1

]
, να1α2[β3] = −EF [gβ3/α1α2 ],

να1α2[β3][β4] = −EF

[
∂2(gβ3 gβ4 )

∂θα1 ∂θα2

]
, να1α2α3[β4] = −EF [gβ4/α1α2α3 ];

Covariances

να1,α2 = να1,[β2] = 0, ν[β1],[β2] = EF [gβ1gβ2 ],
να1α2,α3 = να1α2,[β3] = να1[β2],α3 = ν[β1][β2],α3 = 0,

να1[β2],[β3] = EF [gβ2/α1gβ3 ], ν[β1][β2],[β3] = EF [gβ1gβ2gβ3 ],
να1α2α3,α4 = να1α2[β3],α4 = να1[β2][β3],α4 = ν[β1][β2][β3],α4 = να1α2α3,[β4] = 0,

να1α2[β3],[β4] = EF [gβ3/α1α2gβ4 ], να1[β2][β3],[β4] = EF

[
∂(gβ2 gβ3 )

∂θα1
gβ4

]
,

νρ [β1][β2][β3],[β4] = −ρ3EF [gβ1gβ2gβ3gβ4 ],
να1α2,α3α4 = να1α2,α3[β4] = να1α2,[β3][β4] = 0,

να1[β2],α3[β4] = EF [gβ2/α1gβ4/α3 ] − EF [gβ2/α1 ]EF [gβ4/α3 ],
να1[β2],[β3][β4] = −EF [gβ2/α1gβ3gβ4 ] + EF [gβ2/α1 ]EF [gβ3gβ4 ],
ν[β1][β2],[β3][β4] = EF [gβ1gβ2gβ3gβ4 ] − EF [gβ1gβ2 ]EF [gβ3gβ4 ];
3rd cumulants

να1,α2,α3 = να1,α2,[β3] = να1,[β2],[β3] = 0, ν[β1],[β2],[β3] = −EF [gβ1gβ2gβ3 ],
να1α2,α3,α4 = να1[β2],α3,α4 = ν[β1][β2],α3,α4 = 0,

να1α2,α3,[β4] = να1[β2],α3,[β4] = ν[β1][β2],α3,[β4] = να1α2,[β3],[β4] = 0,

να1[β2],[β3],[β4] = −EF [gβ2/α1gβ3gβ4 ] + EF [gβ2/α1 ]EF [gβ3gβ4 ],
ν[β1][β2],[β3],[β4] = −EF [gβ1gβ2gβ3gβ4 ] + EF [gβ1gβ2 ]EF [gβ3gβ4 ];
4th cumulants

να1,α2,α3,α4 = να1,α2,α3,[β4] = να1,α2,[β3],[β4] = να1,[β2],[β3],[β4] = 0,

ν[β1],[β2],[β3],[β4] = EF [gβ1gβ2gβ3gβ4 ] − 〈3〉EF [gβ1gβ2 ]EF [gβ3gβ4 ].

are given in Table10.1, where the Rth partial derivative of gβ(x, θ) with respect to
θ is denoted by

gβ/α1···αR (x, θ) = ∂ Rgβ(x, θ)

∂θα1 · · · ∂θαR

, α1, . . . , αR ∈ {1, . . . , p} , β ∈ {1, . . . , M} .

We observe that the four patterns νρ [β1][β2][β3], νρ
α1[β2][β3][β4], νρ [β1][β2][β3][β4], and

νρ [β1][β2][β3],[β4] depend on the choice of ρ(·) through the third and fourth derivatives
evaluated at v = 0; ρ3 = ρ3(0) and ρ4 = ρ4(0), whereas the others are independent
of ρ(·).
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Importantly, we always have the identities

ν[β1] = 0 , ν[β1][β2] + ν[β1],[β2] = 0 forβ1, β2 ∈ {1, . . . , M}. (10.3)

However, the partial Bartlett identities (with respect to λ) do not hold generally,
unless (ρ3, ρ4) = (−2,−6). That is, for β1, β2, β3, β4 ∈ {1, . . . , M},

νρ [β1][β2][β3] + 〈3〉ν[β1][β2],[β3] + ν[β1],[β2],[β3]

= (ρ3 + 2)EF

[ 3∏
i=1

gβi (X, θ0)
]
, (10.4)

νρ [β1][β2][β3][β4] + 〈4〉νρ [β1][β2][β3],[β4]
+〈3〉ν[β1][β2],[β3][β4] + 〈6〉ν[β1][β2],[β3],[β4] + ν[β1],[β2],[β3],[β4]

= (ρ4 − 4ρ3 − 2)EF

[ 4∏
i=1

gβi (X, θ0)
]
, (10.5)

where 〈n〉 before a term with indices is a sum of n similar terms obtained by index
permutation, e.g., 〈3〉ν[β1][β2],[β3] = ν[β1][β2],[β3] + ν[β1][β3],[β2] + ν[β2][β3],[β1]. Within a
class of the ECRs, we see that

(ρ ′′′
CR(0), ρ ′′′′

CR(0)) = (−2,−6) iffω = −1,

hence, the EL has a unique characteristic that, in addition to (10.3), both (10.4) and
(10.5) are equal to zero, i.e., the partial Bartlett identities (with respect to λ) hold up
to the fourth degree.

Remark 10.2 (i) In the above-mentioned setup, recall [ναα′ ]α,α′∈{1,...,p} = Op,p. We
partition the (p + M) × (p + M) symmetric matrix [ν j j ′ ] j, j ′∈{1,...,p+M} = ν (say)
into

ν =
(
Op,p νθλ

νλθ νλλ

)
=
⎛
⎝
Op1,p1 Op1,p2 νθ(1)λ

Op2,p1 Op2,p2 νθ(2)λ

νλθ(1) νλθ(2) νλλ

⎞
⎠

according to the partition η = (θ�,λ�)� = (θ�
(1), θ

�
(2),λ

�)�, respectively, where
ν�

θλ = νλθ = (νλθ(1) νλθ(2) ).
(ii) Let

ν�
(21) = ν(12) = (Op1,p2 νθ(1)λ) , ν(22) =

(
Op2,p2 νθ(2)λ

νλθ(2) νλλ

)
.

If νλλ is negative definite and νλθ has full column rank, it is easily verified that the (p +
M) × (p + M) matrix ν (the (p2 + M) × (p2 + M) matrix ν(22)) has just p (p2)
positive eigenvalues and M negative eigenvalues (both ν and ν(22) are nonsingular),
using Sylvester’s law of inertia (see Horn and Johnson [38, p. 223]), since, e.g.,
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(
Ip −νθλν

−1
λλ

OM,p IM

)(
Op,p νθλ

νλθ νλλ

)(
Ip Op,M

−ν−1
λλ νλθ IM

)
=
(−νθλν

−1
λλ νλθ Op,M

OM,p νλλ

)
.

It follows that

||ν−1|| = 1

min{ρ↑
M+1(ν),−ρ

↑
M(ν)} , (10.6)

||ν−1
(22)|| = 1

min{ρ↑
M+1(ν(22)),−ρ

↑
M(ν(22))}

.

Before formulating our results of Sect. 10.3,we prepare some additional notations.
According to the partition η = (θ�

(1), η
�
(2))

�, we partition the (p + M) × 1 vector

Z(N )ρ(η) = [Z (N )ρ

j (η)] j∈{1,...,p+M} and the (p + M) × (p + M) symmetric matrix

L(N )ρ(η) = [
(N )ρ

j j ′ (η)] j, j ′∈{1,...,p+M} into

Z(N )ρ(η) =
(
Z(N )ρ

(1) (η)

Z(N )ρ

(2) (η)

)
,

L(N )ρ(η) =
(
L(N )ρ

(11) (η) L(N )ρ

(12) (η)

L(N )ρ

(21) (η) L(N )ρ

(22) (η)

)
,

respectively, where
Z (N )ρ

j (η) = N 1/2

(N )ρ

j (η) .

Let

G(N )ρ(η) = [G(N )ρ

ja (η)] j∈{1,...,p+M},a∈{1,...,p1}

=
(

Ip1
−{L(N )ρ

(22) (η)}−1L(N )ρ

(21) (η)

)
,

L(N )ρ

(11·2)(η) = [
(N )ρ

(11·2)aa′(η)]a,a′∈{1,...,p1}
= {G(N )ρ(η)}�L(N )ρ(η)G(N )ρ(η)

= L(N )ρ

(11) (η) − L(N )ρ

(12) (η){L(N )ρ

(22) (η)}−1L(N )ρ

(21) (η) ,

which are sample analogues of

G = [G ja] j∈{1,...,p+M},a∈{1,...,p1} =
(

Ip1
−ν−1

(22)ν(21)

)
,

ν(11·2) = −ν(12)ν
−1
(22)ν(21) (= G�ν G) ,
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respectively. We denote by [
(N )ρ(η)] j j ′ the ( j, j ′)th element of {L(N )ρ(η)}−1 and by
[
(N )ρ

(11·2)(η)]aa′
, [ν(11·2)]aa′

, and ν(11·2)aa′ , the (a, a′)th element of {L(N )ρ

(11·2)(η)}−1, ν−1
(11·2),

and ν(11·2). Also, [v] j or v j stands for the j th element of any vector v.
Lastly, for any scalar random variable hN (X1, . . . ,XN ) = Y (N ) (say), we use the

notation
Y (N ) = o(N )

F (q1, q2) , (10.7)

if P (N )
F [|Y (N )| ≥ γ (log N )q2 ] = o(N−q1) for some constants γ > 0 and q1, q2 ≥ 0,

independent of N ; see, e.g., Magdalinos [54].5 This notation can be also used for
any finite-dimensional random vector or matrix, if it is defined via the sum of the
absolute values of all elements.

10.2.3 Assumptions

The following assumptions are made for some Q ≥ 16:

(C0) ρ(·) is four times continuously differentiable and concave on its domain Vρ ;
an open interval containing zero, such that ρ(0) = 0, ρ1(0) = ρ2(0) = −1, and
|ρ4(v) − ρ4(0)| ≤ Lip(4)

ρ |v| in a neighborhoodNρ(⊂ Vρ) of v = 0 for some con-
stant Lip(4)

ρ ≥ 0, where ρi (v) = (di/dvi )ρ(v).
(C1) (i) The parameter space � is an open convex subset of Rp.

(ii) For each R ∈ {1, 2, 3, 4} and β ∈ {1, . . . , M}, gβ(x, θ) has the Rth partial
derivative with respect to θ = (θ1, . . . , θp)

�.
(C2)Q There exists B(·) = B�(·) with EF [BQ(X)] < ∞, such that

sup
θ∈�

M∑
β=1

{
|gβ(x, θ)| +

4∑
R=1

p∑
α1,...,αR=1

|gβ/α1···αR (x, θ)|
}

≤ B(x)

and

5 The following properties hold:

• If Y (N ) = o(N )
F (q1, q2), then,

(i) Y (N ) = o(N )
F (q ′

1, q
′
2) for any q1 ≥ q ′

1(≥ 0) and q ′
2 ≥ q2;

(ii) N−τY (N ) = o(N )
F (q1, q ′

2) for any τ > 0 and q ′
2 ≥ 0.

• If Y (N )
I = o(N )

F (q, q2) and Y (N )
II = o(N )

F (q, q ′
2), then,

Y (N )
I + Y (N )

II = o(N )
F (q,max(q2, q

′
2)) and Y (N )

I Y (N )
II = o(N )

F (q, q2 + q ′
2) .
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M∑
β=1

{
|gβ(x, θ) − gβ(x, θ0)|

+
3∑

R=1

p∑
α1,...,αR=1

|gβ/α1···αR (x, θ) − gβ/α1···αR (x, θ0)|
}

≤ B(x)||θ − θ0||

for all θ ; ||θ − θ0|| ≤ ε, where θ0 ∈ � is the unique solution to the moment
restrictions EF [g(X, θ)] = 0M (we can choose a small ε = εθ0 > 0 such that
Bp(θ0 : 2ε) is contained in the parameter space �, where Bn(c : �) stands for
the open ball of center c ∈ R

n and radius � > 0).
(C3) (i) νλλ = (−EF [gβ(X, θ0)gβ ′(X, θ0)])β,β ′∈{1,...,M} is negative definite.

(ii) νλθ = (−EF [gβ/α(X, θ0)])β∈{1,...,M},α∈{1,...,p} has full column rank.

In order to state the last condition (C4), let G1:3(x, θ0) be a column vector that
consists of the following elements (there are six patterns):

gβ1(x, θ0) ,

2∏
i=1

gβi (x, θ0) ,

3∏
i=1

gβi (x, θ0) , gβ1/α1(x, θ0) ,

gβ1/α1(x, θ0)gβ2(x, θ0) + gβ2/α1(x, θ0)gβ1(x, θ0) , and gβ1/α1α2(x, θ0) ,

with the indices p ≥ α1 ≥ α2 ≥ 1 and M ≥ β1 ≥ β2 ≥ β3 ≥ 1 in descending order.
Note that each partial derivative (up to three) of 
ρ(η) evaluated at η = η0, except for

α1 = 
α1α2 = 
α1α2α3 = 0, is equal to any of the elements of G1:3(x, θ0), multiplied
the scaling −1 or ρ3; see (10.2). Under the assumed nonsingularity of the M × M
variance matrix VarF [g(X, θ0)] (see (C3)(i)), there exists a subvector Ġ1:3(x, θ0) of
G1:3(x, θ0), containing at least the M elements g1(x, θ0), . . . , gM(x, θ0), such that
VarF [Ġ1:3(X, θ0)] is nonsingular, and that G1:3(x, θ0) = A(θ0)Ġ1:3(x, θ0) + b(θ0)

for some block lower triangular matrix A(θ0) and vector b(θ0), not depending on x.
Then, Cramér’s condition Ġ1:3(X, θ0) is additionally imposed:

(C4) lim sup||s||→∞ |EF [exp{is�Ġ1:3(X, θ0)}]| < 1.

10.3 Higher-Order Result of GEL Testing Inference

Wewant to test H: θ (1) = θ (1)0 against A: θ (1) 
= θ (1)0, for the GEL framework in the
possibly over-identified moment restrictions. Lemma10.1 motivates us to consider
a class of test statistics admitting the stochastic expansion
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T (N )ρ,τ = (Z̃(N )ρ

(1) )�(L̃(N )ρ

(11·2))
−1Z̃(N )ρ

(1) + 1

N 1/2
τ1
̃

(N )ρ

j1 j2 j3

3∏
i=1

[G̃(N )ρ
(L̃(N )ρ

(11·2))
−1Z̃(N )ρ

(1) ] ji

+ 1

N
[
̃(N )ρ

j j1 j2
{τ2G̃(N )ρ

ja (
̃
(N )ρ

(11·2))
aa′G̃(N )ρ

j ′a′ + τ3(
̃
(N )ρ) j j

′ }
̃(N )ρ

j ′ j3 j4 + τ4
̃
(N )ρ

j1 j2 j3 j4
]

4∏
i=1

[G̃(N )ρ
(L̃(N )ρ

(11·2))
−1Z̃(N )ρ

(1) ] ji

+ 1

N 3/2
o(N )
F (1, q) (10.8)

for some constants q ≥ 0 and (τ1, τ2, τ3, τ4)
� ∈ R

4, independent of N .

Lemma 10.1 Suppose that assumptions (C0)–(C3) hold with Q ≥ 16. In addition
to the score-type test statistic

S(N )ρ = (Z̃(N )ρ

(1) )�(L̃(N )ρ

(11·2))
−1Z̃(N )ρ

(1) (
d−→ χ2

p1) ,

the following test statistics admit the stochastic expansion (10.8):

1. the GELR test statistic6

ELR(N )ρ = 2N (
̃(N )ρ − 
̂(N )ρ) (
d−→ χ2

p1) ;

2. the Wald-type test statistic (and its modified version)7

W(N )ρ = N (̂θ
(N )ρ

(1) − θ (1)0)
�L̃(N )ρ

(11·2)(̂θ
(N )ρ

(1) − θ (1)0) (
d−→ χ2

p1) ,

W(N )ρ
† = N (̂θ

(N )ρ

(1) − θ (1)0)
�L̂(N )ρ

(11·2)(̂θ
(N )ρ

(1) − θ (1)0) (
d−→ χ2

p1) ;

3. the modified score-type test statistic8

S(N )ρ
† = (Z̃(N )ρ

(1) )�(L̂(N )ρ

(11·2))
−1Z̃(N )ρ

(1) (
d−→ χ2

p1) ;

4. the gradient-type test statistic9

grad(N )ρ = (−Z̃(N )ρ

(1) )�N 1/2(̂θ
(N )ρ

(1) − θ (1)0) (
d−→ χ2

p1) .

6 The GELR is a GEL counterpart of Wilks [76] from the parametric likelihood. As a special case
of ρ(·) = ρEL(·), the ELR by Qin and Lawless [62] is most popular in the literature.
7 The Wald-type is a GEL counterpart of Wald [75] from the parametric likelihood.
8 The score-type (or Lagrange multiplier) is a GEL counterpart of [65] (see also [69]) from the
parametric likelihood. For a history about Rao’s score test, we refer the readers to [5]. See also [8]
for the score-type test statistic from the estimating equation models.
9 The gradient-type is a GEL counterpart of [73] from the parametric likelihood.
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Table 10.2 Examples of the GEL-based test statistic T (N )ρ,τ

Test statistic (τ1, τ2, τ3, τ4)

GELR; ELR(N )ρ (1/3, 0, 1/4,−1/12)

Wald-type; W(N )ρ (1, 1/4, 1,−1/3)

Modified Wald-type; W(N )ρ
† (0, 5/4, 1/2, 1/6)

Score-type; S(N )ρ (0, 0, 0, 0)

Modified score-type; S(N )ρ
† (1, 0, 3/2,−1/2)

Gradient-type; grad(N )ρ (1/2, 0, 1/2,−1/6)

See Table10.2 for each parameter (τ1, τ2, τ3, τ4).

The proof of this lemma is postponed to Sect. 10.6.2.
It is worth giving a brief description about the asymptotic distribution result. First,

we know that −νθ(2)λν
−1
λλ νλθ(2) is positive definite (by (C3)), hence, with

Mλλ = ν−1
λλ − ν−1

λλ νλθ(2) (νθ(2)λν
−1
λλ νλθ(2) )

−1νθ(2)λν
−1
λλ ,

we notice that the p1 × p1 matrix −νθ(1)λMλλνλθ(1) is positive definite, since it is the
Schur complement of −νθ(2)λν

−1
λλ νλθ(2) in the p × p positive definite matrix

−νθλν
−1
λλ νλθ = −

(
νθ(1)λν

−1
λλ νλθ(1) νθ(1)λν

−1
λλ νλθ(2)

νθ(2)λν
−1
λλ νλθ(1) νθ(2)λν

−1
λλ νλθ(2)

)
(by (C3) again).

Next, it is easy to see that Z̃(N )ρ

(1) = G�Z(N ) + op(1), L̃
(N )ρ

(11·2) = ν(11·2) + op(1), and

L̂(N )ρ

(11·2) = ν(11·2) + op(1), where

Z(N ) =
⎛
⎝

0p1
0p2

−N 1/2g

⎞
⎠ with g = 1

N

N∑
i=1

g(Xi , θ0) .

Below, we can verify that

G�Var(N )
F [Z(N )]G = ν(11·2) (10.9)

is positive definite. Finally, (G�Z(N ))�ν−1
(11·2)(G�Z(N ))

d−→ χ2
p1 is a consequence of

the central limit theorem G�Z(N ) d−→ N(0p1 , ν(11·2)).
Now, recall

ν−1
(22) =

( −(νθ(2)λν
−1
λλ νλθ(2) )

−1 (νθ(2)λν
−1
λλ νλθ(2) )

−1νθ(2)λν
−1
λλ

ν−1
λλ νλθ(2) (νθ(2)λν

−1
λλ νλθ(2) )

−1 Mλλ

)
.
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By definition, ν(11·2) = −ν(12)ν
−1
(22)ν(21) = −νθ(1)λMλλνλθ(1) (this matrix is positive

definite, as mentioned above). On the other hand, using Mλλ = MλλνλλMλλ and
νθ(2)λMλλ = Op2,M , we have

ν−1
(22)

(
Op2,p2 Op2,M

OM,p2 νλλ

)
ν−1

(22) =
(

(νθ(2)λν
−1
λλ νλθ(2) )

−1 Op2,M

OM,p2 Mλλ

)
.

Then,

G�Var(N )
F [Z(N )]G = G�

⎛
⎝
Op1,p1 Op1,p2 Op1,M

Op2,p1 Op2,p2 Op2,M

OM,p1 OM,p2 −νλλ

⎞
⎠G

= −ν(12)ν
−1
(22)

(
Op2,p2 Op2,M

OM,p2 νλλ

)
ν−1

(22)ν(21)

= −ν(12)

(
(νθ(2)λν

−1
λλ νλθ(2) )

−1 Op2,M

OM,p2 Mλλ

)
ν(21)

= −νθ(1)λMλλνλθ(1) = ν(11·2) .

This verifies (10.9).10

We are ready to state the higher-order result on the GEL testing inference. The
finding is a nontrivial extension of Baggerly [2] to theGEL framework in the possibly
over-identified moment restrictions.

Theorem 10.1 Suppose that assumptions (C0)–(C4) hold with Q ≥ 16. Then, (10.8)
is B-correctable if (ρ3, ρ4, τ1, τ2, τ3, τ4) = (−2,−6, 1/3, 0, 1/4,−1/12), i.e., the

10 Newey and Smith [56] established that

N 1/2 (̂η(N )ρ − η0)
d−→ N

(
0p+M ,

(
(νθλν

−1
λ,λνλθ )

−1 Op,M

OM,p P

))
,

where νλ,λ = −νλλ and

P = ν−1
λ,λ − ν−1

λ,λνλθ (νθλν
−1
λ,λνλθ )

−1νθλν
−1
λ,λ .

We can see that

(νθλν
−1
λ,λνλθ )

−1 = −(νθλν
−1
λλ νλθ )

−1 = −
(

νθ(1)λν
−1
λλ νλθ(1) νθ(1)λν

−1
λλ νλθ(2)

νθ(2)λν
−1
λλ νλθ(1) νθ(2)λν

−1
λλ νλθ(2)

)−1

,

which yields N 1/2 (̂θ
(N )ρ

(1) − θ (1)0)
d−→ N(0p1 , ν

−1
(11·2)), since

(Ip1 Op1,p2 )(νθλν
−1
λλ νλθ )

−1
(

Ip1
Op2,p1

)
= −(νθ(1)λMλλνλθ(1) )

−1 = ν−1
(11·2) .

It follows that W(N )ρ d−→ χ2
p1 and W(N )ρ

†
d−→ χ2

p1 .
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ELR test statistic ELR(N ) = 2N {
(N )
EL (̂θ

(N )

EL ) − 

(N )
EL (̃θ

(N )

EL )}, based on ρ(·) = ρEL(·),
is B-correctable.

Proof Proposition10.2 of Sect. 10.6.3 shows that T (N )ρ,τ is B-correctable iff

0 =
(1
4

κ
ρ3,ρ4,τ1,τ2,τ3,τ4
b1,b2,b3,b4

+ κ
ρ3,τ1
b1

κ
ρ3,τ1
b2,b3,b4

)
ν
b1b2
(11·2)ν

b3b4
(11·2) ,

0 = 6κρ3,τ1
b1,b2,b3

( 3∏
i=1

ν
bi b′

i
(11·2)

)
κ

ρ3,τ1
b′
1,b

′
2,b

′
3
+ 9(νb1b2

(11·2)κ
ρ3,τ1
b1,b2,b

)νbb′
(11·2)(ν

b′
1b

′
2

(11·2)κ
ρ3,τ1
b′
1,b

′
2,b

′) ,

equivalently,

0 = κρ3,τ1
a1,a2,a3 (10.10)

= (3τ1 − 1)νρG G G
a1a2a3 + (ρ3 + 2)

M∑
β1,β2,β3=1

( 3∏
i=1

G[βi ]ai
)
EF

[ 3∏
i=1

gβi (X, θ0)
]

for a1, a2, a3 ∈ {1, . . . , p1} and 0 = κ
ρ3,ρ4,τ1,τ2,τ3,τ4
b1,b2,b3,b4

ν
b1b2
(11·2)ν

b3b4
(11·2) (for simplicity, the

notation # G···a··· is used instead of writing #··· j ··· G ja). Obviously, (ρ3, τ1) = (−2, 1/3)
is a sufficient condition for (10.10). The assertion follows by noting that

κ−2,ρ4,1/3,τ2,τ3,τ4
a1,a2,a3,a4 = 4τ2〈3〉νρGG G

a a1a2ν
aa′
(11·2)ν

ρG G G
a′a3a4

+(4τ3 − 1)〈3〉νρG G
a1a2 j

ν j j ′νρG G
a3a4 j ′ + (12τ4 + 1)νρG G G G

a1a2a3a4

+(ρ4 + 6)
M∑

β1,β2,β3,β4=1

( 4∏
i=1

G[βi ]ai
)
EF

[ 4∏
i=1

gβi (X, θ0)
]

for a1, a2, a3, a4 ∈ {1, . . . , p1}. �
To implement the Bartlett correction

(
1 + b

N

)
ELR(N ) ≈ ELR(N )

E (N )
F [ELR(N )/p1]

,

the Bartlett factor b = −(1/p1)(κ
−2,−6,1/3,0,1/4,−1/12
b1,b2

+ κ
−2,1/3
b1

κ
−2,1/3
b2

)ν
b1b2
(11·2) has to

be given explicitly.11 If an analytical expression of b were available, a sample ana-
logue b(N ) of b could be obtained according to routine that the population moments
are replaced by the corresponding sample moments. However, due to the rather
lengthy form of κ

−2,−6,1/3,0,1/4,−1/12
b1,b2

, we need the following bootstrap procedure:

11 By Proposition10.2 of Sect. 10.6.3, we have, in principle,

E (N )
F [ELR(N )] = p1 + 1

N
(κ

−2,−6,1/3,0,1/4,−1/12
b1,b2

+ κ
−2,1/3
b1

κ
−2,1/3
b2

)ν
b1b2
(11·2) + o(N−1) .
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Step 1. Resample with replacement from a given observed sample {X1, . . . ,XN }
to obtain a bootstrap sample {X∗

1, . . . ,X
∗
N }. Then, compute

ELR∗(N ) = 2N

{



∗(N )
EL (̂η

∗(N )
EL ) − 


∗(N )
EL

(
θ̂

(N )

EL(1)

η̃
∗(N )

EL(2)

)}
,

where 

∗(N )
EL (η) = N−1∑N

i=1 log{1 − λ�g(X∗
i , θ)}.

Step 2. Repeat Step 1 (B times) to get ELR∗(N )
1 , . . . ,ELR∗(N )

B . Then, a bootstrap
estimate of b is given by

b∗ = 1

B

B∑
i=1

N
(
1 − ELR∗(N )

i

p1

)
.

Given a significance level α, the resulting bootstrap-based Bartlett corrected test
is to reject the null hypothesis if

(
1 + b∗

N

)
ELR(N ) > χ2

p1(α) ,

where χ2
ν (α) is the upper α-quantile of the χ2

ν random variable.

Remark 10.3 This kind of a hybrid procedure was first suggested by Rocke [67] for
Zellner’s seemingly unrelated regression models. Since then, making use of Efron’s
bootstrap method is a routine to estimate the Bartlett factor in the literature.12 One
may prefer a direct use of “bootstrap test”, i.e., an alternativemethod is to estimate the
critical value of ELR(N ) as the upper α-quantile of {ELR∗(N )

1 , . . . ,ELR∗(N )
B }. Rocke

[67] pointed out that estimating (tail) quantile requires, in general, a larger number
(B) of the bootstrap iterations than estimating the constant b; this is an advantage of
the bootstrap-based Bartlett correction.

We illustrate how the bootstrap-based Bartlett correction works. As a benchmark
analysis, we consider here the Bartlett [4] test of homogeneity of variances among
two or more groups. This test is available in most of the statistical software (e.g.,
the R software has a function “bartlett.test”), which enables us to test whether the k
samples from the normal populations have equal variances. More precisely, the LR
test statistic after the Bartlett correction is given by

TBart = T

1 +
( k∑
i=1

1

Ni − 1
+ 1

N − k

) 1

3(k − 1)

,

12 Some authors may use the terminology of the Bartlett correction in the sense that the expectation
of the test statistic is closer to that of the original (uncorrected) test statistic.
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Table 10.3 The type I errors (10,000 replications) of homogeneity tests of variances among three
groups (k = 3), using the original or (analytical or bootstrap-based) Bartlett corrected LR test
statistics, denoted by T , TBart , and T ∗

Bart (with significance levels α ∈ {0.1, 0.05, 0.01}), for the
balanced case (N1, N2, N3) ∈ {(7, 7, 7), (15, 15, 15), (20, 20, 20)}, i.e., N ∈ {21, 45, 60}

LR Bartlett corrected LR

Analytical Bootstrap-based

B = 100 200 500

N = 21 α = 0.1 0.1200 0.1018 0.1004 0.0999 0.1009

α = 0.05 0.0627 0.0502 0.0522 0.0505 0.0496

α = 0.01 0.0141 0.0099 0.0112 0.0112 0.0098

N = 45 α = 0.1 0.1064 0.1008 0.0985 0.1001 0.1002

α = 0.05 0.0559 0.0510 0.0510 0.0509 0.0506

α = 0.01 0.0118 0.0109 0.0110 0.0100 0.0101

N = 60 α = 0.1 0.1025 0.0975 0.0994 0.0966 0.0981

α = 0.05 0.0533 0.0505 0.0510 0.0500 0.0505

α = 0.01 0.0111 0.0098 0.0114 0.0109 0.0104

where

T = (N − k) log s2pool −
k∑

i=1

(Ni − 1) log s2i (
d−→ χ2

k−1)

is the LR test statistic for testing the equality of variances in k normal populations
N (μi , σ

2
i )’s, N = ∑k

i=1 Ni is the total sample size, s2i is the unbiased variance of the
sample of size Ni from the i th group, and s2pool = ∑k

i=1(Ni − 1)s2i /(N − k) is the
pooled variance. Table10.3 shows the simulation results (from 10,000 replications)
of the type I errors of the large sample LR test (T ), the (analytical) Bartlett corrected
LR test (TBart), and the bootstrap-based Bartlett corrected LR tests (T ∗

Bart), for the
balanced case (N1, N2, N3) ∈ {(7, 7, 7), (15, 15, 15), (20, 20, 20)} when k = 3 (we
set B ∈ {100, 200, 500}). We observe that

• the large sample test, with the rejection region T > χ2
k (α), is oversized;

• the type I error of the test using the analytical Bartlett correction TBart is close to
the nominal size, and the bootstrap-based Bartlett correction T ∗

Bart works even for
the small bootstrap iterations.

As we argued in Theorem10.1, several GEL-based test statistics, except for the
ELR test statistic, are, in general, not B-correctable. In the next section, we will
reduce the error of the χ2

p1 approximation to o(N−1), by means of the Bartlett-type
correction with bootstrap.
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10.4 Bartlett-Type Correction with Bootstrap

Suppose that we have the asymptotic expansion in the form of13

P (N )[S(N ) ≤ x] = Gp1(x) − 2

N

3∑

=1

πS,
gp1+2
(x) + o(N−1) , (10.11)

as in, e.g., Proposition10.2 of Sect. 10.6.3, where Gν(x) = ∫ x
0 gν(y) dy for x ≥ 0,

and gν(·) is the density function of the χ2
ν random variable. Our interest here is to

refine the approximation of (10.11).
Using the relation gp1+2
(x) = �(p1/2)

2
�(p1/2+
)
x
gp1(x), we rewrite (10.11) as

P (N )[S(N ) ≤ x]
= Gp1(x) − 2

N

{πS,1

p1
+ πS,2 x

p1(p1 + 2)
+ πS,3 x2

p1(p1 + 2)(p1 + 4)

}
xgp1(x) + o(N−1)

= Gp1

[
x − 2

N

{πS,1

p1
+ πS,2 x

p1(p1 + 2)
+ πS,3 x2

p1(p1 + 2)(p1 + 4)

}
x
]

+ o(N−1) .

Then, one suggests to multiply S(N ) by a polynomial of degree 2 (not the constant
factor), i.e., construct a new test statistic, referred to as the Bartlett-type corrected
test statistic (Cordeiro and Ferrari [20]14), in the form of

S(N )
CF =

[
1 − 2

N

{πS,1

p1
+ πS,2S(N )

p1(p1 + 2)
+ πS,3(S(N ))2

p1(p1 + 2)(p1 + 4)

}]
S(N ) = P(N )

S (S(N )) (say).

In some contexts, the monotonicity of the transformation is a matter of concern.
The polynomialP(N )

S (x)may be not monotone in x ≥ 0, although this is presumably
asymptoticallymonotone increasing in x ∈ [0, O((log N )a)] for sufficiently large N ,
where a > 0. A simple idea to preserve the monotonicity is the perturbation adding
a term of order O(N−2), i.e.,

13 We stress that the classical likelihood-based parametric case is also allowed here. See Kakizawa
[45–49].
14 There were, at least for me, confusing expressions in Cordeiro and Ferrari [20, (1) and (2)];
indeed, using the relation 2gν+2(x) = Gν(x) − Gν+2(x), one can rearrange Harris’s [34, (3.2)]
asymptotic expansion for the distribution of the Rao test statistic SR, as follows:

Pr(SR ≤ x)

= Gm(x) + 1

24n
[A3Gm+6(x) + (A2 − 3A3)Gm+4(x) + (A1 − 2A2 + 3A3)Gm+2(x)

+(−A1 + A2 − A3)Gm(x)] + o(n−1)

= Gm(x) − 1

12n

[ A1 − A2 + A3

m
+ (A2 − 2A3)x

m(m + 2)
+ A3 x2

m(m + 2)(m + 4)

]
xgm(x) + o(n−1) .
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P(N )
S (x) + 1

4

∫ x

0

{ d

dt
P(N )

S (t) − 1
}2

dt

=
[
1 − 2

N

{πS,1

p1
+ πS,2x

p1(p1 + 2)
+ πS,3x2

p1(p1 + 2)(p1 + 4)

}

+ 1

N 2

{π2
S,1

p21
+ π2

S,24x
2

3p21(p1 + 2)2
+ π2

S,39x
4

5p21(p1 + 2)2(p1 + 4)2

+2
πS,1πS,2x

p21(p1 + 2)
+ 2

πS,1πS,3x2

p21(p1 + 2)(p1 + 4)
+ πS,2πS,33x3

p21(p1 + 2)2(p1 + 4)

}]
x

= P+(N )
S (x) (say)

is monotone increasing in x ≥ 0. The monotone Bartlett-type corrected test statistic
P+(N )

S (S(N )) was suggested by Kakizawa [42], although there were infinitely many
forms; Fujikoshi [28], Fujisawa [29], Iwashita [39], and Kakizawa [43].

Remark 10.4 The Bartlett-type corrected test statistic S(N )
CF is closely related to

Cornish–Fisher’s type expansion for the upper α-quantile of S(N ), denoted by
S(N )(α), as follows:

S(N )(α) =
[
1 + 2

N

{πS,1

p1
+ πS,2χ

2
p1(α)

p1(p1 + 2)
+ πS,3{χ2

p1(α)}2
p1(p1 + 2)(p1 + 4)

}]
χ2
p1(α) + o(N−1) .

Of course, for implementing the Bartlett-type correction S(N )
CF , three coefficients

πS,1, πS,2, and πS,3 have to be given explicitly. But, the closed-form expressions
are, in general, difficult to derive. Kojima and Kubokawa [51] applied the parametric
bootstrap for the hypothesis testing of regression coefficients in normal linear models
with general error covariancematrices (note that πS,3 = 0 due to the normal models),
including normal linear mixed models. Our proposal, which is applicable without
assuming (i) πS,3 = 0 or (ii) any structure of the parametric models (hence, the GEL
framework is allowed), is naturally introduced from a different perspective, i.e., it
can be shown that, in principle, these coefficients πS,1, πS,2, and πS,3 are associated
with the first three moments of S(N );

⎛
⎝

E(N )[S(N )] − p1
E(N )[(S(N ))2] − p1(p1 + 2)

E(N )[(S(N ))3] − p1(p1 + 2)(p1 + 4)

⎞
⎠

= 2

N

⎛
⎝

1 1 1
2(p1 + 2) 2(p1 + 4) 2(p1 + 6)

3(p1 + 2)(p1 + 4) 3(p1 + 4)(p1 + 6) 3(p1 + 6)(p1 + 8)

⎞
⎠
⎛
⎝

πS,1
πS,2
πS,3

⎞
⎠+ o(N−1) .

This fact is compartible with the bootstrap procedure, as follows: Let μ′
1 = p1,

μ′
2 = p1(p1 + 2), and μ′

3 = p1(p1 + 2)(p1 + 4). Note that the 
th raw moment of
the χ2

p1 random variable is given by μ′

 = 2
 �(p1/2+
)

�(p1/2)
.
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Step 1. Resample with replacement from a given observed sample {X1, . . . ,XN }
to obtain a bootstrap sample {X∗

1, . . . ,X
∗
N }. Then, compute a bootstrap

analogue S∗(N ), corresponding to S(N ).
Step 2. Repeat Step 1 (B times) to get S∗(N )

1 , . . . , S∗(N )
B , and compute the biases

of the first three moments;

δ∗
S,
 = 1

B

B∑
i=1

(S∗(N )
i )
 − μ′


 , 
 ∈ {1, 2, 3} .

Then, the three coefficients πS,1, πS,2, and πS,3 are estimated by

⎛
⎝

π∗
S,1

π∗
S,2

π∗
S,3

⎞
⎠ = N

2

⎛
⎜⎜⎜⎜⎝

(p1 + 4)(p1 + 6)

8
− p1 + 6

8

1

24
− (p1 + 2)(p1 + 6)

4

p1 + 5

4
− 1

12
(p1 + 2)(p1 + 4)

8
− p1 + 4

8

1

24

⎞
⎟⎟⎟⎟⎠

⎛
⎝

δ∗
S,1

δ∗
S,2

δ∗
S,3

⎞
⎠ .

Given a significance level α, the resulting bootstrap-based Bartlett-type corrected
test is to reject the null hypothesis if

[
1 − 2

N

{π∗
S,1

p1
+ π∗

S,2S
(N )

p1(p1 + 2)
+ π∗

S,3(S
(N ))2

p1(p1 + 2)(p1 + 4)

}]
S(N ) > χ2

p1(α) . (10.12)

Remark 10.5 (i)When πS,2 = πS,3 = 0, one can use, instead of the test (10.12), the
bootstrap-based Bartlett corrected test, described in the previous section, i.e., reject
the null hypothesis if (

1 − δ∗
S,1

p1

)
S(N ) > χ2

p1(α) .

On the other hand, for the case πS,3 = 0 (e.g., in the GEL framework, consider a
situation where EF [∏3

j=1 gβ j (X; θ0)] = 0 for every β1, β2, β3 ∈ {1, . . . , M} when
g(X; θ) is linear with respect to θ ), the resulting test, instead of the test (10.12), is
to reject the null hypothesis if

[
1 − 2

N

{ π̇∗
S,1

p1
+ π̇∗

S,2S
(N )

p1(p1 + 2)

}]
S(N ) > χ2

p1(α) ,

where

(
π̇∗
S,1

π̇∗
S,2

)
= N

2

⎛
⎜⎝

p1 + 4

2
− 1

4
− p1 + 2

2

1

4

⎞
⎟⎠
(

δ∗
S,1

δ∗
S,2

)
.
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(ii) However, the situation πS,2 = πS,3 = 0 or πS,3 = 0 would be rare, generally;
the test (10.12) is finally recommended if an N−1-accurate testing inference is needed.

To illustrate the bootstrap-based Bartlett-type corrected test (10.12), we conduct
some simulation experiments from the exponential regression model (independent
but non-identical case), as follows:

Yi ∼ Exp(ϑi ) ,

ϑi = exp(β1xi1 + · · · + βk xik + βk+1) , i ∈ {1, . . . , N } .

Letting k = 2, we want to test the null hypothesis H: β1 = β2 = 0 (i.e., the data are
generated according to iid exponential distribution). We set the N × 3 design matrix
asX = (xi j )i∈{1,...,N }, j∈{1,2,3} = (x1 x2 1N ) (in this case,we can test the equality of the
three groups), where x1 = (1�

n , 0�
n , 0�

n )� and x2 = (0�
n , 1�

n , 0�
n )� ∈ R

N (N = 3n),
with 1ν being the ν × 1 vector of ones. Table10.4 shows the simulation results
(from 10,000 replications) of the type I errors of the large sample Rao, LR, and
Wald tests, the (analytical) Bartlett-type corrected Rao, LR, and Wald tests, and the
bootstrap-based Bartlett-type corrected Rao, LR, and Wald tests, when k = 2 (we
set N ∈ {21, 45, 60} and B ∈ {100, 200, 500}). We observe that

• the large sample Rao test, with the rejection region Rao > χ2
k (α), tends to be

undersized, whereas the large sample LR andWald tests, with the rejection regions
LR > χ2

k (α) and Wald > χ2
k (α), respectively, are oversized;

• the type I errors of the analytical Bartlett-type corrections, with the rejection
regions RaoBart-type > χ2

k (α), LRBart > χ2
k (α), and WaldBart-type > χ2

k (α),
respectively, are close to the nominal size, and the bootstrap-based Bartlett-type
corrections work even for the small bootstrap iterations.

10.5 Concluding Remarks

To achieve an accurate testing inference for the nonparametric setup as well as the
parametric setup, we have mainly addressed two issues that have probably never
been addressed in the literature; (i) asymptotic expansions for the distributions of χ2

type test statistics from the modern GEL framework in the possibly over-identified
moment restrictions and (ii) a refinement of the distribution (10.11) by making use of
theBartlett-type adjustment. The null distribution of each adjusted test statistic can be
approximated as a central chi-squared distribution (up to order N−1). It is not difficult
to see that the limiting nonnull distribution (under a sequence of local alternatives)
is a noncentral chi-squared distribution. However, their higher-order local power
properties are, in general, not identical. Higher-order comparison of local powers of
several tests have been also an active area of research. We list below some important
results for the parametric likelihood-based tests that the author worked on (the cited
references are kept to a minimum).
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Table 10.4 The type I errors (10,000 replications) of Rao, RaoBart-type, Rao∗
Bart-type, LR, LRBart,

LR∗
Bart, Wald, WaldBart-type, and Wald∗

Bart-type tests (with significance levels α ∈ {0.1, 0.05, 0.01})
for testing H: β1 = β2 = 0 when N ∈ {21, 45, 60}

Rao Bartlett-type corrected Rao

Analytical Bootstrap-based

B = 100 200 500

N = 21 α = 0.1 0.0807 0.0971 0.0963 0.0941 0.0955

α = 0.05 0.0371 0.0465 0.0470 0.0455 0.0459

α = 0.01 0.0065 0.0100 0.0102 0.0100 0.0096

N = 45 α = 0.1 0.0906 0.0981 0.0977 0.0956 0.0958

α = 0.05 0.0438 0.0499 0.0480 0.0489 0.0498

α = 0.01 0.0068 0.0094 0.0109 0.0100 0.0094

N = 60 α = 0.1 0.0943 0.0991 0.0998 0.0990 0.1003

α = 0.05 0.0471 0.0510 0.0522 0.0513 0.0517

α = 0.01 0.0086 0.0105 0.0111 0.0099 0.0099

LR Bartlett corrected LR

Analytical Bootstrap-based

B = 100 200 500

N = 21 α = 0.1 0.1056 0.0987 0.1015 0.0977 0.0969

α = 0.05 0.0557 0.0498 0.0508 0.0498 0.0504

α = 0.01 0.0114 0.0097 0.0107 0.0108 0.0101

N = 45 α = 0.1 0.0994 0.0961 0.1003 0.0953 0.0973

α = 0.05 0.0508 0.0483 0.0486 0.0477 0.0471

α = 0.01 0.0107 0.0103 0.0100 0.0104 0.0103

N = 60 α = 0.1 0.1034 0.1015 0.1000 0.0999 0.0993

α = 0.05 0.0543 0.0534 0.0535 0.0524 0.0537

α = 0.01 0.0099 0.0092 0.0100 0.0098 0.0095

Wald Bartlett-type corrected Wald

Analytical Bootstrap-based

B = 100 200 500

N = 21 α = 0.1 0.1179 0.0975 0.0937 0.0965 0.0973

α = 0.05 0.0648 0.0480 0.0476 0.0453 0.0458

α = 0.01 0.0178 0.0090 0.0122 0.0100 0.0088

N = 45 α = 0.1 0.1033 0.0950 0.0951 0.0920 0.0957

α = 0.05 0.0560 0.0481 0.0495 0.0467 0.0476

α = 0.01 0.0129 0.0103 0.0133 0.0109 0.0094

N = 60 α = 0.1 0.1068 0.1004 0.1003 0.0997 0.1003

α = 0.05 0.0574 0.0529 0.0524 0.0520 0.0531

α = 0.01 0.0118 0.0096 0.0117 0.0100 0.0082

1. For the multivariate analysis, in addition to the LR test, Lawley–Hotelling’s (LH)
trace test and Bartlett–Nanda–Pillai’s (BNP) trace test are standard inmultivariate
regression or (G)MANOVA model. The local powers of three tests for a general
linear hypothesis under a sequence of contiguous alternatives were discussed in
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Anderson [1, p. 336].15 See also Kakizawa [44] for nonnormal case, including
the use of monotone Bartlett-type adjustment [42].

2. For a general parametric model, the local power analysis (up to order N−1/2)
among the LR, Rao, and Wald tests under a sequence of contiguous alterna-
tives dates back to Peers [61], Hayakawa [36], Harris and Peers [35] in the
absence/presence of the nuisance parameters, which indicates that there is, in
general, no uniform ordering (with regard to the point-by-point local power)
among the LR, Rao, and Wald tests without adjustment.16

3. One thus needs to adjust the tests in a meaningful way or use some alternative
criterion to the point-by-point local power. We refer the readers to Mukerjee
[55] for a comprehensive literature review on this subject till the early 1990s.
As a unified treatment about the likelihood-based testing theory for a general
statistical model, including iid/non-identical models or Gaussian stationary time
series models, Taniguchi [72] explicitly derived N−1-asymptotic expansion for
the distribution (under a sequence of contiguous alternatives) of a broad class of
test statistics about a scalar parameter of interest. Professor Taniguchi’s [72] main
contribution was the introduction of the Bartlett-type adjustment (T approach) in
order to make N−1-local power comparison of tests. According to Taniguchi’s
N−1-asymptotic expansion, Rao and Mukerjee [66] further posed the issue of a
comparative power study of various Bartlett-type adjustments.

4. The works in these directions have been extended to a subvector hypothesis even
in the presence of the nuisance parameters, including N−1/2-sensitivity analysis
for the change of the nuisance parameters, N−1/2-local power identity in a class
of (adjusted) tests, and N−1-average power comparison. See Kakizawa [45–49]
and the references cited therein.

10.6 Technical Details

In this section, we prove Lemma10.1 and derive an asymptotic expansion for the
distribution of a class of the test statistics, given in (10.8). For this purpose, let

Z (N )
j1

= N 1/2

(N )
j1

(η0) , Z (N )
j1 j2

= N 1/2{
(N )
j1 j2

(η0) − ν j1 j2} ,

Z (N )ρ

j1··· jR = N 1/2{
(N )ρ

j1··· jR (η0) − νρ
j1··· jR } , R ∈ {3, 4} .

15 A seminal work in this area is an unpublished working paper of Rothenberg [68], cited by
Anderson’s book (see also Fujikoshi [27]); it would, however, not available almost anywhere from
the world.
16 Similar conclusion holds for the modern GEL framework; indeed, Bravo [10] explicitly derived
N−1/2-asymptotic expansion for the distribution (under a sequence of contiguous alternatives) of a
class of ECR test statistics for testing a simple full vector parameter hypothesis in the just-identified
moment restrictions. To the best of our knowledge, the literature is, however, little.



10 Asymptotic Expansions for Several GEL-Based Test Statistics 271

Also, we denote by [ν j j ′ ] j, j ′∈{1,...,p+M} and [νrr ′
(22)]r,r ′∈{p1+1,...,p+M} the inverse of the

matrix ν and ν(22), respectively. The dot notation is introduced for simplicity, e.g.,
|#(N )•···•| = ∑p+M

j1,..., jR=1 |#(N )
j1··· jR |.

10.6.1 Some Auxiliary Lemmas

Before provingLemma10.1 (Sect. 10.6.2) and then deriving an asymptotic expansion
(Sect. 10.6.3) for the distribution of a class of the test statistics, given in (10.8),
this subsection collects several lemmas. To the best of our knowledge, the related
mathematical issues in the (G)EL framework are found in Bravo [11] and Ragusa
[64].

The following fundamental results (Lemmas10.2–10.6) are indispensable, as in
the case of M-estimators for the parametric models (see, e.g., Bhattacharya and
Ghosh [6], Taniguchi [71], and Kakizawa [45–49]).

Lemma 10.2 Suppose that EF [supθ∈� ||g(X, θ)||Q] < ∞ for some Q > 4. Then,

P (N )
F

[
max

i∈{1,...,N } supθ∈�

||g(Xi , θ)|| >
1

2
N 1/2−ξ0

]
= o(N−1)

for any constant ξ0 ∈ (0, 1/2 − 2/Q).

Proof Using

E (N )
F

[
max

i∈{1,...,N } supθ∈�

||g(Xi , θ)||Q
]

≤ NEF

[
sup
θ∈�

||g(X, θ)||Q
]

= NK� (say),

Markov’s inequality yields

P (N )
F

[
max

i∈{1,...,N } supθ∈�

||g(Xi , θ)|| > 2N 1/2−ξ0

]
≤ 2−QN Q(ξ0−1/2)+1K� .

�

Remark 10.6 Suppose that assumptions (C0)–(C2) hold. If the event

X(N )
0 =

{
max

i∈{1,...,N } sup
λ∈BM (0M :2N−1/2 log N ),θ∈�

|λ�g(Xi , θ)| ≤ N−ξ0 log N

}

occurs,17 then,

17 Note that

1 − P(N )
F (X(N )

0 ) ≤ P(N )
F

[
max

i∈{1,...,N } supθ∈�

||g(Xi , θ)|| >
1

2
N 1/2−ξ0

]
= o(N−1)
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• the GEL objective function 
(N )ρ(η) is four times continuously differentiable on
� × BM(0M : 2N−1/2 log N ) (say),18 and

• there exists a constant cρ = cρ,� > 0 (independent of N ), such that, for all ηI =
(θ�

I ,λ�
I )� and ηII = (θ�

II ,λ
�
II )

�; ||θ# − θ0|| ≤ ε (see the comment in (C2)) and
||λ#|| ≤ N−1/2 log N (N ≥ N0,ρ),

|
(N )ρ
•••• (ηI) − 
(N )ρ

•••• (ηII)| ≤ cρ ||ηI − ηII||
5∑

v=1

(|Z (N )
Bv | + μBv ) ,

where μBv = EF [Bv(X)] and Z (N )
Bv = N−1∑N

i=1{Bv(Xi ) − μBv }.
Lemma 10.3 Suppose that assumptions (C0)–(C2) hold with Q ≥ 16. Then,

(i) P(N )
F

[ 5∑
v=1

|Z (N )
Bv | > 1

]
= o(N−1) ;

(ii) P(N )
F

[|Z (N )• | + |Z (N )•• | + |Z (N )ρ••• | + |Z (N )ρ•••• | > d1,ρ(log N )1/2
] = o(N−1(log N )−2) ,

where d1,ρ = d1,ρ,θ0 > 0 is a constant (independent of N );
(iii) P (N )

F [X(N )ρ] = 1 − o(N−1), where X(N )ρ = X(N )
0

⋂X(N )ρ
0 , with

X(N )ρ
0 =

{ 5∑
v=1

|Z (N )
Bv | ≤ 1 and

|Z (N )
• | + |Z (N )

•• | + |Z (N )ρ
••• | + |Z (N )ρ

•••• | ≤ d1,ρ(log N )1/2
}

.

Proof Since Bv(X), v ∈ {1, . . . , 5}, have the sth absolute moment for s ∈ (2, Q/5],
Markov’s and Rosenthal’s inequalities yield

P (N )
F

[|Z (N )
Bv | > 1

] ≤ O(N−s/2) = o(N−1) .

On the other hand, for the proof of (ii), we have only to apply the moderate deviation
estimate (we set t = 4); see, e.g., Bhattacharya and Rao [7, Corollary 17.12]: If
ψ(X, θ0), taking values in R, satisfies

EF [ψ(X, θ0)] = 0, VarF [ψ(X, θ0)] > 0 , and EF [|ψ(X, θ0)|t ] < ∞

for some integer t ≥ 3, then,

(see Lemma10.2).
18 There exists an integer N0,ρ such that ±N−ξ0 log N ∈ Nρ (⊂ Vρ ) for all N ≥ N0,ρ .
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P (N )
F

[ 1

N 1/2

∣∣∣
N∑
i=1

ψ(Xi , θ0)

∣∣∣ > Var1/2F [ψ(X, θ0)]{(t − 1) log N }1/2
]

= o(N−(t−2)/2(log N )−t/2)

(this estimate remains valid even if EF [ψ(X, θ0)] = VarF [ψ(X, θ0)] = 0, since
ψ(X, θ0) is then degenerate, i.e., PF [ψ(X, θ0) = 0] = 1). �

Recall that we write Y (N )=o(N )
F (q1, q2), if P

(N )
F [|Y (N )| ≥ γ (log N )q2 ] = o(N−q1)

for some constants γ > 0 and q1, q2 ≥ 0, independent of N (see (10.7)).

Lemma 10.4 Suppose that assumptions (C0)–(C3) hold with Q ≥ 16. Then, there
exist sequences of statistics {̂η(N )ρ}N≥1 and {̃η(N )ρ

(2) }N≥1, such that

P (N )
F

[ 4⋂
i=1

X(N )ρ

i

]
= 1 − o(N−1) , (10.13)

with

X(N )ρ
1 =

{
||̂η(N )ρ − η0|| < dρ

(log N )1/2

N 1/2 , η̂(N )ρ solves Ẑ(N )ρ = 0p+M

}
,

X(N )ρ
2 =

{
||̃η(N )ρ − η0|| < dρ

(log N )1/2

N 1/2 , η̃(N )ρ =
( θ (1)0

η̃
(N )ρ

(2)

)
solves Z̃(N )ρ

(2) = 0p2+M

}
,

X(N )ρ
3 =

{
L̂(N )ρ is nonsingular, ||(L̂(N )ρ)−1|| < 2||ν−1||

}
,

X(N )ρ
4 =

{
L̃(N )ρ is nonsingular, ||(L̃(N )ρ)−1|| < 2||ν−1||

}
,

where dρ = 2d1,ρ max(||ν−1||, ||ν−1
(22)||); besides, both η̂(N )ρ and η̃

(N )ρ

(2) admit the
stochastic expansions, as follows:

η(N )ρ = η0(N ) + η1(N )ρ

N 1/2
+ η2(N )ρ

N
+ 1

N 3/2
o(N )
F (1, 2) (10.14)

and

ζ
(N )ρ

(2) = ζ
0(N )

(2) + ζ
1(N )ρ

(2)

N 1/2
+ ζ

2(N )ρ

(2)

N
+ 1

N 3/2
o(N )
F (1, 2) (10.15)

(wewrite η(N )ρ = N 1/2(̂η(N )ρ − η0) and ζ
(N )ρ

(2) = N 1/2(̃η
(N )ρ

(2) − η(2)0), respectively),
where the j th elements of η0(N ) and ηi(N )ρ , i ∈ {1, 2}, are given by
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η
0(N )
j = −ν j j ′ Z (N )

j ′ , η
1(N )ρ

j = −ν j j ′
(
Z (N )

j ′ j2η
0(N )
j2

+ 1

2
νρ

j ′ j2 j3

3∏
i=2

η
0(N )
ji

)
,

η
2(N )ρ

j = −ν j j ′
(
Z (N )

j ′ j2η
1(N )ρ

j2
+ νρ

j ′ j2 j3η
1(N )ρ

j2
η
0(N )
j3

+ 1

2
Z (N )ρ

j ′ j2 j3

3∏
i=2

η
0(N )
ji

+ 1

6
νρ

j ′ j2 j3 j4

4∏
i=2

η
0(N )
ji

)
,

whereas the rth elements of ζ 0(N )

(2) and ζ
i(N )ρ

(2) , i ∈ {1, 2}, are given by

ζ 0(N )
r = −νrr

′
(22)Z

(N )
r ′ , ζ 1(N )ρ

r = −νrr
′

(22)

(
Z (N )
r ′r2 ζ

0(N )
r2 + 1

2
νρ

r ′r2r3

3∏
i=2

ζ 0(N )
ri

)
,

ζ 2(N )ρ
r = −νrr

′
(22)

(
Z (N )
r ′r2 ζ

1(N )ρ
r2 + νρ

r ′r2r3ζ
1(N )ρ
r2 ζ 0(N )

r3

+1

2
Z (N )ρ

r ′r2r3

3∏
i=2

ζ 0(N )
ri + 1

6
νρ

r ′r2r3r4

4∏
i=2

ζ 0(N )
ri

)
.

Proof We first prove (10.13) by using the argument of Bhattacharya and Ghosh [6],
except for the use of Lemma10.3, and then derive the stochastic expansion (10.15)
(since we can obtain (10.14) analogously, we omit its detail, to save space) by the
successive substitution as in Taniguchi [71, p. 76].

Proof of (10.13): Consider the eventX(N )ρ (see Remark 10.6 and Lemma 10.3). It
suffices to prove that X(N )ρ ⊂ ⋂4

i=1 X(N )ρ

i ; (10.13) is concluded immediately from
Lemma 10.3(iii).

With regard to the p + M equations 

(N )ρ

j (η) = 0, j ∈ {1, . . . , p + M}, we
rewrite η = η0 − ν−1ψ (N )ρ(η), where the j th element of ψ (N )ρ(η) is given by

ψ
(N )ρ

j (η) = 1

N 1/2
Z (N )

j + 1

N 1/2
Z (N )

j j2
[η − η0] j2 + 1

2
νρ

j j2 j3

3∏
i=2

[η − η0] ji

+ 1

2N 1/2
Z (N )ρ

j j2 j3

3∏
i=2

[η − η0] ji + 1

6
νρ

j j2 j3 j4

4∏
i=2

[η − η0] ji + R(N )ρ

j (η) ,

and

R(N )ρ

j (η) = 1

6N 1/2
Z (N )ρ

j j2 j3 j4

4∏
i=2

[η − η0] ji

+1

2

4∏
i=2

[η − η0] ji
∫ 1

0
(1 − u)2[
(N )ρ

j j2 j3 j4
{η0 + u(η − η0)} − 


(N )ρ

j j2 j3 j4
] du ,

with
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|R(N )ρ
• (η)| ≤ 1

6
||η − η0||3

[ 1

N 1/2
|Z (N )ρ

•••• | + cρ ||η − η0||
5∑

v=1

(|Z (N )
Bv | + μBv )

]
.

Let ε(N )ρ = dρN−1/2(log N )1/2, where dρ = 2d1,ρ max(||ν−1||, ||ν−1
(22)||). There

exists an integer N1,ρ = N1,ρ,θ0 , such that N−1/2(log N )1/2 < min(ε/dρ, d1,ρ/Dρ)

for all N ≥ N1,ρ , where

Dρ = dρd1,ρ + d2
ρ(|νρ•••| + d1,ρ) + d3

ρ(|νρ••••| + d1,ρ) + cρd
4
ρ

(
1 +

5∑
v=1

μBv

)
.

On the event X(N )ρ (N ≥ max(N0,ρ, N1,ρ, ed
2
ρ )), it is easy to see that

sup
||η−η0||≤ε(N )ρ

||ν−1ψ (N )ρ(η)|| ≤ ||ν−1|| sup
||η−η0||≤ε(N )ρ

|ψ(N )ρ
• (η)|

≤ ||ν−1||
( log N

N

)1/2[
d1,ρ + Dρ

( log N
N

)1/2]

< ε(N )ρ ,

hence, the equation η = η0 − ν−1ψ (N )ρ(η), equivalently, the GEL first-order con-
dition Z(N )ρ(η) = 0p+M , has a unique root η = η̇(N )ρ lying in Bp+M(η0 : ε(N )ρ)

(apply the Brower fixed point theorem). In the exact same way (except for
η = (θ�

(1)0, η
�
(2))

�), with regard to the p2 + M equations 

(N )ρ
r (η) = 0, r ∈ {p1 +

1, . . . , p + M}, we rewrite η(2) = (θ�
(2)0, 0

�
M)� − ν−1

(22)ψ
(N )ρ

(2) (η), where ψ
(N )ρ

(2) (η) =
[ψ(N )ρ

r (η)]r∈{p1+1,...,p+M}; then, on the event X(N )ρ (N ≥ max(N0,ρ, N1,ρ, ed
2
ρ )),

sup
θ(1)=θ(1)0 , ||η(2)−η(2)0||≤ε(N )ρ

||ν−1
(22)ψ

(N )ρ

(2) (η)||

≤ ||ν−1
(22)|| sup

θ(1)=θ(1)0 , ||η(2)−η(2)0||≤ε(N )ρ

p+M∑
r=p1+1

|ψ(N )ρ
r (η)| < ε(N )ρ,

which implies that the (restricted)GELfirst-order conditionZ(N )ρ

(2) (η) = 0p2+M under

the constraint η = (θ�
(1)0, η

�
(2))

� has a unique root η = (θ�
(1)0, (η̈

(N )ρ

(2) )�)� lying in

Bp+M(η0 : ε(N )ρ). Thus, we have X(N )ρ ⊂ X(N )ρ
1

⋂X(N )ρ
2 .

Furthermore, we rewrite L(N )ρ(η) = ν + 
(N )ρ(η), where the ( j, j ′)th element
of 
(N )ρ(η) is given by

ψ
(N )ρ

j j ′ (η) = 1

N 1/2
Z (N )

j j ′ + νρ
j j ′ j3[η − η0] j3 + 1

N 1/2
Z (N )ρ

j j ′ j3 [η − η0] j3

+1

2
νρ

j j ′ j3 j4

4∏
i=3

[η − η0] ji + R(N )ρ

j j ′ (η) ,
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with

|R(N )ρ
•• (η)| ≤ 1

2
||η − η0||2

[ 1

N 1/2
|Z (N )ρ

•••• | + cρ ||η − η0||
5∑

v=1

(|Z (N )
Bv | + μBv )

]
.

On the event X(N )ρ (N ≥ max(N0,ρ, N1,ρ, ed
2
ρ )), it is easy to see that

sup
||η−η0||≤ε(N )ρ

||
(N )ρ(η)|| ≤ sup
||η−η0||≤ε(N )ρ

p+M∑
j j ′=1

|ρψ(N )
j j ′ (η)|

≤ Dρ

dρ

( log N
N

)1/2
<

1

2||ν−1|| ,

hence,19

inf
||η−η0||≤ε(N )ρ

ρ
↑
M+1{L(N )ρ(η)} >

1

2||ν−1|| ,

sup
||η−η0||≤ε(N )ρ

ρ
↑
M{L(N )ρ(η)} < − 1

2||ν−1||

(it turns out that, uniformly in η; ||η − η0|| ≤ ε(N )ρ , L(N )ρ(η) is nonsingular, with
||{L(N )ρ(η)}−1|| < 2||ν−1||). Thus, we also have X(N )ρ ⊂ X(N )ρ

3

⋂X(N )ρ
4 .

Proof of (10.15): We start with

ζ (N )ρ
r = ζ 0(N )

r − νrr
′

(22)

[ 1

N 1/2

(
Z (N )
r ′r2 ζ

(N )ρ
r2 + 1

2
νρ

r ′r2r3

3∏
i=2

ζ (N )ρ
ri

)

+ 1

N

(1
2
Z (N )ρ

r ′r2r3

3∏
i=2

ζ (N )ρ
ri + 1

6
νρ

r ′r2r3r4

4∏
i=2

ζ (N )ρ
ri

)
+ 1

N 3/2
o(N )
F (1, 2)

]

(10.16)

for r ∈ {p1 + 1, . . . , M}.
By (10.16), ζ (N )ρ

(2) = ζ
0(N )

(2) + N−1/2e0(N )ρ

(2) , where e0(N )ρ

(2) = o(N )
F (1, 1).

19 Apply the fact (10.1) to get

ρ
↑
M+1(ν + 
(N )ρ(η)) ≥ ρ

↑
M+1(ν) − ||
(N )ρ(η)|| ≥ 1

||ν−1|| − ||
(N )ρ(η)|| >
1

2||ν−1|| ,

ρ
↑
M (ν + 
(N )ρ(η)) ≤ ρ

↑
M (ν) + ||
(N )ρ(η)|| ≤ − 1

||ν−1|| + ||
(N )ρ(η)|| < − 1

2||ν−1|| ,

since min{ρ↑
M+1(ν),−ρ

↑
M (ν)} = 1/||ν−1|| (see (10.6)).
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Next, by substituting η̃
(N )ρ

(2) = η(2)0 + N−1/2ζ
0(N )

(2) + N−1e0(N )ρ

(2) for the N−1/2-

terms in the right-hand side of (10.16), we have ζ
(N )ρ

(2) = ζ
0(N )

(2) + N−1/2ζ
1(N )ρ

(2) +
N−1e1(N )ρ

(2) , where e1(N )ρ

(2) = o(N )
F (1, 3/2).

Finally, by substituting η̃
(N )ρ

(2) = η(2)0 + N−1/2ζ
0(N )

(2) + N−1ζ
1(N )ρ

(2) + N−3/2e1(N )ρ

(2)

(̃η(N )ρ

(2) = η(2)0 + N−1/2ζ
0(N )

(2) + N−1e0(N )ρ

(2) ) for the N−1/2-terms (N−1-terms) in

the right-hand side of (10.16), we have ζ
(N )ρ

(2) = ζ
0(N )

(2) +∑2
i=1 N

−i/2ζ
i(N )ρ

(2) +
N−3/2e2(N )ρ

(2) , where e2(N )ρ

(2) = o(N )
F (1, 2). �

We can connect η̂(N )ρ to η̃(N )ρ , as follows: Write δ(N )ρ = N 1/2(̂η(N )ρ − η̃(N )ρ),
where the j th element of δ(N )ρ is denoted by δ

(N )ρ

j .

Lemma 10.5 Suppose that assumptions (C0)–(C3) hold with Q ≥ 16. Then,

δ(N )ρ = δ0(N )ρ + 1

N 1/2
δ1(N )ρ + 1

N
δ2(N )ρ + 1

N 3/2
o(N )
F (1, 2) , (10.17)

where the j th elements of δi(N )ρ , i ∈ {0, 1, 2}, are given by

δ
0(N )ρ

j = −
[
(L̃(N )ρ)−1

(
Z̃(N )ρ

(1)
0p2+M

)]

j

= −[G̃(N )ρ
(L̃(N )ρ

(11·2))
−1Z̃(N )ρ

(1) ] j ,

δ
1(N )ρ

j = −1

2
(
̃(N )ρ) j j

′

̃

(N )ρ

j ′ j2 j3

3∏
i=2

δ
0(N )ρ

ji
,

δ
2(N )ρ

j = −(
̃(N )ρ) j j
′(


̃
(N )ρ

j ′ j2 j3δ
1(N )ρ

j2
δ
0(N )ρ

j3
+ 1

6

̃

(N )ρ

j ′ j2 j3 j4

4∏
i=2

δ
0(N )ρ

ji

)
.

Proof Expanding 
̂
(N )ρ

j around η = η̃(N )ρ , we have, for j ∈ {1, . . . , p + M},

0 = N 1/2
̂
(N )ρ

j

= N 1/2
̃
(N )ρ

j + 
̃
(N )ρ

j j2
δ

(N )ρ

j2
+ 1

2N 1/2

̃

(N )ρ

j j2 j3

3∏
i=2

δ
(N )ρ

ji
+ 1

6N

̃

(N )ρ

j j2 j3 j4

4∏
i=2

δ
(N )ρ

ji

+ 1

N 3/2
o(N )
F (1, 2) ,

equivalently,

−
̃
(N )ρ

j j2
δ

(N )ρ

j2
= χ{ j=a} Z̃ (N )ρ

a + 1

2N 1/2

̃

(N )ρ

j j2 j3

3∏
i=2

δ
(N )ρ

ji
+ 1

6N

̃

(N )ρ

j j2 j3 j4

4∏
i=2

δ
(N )ρ

ji

+ 1

N 3/2
o(N )
F (1, 2) ,
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where the indicator function χ{·} takes on a value of 1 if the expression inside braces
is true, and 0 otherwise. Stating with

δ
(N )ρ

j = δ
0(N )ρ

j − (
̃(N )ρ) j j
′[ 1

2N 1/2

̃

(N )ρ

j ′ j2 j3

3∏
i=2

δ
(N )ρ

ji
+ 1

6N

̃

(N )ρ

j ′ j2 j3 j4

4∏
i=2

δ
(N )ρ

ji

+ 1

N 3/2
o(N )
F (1, 2)

]

for j ∈ {1, . . . , p + M}, (10.17) is concluded in the sameway as the proof of (10.15),
except for the repeatedly use of

p1∑
a=1

|Z̃ (N )ρ
a | = o(N )

F (1, 1/2) , ||(L̃(N )ρ)−1|| + |
̃(N )ρ
••• | + |
̃(N )ρ

•••• | = o(N )
F (1, 0)

(10.18)
(see Lemmas10.3, 10.4, and 10.6). �

Lemma 10.6 Suppose that assumptions (C0)–(C3) hold with Q ≥ 16. Then,

(i) Z̃ (N )ρ
a = Z0(N )

a + 1

N 1/2
Z1(N )ρ
a + 1

N
Z2(N )ρ
a + 1

N 3/2
o(N )
F (1, 2) ;

(i i) 
̃
(N )ρ

j j ′ = ν j j ′ + 1

N 1/2
Z0(N )ρ

j j ′ + 1

N
Z1(N )ρ

j j ′ + 1

N 3/2
o(N )
F (1, 3/2) ;

(i i i) 
̃
(N )ρ

j j ′ j ′′ = νρ
j j ′ j ′′ + 1

N 1/2
(Z (N )ρ

j j ′ j ′′ + νρ
j j ′ j ′′r4ζ

0(N )
r4 ) + 1

N
o(N )
F (1, 1) ;

(iv) 
̃
(N )ρ

j j ′ j ′′ j ′′′ = νρ
j j ′ j ′′ j ′′′ + 1

N 1/2
o(N )
F (1, 1/2) ,

where

Z0(N )
a = G ja Z

(N )
j = [G�Z(N )]a ,

Z1(N )ρ
a = G ja

(
Z (N )

jr2
ζ 0(N )
r2 + 1

2
νρ

jr2r3

3∏
i=2

ζ 0(N )
ri

)
,

Z2(N )ρ
a = G ja

(
Z (N )

jr2
ζ 1(N )ρ
r2 + νρ

jr2r3ζ
1(N )ρ
r2 ζ 0(N )

r3

+1

2
Z (N )ρ

jr2r3

3∏
i=2

ζ 0(N )
ri + 1

6
νρ

jr2r3r4

4∏
i=2

ζ 0(N )
ri

)
,

Z0(N )ρ

j j ′ = Z (N )
j j ′ + νρ

j j ′r3ζ
0(N )
r3 ,

Z1(N )ρ

j j ′ = νρ
j j ′r3ζ

1(N )ρ
r3 + Z (N )ρ

j j ′r3 ζ 0(N )
r3 + 1

2
νρ

j j ′r3r4

4∏
i=3

ζ 0(N )
ri .

Furthermore,
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(v) (
̃(N )ρ) j j
′

= ν j j ′ + ν jk
[
− 1

N 1/2
Z0(N )ρ

kk ′ + 1

N
(−Z1(N )ρ

kk1
+ Z0(N )ρ

kk1
νk1k2 Z0(N )ρ

k ′k2 )
]
ν j ′k ′

+ 1

N 3/2
o(N )
F (1, 3/2) .

Proof Expanding 
̃
(N )ρ
a and 
̃

(N )ρ

j1··· jR , R ∈ {2, 3, 4}, around η = η0, we can see that

N 1/2
̃(N )ρ
a = Z (N )

a +
(
νar2 + 1

N 1/2
Z (N )
ar2

)
η(N )ρ
r2

+ 1

2N 1/2

(
νρ

ar2r3 + 1

N 1/2
Z (N )ρ
ar2r3

) 3∏
i=2

η(N )ρ
ri

+ 1

6N
νρ

ar2r3r4

4∏
i=2

η(N )ρ
ri + 1

N 3/2
o(N )
F (1, 2) ,


̃
(N )ρ

j j ′ = ν j j ′ + 1

N 1/2
Z (N )

j j ′ + 1

N 1/2

(
νρ

j j ′r3η
(N )ρ
r3 + 1

N 1/2
Z (N )ρ

j j ′r3 η(N )ρ
r3

)

+ 1

2N
νρ

j j ′r3r4

4∏
i=3

η(N )ρ
ri + 1

N 3/2
o(N )
F (1, 3/2) ,


̃
(N )ρ

j j ′ j ′′ = νρ
j j ′ j ′′ + 1

N 1/2
Z (N )ρ

j j ′ j ′′ + 1

N 1/2
νρ

j j ′ j ′′r4η
(N )ρ
r4 + 1

N
o(N )
F (1, 1) ,


̃
(N )ρ

j j ′ j ′′ j ′′′ = νρ
j j ′ j ′′ j ′′′ + 1

N 1/2
o(N )
F (1, 1/2) .

Using (10.15), (i)–(iv) follow from Lemma10.3(ii).
It remains to prove (v). For this, with Zi(N )ρ = [Zi(N )ρ

k1k2
]k1,k2∈{1,...,p+M}, i ∈ {0, 1},

we rewrite (ii) in the matrix from of L̃(N )ρ = ν(Ip+M + �(N )ρ), where

�(N )ρ = 1

N 1/2
ν−1Z0(N )ρ + 1

N
ν−1Z1(N )ρ + 1

N 3/2
oF (1, 3/2) .

Using {Ip+M − �(N )ρ + (�(N )ρ)2}(Ip+M + �(N )ρ) = Ip+M + (�(N )ρ)3, together
with Lemma10.3(ii), we have

(L̃(N )ρ)−1 = {Ip+M − �(N )ρ + (�(N )ρ)2}ν−1 − (�(N )ρ)3(L̃(N )ρ)−1

= ν−1 + ν−1
[
− 1

N 1/2
Z0(N )ρ + 1

N
(−Z1(N )ρ + Z0(N )ρν−1Z0(N )ρ)

]
ν−1

+ 1

N 3/2
o(N )
F (1, 3/2) .

�
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10.6.2 Proof of Lemma 10.1

The stochastic expansions of W(N )ρ and grad(N )ρ follow from (10.17) and (10.18).
Also, expanding −2N 
̂(N )ρ around η = η̃(N )ρ , we have

ELR(N )ρ

= −2N 1/2
̃(N )ρ
a δ(N )ρ

a − 
̃
(N )ρ

j1 j2

2∏
i=1

δ
(N )ρ

ji
− 1

3N 1/2

̃

(N )ρ

j1 j2 j3

3∏
i=1

δ
(N )ρ

ji

− 1

12N

̃

(N )ρ

j1 j2 j3 j4

4∏
i=1

δ
(N )ρ

ji
+ 1

N 3/2
o(N )
F (1, 5/2)

= 
̃
(N )ρ

j1 j2
δ
0(N )ρ

j1
δ
0(N )ρ

j2
− 1

3N 1/2 ρ
̃
(N )ρ

j1 j2 j3

3∏
i=1

δ
0(N )ρ

ji

+ 1

N

{1
4


̃
(N )ρ

j1 j2 j
(
̃(N )ρ) j j

′

̃

(N )ρ

j3 j4 j ′ − 1

12

̃

(N )ρ

j1 j2 j3 j4

} 4∏
i=1

δ
0(N )ρ

ji
+ 1

N 3/2
o(N )
F (1, 5/2) ,

using (10.17), (10.18), and L̃(N )ρ

(11·2) = (G̃(N )ρ
)�L̃(N )ρG̃(N )ρ

.

It remains to prove the stochastic expansions of S(N )ρ
† andW(N )ρ

† . Expanding 
̂
(N )ρ

j j ′

around η = η̃(N )ρ , we have


̂
(N )ρ

j j ′

= 
̃
(N )ρ

j j ′ + 1

N 1/2

̃

(N )ρ

j j ′ j3 δ
(N )ρ

j3
+ 1

2N

̃

(N )ρ

j j ′ j3 j4

4∏
i=3

δ
(N )ρ

ji
+ 1

N 3/2
o(N )
F (1, 3/2)

= 
̃
(N )ρ

j j ′ + 1

N 1/2

̃

(N )ρ

j j ′ j3 δ
0(N )ρ

j3
+ 1

2N
{−
̃

(N )ρ

k j j ′ (
̃(N )ρ)kk
′

̃

(N )ρ

k ′ j3 j4 + 
̃
(N )ρ

j j ′ j3 j4}
4∏

i=3

δ
0(N )ρ

ji

+ 1

N 3/2
o(N )
F (1, 3/2) ,

using (10.17) and (10.18). Then, we have L̂(N )ρ = L̃(N )ρ(Ip+M + D(N )ρ), where the
( j, j ′)th element of D(N )ρ is given by

D(N )ρ

j j ′ = 1

N 1/2
(
̃(N )ρ) jk

′′

̃

(N )ρ

k ′′ j ′ j3δ
0(N )ρ

j3

+ 1

2N
(
̃(N )ρ) jk

′′ {−
̃
(N )ρ

kk ′′ j ′(
̃
(N )ρ)kk

′

̃

(N )ρ

k ′ j3 j4 + 
̃
(N )ρ

k ′′ j ′ j3 j4}
4∏

i=3

δ
0(N )ρ

ji

+ 1

N 3/2
o(N )
F (1, 3/2) .
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Using {Ip+M − D(N )ρ + (D(N )ρ)2}(Ip+M + D(N )ρ) = Ip+M + (D(N )ρ)3, we have

(L̂(N )ρ)−1 = {Ip+M − D(N )ρ + (D(N )ρ)2}(L̃(N )ρ)−1 − (D(N )ρ)3(L̂(N )ρ)−1 ,

hence,

(
̂
(N )ρ

(11·2))
ab = the (a, b)th element of

[
(Ip1 Op1,p2+M)(L̂(N )ρ)−1

(
Ip1

Op2+M,p1

)]−1

= (
̃
(N )ρ

(11·2))
ab − 1

N 1/2

̃

(N )ρ

j1 j2 j3
G̃(N )ρ

j1a′ G̃(N )ρ

j2b′ (
̃
(N )ρ

(11·2))
a′a(
̃

(N )ρ

(11·2))
b′bδ

0(N )ρ

j3

+ 1

N

[1
2

{
̃(N )ρ

k j1 j2
(
̃(N )ρ)kk

′

̃

(N )ρ

k ′ j3 j4 − 
̃
(N )ρ

j1 j2 j3 j4
} + 
̃

(N )ρ

k j1 j3
(
̃(N )ρ)kk

′

̃

(N )ρ

k ′ j2 j4

]

G̃(N )ρ

j1a′ G̃(N )ρ

j2b′ (
̃
(N )ρ

(11·2))
a′a(
̃

(N )ρ

(11·2))
b′b

4∏
i=3

δ
0(N )ρ

ji

+ 1

N 3/2
o(N )
F (1, 3/2) .

Furthermore, we obtain


̂
(N )ρ

(11·2)ab

= 
̃
(N )ρ

(11·2)ab + 1

N 1/2

̃

(N )ρ

j1 j2 j3
G̃(N )ρ

j1a
G̃(N )ρ

j2b
δ
0(N )ρ

j3

+ 1

N

[1
2

{−
̃
(N )ρ

k j1 j2
(
̃(N )ρ)kk

′

̃

(N )ρ

k ′ j3 j4 + 
̃
(N )ρ

j1 j2 j3 j4
} − 
̃

(N )ρ

k j1 j3
(
̃(N )ρ)kk

′

̃

(N )ρ

k ′ j2 j4

]

G̃(N )ρ

j1a
G̃(N )ρ

j2b

4∏
i=3

δ
0(N )ρ

ji

+ 1

N
(
̃

(N )ρ

j1 j2 j3
G̃(N )ρ

j2a
δ
0(N )ρ

j3
)G̃(N )ρ

j1b′ (
̃
(N )ρ

(11·2))
b′b′′G̃(N )ρ

k1b′′ (
̃
(N )ρ

k1k2k3
G̃(N )ρ

k2b
δ
0(N )ρ

k3
)

+ 1

N 3/2
o(N )
F (1, 3/2) .

It follows that

S(N )ρ
† = Z̃ (N )ρ

a (
̃
(N )ρ

(11·2))
ab Z̃ (N )ρ

b − 1

N 1/2

̃

(N )ρ

j1 j2 j3

3∏
i=1

δ
0(N )ρ

ji

+ 1

N

{3
2


̃
(N )ρ

j j1 j2
(
̃(N )ρ) j j

′

̃

(N )ρ

j ′ j3 j4 − 1

2

̃

(N )ρ

j1 j2 j3 j4

} 4∏
i=1

δ
0(N )ρ

ji

+ 1

N 3/2
o(N )
F (1, 5/2) ,

W(N )ρ
† = W(N )ρ
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+ 1

N 1/2

̃

(N )ρ

j1 j2 j3

( 2∏
i=1

δ
(N )ρ

ji

)
δ
0(N )ρ

j3
+ 1

N

[

̃

(N )ρ

j j1 j2

{
G̃(N )ρ

ja (
̃
(N )ρ

(11·2))
aa′G̃(N )ρ

j ′a′

−3

2
(
̃(N )ρ) j j

′}

̃

(N )ρ

j ′ j3 j4 + 1

2

̃

(N )ρ

j1 j2 j3 j4

] 4∏
i=1

δ
0(N )ρ

ji
+ 1

N 3/2
o(N )
F (1, 5/2) ,

using (10.17) and (10.18). �

10.6.3 Asymptotic Expansion for the Distribution of T (N)ρ,τ

Arigorous derivation of aχ2 type asymptotic expansion for the distribution of T (N )ρ,τ

basically consists of the following two steps:

• the square-root decomposition of T (N )ρ,τ (Proposition 10.1);
• for x > 0, the integration of the N−1-Edgeworth expansion over the convex region

{u = (u1, . . . , u p1)
� : u�ν−1

(11·2)u ≤ x} (Proposition10.2).
Recall the notation Gν(x) = ∫ x

0 gν(y) dy for x ≥ 0, where gν(·) is the density func-
tion of the χ2

ν random variable. Note that 2gν+2(x) = Gν(x) − Gν+2(x).

Proposition 10.1 Suppose that assumptions (C0)–(C3) hold with Q ≥ 16. For any
constant C, independent of N , we have

(
1 + C

N

)
T (N )ρ,τ = UC(N )ρ,τ

a νab
(11·2)U

C(N )ρ,τ

b + 1

N 3/2
o(N )
F (1,max(5/2, q)) ,

with

UC(N )ρ,τ

b0
=
(
1 + C

2N

)
[G�Z(N )]b0 + 1

N 1/2
U 1(N )ρ,τ

b0
+ 1

N
U 2(N )ρ,τ

b0
,

where

U 1(N )ρ,τ

b0
= −G jb0 Z

(N )
jr2

ν
r2r ′

2
(22)Z

(N )

r ′
2

+ 1

2
νρG

b0r2r3

3∏
i=2

ν
ri r ′

i
(22)Z

(N )

r ′
i

+1

2
τ1ν

ρG G G
a1a2b0

2∏
i=1

[ν−1
(11·2)G�Z(N )]ai

−1

2
(G ja1G j ′b0 Z

(N )
j j ′ − νρG G

a1b0r3
ν
r3r ′

3
(22)Z

(N )

r ′
3

)[ν−1
(11·2)G�Z(N )]a1 ,
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and U 2(N )ρ,τ

b0
is a monomial of degree 3 in the Z (N )ρ

# ’s (the lengthy expression is
omitted, to save space).

Proof Use Lemma10.6 repeatedly, together with Lemma10.3(ii). �

Proposition 10.2 Suppose that assumptions (C0)–(C4) hold with Q ≥ 16. For any
constant C, independent of N , we have

P (N )
F

[(
1 + C

N

)
T (N )ρ,τ ≤ x

]

= Gp1(x) − 2

N

{
π
C,ρ,τ
1 gp1+2(x) +

3∑

=2

π
ρ,τ


 gp1+2
(x)
}

+ o(N−1) , (10.19)

where π
C,ρ,τ
1 = π

ρ,τ
1 + 1

2 Cp1,

π
ρ,τ
1 = 1

2
(κ

ρ3,ρ4,τ1,τ2,τ3,τ4
b1,b2

+ κ
ρ3,τ1
b1

κ
ρ3,τ1
b2

)ν
b1b2
(11·2)

−1

2

(1
4

κ
ρ3,ρ4,τ1,τ2,τ3,τ4
b1,b2,b3,b4

+ κ
ρ3,τ1
b1

κ
ρ3,τ1
b2,b3,b4

)
ν
b1b2
(11·2)ν

b3b4
(11·2)

+ 1

72
κ

ρ3,τ1
b1,b2,b3

κ
ρ3,τ1
b4,b5,b6

〈15〉νb1b2
(11·2)ν

b3b4
(11·2)ν

b5b6
(11·2) ,

π
ρ,τ
2 = 1

2

(1
4

κ
ρ3,ρ4,τ1,τ2,τ3,τ4
b1,b2,b3,b4

+ κ
ρ3,τ1
b1

κ
ρ3,τ1
b2,b3,b4

)
ν
b1b2
(11·2)ν

b3b4
(11·2)

− 1

36
κ

ρ3,τ1
b1,b2,b3

κ
ρ3,τ1
b4,b5,b6

〈15〉νb1b2
(11·2)ν

b3b4
(11·2)ν

b5b6
(11·2) ,

π
ρ,τ
3 = 1

72
κ

ρ3,τ1
b1,b2,b3

κ
ρ3,τ1
b4,b5,b6

〈15〉νb1b2
(11·2)ν

b3b4
(11·2)ν

b5b6
(11·2) .

Here, the κ#
a1,...,aR ’s are some constants

20 (independent of N ), associated with the Rth

cumulants cumC(N )ρ,τ
a1,...,aR = Cum(N )

F (UC(N )ρ,τ
a1 , . . . ,UC(N )ρ,τ

aR ), R ∈ {1, 2, 3, 4}, i.e.,

20 Some straightforward but tedious calculations show that

κρ3,τ1
a1 = −ν

G
a1r,r ′νrr

′
(22) + 1

2
νρG

a1r1r2ν
r1r ′

1
(22)νr ′

1,r
′
2
ν
r2r ′

2
(22)

+1

2

(
τ1ν

ρG G G
a1b b′ − ν

G G G
a1b,b′ −

M∑
β ′=1

G[β ′]b′νρG G
a1b[β ′]

)
νbb

′
(11·2) ,

and that κρ3,τ1
a1,a2,a3 and κ

−2,ρ4,1/3,τ2,τ3,τ4
a1,a2,a3,a4 are explicitly given in the proof of Theorem10.1; the lengthy

general expression for κ
ρ3,ρ4,τ1,τ2,τ3,τ4
a1,a2,a3,a4 is, however, omitted here. Although, in principle, we can

write down κ
ρ3,ρ4,τ1,τ2,τ3,τ4
a1,a2 , we have not rearranged it, due to the rather lengthy algebra (the task

would be no practical importance, in many cases).
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cumC(N )ρ,τ
a1 = 1

N 1/2
κρ3,τ1
a1 + o(N−1) ,

cumC(N )ρ,τ
a1,a2 = ν(11·2)a1a2 + 1

N
(κρ3,ρ4,τ1,τ2,τ3,τ4

a1,a2 + Cν(11·2)a1a2) + o(N−1) ,

cumC(N )ρ,τ
a1,a2,a3 = 1

N 1/2
κρ3,τ1
a1,a2,a3 + o(N−1) ,

cumC(N )ρ,τ
a1,a2,a3,a4 = 1

N
κρ3,ρ4,τ1,τ2,τ3,τ4
a1,a2,a3,a4 + o(N−1) .

Proof We use the notation φb1,...,bR
ν(11·2) (u) = (−1)R(∂/∂ub1) · · · (∂/∂ubR )φν(11·2) (u) for

the density φν(11·2) (u) of p1-variate normal distribution N(0p1 , ν(11·2)). As we men-

tioned in Sect. 10.2.3, the Z (N )
# ’s are expressed as a linear combination of the ele-

ments of ψ
(N )
1:3 = N−1/2∑N

i=1{Ġ1:3(Xi , θ0) − EF [Ġ1:3(X, θ0)]}, so that UC(N )ρ,τ =
[UC(N )ρ,τ

a ]a∈{1,...,p1} (see Proposition10.1) admits the N−1-Edgeworth expansion
(e.g., Bhattacharya and Ghosh [6]), i.e.,

sup
B∈Cp1

∣∣∣∣P (N )
F [UC(N )ρ,τ ∈ B]

−
∫

B

[
φν(11·2) (u)

+ 1

N 1/2

{
κ

ρ3,τ1
b1

φb1
ν(11·2) (u) + 1

6
κ

ρ3,τ1
b1,b2,b3

φb1,b2,b3
ν(11·2) (u)

}

+ 1

N

{1
2

(Cν(11·2)b1b2 + κ
ρ3,ρ4,τ1,τ2,τ3,τ4
b1,b2

+ κ
ρ3,τ1
b1

κ
ρ3,τ1
b2

)φb1,b2
ν(11·2) (u)

+
( 1

24
κ

ρ3,ρ4,τ1,τ2,τ3,τ4
b1,b2,b3,b4

+ 1

6
κ

ρ3,τ1
b1

κ
ρ3,τ1
b2,b3,b4

)
φb1,b2,b3,b4

ν(11·2) (u)

+ 1

72
κ

ρ3,τ1
b1,b2,b3

κ
ρ3,τ1
b4,b5,b6

φb1,b2,b3,b4,b5,b6
ν(11·2) (u)

}]
du

∣∣∣∣
= o(N−1) ,

where Cp1 is the set of all Borel measurable convex subsets of Rp1 . Thus, we have

P (N )
F [(UC(N )ρ,τ )�ν−1

(11·2)U
C(N )ρ,τ ≤ x]

= Gp1(x)

+
∫

u�ν−1
(11·2)u≤x

[ 1

N 1/2

{
κ

ρ3,τ1
b1

φb1
ν(11·2) (u) + 1

6
κ

ρ3,τ1
b1,b2,b3

φb1,b2,b3
ν(11·2) (u)

}

+ 1

N

{1
2

(Cν(11·2)b1b2 + κ
ρ3,ρ4,τ1,τ2,τ3,τ4
b1,b2

+ κ
ρ3,τ1
b1

κ
ρ3,τ1
b2

)φb1,b2
ν(11·2) (u)

+
( 1

24
κ

ρ3,ρ4,τ1,τ2,τ3,τ4
b1,b2,b3,b4

+ 1

6
κ

ρ3,τ1
b1

κ
ρ3,τ1
b2,b3,b4

)
φb1,b2,b3,b4

ν(11·2) (u)

+ 1

72
κ

ρ3,τ1
b1,b2,b3

κ
ρ3,τ1
b4,b5,b6

φb1,b2,b3,b4,b5,b6
ν(11·2) (u)

}]
du
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+o(N−1)

= Gp1(x) − 2

N

[1
2

{Cp1 + (κ
ρ3,ρ4,τ1,τ2,τ3,τ4
b1,b2

+ κ
ρ3,τ1
b1

κ
ρ3,τ1
b2

)ν
b1b2
(11·2)}gp1+2(x)

+1

2

(1
4

κ
ρ3,ρ4,τ1,τ2,τ3,τ4
b1,b2,b3,b4

+ κ
ρ3,τ1
b1

κ
ρ3,τ1
b2,b3,b4

)
ν
b1b2
(11·2)ν

b3b4
(11·2){−gp1+2(x) + gp1+4(x)}

+ 1

72
κ

ρ3,τ1
b1,b2,b3

κ
ρ3,τ1
b4,b5,b6

〈15〉νb1b2
(11·2)ν

b3b4
(11·2)ν

b5b6
(11·2){gp1+2(x) − 2gp1+4(x) + gp1+6(x)}

]

+o(N−1) .

Then, (10.19) is concluded from Magdalinos (1992; Theorem 2 and Lemma 3) and
Proposition10.1. �

The following is a slight modification of Proposition10.2 (the proof is omitted; see,
e.g., Kakizawa [45] for the related asymptotic expansions).

Proposition 10.3 Suppose that assumptions (C0)–(C4) hold with Q ≥ 16. For any
symmetric R-way arrays �R = [�a1···aR ]a1,...,aR∈{1,...,p1}, R ∈ {2, 4, 6}, we consider

T �2,4,6(N )ρ,τ = T (N )ρ,τ + 1

N

∑
R∈{2,4,6}

�a1···aR
R∏

i=1

[(L̃(N )ρ

(11·2))
−1Z̃(N )ρ

(1) ]ai .

Then,

P (N )
F [T �2,4,6(N )ρ,τ ≤ x] = Gp1(x) − 2

N

3∑

=1

π
�2
,ρ,τ


 gp1+2
(x) + o(N−1) ,

where

π
�2,ρ,τ
1 = π

ρ,τ
1 + 1

2
�b1b2ν

b1b2
(11·2) ,

π
�4,ρ,τ
2 = π

ρ,τ
2 + 3

2
�b1b2b3b4ν

b1b2
(11·2)ν

b3b4
(11·2) ,

π
�6,ρ,τ
3 = π

ρ,τ
3 + 15

2
�b1b2b3b4b5b6ν

b1b2
(11·2)ν

b3b4
(11·2)ν

b5b6
(11·2) .

Remark 10.7 (i) If p1 > 1, there are infinitelymany choices�R , R ∈ {2, 4, 6}, such
that π�2,ρ,τ

1 = π
�4,ρ,τ
2 = π

�6,ρ,τ
3 = 0, i.e.,

P (N )
F [T �2,4,6(N )ρ,τ ≤ x] = Gp1(x) + o(N−1) .

This idea, referred to as generalized CF (GCF) method, is found in Kakizawa [45].
(ii) Unlike the GCF method, the ideas behind the CM/T methods are to adjust

the test statistic T (N )ρ,τ as T (N )ρ,τ +∑2
i=1 N

−i/2Q(N )
i , where Q(N )

1 and Q(N )
2

depend on (L̃(N )ρ

(11·2))
−1Z̃(N )ρ

(1) , in such a way that the N−1/2-perturbating term con-
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tributes to the skewness correction for the square-root decomposition of T (N )ρ,τ +∑2
i=1 N

−i/2Q(N )
i (see the argument given at the top of this subsection); in that case,

the resulting asymptotic expansion necessarily corresponds toπ
ρ,τ
3 = 0. In this sense,

the CM/Tmethods are regarded as “double correction methods” of the skewness cor-
rection and the (G)CF Bartlett-type correction. The details are omitted.
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Chapter 11
An Analog of the Bickel–Rosenblatt Test
for Error Density in the Linear
Regression Model

Fuxia Cheng, Hira L. Koul, Nao Mimoto, and Narayana Balakrishna

Abstract This paper addresses the problem of testing the goodness-of-fit hypothe-
sis pertaining to error density in multiple linear regression models with non-random
and random predictors. The proposed tests are based on the integrated square dif-
ference between a nonparametric density estimator based on the residuals and its
expected value under the null hypothesis when all regression parameters are known.
We derive the asymptotic distributions of this sequence of test statistics under the null
hypothesis and under certain global alternatives. The asymptotic null distribution of
a suitably standardized test statistic based on the residuals is the same as in the case
of known underlying regression parameters. Under the global L2 alternatives of [2],
the asymptotic distribution of this sequence of statistics is affected by not knowing
the parameters and, in general, is different from the one obtained in [2] for the zero
intercept linear autoregressive time series context.

11.1 Introduction and Summary

The problem of testing the goodness-of-fit hypothesis pertaining to a density is a
classical problem. In the case of the one sample setupwhere data consists of a random
sample from the given density, one of the tests for this problem proposed in [3] is
based on the integrated squared difference between the error density estimator and
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its expected value under the null hypothesis. Under some conditions its asymptotic
null distribution is a known normal distribution.

The papers [2, 4, 8, 9] observed that this fact continues to hold for the analog
of this test statistic for fitting an error density based on the residuals in linear and
nonlinear autoregressive and generalized autoregressive conditionally heteroscedas-
tic time series models. In other words, the asymptotic null distribution of the analog
of this statistic in all these cases is the same as in the case of known underlying
parameters, i.e., not knowing the underlying nuisance parameters has no effect on
the asymptotic null distribution of this test statistic in thesemodels. In comparison, in
general, the asymptotic null distributions of the goodness-of-fit tests based on suitably
standardized residual empirical process depend on the estimators of the underlying
nuisance parameters in these models in a complicated fashion, which renders them
to be unknown. Consequently, in general, the goodness-of-fit tests based on residual
empirical process are not implementable even for the large samples. Exception to
this is provided by the tests based on Khmaladze’s transform of the residual empir-
ical process as described in [6, 7]. However, the implementation of such tests has
proved to be difficult in general. For this reason, the above mentioned analog of the
Bickel–Rosenblatt test is more appealing.

Relatively little is known in the literature about the asymptotic distributions of the
analog of the above mentioned test statistic in regression models. In this paper, we
derive the asymptotic distributions, under the null hypothesis and under the global L2

alternatives in [2], H1 : f �= f0,
∫
( f − f0)2(y)dy > 0,of the analogs of this statistic

in the multiple linear regression models with non-random and random covariates.
To begin with, we shall focus on the case of non-random covariates. Accordingly,

let n and p be knownpositive integers,Rp denote the p-dimensional Euclidean space.
Especially,R=R1. For any x ∈ R

p, let x ′ denote its transpose. Let xi ∈ R
p, 1 ≤ i ≤ n

be p-dimensional vectors of known real numbers and X denote the n × p matrix
whose i th row is x ′

i , 1 ≤ i ≤ n. In the linear regression model of interest with non-
random predictors, one observes xi ,Yi obeying the model

Yi = α + β ′xi + εi , ∃ α ∈ R, β ∈ R
p,∀ 1 ≤ i ≤ n, (11.1)

where ε, εi , i ≥ 1 are independent and identically distributed (i.i.d.) randomvariables
(r.v.’s) according to a Lebesgue density f on R. We shall assume the above model
is well identified, which is true if either E(ε) = 0 or ε is symmetrically distributed
around zero. For our result neither of these two assumptions are needed. However,
we need the availability of certain consistent estimators of α, β, see (11.9). All the
results below in the case of non-random covariates are valid even when xi ’s depend
on n, i.e., when xi ≡ xni . We do not exhibit this dependence on n for the sake of the
brevity of the exposure.

Let f0 be a known density. The problem of interest is to test

H0 : f = f0, versus H1 : H0 is not true,

based on the data (x1,Y1), ..., (xn,Yn) obeying the above model.
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To describe the test statistic for this problem, let K be a density kernel and h ≡ hn
be bandwidth sequence. Let α̂, β̂ be estimators of α, β, respectively, and ε̂i := Yi −
α̂ − β̂ ′xi , 1 ≤ i ≤ n. Define

f̂n(y) := 1

nh

n∑

i=1

K
( y − ε̂i

h

)
, fn(y) := 1

nh

n∑

i=1

K
( y − εi

h

)
,

μn(y) := 1

h

∫
K

( y − z

h

)
f0(z)dz, y ∈ R, (11.2)

T̂n :=
∫

(
f̂n(y) − μn(y)

)2
dy, Tn :=

∫
( fn(y) − μn(y))

2dy.

Throughout this paper,
∫
denotes a definite integral where the domain of the integral

is omitted when there is no confusion.
The statistic Tn is the test statistic used in [3] for testing H0 when εi ’s are observ-

able, i.e., α, β are known in (11.1), while T̂n is its analog used for testing H0 in
the regression model (11.1) when α, β are unknown. Its asymptotic null distribu-
tion along with the required assumptions is described in the next section. Section
11.3 contains the asymptotic distribution of T̂n under the global L2 alternatives
H1 : f �= f0,

∫
( f − f0)2(y)dy > 0. See [2] for the usefulness of these alternatives.

Section 11.4 contains the asymptotic distributions, under H0 and H1, of T̃n , the ana-
log of T̂n in the case of random covariates. The asymptotic null distributions of T̂n
and T̃n continue to be the same as that of Tn , i.e., as in the case when the parameters
α, β are known.

The asymptotic distributions of T̂n, T̃n under the alternatives H1 are seen to be
affected by not knowing the parameters in general and are different from that obtained
in [2] for the zero intercept linear autoregressive case. But if both f0 and f in the
alternatives are symmetric around zero then these asymptotic distributions are the
same as in [2], for both non-random and random predictors cases. See Theorems
11.2 and 11.4. The findings of a finite sample simulation and an application to real
data are given in Sect. 11.5.

In the sequel, all limits are taken as n → ∞ and →p (→D) denotes the conver-
gence in probability (distribution).

11.2 Asymptotic Null Distribution of ̂Tn

Before describing the asymptotic null distribution of T̂n in the current setup, we recall
the following asymptotic normality results of Tn . Consider the following assump-
tions.
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f, f0 are square integrable and twice continuously differentiable densities with

the second derivatives bounded and both having zero mean. (11.3)

K is continuous bounded symmetric kernel density with compact support and
∫

v2K (v)dv < ∞. (11.4)

h → 0 and nh2 → ∞. (11.5)

For any two integrable functions g1, g2, let g1 ∗ g2(x) := ∫
g1(x − t)g2(t)dt and

Kh(·) := (1/h)K (·/h). Let τ 2 := 2
∫

f 20 (y)dy
∫
(K ∗ K (y))2dy. Under Assump-

tions (11.3)–(11.5), the following normality results for Tn were proved in [2]:

under H0 : n√
h
(
Tn − 1

nh

∫
K 2(v)dv

)
→D N (0, τ 2); (11.6)

under H1 : f �= f0,
∫

( f (y) − f0(y))
2dy > 0,

√
n
(
Tn −

∫
{
Kh ∗ ( f − f0)

}2
(y)dy

)
→D N (0, 4ω2), (11.7)

ω2 = Var[ f (ε) − f0(ε)].

The result (11.6) was first proved in [3] under some different conditions. The
proof in [2] uses a CLT for degenerate U statistics of [5] and is relatively simpler
under somewhat weaker conditions.

To describe the asymptotic null distribution of T̂n , we shall now state the required
assumptions below, where for any smooth and square integrable functions ϕ, ϕ̇, and
ϕ̈ denote its first and second derivatives, respectively, ‖ϕ‖22 := ∫

ϕ2(y)dy and f is
the error density.

X ′X is nonsingular and with A = (X ′X)1/2, n1/2 max
1≤i≤n

∥
∥A−1xi

∥
∥ = O(1). (11.8)

∥
∥A

(
β̂ − β

)∥∥ = Op(1) and n1/2
∣
∣̂α − α

∣
∣ = Op(1). (11.9)

f is twice continuously differentiable, and ‖ f ‖2 + ‖ ḟ ‖2 + ‖ f̈ ‖2 < ∞. (11.10)

K is a twice differentiable density on R, K (−v) ≡ K (v),
∫

v2K (v)dv < ∞,

∫ ∣
∣K̇ (v)

∣
∣dv < ∞, ‖K̇‖2 + ‖K̈‖2 < ∞ and

∫ ∣
∣v j K̇ (v)

∣
∣dv < ∞, j = 1, 2.

(11.11)

h → 0 and nh5 → ∞. (11.12)

The following theorem describes the asymptotic null distribution of T̂n.

Theorem 11.1 Suppose Assumptions (11.8)–(11.10) with f = f0, (11.11) and
(11.12) hold. Then, under H0,
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nh1/2
∣
∣T̂n − Tn

∣
∣ →p 0. (11.13)

Hence, if in addition f̈0 is bounded and K is compactly supported, then, under H0,

nh1/2
(
T̂n − 1

nh

∫
K 2(v)dv

)
→D N

(
0, τ 2

)
. (11.14)

Proof The claim (11.14) follows from Slutsky’s theorem, (11.13) and (11.6). We
begin with the following decomposition:

T̂n − Tn =
∫

(
f̂n(y) − fn(y)

)2
dy

+2
∫

(
f̂n(y) − fn(y)

)(
fn(y) − μn(y)

)
dy. (11.15)

The claim (11.13) will thus be implied by the following lemma. �

Lemma 11.1 (a) Assume the error density to be f and Assumptions (11.8)–(11.12)
hold. Then,

nh1/2
∫

(
f̂n(y) − fn(y)

)2
dy = Op

( 1

nh5/2

)
+ Op

(
h1/2

)
+ Op

( 1

nh9/2

)
. (11.16)

(b) Assume the error density to be f0 and Assumptions (11.8)–(11.10) with f = f0,
(11.11) and (11.12) hold. Then, under H0,

nh1/2
∣
∣
∣
∣

∫
(
f̂n(y) − fn(y)

)(
fn(y) − μn(y)

)
dy

∣
∣
∣
∣

= Op

( 1

n1/2h3/2

)
+ Op

( 1

n1/2h5/2

)
+ Op

(
h1/2

)
. (11.17)

Proof We first prove (11.16). Let

δ1 := α̂ − α, δ2 := β̂ − β, ξi := δ1 + δ′
2xi , 1 ≤ i ≤ n.

By (11.8) and (11.9),

n1/2 max
1≤i≤n

∣
∣δ′
2xi

∣
∣ = n1/2 max

1≤i≤n

∣
∣(β̂ − β)′AA−1xi

∣
∣

≤ ‖A(β̂ − β)‖n1/2 max
1≤i≤n

∥
∥A−1xi

∥
∥ = Op(1),

n1/2 max
1≤i≤n

∣
∣ξi

∣
∣ ≤ n1/2

∣
∣δ1

∣
∣ + n1/2 max

1≤i≤n

∣
∣δ′
2xi

∣
∣ = Op(1). (11.18)

�
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Moreover,

εi − ε̂i = (̂α − α) + (β̂ − β)′xi = ξi , 1 ≤ i ≤ n.

These facts, the Cauchy–Schwarz (C-S) inequality and Fubini’s theorem, are often
used in the proofs below, sometimes without mentioning them.

By the Taylor expansion with integral remainder,

K
( y − ε̂i

h

) − K
( y − εi

h

) = ξi

h
K̇

( y − εi

h

) +
∫ (y−̂εi )/h

(y−εi )/h
K̈ (t)

( y − εi

h
− t

)
dt.

Hence,

f̂n(y) − fn(y) = 1

nh

n∑

i=1

[
K

( y − ε̂i

h

) − K
( y − εi

h

)]

= 1

nh2

n∑

i=1

ξi K̇
( y − εi

h

) + 1

nh

n∑

i=1

∫ (y−̂εi )/h

(y−εi )/h
K̈ (t)

( y − εi

h
− t

)
dt.

(11.19)

Let

Cn1 :=
∫ ( n∑

i=1

ξi K̇
( y − εi

h

))2
dy,

Cn2 :=
∫ ( n∑

i=1

∫ (y−̂εi )/h

(y−εi )/h
K̈ (t)

( y − εi

h
− t

)
dt

)2
dy.

Then,

∫
(
f̂n(y) − fn(y)

)2
dy ≤ 2

[ 1

n2h4
Cn1 + 1

n2h2
Cn2

]
. (11.20)

Let 
 := Aδ2, ci := A−1xi , 1 ≤ i ≤ n. Then δ′
2xi ≡ δ′

2AA
−1xi = 
′ci and ξi =

δ1 + δ′
2xi = δ1 + 
′ci , for all 1 ≤ i ≤ n. By (11.9), ‖
‖ = Op(1). Moreover,

n∑

i=1

‖ci‖2 =
n∑

i=1

∥
∥A−1xi

∥
∥2 =

n∑

i=1

x ′
i A

−1A−1xi = trace
(
A−1X ′X A−1

) = p,

∥
∥
∥

n∑

i=1

ci
∥
∥
∥
2 ≤ n

n∑

i=1

‖ci‖2 = np. (11.21)

To analyze Cn1, let
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Cn11 :=
∫ ( n∑

i=1

K̇
( y − εi

h

))2
dy, Cn12 :=

∫ ∥
∥
∥

n∑

i=1

ci K̇
( y − εi

h

)∥∥
∥
2
dy.

(11.22)

Then,

Cn1 =
∫ ( n∑

i=1

(
δ1 + 
′ci

)
K̇

( y − εi

h

)
)2

dy ≤ 2δ21Cn11 + 2
∥
∥


∥
∥2
Cn12.

Center the summands inside the square in Cn11 to write

Cn11 =
∫ ( n∑

i=1

{
K̇

( y − εi

h

) − E K̇
( y − εi

h

)} +
n∑

i=1

E K̇
( y − εi

h

)
)2

dy

≤ 2Gn1 + 2Gn2, (11.23)

where

Gn1 :=
∫ ( n∑

i=1

{
K̇

( y − εi

h

) − E K̇
( y − εi

h

)}
)2

dy,

Gn2 :=
∫ ( n∑

i=1

E K̇
( y − εi

h

))2
dy.

By Fubini’s theorem,

EGn1 = n
∫

Var
(
K̇

( y − ε

h

))
dy ≤ n

∫
E

(
K̇

( y − ε

h

))2
dy

= n h
∫

K̇ 2(v)
∫

f (y − hv)dydv = n h
∫

K̇ 2(v)dv. (11.24)

Note that
∫ (

E K̇
( y − ε

h

))2
dy = h2

∫ ( ∫
K̇ (v) f (y − hv)dv

)2
dy.

Because
∫
K̇ (v) f (y − hv)dv = ∫

f (y − hv)dK (v), the integration by parts shows
that

∫ ( ∫
K̇ (v) f (y − hv)dv

)2

dy = h2
∫ (∫

K (v) ḟ (y − hv)dv

)2

dy

= h2
∫

ḟ 2(y)dy + O
(
h2

) = O
(
h2

)
.



298 F. Cheng et al.

The above fact follows from the following result which uses ḟ , f̈ being square
integrable:

∫ ( ∫
K (v)

{
ḟ (y − hv) − ḟ (y)

}
dv

)2

dy

=
∫ ( ∫

v
{ ∫ h

0
f̈ (y − sv)ds

}
K (v)dv

)2

dy

≤
∫

v2K (v)dv
∫ ∫ { ∫ h

0
f̈ (y − sv)ds

}2
K (v)dvdy

≤ h
∫

v2K (v)dv
∫ ∫ ∫ h

0
f̈ 2(y − sv)dsK (v)dvdy

= h2
∫

v2K (v)dv
∫

f̈ 2(y)dy.

Therefore,

∫ (
E K̇

( y − ε

h

))2
dy = h4

∫
ḟ 2(y)dy + O

(
h4

) = O(h4),

Gn2 = n2
∫ (

E K̇
( y − ε

h

))2
dy = O(n2h4). (11.25)

Because δ21 = Op(n−1), by the Markov inequality, (11.23)–(11.25),

Gn1 = Op
(
nh

)
, Cn11 = Op

(
nh

) + O
(
n2h4

)
, δ21Cn11 = Op

(
h
) + Op

(
nh4

)
.

(11.26)

Similarly we obtain

Cn12 ≤ 2
∫ ∥

∥
∥

n∑

i=1

ci
[
K̇

( y − εi

h

) − E K̇
( y − εi

h

)]∥∥
∥
2
dy

+ 2
∫ ∥

∥
∥

n∑

i=1

ci E K̇
( y − εi

h

)∥∥
∥
2
dy, (11.27)

ECn12 ≤ 2
n∑

i=1

∥
∥ci

∥
∥2

∫
E K̇ 2

( y − ε

h

)
dy + 2

∥
∥
∥

n∑

i=1

ci
∥
∥
∥
2
∫ (

E K̇
( y − ε

h

))2
dy

= 2 p h
∫

K̇ 2(v)dv + np O(h4).

Therefore, by the Markov inequality and Assumptions (11.9), (11.11) and the fact
(11.26),
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Cn12 = Op(h) + O(nh4) = ‖
‖2Cn12, Cn1 = Op(h) + O(nh4),
1

n2h4
Cn1 = Op

( 1

n2h3

)
+ Op

(1

n

)
, nh1/2

1

n2h4
Cn1 = Op

( 1

nh5/2

)
+ Op

(
h1/2

)
.

(11.28)

To analyze Cn2, by (11.8), (11.9) and (11.18),

n∑

i=1

ξ 2
i ≤ 2nδ21 + 2‖
‖2

n∑

i=1

‖ci‖2 = 2
(
nδ21 + p‖
‖2) = Op(1),

n
n∑

i=1

ξ 4
i ≤ n max

1≤i≤n

∣
∣ξi

∣
∣2

n∑

i=1

ξ 2
i = Op(1).

Use these bounds, the C-S inequality on the sum and then on the integral w.r.t. t ,
Fubini’s theorem and the fact (y − εi )/h ≤ t ≤ (y − ε̂i )/h, for all 1 ≤ i ≤ n, to
obtain

Cn2 =
∫ ( n∑

i=1

∫ (y−̂εi )/h

(y−εi )/h
K̈ (t)

( y − εi

h
− t

)
dt

)2

dy

≤ n
∫ n∑

i=1

(∫ (y−̂εi )/h

(y−εi )/h
K̈ (t)

( y − εi

h
− t

)
dt

)2

dy

≤ n
n∑

i=1

∣
∣ξi

∣
∣3

h3

∫ ∫ (y−̂εi )/h

(y−εi )/h
K̈ 2(t)dtdy

= n
n∑

i=1

∣
∣ξi

∣
∣3

h3

∫ ∫ εi+ht

ε̂i+ht
dy K̈ 2(t)dt = n

n∑

i=1

∣
∣ξi

∣
∣4

h3

∫
K̈ 2(t)dt = Op

( 1

h3

)
.

Hence

Cn2 = Op

( 1

h3

)
, nh1/2

1

n2h2
Cn2 = Op

( 1

nh9/2

)
. (11.29)

The proof of (11.16) is completed by combining (11.29) with (11.28) and (11.20).
Proof of (11.17). Now assume H0 is true and Assumptions (11.9) and (11.10)

hold under H0, i.e., when f = f0. Let E0 denote the expectation under H0. From
(11.6) and h → 0, we obtain

Tn = 1

nh

∫
K 2(v)dv + Op

( 1

nh1/2

)
= Op

( 1

nh

)
. (11.30)

Let ρn(y) := fn(y) − μn(y). Use (11.19) to rewrite
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∫
(
f̂n(y) − fn(y)

)(
fn(y) − μn(y)

)
dy

= 1

nh2

∫ n∑

i=1

ξi K̇
( y − εi

h

)
ρn(y)dy

+ 1

nh

∫ n∑

i=1

∫ (y−̂εi )/h

(y−εi )/h
K̈ (t)

( y − εi

h
− t

)
dtρn(y)dy

= 1

nh2
Dn1 + 1

nh
Dn2, say. (11.31)

By the C-S inequality, (11.29) and (11.30),

∣
∣Dn2

∣
∣ :=

∣
∣
∣

∫ ( n∑

i=1

∫ (y−̂εi )/h

(y−εi )/h
K̈ (t)

( y − εi

h
− t

)
dt

)

ρn(y)dy
∣
∣
∣

≤ C1/2
n2 T 1/2

n = Op
( 1

h3/2
)
Op

( 1

n1/2h1/2
) = Op

( 1

n1/2h2
)
, (11.32)

1

nh

∣
∣Dn2

∣
∣ = Op

( 1

n3/2h3
)
, nh1/2

1

nh

∣
∣Dn2

∣
∣ = Op

( 1

n1/2h5/2
)
.

To analyze Dn1, let

Dn11 :=
∫ n∑

i=1

K̇
( y − εi

h

)
ρn(y)dy, Dn12 :=

∫ n∑

i=1

ci K̇
( y − εi

h

)
ρn(y)dy.

(11.33)

Then,

Dn1 :=
∫ n∑

i=1

ξi K̇
( y − εi

h

)
ρn(y)dy = δ1Dn11 + 
′Dn12. (11.34)

Write

Dn11 :=
∫ n∑

i=1

[
K̇

( y − εi

h

) − E0 K̇
( y − ε

h

)]
ρn(y)dy

+ n
∫

E0

(
K̇

( y − ε

h

))
ρn(y)dy

= �n1 + n�n2, say. (11.35)

Note that (11.26) is true for any f satisfying (11.10), so it is true also when f = f0.
By the C-S inequality, (11.26) and (11.30),
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∣
∣�n1

∣
∣ ≤ G1/2

n1 T 1/2
n = Op(1), nh1/2

1

nh2
∣
∣δ1�n1

∣
∣ = Op(

1

n1/2h3/2
). (11.36)

To analyze �n2, let γn(y) := ∫
f0(y − vh)K̇ (v)dv and ζni (y) :=

h−1K
(
(y − εi )/h

) − μn(y). Then,

E0 K̇
( y − ε

h

) =
∫

K̇
( y − x

h

)
f0(x)dx = h

∫
f0(y − hv)K̇ (v)dv = hγn(y),

ρn(y) = n−1
n∑

i=1

[1

h
K

( y − εi

h

) − μn(y)
]

= n−1
n∑

i=1

ζni (y),

�n2 :=
∫

E0

(
K̇

( y − ε

h

))
ρn(y)dy = h

∫
γn(y)ρn(y)dy

= hn−1
n∑

i=1

∫
γn(y)ζni (y)dy.

Therefore,

n�n2 = h
n∑

i=1

∫
γn(y)ζni (y)dy. (11.37)

By (11.11),
∫ ∣

∣vK̇ (v)
∣
∣dv < ∞,

∫
v2K (v)dv < ∞ and

∫
vK (v)dv = 0. Hence,

vK (v) → 0 and v2K (v) → 0, as v → ±∞, and by the integration by parts,
∫
vK̇ (v)

dv = ∫
vdK (v) = − ∫

K (v)dv = −1 and
∫
v2 K̇ (v)dv = ∫

v2dK (v) = −2
∫
vK

(v)dv = 0.
Using the Taylor expansion for f0 with integral remainder and by (11.11), which

guarantees
∫
K̇ (v)dv = 0, we obtain

f0(y − hv) = f0(y) − hv ḟ0(y) + v2
∫ h

0
f̈0(y − sv)(h − s)ds, (11.38)

γn(y) =
∫ [

f0(y) − hv ḟ0(y) + v2
∫ h

0
f̈0(y − sv)(h − s)ds

]
K̇ (v)dv

= h ḟ0(y) +
∫

ψn(y, v)v
2 K̇ (v)dv,

where ψn(y, v) := ∫ h
0 f̈0(y − sv)(h − s)ds. Let �n(y) := ∫

ψn(y, v)v2 K̇ (v)dv and
let

Sn1 := 1

n1/2

n∑

i=1

∫
ḟ0(y)ζni (y)dy, Sn2 := 1

n1/2

n∑

i=1

∫
�n(y)ζni (y)dy.

Then, by (11.37) and (11.38),
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n�n2 = h
n∑

i=1

∫ [
h ḟ0(y) +

∫
ψn(y, v)v

2 K̇ (v)dv
]
ζni (y)dy

= h2n1/2Sn1 + hn1/2Sn2, (11.39)

nh1/2
1

nh2
δ1n�n2 = n1/2δ1

(
h1/2Sn1 + 1

h1/2
Sn2

)
.

Note that E0Sn1 = 0 and by Fubini’s theorem,

E0S
2
n1 = E0

(∫
ḟ0(y)

[1

h
K

( y − ε

h

) − μn(y)
]
dy

)2

= E0

∫ ∫
ḟ0(x) ḟ0(y)

[ 1

h2
K

( x − ε

h

)
K

( y − ε

h

) − μn(x)μn(y)
]
dxdy

= E0

∫ ∫
ḟ0(ε + uh) ḟ0(ε + vh)K

(
u
)
K

(
v
)
dudv

− h2E0

∫ ∫
ḟ0(ε + uh) ḟ0(ε + vh)μn(ε + uh)μn(ε + vh)dudv

= E0

(∫
ḟ0(ε + uh)K

(
u
)
du

)2

− h2E0

( ∫
ḟ0(ε + uh)μn(ε + uh)du

)2

≤ E0

( ∫
ḟ0(ε + uh)K

(
u
)
du

)2

→ E0 ḟ
2
0 (ε).

Hence, by the Markov inequality and (11.9),

∣
∣Sn1

∣
∣ = Op

(
1
)
,

∣
∣h1/2Sn1

∣
∣ = Op

(
h1/2

)
. (11.40)

To analyze Sn2, use the C-S inequality and Fubini’s theorem to obtain

ψ2
n (y, v) =

(∫ h

0
f̈0(y − sv)(h − s)ds

)2
≤ h3

∫ h

0
f̈ 20 (y − sv)ds,

�2n(y) =
(∫

ψn(y, v)v
2 K̇ (v)dv

)2
=

( ∫
ψn(y, v)

∣
∣v2 K̇ (v)

∣
∣1/2

∣
∣v2 K̇ (v)

∣
∣1/2dv

)2

≤
∫ ∣

∣v2 K̇ (v)
∣
∣dv

∫
ψ2
n (y, v)v2

∣
∣K̇ (v)

∣
∣dv

≤ h3
∫

v2
∣
∣K̇ (v)

∣
∣dv

∫ ∫ h

0
f̈ 2(y − sv)dsv2

∣
∣K̇ (v)

∣
∣dv.

Therefore,

∫
�2n(y)dy ≤ h3

∫
v2

∣
∣K̇ (v)

∣
∣dv

∫ h

0

∫ ∫
f̈ 20 (y − sv)dy v2|K̇ (v)|ds

= h4
( ∫

v2
∣
∣K̇ (v)

∣
∣dv

)2
∫

f̈ 20 (y)dy. (11.41)
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Also, E0Sn2 = 0 and

E0
(
S2n2

) = E0

(∫
�n(y)

[1

h
K

( y − ε

h

) − μn(x)
]
dy

)2

≤
∫

�2n(y)dy
1

h2

∫
E0

(
K 2

( y − ε

h

))
dy

≤ h4
( ∫

v2
∣
∣K̇ (v)

∣
∣dv

)2
∫

f̈ 20 (y)dy
1

h

∫
K 2(v)dv

= h3
( ∫

v2
∣
∣K̇ (v)

∣
∣dv

)2
∫

f̈ 20 (y)dy
∫

K 2(v)dv.

Therefore,

∣
∣Sn2

∣
∣ = Op

(
h3/2

)
,

∣
∣ 1

h1/2
Sn2

∣
∣ = Op

(
h
)
. (11.42)

In view of (11.39), (11.40), and (11.42) and Assumption (11.9), which guarantees
n1/2|δ1| = Op(1), we obtain

∣
∣�n2

∣
∣ = Op

( h2

n1/2

)
, nh1/2

1

nh2
∣
∣δ1n�n2

∣
∣ = Op(h

1/2). (11.43)

Combine (11.43) with (11.36) and (11.35) to obtain

nh1/2
1

nh2
∣
∣δ1Dn11

∣
∣ = Op

( 1

n1/2h3/2

)
+ Op

(
h1/2

)
. (11.44)

We next consider Dn12 of (11.34), where

Dn12 :=
∫ n∑

i=1

ci
[
K̇

( y − εi

h

) − E0 K̇
( y − ε

h

)]
ρn(y)dy

+
n∑

i=1

ci

∫
E0

(
K̇

( y − ε

h

))
ρn(y)dy = Bn1 + Bn2, say.

Note that with �n2 as in (11.37) and in view of (11.21) and (11.43),

∥
∥Bn2

∥
∥ =

∥
∥
∥

n∑

i=1

ci
∥
∥
∥
∣
∣�n2

∣
∣ = Op

(
h2

)
.

By the C-S inequality, arguing as for the Cn12, we obtain, in view of (11.30),
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∥
∥Bn1

∥
∥ ≤

( ∫ ∥
∥
∥

n∑

i=1

ci
[
K̇

( y − εi

h

) − E0 K̇
( y − ε

h

)]∥∥
∥
2
dy

)1/2

T 1/2
n

= Op
(
h1/2

)
Op

( 1

(nh)1/2

)
= Op

( 1

n1/2

)
.

Therefore,

nh1/2
1

nh2
∣
∣
′Dn12

∣
∣ ≤ ‖
‖ 1

h3/2
∥
∥Dn12

∥
∥ = 1

h3/2

[
Op

( 1

n1/2

)
+ Op

(
h2

)]

= Op

( 1

n1/2h3/2

)
+ Op

(
h1/2

)
.

Upon combining this bound with (11.34) and (11.44) we obtain

nh1/2
1

nh2
∣
∣Dn1

∣
∣ = Op

( 1

n1/2h3/2

)
+ Op

(
h1/2

)
.

The proof of (11.17) is completed by combining this fact with (11.32) and (11.31).
This also completes the proof of the lemma. �

11.3 Asymptotic Distribution of ̂Tn Under H1

Weshall nowdiscuss the asymptotic distributionof T̂n under the global L2 alternatives
considered in [2], H1 : f �= f0,

∫ (
f (y) − f0(y)

)2
dy > 0. As in the case of H0, the

first step useful for this purpose is to analyze the difference T̂n − Tn under H1. The
starting point is again the decomposition (11.15). Recall that (11.16) is true for any
f satisfying (11.10), so it is a priori true for any such f under H1. Hence, by (11.12)
and (11.16), under H1,

n1/2
∫

(
f̂n(y) − fn(y)

)2
dy = op(1). (11.45)

The following lemma shows the behavior of the cross-product term. Unlike
(11.17), it shows that the n1/2 × (the cross-product term) is approximated by
a sequence of non-vanishing random variables involving n1/2δ1, 
 and D :=∫

ḟ (y)
(
f (y) − f0(y)

)
dy.

Lemma 11.2 Assume H1 and Assumptions (11.9)–(11.12) hold. Then,

∣
∣
∣
∣n

1/2
∫

(
f̂n(y) − fn(y)

)(
fn(y) − μn(y)

)
dy

−
(
n1/2δ1 + n−1/2
′

n∑

i=1

ci
)
D

∣
∣
∣
∣ = op(1). (11.46)
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Proof Assume H1 holds and let f be a density satisfying (11.10) and H1. Let E
denote the expectation when density of ε is f . From (11.7), it follows that

Tn =
∫

K ∗ ( f − f0)(v)dv + Op

( 1

n1/2

)
= Op

(
1
)
. (11.47)

Many details of the proof below are similar to those of the proof of (11.17), where
we use (11.47) instead of (11.30). �

Recall the decomposition (11.31), i.e., with ρn = fn − μn ,

∫
(
f̂n(y) − fn(y)

)
ρn(y)dy = 1

nh2
Dn1 + 1

nh
Dn2, (11.48)

where Dn1, Dn2 are as in (11.32)–(11.34). Note that the inequalities (11.29) and
(11.32) are valid for any f satisfying (11.10). By (11.29) and (11.47), we obtain

∣
∣Dn2

∣
∣ ≤ C1/2

n2 T 1/2
n = Op

(
h−3/2

)
,

1

nh

∣
∣n1/2Dn2

∣
∣ = Op

( 1

n1/2h5/2

)
. (11.49)

To analyze Dn1, recall the decomposition (11.34), viz., Dn1 = δ1Dn11 + 
′Dn12 so
that

n1/2Dn1 = n1/2δ1 Dn11 + n1/2
′Dn12. (11.50)

Write

Dn11 :=
∫ n∑

i=1

[
K̇

( y − εi

h

) − E K̇
( y − ε

h

)]
ρn(y)dy

+ n
∫

E
(
K̇

( y − ε

h

))
ρn(y)dy = Jn1 + nJn2, say. (11.51)

By the C-S inequality, (11.9), (11.24), and (11.47),

|Jn1| ≤ G1/2
n1 T 1/2

n = Op
(
(nh)1/2

)
,

1

nh2
|Jn1| = Op

( 1

n1/2h3/2
)
. (11.52)

As in the proof of (11.17), to analyze Jn2 term, we introduce λn(y) := ∫
f (y −

vh)K̇ (v)dv. The role played by λn(y) here is analogous to that of γn(y) under H0.
Note that

E K̇
( y − ε

h

) =
∫

K̇
( y − z

h

)
f (z)dz = h

∫
f (y − hv)K̇ (v)dv = hλn(y),

nJn2 = h
n∑

i=1

∫
λn(y)ζni (y)dy,
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where ζni (y) ≡ h−1K
(
(y − εi )/h

) − μn(y). Because now Eζni (y) �= 0, the effect
of alternatives is manifested in the asymptotic behavior of Jn2 as is evidenced by the
following fact:

∣
∣
∣
1

nh2
nJn2 − D

∣
∣
∣ = op(1), (H1). (11.53)

Proof of (11.53). Let νn(y) := ∫
f (y − hv)K (v)dv, gn(y) := νn(y) − μn(y),

and ηni (y) := h−1K
(
(y − εi )/h

) − νn(y). Clearly, Eηni (y) ≡ 0, ζni (y) ≡ ηni (y) +
gn(y), and hence

Jn2 := h

n

n∑

i=1

∫
λn(y)ζni (y)dy = h

n

n∑

i=1

∫
λn(y)ηni (y)dy + h

∫
λn(y)gn(y)dy

= h

n
Jn21 + h Jn22, say.

Let ϕn(y, v) := ∫ h
0 f̈ (y − sv)(h − s)ds and Ln(y) := ∫

ϕn(y, v)v2 K̇ (v)dv. Argu-
ing as for (11.38), we have

λn(y) =
∫

f (y − hv)K̇ (v)dv = h ḟ (y) +
∫

ϕn(y, v)v
2 K̇ (v)dv = h ḟ (y) + Ln(y).

Let

Vn1 := 1

n

n∑

i=1

∫
ḟ (y)ηni (y)dy, Vn2 := 1

n

n∑

i=1

∫
Ln(y)ηni (y)dy,

Dn :=
∫

ḟ (y)gn(y)dy, Wn :=
∫

Ln(y)gn(y)dy.

Therefore,

Jn21 :=
n∑

i=1

∫
λn(y)ηni (y)

= h
n∑

i=1

∫
ḟ (y)ηni (y)dy +

n∑

i=1

∫
Ln(y)ηni (y)dy = nhVn1 + nVn2,

(11.54)

Jn22 :=
∫

λn(y)gn(y)dy = h
∫

ḟ (y)gn(y)dy +
∫

Ln(y)gn(y)dy,

= hDn + Wn. (11.55)
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Note that

1

nh2
nJn2 − D = Vn1 + 1

h

(
Vn2 + Wn

) + Dn − D.

Arguing as for Sn1, we have EVn1 = 0 and nE
(
V 2
n1

) ≤ E

(
∫

ḟ (ε + uh)K
(
u
)
du

)2

→ E ḟ 2(ε). Hence, by the Markov inequality,

∣
∣Vn1

∣
∣ = Op

( 1

n1/2
) = op(1). (11.56)

Analogous to (11.41), we have

∫
L2
n(y)dy ≤ h4

( ∫
v2

∣
∣K̇ (v)

∣
∣dv

)2
∫

f̈ 2(y)dy. (11.57)

Also, arguing as for Sn2, we obtain EVn2 = 0 and

nE
(
V 2
n2

) ≤ h3
( ∫

v2
∣
∣K̇ (v)

∣
∣dv

)2
∫

f̈ 2(y)dy
∫

K 2(v)dv.

Therefore,

∣
∣Vn2

∣
∣ = Op

(h3/2

n1/2

)
, h

∣
∣Vn2

∣
∣ = Op

(h5/2

n1/2

)
= op(1). (11.58)

On the other hand, we have

∫
g2n(y)dy =

∫
(
νn(y) − μn(y)

)2
dy

=
∫ ( ∫

[
f (y − hv) − f0(y − hv)

]
K (v)dv

)2
dy

≤
∫ ∫

[
f (y − hv) − f0(y − hv)

]2
K (v)dvdy

=
∫

[
f (y) − f0(y)

]2
dy < ∞.

Hence, by (11.57),

W 2
n ≤

∫
L2
n(y)dy

∫
g2n(y)dy = O(h4), h

∣
∣Wn

∣
∣ = O(h3) = o(1). (11.59)

We shall shortly prove
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∣
∣Dn − D∣

∣ = O(h) = o(1). (11.60)

From (11.54)–(11.56) and (11.58)–(11.60), we thus obtain

Jn2 = h2Vn1 + hVn2 + hWn + h2Dn, (11.61)

|Jn2| ≤ h2|Vn1| + h|Vn2| + h|Wn| + h2|Dn|
= Op

( h2

n1/2

)
+ Op

(h5/2

n1/2

)
+ O

(
h3

)
+ Op

(
h2

)
= Op

(
h2

)
,

∣
∣ 1

nh2
nJn2 − D∣

∣ = Op

( 1

n1/2

)
+ Op

(h1/2

n1/2

)
+ O

(
h
)

+ op(1) = op(1),

thereby proving (11.53).
Proof of (11.60). We can see that

Ln( f ) :=
∫ ( ∫

[
f (y − hv) − f (y)

]
K (v)dv

)2

dy

=
∫ ( ∫ { ∫ h

0
ḟ (y − sv)ds

}

(−v)K (v)dv

)2

dy

≤
∫ ( ∫

|vK (v)|1/2
{∫ h

0
| ḟ (y − sv)|ds

}

|vK (v)|1/2dv
)2

dy

≤
( ∫

|v|K (v)dv
) ∫ ∫ (∫ h

0
| ḟ (y − sv)|ds

)2

|v|K (v)dvdy

≤ h
( ∫

|v|K (v)dv
) ∫ ∫ ( ∫ h

0
ḟ 2(y − sv)ds

)

|v|K (v)dvdy

= h
( ∫

|v|K (v)dv
) ∫ h

0

∫ ( ∫
ḟ 2(y − sv)dy

)

|v|K (v)dvds

= h2
( ∫

|v|K (v)dv
)2

∫
ḟ 2(y)dy = O(h2) → 0.

Similarly Ln( f0) = O(h2) → 0. Therefore,

∫ (
gn(y) − (

f (y) − f0(y)
))2

dy

=
∫ { ∫ (

f (y − hv) − f0(y − hv)
)
K (v)dv −

(
f (y) − f0(y)

) ∫
K (v)dv

}2

dy

=
∫ { ∫ (

f (y − hv) − f (y)
)
K (v)dv −

∫ (
f0(y − hv) − f0(y)

)
K (v)dv

}2

dy

≤ 2Ln( f ) + 2Ln( f0) = O(h2) → 0.

This fact in turn implies
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∫
g2n(y)dy →

∫
(
f (y) − f0(y)

)2
dy,

∣
∣Dn − D∣

∣ =
∣
∣
∣
∣

∫
ḟ (y)

(
gn(y) − (

f (y) − f0(y)
))
dy

∣
∣
∣
∣

≤
{ ∫

ḟ 2(y)dy
∫ (

gn(y) − (
f (y) − f0(y)

))2
dy

}1/2

= O(h) = o(1),

thereby proving (11.60).
Summarizing, in view of (11.9) and (11.51)–(11.53), we have

∣
∣n

1/2

nh2
δ1Dn11 − n1/2δ1D

∣
∣ = op(1). (11.62)

To analyze Dn12 of (11.34), recall the definition of Jn2 from (11.51) and write

Dn12 :=
∫ n∑

i=1

ci
[
K̇

( y − εi

h

) − E K̇
( y − ε

h

)]
ρn(y)dy +

n∑

i=1

ci Jn2

= Bn1 + Bn2, say.

By the C-S inequality and by arguing as for the Cn12, we obtain, in view of (11.47),

∥
∥Bn1

∥
∥ ≤

(∫ ∥
∥
∥

n∑

i=1

ci
[
K̇

( y − εi

h

) − E K̇
( y − ε

h

)]∥∥
∥
2
dy

)1/2

T 1/2
n = Op

(
h1/2

)
.

(11.63)

Hence,
n1/2

nh2
∣
∣
′Bn1

∣
∣ = Op

( 1

n1/2h3/2
)
.

In view of (11.61),

n1/2

nh2
Bn2 := 1

n1/2h2

n∑

i=1

ci Jn2 = 1

n1/2h2

n∑

i=1

ci
(
h2Vn1 + h

(
Vn2 + Wn

) + h2Dn

)

= 1

n1/2

n∑

i=1

ci
(
Vn1 + 1

h

(
Vn2 + Wn

) + Dn

)
.

Therefore, by using (11.9), (11.21), (11.56), and (11.58)–(11.60), we obtain
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n1/2

nh2

′Bn2 − 
′

n1/2

n∑

i=1

ciD = 
′

n1/2

n∑

i=1

ci
{
Vn1 + 1

h

(
Vn2 + Wn

) + Dn − D
}
,

∣
∣
∣
n1/2

nh2

′Bn2 − 
′

n1/2

n∑

i=1

ciD
∣
∣
∣

≤ ‖
′‖
∥
∥
∥

1

n1/2

n∑

i=1

ci
∥
∥
∥
[∣
∣Vn1

∣
∣ + 1

h

∣
∣Vn2

∣
∣ + 1

h

∣
∣Wn

∣
∣ + ∣

∣Dn − D∣
∣
]

= Op(1)
[
Op

( 1

n1/2
) + Op

(h1/2

n1/2
) + Op

(
h
) + Op

(
h
)]

= Op(h) = op(1). (11.64)

By (11.64), (11.63) and the triangle inequality, we now readily obtain

∣
∣
∣
n1/2

nh2

′Dn12 − 
′

n1/2

n∑

i=1

ciD
∣
∣
∣

=
∣
∣
∣

1

n1/2h2

′Bn1 + n1/2

nh2

′Bn2 − 
′

n1/2

n∑

i=1

ciD
∣
∣
∣ = op(1).

Combine this fact with (11.62) and (11.50) to obtain

∣
∣
∣
n1/2

nh2
Dn1 −

(
n1/2δ1 + 
′

n1/2

n∑

i=1

ci
)
D

∣
∣
∣

=
∣
∣
∣
n1/2

nh2
δ1Dn11 − n1/2δ1D + n1/2

nh2

′Dn12 − 
′

n1/2

n∑

i=1

ciD
∣
∣
∣ = op(1).

In turn, this fact combined with (11.49) and (11.48) now readily yields (11.46). This
also completes the proof of Lemma 11.2. �

The asymptotic normality result (11.7), decompositions (11.15), (11.45), and
(11.46) readily yield the following theorem.

Theorem 11.2 Assume the model (11.1) with f as in H1 and Assumptions (11.8)–
(11.12) hold. Then, under H1,

∣
∣
∣n1/2

(
T̂n − Tn

) −
(
n1/2δ1 + 
′

n1/2

n∑

i=1

ci
)
D

∣
∣
∣ = op(1).

If, in addition, K is bounded and compactly supported and f̈ is bounded, then, under
H1,

n1/2
(
T̂n −

∫
{
Kh ∗ ( f − f0)(y)

}2dy
)

−
(
n1/2δ1 + 
′

n1/2

n∑

i=1

ci
)
D →D N (0, 4ω2),
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where ω2 := Var f
(
f (ε) − f0(ε)

)
.

11.4 Random Covariates

In this section, we shall discuss the analogs of the above results when the predicting
variables in the model (11.1) are random. Accordingly, our model now is

Yi = α + Z ′
iβ + εi , 1 ≤ i ≤ n, (11.65)

where Z , Zi ∈ R
p, 1 ≤ i ≤ n are i.i.d. random vectors and independent of {ε, εi }.

We need to replace Assumptions (11.8) and (11.9) by the following two assumptions.
Let α̃, β̃ be estimates of α, β of the model (11.65), respectively. Assume

E‖Z‖4 < ∞, (11.66)

n1/2
∣
∣̃α − α

∣
∣ + n1/2

∥
∥β̃ − β

∥
∥ = Op(1). (11.67)

Let Z denote the n × p matrix whose i th row is Z ′
i , 1 ≤ i ≤ n. Note that∑n

i=1 Zi Z ′
i = Z′Z. By theLawofLargeNumbers (LLNs), under (11.66),n−1Z′Z =

n−1 ∑n
i=1 Zi Z ′

i →p � := E
(
Z Z ′).

Now the residuals are ε̃i := Yi − α̃ − β̃ ′Zi . Let T̃n denote the analog of T̂n with ε̂i
replaced by ε̃i . This is the test statistic in the case of random covariates. The asymp-
totic distributions of T̃n under H0 and H1 are described in the next two subsections.

11.4.1 Asymptotic Null Distribution of ˜Tn

The following theorem describes the asymptotic null distribution of T̃n .

Theorem 11.3 Suppose Model (11.65) holds and Assumption (11.10) with f = f0,
(11.11), (11.12), (11.66), and (11.67)when f = f0 hold. Then, under H0, the analog
of (11.13) with T̂n replaced by T̃n continues to hold.

If, in addition, f̈0 is bounded and K is compactly supported and bounded, then,
under H0, (11.14) holds with T̂n replaced by T̃n.

Proof The proof is quite similar to that of Theorem 11.1. We shall thus be brief,
indicating only the differences.

Proof of the analog of (11.16). Let δ̃1 := α̃ − α, δ̃2 := β̃ − β and let ηi = δ̃1 +
δ̃′
2Zi . Then εi − ε̃i = δ̃1 + δ̃′

2Zi = ηi ,1 ≤ i ≤ n.The role playedbyηi here is similar
to that played by ξi in the previous sections.

By (11.66) and (11.67), n−1 ∑n
i=1 ‖Zi‖k →p E‖Z‖k < ∞, k = 1, . . . , 4 and
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max
1≤i≤n

∣
∣ηi

∣
∣ ≤ ∣

∣̃δ1
∣
∣ + n1/2

∥
∥̃δ2

∥
∥ max

1≤i≤n
n−1/2

∥
∥Zi

∥
∥ = op(1),

n−1/2
n∑

i=1

|ηi | ≤ n1/2
∣
∣̃δ1

∣
∣ + n1/2

∥
∥̃δ2

∥
∥n−1

n∑

i=1

∥
∥Zi

∥
∥ = Op(1).

n∑

i=1

η2
i ≤ 2nδ̃21 + 2n‖̃δ2‖2 n−1

n∑

i=1

‖Zi‖2 = Op(1),

n
n∑

i=1

η4
i = n

n∑

i=1

(
δ̃1 + δ̃′

2Zi

)4 ≤ 8n
(
nδ̃41 +

n∑

i=1

(
δ̃′
2Zi )

4
)

≤ 8n2δ̃41 + 8n2
∥
∥̃δ2

∥
∥4

n−1
n∑

i=1

∥
∥Zi

∥
∥4 = Op(1).

Recall the bound (11.20). Let C̃n1, C̃n2 be the analogs of Cn1,Cn2 with ξi and xi
replaced by ηi and Zi , respectively. That is, with ε̃i = Yi − α̃ − β̃ ′Zi ,

C̃n1 :=
∫ ( n∑

i=1

ηi K̇
( y − εi

h

))2
dy,

C̃n2 :=
∫ ( n∑

i=1

∫ (y−̃εi )/h

(y−εi )/h
K̈ (t)

( y − εi

h
− t

)
dt

)2
dy.

Then the bound (11.20) continues to holdwithCn1,Cn2 replaced by C̃n1, C̃n2, respec-
tively.

Let C̃n12 denote the Cn12 of (11.22) with ci replaced by Zi , i.e.,

C̃n12 :=
∫ ∥

∥
∥

n∑

i=1

Zi K̇
( y − εi

h

)∥∥
∥
2
dy.

Then, with Cn11 as in (11.22), we have C̃n1 ≤ 2̃δ21Cn11 + 2
∥
∥̃δ2

∥
∥2
C̃n12. Since Cn11

does not involve Zi ’s, the bound (11.26) holds here also, i.e., δ̃21Cn11 = Op
(
h
) +

Op
(
nh4

)
. Then,

C̃n12 =
∫ ∥

∥
∥

n∑

i=1

Zi

(
K̇

( y − εi

h

) − E K̇
( y − ε

h

)) +
n∑

i=1

Zi E K̇
( y − ε

h

)∥∥
∥
2
dy

≤ 2
∫ ∥

∥
∥

n∑

i=1

Zi

(
K̇

( y − εi

h

) − E K̇
( y − ε

h

))∥
∥
∥
2
dy

+ 2
∫ ∥

∥
∥

n∑

i=1

Zi E K̇
( y − ε

h

)∥∥
∥
2
dy.
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By the independence of {Zi } and {εi } and Fubini’s theorem, we have

E
∫ ∥

∥
∥

n∑

i=1

Zi

(
K̇

( y − εi

h

) − E K̇
( y − ε

h

))∥
∥
∥
2
dy

= nE‖Z‖2
∫

Var0
(
K̇

( y − ε

h

)) ≤ nE‖Z‖2E K̇ 2
( y − ε

h

)

= nhE‖Z‖2
∫

K̇ 2(v)dv = O(nh). (11.68)

Hence,

EC̃n12 ≤ 2nE‖Z‖2
∫

E K̇ 2
( y − ε

h

) + E
∥
∥

n∑

i=1

Zi

∥
∥2

∫ (
E K̇

( y − ε

h

))2

≤ 2nE‖Z‖2h
∫

K̇ 2(v)dv + 2n2E‖Z‖2O(
h4

)
,

∥
∥δ2

∥
∥2
C̃n12 = n

∥
∥δ2

∥
∥2
n−1C̃n12 = Op(1)

(
Op

(
h
) + Op

(
nh4

))
,

nh1/2
1

n2h4
C̃n1 = 1

nh7/2

(
Op

(
h
) + Op

(
nh4

)) = Op
( 1

nh5/2
) + Op

(
h1/2

)
.

This bound is similar to the rate bound given at (11.28).
Analogous to (11.29), we have

C̃n2 ≤ n
n∑

i=1

η4
i

h3

∫
K̈ 2(v)dv = Op

( 1

h3
)
, nh1/2

1

n2h4
C̃n2 = Op

( 1

nh9/2
)
.

(11.69)

These bounds combined with (11.20) complete the proof of (11.16) in the random
covariates case.

Proof of (11.17). Let D̃n1 and D̃n2 denote the analogs of Dn1, Dn2 of the iden-
tity (11.31) in the current setup, respectively. Then, similar to (11.31), we have the
following decomposition in the current setup:

∫
(
f̂n(y) − fn(y)

)
ρn(y)dy = 1

nh2
D̃n1 + 1

nh
D̃n2. (11.70)

Similar to (11.32),

∣
∣D̃n2

∣
∣ ≤ C̃1/2

n2 T 1/2
n = Op

( 1

n1/2h2

)
, nh1/2

1

nh

∣
∣D̃n2

∣
∣ = Op

( 1

n1/2h5/2

)
.
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To analyze D̃n1, let

D̃n12 :=
∫ n∑

i=1

Zi K̇
( y − εi

h

)
ρn(y)dy.

Then, with Dn11 as in (11.33), analogous to (11.34), we have

D̃n1 = δ̃1Dn11 + δ̃′
2 D̃n12. (11.71)

Since Dn11 does not involve Zi ’s, the result (11.44) is applicable in the current setup
also, i.e., we have

nh1/2
1

nh2
∣
∣̃δ1Dn11

∣
∣ = Op

( 1

n1/2h3/2

)
+ Op

(
h1/2

)
.

Also, we write

D̃n12 =
∫ n∑

i=1

Zi

(
K̇

( y − εi

h

) − E0 K̇
( y − ε

h

))
ρn(y)dy

+
∫ n∑

i=1

Zi E0

(
K̇

( y − ε

h

))
ρn(y)dy

= B̃n1 + B̃n2, say.

Note that B̃n2 = ∑n
i=1 Zi�n2, where �n2 is as in (11.35). Thus, in view of (11.67)

and (11.43),

∣
∣̃δ′

2 B̃n2

∣
∣ = ∣

∣
n∑

i=1

δ̃′
2Zi

∣
∣
∣
∣�n2

∣
∣ ≤

n∑

i=1

∣
∣̃δ′

2Zi

∣
∣
∣
∣�n2

∣
∣

≤ n1/2‖̃δ2‖n−1/2
n∑

i=1

∥
∥Zi

∥
∥
∣
∣�n2

∣
∣ = Op(1)Op

(
n1/2

)
Op

( h2

n1/2

)
= Op(h

2).

Therefore, by (11.67) and (11.30), similar to (11.27),

∣
∣̃δ′

2 B̃n1

∣
∣ ≤ ∥

∥̃δ2
∥
∥
∥
∥B̃n1

∥
∥

≤ ∥
∥̃δ2

∥
∥
( ∫ ∥

∥
∥

n∑

i=1

Zi

(
K̇

( y − εi

h

) − E0 K̇
( y − ε

h

))∥
∥
∥
2
dy

)1/2

T 1/2
n

= Op
(
n−1/2)Op

(
(nh)1/2

)
Op

(
(nh)−1/2) = Op

(
n−1/2).

Hence,
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nh1/2
1

nh2
∣
∣̃δ′

2Dn12

∣
∣ ≤ 1

h3/2

(∣
∣̃δ′

2 B̃n1

∣
∣ + ∣

∣̃δ′
2 B̃n2

∣
∣
)

= Op

( 1

n1/2h3/2

)
+ Op

(
h1/2

)
,

nh1/2
1

nh2
∣
∣D̃n1

∣
∣ = Op

( 1

n1/2h3/2

)
+ Op

(
h1/2

)
,

just as in non-random covariates case. This also completes the proof of (11.17) in
the random covariates case, and also of Theorem 11.3. �

Remark 11.1 To test the composite hypothesis Hσ : f (x) = σ−1 f0(x/σ), for all
x ∈ R and some σ > 0, modify the above test as follows. Let σ̂ (̃σ ) be an estimator
of σ in the non-random (random) predictors case such that

∣
∣n1/2(σ̂ − σ)

∣
∣ = Op(1),

(
∣
∣n1/2(̃σ − σ)

∣
∣ = Op(1)), under Hσ . Let

μ̂n(y) := 1

σ̂

∫ ∫
f0

( y − hv

σ̂

)
K (v)dvdy,

μ̃n(y) := 1

σ̃

∫ ∫
f0

( y − hv

σ̃

)
K (v)dvdy,

T ∗
n :=

∫
(
f̂n(y) − μ̂n(y)

)2
dy or

∫
(
f̃n(y) − μ̃n(y)

)2
dy.

Then, arguing as in [9], one shows that

nh1/2
(
T ∗
n − 1

nh

∫
K 2(v)dv

)
→D N

(
0, τ 2),

in both non-random and random predictor cases.

11.4.2 Asymptotic Distribution of ˜Tn Under H1

In this subsection, we shall prove the analog of Lemma 11.2 and Theorem 11.2 in
the linear regression model (11.65) with random predictors. First we shall prove the
following lemma.

Lemma 11.3 Assume H1 and Assumptions (11.11), (11.12), (11.66), and (11.67)
hold. Then,

∣
∣
∣
∣n

1/2
∫

(
f̃n(y) − fn(y)

)(
fn(y) − μn(y)

)
dy −

(
n1/2δ̃1 + n1/2δ̃′

2E(Z)
)
D

∣
∣
∣
∣ = op(1).

Proof Again, the proof of this lemma is similar to that of Lemma 11.2. We shall be
brief, indicating only the differences due to random covariates.

To start with recall the decomposition (11.70). In view of (11.47) and (11.69), we
have
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∣
∣D̃n2

∣
∣ ≤ C̃1/2

n2 T 1/2
n = Op

(
h−3/2

)
, n1/2

1

nh

∣
∣D̃n2

∣
∣ = Op

( 1

n1/2h5/2

)
.

To analyze D̃n1 recall the identity (11.71). Since Dn11 does not involve Zi ’s, the
analog of the result (11.62) is applicable in the current setup also, i.e.,

∣
∣n

1/2

nh2
δ̃1Dn11 − n1/2δ̃1D

∣
∣ = op(1).

To analyze D̃n12, we write

D̃n12 =
∫ n∑

i=1

Zi

(
K̇

( y − εi

h

) − E K̇
( y − ε

h

))
ρn(y)dy

+
∫ n∑

i=1

Zi E
(
K̇

( y − ε

h

))
ρn(y)dy

= G̃n +
n∑

i=1

Zi Jn2, say.

Note that G̃n is like Bn1 defined in the proof of (11.46). In view of (11.47) and
(11.68),

∥
∥G̃n

∥
∥ = Op

(
(nh)1/2

)
, n1/2

1

nh2
∣
∣̃δ′

2G̃n

∣
∣ ≤ n1/2

∥
∥̃δ2

∥
∥ 1

nh2
∥
∥G̃n

∥
∥ = Op

( 1

n1/2h3/2
)
.

In view of (11.56) and (11.58)–(11.61),

∣
∣
∣n1/2

1

nh2
δ̃′
2

n∑

i=1

Zi Jn2 − n1/2δ̃′
2n

−1
n∑

i=1

ZiD
∣
∣
∣

=
∣
∣
∣
1

nh2
n1/2δ̃′

2

n∑

i=1

Zi

(
h2Vn1 + hVn2 + hWn + h2Dn

)
− n1/2δ̃′

2n
−1

n∑

i=1

ZiD
∣
∣
∣

=
∣
∣
∣n1/2δ̃′

2n
−1

n∑

i=1

Zi

(
Vn1 + h−1

(
Vn2 + Wn

) + Dn − D
)∣
∣
∣

≤ ∥
∥n1/2δ̃2

∥
∥

∥
∥n−1

n∑

i=1

Zi

∥
∥
{
Op

(
n−1/2) + Op

(h1/2

n1/2
) + Op

(
h3

) + O(h)
}

= op(1),

by (11.12), (11.67) and the fact that n−1 ∑n
i=1 Zi →p E(Z). This completes the

proof of Lemma 11.3. �
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Analogous to Theorem 11.2 we have the following theorem in the random pre-
dictors case.

Theorem 11.4 Assume the model (11.65) with the error density f as in H1 holds.
In addition, assume that (11.10)–(11.12), (11.66) and (11.67) hold. Under H1,

∣
∣
∣n1/2

(
T̃n − Tn

) −
(
n1/2δ̃1 + n1/2δ̃′

2E(Z)
)
D

∣
∣
∣ = op(1).

If, in addition, f̈ is bounded and K is compactly supported and bounded, then

n1/2
(
T̃n −

∫
{
Kh ∗ ( f − f0)(y)

}2dy
)

−
(
n1/2δ̃1 + n1/2δ̃′

2E(Z)
)
D →D N (0, 4ω2).

Remark 11.2 The papers [2, 9] dealt with the zero intercept linear autoregressive
stationary time series {Zi , i = 0,±1, · · · } having E(Z0) = 0. In our case, we have
nonzero intercept parameter in both non-randomand randomcovariates linear regres-
sion models. This is the reason for the difference between the limiting distribution of
T̂n in the present setup and that of its analog in [2] under the global L2 alternatives
H1. It is also the reason for us to assume that h → 0, nh5 → ∞ compared to the
assumption h → 0, nh4 → ∞ needed by [2, 9].

However, if both f0 and f ( �= f0) satisfy (11.10) and are such that D =∫
ḟ (y)

(
f (y) − f0(y)

)
dy = 0, then the results of Theorems 11.2 and 11.4 are the

same as those obtained in [2] in the linear autoregressive models with zero intercept.
In particular, if both f, f0 are symmetric around zero, then ḟ (−y) ≡ − ḟ (y) and

D =
∫ 0

−∞
ḟ (y)

(
f (y) − f0(y)

)
dy +

∫ ∞

0
ḟ (y)

(
f (y) − f0(y)

)
dy

= −
∫ ∞

0
ḟ (y)

(
f (y) − f0(y)

)
dy +

∫ ∞

0
ḟ (y)

(
f (y) − f0(y)

)
dy = 0.

11.5 Finite Sample Simulations and A Real Data Example

This section contains findings of a simulation study and some real data examples.
The finite sample performance of the goodness-of-fit tests based on T̃n and T ∗

n of
Remark 11.1 is described in Sect. 11.5.1 while the two real data examples appear in
Sect. 11.5.2.

11.5.1 Finite Sample Simulations

In this subsection, we describe the findings of a finite sample study using Monte
Carlo and asymptotic distributions of T̃n in the random design case.
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For each value of n = 250, 500, and 1000, we generated Zi ’s randomly from
Uniform(−3, 3) distribution, and εi ’s randomly from the density f0, independent of
Zi ’s. Then the observations {Y1, . . . ,Yn} were generated using the model (11.65),
with α = 10, β = 5. We used the three densities: standard normal density ϕN ,
Student-t5 density ψt5 with degrees of freedom 5 and logistic density ψL(x) =
e−x/(1 + e−x )2, x ∈ R. Let ϕt5 , ϕL denote the standardized ψt5 , ψL densities, each
having unit variance. Recall that the variance of ψt5 is 5/3 and that of ψL is π2/3.
Thus ϕt5(x) = (3/5)1/2ψt5(x/(5/3)

1/2) and ϕL(x) := (π/
√
3)ψL

(
πx/

√
3

)
, x ∈ R.

We first consider the following two simple null hypotheses:

H∗
0N : f (x) = ϕN (x), ∀ x ∈ R; H∗

0L : f (x) = ϕL(x), ∀ x ∈ R,

each against the alternative that the given null hypothesis is not true.
We used the kernel K (x) = (1/0.4439938)exp(−1/(1 − x2))I (|x | ≤ 1). The

properties that for any r > 0, supy>0

(
yr e−y

)
< ∞ and that yr e−y → 0, as y → ∞,

are used to show that this K satisfies the assumption (11.11). Moreover,

∫
K 2(v)dv = 0.675117,

∫
(K ∗ K )2(v)dv = 0.487467,

∫
v2K (v)dv = 0.020155, σ−2

∫
ϕ2
N (x/σ)dy = 0.2820948/σ,

c−2
∫

ϕ2
L(x/c)dx = 1

/
(6c), ∀ σ > 0, c > 0. (11.72)

For the Monte Carlo study, the simulation was carried out as follows. For each
iteration, the parameters α and β were estimated by the least squares estimators α̃, β̃,
respectively. Let ε̃i = Yi − α̃ − β̃Zi , 1 ≤ i ≤ n and

f̃n(y) = 1

nh

n∑

i=1

K
( y − ε̃i

h

)
.

Let μnN , μnL denote μn of (11.2) when f0 = ϕN , f0 = ϕL , respectively, and let

TnN :=
∫ (

f̃n(y) − μnN (y)
)2
dy, TnL :=

∫ (
f̃n(y) − μnL(y)

)2
dy,

τ 2
nN = 2

∫
ϕ2
N (z)dz

∫
(
K ∗ K (y)

)2
dy, τ 2

nL = 2
∫

ϕ2
L(z)dz

∫
(
K ∗ K (y)

)2
dy,

MnN = n
√
h

τnN

(
TnN − 1

nh

∫
K 2(v)dv

)
, MnL = n

√
h

τnL

(
TnL − 1

nh

∫
K 2(v)dv

)
.

As in [9], for testing the above simple hypotheses we used the bandwidth h =
1/(3n1/5.1). The large values of |MnN | (|MnL |) are significant for H∗

0N (H∗
0L ).



11 Analog of the Bickel–Rosenblatt Test 319

Next, we consider the composite hypotheses

H0N : f (x) = 1

σ
ϕN

( x

σ

)
, ∃ σ > 0, ∀ x ∈ R;

H0L : f (x) = 1

c
ψL

( x

c

)
, ∃ c > 0, ∀ x ∈ R,

each against the alternative that the null is not true.
Let s denote the sample standard deviation of ε̃i , 1 ≤ i ≤ n, c̃ = √

3s/π and
hnN = s

/
(3n1/5.1) and hnL = c̃

/
(3n1/5.1). These choices of the bandwidth sequences

are justified from some optimality considerations, see, e.g., [11]. Let

f̃nN (y) := 1

nhnN

n∑

i=1

K
( y − ε̃i

hnN

)
, f̃nL(y) := 1

nhnL

n∑

i=1

K
( y − ε̃i

hnL

)
,

μ̃nN (y) := 1

hnN

∫
K

( y − z

hnN

)1

s
ϕN

( z

s

)
dz,

τ̃ 2
nN := 2

∫
1

s2
ϕ2
N

( z

s

)
dz

∫
(
K ∗ K (y)

)2
dy,

μ̃nL(y) := 1

hnL

∫
K

( y − z

hnL

)1

c̃
ψL

( z

c̃

)
dz,

and

τ̃ 2
nL := 2

∫
1

c̃2
ψ2

L

( z

c̃

)
dz

∫
(
K ∗ K (y)

)2
dy,

T̃nN :=
∫ (

f̃nN (y) − μ̃nN (y)
)2
dy, T̃nL :=

∫ (
f̃nL(y) − μ̃nL(y)

)2
dy,

M̃nN := n
√
hnN

τ̃nN

(

T̃nN − 1

nhnN

∫
K 2(v)dv

)

,

M̃nL := n
√
hnL

τ̃nL

(

T̃nL − 1

nhnL

∫
K 2(v)dv

)

. (11.73)

The large values of |M̃nN | (|M̃nL |) are significant for H0N (H0L ).
Let Mn be the generic notation for any one of the four statistics MnN , MnL , M̃nN ,

and M̃nL . For each iteration the statistic Mn was computed. The procedure was
repeated 5,000 times collecting replication of Mn , denoted by Mn,i , 1 ≤ i ≤ 5000.
Also, denote the ordered statistics of Mn,i by Mn,(i). The asymptotic test with the
asymptotic size α rejects the given null hypothesis when the corresponding |Mn| >

zα/2, where zα is the 100(1 − α)th percentile of the standard normal distribution.
The empirical test with size α rejects the null hypothesis when Mn < Mn,(5000[α/2])
or Mn > Mn,(5000[1−α/2]).
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Tables 11.1 and 11.2 contain the empirical sizes and powers of these tests for the
null hypotheses H∗

0N and H∗
0L , respectively. Tables 11.3 and 11.4 contain empirical

sizes and powers of these tests for the composite null hypotheses H0N , H0L , respec-
tively. In these tables, test based on the asymptotic (empirical) critical values of the
corresponding Mn is denoted by Mn,a (Mn,e). The left (right) half of the table is
for the nominal level of α = 0.05 (0.10). Overall, it is seen that the large sample
tests tend to have conservative finite sample level when testing simple or composite
hypotheses.

11.5.2 Real Data Examples

Here we shall illustrate the proposed test by applying it to two datasets. In the
first example on energy, the objective was to regress the energy requirements (in

Table 11.1 Empirical sizes and powers of the tests for H∗
0N

n f \Mn α = 0.05 α = 0.10

Mn,a Mn,e Mn,a Mn,e

250 H∗
0N 0.030 0.050 0.074 0.100

ϕt5 0.226 0.256 0.301 0.351

ϕL 0.076 0.096 0.128 0.164

500 H∗
0N 0.035 0.050 0.080 0.100

ϕt5 0.523 0.537 0.602 0.652

ϕL 0.158 0.169 0.220 0.262

1000 H∗
0N 0.032 0.050 0.084 0.100

ϕt5 0.906 0.916 0.935 0.953

ϕL 0.332 0.359 0.417 0.480

Table 11.2 Empirical sizes and powers of the tests for H∗
0L

n f \Mn α = 0.05 α = 0.10

Mn,a Mn,e Mn,a Mn,e

250 ϕN 0.064 0.082 0.112 0.152

ϕt5 0.047 0.065 0.091 0.120

H∗
0L 0.029 0.050 0.074 0.100

500 ϕN 0.127 0.137 0.185 0.223

ϕt5 0.070 0.080 0.115 0.139

H∗
0L 0.032 0.050 0.080 0.100

1000 ϕN 0.328 0.324 0.408 0.451

ϕt5 0.103 0.105 0.169 0.199

H∗
0L 0.036 0.050 0.075 0.100
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Table 11.3 Empirical sizes and powers of the tests for H0N

n f \M̃n α = 0.05 α = 0.10

M̃n,a M̃n,e M̃n,a M̃n,e

250 H0N 0.035 0.050 0.082 0.100

ψt5 0.229 0.266 0.292 0.361

ψL 0.068 0.090 0.116 0.162

500 H0N 0.033 0.050 0.088 0.100

ψt5 0.477 0.533 0.554 0.640

ψL 0.132 0.168 0.191 0.253

1000 H0N 0.035 0.050 0.092 0.100

ψt5 0.864 0.883 0.902 0.928

ψL 0.332 0.365 0.410 0.476

Table 11.4 Empirical sizes and powers of the tests for H0L

n f \M̃n α = 0.05 α = 0.10

M̃n,a M̃n,e M̃n,a M̃n,e

250 ϕN 0.049 0.053 0.093 0.111

ψt5 0.060 0.067 0.109 0.126

H0L 0.033 0.050 0.086 0.100

500 ϕN 0.081 0.089 0.134 0.164

ψt5 0.069 0.079 0.122 0.145

H0L 0.039 0.050 0.088 0.100

1000 ϕN 0.200 0.222 0.280 0.309

ψt5 0.102 0.118 0.158 0.176

H0L 0.035 0.050 0.087 0.100

Mcal/day) (Y) on the body weights (in kg) (Z) of 64 grazing merino sheep in Aus-
tralia. Identifying a relation between the energy requirement and the weight plays an
important role in predicting meat production in grazing sheep systems. The data for
this example is from [12], which is also available on p. 64 of [1]. We fitted a simple
linear regression model by the method of least squares and computed the residuals
to compute the proposed test. The fitted model is Ỹ = 13.98 + 12.97Z .

In the second example, the problem is to see if there is a relationship between the
two methods of measuring iron content of crushed blast furnace slag. The variable
Y is the measurement based on a chemical test conducted in the lab, which is time-
consuming and expensive. The variable Z is the measurement based on a quicker and
cheaper magnetic test. Dataset consisting of 53 observations was initially analyzed
in [10]. It is also available on p. 62 of [1]. The simple linear regression model fitted
to the data by the ordinary least squares is Ỹ = 8.9565 + 0.5866Z .

After fitting least squares regression lines to both datasets, we performed the
goodness-of-fit tests for the error density. In both of these examples, the variable Z
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is random, ε̃i := Yi − Ỹi . Let ϕN and ψL denote the density of N (0, 1) and logistic
distributions, respectively, as in Sect. 11.5.1. In each data example mentioned above,
we tested the two hypotheses H0N and H0L of Sect. 11.5.1 against the alternatives
that the given null hypothesis is not true.

Recall the notation (11.73). With c̃, K and s as in Sect. 11.5.1. From (11.72), we
obtain

τ̃ 2
nN := 2s−2

∫
ϕ2
N (x/s)dx

∫
(K ∗ K )2(v)dv = 0.2750235 s−1, for H0N ,

τ̃ 2
nL := 2̃c−2

∫
ϕ2
L

(
x /̃c

)
dx

∫
(K ∗ K )2(v)dv = 0.1624888 c̃−1, for H0L .

The test statistics to be used are |M̃nN | and |M̃nL | of (11.73). The test that rejects H0N

(H0L ) whenever
∣
∣M̃nN

∣
∣ > zα/2

(∣
∣M̃nL

∣
∣ > zα/2

)
is of the asymptotic size 0 < α < 1.

Example 11.1 Sheep energy versus weight. First, consider testing for H0N . Here
n = 64, The residual s.d. s = 6.27965, the bandwidth hnN = 0.9261072, T̃nN =
0.009118, and M̃nN = −0.6687283. Since |M̃nN | is small compared to any rea-
sonable standard normal cut-off value, we do not reject the null hypothesis H0N at
any reasonable level of significance α. For example, if α = 0.05, then zα/2 = 1.96
and hence we can’t reject the null hypothesis as |Mn| < 1.96 at α = 0.05.

In the case of testing for H0L , c̃ = 3.462153, the bandwidth hnL = 0.5105897,
T̃nL = 0.01504718, and M̃nL = −1.184803. Again we do not reject H0L at any rea-
sonable level.

Example 11.2 Iron content. Here n = 53. When testing for H0N , s = 3.4301,
hnN = 0.5249225, T̃nN = 0.01371428, and M̃nN = −1.430998. When testing for
H0L , c̃ = 1.8911, hnL = 0.289405, T̃nL = 0.03934203, and M̃nL = −0.4545036.
Again, based on this data, neither of the two null hypotheses can be rejected at any
reasonable level of significance.
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Chapter 12
A Minimum Contrast Estimation for
Spectral Densities of Multivariate Time
Series

Yan Liu

Abstract We propose a minimum contrast estimator for multivariate time series in
the frequency domain. This extension has not been thoroughly investigated, although
the minimum contrast estimator for univariate time series has been studied for a long
time. The proposal in this paper is based on the prediction errors of parametric
time series models. The properties of the proposed contrast estimation function are
explained in detail. We also derive the asymptotic normality of the proposed estima-
tor and compare the asymptotic variance with the existing results. The asymptotic
efficiency of the proposed minimum contrast estimation is also considered. The the-
oretical results are illustrated by some numerical simulations.

12.1 Introduction

The estimation of stationary processes is an elementary problem in time series anal-
ysis. In the basic statistics course, the parameter estimation of time series is done in
the time domain with the famous Yule–Walker estimator derived from the autore-
gressive models. As an exploration into the probabilistic structure, the maximum
likelihood estimator is also introduced for the Gaussian autoregressive models. In
view of its usefulness, the quasi-Gaussian maximum likelihood estimator plays a
central role in the parameter estimation problem of time series. The limitations of
all these approaches are realized when the Whittle likelihood is introduced in an
intermediate course.

An innovative criterion between a parameterized model and a nonparametric esti-
mator of the spectral density of stationary processes, concerning the stabilization of
estimators under small perturbations, was introduced in [12] by Professor Taniguchi.
This approachopenedup anewhorizonof theminimumcontrast estimation in a series
of works [13, 14, 16]. Under his supervision, we interpret the prediction errors,
interpolation errors, and extrapolation errors as a measure of discrepancy between
the model and a nonparametric estimator. It is no longer a surprise now that this type
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of measures works well for parameter estimation [6, 7, 11]. The minimum contrast
estimation approach does not stop at its theory, but has applications in discriminant
analysis [17], and empirical likelihood [9], just to name a few.

The only surprise to the author is that the approach was only developed for the
scalar-valued linear processes. In this paper, we propose a minimum contrast estima-
tor for the parameter estimation of spectral densities of multivariate time series based
on the prediction errors [8]. The proposal is new but the mathematics is unexpectedly
challenging. We focus on the main and intriguing cases in practice and establish the
theoretical properties in asymptotics.

The rest of the paper is organized as follows. In Sect. 12.2, we propose our new
measure for the multivariate time series, and establish its fundamental properties. In
Sect. 12.3, we derive the asymptotic distribution of the proposed minimum contrast
estimators. Section12.4 discusses the asymptotic efficiency formultivariateGaussian
processes. The numerical study is presented in Sect. 12.5. Throughout this paper, we
denote the set of all integers by Z, and Kronecker’s delta by

δ(a, b) =
{
1, if a = b,

0, if a �= b.

12.2 Contrast Function for Multivariate Time Series

Suppose {z(t); t ∈ Z} is a vector-valued linear process generated as

z(t) =
∞∑
j=0

G( j)e(t − j), t ∈ Z, (12.1)

where z(t), t ∈ Z, has q real components; e(t), t ∈ Z, has s real components such that
E[e(t)] = 0 and E[e(m)e(n)�] = δ(n,m)K , with K a nonsingular (s × s)-matrix.
Notice that under the setting (12.1), G( j), j ∈ Z, is a (q × s)-matrix; we assume all
components of G( j) are also real.

We suppose that the process {z(t)} is second-order stationary process. Assuming∑∞
j=0 tr

[
G( j)KG( j)�

]
< ∞, the process has a spectral density matrix

f (ω) = 1

2π
k(ω)K k(ω)∗, ω ∈ � := (−π, π ],

where k(ω) = ∑∞
j=0 G( j)ei jω. Denote the (α, β)-th component of G( j) by Gαβ( j),

and denote the αth component of z(t) and e(t) by zα(t) and eα(t), respectively. Under
this setting, we assume that the process {e(t)} is fourth-order stationary with



12 Minimum Contrast Estimation of Multivariate Time Series 327

∞∑
t1,t2,t3=−∞

|Qe
α1,α2,α3,α4

(t1, t2, t3)| < ∞,

where Qe
α1,α2,α3,α4

(t1, t2, t3) is the joint fourth-order cumulant of eα1(t), eα2(t + t1),
eα3(t + t2) and eα4(t + t3), 1 ≤ α1, α2, α3, α4 ≤ s. Henceforth, the process {e(t)} has
a fourth-order spectral density

Q̃e
α1,α2,α3,α4

(ω1, ω2, ω3)

= 1

(2π)3

∞∑
t1,t2,t3=−∞

exp
(
−i(ω1t1 + ω2t2 + ω3t3)

)
Qe

α1,α2,α3,α4
(t1, t2, t3).

Similarly, denote by Qz
β1,β2,β3,β4

(t1, t2, t3) and Q̃z
β1,β2,β3,β4

(ω1, ω2, ω3), 1 ≤ β1, β2,

β3, β4 ≤ q, the fourth-order cumulant and fourth-order spectral density of the process
{z(t)}, respectively.

We introduce a new contrast function D for two spectral density matrices as
follows:

D( f θ , g) =
∫ π

−π

a(θ)tr[| f θ (ω)|pg(ω)] dω, (12.2)

where | f θ (ω)| := √
f θ (ω)∗ f θ (ω) is the square root of the matrix f θ (ω)∗ f θ (ω),

and

a(θ) =

⎧⎪⎨
⎪⎩

(∫ π

−π
tr[| f θ (ω)|p+1] dω

)−p/(p+1)

, p �= −1,

1, p = −1.

The proposal of this new contrast function (12.2) is based on the observation of
the following lemma.

Lemma 12.1 Let p > 0. Suppose the matrices f θ and g are both Hermitian and
semi-definite in any ω ∈ �. The following inequality holds:

D( f θ , g) ≤
(∫ π

−π

tr[|g(ω)|p+1]
)
dω

)1/(p+1)

. (12.3)

Proof We only have to show that

tr[| f θ (ω)|pg(ω)] ≤
(
tr[| f θ (ω)|p+1]

)p/(p+1)(
tr[|g(ω)|p+1]

)1/(p+1)
, p > 0.

(12.4)
Denoting the eigenvalues of a q × q-matrix A by 	1(A) ≥ · · · ≥ 	q(A), we first
prove that

q∑
j=1

	 j (| f θ (ω)|pg(ω)) ≤
q∑
j=1

	 j (| f θ (ω)|p)	 j (g(ω)). (12.5)
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From the fundamental property that the determinant is the product of eigenvalues,

q∏
j=1

	 j (|f θ (ω)|pg(ω)) = det
(| f θ (ω)|pg(ω)

)
= det

(| f θ (ω)|p) det(g(ω)
)

=
q∏
j=1

	 j (| f θ (ω)|p)
q∏

k=1

	k(g(ω))

=
q∏
j=1

	 j (| f θ (ω)|p)	 j (g(ω)).

Equivalently, we have

q∑
j=1

log	 j (| f θ (ω)|pg(ω)) =
q∑
j=1

log
{
	 j (| f θ (ω)|p)	 j (g(ω))

}
.

Let us define two vectors x := (x1, . . . , xq+1) and y := (y1, . . . , yq+1), where the
components of x are

x j = log	 j (| f θ (ω)|pg(ω)), j = 1, . . . , q,

xq+1 = min
(
log	q(| f θ (ω)|p), log	q(g(ω))

)
,

and the components of y are

y j = log	 j (| f θ (ω)|p)	 j (g(ω)), j = 1, . . . , q,

yq+1 =
q+1∑
j=1

x j −
q∑
j=1

y j .

If it holds that
l∑

j=1

x j ≤
l∑

j=1

y j , l = 1, . . . , q + 1, (12.6)

then applyingKaramata’s inequality (e.g., [1, p. 125])with the convex function exp(·)
to each element of x and y, we obtain

q∑
j=1

	 j (| f θ (ω)|pg(ω))

≤
q∑
j=1

	 j (| f θ (ω)|p)	 j (g(ω)) + exp(yq+1) − exp(xq+1)



12 Minimum Contrast Estimation of Multivariate Time Series 329

≤
q∑
j=1

	 j (| f θ (ω)|p)	 j (g(ω)) + exp(xq+1)

(
exp

( q∑
i=1

(xq − yq)
)

− 1

)

≤
q∑
j=1

	 j (| f θ (ω)|p)	 j (g(ω)),

since exp
(∑q

i=1(xq − yq)
)

≤ 1. This shows the inequality (12.5).

Now let us prove the inequality (12.6), i.e.,

l∑
j=1

log	 j (| f θ (ω)|pg(ω)) ≤
l∑

j=1

log
{
	 j (| f θ (ω)|p)	 j (g(ω))

}
, (12.7)

for any 1 ≤ l ≤ q, since it is trivial when l = q + 1. This proof depends on the
singular value decomposition, since the product | f θ (ω)|pg(ω) is not necessarily
Hermitian. Concretely, there exist two unitary matrices U, V ∈ C

q×q such that

| f θ (ω)|pg(ω) = U�V ∗,

where � = diag(	1(| f θ (ω)|pg(ω)), . . . , 	q(| f θ (ω)|pg(ω))). With the first l
columns U l and V l of the matrices U and V , we have

diag(	1(| f θ (ω)|pg(ω)), . . . , 	l(| f θ (ω)|pg(ω))) = U∗
l | f θ (ω)|pg(ω)V l,

for any l = 1, . . . , q. Thus,

l∏
j=1

	 j (| f θ (ω)|pg(ω)) = det
(
U∗

l | f θ (ω)|pg(ω)V l
)

≤ det
(
U∗

l | f θ (ω)|p) det(g(ω)V l
)

≤
l∏

j=1

	 j (| f θ (ω)|p)	 j (g(ω)), (12.8)

which implies (12.7) after taking the logarithm of both sides in (12.8). This completes
the proof of (12.5).

Also, applying Hölder’s inequality yields
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tr[| f θ (ω)|pg(ω)] =
q∑
j=1

	 j (| f θ (ω)|pg(ω))

≤
q∑
j=1

	 j (| f θ (ω)|p)	 j (g(ω))

≤
{ q∑

j=1

	 j (| f θ (ω)|p)(p+1)/p

}p/(p+1){ q∑
j=1

	 j (g(ω))p+1

}1/(p+1)

=
{ q∑

j=1

	 j (| f θ (ω)|p+1)

}p/(p+1){ q∑
j=1

	 j (|g(ω)|p+1)

}1/(p+1)

=
(
tr[| f θ (ω)|p+1]

)p/(p+1)(
tr[|g(ω)|p+1]

)1/(p+1)
,

which shows (12.4). Further, applying Hölder’s inequality again, we can see that

∫ π

−π

tr[| f θ (ω)|pg(ω)] dω

≤
∫ π

−π

(
tr[| f θ (ω)|p+1]

)p/(p+1)(
tr[|g(ω)|p+1]

)1/(p+1)
dω

≤
(∫ π

−π

tr[| f θ (ω)|p+1] dω
)p/(p+1)(∫ π

−π

tr[|g(ω)|p+1] dω
)1/(p+1)

, (12.9)

which is equivalent to (12.3). Thus, the proof of Lemma 12.1 is complete. �

Corollary 12.1 Let p < 0. Suppose the matrices f θ and g are both Hermitian and
semi-definite in any ω ∈ �. The following inequality holds:

D( f θ , g) ≥
(∫ π

−π

tr[|g(ω)|p+1] dω
)1/(p+1)

. (12.10)

Proof We consider two cases: (i) p = −1 and (ii) p �= −1.
For the case (i), we refer the readers to [2, 4]. For the case (ii), let

r = p

p + 1
, −1 < p < 0.

Note that 1 − 1/r < 0, r(p + 1) = p and (p + 1)/p = 1/r . Applying the inequality
(12.9) to

∫ π

−π
tr[| f θ (ω)|p+1|g(ω)|r |g(ω)|−r ] dω yields
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−π

tr[| f θ (ω)|p+1|g(ω)|1/r |g(ω)|−1/r ] dω

≤
(∫ π

−π

tr[| f θ (ω)|p|g(ω)|] dω
)1/r(∫ π

−π

tr[|g(ω)|−p/r ] dω
)1/(p+1)

.

Equivalently, this shows that

∫ π

−π

tr[| f θ (ω)|p|g(ω)|] dω

≥
(∫ π

−π

tr[| f θ (ω)|p+1|g(ω)|1/r |g(ω)|−1/r ] dω
)r(∫ π

−π

tr[|g(ω)|−p/r ] dω
)−r/(p+1)

=
(∫ π

−π

tr[| f θ (ω)|p+1 dω

)p/(p+1)(∫ π

−π

tr[|g(ω)|]−(p+1) dω

)−1/(p+1)

.

Thus, we obtain

D( f θ , g) ≥
(∫ π

−π

tr[|g(ω)|p+1] dω
)1/(p+1)

.

When p < −1, the inequality (12.10) can be shown in a similar way. �

12.3 Statistical Inference

In this section,wediscuss the parameter estimationproblembasedon thenewcontrast
function (12.2). The following assumptions are imposed:

Assumption 12.1

(i) The parameter space 
 is a compact subset of Rd .
(i) If θ1 �= θ2, then f θ1

�= f θ2
on a set of positive Lebesgue measure.

(i) The spectral densitymatrix f θ (ω) is three times continuously differentiable with
respect to θ and the second derivative ∂2

∂θ∂θ� f θ (ω) is continuous in ω.

Lemma 12.2
Under Assumption 12.1, we have the following:

(i) When p > 0, θ0 maximizes the disparity D( f θ , f θ0
) if θ0 ∈ 
.

(ii) When p < 0, θ0 minimizes the disparity D( f θ , f θ0
) if θ0 ∈ 
.

Proof The equality in (12.3) or (12.10) only holds if and only if the equality in
Karamata’s inequality holds. In other words,

	 j (| f θ (ω)|p f θ0
(ω)) = 	 j (| f θ (ω)|p)	 j ( f θ0

(ω)), (12.11)
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for all j = 1, . . . , q and ω ∈ �. If the spectral density matrices f θ (ω) and f θ0
(ω)

commute for any ω ∈ �, i.e.,

f θ (ω) f θ0
(ω) = f θ0

(ω) f θ (ω),

for all ω ∈ �, then (12.11) holds. Thus, the statements (i) and (ii) are true if θ =
θ0. �

In the following, let p < 0. Following Lemma 12.2, we defined the true value θ0

as the minimizer of the contrast function, i.e.,

θ0 = argmin
θ∈


D( f θ , f θ0
). (12.12)

We now turn to prepare the regularity conditions for the process (12.1). See, e.g., [4],
for details.

Let F(t) denote the σ -field generated by random vectors {e(s); −∞ < s ≤ t}.
Assumption 12.2

(i) For each 1 ≤ β1, β2 ≤ s, nonnegative integer m, and real η1 > 0,

Var[E(
eβ1(t)eβ2(t + m)|F(t − τ)

)] = O(τ−2−η1)

uniformly in t .
(ii) For each 1 ≤ β1, β2, β3, β4 ≤ s, and any real η2 > 0,

E|E{eβ1(t1)eβ2(t2)eβ3(t3)eβ4(t4)|F(t1 − τ)}
− E(eβ1(t1)eβ2(t2)eβ3(t3)eβ4(t4))| = O(τ−1−η2),

uniformly in t1, where t1 ≤ t2 ≤ t3 ≤ t4.
(iii) For each 1 ≤ β1, β2 ≤ s, any real η3 > 0, and for any fixed integer L ≥ 0, there

exists Bη3 > 0 such that

E[T (n, s)21{T (n, s) > Bη3}] < η3

uniformly in n and s, where

T (n, s) =
[ 1

n

L∑
r=0

{ n∑
t=1

eβ1(t + s)eβ2(t + s + r) − Kβ1β2δ(0, r)
}2]1/2

.

(iv) The spectral densities f j j , 1 ≤ j ≤ q, are square-integrable, and f is in the
Lipschitz class of degree k, k > 1/2.

Let I zn be the periodogram constructed from a partial realization {z(1), . . . , z(n)},
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I zn(ω) = dz
n(ω)dz

n(ω)∗, dz
n(ω) = 1√

2πn

n∑
t=1

z(t)eitω, ω ∈ �.

Denote the (α, β)-th component of I zn by I zαβ . The parameter estimator based on
(12.12) can be defined as

θ̂n = argmin
θ∈


D( f θ , I
z
n). (12.13)

Before stating the next assumption, we prepare a lemma for reference.

Lemma 12.3
([10]) For any r ∈ R and any positive definite matrix A, it holds that

dAr

dθ
= r Aα

(
dA

dθ
+ H A

α,r

)
Ar−1−α, α ∈ R,

where

H A
α,r := 1

r
A−αF AAα+1 − 1

r
Ar−αF AAα−r+1 − F AA + AF A,

and

F A = d�A

dθ
��

A ,

where �A is the orthogonal matrix diagonalizing the matrix A.

This lemma generalizes the derivative of the inverse of a matrix. It can be sum-
marized in the following as a corollary.

Corollary 12.2 For any positive definite matrix A,

dA−1

dθ
= −A−1 dA

dθ
A−1.

It is technically difficult to develop the theoretical argument about the parameter
estimation in the full scope of Lemma 12.3. We impose the following assumption.

Assumption 12.3 For some η ∈ R, it holds that H | f θ (λ)|
η,p = O for any λ ∈ �. In

other words, there exists η ∈ R such that

∂| f θ (λ)|p
∂θ

= p| f θ (λ)|η ∂| f θ (λ)|
∂θ

| f θ (λ)|p−1−η.

This assumption is restrictive but it is worth investigating. The typical example
of Assumption 12.3 is given in Corollary 12.2, i.e., p = −1. The constant η can be
always chosen as η = −1, which results in

∂| f θ (λ)|−1

∂θ
= −| f θ (λ)|−1 ∂| f θ (λ)|

∂θ
| f θ (λ)|−1.
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Other examples are listed as follows:

• The eigenvectors of | f θ (λ)| do not depend on the parameter θ .
• The matrices | f θ (λ)| and F | f θ (λ)| commute.

These examples are not explicit, but they are quite possible to be used in themodeling.
To keep the brevity, we let θ be a real-valued parameter1 and ∂ denotes the

(elementwise) derivative with respect to θ .

Theorem 12.1 Under Assumptions 12.1–12.3, if θ0 ∈ 
 ⊂ R, then the following
holds:

(a)θ̂n
p−→ θ0.

(b)
√
n(θ̂n − θ0)

d−→ N (0, H(θ0)
−1V (θ0)H(θ0)

−1),

where

H(θ) =
(∫ π

−π

tr[| f θ (ω)|p∂ f θ (ω)] dω
)2 −

(∫ π

−π

tr[| f θ (ω)|p+1] dω
)

×
(∫ π

−π

tr

[
∂
{
| f θ (ω)|η∂| f θ (ω)| · | f θ (ω)|p−1−η

}
f θ (ω)

]
dω

−
∫ π

−π

tr

[
∂
{
| f θ (ω)|p∂| f θ (ω)|

}]
dω

)
,

and

V (θ) = 4π
∫ π

−π
tr

[{∫ π

−π
tr[| f θ (λ)|p+1] dλ · | f θ (ω)|η∂| f θ (ω)| · | f θ (ω)|p−1−η

−
∫ π

−π
tr[| f θ (λ)|p∂| f θ (λ)|] dλ · | f θ (ω)|p

}
f θ (ω)

×
{∫ π

−π
tr[| f θ (λ)|p+1] dλ · | f θ (ω)|η∂| f θ (ω)| · | f θ (ω)|p−1−η

−
∫ π

−π
tr[| f θ (λ)|p∂| f θ (λ)|] dλ · | f θ (ω)|p

}
f θ (ω)

]
dω

+ 2π
s∑

r,t,u,v=1

∫∫ π

−π

{∫ π

−π
tr[| f θ (λ)|p+1] dλ · | f θ (ω1)|η∂| f θ (ω1)| · | f θ (ω1)|p−1−η

−
∫ π

−π
tr[| f θ (λ)|p∂| f θ (λ)|] dλ · | f θ (ω1)|p

}
r t

×
{∫ π

−π
tr[| f θ (λ)|p+1] dλ · | f θ (ω2)|η∂| f θ (ω2)| · | f θ (ω2)|p−1−η

1 The extension to the vector parameter θ ∈ 
 ⊂ R
d , d > 2, is straightforward, but the formula for

V (θ) in Theorem 12.1 will be lengthy but not sufficiently fruitful for this paper. This leads to the
thought of only presenting the case θ ∈ R.
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−
∫ π

−π
tr[| f θ (λ)|p∂| f θ (λ)|] dλ · | f θ (ω2)|p

}
uv

× Q̃z
rtuv(−ω1, ω2,−ω2) dω1 dω2,

(Art denotes the (r, t)-th element of the matrix A) with

Q̃z
β1,β2,β3,β4

(−ω1, ω2, ω3)

=
q∑

α1,α2,α3,α4=1

kβ1α1(ω1 + ω2 + ω3)kβ2α2(−ω1)kβ3α3(−ω2)kβ4α4(−ω3)

× Q̃e
α1,α2,α3,α4

(ω1 + ω2 + ω3, ω2, ω3).

Proof This can be shown in the same way as [6, p. 128], if we replace A1(θ), B1(θ),
A2(θ), and B2(θ) in [6] with the following quantities:

A1(θ) :=
∫ π

−π

tr[| f θ (λ)|p+1] dλ,

B1(θ) := | f θ (ω)|η∂| f θ (ω)| · | f θ (ω)|p−1−η,

A2(θ) :=
∫ π

−π

tr[| f θ (λ)|p∂| f θ (λ)|] dλ,

B2(θ) := | f θ (ω)|p.

The details are omitted. �

Remark 12.1 Under the condition

cum(eα1(t1), eα2(t2), eα3(t3), eα4(t4)) =
{

κα1α2α3α4 , if t1 = t2 = t3 = t4,

0, otherwise,

V (θ) can be simplified as

V (θ) = 4π
∫ π

−π

tr

[{∫ π

−π

tr[| f θ (λ)|p+1] dλ · | f θ (ω)|η∂| f θ (ω)| · | f θ (ω)|p−1−η

−
∫ π

−π

tr[| f θ (λ)|p∂| f θ (λ)|] dλ · | f θ (ω)|p
}
f θ (ω)

×
{∫ π

−π

tr[| f θ (λ)|p+1] dλ · | f θ (ω)|η∂| f θ (ω)| · | f θ (ω)|p−1−η

−
∫ π

−π

tr[| f θ (λ)|p∂| f θ (λ)|] dλ · | f θ (ω)|p
}
f θ (ω)

]
dω

+ 2π
s∑

r,t,u,v=1

κr tuv

∫∫ π

−π

{∫ π

−π

tr[| f θ (λ)|p+1] dλ · | f θ (ω1)|η∂| f θ (ω1)| · | f θ (ω1)|p−1−η

−
∫ π

−π

tr[| f θ (λ)|p∂| f θ (λ)|] dλ · | f θ (ω1)|p
}
r t
dω1
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×
{∫ π

−π

tr[| f θ (λ)|p+1] dλ · | f θ (ω2)|η∂| f θ (ω2)| · | f θ (ω2)|p−1−η

−
∫ π

−π

tr[| f θ (λ)|p∂| f θ (λ)|] dλ · | f θ (ω2)|p
}
uv

dω2.

In addition, if the process (12.1) is Gaussian, then

V (θ) = 4π
∫ π

−π

tr

[{∫ π

−π

tr[| f θ (λ)|p+1] dλ · | f θ (ω)|η∂| f θ (ω)| · | f θ (ω)|p−1−η

−
∫ π

−π

tr[| f θ (λ)|p∂| f θ (λ)|] dλ · | f θ (ω)|p
}
f θ (ω)

×
{∫ π

−π

tr[| f θ (λ)|p+1] dλ · | f θ (ω)|η∂| f θ (ω)| · | f θ (ω)|p−1−η

−
∫ π

−π

tr[| f θ (λ)|p∂| f θ (λ)|] dλ · | f θ (ω)|p
}
f θ (ω)

]
dω

:= Ṽ (θ) (say).

12.4 Asymptotic Efficiency under Gaussianity

In this section, we consider the asymptotic efficiency for multivariate Gaussian pro-
cesses (12.1). The Gaussian–Fisher information matrix is known as

F (θ) = 1

4π

∫ π

−π

tr

[
f θ (λ)−1∂ f θ (λ) f θ (λ)−1∂ f θ (λ)

]
dλ.

We refer the readers to [15, p. 58] for details.

Remark 12.2 For the estimation of innovation-free parameters, we have

0 = ∂

∂θ
log det(K )

= ∂

∂θ

∫ π

−π

log det( f θ (ω)) dω =
∫ π

−π

tr

[
| f θ (ω)|−1 ∂

∂θ
| f θ (ω)|

]
dω.

Comparing Theorem 12.1 with the established one for the Whittle likelihood in [4],
we substitute p = −1, and thus, from Corollary 12.2, η = −1, so that

tr

[{∫ π

−π

tr[| f θ (λ)|p+1] dλ · | f θ (ω)|η∂| f θ (ω)| · | f θ (ω)|p−1−η

−
∫ π

−π

tr[| f θ (λ)|p∂| f θ (λ)|] dλ · | f θ (ω)|p
}
f θ (ω)
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×
{∫ π

−π

tr[| f θ (λ)|p+1] dλ · | f θ (ω)|η∂| f θ (ω)| · | f θ (ω)|p−1−η

−
∫ π

−π

tr[| f θ (λ)|p∂| f θ (λ)|] dλ · | f θ (ω)|p
}
f θ (ω)

]

= qtr

[{
| f θ (ω)|−1∂| f θ (ω)|| f θ (ω)|−1∂| f θ (ω)|

]
,

which shows that Ṽ (θ) = (4π)2q · F (θ).

Before investigating the asymptotic efficiency, we first introduce a useful inequal-
ity in the following.

Lemma 12.4 Suppose the matrix products A(ω)A(ω)�g(ω), A(ω)B(ω)�, and
B(ω)B(ω)�g(ω)−1 are all well-defined and square matrices. If

∫ π

−π

tr
[
B(ω)g(ω)−1B(ω)�g(ω)−1

]
dω �= 0,

then it holds that

(∫ π

−π

tr
[
B(ω)g(ω)−1B(ω)�g(ω)−1] dω)−1

≤
(∫ π

−π

tr
[
A(ω)B(ω)�

]
dω

)−1 ∫ π

−π

tr
[
A(ω)g(ω)A(ω)�g(ω)

]
dω

×
(∫ π

−π

tr
[
A(ω)B(ω)�

]
dω

)−1

.

Especially, the equality holds if and only if there exists a constant matrix C such that

tr
[
g(ω)A(ω) + CB(ω)

] = 0, a.e. ω ∈ [−π, π ].

Proof The proof follows the same line with the proof for the Cauchy–Schwarz
inequality. The inequality without the trace of the matrices can be found in [3, 5]. �

To compare the asymptotic variance of the estimator in (12.12), we need a stronger
assumption in the following:

Assumption 12.4

(i) The Gaussian–Fisher information matrix is invertible.
(ii) The eigenvectors of f θ (λ) do not depend on the parameter θ .

Note that Assumption 12.4 (ii) implies Assumption 12.3. This assumption allows
thematrices | f θ (λ)| and ∂| f θ (λ)| to commute.More general, under this assumption,
| f θ (λ)|ξ1 and ∂| f θ (λ)|ξ2 commute for any real powers ξ1, ξ2 ∈ R. Thus, it alleviates
the computation of the second derivative of the contrast functions and enables the
application of the inequality in Lemma 12.4.
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Theorem 12.2 Under Assumptions 12.1, 12.2, and 12.4, if θ0 ∈ 
 ⊂ R, then we
obtain

F (θ0)
−1 ≤ H(θ0)

−1Ṽ (θ0)H(θ0)
−1.

The equality holds then α = −1, or the spectral density matrix of the process (12.1)
does not depend on ω.

Proof Take the matrices A(ω), B(ω), and g(ω) as

A(ω) = ∂
(
A1(θ)B1(θ) − A2(θ)B2(θ)

)
,

B(ω) = ∂| f θ (ω)|,
g(ω) = | f θ (ω)|.

It is not difficult to see that

F (θ) =
∫ π

−π

tr
[
B(ω)g(ω)−1B(ω)�g(ω)−1

]
dω,

Ṽ (θ) =
∫ π

−π

tr
[
A(ω)g(ω)A(ω)�g(ω)

]
dω.

Thus, the only equality we have to show is

H(θ) =
∫ π

−π

tr
[
A(ω)B(ω)�

]
dω.

In fact, we have∫ π

−π

tr
[{

∂A1(θ)
}
B1(θ)B(ω)�

]
dω −

∫ π

−π

tr
[
A2(θ)

{
∂B2(θ)

}
B(ω)�

]
dω

=
(∫ π

−π

tr[| f θ (ω)|p∂ f θ (ω)] dω
)2

.

Noting that

∫ π

−π

tr
[
| f θ (ω)|p ∂2

∂θiθ j
| f θ (ω)|

]
=

∫ π

−π

tr
[
| f θ (ω)|η ∂2

∂θiθ j
| f θ (ω)|| f θ (ω)|p−η

]
,

1 ≤ i, j ≤ d, we obtain

∫ π

−π

tr
[{

∂B1(θ)
}
A1(θ)B(ω)�

]
dω −

∫ π

−π

tr
[
B2(θ)

{
∂A2(θ)

}
B(ω)�

]
dω

=
(∫ π

−π

tr[| f θ (ω)|p+1] dω
)
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×
(∫ π

−π

tr

[
∂
{
| f θ (ω)|η∂| f θ (ω)| · | f θ (ω)|p−1−η

}
f θ (ω)

]
dω

−
∫ π

−π

tr

[
∂
{
| f θ (ω)|p∂| f θ (ω)|

}]
dω

)

under Assumption 12.4, which completes the proof. �

12.5 Numerical Study

In this section, we present the numerical performance of our minimum contrast esti-
mator (12.12) for multivariate time series. The data are generated from the following
two models:

Model (i)

X t =
(
0.2 θ1
0 0.4

)
X t−1 + εt , εt ∼ N (0, I2×2),

where I2×2 denotes the identity matrix of size 2.

Model (ii)

X t =
(
0.2 θ2
0 0.4

)
X t−1 +

(
0 0

θ2/3 0

)
X t−1 + εt , εt ∼ N (0, I2×2).

We simulated the estimation with the true parameters θ1 = 0, 0.2, 0.4, 0.6, 0.8, 1
and θ2 = 0, 0.2, 0.4, 0.6, 0.8, 1. All cases with the true parameters are stationary.
The size of the data is n = 100. The simulations are repeated 100 times.

In our simulations,weused the contrast function (12.2)with p = −1,−2,−3,−4.
Also, we suppose the parameter θ ∈ [θ0 − ζ, θ0 + ζ ], where θ0 = θ1 for Model (i)
and θ0 = θ2 for Model (ii), and ζ = 0.3.

We adopt Model (i) with θ1 = 0 and Model (ii) with θ2 = 0.8 as the illustration
of the estimates in numerical simulations, and show them in Figs. 12.1 and 12.2 by
the Q–Q plot.

We report the empirical relative efficiency (ERE) of each estimators when p =
−1,−2,−3,−4, compared with the estimator when p = −1. To be specific, the
ERE is defined as

ERE =
∑100

i=1(θ̂
i
(−1) − θ0)

2∑100
i=1(θ̂

i
(p) − θ0)2

,
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(a) Q–Q plot of estimates when = −1. (b) Q–Q plot of estimates when = −2.

(c) Q–Q plot of estimates when = −3. (d) Q–Q plot of estimates when = −4.
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Fig. 12.1 Q–Q plots forModel (i) with θ1 = 0

(a) Q–Q plot of estimates when = −1. (b) Q–Q plot of estimates when = −2.

(c) Q–Q plot of estimates when = −3. (d) Q–Q plot of estimates when = −4.

Fig. 12.2 Q–Q plots forModel (ii) with θ2 = 0.8



12 Minimum Contrast Estimation of Multivariate Time Series 341

Table 12.1 The ERE of the estimators with p = −1,−2,−3,−4 for Model (i)

θ1 p = −1 p = −2 p = −3 p = −4

θ1 = 0.0 1.000 1.099 1.106 1.058

θ1 = 0.2 1.000 1.076 1.051 0.952

θ1 = 0.4 1.000 1.020 0.852 0.675

θ1 = 0.6 1.000 0.916 0.631 0.534

θ1 = 0.8 1.000 0.795 0.546 0.451

θ1 = 1.0 1.000 0.733 0.523 0.451

Table 12.2 The ERE of the estimators with p = −1,−2,−3,−4 for Model (ii)

θ2 p = −1 p = −2 p = −3 p = −4

θ2 = 0.0 1.000 1.090 1.105 1.068

θ2 = 0.2 1.000 1.071 1.033 0.932

θ2 = 0.4 1.000 0.977 0.828 0.611

θ2 = 0.6 1.000 0.838 0.603 0.466

θ2 = 0.8 1.000 0.706 0.499 0.397

θ2 = 1.0 1.000 0.508 0.360 0.319

where θ̂ i
(p) denotes the estimate in the i th simulation. By definition, if the ERE is

greater than 1, then the estimator θ̂ i
(p) has smallermean squared error. On the contrary,

if the ERE is smaller than 1, then the estimator θ̂ i
(p) has larger mean squared error.

From both Tables 12.1 and 12.2, we find that the contrast estimators with p =
−2,−3,−4 have smaller mean squared error when θ1 = 0 or θ2 = 0. This new
finding was unexpected, compared with the results in [6] for the scalar-valued time
series. We will leave the interpretation of this new finding as our future work, but we
conclude that the estimators when p = −2,−3,−4 concentrate around 0 more than
the Whittle estimator (the estimate when p = −1).
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Chapter 13
Generalized Linear Spectral Models
for Locally Stationary Processes

Tommaso Proietti, Alessandra Luati, and Enzo D’Innocenzo

Abstract A class of parametric models for locally stationary processes is intro-
duced. The class depends on a power parameter that applies to the time-varying
spectrum so that it can be locally represented by a (finite low dimensional) Fourier
polynomial. The coefficients of the polynomial have an interpretation as time-varying
autocovariances, whose dynamics are determined by a linear combination of smooth
transition functions, depending on some static parameters. Frequency domain esti-
mation is based on the generalizedWhittle likelihood and the pre-periodogram,while
model selection is performed through information criteria. Change points are identi-
fied via a sequence of score tests. Consistency and asymptotic normality are proved
for the parametric estimators considered in the paper, under weak assumptions on
the time-varying parameters.

13.1 Introduction

Locally stationary processes are stochastic processes that locally behave like station-
ary processes, but gradually change in time, with slowly varying autocovariances and
spectral density functions. In the frequency domain, a characterization of the prop-
erties of locally stationary processes is provided by the time-varying spectrum. The
theory of evolutionary spectra dates back to [37, 44], and has later received interest
due to the development of a rigorous asymptotic theory, based on infill asymptotics.
Infill asymptotics [8, 10] essentially consists in rescaling the time to the unit interval
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and letting the interval grow dense, so that, as long as the time dimension increases,
more and more observations eventually become available at each local interval.

The estimation of the time-varying spectrum has attracted a great deal of atten-
tion. Some references are concerned with the optimal partitioning of the sample
time series, as the paper by [1], who proposed an adaptive segmentation method
based on binary trees for piecewise stationary processes. The paper [34] considered
the Smooth Localized Complex Exponential or SLEX transform, based on dyadi-
cally partitioning the series into overlapping segments; the best basis algorithm was
applied to determine the optimal segmentation. The SLEX approach was extended to
the multivariate setting by [35]. A related method, based on fitting piecewise autore-
gressive processes, was proposed by [16], where the optimal number and locations
of break points were developed according to a minimum description length criterion.
Other localized methods were based on wavelets, as the model by [32], who used
wavelets as stochastic building blocks. A test of stationarity based on wavelets was
developed by [31]. Further references on testing stationarity include the contribution
by [43], that discusses testing composite hypothesis in locally stationary processes,
and the contribution by [17], that, with a different perspective, relies on a minimum
distance approach by [17]. A smoothing spline ANOVA model for the log spectrum
was proposed by [24], while a Bayesian approach to model nonstationary spectra
was used by [41, 42].

Statistical inference in locally stationary processes, based on Whittle likelihood
estimation and empirical process theory, has been largely developed by [10, 11, 13,
14]. An overview on locally stationary processes with a focus both on the theoretical
aspects and on the applications that range from neuroscience [34, 35, 40, 46] to
finance [2, 15]was providedby [12].Abootstrap procedure for locally stationary time
series that combines a time domain wild bootstrap approach with a non-parametric
frequency domain approach was considered in [26].

This paper introduces a class of parametric models for locally stationary pro-
cesses. The models are based on the Box–Cox transform of the spectral density
function of a locally stationary process and therefore involve powers of the spec-
tral density function as well as its log transform. Both log transforms and power
transforms of the spectral density function (sdf) have a consolidated tradition in the
analysis of stationary time series in the frequency domain, dating back to [4, 45]. Sev-
eral specifications are nested in the class defined in the paper, such as time-varying
autoregressive moving average (ARMA) models with smoothly varying coefficients
and the time-varying extension of Bloomfield’s exponential model.

Likelihood inference is carried out in the frequency domain. To enforce the con-
straints needed to guarantee the positivity of the spectral density, we reparameterize
the model based on a set of inverse partial autocorrelations. Consistency and asymp-
totic normality of the Whittle estimators based on the pre-periodogram are proved
based on results on infill asymptotics and empirical processes as in [13, 14]. A
sequence of score tests allows us to account for change points. The results are illus-
trated through the empirical analysis of the annualized quarterly growth rate of the
U.S. Gross Domestic Product.
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13.2 A Generalized Linear Model for the Time-Varying
Spectrum

Let {Xtn, t = 1, . . . n}n∈N denote a triangular array of random variables generated
according to the linear causal locally stationary process

Xtn = μtn + σtn

∞∑

j=0

ψtn, jεt− j ,

where ψtn,0 = 1 and εt ∼ iid(0, 1), i.e., {εt } is independently and identically dis-
tributed with zeromean and unit variance. Denoting withψtn(ω) = ∑∞

j=0 ψtn, j e−ıω j

andwithψtn(ω) its complex conjugate forω ∈ [−π, π ], there exist functionsμ(t/n),
σ(t/n), and ψ(t/n, ω), such that supt |μtn − μ(t/n)| = O(n−1) and

sup
t,ω

∣∣∣∣σ
2
tnψtn(ω)ψtn(ω) − 2π f

(
t

n
, ω

)∣∣∣∣ = O(n−1),

where f (u, ω), u ∈ [0, 1] is the instantaneous sdf, where u = t/n denotes rescaled
time in [0, 1] and ω denotes the angular frequency in [−π, π ]. The main assumption
concerning the instantaneous sdf is given in the following.

Assumption 13.1 There exist two positive constants C and C , such that ∀(u, ω),

0 < C ≤ f (u, ω) ≤ C < ∞.

Assumption 13.1 rules out locally non-invertible and long memory behavior.
We propose a class of locally stationary processes formulated in the frequency

domain in terms of the instantaneous sdf, f (u, ω) > 0. The latter is defined as the
inverse [6] (Box–Cox) transformation of a trigonometric polynomial gλ(u, ω), with
varying coefficients

f (u, ω) =
{

1
2π (1 + λgλ(u, ω))

1
λ λ �= 0,

1
2π exp(gλ(u, ω)) λ = 0,

(13.1)

where λ ∈ R is the power transformation parameter, and

gλ(u, ω) = cλ(u, 0) + 2
K∑

k=1

cλ(u, k) cos(ωk). (13.2)

The function gλ(u, ω) is periodic inωwith period 2π and continuous in u; for a fixed
u it is a Fourier polynomial of order K . The Fourier coefficients cλ(u, k) are referred
to as the generalized cepstral coefficients (GCC), borrowing the terminology from
[5].

Remark 13.1 The complexity of (13.1) is only apparent: it provides a generalized
linear model for the sdf, resulting from the transformation, depending on λ, of a
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trigonometric polynomial, which is linear in the generalized cepstral coefficients. The
link function is the Box–Cox inverse link, as gλ(u, ω) is the Box–Cox transformation
of the sdf, i.e.,

gλ(u, ω) =
{ [2π f (u,ω)]λ−1

λ
λ �= 0,

ln[2π f (u, ω)] λ = 0.
(13.3)

The model generalizes the specification by [39] to the locally stationary case. Alter-
native specifications are encompassed: a time-varying autoregressive (AR) model
of order K arises in the case λ = −1 (inverse link), whereas λ = 1 (identity link)
amounts to fitting a time-varying moving average (MA) model of order K to the
series. For λ = 0 we obtain the locally stationary exponential model proposed by [4]
in the globally stationary case, and considered by [25].

Remark 13.2 The coefficients cλ(u, k) are related to the local generalized autoco-
variances, see [38], which are obtained by the Fourier inversion of [2π f (u, ω)]λ,
namely, γλ(u, k) = 1

2π

∫ π

−π
[2π f (u, ω)]λeıωkdω. When λ �= 0,

[2π f (u, ω)]λ = 1 + λgλ(u, ω)

= 1 + λcλ(u, 0) + 2
K∑

k=1

λcλ(u, k) cos(ωk), (13.4)

which, combined with the above definition of generalized autocovariances, yields

1 + λcλ(u, 0) = γλ(u, 0),
λcλ(u, k) = γλ(u, k), k �= 0,

i.e., the coefficients cλ(u, k) are linear functions of the time-varying generalized
autocovariances. When λ = 0, c0(u, k) is directly interpretable as a time-varying
cepstral coefficient.

For a given λ, the variation of the sdf over time depends solely on the functions
cλ(u, k), k = 0, . . . , K . For λ = 0, the only restriction is that they are continuous in
u. For λ �= 0, they need to satisfy the positivity constraint

1 + λgλ(u, ω) > 0. (13.5)

Moreover, Assumption 13.1 is satisfied provided that {1 + λgλ(u, ω)}1/λ ≤ M for
some 0 < M < ∞. The restrictions on gλ(u, ω) will be enforced by a reparameter-
ization, discussed in Sect. 13.2.1.

Note that the instantaneous sdf admits the factorization

f (u, ω) = 1

2π
σ 2(u)ψ(u, ω)ψ(u, ω),
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where ψ(u, ω) = ∑∞
j=0 ψ j (u)e−ıω j and ψ0(u) = 1. Under the condition (13.5), for

λ �= 0, the time-varying coefficients ψ j (u) are obtained using the recursive formula
in [36], i.e.,

ψ j (u) = j−1
j∧K∑

k=1

kcλ(u, k)ψ j−k(u), j = 1, 2, . . . (13.6)

and ψ0 (u) = 1. When λ = 0, σ 2 = exp(c0(u)) and

ψ(u, e−ıω) = exp(
∑

k

cλ(u, k) exp(−ıωk)).

13.2.1 Reparameterization

The positivity constraint (13.5), for λ �= 0, is enforced by a reparameterization based
of the representation theorem of Fejér and Riesz for non-negative trigonometric
polynomials, see [23, pp. 20 and 21]. In particular, we consider the factorization

1 + λgλ(u, ω) = σ 2
λ (u)|βλ(u, ω)|2,

where |βλ(u, ω)|2 = βλ(u, e−ıω)βλ(u, eıω), and βλ(u, e−ıω) = 1 + βλ(u, 1)e−ıω +
· · · + βλ(u, K )e−ıωK . As a result, for λ �= 0, the sdf is parameterized as

2π f (u, ω) = [
σ 2

λ (u)|βλ(u, ω)|2] 1
λ . (13.7)

The coefficients β2
λ(u, 1) can be obtained by the coefficients of the infinite MA

representation of the original process Xtn , through the recursion

βλ(u, k) = 1

k

k∑

h=1

[h(λ + 1) − k]ψh(u)βλ(u, k − h), k = 1, . . . , K ,

with βλ(u, 0) = 1, and the normalizing constant σ
2/λ
λ (u) is interpreted as the

local prediction error variance of the locally stationary process, as σ
2/λ
λ (u) =

exp
{

1
2π

∫ π

−π
ln[2π f (u, ω)]dω

}
. The local prediction error variance was discussed in

detail by [28], while a further discussion on prediction in L p was provided by [29].
The relation between the time-varying parameters cλ(u, k) and βλ(u, k) is obtained
by Eqs. (13.4) and (13.7),

cλ(u, 0) = 1
λ

[
σ 2

λ (u)(1 + β2
λ(u, 1) + · · · + β2

λ(u, K )) − 1
]
,

cλ(u, k) = 1
λ
σ 2

λ (u)
∑K

j=k βλ(u, j)βλ(u, j − k).
(13.8)
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The coefficients of the infiniteMA representation are obtained by applying the Gould
formula [22]:

ψ j (u) = 1

λ j

j∧K∑

k=1

{k(λ + 1) − λ j}βλ(u, k)ψ j−k(u), j > 0, ψ0(u) = 1, λ ∈ R.

(13.9)

Example 13.1 Let K = 1 in (13.1). Setting λ = 1,

f (u, ω) = (2π)−1 {1 + c1(u, 0) + 2c1(u, 1) cosω}

is the time-varying sdf of a locally stationary MA process of order 1. The general-
ized cepstral coefficients are continuous in u and need to satisfy the following two
conditions: c1(u, 0) > −1 and |c1(u, 1)/(1 + c1(u, 0))| < 0.5. To guarantee these
conditions we can reparameterize them in terms of σ 2(u) > 0 and |β1(u, 1)| < 1, so
that 1 + c1(u, 0) = σ 2(u)

{
1 + β2

1 (u, 1)
}
, and c1(u, 1) = σ 2(u)β1(u, 1).

If λ = −1, under the same restrictions, (13.1) provides the instantaneous sdf of a
locally stationary AR process of order 1. The coefficients of the MA representation
are ψ j (u) = (−1) jβ j

−1(u, 1).
The case λ = 0 generates the time-varying exponential process for the sdf by [4]:

the cepstral coefficients are now unrestricted and the time-varying MA coefficients
are ψ j (u) = ( j !)−1c j

0(u, 1).
In the general case, cλ(u, 0) > −λ−1 and |λcλ(u, 1)| < (1 + λcλ(u, 0))/2 guar-

antee the positivity condition. A simple reparameterization in terms of σ 2(u) > 0
and |βλ(u, 1)| < 1 will ensure this. Finally, the MA coefficients are ψ j (u) =
(−1) jβ j

λ (u, 1)
∏ j

k=1

(
1 − 1+λ

λk

)
.

13.2.2 Modeling Structural Change: Local Generalized
Cepstral Coefficients

The generalized spectral coefficients cλ(u, k) = 1
2π

∫ π

−π
gλ(u, ω) cos(ωk)dω, k =

0, 1, . . . , K , are assumed to vary smoothly according to the following dynamics:

cλ(u, k) = Gλ

(
θk0 +

q∑

i=1

θki�(u; γi , τi )

)
, (13.10)

where, for λ = 0, G0 is the identity function, and, for λ �= 0, Gλ, is a non-linear
smooth function of the structural parameters θki , k = 0, 1, . . . , K , i = 0, 1, . . . , q,
constrained so as to guarantee that the sdf is positive.

The functions �(u; γi , τi ) are the logistic functions
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�(u; γi , τi ) = 1

1 + exp (−γi (u − τi ))
, (13.11)

taking values in (0, 1) and depending on the location parameter τi ∈ (0, 1), and the
shape, or smoothness, parameter γi > 0. The function describes a smooth transition
occurring at time τi . The location parameters, τi = ti/n, 0 < τ1 < τ2 < · · · < τq <

1, regulate the timing of the transition to a new regime, while the parameters γi
determine the speed of the transition: if γi → ∞, then the transition function tends
to the step function I (u ≥ τi ). On the other hand, if γi → 0, �(u; γi , τi ) → 1/2. If
q = 1, the coefficients vary in the range (θk0, θk0 + θk1); if in addition γ1 is small and
τ1 is close to 0.5, the structural change takes the form of a trend in the time-varying
parameters.

The q logistic functions described in Eq. (13.11) form a flexible basis for the
dynamics of cλ(u, k) and thus for the variation of the sdf. This basis has a long
tradition in the time series literature, see [2, 21, 47].

13.2.3 Structural Changes Preserving Local Stationarity

The non-linear mapping Gλ defined in Eq. (13.14) preserves the local stationarity of
the process when allowing for structural changes. In particular, we need to guarantee
that σ 2

λ (u) > 0 and 0 < b ≤ |βλ(u, ω)|2 ≤ B < ∞.
The second condition is enforced by a convenient transformation of the coef-

ficients βλ(u, k) in terms of the generalized partial autocorrelation coefficients
ζλ(u, k), in the range (−1, 1). By means of a recursive procedure, due to [3], and
further extended by [30], the coefficients βλ(u, k), k = 1, . . . , K , are obtained from
the last iteration (the k − 1-th) of the following Durbin–Levinson recursions [18,
27]:

β
(k)
λ (u, k) = ζλ(u, k),

β
( j)
λ (u, k) = β

( j)
λ (u, k − 1) + ζλ(u, k)β(k− j)

λ (u, k − 1), j = 1, . . . , k − 1,
(13.12)

for k = 1, . . . , K , setting βλ(u, k) = β
(K )
λ (u, k). This parameterization guarantees

that the roots of the characteristic equation associated with the polynomial βλ(u, z)
are all in modulus greater than one for every u. Moreover, it is one to one and smooth
(see [3, Theorem 2]).

In order to restrict the generalized partial correlation coefficients in the range
(−1, 1), we reparameterize them as the Fisher inverse transforms of the unbounded
set of parameters ϑλ(u, k), by setting

ζλ(u, k) = exp(2ϑλ(u, k)) − 1

exp(2ϑλ(u, k)) + 1
. (13.13)

Finally, we enforce the positivity of σ 2
λ (u) by writing
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σ 2
λ (u) = exp{2ϑλ(u, 0)}.

Eventually, the function Gλ that maps ϑλ(u, k) into cλ(u, k) is the composition of
the following transformations:

Gλ : ϑλ(u, k)
(13.13)�→ ζλ(u, k)

(13.12)�→ βλ(u, k)
(13.8)�→ cλ(u, k). (13.14)

As a result, the sdf is guaranteed to be positive, bounded away from zero and bounded
from above.

The specification of the model for the time-varying sdf is then completed by
setting

ϑλ(u, k) = θk0 +
q∑

i=1

θki�(u; γi , τi ),

for k = 0, 1, 2, . . . , K .
When λ = 0, the time-varying generalized cepstral coefficients can be directly

parameterized as

c0(u, k) = θk0 +
q∑

i=1

θki�(u; γi , τi ), (13.15)

i.e., the function G0 is the identity.

13.3 Statistical Inference

Statistical inference dealswith i) the choice of theBox–Cox transformationparameter
λ; ii) the selection of the order K of the trigonometric polynomial cλ(u, ω), i.e., the
number of cepstral coefficients needed to represent the spectral density function;
iii) the selection of the number of change points q and their locations; and iv) the
estimation of the vector parameters

θ = [θ00, θ01, . . . , θ0q; θ10, θ11, . . . , θ1q; . . . ; θK0, θK1, . . . , θKq; γ1, . . . , γq ]′.

We set off by considering the last problem, conditioning on the triple (λ, K , q)

and on the knowledge of the functions �(u; γi , τi ), whose estimation is postponed
to Sect. 13.3.1.

Let us denote the time-varying sdf as fθ (u, ω), in order to emphasize its depen-
dence on the structural parameters in θ . Estimation is carried out in the frequency
domain, using a generalization of the Whittle likelihood for locally stationary pro-
cesses due to [11].
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− 2�̃n(θ) = 2n log(2π) + 1

2π

1

n

n∑

t=1

∫ π

−π

{
log fθ

(
t

n
, ω

)
+ Jn

(
t
n , ω

)

fθ
(
t
n , ω

)
}
dω,

(13.16)
where Jn(ω) is pre-periodogram (see [33]), which is localized version of the peri-
odogram

Jn

(
t

n
, ω

)
= 1

2π

∑

h:1≤t+ 1
2 + h

2 �,t+ 1
2 − h

2 �≤n

Xt+ 1
2 + h

2 �,n Xt+ 1
2 − h

2 �,n exp(−ıωh),

(13.17)
where x� denotes the largest integer not greater than x , and the summation runs for
all the h from1 to n, such that t + 1±h

2 � lies between one and n. The pre-periodogram
has the following relation with the ordinary periodogram:

In(ω) = 1

2π

1

n

n∑

t=1

Jn

(
t

n
, ω

)
,

so that the classical periodogram is a time average of the pre-periodogram, which
makes the quasi-likelihood in (13.16) a true generalization of the Whittle likelihood,
in the sense that if fθ (

t
n , ω) = fθ (ω), i.e., the underlying process is stationary, then

(13.16) is the traditional Whittle likelihood. The pre-periodogram can be regarded
as a preliminary estimate of f

(
t
n , ω

)
which has to be smoothed in the time and

frequency directions in order to be a consistent estimator of fθ (
t
n , ω).

The Whittle estimator is given by

θ̂n = argmin
θ∈�

�n(θ), (13.18)

where

�n(θ) = − 1

2π

1

n

n∑

t=1

∫ π

−π

{
log fθ

(
t

n
, ω

)
+ Jn

(
t
n , ω

)

fθ
(
t
n , ω

)
}
dω. (13.19)

In order to derive the asymptotic properties of the estimator θ̂n , let

�(θ) = − 1

2π

∫ 1

0

∫ π

−π

{
log fθ (u, ω) + f (u, ω)

fθ (u, ω)

}
dω, (13.20)

be such that E(�n(θ)) = �(θ) and let

θ0 = argmin
θ∈�

�(θ).

Further conditions are imposed to the class of sdfs implied by our modeling proce-
dure,
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Fλ =
{
fθ (u, ω) = 1

2π

[
σ 2

λ (u)|βλ(u, ω)|2] 1
λ , λ ∈ R

}
.

In essence, it is required that the implied spectral density fθ (u, ω) ∈ Fλ is bounded
away from zero, as in Assumption 13.1. Note that, by construction, the reciprocal
1/( fθ (u, ω)) is also an element of Fλ (case when λ = −1) and the functions in Fλ

are not indexed by n.
Before stating the assumptions required for the asymptotic theory to be valid, let us

define the total variation of a functionφ(u, ω) that in our casewill be a transformation
of the sdf:

V (φ(u, ·)) = sup

{ �∑

k=1

|φ(uk+1, ·) − φ(uk, ·)| : 0 ≤ u0 < · · · ≤ u� = 1, � ∈ N

}
,

and similarly,

V 2(φ) = sup

{ �,m∑

j,k=1

|φ(u j , ωk) − φ(u j−1, ωk) − φ(u j , ωk−1) + φ(u j−1, ωk−1)| :

0 ≤ u0 < · · · < u� ≤ 1; −π ≤ ω0 < · · · < ωm ≤ π; �,m ∈ N

}
.

Also, let

ρ2(φ) =
( ∫ 1

0

∫ π

−π

|φ(u, ω)2|dωdu
)1/2

,

and define

φ̂(u, k) =
∫ π

−π

φ(u, ω) exp{iωk}dω,

so that

v�(φ) =
∞∑

k=−∞
V (φ̂(·, k)).

Moreover, we set

‖φ‖∞,V = sup
u

V (φ(u, ·)), ‖φ‖V,∞ = sup
ω

V (φ(·, ω)),

‖φ‖V,V = V 2(φ), ‖φ‖∞,∞ = sup
u,ω

|φ(u, ω)|,

and let
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τ∞,V = sup
φ∈�

‖φ‖∞,V , τV,∞ = sup
φ∈�

‖φ‖V,∞,

τV,V = sup
φ∈�

‖φ‖V,V , τ∞,∞ = sup
φ∈�

‖φ‖∞,∞.

The following assumptions are required for consistency of the Whittle estimator θ̂n .

Assumption 13.2 E(|ε|k) ≤ Ck
ε ,∀k ∈ N, if τ∞,V , τV,∞, τV,V , τ∞,∞ are finite.

Assumption 13.3 The Whittle likelihood �(θ) in (13.20) is continuous and has a
unique minimum at θ0 ∈ �, where � is a compact subset of R(K+1)×(q+1).

Assumption 13.4 The change points τi are distinct and the smoothness parameters
γi , i = 1, . . . q are strictly positive.

The last assumption implies that the parameters θki are identified.

Theorem 13.1 Under Assumptions 13.1–13.4,

θ̂n →p θ0.

Proof See Sect. 13.6. �

The proof is largely based on the theory of empirical processes for locally sta-
tionary processes derived by [13, 14]. Note that the strong moment condition for the
noise term, E(|εt |k) ≤ Ck

ε ,∀k ∈ N, compensates the weak Assumption 13.1 on the
parameter curves. No Gaussian assumption is made here.

We now move to asymptotic normality. Let ∇ = (∂/(∂θ00), . . . , ∂/

(∂θKq), ∂/(∂γ1), . . . , ∂/(∂γq))
′, and ∇2 = (∂2/(∂2θ00), . . . , ∂

2/(∂2θKq), . . . , ∂
2/

(∂θki∂γi ), . . . , ∂2/(∂2γ1), . . . , ∂
2/(∂2γq))

′. Then, we have

∇�n(θ) = 1

2π

1

n

n∑

t=1

∫ π

−π

{(
Jn(

t
n , ω)

fθ (
t
n , ω)

− 1

) ∇ fθ (
t
n , ω)

fθ (
t
n , ω)

}
dω, (13.21)

and

∇2�n(θ) = 1

2π

1

n

n∑

t=1

∫ π

−π

{ (
Jn(

t
n , ω)

fθ (
t
n , ω)

− 1

) ∇2 fθ (
t
n , ω)

fθ (
t
n , ω)

− 2
Jn(

t
n , ω)

f 3θ ( t
n , ω)

∇ fθ

(
t

n
, ω

)
∇ fθ

(
t

n
, ω

)′

+ 1

f 2θ ( t
n , ω)

∇ fθ

(
t

n
, ω

)
∇ fθ

(
t

n
, ω

)′ }
dω. (13.22)
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Note that the derivatives ∇ fθ (
t
n , ω) and ∇2 fθ (

t
n , ω), or equivalently ∇ fθ (u, ω)

and ∇2 fθ (u, ω), depend on the derivatives ∇σ 2
λ (u), ∇2σ 2

λ (u), ∇βλ(u, ω), and
∇2βλ(u, ω). These derivatives are found in Sect. 13.6.

Theorem 13.2 Under Assumptions 13.1–13.4,

√
n(θ̂n − θ0) →d N (0, V ),

where V = I (θ0)−1 and I (θ0) = −E[∇2�n(θ0)] is the Fisher information matrix
given by

I (θ0) =
∫ 1

0

∫ π

−π

1

f 2θ (u, ω)
∇ fθ (u, ω)∇ fθ (u, ω)′dudω.

Proof See Sect. 13.6. �

13.3.1 Model Selection

Model selection consists of choosing the global parameters in the triple (λ, K , q), the
location of the change points, and the smoothness of the transition across regimes,
regulated by the parameters γi in (13.11).

The selection is challenging and, in order to make it feasible, we restrict our
specification search to the most typical values of λ, which are in L = {−1, 0, 1}.
Moreover, we expect K to be small, given that we allow for parameter changes to
occur. Third, we consider the smoothness parameter to be invariant to the timing of
the change point, i.e., γi = γ and we restrict attention to G = {10, 50, 100}, the first
value corresponding to a monotonic trend in (0,1) and the last to a sharp transition.
Finally, and perhaps more importantly, we perform a sequential search methodology
proposed by [21], named QuickShift, which is a special case of the more general
QuickNet proposed by [47] for specifying the number of hidden units in an artificial
neural network model. See also [2] for a more recent application of QuickShift.

The algorithm is given as follows:

(1) Choose λ ∈ L, and K ∈ K = {1, . . . , Kmax}.
(2) Estimate the parameters θk0, k = 0, . . . , K of the globally stationarymodel (with

θki = 0, i = 1, . . . , K ).

(3) Choose γ in G.
(4) Apply QuickShift to identify sequentially the individual change points, one at a

time, in a set of candidate values (e.g., a grid of equally spaced points in (0,1)).
Let i = 1, . . . , q.

– The location τ1 is identified by considering the candidate for which the score
test for θ1k = 0, k = 1, . . . K is a maximum. The test is discussed below.

– Estimate the parameters θk0 and θk1, k = 1, . . . , K by maximizing (13.16).
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– Perform a likelihood ratio test of H0 : θk1 = 0. If the null is rejected, then
search for an additional change point and iterate until no further point is
identified (i.e., the likelihood ratio test is not significant).

– For the final specification compute the Akaike Information Criterion (AIC).

(5) Repeat (4) for different values of λ, K , and γ .
(6) Select the specification with the smallest AIC .

The score test of H0 : θik = 0, i > 0, k = 1, . . . , K is conducted as follows. The
partial derivatives of the sdf with respect to the parameters are

∂
∂θik

f (u, ω) = 1
2π

(
1 + λcλ(u)′z(ω)

)1/λ−1
�(u; γi , τi )zk(ω)

= f (u,ω)

(1+λcλ(u)′z(ω))
�(u; γi , τi )zk(ω),

where cλ(u) = [cλu, 0, . . . , cλu, K ]′ and z(ω) = [1, 2 cos(ω), . . . , 2 cos(ωK )]′, so
that the partial score is

∂�n
∂θik

= 1
2πn

∑
t

∑
j

[
Jn( t

n ,ω j)
fθ ( t

n ,ω j)
− 1

]
1

fθ ( t
n ,ω j)

∂ fθ ( t
n ,ω j)

∂θλk

= 1
2πn

∑
t

∑
j

[
Jn( t

n ,ω j)
fθ ( t

n ,ω j)
− 1

]
1

(1+λcλ(t/n)′z(ω j ))
�(t/n; γi , τi )zk(ω j ).

(13.23)

The expectation of the second derivatives, after a sign change, is

E
(
− ∂2�

(∂θik )2

)
= 1

2πn

∑
t

∑
j

1

(1+λcλ(t/n)′z(ω j ))
2 �

2(t/n; γi , τi )z2k(ω j )

E
(
− ∂2�

∂θik∂θir

)
= 1

2πn

∑
t

∑
j

1

(1+λcλ(t/n)′z(ω j ))
2 �

2(u; γi , τi )zk(ω j )zr (ω j ),
(13.24)

then the test statistic is obtained as n times the coefficient of determination of
the regression of Pearson’s residuals

Jn( t
n ,ω j)

fθ ( t
n ,ω j)

− 1 on the explanatory variables
1

(1+λcλ(t/n)′z(ω j ))
�(t/n; γi , τi )z(ω j ).

13.4 Illustration

We illustrate our approach with reference to the annualized quarterly growth rate of
the U.S. Gross Domestic Product. The quarterly time series, plotted in Fig. 13.1, is
considered from 1947.2 to 2019.4.

The generalized linear model for the sdf has been fitted for the values of the
transformation parameter λ = −1, 0, 1 and for K = 1. Hence, we compare the fit of
a time-varying first-order AR model with that of an exponential and a MA model.
Table 13.1 displays the values of the maximized Whittle likelihood and of the AIC
as the number of change points varies from zero (time-invariant model, featuring 2
parameters, θ00 and θ01), up to three. For a given q the minimum AIC is obtained
for λ = −1, which can be considered as the optimal transformation parameter for
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Fig. 13.1 Annualized
quarterly growth rate of the
US gross domestic product
for the period 1947.2–2019.4

Table 13.1 Maximized Whittle likelihood and AIC for first-order (K = 1) generalized linear sdfs
with q change points and transformation parameter λ = −1, 0, 1

λ = −1 λ = 0 λ = 1

q N. parameters Likelihood AIC Likelihood AIC Likelihood AIC

0 2 −75.78 157.56 −76.62 159.25 −77.61 161.21

1 4 −64.19 136.38 −65.95 139.90 −67.13 142.26

2 6 −61.60 135.21 −63.27 138.53 −64.43 140.86

3 8 −60.71 137.41 −62.02 140.04 −63.04 142.09

the series. Increasing the order K does not lead to an improvement of the fit. The
number of change points that is chosen as q = 2. The first change point is located
in the fourth quarter of 1983 and corresponds to the inception of the period referred
to as “the great moderation”. Incorporating this into the model leads to a seizable
increase in the likelihood.

The second change point occurs in the third quarter of 2016, where a further
reduction of the volatility of the series seems to have taken place. The third change
point is located in the fourth quarter of 2007 andmarks the inception of a recessionary
period triggered by the great financial crisis. Though its inclusion leads to an increase
of the likelihood, AIC suggests considering q = 2, although we suspect that a loss
of power results from allowing both prediction error variance and AR parameters to
change.

Figure13.2 displays the estimated time-varying sdf with three change points. The
role of the great moderation can be appreciated, leading to a sizeable reduction in the
variance of GDP growth. The great financial crisis led to an increase of the volatility
and the persistence of GDP fluctuations. Both underwent a reduction after 2016. It
is interesting to look at the implied patterns of the one-step-ahead prediction error
variance, σ̂−2

−1 (u) and of the persistence parameter, here represented by the time-
varying AR parameter, −β̂−1(u, 1), see Fig. 13.3. The former has a sharp decline
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Fig. 13.2 Estimated
time-varying sdf of GDP
growth

Fig. 13.3 Time-varying
prediction error variance,
σ̂−2

−1 (u) (solid line), and AR

parameter, −β̂−1(u, 1)
(dashed line)

during the great moderation, and is very low after a recovery that followed the great
recession. Interestingly, the persistence parameter also decreases during the great
moderation, but only slightly, so that the unconditional variance decreases sharply.

13.5 Concluding Remarks

A flexible modeling framework for locally stationary processes has been developed
in the frequency domain, which was illustrated to be effective in capturing the time-
varying features of a real dataset, such as the time-varying sdf and prediction error
variance, including change points. One limitation of the approach developed in this
paper is related to the fact that the change affects simultaneously all the parameters
of the model. We leave for future consideration the strategy of allowing for structural
changes that are specific to an individual parameter.
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13.6 Proofs

Proof of Theorem 13.1

The proofs of consistency and asymptotic normality of the estimator θ̂n are based on
results by [14] on the empirical spectral process

En(φ) = √
n(Fn(φ) − F(φ))

evaluated at φ = fθ (·, ω)−1 and at φ = ∂
∂θ

fθ (·, ω)−1, respectively, where

F(φ) =
∫ 1

0

∫ π

−π

φ(u, ω) fθ (u, ω)dω

is a spectral measure and

Fn(φ) = 1

n

n∑

t=1

∫ π

−π

φ

(
t

n
, ω

)
Jn

(
t

n
, ω

)
dω

is an empirical spectralmeasure based on the pre-periodogram, defined inEq. (13.17).
Under the assumptions of Theorem 13.1, almost sure consistency of θ̂n requires

the uniform convergence of �n(θ) to �(θ), defined in Eqs. (13.19) and (13.20), respec-
tively,

sup
θ∈�

|�n(θ) − �(θ)| → 0, n → ∞.

Note that ([14, Example 3.1])

�n(θ) − �(θ) =
∫ 1
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∫ π

−π

{
log fθ (u, ω) + f (u, ω)
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}
dω
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log fθ

(
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n
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)
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(
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)

fθ
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)
}
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=
∫ 1

0

∫ π

−π

1

fθ (u, ω)
f (u, ω)dω

− 1

n
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t=1
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1

fθ
(
t
n , ω

) Jn
(
t

n
, ω

)
dω + Rlog( fθ )

= F(1/ fθ ) − Fn(1/ fθ ) + Rlog( fθ ),

where F, Fn are defined above and

Rlog( fθ ) =
∫ π

−π

[∫ 1

0
log fθ (u, ω) du − 1

n

n∑

t=1

log fθ

(
t

n
, ω

)]
dω. (13.25)
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Hence, if supθ∈� |Rlog( fθ )| is small, the convergence of �n(θ) − �(θ) may be con-
trolled by En(1/ fθ ), since, by Assumptions 13.1 and 13.2, we obtain

sup
θ∈�

|�n(θ) − �(θ)| = sup
θ∈�

∣∣∣∣
1√
n
En

( 1

fθ

)
+ Rlog( fθ )

∣∣∣∣

≤ sup
θ∈�

∣∣∣∣
1√
n
En

( 1

fθ

)∣∣∣∣ + sup
θ∈�

|Rlog( fθ )|.

Note that by Assumptions 13.1 and 13.2, we obtain that the empirical spectral pro-
cess En(1/ fθ ) has bounded variation in both the components of fθ (u, ω), see also
the discussion in [14]. Then, the uniform convergence of �n(θ) − �(θ) could be eas-
ily obtained by Glivenko–Cantelli-type convergence results, see, for example, [14,
Theorem 2.12], which ensures that we have

sup
θ∈�

∣∣∣∣
1√
n
En

( 1

fθ

)∣∣∣∣
P−→ 0.

To show that this result is valid also in our case, it suffices to verify [15, Assumption
2.4 (c)].

First, we note that by construction the reciprocal 1/( fθ (u, ω)) is an element ofFλ

(when λ = −1) and the functions in Fλ are not indexed by n. Moreover, the implied
spectral density fθ (u, ω) ∈ Fλ is bounded away from zero.

Let us consider

fθ (u, ω)λ = σ 2
λ (u)|β(u, ω)|2

= σ 2
λ (u)

( K∑

j=0

β2
λ(u, j) + 2

K∑

k=1

K−k∑

j=0

βλ(u, j)βλ(u, j + k) cos(ωk)

)
.

By Kolmogorov’s formula ([7, Theorem 5.8.1]) we have

∫ π

−π

log fθ (u, ω)dω = 2πλ log
(σ 2

λ (u)

2π

)
.

We define the class of functions

Sλ =
{
σ 2

λ (u) :[0, 1] �→ R+,

increasing with 0 < L ≤ inf
u

σ 2
λ (u) ≤ sup

u
σ 2

λ (u) ≤ B < ∞, λ ∈ R

}
,

and note that for uniformly bounded monotonic functions, the metric entropy is
bounded
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H(η,Sλ, ρ2) ≤ C2Bε−1,

for some ε > 0, where C2 is a constant, see [19]. Moreover, ∃ 0 < M� ≤ 1 ≤ M�

< ∞ , M� ≤ fθ (u, ω) ≤ M� ,∀ u, ω and fθ (u, ω) ∈ Fλ. However, we do not need
the lower bound M� and then we may set M� = 1.

In addition, to ensure that

∣∣∣∣1 +
K∑

k=1

βλ(u, k)zk
∣∣∣∣ �= 0, ∀0 < |z| ≤ 1 + δ, δ > 0, λ ∈ R,

we choose

Bλ =
{
βλ(u) =(βλ(u, 1), . . . , βλ(u, K ))′ : [0, 1]K �→ R

K ,

sup
u

∣∣∣∣1 +
K∑

k=1

βλ(u, k)zk
∣∣∣∣ �= 0, ∀0 < |z| ≤ 1 + δ, δ > 0, λ ∈ R

}
,

such that Bλ ∈ Wα
2 , that is, the Sobolev class of functions with m ∈ N smoothness

parameter, such that the first m ≥ 1 derivatives exist with finite L2-norm, see [20].
For this class of functions, the metric entropy can be bounded by

H(η,Bλ, ρ2) ≤ Aε−1/m,

for some A > 0 and ∀ε > 0. It follows that the metric entropy of the class of the
time-varying sdf is bounded by

H(η,Fλ, ρ2) ≤ A2Bε−(1+1/m).

As a result, all the conditions of [13][Assumption 2.4 (c)] are easily satisfied, and
hence we apply [13, Lemma A.2] to conclude that

sup
θ∈�

|Rlog( fθ )| = O

(
v�

n

)
,

which implies supθ∈� |Rlog( fθ )| → 0 as n → ∞.
Moreover, by [13, Theorem 2.6], we obtain the convergence of ρ2(1/ f̂θ − 1/ f̂θ )

by setting γ = (1 + 1/m), so that

ρ2

(
1

f̂θ
,
1

fθ

)
= OP

(
n− 2−(1+1/m)

4(1+1/m) (log n)
(1+1/m)−1
2(1+1/m)

)
,m > 1.
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In conclusion, by compactness of� and the uniqueness of θ0 implied byAssumptions
13.3 and 13.4, we obtain the claimed convergence θ̂n →p θ0, which concludes the
proof. �

13.7 Proof of Theorem 13.2

Before presenting the proof of Theorem 13.2, we need to check the smoothness
conditions given in [9, Assumption 2.1].

First, we note that
σ 2

λ (u) = exp{2�(u)′θσ },

where the (q + 1)-vector �(u) is defined as

�(u) = (1, �(u, γ1, τ1), . . . , �(u, γq , τq))
′,

with �(u, γi , τi ) = [1 + exp{−γi (u − τi )}]−1 for i = 1, . . . , q. Moreover θσ =
(θ00, . . . , θ0q)

′ and define γ = (γ1, . . . , γq)
′.

Therefore, the first derivatives of σ 2
λ (u) with respect to θσ and γ are

∇σ 2
λ (u) =

[
∂σ 2

λ (u)

∂θσ

∂σ 2
λ (u)

∂γ

]
,

where

∂σ 2
λ (u)

∂θσ

= 2 exp{2�(u)′θσ }�(u),

and

∂σ 2
λ (u)

∂γ
= 2 exp{2�(u)′θσ }

[
θσ � �(u) � (1q+1 − �(u)) � (u − τ )

]
,

with 1q+1 being a (q + 1)-vector of ones, u = (0, u, . . . , u)′ ∈ [0, 1]q+1 and τ =
(0, τ1, . . . , τq)′.

The second derivatives of σ 2
λ (u) with respect to θσ and γ are

∇2σ 2
λ (u) =

[
∂2σ 2

λ (u)

∂θσ ∂θ ′
σ

∂2σ 2
λ (u)

∂θσ ∂γ ′
∂2σ 2

λ (u)

∂γ ∂θ ′
σ

∂σ 2
λ (u)

∂γ ∂γ ′

]
,

where
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∂2σ 2
λ (u)

∂θσ ∂θ ′
σ

= 4 exp{2�(u)′θσ }�(u)�(u)′,

∂σ 2
λ (u)

∂γ ∂γ ′ =4 exp{2�(u)′θσ }

×
[
θσ θ ′

σ � diag
(
�(u) � (1q+1 − �(u)) � (u − τ )

)2]

+ 2 exp{2�(u)′θσ }
×

[
diag

(
θσ � �(u) � (1q+1 − �(u)) � (1q+1 − 2�(u)) � (u − τ )2

)]
,

and

∂2σ 2
λ (u)

∂θσ ∂γ ′ =4 exp{2�(u)′θσ }

×
[
�(u)θ ′

σ � diag
(
�(u) � (1q+1 − �(u)) � (u − τ )

)2]

+ 2 exp{2�(u)′θσ }
×

[
diag

(
�(u) � (1q+1 − �(u)) � (u − τ )

)]
.

Furthermore, we require the first and second derivatives ofβλ(u, ω)with respect to θσ

and γ . However, we recall that for estimation purposes we adopt the parametrization
βλ(u, k) for k = 1, . . . , K and each βλ(u, k) from the last iteration of the Durbin–
Levinson recursion. As a result, we have βλ(u, k) = ζλ(u, k), where ζλ(u, k) denotes
the generalized partial autocorrelation coefficients, and we set, for k = 1, . . . , K ,

ζλ(u, k) = exp{2�(u)′θσ } − 1

exp{2�(u)′θσ } + 1
.

Thus, it suffices to derive ζλ(u, k) with respect to θσ and γ . Then we have

∇ζλ(u, k) =
[

∂ζλ(u,k)
∂θσ

∂ζλ(u,k)
∂γ

]
,

where

∂ζλ(u, k)

∂θσ

= 4 exp{2�(u)′θσ }
(exp{2�(u)′θσ } + 1)2

�(u)

and

∂ζλ(u, k)

∂γ
= 4 exp{2�(u)′θσ }

(exp{2�(u)′θσ } + 1)2

[
θσ � �(u) � (1q+1 − �(u)) � (u − τ )

]
.
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The second derivatives of ζλ(u, k) with respect to θσ and γ are

∇2ζλ(u, k) =
[

∂2ζλ(u,k)
∂θσ ∂θ ′

σ

∂2ζλ(u,k)
∂θσ ∂γ ′

∂2ζλ(u,k)
∂γ ∂θ ′

σ

∂ζλ(u,k)
∂γ ∂γ ′

]
,

where

∂2ζλ(u, k)

∂θσ ∂θ ′
σ

= 8 exp{2�(u)′θσ }(1 − exp{2�(u)′θσ })
(exp{2�(u)′θσ } + 1)3

�(u)�(u)′,

∂ζλ(u, k)

∂γ ∂γ ′ =8 exp{2�(u)′θσ }(1 − exp{2�(u)′θσ })
(exp{2�(u)′θσ } + 1)3

×
[
�(u)�(u)′ � diag

(
�(u) � (1q+1 − �(u)) � (u − τ )

)2]

+ 4 exp{2�(u)′θσ }
(exp{2�(u)′θσ } + 1)2

×
[
diag

(
θσ � �(u) � (1q+1 − �(u)) � (1q+1 − 2�(u)) � (u − τ )2

)]
,

and finally

∂2ζλ(u, k)

∂θσ ∂γ ′ = 16 exp{4�(u)′θσ }
(exp{2�(u)′θσ } + 1)3

×
[
�(u)θ ′

σ � diag
(
�(u) � (1q+1 − �(u)) � (u − τ )

)]

+ 4 exp{2�(u)′θσ }
(exp{2�(u)′θσ } + 1)2

×
[
diag

(
�(u) � (1q+1 − �(u)) � (u − τ )

)]
.

Then, we conclude that all the derivatives derived above reveal that the first and
second derivatives ∇σ 2

λ (u), ∇2σ 2
λ (u), ∇βλ(u, ω), and ∇2βλ(u, ω) satisfy all the

smoothness conditions given in [9, Assumption 2.1]. Therefore, we can prove the
asymptotic normality of our estimator in (13.18) by checking the remaining relevant
conditions.

Our estimator solves the likelihood equations∇�n(θ̂n) = 0. Hence themean value
theorem gives

∇�n(θ̂n) − ∇�n(θ0) = ∇2�n(θ
�
n )(θ̂n − θ0),

where |θ�
n − θ0| ≤ |θ̂n − θ0| and, since θ̂n ∈ �, ∇�n(θ̂n) = 0. As we have proved in

Theorem 1, Assumptions 13.1–13.4 ensure the consistency of θ̂n , and thus a central
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limit theorem for
√
n(θ̂n − θ0) could be obtained by following analogous arguments

discussed in the proof of [9, Theorem 2.4]. Then, the result follows by proving that

1.
√
n∇�n(θ0) →d N (0, �),

2. ∇2�n(θ
�
n ) − ∇2�n(θ0) →p 0, and

3. ∇2�n(θ0) →p E[∇2�n(θ0)] where E[∇2�n(θ0)] = V .

However, as in [9, Remark 2.6], if the model is correctly specified we have � = V ,
where

V =
∫ 1

0

∫ π

−π

∇ log fθ (u, ω)∇ log fθ (u, ω)′dudω.

As far as convergence in distribution of the score vector in the itemAssumption13.7,
we first prove the equicontinuity of ∇�n(θ). We use similar arguments as those used
in the proof of Theorem 13.1. From Eq. (13.21), one has

∇�(θ) − ∇�n(θ) =
∫ π

−π

[ ∫ 1

0

f (u, ω)

f 2θ (u, ω)
∇ fθ (u, ω)du

− 1

n

n∑

t=1

Jn(
t
n , ω)

f 2θ ( t
n , ω)

∇ fθ
( t

n
, ω

)]
dω

+
∫ π

−π

[ ∫ 1

0

∇ fθ (u, ω)

fθ (u, ω)
du − 1

n

n∑

t=1

∇ fθ (
t
n , ω)

fθ (
t
n , ω)

]
dω.

By Leibniz’s rule, it is easy to see that the preceding equation is equivalent to

∇�(θ) − ∇�n(θ) = 1√
n
En

(
∇ 1

fθ

)

+
∫ π

−π

[ ∫ 1

0
∇ log fθ (u, ω)du − 1

n

n∑

t=1

∇ log fθ
( t

n
, ω

)]
dω

= En

(
∇ 1

fθ

)

+ ∇
∫ π

−π

[ ∫ 1

0
log fθ (u, ω)du − 1

n

n∑

t=1

log fθ
( t

n
, ω

)]
dω

= En

(
∇ 1

fθ

)
+ ∇Rlog( fθ ),

where Rlog( fθ ), defined in (13.25), was proved to be asymptotically negligible. The
same bounds obtained in the proof of Theorem 13.1 can be applied to the class of
functions

F∇
λ =

{
∇ fθ (u, · ), u ∈ [0, 1], θ ∈ �,λ ∈ R

}
,
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such that, by using Assumptions 13.1 and 13.2, we get Glivenko–Cantelli-type con-
vergence result

sup
θ∈θ

∥∥∥∥
1√
n
En

(
∇ 1

fθ

)∥∥∥∥ →p 0,

which implies the equicontinuity in probability of ∇�n(θ). Thus,

sup
θ∈�

|∇�(θ) − ∇�n(θ)| →p 0.

Clearly, since by Assumptions 13.3 and 13.4 the parameter space � is compact with
a unique minimum at θ0 ∈ �, we have ∇�(θ0) = 0, and so, evaluating Eq. (13.21) at
the true value θ0 is equivalent to write ∇�n(θ0) as an empirical process of the form

√
n∇�n(θ0) = En

(
∇ 1

fθ0

)
.

Note also that, under the assumption that the model is correctly specified, it holds
that E[∇�n(θ0)] = 0, and therefore, we obtain

nV[∇�n(θ)] = nE
[ ∫ π

−π

1

n2

n∑

t=1

J2n ( tn , ω)

f 2θ ( tn , ω)
∇ log fθ

( t

n
, ω

)
∇ log fθ

( t

n
, ω

)′
dω

]
→ �,

since all the required Assumptions in [9, Lemma A.5] are fulfilled.
Now we focus on the item Assumption13.7, which is satisfied if ∇2�n(θ) is

equicontinuous. From Eq. (13.22) and the results obtained in the proof of condition
Assumption13.7, one can express ∇2�n(θ) as

∇2�n(θ) = 1√
n
En

(
∇2 1

fθ

)
+ 1

n

n∑

t=1

∫ π

−π

1

f 2θ ( t
n , ω)

∇ fθ
( t

n
, ω

)
∇ fθ

( t

n
, ω

)′
dω

= 1√
n
En

(
∇2 1

fθ

)
+ 1

n

n∑

t=1

∫ π

−π

∇ log fθ
( t

n
, ω

)
∇ log fθ

( t

n
, ω

)′
dω,

(13.26)

where

∇2 fθ (u, ω)−1 = 2

f 3θ (u, ω)
∇ fθ (u, ω)∇ fθ (u, ω)′ − 1

f 2θ (u, ω)
∇2 fθ (u, ω).

Therefore, by similar arguments as above, under Assumptions 13.1 and 13.2, we can
show the uniform convergence
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sup
θ∈θ

∥∥∥∥
1√
n
En

(
∇2 1

fθ

)∥∥∥∥ →p 0,

which further implies the equicontinuity in probability of∇2�n(θ). Indeed, the second
term in (13.26) converges to its expectation as n → ∞, and, hence,

sup
θ∈�

|∇2�(θ) − ∇2�n(θ)| →p 0.

The proof of the item Assumption13.7 follows directly, since, under the maintained
Assumptions, Theorem 13.1 implies that the second term of Eq. (13.26) tends to V in
probability for θ → θ0. To conclude, all the relevant conditions stated in [9, Theorem
2.4] are fulfilled and then the asymptotic normality follows, see also [11, Theorem
3.1]. �
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Chapter 14
Tango: Music, Dance and Statistical
Thinking

Anna Clara Monti and Pietro Scalera

Abstract After briefly reviewing the history of Argentine tango, the paper considers
a model describing the elements which drive the dance and allow the attunement and
the synchronization within the couple of dancers. Subsequently a statistical approach
is proposed to analyze the activity of the dancers when the number of leaders and
the number of followers differ.

14.1 Introduction

Tango appeared in Buenos Aires before the end of the nineteenth century. Between
1821 and 1932 Argentina was the second largest recipient of immigrants (after
the United States)—mainly Italians, Spaniards and French [2]. The immigrants got
together with the native born Argentines and the former slaves from African coun-
tries. Tango is the outcome of a melting pot of cultures, musics and dances from
different peoples and shows the influence of different musics such the European
instrumentation and harmony as well as the Cuban Habanera and the African rhythm
[2, 17]. Initially it was a working-class dance, identified as the music of immigrants
either for its roots and for its lyrics which reflects the melancholy of the immigrants
[6]. At the beginnings of the twentieth century tango was exported from Argentina
to Europe and, as a result, found acceptance in upper-class Argentinian society.

The history of tango is strictly linked to the history of Argentina. Its golden age
occurs around 1940 (‘anos cuarenta’). This is a period of outstanding creativity with
great composers, arrangers, lyricists, singers and orchestra directors such as Juan
D’Arienzo, Rodolfo Biagi, Carlos Di Sarli, Osvaldo Pugliese, Alfredo De Angelis,
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Miguel Caló, Annibal Troilo, Julio De Caro, Osvaldo Fresedo, Francisco Canaro,
among others. Musical compositions, performers and dance styles of this period
continue to be considered the yardstick against which all subsequent innovations
and developments are measured [18]. Tango experienced a gloomy period during the
military dictatorship (1976–1983), when its dance was discouraged. The renaissance
of tango dates back to the 1980s. Ever since tango has becomemore andmore popular
around the world. See [5, 7, 12, 17] for the history of tango, from the origins until
the most recent developments.

Tango is currently a global dance which attracts dancers and musicians from all
the continents [18]. It is extremely difficult to estimate how many tango dancers
there are around the world. Nevertheless because of its popularity an entire industry
has emerged around tango dancing and tourism, involving tango academies, tango
ballrooms, tango holidays, tango shoes and clothes boutiques, tango orchestras, tango
CDs, and so forth [3, 6].

Tango dancing requires rapid movements and decision making. It is a beneficial
physical activity, keeps themind alert and gives a better balance. It is used as a therapy
for physical and mental neurologic disorders, especially for Parkinson’s disease [8,
10, 11, 15, and reference therein], multiple sclerosis [4], cancer [13], depression
[14]; see [1] and reference therein.

In 2009 tango was included in the UNESCO Intangible Cultural Heritage Lists.
Tango dance includes an endless variety of movements (steps, turns, embellish-

ments, etc.).On the other side, tango is one of thefirst dances in historywhich does not
rely on choreographed steps. One of its key features is improvisation. Tango couples
respond to the same music with diverse rhythms, movement qualities, and figures.
The dance is made of relatively free sequences where each improvisational element
is made up of a complex combination of jointly made forward steps, backward steps,
side steps, and pivots; as well as mixes, in which one dancer executes a movement
and the other another [9, 16]. In tango nothing is known in advance [6]. Before the
music starts, neither of the dancers knows how the dance will unfold, nevertheless the
couple manages to be continuously synchronized throughout the dance. Section 14.2
describes the flow of information which contribute to the dancers’ performance.

A couple dancing tango is made by a leader (‘líder’ in spanish) and a follower
(‘seguidora’). In tango events dancers with one role may appreciably outnumber
dancers with the other role. Section 14.3 outlines statistical modeling for the activity
and the waiting time of the outnumbering role.

Few notes on tango music are in the Appendix.

14.2 Dancers’ Interaction

In statistical models there is a response variable which needs to be predicted. To this
end information available before the experiment and experimental information are
combined into a model, which is used for prediction.
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In our context, the aim is predicting the movements of the dancers by using either
information available in advance or information which become available during the
dance. The model is initially developed for the follower and eventually an analogous
model is shown to apply also to the leader.

Usually—but not necessarily—the leader is the male dancer and the follower is
the female dancer. Experienced dancers can play both roles, and some dancers may
enjoy switching from one role to the other.

Tango assigns very strict roles to the leader and the follower. The leader is the
dancer mainly responsible for interpreting the music, who makes the decision on
the steps or figures and on the timing. Coordination between the dancers is achieved
through nonverbal communication. During the dance the leader proposes the move-
ments, by communicating his ‘intention’ through a measured, but directionally very
precise weight projection of his body [9]. In turn the follower picks up this piece
of information and executes the response interpreting the suggested movement, its
width and orientation and the speed of performance, returning a clear feedback.

Denote by StepF
t the step of the follower at time t , by I ntentionL

t the intention
communicated by the leader at time t and by Musict the music on air at the same
time. A very simple model is

StepF
t = f

(
I ntentionL

t , Musict
) + εt . (14.1)

The music is a further explanatory variable as it represents a constraint for both
dancers. The dance needs to be harmoniously respondent to the music. The error
term εt derives by various factors: the quality of the leader’s guide, the follower’s
fitness at the moment, incidental interactions with other couples, room conditions,
and so forth.

Model (14.1) is very simple and assumes that the follower’s performance depends
only on the current pieces of information: the leader’s intention and the music on air.
Indeed tango dance requires great receptivity skills, and the ability to be attuned to the
other body’s subtle changes of balance, timing, speed and direction [6]. Nevertheless
there are objective and subjective information which can enhance the follower’s
interpretation.

One important kind of information is the piece of music. There are three kinds of
music: ‘tango’, ‘vals’ and ‘milonga’.

Milonga is the most archaic kind of tango music. As other kinds of music born in
the Americas during the twentieth century, it is a combination of African music with
an ‘ostinato’ (i.e. a polyrhythmic figure called ‘habanera’), which is usually played
in the background throughout all the song length, and European music with respect
to melody and harmony.

Tango is the natural development of milonga. It is characterized by a more steady
an less syncopated rhythm. Lyrics in tango are generally sad, while melodies are
usually divided in joyful and dramatic parts.

Tango vals is a form of tango on a ternary tempo. The rhythm recalls the Viennese
waltz, but it relies on the melody, the lyrics and the musical instruments of tango.
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Tango rhythms invite the dancers to walk. Linear and circular movements (ochos,
giros, half-giros, calesita, ...) are mixed, with preference to the first ones when the
music is upbeat and the latter ones when the music is downbeat. Tango admits the
largest freedom in terms of steps or figures, and pauses allow dancers to perform
embellishments, little movements by one of the dancer which enrich the dance.

Vals is danced in a rather flowing way. Circular movements are typical of vals,
as they adapt well to a ternary tempo and comply with the fluidity of the music. The
dance is faster and it is characterized by the absence of pauses.

Dancing a milonga implies a strong emphasis on rhythm. Milongas are more
cheerful pieces of music which are interpreted in a more joyful way. The steps recall
the basic elements of tango, but the performance is faster and the steps are usually
smaller. Furthermore milonga can be danced in the ‘lisa’ version or with ‘traspié’,
i.e. double steps on the ‘ostinato’ which make the dance even faster.

In summary the different kinds of music encourage different steps or figures,
impose a different rhythm and hence a different speed in the movements.

Another piece of information is given by the ‘embrace’, i.e. the way dancers hold
each other. There is a common agreement that there are three main kinds of embrace:
the ‘milonguero embrace’, the ‘salon embrace’ and the ‘open embrace’ [17].

In themilonguero embrace the dancers are very close to each other, their chests are
connected and the follower’s left arm and the leader’s right arm are tightly wrapped
around the partner. Little space is allowed for fancy figures. Furthermore, to keep
the chest-to-chest contact, all movements must be below the hips, in the knees and
in the feet. From the milonguero embrace follows the milonguero style of dancing
tango. It originates from Argentine milongas where dance floors were crowded, and
it is characterized by a selection of steps and techniques proper to dance in crowded
places. In a milonguero style the movements are typically smaller with respect to
other styles.

The salon embrace is characterized by a closed connection on the right side of the
leader but there is no chest connection. This embrace allows more space for large
steps and figures.

Finally in the open embrace only the arms of the dancers are in contact. It provides
the dancers with plenty of space for their performances.

The milonguero, salon and open embrace are shown in Fig. 14.1.1

The three embraces affect the freedom of movements of the dancers. For instance,
a closed embrace is suitable for walking, while an open embrace is appropriate for
figures where the legs need room to move.

Some dancers switch from one kind of embrace to another during a single song,
being in a close embrace when appropriate and opening up for moves that require
extra space. Nevertheless each dancer has his/her favorite embrace which affects

1 Noelia Hurtado and Carlitos Espinoza in the milonguero embrace (screenshot from the Youtube
videohttps://www.youtube.com/watch?v=-xMsReD4x8U),MichelleMarsidi and JoachimDietiker
in the salon embrace (https://www.michelleyjoachim.com/photos#photos-tango-argentino-basel),
Daiana Guspero and Miguel Angel Zotto in the open embrace (https://www.tangofilia.net/miguel-
angel-zotto-il-volto-del-tango/#gallery-3).

https://www.youtube.com/watch?v=-xMsReD4x8U
https://www.michelleyjoachim.com/photos#photos-tango-argentino-basel
https://www.tangofilia.net/miguel-angel-zotto-il-volto-del-tango/#gallery-3
https://www.tangofilia.net/miguel-angel-zotto-il-volto-del-tango/#gallery-3
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Fig. 14.1 Milonguero, salon and open embrace in tango dance

his/her variety of steps and figures. Hence the embrace is an important element to
consider when trying to predict the dancers’ movements.

Themusic on air, tango, vals ormilonga, and the embrace are objective information
since they are available to anyone in the room. In addition each dancer has his/her
personal information.

The first piece of personal information derives from the dancer’s expertise and
knowledge of steps and figures. The more extensive experience the dancer has, the
more extensive his/her technical skills are, the easier it is for the follower to interpret
the leader’s guide and respond appropriately.

The second piece of subjective information derives from the knowledge of the
leader. Consciously or unconsciously, each dancer has his own dancing style char-
acterized by a personal repertory of favorite steps and figures. The knowledge of the
leader can derive from previous joint dances, but also by observing him in the dance
hall. Many followers have in mind a three way array as the one displayed in Fig. 14.2
with the distribution of the steps and figures in tango, vals and milonga for various
leaders.2

The technical skills along with the knowledge of the leader are typical of each
single follower and will be indicated as the follower’s expertise EF

t at time t

E F
t = {

Technical skillst ,Knowledge of the leadert
}
.

The follower’s expertise is updated any time the dancer experiments with tango, by
participating to a tango event, by dancing a piece of music, by meeting a new leader,
by watching other couples dancing.

Let
�F

t−1 = {
Kind of music, Embrace, E F

t−1

}

2 The dancers in the pictures are (from left to right) Pablo Garcia, Pablo Veron, Miguel Angel Zotto,
Carlitos Espinoza and Joachim Dietiker.
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Fig. 14.2 Three-way array with the distribution of steps and figures for each kind of music and
various leaders

denote the set of all the information available to the follower at time t − 1. They give
rise to a prior distribution of the steps and figures the follower may be expected to
perform.

At time t the follower receives the current pieces of information, given by the
leader’s intention and the music on air, which can be regarded as experimental infor-
mation at time t . The model, which describes the follower’s step at time t , exploiting
all the information available, is

StepF
t = f

(
I ntentionL

t , Musict ;�F
t−1

) + εt .

A similar model can be defined also for the leader’s intention. The leader’s exper-
tise EL

t at time t , analogously to the follower’s expertise, includes the technical skills.
Also for the leader the knowledge of the follower is an important piece of informa-
tion. Novices may limit the variety of movements he can propose, whereas skilled
followers, reactive to the guide, allow the leader more freedom in the choice of the
movements.

There is however another element in the expertise of the leader,which is the knowl-
edge of the song. While the follower is driven by the leader, leaders are responsible
for providing feedforward information, planning ahead, interpreting the music [9].
In this context the knowledge of the song, which provides the awareness of how
the rhythm and the melody are progressing, gives the leader more confidence in
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proposing the next moves. Hence the personal expertise of the leader is made of the
technical skills, the knowledge of the follower and the familiarity with the song. The
leader’s expertise at time t is

EL
t = {

Technical skillst ,Knowledge of the followert ,

Familiarity with the songt
}
.

The set of information available to the leader at time t − 1 is

�L
t−1 = {

Kind of music,Embrace, EL
t−1

}
.

In addition to interpreting the music, the leader is also responsible to navigate the
couple around the dance floor. Availability of space or crowd around the couple can
augment or limit, respectively, the variety of movements the leader can propose. Let
DanceFloort denote the conditions of the dance floor around the couple at time t ,
the model for the leader’s intention is

Intentiont = f
(
Musict , Dance f loort ;�L

t−1

) + εt .

14.3 Activity of the Dancers and Waiting Time

An important issue when tango events take place is whether there are the same
number of leaders and followers. Very often in milongas—the places where people
dance tango – there is an excess in number of dancers with one role with respect to
the other. In this context statistics can provide an approach to study the effect of this
discrepancy.

In what follows, for simplicity, it will be assumed that there is an excess of
followers, but of course in many cases the situation is the other way round with an
excess of leaders. In such a case the analysis is the same with the role of followers
and leaders swapped.

When there are more followers than leaders, not all the followers can dance at the
same time. Some of them are forced to be idling, so that two questions arise:

Q.1 how long is the idling time?

Q.2 how much can a follower dance?

These two questions are clearly relevant for the dancer, the longer he or she is
idling, the less the dancer gets to dance, the less enjoyable is the event. However
these questions are also important for the organizers of the events, since unhappy
dancers may not attend future events with negative economic relapses.

In milongas, dancers are usually expected to rotate their partners. A couple of
dancers get together for a group of three or four songs, called ‘tanda’, and then the
dancers move to the next partners. Typically there are two tandas of tango, alternated
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by a tanda of three vals, then there are two tandas of tango again, followed by a tanda
of three milongas. Between two tandas there is a cortina, a short piece of non-tango
music, during which the dancers swap their partners. In what follows the unit of time
is the tanda.

Three assumptions are made:

A.1 leaders choose their partners randomly;

A.2 at any tanda the coupling of dancers occurs independently by previous
history;

A.3 leaders are always active.

Under Assumption A.1 the probability π of a follower to be invited to dance is
constant. Let NL and NF be the number of leaders and the number of followers in
the milonga, respectively. Denote by Mi the event ‘a follower is invited by the leader
i’, for i = 1, . . . , NL . We have

π = P(A follower is invited to dance) = P
(
M1 ∪ M2 ∪ · · · ∪ MNL

)

= P (M1) + P (M2) + · · · + P
(
MNL

) = 1

NF
+ 1

NF
+ · · · + 1

NF
= NL

NF
.

(14.2)

Under Assumption A.2 the coupling of dancers at the current tanda is independent
from previous ones. Hence any tanda can be regarded as an independent trial, whose
outcome is a success if a given follower gets to dance and a failure otherwise. In
this circumstances, the waiting time T for a follower to be invited has a geometric
distribution, i.e.

T ∼ G(π).

Hence the expected time for the first tanda is

E [T ] = 1/π = NF/NL .

The larger the excess of followers with respect to leaders is, the longer the follower
has to wait.

Furthermore if nTj is the time (in terms of tandas) the follower j spends inmilonga,
the number of tandas XT

j he/she dances has a binomial distribution

XT
j ∼ B(nTj , π).

Consequently the expected number of tandas the follower dances is

E
[
XT

j

] = nTj π = nTj
NL

NF
,

and the expected idling time is nTj (1 − π).
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Under Assumptions A.1–A.3 modeling the waiting time and the activity of the
dancers is pretty straightforward.

Suppose now that Assumption A.1 does not hold. In fact more skilled followers
are more likely to be invited. The choice of the partner may be affected by the kind
of music, often some dancers are chosen for tango and others for vals or milongas.
Friendship between the dancers may also encourage invitation.

Furthermore location of the dancers can have a significant impact on the choice
of the partner. Traditionally the invitation to dance is proposed and accepted through
‘mirada’ and ‘cabeceo’. The dancer, who takes the initiative, stares or smiles at
his/her target partner, performing a ‘mirada’. If the other dancer reciprocates with a
smile or by nodding his/her head then the invitation is accepted and the two dancers
get together for a tanda. Mirada and cabeceo are conceived to ensure the woman’s
right to choose her partner. They allow both parties to avoid unpleasant publicly
evident rejections. Clearly it is more difficult to address a mirada to someone sitting
far away, hence the invitation is more easily directed to dancers close by.

WhenAssumption A.1 is not fulfilled, there is a probability π j of being invited for
the follower j , which differs from the probability for the other followers. Equation
(14.2) is replaced by

π j = P (Follower j is invited to dance) = Pj
(
M1 ∪ M2 ∪ · · · ∪ MNL

)

= Pj (M1) + Pj (M2) + · · · + Pj
(
MNL

)

where Pj (Mi ) is the probability of follower j being invited by leader i . Without
Assumption A.1 the probability of being invited depends on the personal features of
the follower and there is no any easy formula to compute it. However, if Assumption
A.2 still holds, any tanda is an independent trial for follower j whose outcome is
either getting to dance or being idling.

Thewaiting time Tj of the follower j is still geometrically distributed with param-
eter π j , Tj ∼ G(π j ), though π j varies across dancers. Furthermore the number of
tandas the follower j dances still has a binomial distribution with parameters nTj (i.e.

the time (in tandas) the follower j spends in milonga) and π j , XT
j ∼ B

(
nTj , π j

)
.

Complications arise when Assumption A.2 is removed. On one side dancers are
expected to rotate their partners, so that a couple is unlikely to dance more than a
tanda in a row.On the the other side couples,who have experienced a good connection
in previous tandas, may be willing to replicate. At this point there is a probability
π t

j i (�t−1) for the follower j to be invited by the leader i at time t which is a function
of the history of all the previous tandas �t−1.

Also Assumption A.3 may not be fulfilled. Apart from physical resistance which
can affect the activity of the leaders, many dancers may enjoy dancing one kind of
music among tango, vals andmilongamore than the others, or theymay have specific
preference for songs from different musicians. Hence dancers with both roles may
decide to skip one or more tandas if they don’t enjoy the kind of music or they don’t
like the song.
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In these circumstances the probability π t
i j (�t−1) becomes a complicated function

of various factors. On both the follower and the leader side, there are their technical
skills as well as their personal preferences on the kind of music and on the songs.
On the couple side there are the time elapsed from previous joint tandas (if any), the
location of the two dancers, their connection in dancing and their friendship.

Appendix: Notes on Tango Music

Tango has a timbre that is extremely recognizable even by those who are casual
listeners. The bands in tango are called Tango Orquestra and may include from four
to few dozens of musicians. The key instrument is the bandoneon, a sort of small
accordion. The bandoneon is the core instrument which characterizes the timbre
of a Tango Orquestra. Other essential instruments are the fiddles, the upright bass
and the piano. The sound of Tango Orquestras is characterized by many harmonic
instruments and by the absence of drums, reeds and brasses, which are typical in jazz
bands and latin bands born in the same historical period in other parts of America.

Since tango has popular roots the shape of the songs is very similar to the popular
songs. The tango repertoire is extremely wide and it is impossible to outline a scheme
which embeds every song, hence we focus on the most recurrent form. The typical
form in tango is a two alternated sections song (A–B–A–B) where every section
is formed by 16 or 32 bars. Sometimes these sections are repeated twice. The two
sections are clearly distinguished since one is joyful (major harmonies) and the other
one dramatic (minor harmonies). The choice of the position is left to the composer.

As mentioned in Sect. 14.2, there are three kinds of music in tango which differ
for the time signature:

– milonga has a 2
4 time signature;

– vals has a 3
4 time signature;

– tango has a 4
4 time signature.

The milonga has a rhythmic pattern that is called habanera. In Fig. 14.3 there is
the transcription of the first four bars of the bassline from the cinematic version of
‘Se dice de mi’ by Francisco Canaro (music) and Ivo Pelay (lyrics), sung by Tita
Merello, from the movie ‘Mercado De Abasto’ (Lucas Demare, 1955).

Figure14.4 shows the first four bars of the vals ‘Desde el alma’ by Rosita Melo
(1911) for a piano solo arrangement. The left hand (which interpret the notes on the
second line) plays a rhythmic pattern very close to the classic European waltz. The

Fig. 14.3 First four bars of ‘Se dice de mi’
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Fig. 14.4 First four bars of ‘Desde el alma’

Fig. 14.5 Generic tango four quarters rhythmic comping in G major

first quarter has an accent while the other two are played piano and this gives rise to
a rotatory feeling.

The (properly said) tango is slightly different from the other two genres. The
Habanera is no longer played, and the rhythmic section playsmainly the four quarters
as shown in Fig. 14.5. This simple groove is the main feature of the musical genre
which makes tango very recognizable.

Since this comping is very basic a lot of composers, arrangers and orchestra
directors manipulate this pattern to make it more suitable to the melody of the song.
These notes describe just the basic structure, on the basis of which any musician and
arranger develops his personal style.
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Chapter 15
Z-Process Method for Change Point
Problems in Time Series

Ilia Negri

Abstract Z -process method was introduced as a general unified approach based on
partial estimation functions to construct a statistical test in change point problems
not only for ergodic models but also for some non-ergodic models where the Fisher
information matrix is random. In this paper, we consider the problem of testing
for parameter changes in time series models based on this Z -process method. As
an example, we consider the parameter change problem in some linear time series
models. Some possibilities for nonlinear models are also discussed.

15.1 Introduction

This paper overviews some results for change points, or structural breaks, in time
series analysis. We focus on models described in time domain frameworks such as
parametric linear and nonlinear models, where the dependence structure is explic-
itly described according to potential breaks in the observation. For the particular
choice of the models, one can consider score-based test statistics, using the likeli-
hood principle. Here, our aim is to show that “Z -method” introduced in [18] for
diffusion processes, can be seen as a possible alternative method to test for param-
eter change for linear, and possible nonlinear time series models. The problem for
an i.i.d. sample was first considered in [19, 20]. Let X1, . . . Xn be a sample of
size n of independent observations admitting density fi = f (·, θi ), i = 1, . . . , n,
respectively. The change point problems is to test: H0 : θ1 = θ2 = · · · = θn against
H1 : θ1 = · · · = θk �= θk+1 = · · · = θn , where 1 ≤ k < n is a change point. The
paper [9] gave a complete review on change point detection and estimation for i.i.d.
model and linear (multiple) regression models. See also [8] for parametric methods
and analysis. For regression models, see for example, [6, 7, 12, 13, 21]. We refer
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the readers to [5] for a complete review of methods to identify change points for
sequential random sequences. The most frequent methods used are likelihood-ratio
procedure, information criterionmethods (AIC and SIC), Bayes solution, cumulative
sum (CUSUM) method, and wavelet transformation method. The paper [14] was the
first to introduce a test statistic based on the Fisher-score process to test a parameter
change for independent data fromwhich the idea of the “Z -methods” arise. Let us give
an illustration of the method from an example of independent data. Let (X,A, μ) be
a measure space and f (·; θ) a parametric family of probability densities with respect
to μ, where θ ∈ � ⊂ R

d . Let X1, X2, . . . be an independent sequence of X-valued
random variables from this parametric model. Given Mn(θ) = ∑n

k=1 log f (Xk; θ),
there are at least two ways to define the maximum likelihood estimator (MLE) in
statistics. The first, that is, a special case of M-estimators, is θ̂n = argmax

θ∈�

Mn(θ).

The second is to define it as the solution to the estimating equation Zn(θ̂n) = 0,

where Zn(θ) = Ṁn(θ) =
(

∂
∂θ1

Mn(θ), . . . , ∂
∂θd

Mn(θ)
)T

. The latter is a special case

of Z -estimators. See [24, 25] for these details. It is well known that the MLE θ̂n is
asymptotically normal, and that, for any bounded continuous function ψ : Rd → R,

lim
n→∞ E[ψ(

√
n(θ̂n − θ0))] = E[ψ(I (θ0)

−1/2ζ )],

where I (θ0) is the Fisher information matrix and ζ is a standard normal random
vector.

The natural space in change point problem is D[0, 1], the space of functions
defined on [0, 1] which are right-continuous and have left-hand limits, taking values
in a finite-dimensional Euclidean space. We equip this space with the Skorohod
metric, see [4, Chapter 2] for the properties of this space. Throughout this paper,
all random processes are assumed to take values in D[0, 1]. Moreover, to consider
the change point problem, we set u ∈ [0, 1] and the partial sum process is defined
as Mn(u, θ) = ∑	un


k=1 log f (Xk; θ), ∀u ∈ [0, 1]. Its gradient vector is denoted by
Zn(u, θ) = Ṁn(u, θ), ∀u ∈ [0, 1].

The test problem can be formulated as follows:

H0: the true value θ0 ∈ � does not change during u ∈ [0, 1],
H1: there is a change in some u ∈ (0, 1).

Under the alternative, there exists a certain u = u∗, where the value of the parameter
changes. It means that, letting k = 	u∗n
, the observations X1, . . . , Xk have density
f (·; θ0), while Xk+1, . . . , Xk have density f (·; θ1), θ0 �= θ1. Let θ̂n be the MLE
for the full data X1, . . . , Xn , that is, θ̂n is the solution to the estimating equation
Zn(1, θ) = Ṁn(1, θ) = 0.

It is well known from Donsker’s theorem that under H0, n−1/2 I (θ0)−1/2
Zn(u, θ0)

converges weakly to B(u) in the Skorohod space D[0, 1], where B(u) is a vector of
independent standard Brownian motions, and I (θ0) denotes the Fisher Information
matrix. Moreover, the score random process n−1/2 Î−1/2

n Zn(u, θ̂n) converges weakly
to B◦(u) in D[0, 1], where B◦(u) is a vector of independent standard Brownian
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bridges and În is a consistent estimator for I (θ0). The test statistic considered in [14]
isTn = n−1 supu∈[0,1] Zn(u, θ̂n)

� Î−1
n Zn(u, θ̂n),where În is a consistent estimator for

the Fisher Information matrix I (θ0). It was shown that Tn converges in distribution
to supu∈[0,1] ||B◦(u)||2. See [14] for this asymptotic result. The asymptotic behavior
of the test under the alternative was not discussed in [14]. The paper [17] applied the
same approach based on the Fisher-score process to the change point problem for an
ergodic diffusion process model based on continuous observations. They studied the
asymptotic behavior of the test statistics under the alternative, and the consistency
of the test under an alternative which has sufficient generality was also proved. In
[18], a generalized version of Horváth and Parzen’s theory was proposed. The pro-
posed method is not just a simple generalization of the Fisher-score process method
proposed by [14] for the case of independent random sequences, at least for three
reasons. It makes possible to treat new applications in a broad spectrum of statistical
change point problems including not only models for ergodic-dependent data but
also non-ergodic cases. The proofs of the main results are based on some asymptotic
representations of Z-estimators that are new from the viewpoint of mathematical
statistics. Moreover, an argument to prove the consistency of the test based on the
proposed method under some specified alternatives is developed.

The rest of the paper is organized as follows. In Sect. 15.2, we summarize the
general Z -process method for change point problems. In Sect. 15.3, we review the
change point problem for time series in light of the Z -process method. Finally, in
Sect. 15.4, we give some ideas on how to apply it to nonlinear time series models.

15.2 Z-process Method for Change Point Problems

In this section, the main results of Z -process method for change point problems are
presented. See [18] for the details. The notations→p and→d mean the convergence
in probability and the convergence in distribution, as n → ∞, respectively.

Let � be a bounded, open, convex subset of Rd . For every n ∈ N, let Zn(u, θ)

be an R
d -valued random process indexed by θ ∈ �, defined on a probability space

(�,F , P) that is common for all n ∈ N. Let denote by Żn(u, θ) the d × d random
matrixwhose (i, j)-component is Żi, j

n (u, θ) = ∂
∂θ j

Z
i
n(u, θ). The casewhereZn(u, θ)

is given as the gradient vector Ṁn(u, θ) of an R-valued random field Mn(u, θ),
which is assumed to be two times continuously differentiable with theHessianmatrix
M̈n(u, θ), is included in this framework. The following testing problem is considered:
H0: the true value θ0 ∈ � does not change during u ∈ [0, 1], against the alternative
H1: “there is a change of the parameters for some u”. Under H0, let us consider the
following conditions.

Assumption 15.1

(i) There exists a sequence of diagonal matrices Qn and a limit (could be also
random) Zθ0(1, θ) such that
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sup
θ∈�

||Q−2
n Zn(1, θ) − Zθ0(1, θ)|| →p 0.

(ii) The limit Zθ0(1, θ) satisfies infθ :||θ−θ0||>ε ||Zθ0(1, θ)|| > 0, ∀ε > 0, and
||Zθ0(1, θ0)|| = 0, almost surely.

(iii) There exist a sequence of diagonal matrices Rn and a sequence of matrix-
valued random processes Vn(u, θ0) such that Vn(1, θ0) is non-singular almost
surely and that for any sequence of �-valued random vectors θ̃n(u) indexed by
u ∈ [0, 1] satisfying supu∈[0,1] ||θ̃n(u) − θ0|| →p 0,

sup
u∈[0,1]

||Q−1
n Żn(u, θ̃n(u))R−1

n − (−Vn(u, θ0))|| →p 0.

(iv) In D[0, 1],

(Q−1
n Zn(u, θ0), Vn(u, θ0)) →d ((u−1V (u, θ0))

1/2B(u), V (u, θ0)),

where B(u) is a d-dimensional standard Brownian motion, and the value of
u−1V (u, θ0))

1/2B(u), at u = 0 should be read as zero.
(v) There exists a sequence of matrix-valued random processes, V̂n(u), such that

supu∈[0,1] ||V̂n(u) − V (u, θ0)|| →p 0.

Remark 15.1 In the examples presented in [18], the rate matrices Qn and Rn are
diagonal matrices. In some cases, these matrices have a form like

√
nId , where Id

denotes the d × d identity matrix, but in general, they need not be diagonal.

Remark 15.2 In one of the examples presented in [18], the limit Zθ0(1, θ) is random.

Let θ̂n be any sequence of�-valued random vectors such that ||Q−1
n Zn(1, θ̂n)|| =

oP(1) under H0. Let V (u, θ0) be a non-negative definite matrix-valued random pro-
cess such that V (1, θ0) is positive definite almost surely, and let B(u) be a vector
of independent standard Brownian motions; we assume that V (u, θ0) and B(u) are
independent. Let V̂n(u) be any sequence of matrix-valued random processes, which
are non-singular except for u = 0 almost surely, and it should be a uniformly con-
sistent sequence of estimators for the non-negative definite matrix-valued random
process V (u, θ0). Introduce the test statistic

Tn = sup
u∈(0,1]

(Q−1
n Zn(u, θ̂n))

�(uV̂n(u)−1)Q−1
n Zn(u, θ̂n). (15.1)

We state the result about the asymptotic behavior of the test statistic under the null
hypothesis; for the proof, refer to [18].

Theorem 15.1 Suppose that Assumption 15.1 holds. Then,

Tn →d sup
u∈[0,1]

||B(u) − u1/2V (u, θ0)
1/2V (1, θ0)

−1/2B(1)||2. (15.2)



15 Z -Process Method for Change Point Problems in Time Series 385

Some remarks are necessary about the limit appearing in (15.2). If V (u, θ0) =
uV (1, θ0) for every u ∈ [0, 1], then the test is asymptotically distribution free. In
this case, the limit reduces to supu∈[0,1] ||B◦(u)||2, where B◦(u) = B(u) − uB(1)
is a vector of independent standard Brownian bridges. The paper [15] gave a table
of the critical values of supu∈[0,1] ||B◦(u)||2 for different significance levels and for
different values of the dimension d, see also [22]. Moreover, due to the independence
of V (u, θ0) and B(u), the limit in (15.2) is approximated by

sup
u∈[0,1]

||B(u) − u1/2V̂n(u)1/2V̂n(1)
−1/2B(1)||2.

The approximate distribution of the limit can be computed by some computer simula-
tions for the standard Brownian motions B(u). In [18], this method was successfully
applied to a change point problem for ergodic diffusion process and to a change point
problem for volatility of a diffusion process. In particular, an interesting point of this
last example is that the limit V (u, θ0) of the normalized Żn(u, θ̃n(u)) is random and
depend on u ∈ [0, 1] in a complex way. In [18], some results on consistency were
also shown.

15.3 Change Point Problems for Time Series

Although the change point analysis arose for independent observations, it has become
an important area of research for dependent observations in particular in time series
models. The paper [10] gave a general survey of parametric and non-parametric
methods for dependent observations. The paper [16], using some limiting theorems
for the Wald test statistics, developed a general asymptotic theory for change point
problems in a general class of time seriesmodels includingARIMAmodels, under the
null hypothesis. The review paper [1] gave an account of some work on structural
breaks in time series models. A particular attention is devoted to the applications
of the CUSUM test and likelihood-ratio test to time series models including AR,
GARCH, and fractionally integrated ARMA models. They also briefly discussed
several approaches for estimating and locating multiple break points in the obser-
vations. The paper [2] introduced a procedure based on quasi-likelihood scores to
detect changes in the parameters of a GARCH model. See also [3] where a test for
a change in the parameters of a GARCH model based on approximate likelihood
scores that does not require the observations to have finite variance was proposed.

As the general Z -process method for change point problems presented in the
previous section is based on a generalization of the score statistics, we review in
details, using the involved Z process method, some works where the score-based
test is applied to change point problems for time series models. The paper [11]
considered change point problems for ARmodels. The test statistics are based on the
efficient score vector and the large sample properties of the change point estimator
are also explored. Let us consider the AR model Xk = a(Xk−1, . . . , Xk−p) + εk ,
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k = 1, 2 . . ., where a(x1, . . . xp) = ∑p
i=1 φi xi is an R

p to R linear function, satisfy
the stationary conditions for the AR process {Xk}, and {εk} is an i.i.d. sequence
of N (0, σ 2). Under the Gaussian assumption, the log-likelihood function based on
observations X1, . . . , Xn may be easily derived. Let us denote it by �n(θ), where θ

is the vector of unknown parameters φi , i = 1, . . . , p and σ 2. Let us denote by I (θ)

the information matrix for this AR model. So, for 0 ≤ u ≤ 1, Mn(u, θ) = �	un
(θ)

and its gradient vectors is Zn(u, θ) = �̇	un
(θ). Let us denote by θ̂n the MLE of
the parameter θ , that is the solution of the equations Zn(1, θ) = 0. The paper [11]
considered the efficient score statistic S(u) = n−1/2 I−1/2(θ̂n)Zn(u, θ̂n), and proved
that it converges weakly in D[0, 1] to a vector of independent standard Brownian
bridges B◦(u). In a similar way, the test statistics given by (15.1) can be defined
in this framework and the result of Theorem 15.1 holds under the same assumption
as [11].

A limited number of studies have been presented for parameter change in
ARMA-GARCH models, except that [23] compared the score test and residual-
based CUSUM test and derived their limiting null distributions. Our interest is in
the score test. The quasi-maximum likelihood estimator for the parameters of an
ARMA(P ,Q)-GARCH(p,q) model are derived. Their score test statistic is defined
using the quasi-likelihood L̃	un
(θ) for theARMA-GARCHprocess. It can be rewrit-
ten as a Z -process. Indeed, we can set Mn(u, θ) = 	un
L̃	un
(θ). The paper [23]
proved essentially that n−1/2 I−1/2(θ̂n)Zn(u, θ̂n), where Zn(u, θ) = Ṁn(u, θ) and
I (θ) is the Fisher information matrix for the model considered, converges weakly
in D[0, 1] to a vector of independent standard Brownian bridges B◦(u). The test
statistics given by (15.1) can be also defined for ARMA-GARCH process and the
result of Theorem 15.1 holds under the same assumption as [23].

15.4 Nonlinear Time Series Models

The general Z process method may be applied to the time series models of the form

Xk = a(Xk−1, Xk−2, . . . Xk−p; θ) + b(Xk−1, Xk−2, . . . Xk−q; θ)εk, k = 1, 2, . . . .
(15.3)

Here, {εk} is an i.i.d. sequence with E[ε1] = 0 or, more generally, a martingale dif-
ference sequence with respect to the filtration (Fk)k≥0, whereFk = σ(Xk, Xk−1, ...).
The functions a : Rp × � → R and b : Rq × � → R are known functions of
(x, θ) ∈ R

p × �, and (x, θ) ∈ R
q × �, respectively, where � is a subset of Rd .

Let us assume that a and b are twice continuously differentiable with respect to θ .
A possible way to define the estimating functions is that

Zn(1, θ) = Ṁn(1, θ) and Zn(u, θ) = Ṁn(u, θ),

where
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Mn(u, θ) = −
[un]∑

k=1

{

log b(Xk−1, Xk−2, ...; θ) + |Xk − a(Xk−1, Xk−2, ...; θ)|2
2b(Xk−1, Xk−2, ...; θ)2

}

.

The rate matrix is typically given by Qn = Rn = √
nId . In [26], different nonlinear

time series models were considered including the exponential AR model (ExpAR).
See also [27]. The theory can be applied to the following ExpAR model.

ExpAR(1)-model with GARCH error.
Let us consider the function

a(x1, x2; θ) = {
θ1 + θ2 exp(−θ3x

2
2 )

}
x1,

where θ1 ∈ R, θ2 �= 0, θ3 > 0, and b(x; θ) = 1. Then the model in (15.3) is

Xk = {
θ1 + θ2 exp(−θ3X

2
k−2)

}
Xk−1 + εk, k = 1, 2, . . . .

Here, θ = (θ1, θ2, θ3)
T and � ∈ R

3. The Z process method can be applied to test if
there is a change point in the parameter θ . The limit process can be derived starting
from the computation of the Fisher information matrix. Under some reasonable
settings, Assumption 15.1 can be verified and the test statistic (15.1) can be computed
to test for a chance in one or more components of the parameter θ .
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Chapter 16
Copula Bounds for Circular Data

Hiroaki Ogata

Abstract We propose an extension of the Fréchet–Hoeffding copula bounds for
circular data. The copula is a powerful tool for describing the dependency of random
variables. In two dimensions, the Fréchet–Hoeffding upper (lower) bound indicates
the perfect positive (negative) dependence between two random variables. However,
for circular random variables, the usual concept of dependency may not be accepted
because of their periodicity. In this paper, we redefine the Fréchet–Hoeffding bounds
and consider modified Fréchet and Mardia families of copulas for modelling the
dependency of two circular random variables. Simulation studies are also given to
demonstrate the behaviour of the model.

16.1 Introduction

Circular statistics deals with observations that are represented as points on a unit
circle. Directional data is a typical example, because a direction is represented as an
angle from a certain zero direction. Common examples often cited arewind direction,
river flow direction and the direction of migrating birds in flight. For modelling
circular data, many distributions have been proposed such as von Mises distribution,
cardioid distribution, wrapped normal distribution, wrapped Cauchy distribution and
so on. Recently, [8] proposed the way of constructing circular densities based on the
spectra of complex-valued stationary process. In this sense, the branches of circular
statistics and time series analysis have a strong relationship. For a comprehensive
explanation of circular statistics, we refer to [1, 3, 6], to name a few.

If the observation is a pair of circular data, usually denoted by (θ, φ) ∈ T
2 =

[0, 2π)2, it is represented as a point on a torus. When we have bivariate data, we can
investigate the relationship between them. Although the Pearson correlation coeffi-
cient is the representative measure of a relationship between two random variables,
it does not work for circular data because of its periodic structure. Many measures
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of association for circular data have been proposed so far. The book [6, Sect. 11.2.2.]
provides a summary of circular-circular correlations.

Another powerful tool for describing the dependency between two random vari-
ables is a copula. It is a function rather than a single value and provides much more
information regarding the dependency.Mathematically speaking, the copula is a joint
distribution function on I2 = [0, 1]2 whose margins are uniform. For a circular ver-
sion, [4] introduced a circular analogue of copula density, called ‘circulas’, assuming
the existence of density function. In this paper, we consider a copula function—not
a copula density—for circular data. Because we do not assume the existence of the
density function, we can deal with singular copulas. We give special consideration
to circular analogues of the Fréchet–Hoeffding copula bounds, which are examples
of singular copulas. Due to the arbitrary nature of the origin in the circular variable,
they are not uniquely specified.

The remainder of the paper is organized as follows: Sect. 16.2 provides the def-
inition of the equivalence class of circular copula functions from the aspect of the
arbitrariness of the zero direction. Section16.3 introduces circular analogues of the
Fréchet–Hoeffding copula bounds. We prove that the following (i) and (ii) are equiv-
alent.

(i) The bivariate circular random variables have the circular Fréchet–Hoeffding
upper (lower) copula bounds.

(ii) Support of the bivariate circular random variables is nondecreasing (nonin-
creasing) in the sense of mod 2π .

Section16.4 gives a Monte Carlo simulation. We generate observations from the
circular version of the Mardia copula family introduced in [5], and investigate their
behaviour. Section16.5 provides summary and conclusion of this paper.

16.2 Equivalence Class of Circular Copula Functions

Acopula is the joint distribution function on I2 = [0, 1]2 whosemargins are uniform.
Sklar’s theorem insists any joint distribution function H(x, y) iswritten by the copula
function C(u, v) and their marginal distribution function F(x), G(y), i.e.

H(x, y) = C(F(x),G(y)).

In the case of circular random variables, marginal and joint distribution functions
depend on the choice of the zero direction. However, we should not consider the
difference caused solely by the difference of the zero direction. This section gives
the concept of the equivalence class of circular copula functions in the sense of the
arbitrariness of the choice of the zero direction.

First, let us give the definitions of circular distribution functions, quasi-inverses
of circular distribution functions and circular joint distribution functions, in the same
manner as [7, Definitions 2.3.1, 2.3.6, and 2.3.2].
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Definition 16.1 A circular distribution function is a function F with domain T =
[0, 2π) such that

1. F is nondecreasing,
2. F(0) = 0 and limθ↗2π F(θ) = 1.

Definition 16.2 Let F be a circular distribution function. Then a quasi-inverse of F
is any function F (−1) with domain I such that

F (−1)(u) = inf{θ |F(θ) ≥ u}.

Definition 16.3 A circular joint distribution function is a function H with domain
T
2 such that

1. H(θ2, φ2) − H(θ2, φ1) − H(θ1, φ2) + H(θ1, φ1) ≥ 0 for any rectangle [θ1, θ2] ×
[φ1, φ2] ⊂ T

2,
2. H(θ, 0) = H(0, φ) = 0 and limθ↗2π,φ↗2π H(θ, φ) = 1.

Now let us extend the domain of F to T̃ = [0, 4π) in the following way:

F̃(θ) =
{
F(θ) (0 ≤ θ < 2π)

F(θ − 2π) + 1 (2π ≤ θ < 4π).

If we change the zero direction to α ∈ T, its distribution function becomes

Fα(θ) = F̃(θ + α) − F̃(α).

The choice of α is arbitrary, so we can define the equivalence class of circular
distribution functions {Fα|α ∈ T}.

Similarly, we extend the domain of H to T̃2 in the following way:

H̃(θ, φ)

=

⎧⎪⎪⎨
⎪⎪⎩

H(θ, φ) (0 ≤ θ < 2π, 0 ≤ φ < 2π)

F(θ) + H(θ, φ − 2π) (0 ≤ θ < 2π, 2π ≤ φ < 4π)

G(φ) + H(θ − 2π, φ) (2π ≤ θ < 4π, 0 ≤ φ < 2π)

1 + F(θ − 2π) + G(φ − 2π) + H(θ − 2π, φ − 2π) (2π ≤ θ < 4π, 2π ≤ φ < 4π).

Ifwe change the zero directions to (α, β) ∈ T
2, its joint distribution function becomes

Hα,β(θ, φ) = H̃(θ + α, φ + β) − H̃(α, φ + β) − H̃(θ + α, β) + H̃(α, β).

The choice of (α, β) is arbitrary, so we can define the equivalence class of circular
joint distribution functions {Hα,β |(α, β) ∈ T

2}.
From Sklar’s theorem, the circular copula function is defined by

Cα,β(u, v) = Hα,β(F (−1)
α (u),G(−1)

β (v)). (16.1)
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The choice of zero directions (α, β) is arbitrary, so we can define the equivalence
class of circular copula functions {Cα,β |(α, β) ∈ T

2}.

16.3 Circular Fréchet–Hoeffding Copula Bounds

Acopula is known to have both upper and lower bounds. That is, for every (u, v) ∈ I2,

W (u, v) := max(u + v − 1, 0) ≤ C(u, v) ≤ min(u, v) =: M(u, v).

The bounds M(u, v) and W (u, v) are themselves copulas and are called Fréchet–
Hoeffding upper bounds and Fréchet–Hoeffding lower bounds, respectively.

Here, we introduce the concept of a nondecreasing (nonincreasing) set in R̄2 =
(−∞,∞)2.

Definition 16.4 ([7, Definition 2.5.1]) A subset S of R̄2 is nondecreasing if for
any (x, y) and (u, v) in S, x < u implies y ≤ v. Similarly, a subset S of R̄2 is
nonincreasing if for any (x, y) and (u, v) is S, x < u implies y ≥ v.

The example of a nondecreasing set is given in Fig. 16.1.
If the pair of random variables (X,Y ) have a Fréchet–Hoeffding upper (lower)

bound, then the support of (X, Y ) is nondecreasing (nonincreasing). See [7,Theorems
2.5.4 and 2.5.5]. In this sense, a Fréchet–Hoeffding upper (lower) bound indicates
the perfect positive (negative) dependence between X and Y .

Now let us consider the pair of circular (angular) random variables (�,�) ∈ T
2.

When (�,�)has perfect positive dependence, its support should be like the examples
shown in the top row of Fig. 16.2. The figures in the left column are for a continuous
circular random variable and those in the right column are for a discrete variable.
The figures in the middle and bottom rows are redrawings of those in the top row
whenwe regard (5π/4, π/8) and (7π/4, 7π/8) as zero directions (indicated by cross
marks in the top row figures), respectively. Due to the arbitrary nature of the zero
directions, all support plots in Fig. 16.2 should indicate perfect positive dependence.

Fig. 16.1 Nondecreasing set
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Fig. 16.2 Supports of perfect positive dependent circular random variables. The figures in the
left column are for a continuous random variable and those in the right column are for a discrete
random variable. The middle and bottom rows are redrawings of those in the top row when we
regard (5π/4, π/8) and (7π/4, 7π/8) as zero directions (indicated by cross marks in the figures in
the top row), respectively
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Now, we give the equivalence class of the circular Fréchet–Hoeffding copula
upper bounds in the following theorem; its proof is given in Sect. 16.6.

Theorem 16.1 (Circular Fréchet–Hoeffding copula upper bound) Let 0 ≤ a ≤ 1.
The equivalence class of the circular Fréchet–Hoeffding copula upper bounds is
given by

Ma(u, v) =
⎧⎨
⎩
min(u, v − a) (u, v) ∈ [0, 1 − a] × [a, 1]
min(u + a − 1, v) (u, v) ∈ [1 − a, 1] × [0, a]
max(u + v − 1, 0) otherwise.

The copula Ma(u, v)was introduced in [7, Exercise 3.9]. It is the joint distribution
function when the probability mass is uniformly distributed on two line segments,
one joining (0, a) to (1 − a, 1) with mass 1 − a, and the other joining (1 − a, 0) to
(1, a) with mass a. Theorem 16.1 clarifies that this Ma corresponds to the circular
Fréchet–Hoeffding copula upper bound.

We can also find the equivalence class of the circular Fréchet–Hoeffding copula
lower bounds in the following theorem.

Theorem 16.2 (Circular Fréchet–Hoeffding copula lower bound) Let 0 ≤ a ≤ 1.
The equivalence class of the circular Fréchet–Hoeffding copula lower bounds is
given by

Wa(u, v) =
⎧⎨
⎩
max(u + v − a, 0) (u, v) ∈ [0, a]2
max(u + v − 1, a) (u, v) ∈ [a, 1]2
min(u, v) otherwise.

Proof is omitted because it is similar to that of Theorem 16.1.
The copulaWa(u, v)was introduced in [7, Example 3.4]. It is the joint distribution

function when the probability mass is uniformly distributed on two line segments,
one joining (0, a) to (a, 0) with mass a, and the other joining (a, 1) to (1, a) with
mass 1 − a.

When describing the dependency between � and �, their periodic structure must
be considered. The paper [2] considered the complete dependence between � and
� as

� ≡ � + α0 (mod 2π), positive association, (16.2)

� ≡ −� + α0 (mod 2π), negative association, (16.3)

where α0 is an arbitrary fixed direction. If we use T2 display, the supports of (16.2)
are expressed as in Fig. 16.3. Because of arbitrary nature of α0, not only the top but
also the middle and bottom rows indicate complete positive dependence. Figure16.3
is the special case of Fig. 16.2. Therefore, the circular perfect dependence with the
concept of nondecreasing (nonincreasing) set can be considered as a generalization
of complete dependence in the sense of [2].
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Fig. 16.3 Perfect positive dependence in the sense of [2] with α0 = 0 (top), α0 = 3π/2 (middle),
α0 = π (bottom). Left are for continuous and right are for discrete
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16.4 Monte Carlo Simulations

In this section, we consider the copula

Cγ,a,b(u, v) = γ 2(1 + γ )

2
Ma(u, v) + (1 − γ 2)
(u, v) + γ 2(1 − γ )

2
Wb(u, v),

(γ, a, b) ∈ [−1, 1] × I × I. (16.4)

Here, Ma(u, v), Wb(u, v) are the copulas introduced in Theorems 16.1, 16.2, and

(u, v) := uv is an independent copula. This is a linear combination of these three
copulas and an analogue to the model in [5]. The parameter γ controls the weights of
these three copulas, and γ = 1, 0,−1 correspond Ma (perfect positive dependence),

 (independent), Wb (perfect negative dependence), respectively.

We generate a random circular bivariate sample (θi , φi )i=1,...,500 from (16.4). Both
marginals are set to a cardioid distribution, whose distribution function is given by

FCa(θ) = ρ

π
sin(θ − μ) + θ

2π
+ ρ

π
sinμ.

The parameters for marginals are set to ρF = 0.1,μF = π for θ and ρG = 0.3,μG =
π/3 for φ. Figure16.4 shows the simulated circular bivariate plots with γ = 0.7 (top
left), −0.7 (top right), 0.5 (middle left), −0.5 (middle right), 0.3 (bottom left), −0.3
(bottom right). When γ is close to 1 and −1, (16.4) is close to Ma and Wb, which
are singular copulas. When γ = ±0.7, we can see the singular components.

16.5 Summary and Conclusions

We have considered the equivalence class of univariate and bivariate circular dis-
tribution functions ascribed to the arbitrary nature of the zero direction. Then, we
have introduced the equivalence class of circular copula functions with Sklar’s the-
orem. Using the concept of the equivalence class of circular copula functions, we
have introduced circular analogues of the Fréchet–Hoeffding copula upper and lower
bounds. We have explained they are the generalizations of the complete positive and
negative dependence in the sense of [2]. We also have introduced the circular ana-
logue of Mardia’s copula model and simulated a dataset from this model. When the
model is close to its extremes, we can find the singular components in the plots.
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Fig. 16.4 Simulated circular bivariate plots from the model (16.4). The sample size is 500. The
marginal for θ is a Cardioid distribution with ρF = 0.1, μF = π , and the marginal for φ is a
Cardioid distribution with ρG = 0.3, μG = π/3. The parameters a and b are fixed to 0.7 and 0.4,
respectively. The parameter γ is set to 0.7 (upper left), −0.7 (upper right), 0.5 (middle left), −0.5
(middle right), 0.3 (lower left), −0.3 (lower right)
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16.6 Proof of Theorem 16.1

Let

H(θ, φ) = M(F(θ),G(φ)) = min(F(θ),G(φ)).

Fix arbitrary zero directions (α, β) ∈ T. From the discussion inSect. 16.2, the circular
Fréchet–Hoeffding copula upper bound is

Cα,β(u, v) = Hα,β(F (−1)
α (u),G(−1)

β (v))

= H̃(F (−1)
α (u) + α,G(−1)

β (v) + β)

− H̃(α,G(−1)
β (v) + β) − H̃(F (−1)

α (u) + α, β) + H̃(α, β).

When (�,�) is discrete, (u, v) is restricted on {range of Fα} × {range of Gβ}. Now,
let us divide I2 into the following four regions:

I1 = {(u, v) | F (−1)
α (u) + α < 2π, G(−1)

β (v) + β < 2π}
= {(u, v) | u < 1 − F(α), v < 1 − G(β)},

I2 = {(u, v) | F (−1)
α (u) + α < 2π, G(−1)

β (v) + β ≥ 2π}
= {(u, v) | u < 1 − F(α), v ≥ 1 − G(β)},

I3 = {(u, v) | F (−1)
α (u) + α ≥ 2π, G(−1)

β (v) + β < 2π}
= {(u, v) | u ≥ 1 − F(α), v < 1 − G(β)},

I4 = {(u, v) | F (−1)
α (u) + α ≥ 2π, G(−1)

β (v) + β ≥ 2π}
= {(u, v) | u ≥ 1 − F(α), v ≥ 1 − G(β)}.

For (u, v) ∈ I1,

Cα,β(u, v)

= H(F (−1)
α (u) + α,G(−1)

β (v) + β)

− H(α,G(−1)
β (v) + β) − H(F (−1)

α (u) + α, β) + H(α, β)

= min{F(F (−1)
α (u) + α),G(G(−1)

β (v) + β)} − min{F(α),G(G(−1)
β (v) + β)}

− min{F(F (−1)
α (u) + α),G(β)} + min{F(α),G(β)}.

Here,

F(F (−1)
α (u) + α) = Fα(F (−1)

α (u)) + F(α) = u + F(α),

G(G(−1)
β (v) + β) = Gβ(G(−1)

β (v)) + G(β) = v + G(β).



16 Copula Bounds for Circular Data 399

Therefore,

Cα,β(u, v) = min{u + F(α), v + G(β)} − min{F(α), v + G(β)}
− min{u + F(α),G(β)} + min{F(α),G(β)}.

When G(β) > F(α), we divide I1 into

IG1−1 = {(u, v) ∈ I1 | u ≤ G(β) − F(α)},
IG1−2 = {(u, v) ∈ I1 | u > G(β) − F(α), v > u − (G(β) − F(α))},
IG1−3 = {(u, v) ∈ I1 | v ≤ u − (G(β) − F(α))}.

When G(β) ≤ F(α), we divide I1 into

IF1−1 = {(u, v) ∈ I1 | v ≤ F(α) − G(β)},
IF1−2 = {(u, v) ∈ I1 | v > F(α) − G(β), v ≤ u + (F(α) − G(β))},
IF1−3 = {(u, v) ∈ I1 | v > u + (F(α) − G(β))}.

See also Fig. 16.5. Then,

Cα,β(u, v) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 (u, v) ∈ IG1−1

u − (G(β) − F(α)) (u, v) ∈ IG1−2

v (u, v) ∈ IG1−3

0 (u, v) ∈ IF1−1

v − (F(α) − G(β)) (u, v) ∈ IF1−2

u (u, v) ∈ IF1−3.

(16.5)

Similarly, for (u, v) ∈ I2, we have

Cα,β(u, v) = u + min{u + F(α), v − (1 − G(β))} − min{F(α), v − (1 − G(β))}
− min{u + F(α),G(β)} + min{F(α),G(β)}.

When G(β) > F(α), we divide I2 into

IG2−1 = {(u, v) ∈ I2 | u ≤ G(β) − F(α), v ≤ 1 − (G(β) − F(α))},
IG2−2 = {(u, v) ∈ I2 | u > G(β) − F(α), v ≤ 1 − (G(β) − F(α))},
IG2−3 = {(u, v) ∈ I2 | v > u + {1 − (G(β) − F(α))} },
IG2−4 = {(u, v) ∈ I2 | u ≤ G(β) − F(α),

1 − (G(β) − F(α)) < v ≤ u + {1 − (G(β) − F(α))} },
IG2−5 = {(u, v) ∈ I2 | u > G(β) − F(α), v > 1 − (G(β) − F(α))}.
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Fig. 16.5 Division of I2 = [0, 1]2

When G(β) ≤ F(α), we do not divide I2 further and rename it as IF2−1. Then,

Cα,β(u, v) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 (u, v) ∈ IG2−1

u − (G(β) − F(α)) (u, v) ∈ IG2−2

u (u, v) ∈ IG2−3

v − {1 − (G(β) − F(α))} (u, v) ∈ IG2−4

u + v − 1 (u, v) ∈ IG2−5

u (u, v) ∈ IF2−1.

(16.6)

For (u, v) ∈ I3, we have
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Cα,β(u, v) = v + min{u − (1 − F(α)), v + G(β)} − min{u − (1 − F(α)),G(β)}
− min{F(α), v + G(β)} + min{F(α),G(β)}.

When G(β) > F(α), we do not divide I3 further and rename it IG3−1. When G(β) ≤
F(α), we divide I3 into

IF3−1 = {(u, v) ∈ I3 | u ≤ 1 − (F(α) − G(β)), v ≤ F(α) − G(β)},
IF3−2 = {(u, v) ∈ I3 | u > 1 − (F(α) − G(β)),

v ≤ F(α) − G(β), v > u − {1 − (F(α) − G(β))} },
IF3−3 = {(u, v) ∈ I3 | v ≤ u − {1 − (F(α) − G(β))} },
IF3−4 = {(u, v) ∈ I3 | u ≤ 1 − (F(α) − G(β)), v > F(α) − G(β)},
IF3−5 = {(u, v) ∈ I3 | u > 1 − (F(α) − G(β)), v > F(α) − G(β)}.

Then,

Cα,β(u, v) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

v (u, v) ∈ IG3−1

0 (u, v) ∈ IF3−1

u − {1 − (F(α) − G(β))} (u, v) ∈ IF3−2

v (u, v) ∈ IF3−3

v − (F(α) − G(β)) (u, v) ∈ IF3−4

u + v − 1 (u, v) ∈ IF3−5.

(16.7)

For (u, v) ∈ I4, we have

Cα,β(u, v)

= u + v − 1 + min{u − (1 − F(α)), v − (1 − G(β))}
− min{F(α), v − (1 − G(β))} − min{u − (1 − F(α)),G(β)} + min{F(α),G(β)}.

When G(β) > F(α), we divide I4 into

IG4−1 = {(u, v) ∈ I4 | v ≤ u − (G(β) − F(α))},
IG4−2 = {(u, v) ∈ I4 | v ≤ 1 − (G(β) − F(α)), v > u − (G(β) − F(α))},
IG4−3 = {(u, v) ∈ I4 | v > 1 − (G(β) − F(α))}.

When G(β) ≤ F(α), we divide I4 into

IF4−1 = {(u, v) ∈ I4 | v > u + (F(α) − G(β))},
IF4−2 = {(u, v) ∈ I4 | u ≤ 1 − (F(α) − G(β)), v ≤ u + (F(α) − G(β))},
IF4−3 = {(u, v) ∈ I4 | u > 1 − (F(α) − G(β))}.
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Then,

Cα,β(u, v) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

v (u, v) ∈ IG4−1

u − (G(β) − F(α)) (u, v) ∈ IG4−2

u + v − 1 (u, v) ∈ IG4−3

u (u, v) ∈ IF4−1

v − (F(α) − G(β)) (u, v) ∈ IF4−2

u + v − 1 (u, v) ∈ IF4−3.

(16.8)

From (16.5)–(16.8), we findCα,β(u, v) is equivalent to Ma(u, v) in Theorem 16.1
by taking

a =
{
1 − (G(β) − F(α)) (F(α) ≤ G(β))

F(α) − G(β) (F(α) > G(β)).

Acknowledgements Financial support for this research was received from JSPS KAKENHI in the
form of grant 18K11193. We would like to thank Editage (www.editage.jp) for English language
editing. Thanks are extended to an anonymous referee for valuable comments improving the paper.

References

1. Fisher, N. I. (1993). Statistical Analysis of Circular Data. Cambridge: Cambridge University
Press.

2. Fisher, N. I. and Lee, A. J. (1983). A correlation coefficient for circular data. Biometrika.
70 327–332.

3. Jammalamadaka, S. A. and SenGupta, A. S. (2001). Topics in Circular Statistics. New
York: World Scientific Publishing Co.

4. Jones, M. C., Pewsey, A. and Kato, S. (2015). On a class of circulas: copulas for circular
distributions. Ann Inst Stat Math. 67 843–862.

5. Mardia, K. V. (1970). Families of Bivariate Distributions. Darien, Connecticut: Hafner Pub-
lishing Company.

6. Mardia, K. V. and Jupp, P. E. (1999). Directional Statistics. Chichester: Wiley.
7. Nelsen, R. B. (2006). An Introduction to Copulas. New York: Springer.
8. Taniguchi, M., Kato, S., Ogata, H. and Pewsey, A. (2020), Models for circular data

from time series spectra. J. Time Series Anal. 41 808–829.

www.editage.jp


Chapter 17
Topological Data Analysis for Directed
Dependence Networks of Multivariate
Time Series Data

Anass El Yaagoubi and Hernando Ombao

Abstract Topological data analysis (TDA) approaches are becoming increasingly
popular for studying the dependence patterns in multivariate time series data. In par-
ticular, various dependence patterns in brain networks may be linked to specific tasks
and cognitive processes, which can be altered by various neurological impairments
such as epileptic seizures. Existing TDA approaches rely on the notion of distance
between data points that is symmetric by definition for building graph filtrations. For
brain dependence networks, this is a major limitation that constrains practitioners
from using only symmetric dependence measures, such as correlations or coher-
ence. However, it is known that the brain dependence network may be very complex
and can contain a directed flow of information from one brain region to another.
Such dependence networks are usually captured by more advanced measures of
dependence such as partial directed coherence, which is a Granger causality-based
dependence measure. These dependence measures will result in a non-symmetric
distance function, especially during epileptic seizures. In this paper, we propose to
solve this limitation by decomposing the weighted connectivity network into its sym-
metric and anti-symmetric components using matrix decomposition and comparing
the anti-symmetric component prior to and post seizure. Our analysis of epileptic
seizure EEG data shows promising results.

17.1 Introduction

Over the past twenty years, topological data analysis (TDA) haswitnessed significant
advances that aim to study and understand various patterns in the data, thanks to the
pioneeringwork of [11, 13, 14, 19].ManyTDA techniques for the analysis of various
types of data have emerged, like barcodes, persistence diagrams, and persistence
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landscapes. These TDA features aim to summarize the intrinsic shape of the data
(cloud of points or weighted network usually), by keeping track of the specific scales
at which any topological feature (e.g., holes and cavities, etc.) is either born or dead.
The goal of such approaches is to provide insight on the geometrical patterns included
in high dimensional data that are not visible using conventional approaches.

There has been an increasing trend in the literature that applies theTDA techniques
to data sets with a temporal structure (e.g., financial time series, brain signals, etc.).
For such data sets, it has been proposed over the years that dependence networks
of multivariate time series data, particularly for multivariate brain signals such as
electroencephalograms (EEG) and local field potentials (LFP), canprovide promising
results, as shown in [15].

The topology of the structural and functional brain networks is organized accord-
ing to principles that maximize the (directed-)flow of information and minimize the
energy cost for maintaining the entire network, such as small world networks, see
[35, 39, 43]. More formally, define X (t) ∈ R

d to be a vector-valued stochastic brain
process at time t . Due to physiological reasons, the influence of Xq(t) on X p(t)
may differ from the influence of X p(t) on Xq(t), where X p(t) and Xq(t) are two
univariate time series components of X (t).

Neurological disorders such as Alzheimer’s disease, Parkinson’s disease, and
Epilepsy may alter the topological structure of the brain network. For instance, it is
known that the onset of epileptic seizures can alter brain networks and, in particular,
brain connectivity, leading to multiple studies that compare the pre-ictal, inter-ictal,
and post-ictal network characteristics. However, studying this change in the topology
of the brain network based on a symmetricmeasure of dependence such as correlation
or coherence is going to result in the loss of information regarding the spatio-temporal
evolution of the seizure process (how abnormal electrical activity in one brain region
may spread to other regions). Indeed, it is known that brain seizures are usually
initiated from a localized region (or multiple sub-regions), which then propagate to
the rest of the network, for more details refer to [5, Chap. 1]. Such propagation ought
to be non-symmetric, as there is a directed flow of information going from the source
region to the rest of the brain.

Therefore, in order to capture this asymmetry in the brain connectivity we ought
to use a non-symmetric measure of dependence, that allows for the influence of a
channel Xq(t) on another channel X p(t) to be different from the reverse influence,
i.e., of channel X p(t) on channel Xq(t). In particular, partial directed coherence
(PDC), which estimates the intensity of information flow from one brain region to
another based on the notion of the Granger causality, i.e., the ability of time series
components to predict each other at various lag values. Refer to Sect. 17.2 for more
details regarding PDC. Using the distance measure based on PDC in [15] introduces
the following problem. For a function d to be a valid distance function it has to
respect the four axioms of a distance:

Axiom 17.1 d(x, y) ≥ 0;

Axiom 17.2 d(x, y) = 0 ⇐⇒ x = y;
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Axiom 17.3 d(x, y) = d(y, x);

Axiom 17.4 d(x, y) ≤ d(x, z) + d(z, y).

After defining the distance using PDC (e.g., d = 1 − PDC), we notice immedi-
ately that it fails to satisfy Axiom 17.3, i.e., d(x, y) �= d(y, x) which is a significant
restriction. Some of the aforementioned axioms (such as the second and the fourth)
can be relaxed in some situations. However, Axiom17.3 cannot be ignored, and doing
so will lead to major conflicts and contradictions when creating the Rips–Vietoris
filtration.

Motivated by this challenge, we propose a novel approach that will allow existing
TDA techniques to assess the topology of the asymmetry in oriented brain networks.
We propose an approach based on the decomposition of a weighted network into
its symmetric and anti-symmetric components. In Sect. 17.2, we provide a brief
review of vector autoregressive (VAR) models and PDC. In Sect. 17.3, we present
the network decomposition approach. In Sect. 17.4, we provide a brief review of
persistent homology andVietoris–Rips filtration. In Sect. 17.5, we analyze the impact
of an epileptic seizure on the flow of information within the brain using an EEG data
set.

17.2 VAR Models and PDC

One standard approach to modeling brain signals is to use parametric models such
as VAR models, see [22, 23, 29, 30]. This class of models is very flexible, and has
the ability to capture all linear dependencies in the multivariate time series, see [31].
Given a stationary multivariate time series X (t) ∈ R

d , the VAR model of order K is
expressed in the following way:

X (t) =
K∑

k=1

�k X (t − k) + E(t), (17.1)

E(t) ∼ N (0, �E ), (17.2)

where X (t) is d-dimensional vector of observations, and �k is d × d mixing weight
matrix for lag k, which are chosen such that X (t) is causal, E(t) is the innovations
vector. The model order K is usually selected based on various information criteria,
such asAkaike information criterion (AIC) andBayesian information criterion (BIC),
see [2, 41, 42].

The concept of PDC, as presented in [3], is supposed to represent the concept of
Granger causality in the frequency domain, as itmeasures the intensity of information
flow between a pair of EEG channels. Assuming we fit a VARmodel to the observed
multivariate brain signals, we get the following expression for the Fourier transform
of the VAR model parameters:
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A(ω) = I −
K∑

k=1

�k exp (−i2πkω), (17.3)

which in turn is used as follows to compute the PDC:

PDCp,q(ω) =
∣∣Ap,q(ω)

∣∣
√
A
H
.,q(ω)A.,q(ω)

, (17.4)

where PDCp,q(ω) denotes the direction and intensity of the information flow from
channel q to channel p at the frequency ω and the symbol H denotes the Hermi-
tian transpose, when the dimension d is equal to one then the Hermitian transpose
becomes the complex conjugate. From this definition, it is obvious that PDC is not
symmetric measure of information as PDCp,q(ω) �= PDCq,p(ω). Such a PDC cannot
be used directly with TDA to analyze the shape of the network. Therefore, another
approach is necessary, which we will develop in the next section.

Assume we observe two multivariate processes Y (1)(t) and Y (2)(t) that are mix-
tures of AR(2) processes Z (k)

j (t) as follows:

Y (1)
1 (t) = Y (1)

5 (t − 1) + Z (1)
1 (t),

Y (1)
2 (t) = Y (1)

1 (t − 1) + Y (1)
4 (t − 1) + Z (1)

2 (t),

Y (1)
3 (t) = Y (1)

2 (t − 1) + Y (1)
4 (t − 1) + Z (1)

3 (t),

Y (1)
4 (t) = Y (1)

2 (t − 1) + Y (1)
3 (t − 1) + Z (1)

4 (t),

Y (1)
5 (t) = Y (1)

4 (t − 1) + Z (1)
5 (t),

and

Y (2)
1 (t) = Y (2)

5 (t − 1) + Z (2)
1 (t),

Y (2)
2 (t) = Y (2)

1 (t − 1) + Y (1)
4 (t − 1) + Z (2)

2 (t),

Y (2)
3 (t) = Y (2)

2 (t − 1) + Z (2)
3 (t),

Y (2)
4 (t) = Y (2)

3 (t − 1) + Z (2)
4 (t),

Y (2)
5 (t) = Y (2)

4 (t − 1) + Z (2)
5 (t),

with distinct lead-lag directed dependence networks, as can be seen in Fig. 17.1.
Choosing Z (k)

j (t) to be AR(2) processes allows this dependency pattern to be fre-
quency specific. Both networks are oriented and have multiple edges in common;
however, they present distinct oriented connectivity among the nodes 2–4.

Using a non-oriented measure of dependence such as coherence or correlation
would result in misleading conclusions, as these measures will ignore the orientation
of the dependence structure. Hence, the two distinct structures will be confused into
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Fig. 17.1 Example of distinct directed dependence networks. Symmetric and non-symmetric cyclic
structure (Left) and non-symmetric only cyclic structure (Right)

Fig. 17.2 First example of non-symmetric network decomposition. Original network (Left), sym-
metric component (Middle), and anti-symmetric component (Right)

Fig. 17.3 Second example of non-symmetric network decomposition. Original network (Left),
symmetric component (Middle), and anti-symmetric component (Right)

the same structure. However, using an oriented measure of dependence such as PDC
will fit the structure properly. Therefore, the latter approach will enable us to take
into account the orientation in the dependence structure by decomposing oriented
networks into their symmetric and anti-symmetric components as can be seen in
Figs. 17.2 and 17.3.

From Figs. 17.2 and 17.3, it is clear that applying TDA to the symmetric compo-
nent (Middle) will results in disastrous conclusion, as it will not be able to distinguish
between the two networks, since they share very similar topological structure. How-
ever, applying TDA to the anti-symmetric component (Right) will capture the topo-
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Fig. 17.4 Original weight matrix and graph representation

logical differences between the two networks, as the first example doesn’t contain
any asymmetric cycles, whereas the second example contains two main cycles.

17.3 Network Decomposition

There are multiple techniques for decomposing weighted network into multiple net-
works with various properties. In this section, we consider the transformation that
decomposes a network into a unique pair of symmetric and anti-symmetric com-
ponents. Given an oriented weighted network G = (N ,W ), see Fig. 17.4, with |N |
nodes and weight matrix W , we propose the following graph decomposition that
results in two graphs Gs and Ga , where Gs = (N ,Ws) is the symmetric component
and Ga = (N ,Wa) is the anti-symmetric component as can be seen in Figs. 17.5
and 17.6.

Ws = 1

2
(W + W

′
), (17.5)

Wa = 1

2
(W − W

′
), (17.6)

where the signs + and − are the usual matrix addition and subtraction, and W
′
s =

1
2 (W

′ + W ) = Ws is a symmetric weight matrix corresponding to the symmetric
component Gs and W

′
a = 1

2 (W
′ − W ) = −Wa the anti-symmetric weight matrix

that corresponds to the anti-symmetric component. Note that W = Ws
⊕

Wa . This
decomposition is unique, since it is the result of the projection of the weight matrix
W on the space of symmetric and anti-symmetric matrices, since Ws and Wa are
respectively the closest symmetric and anti-symmetric matrices toW in terms of the
Frobenius norm; furthermore, the spaces of symmetric and anti-symmetric matrices
are orthogonal with respect to standard matrix inner product.

In order to analyze the alterations in the topology of the network following the
onset of seizure and during the seizure episode, we can use eitherWs orWa . SinceWs

is a symmetric matrix, it can be used through a monotonically decreasing function,
as it is the case with correlation and coherence matrices. However, Wa being anti-
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Fig. 17.5 Symmetric component representation

Fig. 17.6 Anti-symmetric component representation

symmetric, it needs to be transformed since a distance function cannot take negative
values. Therefore, we propose to build the Rips–Vietoris filtration based on |Wa|,
where the entries |Wa|p,q = 1

2 |Wp,q − Wq,p|. Indeed, |Wa|p,q can be thought of as a
distance, since it measures departure from symmetry. IfW is perfectly symmetrical,
then ∀p, q, (Wa)p,q = 0, and as W departs from symmetry, i.e., Wp,q changes and
differs from Wq,p, |Wa|p,q becomes larger than zero. In the following section, we
provide a brief review of persistent homology, before choosing to focus on |Wa|
to analyze the temporal evolution of the changes in directional asymmetry in brain
connectivity during the seizure process.

17.4 Overview of Persistent Homology and Vietoris–Rips
Filtration

The goal of persistent homology is to provide computational tools that can distinguish
between topological objects. It analyzes their topological features, such as connected
components, holes, cavities, etc. In this paper we consider weighted networks, with
weights corresponding to some loose notion of distance as defined by |Wa|.

In order to analyze the shape of these networks, we need to build the homology
of the data by looking at an increasing sequence of networks of neighboring data
points at varying scales/distances, as seen in Fig. 17.7. The goal of this approach is to
analyze the characteristics of the geometrical patterns when they appear (birth) then
disappear (death) for a wide range of scales, see [11, 13, 14, 19]. The Vietoris–Rips
(VR) filtration as presented above is constructed based on the notions of a simplex
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Fig. 17.7 Example of a Vietoris–Rips filtration on a cloud of points. As the radius of the balls
grows, there’s birth and death of various topological features

and simplicial complex, which can be thought of as a finite collection of sets that is
closed under the subset relation, see Figs. 17.8 and 17.9. Simplicial complexes are
generally understood as higher dimensional generalizations of graphs. Simplicial
complexes are meant to represent in an abstract form the shape of the data at various
scales, in order to simplify and allow abstract manipulations. Simplicial complexes
as shown in Fig. 17.9 can be very simple like a group of disconnected nodes, or more
complex, e.g., a combination of pairs of connected nodes, triplets of triangles, or any
higher dimensional simplex. This notion of a simplicial complex can be understood
as a generalization of the notion of networks, to include surfaces, volumes, and higher
dimensional objects. Given this definition of simplicial complexes, we can formalize
the notion of the VR filtration to be an increasing sequence of simplicial complexes.
Let X p(t) be an observed time series of brain activity at location p ∈ N and time t ∈
{1, . . . , T }. Therefore, we can think of a distance between brain channels at locations
p and q to be their distance from symmetry, i.e., imbalance in information flow
D(p, q) = |Wa,(pq)|. Using this measure, we construct the Vietoris–Rips filtration
by connecting nodes that have a distance less or equal to some given threshold ε,
which results in the following filtration:

Xε1 ⊂ Xε2 ⊂ · · · ⊂ Xεn , (17.7)

where 0 < ε1 < ε2 < · · · < εn−1 < εn are the distance thresholds. Nodes within
some given distance εi are connected to form different simplicial complexes, Xε1

is the first simplicial complex (single nodes) and Xεn is the last simplicial complex
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Fig. 17.8 Examples of the four lowest dimensional simplices

Fig. 17.9 Example of a simplicial complex with four nodes, six edges, and two faces. If S is a
simplicial complex, then every face of a simplex in S must also be in S

(all nodes connected, i.e., a clique of size d, where d is the number of nodes or
dimension of the multivariate time series). Refer to [26] for a review of how to build
the VR filtrations.

TheVRfiltration is a complex object. Therefore, in practice practitioners consider
a topological summary that is known as the persistence diagram (PD), which is a
diagram that represents the times of birth and death of the topological features in the
VR filtration as seen in Fig. 17.10. Every birth-death pair is represented by a point
in the diagram, e.g., (ε1, ε2) and (ε2, ε3). The points in the PD are colored based on
the dimension of the feature they correspond to (e.g., one color for the connected
components, another color for the cycles, etc.).
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Fig. 17.10 Example of a PD (Top) and a PL (Bottom). This figure is inspired form the paper by
[20]

ComparingPDs canbequite challenging and time consuming. Indeed, taking aver-
ages or computing distances, like the Bottleneck or Wasserstein distances between
persistence diagrams is time consuming as it is necessary to find point correspon-
dence, see [1]. For these reasons, we prefer to analyze a simpler representation of the
PD called the persistence landscape (PL), which is a simpler object (one-dimensional
function), as defined in [6]. The use of PLs lends to a more rigorous statistical anal-
ysis that produce more easily interpretable results. As the PLs are functions of a real
variable, it is easy to compute group averages and to derive confidence regions.

17.5 Oriented TDA of Seizure EEG

We investigate the topological features of the asymmetric brain network component
based on the decomposition presented previously by contrasting the network before
and after the epileptic seizure. The data was collected from an epileptic patient at
the Epilepsy Disorder Laboratory at the University of Michigan (PI: Beth Malow,
M.D.). With a sampling rate 100Hz and observation period of 8min, the following
results are based on 19 scalp differential electrodes (no reference), see Fig. 17.11.

To analyze this data set on the pre-seizure an seizure onset,we start byfitting aVAR
model with dimension d = 19 (number of observed time series components) and
order K = 5 to the pre-seizure part and on the seizure onset. Connectivity between
all pairs of channels was assessed using PDC, for the delta (0–4Hz), alpha (8–12Hz),
beta (12–30Hz), and gamma (30–50Hz) frequency bands. After we decompose each
network into its symmetric and anti-symmetric components, then we build the VR
filtration based on |W�

a |, where � stands for the frequency band of interest, delta,
alpha, beta, gamma, etc. We report the PDs in Figs. 17.12, 17.13, 17.14, and 17.15.
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Fig. 17.11 Differential electrodes positioning map on the scalp

Fig. 17.12 PD based on the anti-symmetric brain component for the delta (0–4Hz) frequency
band. Pre-seizure (Left) and During-seizure (Right). It can be seen that zero- and one-dimensional
features (blue and orange dots) are born around the same scale (0.0 and 0.01−0.02) prior to and
during the seizure and die at a much later scale during the seizure (0.11 and 0.06) than prior to the
seizure (0.06 and 0.03). For the two-dimensional features (green dots), they seem to be born later
and die later prior to and during the seizure

From the above PDs, we notice that the one-dimensional features persist more
during the seizure than prior to the seizuremainly for delta, alpha, and beta frequency
bands. However, even if the two-dimensional features seem to persist more during the
seizure than prior to the seizure, the variability seems largerwhichmakes conclusions
uncertain.

In this context of epileptic seizure, the appearance of one-dimensional features
means that the epileptic seizure tends to induce an asymmetric circular flow of infor-
mation within the brain. The appearance of zero-dimensional features indicates the
presence of segregated regions where the flow of information is asymmetric. The
scale at which these features appear indicates the importance or magnitude of the
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Fig. 17.13 PD based on the anti-symmetric brain component for the alpha (8–12Hz) frequency
band. Pre-seizure (Left) and During-seizure (Right). Similarly, it can be seen that zero- and one-
dimensional features (blue and orange dots) are born around the same scale (0.0 and 0.01−0.02)
prior to and during the seizure and die at a much later scale during the seizure (0.9 and 0.06) than
prior to the seizure (0.05 and 0.03). For the two-dimensional features (green dots), they seem to be
born later and die later as well prior to and during the seizure

Fig. 17.14 PD based on the anti-symmetric brain component for the beta (12–30Hz) frequency
band. Pre-seizure (Left) and During-seizure (Right). The one-dimensional features (orange dots)
seem to be born and die at a later scale respectively at (0.01−0.04) and (0.05) during the seizure
than prior to the seizure (0.01−0.02) and (0.01−0.02). Similarly, the two-dimensional features
(green dots) seem to be born later and die later during the seizure than prior to the seizure
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Fig. 17.15 PD based on the anti-symmetric brain component for the gamma (30–50Hz) frequency
band. Pre-seizure (Left) and During-seizure (Right). The zero- and one-dimensional features (blue
and orange dots) seem to be born at the same time (0.0) and (0.01−0.02) but die at a later scale
(0.04) during the seizure than prior to the seizure (0.03). Similarly, the two-dimensional features
(green dots) seem to be born later and die later during the seizure than prior to the seizure

asymmetry, similarly the scale at which these features die indicates the maximum
magnitude that the asymmetry within such features might reach.

The fact that these features appear at higher scales indicates that the epileptic
seizure induces a large asymmetry in the flow of information within brain regions.
Furthermore, since these features persist for larger scales, it means that the epileptic
seizure induces a non-homogeneous asymmetry throughout the brain regions.

17.6 Conclusion

Topological data analysis has been built upon the notion of distance, which is sym-
metric by definition.When applied to brain connectivity networks, current TDA tools
encounter serious limitations as they can only analyze brain networks based on sym-
metric dependence measures such as correlations or coherence. We have presented
a new approach to analyze asymmetric brain networks using more general mea-
sures of dependence. Our approach relies on network decomposition, using weight
matrix projections onto symmetric and anti-symmetric matrix spaces. Using PDC,
our approach has been able to provide new insight into the topological alterations
induced by an epileptic seizure. Our preliminary analysis provides evidence that
epileptic seizure induces asymmetric flow of information across the brain, and that
the induced asymmetry is non-homogeneous throughout brain regions. Even if we
can detect seizure-induced asymmetry in the flow of information within the brain,
our approach cannot detect the origin of this asymmetry. In future work, we plan
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to combine our oriented TDA approach with graph theoretic measures to detect the
nature of the seizure as well as the regions at the origin of the seizure.
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Chapter 18
Orthogonal Impulse Response Analysis
in Presence of Time-Varying Covariance

Valentin Patilea and Hamdi Raïssi

Abstract In this paper, the orthogonal impulse response functions (OIRFs) are stud-
ied in the non-standard but quite common case where the covariance of the error vec-
tor is not constant in time. The usual approach for taking such covariance behavior
into account consists in applying the standard tools to sub-periods of the whole sam-
ple. We underline that such a practice may lead to severe upward bias. We propose
a new approach intended to give what we argue to be a more accurate summary of
the time-varying OIRFs. This consists in averaging the Cholesky decomposition of
nonparametric covariance estimators. In addition, an index is developed to evaluate
the heteroscedasticity effect on the OIRFs analysis. The asymptotic behavior of the
proposed estimators is investigated.

18.1 Introduction

In time series econometrics, it is common to investigate sub-samples of a full time
series in order to capture changes in the data. Reference can be made to [11, 12],
who considered rollingwindows. In order to accommodate possible regime switches,
[5] constituted different sub-periods for measuring monetary policy. The paper [29]
split the data considered for the study according to the Federal Reserve operating
procedures. The paper [17] proposed a pre-crisis, in-crisis and post-crisis split type
to carry out a volatility spillover analysis, while [28] considered pre- and post-1985
financial liberalization samples. The papers [1, 6, 27] used both rolling windows and
static periods, to describe non-constant dynamics in the series they studied.

Our main message, focused on orthogonal impulse response functions (OIRFs)
analysis, is that if one wishes to work with fixed sub-samples (for comparisons of
periods), it is advisable to carry out a pointwise estimation, and then summarize it
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using averages according to the periods of interest. This leads us in the following to
introduce what we call the averaged OIRFs. By doing so, an accurate picture of the
non-constant dynamics is obtained. As a matter of fact, applying the standard tools
to sub-samples can, in some sense, lead to bias distortions in summarizing the time-
varying dynamics of a series. Several available approaches for the pointwise OIRFs
estimation could be used for our task (see [14, 22]). In this paper, we develop the
above-presented idea in the important case of vector autoregressive (VAR) models
with constant AR parameters but with time-varying covariance structure. Indeed, it
is often admitted that the conditional mean is constant, while the variance is time-
varying (see [4, 9, 15, 20, 25, 26], among others). In addition, it is widely known that
a non-constant variance is common for economic variables. For instance, [24] found
that more than 80% of the 214 U.S. economic variables they studied have a non-
constant variance (see [2] for break detection in the covariance structure). For this
reason, the series under study are assumed non-stationary, due to the non-constant
variance (i.e., the heteroscedasticity is unconditional).

To illustrate our main idea, let us consider the univariate framework of [30],
where the conditional mean is filtered by fitting an AR model. Using this simple
framework,we indicate theways of summarizing the time-varying response functions
to a rescaled1 impulse for an univariate series. Let us define by σ 2

t = g2(t/T ),
the (unobserved) innovations variance at time 1 ≤ t ≤ T , where g(·) is a function
fulfilling some regularity conditions. As the (unobserved) MA coefficients φi are
constant in our case, it suffices to focus on the changes in the variance to capture
the evolution of the rescaled impulse response functions (IRF) φiσt−i . The usual
way to summarize the time-varying IRF over a given period would be to estimate
the standard tool that assumes a constant variance. This would lead to estimating
φi (
∫ 1
0 g2(r)dr)

1
2 (which will be called the approximate IRF), whereas φi

∫ 1
0 g(r)dr

(which will be called the averaged IRF) is more sound to summarize the IRF. Here,
the integrals account for the averaging over given periods of interest. Indeed, if the
purpose is to find a summary of the IRF, averaging over the values of fixed periods
seems more reasonable than considering a kind of norm such as (

∫ 1
0 g2(r)dr)

1
2 .

Clearly, the averaged and approximated IRFs are different in general, as long as the
variance structure is non-constant. More precisely, the more the variance varies over
time, the larger the discrepancy between the averaged and the approximated IRFs.
Therefore, in the following, we also propose to build an indicator of the variability
of the variance based on the discrepancy between the averaged and approximated
IRFs. It is important to underline that robustness/stability studies often rely on the
simple (graphical) examination of the different OIRFs. As this way of proceeding is
subjective, our indicator is intended to quantify such a kind of analysis.

The rest of this paper is organized as follows. In Sect. 18.2, the VAR model with
unconditionally heteroscedastic innovations is presented. Next, different possible
concepts of OIRFs that could be considered in our framework are discussed. More-
over, we introduce a scalar variance variability index that measures the departure
from the standard constant variance VAR setup. Section18.3 proposes the estima-

1 The term rescaled is taken from [16, p. 53].
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tors and studies their asymptotic properties. The time-varying OIRFs estimator is
introduced and its nonparametric rate of convergence is derived. In Sects. 18.3.2 and
18.3.3, the estimators of the approximated and averaged OIRFs are defined. Their
asymptotic behavior are also studied. Assumptions and some proofs are given in
Sect. 18.5.

18.2 Time-Varying Orthogonal Impulse Response
Functions

Following the usual approach for impulse response analysis between variables, con-
sider a VAR model for the series Xt ∈ R

d :

Xt = A01Xt−1 + · · · + A0p Xt−p + ut , (18.1)

where ut is the error term and the A0i ’s are the AR parameter matrices, such that
det A(z) �= 0 for all |z|≤1, with A(z)= Id −∑p

i=1A0i zi . The matrix Id is the d × d-
identity matrix. Here, the covariance of the system is allowed to vary in time. More
precisely, the covariance of the process (ut ) is denoted by �t := G(t/T )G(t/T )′,
where r �→ G(r), r ∈ (0, 1], is a d × d-matrix valued function. See Assumption
18.2, given in Sect. 18.5.2. With the rescaling device used by [10], the process (Xt )

should be formally written in a triangular form. Herein, instead of writing Xt,T and
�t,T (the double subscript), the notation Xt and �t (without the subscript T ) is used
for simplicity.

The specification we consider allows for commonly observed features as cycles,
smooth or abrupt changes for the covariance, and is widely used in the literature (see,
e.g., [30] and references therein). In particular, the rescaling device is commonly used
to describe long-range phenomena (see [7, 8], among others). In practice, the order
p in (18.1) is unknown but can be fixed using the tools proposed in [21, 23] under
our assumptions.

Let X̃t = (X ′
t , . . . , X ′

t−p+1)
′. The usual Kronecker product is denoted by ⊗. In

the following, the model (18.1) is rewritten as follows:

Xt = (X̃ ′
t−1 ⊗ Id)ϑ0 + ut ,

ut = Htεt ,

where (εt ) is an iid centered process with E(εtε
′
t ) = Id , and

ϑ0 = vec(A01, . . . , A0p),

is the vector of parameters.Herein the vec(·) operator consists of stacking the columns
of a matrix into a vector. The matrix Ht is the lower triangular matrix of the Cholesky
decomposition of the covariance of the errors, that is, �t = Ht H ′

t . We also define
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�0 = Id , �i =
i∑

j=1

�i− j A0 j , (18.2)

i = 1, . . . , with A0 j = 0 for j > p. The�i ’s correspond to the coefficients matrices
of the infinite MA representation of (Xt ). Under our assumptions the components of
the �i ’s decrease exponentially fast to zero.

If the errors’ covariance � is assumed constant, then we can define the d × d
matrix of standard OIRFs

θ(i) := �i H, i = 1, 2, . . . ,

where H is the lower triangular matrix of the Cholesky decomposition of �. See
[16, p. 59]. Let us denote by ϑ̂O L S the ordinary least-squares (OLS) estimator of the
AR parameters ϑ0 and define �̂, the OLS estimator of the constant errors covariance
matrix. Using ϑ̂O L S and �̂, it is easy to see that an estimator of θ(i) can be built.
Under the standard assumptions, it can be shown that such estimators are consistent,√

T -asymptotically Gaussian. See [16, p. 110]. However, it clearly appears that
the classical OIRFs cannot take the time-varying instantaneous effects into account
properly, and may be misleading in our non-standard but quite realistic framework.

18.2.1 tv-OIRFs

In the framework of the model (18.1) a common alternative to the classical OIRFs
is the time-varying OIRFs (tv-OIRFs hereafter)

θr (i) := �i H(r), i ≥ 1, (18.3)

for each r ∈ (0, 1], where H(r) is the lower triangular matrix of the Cholesky
decomposition of �(r) = G(r)G(r)′. The parameter r gives the time over which
the impulse response analysis is conducted. In other words, the counterpart of the
usual OIRFs in the case of time-varying variance is the two arguments function

(r, i) �→ θr (i), (r, i] ∈ (0, 1] × {1, 2, . . .}.

The form (18.3) implicitly arises when models with constant AR parameters but
time-varying variance are used to analyze the data (see [5, 26, 30] among others,
for this kind of model). When the covariance of the errors is constant, for each i , the
mapping r �→ θr (i) is constant, and thus we retrieve the standard case. Although it
is interesting to have a pointwise estimator of the OIRFs, in general these mappings
are not constant and are typically estimated at nonparametric rates, as will be shown
in the following. The papers [14, 22] provided complete tools for estimating (18.3)
in general contexts. As a byproduct of our results, we specify the methodological
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pathway for the pointwise estimation of the OIRFs in the important case where the
conditional mean is constant but the variance is time-varying.

A summary of the tv-OIRFs over time could sometimes be needed to compare
fixed periods. In many cases, this consists of evaluating the differences between
pre- and post-crises situations. In the following, we consider two approaches for
summarizing the tv-OIRFs over a given sub-period. First, we replace the matrix
H(r) in (18.3) by the lower triangular matrix of the Cholesky decomposition of the
realized variance, that is the average of the variance, over a given period around r .
This will yield what we call the approximated OIRFs. Typically, this corresponds to
the usual practice which consists in applying the standard method to periods (see,
e.g., [3, 27]). Second, keeping in mind that we are looking for a summary of the tv-
OIRFs, which is tantamount to looking for a summary of integrated H(r) appearing
in (18.3), we introduce the averaged OIRFs that is obtained by replacing the matrix
H(r) with the average of the lower triangular matrix of the Cholesky decomposition
of�(·) over a given period around r . Both summaries we consider could be estimated
at parametric rates and, considering static or rolling periods, could be used for an
analysis of the series. However, as argued in Introduction, the averagedOIRFs should
be preferred. Before presenting the approximated and averaged approaches, we here
point out that, as usual, summarizing the OIRFs does not make the shocks orthogonal
pointwise. Note however that such a property is not really needed if we are interested
in comparing periods by considering means.

18.2.2 Approximated OIRFs

The usual way to summarize the OIRFs in presence of a non-constant covariance in
our framework is to consider the quantities

θ̃q
r (i) = �i H̃(r), i ≥ 1, (18.4)

where H̃(r) is the lower triangular matrix of the Cholesky decomposition of the
positive definitematrix q−1

∫ r+q/2
r−q/2 �(v)dv with 0 < r − q/2 < r + q/2 < 1. Again

the standard case is retrieved if the covariance structure is assumed constant. If r does
not correspond to a covariance break, we have θ̃

q
r (i) ≈ θr (i) for small enough q.

However, as the periods under study are usually somewhat large, we are not aiming
in reflecting the evolution of H(·), so we refer (18.4) to the approximate OIRFs in
the following. In short, the approximated OIRFs are usually computed to contrast
between static periods. For fixed r and q, the quantities θ̃

q
r (i) could be estimated at

parametric rates.
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18.2.3 Averaged OIRFs

As argued above, by construction, the approximated OIRFs could be misleading in
summarizing the time-varying θr (i) over a period. Given the definition of θr (i), a
more natural way to approach it would be to average the lower triangular matrix of
the Cholesky decomposition over a window around r . We propose a new alternative
way to summarize the tv-OIRFs (18.3) based on the quantities

θ̄q
r (i) := �i H̄(r) where H̄(r) := 1

q

∫ r+q/2

r−q/2
H(v)dv, i ≥ 1,

where 0 < q < 1 is fixed by the practitioner, and r is such that 0 < r − q/2 <

r + q/2 < 1. The standard case is retrieved if the errors covariance is constant. On
the other hand, if r does not correspond to an abrupt break in the covariance structure,
we clearly have θ̄

q
r (i) ≈ θr (i)when q is small. However, as noted above, the averaged

OIRFs is intended to be applied for a relatively large q.

18.2.4 Variance Variability Indices

In this section we propose an index, that is a scalar, to measure the departure from a
constant covariance matrix situation within a given period. We can write

θ̃q
r (i) = θ̄q

r (i)Ir,q

with the d × d-matrix Ir,q defined as

Ir,q = H̄(r)−1 H̃(r).

Let us define
ir,q = ∥

∥Ir,q

∥
∥2
2 ,

where ‖ · ‖2 denotes the spectral norm of a matrix. In this case, ir,q is equal to the
square of the largest eigenvalue of Ir,q , which has only real, positive eigenvalues. By
elementary matrix algebra properties, we also have

ir,q = max
a∈Rd ,a �=0

V ar(a′ Xapp)

V ar(a′ Xavg)
,

where Xavg and Xapp are d-dimensional random vectors with variances H̄(r)H̄(r)′
and H̃(r)H̃(r)′, respectively. In the statistical literature, a quantity like ir,q is usually
called the first relative eigenvalue of one matrix (here H̃(r)H̃(r)′) with respect to
the other matrix (here H̄(r)H̄(r)′). See, for instance, [13]. By construction, in our
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context, the eigenvalues of the matrix H̄(r)−1 H̃(r) are real numbers greater than or
equal to 1, as shown in the following.

The index ir,q is inspired by theOIRFs analysis. It is designed to provide ameasure
of variability through the contrast between two possible definitions of OIRFs that
coincide, in the case of a covariance � constant over time. Another simple index
could be defined as

jr,q =
∥
∥
∥
∥
1

q

∫ r+q/2

r−q/2
�(v)dv − H̄(r)H̄(r)′

∥
∥
∥
∥

2

2

.

By elementary properties of the spectral norm,

jr,q = max
a∈Rd ,‖a‖=1

{V ar(a′ Xapp) − V ar(a′ Xavg)}.

Lemma 18.1 Under Assumption 18.2, given in Sect. 18.5.2, it holds that

1. ir,q ≥ 1 and ir,q = 1 if and only if v �→ H(v) is constant over (r − q/2, r + q/2);
2. jr,q ≥ 0 and jr,q = 0 if and only if v �→ H(v) is constant over (r − q/2, r + q/2).

In our context, for any 0 < q < 1, a mapping r �→ ir,q (resp. r �→ jr,q ) constant
equal to 1 (resp. 0) means the covariance of the error (ut ) is constant in time. For
simplicity, in the following we will focus on the index ir,q which is invariant to
multiplication of the errors’ covariance matrix by a positive constant. Large values
of ir,q indicate a large variability in the variance of the vector series over a given
period of interest.

18.3 OIRFs Estimators When the Variance is Varying

Let us first briefly recall the estimationmethodology for heteroscedastic VARmodels
of [20, Sect. 4]. We first consider the OLS estimator of the AR parameters

ϑ̂O L S =
{

T∑

t=1

X̃t−1 X̃ ′
t−1 ⊗ Id

}−1

vec

(
T∑

t=1

Xt X̃ ′
t−1

)

. (18.5)

The paper [20] showed that

√
T (ϑ̂O L S − ϑ0) ⇒ N (0,	−1

3 	2	
−1
3 ), (18.6)

where
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	2 =
∫ 1

0

∞∑

i=0

{
�̃i (1p×p ⊗ �(r))�̃′

i

}
⊗�(r)dr,

	3 =
∫ 1

0

∞∑

i=0

{
�̃i (1p×p ⊗ �(r))�̃′

i

}
⊗ Id dr (18.7)

1p×p is the p × p matrix with components equal to one, and �̃i is a block diagonal
matrix �̃i := diag

(
�i ,�i−1, . . . , �i−p+1

)
. The matrices �i , i ≥ 0, are defined in

(18.2), and �i = 0 for i < 0.
Next, let us consider kernel estimators of the time-varying covariance matrix.

Denote by A � B, the Hadamard (entrywise) product of two matrices A and B of
the same dimension. For t = 1, . . . , T , define the symmetric matrices

�̂t =
T∑

j=1

wt j � û j û
′
j , (18.8)

where ût = Xt − (X̃ ′
t−1 ⊗ Id)ϑ̂O L S is the OLS residual vector. The (k, l)-element,

k ≤ l, of the d × d matrix of weights wt j is given by

wt j (bkl) = (T bkl)
−1K ((t − j)/(T bkl)) ,

where bkl is the bandwidth and K (·) is nonnegative. For any r ∈ (0, 1], the value�(r)

of the covariance function could be estimated by �̂[rT ]. Here and in the following,
for a number a, we denote by [a] the integer part of a, that is the largest integer
number less than or equal to a. For all 1 ≤ k ≤ l ≤ d, the bandwidth bkl belongs to a
range BT = [cbT , cbT ], where c, c > 0 are some constants and bT ↓ 0 at a suitable
rate specified below. In practice the bandwidths bkl can be chosen by minimization
of a cross-validation criterion. This estimator is a version of the Nadaraya–Watson
estimator considered by [20]. Here, we replace the denominator by the target density,
that is the uniform density on the unit interval which is constant equal to 1. A
regularization termmay be needed to ensure that the matrices �̂t are positive definite
(see [20]). Another simple way to circumvent the problem is to select a unique
bandwidth b = bkl , for all 1 ≤ k, l ≤ d.

With an estimator of �(r) at hand, we could define Ĥ[rT ], the lower triangular
matrix of the Cholesky decomposition of �̂[rT ], as the estimator of H(r). We estab-
lish the convergence rates of these nonparametric estimators below. For r ∈ (0, 1),
let �(r−) = limr̃↑r �(r̃) and �(r+) = limr̃↓r �(r̃). Moreover, by definition, let
�(1+) = 0. Let H(r−) and H(r+) be defined similarly. In the following, ‖ · ‖F is
the Frobenius norm, while supBT

denotes the supremumwith respect the bandwidths
bkl in BT .

Proposition 18.1 Assume that Assumptions 18.1–18.3, given in Sect. 18.5.2 hold.
Then, for any r ∈ (0, 1],
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sup
BT

∥
∥
∥
∥�̂[T r ] − 1

2
{�(r−) + �(r+)}

∥
∥
∥
∥

F

= OP

(
bT +√

log(T )/T bT

)

and

sup
BT

∥
∥
∥
∥Ĥ[T r ] − 1

2
H±(r)

∥
∥
∥
∥

F

= OP

(
bT +√

log(T )/T bT

)
,

where H±(r) is the lower triangular matrix of the Cholesky decomposition of
�(r−) + �(r+).

The convergence rate of �̂[T r ] and Ĥ[T r ] is given by a bias term, with the standard
rate one could obtain when estimating Lipschitz continuous functions nonparamet-
rically, and a variance term which is multiplied by a logarithm factor, the price to
pay for the uniformity with respect to the bandwidth.

The above estimation of the non-constant covariance structure could be used to
define the adaptive least squares (ALS) estimator

ϑ̂AL S = �̃−1
X̃
vec

(
�̃X
)
, (18.9)

where

�̃X̃ = T −1
T∑

t=1

X̃t−1 X̃ ′
t−1 ⊗ �̂−1

t and �̃X = T −1
T∑

t=1

�̂−1
t Xt X̃ ′

t−1.

Byminor adaptation of the proofs in [20], in order to take into account the simplified
change in the definition of the weights wt j , it could be shown that, uniformly with
respect to b ∈ BT , ϑ̂AL S is consistent in probability and

√
T (ϑ̂AL S − ϑ0) ⇒ N (0,	−1

1 ),

where

	1 =
∫ 1

0

∞∑

i=0

{
�̃i (1p×p ⊗ �(r))�̃′

i

}⊗ �(r)−1dr .

The paper [20] showed that 	−1
3 	2	

−1
3 − 	1 is a positive semi-definite matrix.

18.3.1 The tv-OIRFs Nonparametric Estimator

In the context of model (18.1), the natural way to build estimators of the time-varying
OIRFs defined in (18.3) is to construct plug-in estimators of the �i and H(r). For
estimating �i we use �̂als

i which are obtained as in (18.2), but considering the ALS
estimator of the A0i ’s. By the arguments used in the proof of Proposition 18.2 below,
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this estimator has the OP(1/
√

T ) rate of convergence. Using the nonparametric
estimator of H(r) we introduced above, we obtain what we call the ALS estimator
of θr (i), that is,

θ̂r (i) := �̂als
i Ĥ[rT ], r ∈ (0, 1].

Even if �̂als
i has an improved variance compared to the estimator where the OLS

estimator of the A0i ’s is used, the estimator θ̂r (i) still inherits the nonparametric
rate of the convergence of Ĥ[rT ] described in Proposition 18.1. Hence, analyzing
the variations of the estimated curves r �→ θ̂r (i), for various i , suffers from lower,
nonparametric convergence rates. In Sect. 18.3.3, we propose to use instead of θ̂r (i)
averages over the values in a neighborhood of r , that is a window containing r . In
particular, this allows us to recover parametric rate of convergence of the estimators.
In practice, this interval corresponds to some period of interest.

18.3.2 Approximated OIRFs Estimators

The results of this part are only stated as they are direct consequences of arguments
in [20] and standard techniques (see [16]). Let the usual estimator of (18.4),

ˆ̃θq

r (i) := �̂ols
i
̂̃H(r), (18.10)

where ̂̃H(r) is the lower triangular matrices of the Cholesky decomposition of

ŜT (r) = 1

[qT ] + 1

[qT/2]∑

k=−[qT/2]
û[rT ]−k û′

[rT ]−k .

Here, û[rT ]−k is the OLS residual vector and �̂ols
i ’s are the estimators of the MA

coefficients obtained from the OLS estimators of the autoregressive parameters.
Recall that (18.10) is used to evaluate the OIRFs in the standard homoscedastic case
(see [16, Sect. 3.7]), but is also commonly considered to evaluate tv-OIRFs over
static periods. The expression (18.10) is suitable at least asymptotically, since, as in
the proof of Lemma 18.2 below, it is shown that

1

[qT ] + 1

[qT/2]∑

k=−[qT/2]
û[rT ]−k û′

[rT ]−k

= 1

[qT ] + 1

[qT/2]∑

k=−[qT/2]
u[rT ]−ku′

[rT ]−k + oP(1/
√

T )

= 1

q

∫ r+q/2

r−q/2
�(v)dv + OP(1/

√
T ).
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In order to specify the asymptotic behavior of ˆ̃θq

r (i),wefirst state a resultwhich can
be proved using similar arguments to those in [18, Lemma7.4]. Let ζ̂t := vech

(
ût û′

t

)
,

ζt := vech
(
ut u′

t

)
and �t := vech(�(t/T )) = vech(�t ), where the vech operator

consists of stacking the elements on and below the main diagonal of a square matrix.
Define

�(r) := vech

(

q−1
∫ r+q/2

r−q/2
�(v)dv

)

and �̂(r) := ([qT ] + 1)−1
[qT/2]∑

k=−[qT/2]
ζ̂[rT ]−k,

for r < 1. Introduce the functions �(·) and �(·) given by �(·) = vech(�(·)) and
�(t/T ) = E(ζtζ

′
t ).

Lemma 18.2 Under Assumptions 18.1–18.3, given in Sect. 18.5.2 hold, we have

√
T

(
ϑ̂O L S − ϑ0

�̂(r) − �(r)

)

⇒ N
(

0,

(
	−1

3 	2	
−1
3 0

0 (r)

))

, (18.11)

where ϑ̂O L S, and the 	i ’s are defined in (18.7) and (18.5) respectively, and

(r) = 1

q

∫ r+q/2

r−q/2
{�(v) − �(v)�(v)′}dv.

Now, define the commutation matrix Kd such that Kdvec(G) = vec(G ′), and the
elimination matrix Ld such that vech(G) = Ldvec(G) for any square matrix G of
dimension d × d. Introduce the pd × pd matrix

A =

⎛

⎜
⎜
⎜
⎝

A01 . . . . . . A0p

Id 0 . . . 0

0
. . . 0

...

0 0 Id 0

⎞

⎟
⎟
⎟
⎠

(18.12)

and the d × pd matrix J = (Id , 0, . . . , 0). We are now in a position to state the
asymptotic behavior of the classical approximated OIRFs estimator. Note that this
result can be obtained using the same arguments of [16, Proposition 3.6], together
with (18.11).

Proposition 18.2 Under Assumptions 18.1 and 18.2, given in Sect. 18.5.2, we have,
for all r ∈ (q/2, 1 − q/2) and as T → ∞,

√
T vec

( ˆ̃θq

r (i) − θ̃q
r (i)

)
⇒ N (

0, Ci (r)	−1
3 	2	

−1
3 Ci (r)′ + Di (r)(r)Di (r)′

)
,

(18.13)

i = 0, 1, 2, . . ., where C0 = 0, Ci (r) = (
H̃(r)′ ⊗ Id

) (∑i−1
m=0 J (A′)i−1−m ⊗ �m

)
,

i = 1, 2, . . ., H̃(r) is given in (18.4), and
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Di (r) = (Id ⊗ �i ) �(r), i = 0, 1, 2, . . .

with
�(r) = L ′

d

[
Ld (Id2 + Kd)

(
H̃(r) ⊗ Id

)
L ′

d

]−1
.

We propose an alternative approximated OIRFs estimator based on the more
efficient estimator ϑ̂AL S defined in (18.9) and the estimators �̂als

i of the coefficients
�̂i of the infinite MA representation of (Xt ). More precisely,

ˆ̃θq,als

r (i) := �̂als
i
̂̃H(r)

is a new approximated OIRFs estimator. We state its asymptotic distribution.

Proposition 18.3 In addition to the conditions of Proposition 18.2, assume that
Assumption 18.3, given in Sect. 18.5.2 holds. With the notation defined in Proposition
18.2, we have, for all r ∈ (q/2, 1 − q/2) and as T → ∞,

√
T vec

(
ˆ̃θq,als

r (i) − θ̃q
r (i)

)

⇒ N (
0, Ci (r)	−1

1 Ci (r)′ + Di (r)(r)Di (r)′
)
,

(18.14)
i = 0, 1, 2, . . .. Moreover, the difference between the asymptotic variance given in

(18.14) and the asymptotic variance of vec

(
ˆ̃θq,als

r (i) − θ̃
q
r (i)

)

is a positive semi-

definite matrix.

The proof of Proposition 18.3 is omitted since it follows the steps of the proof of
Proposition 18.2, and uses the results of [20] on the convergence in law of ϑ̂AL S . In
particular, they proved that 	−1

3 	2	
−1
3 − 	−1

1 is a positive semi-definite matrix and

this implies that ˆ̃θq,als

r (i) is a lower variance estimator of θ̃
q
r (i).

Although the standard ˆ̃θq

r (i) and more efficient ˆ̃θq,als

r (i) estimators are easy to
compute, for the reasons we detailed above, we believe that they are not appropriate
tools to summarize the evolution of the tv-OIRFs (18.3). Instead, we propose to use
an estimator of the averaged OIRFs. To build such an estimate of the averaged OIRFs
with negligible bias, we need a slightly modified kernel estimator of �(·) that we
introduce in the next section.

18.3.3 New OIRFs Estimators With tv-Variance

In this section, we propose an alternative estimator for the approximated OIRFs and
an estimator for the averagedOIRFswe introduced in Sect. 18.2.3. To guarantee

√
T -

asymptotic normality for these estimators, we implicitly need suitable estimators of
integral functionals in the form
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1

q

∫ r+q/2

r−q/2
A(v)�(v)dv,

where A(·) is a given matrix-valued function. The estimator of such an integral,
obtained by plugging in the nonparametric estimator of the covariance structure
introduced in (18.8), would not be appropriate as it suffers from boundary effects.
More details on this problem are provided in Sect. 18.5.1. Therefore, in the following,
we construct alternative bias corrected estimators for such integral functionals.

For −[(q + h)T/2] ≤ k ≤ [(q + h)T/2], we define

V̂[rT ]−k = 1

T

[(r+(q−h)/2)T ]∑

j=[(r−(q−h)/2)T ]+1

1

h
L

( [rT ] − k − j

hT

)

û j û
′
j . (18.15)

Hereafter, for simplicity, we use the same bandwidth h for all the d2 components of
the estimated matrix-valued integrals. Note that V̂[rT ]−k is an estimator of �[rT ]−k .
Next, let Ĥ[rT ]−k denote the lower triangular matrix of the Cholesky decomposition
of V̂[rT ]−k , that is,

V̂[rT ]−k = Ĥ[rT ]−k Ĥ ′
[rT ]−k .

We propose the following adaptive least-squares estimators of the tv-averaged
OIRFs: ˆ̄θq

r (i) = �̂als
i

¯̂H(r),

where

¯̂H(r) = 1

[qT ] + 1

[(q+h)T/2]∑

k=−[(q+h)T/2]
Ĥ[rT ]−k . (18.16)

Proposition 18.4 If Assumptions 18.1–18.3, given in Sect. 18.5.2, hold, then for all
r ∈ (q/2, 1 − q/2) and as T → ∞,

√
T vec

( ˆ̄θq
r (i) − θ̄

q
r (i)

)
⇒ N (0, Ci (r)	−1

1 Ci (r)′ + Di (r)(r)Di (r)′), i = 0, 1, 2, . . . ,

where Di (r) and (r) are defined in Proposition 18.2 and

Ci (r) =
(
1

q

∫ r+q/2

r−q/2
H(v)′dv ⊗ Id

)( i−1∑

m=0

J (A′)i−1−m ⊗ �m

)

.
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18.4 Conclusion

In the context of the VAR modeling, a possible way to measure changes in the
relationships between economic variables is to compare the tv-dynamics of the series
between periods of interest. For instance, before and after crises or regulatory change
periods can be adjusted by practitioners (see, e.g., [17, 28]). A possible way to
perform such a comparison is to compute the classical OIRFs within each period
(the approximated OIRFs). Although the above approach is commonly used because
of its easiness, our theoretical study indicates that doing so leads to an erroneous
picture of the evolving economic variables dynamics. Indeed, as soon as the OIRFs
exhibit marked changes, the classical OIRFs can be a poor guide to locate the general
level of response to an impulse for a given period. In order to correct such potentially
misleading analyses, we have proposed to first estimate the tv-OIRFs pointwise, and
then considered the mean of these estimators (the averaged OIRFs). It is found that
this alternative tool delivers amore accurate picture from the classical approachwhen
rapid shifts are observed. In viewof the above, an index and a formal statistical test for
delineating the limits of usefulness between the more sophisticated averaged OIRFs
and the simple approximated OIRFs have been proposed. Finally, let us mention
that empirical illustrations with simulated and real data, as well as some additional
technical arguments, are available in [19].

18.5 Technical Details

18.5.1 Kernel Estimators of the Covariance Function
Integrals

As mentioned in Sect. 18.3.3, we need suitable estimators of the integral functionals

1

q

∫ r+q/2

r−q/2
A(v)�(v)dv,

where A(·) is a givenmatrix-valued function. The estimator of such integrals obtained
by plugging in the nonparametric estimator of the covariance structure introduced in
(18.8) would be asymptotically biased due to the boundary effects.

To explain the rationale of the alternative nonparametric estimator, we propose
we assume for the moment that the d × d-matrices u j u′

j , 1 ≤ j ≤ T , are available.
Let us consider the generic real-valued random quantity

ST (r)=
∫ r+q/2

r−q/2
a(v)

⎡

⎣ 1

|J |
∑

j∈J
ωv, j (h)u(k)

j u(l)
j

⎤

⎦ dv,
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where

• J = { jmin, . . . , jmax } ⊂ {1, . . . , T } is a set of consecutive indices that will be
specified below and |J | is the cardinal of J ;

• ωv, j (h) = h−1L(h−1(v − j/T )) where h is a deterministic bandwidth with a rate
that will be specified below;

• L(·) is a bounded symmetric density function with support [−1, 1];
• a(·) is a differentiable function with Lipschitz continuous derivative.

Here, u(k)
j and u(l)

j are components of u j and E(u(k)
j u(l)

j ) = �(k,l)( j/T ), that is the
(k, l) cell of the matrix �( j/T ).

By a change of variables and the Taylor expansion,

∫ r+q/2

r−q/2
a(v)

1

h
L

(
v − j/T

h

)

dv =
∫ (r+q/2− j/T )/h

(r−q/2− j/T )/h
a( j/T + uh)L (u) du

= a( j/T )

∫ (r+q/2− j/T )/h

(r−q/2− j/T )/h
L (u) du + ha′( j/T )

∫ (r+q/2− j/T )/h

(r−q/2− j/T )/h
uL (u) du + O(h2).

To avoid a large bias, we aim at using the properties
∫ 1
−1 L(u)du = 1 and

∫ 1
−1

uL(u)du = 0. For this purpose, any j ∈ J should satisfy the conditions (r + q/2 −
j/T )/h ≥ 1 and (r − q/2 − j/T )/h ≤ −1. That is, the indices set J should be
defined such that

∀ j ∈ J , (r − q/2 + h)T ≤ j ≤ (r + q/2 − h)T .

Let us define

jmin = [(r − q/2 + h)T ] + 1 and jmax = [(r + q/2 − h)T ].

Then, uniformly with respect to j ∈ J ,

∫ r+q/2

r−q/2
a(v)

1

h
L

(
v − j/T

h

)

dv − a( j/T ) = O(h2).

Note that |J | = [(q − 2h)T ] and |J |/(q − 2h)T = 1 + O(1/T ).
We can now deduce

ST = 1

|J |
∑

j∈J
a( j/T ){u(k)

j u(l)
j − �(k,l)( j/T )}

+ 1

|J |
∑

j∈J
a( j/T )�(k,l)( j/T ) + O(h2)

=: �T + 1

q − 2h

∫ r+q/2−h

r−q/2+h
a(v)�(k,l)(v)dv + O(T −1) + O(h2).
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Let us comment on these findings. To make the remainder O(h2) negligible, we need
to impose T h4 → 0. For instance, we could consider a bandwidth h in the form

h = c
q

2
√
3

T −2/7, for some constant c > 0.

The factor q
2
√
3
takes into account the standard deviation of a uniform design on the

interval [r − q/2, r + q/2]. The term�T is a sum of independent centered variables,
having a Gaussian limit. Finally, let us focus on the last integral and notice that

1

q − 2h

∫ r+q/2−h

r−q/2+h
a(v)�(k,l)(v)dv = 1

q

∫ r+q/2

r−q/2
a(v)�(k,l)(v)dv + O(h).

Thus ST preserves a non-negligible bias as an estimator of q−1
∫ r+q/2

r−q/2 a(v)�(k,l)(v)
dv. The solution we will propose to remove this bias is to define estimators like ST

with modified q and thus with modified bounds jmin and jmax of the set J .

18.5.2 Assumptions

Assumption 18.1 (a) The process (εt ) is iid such that E(εtε
′
t ) = Id and supt ‖

εi,t ‖μ< ∞ for some μ > 8 and for all i ∈ {1, . . . , d} where ‖ . ‖μ:= (E ‖ . ‖μ

)1/μ with ‖ . ‖ being the Euclidean norm. Moreover E
(
ε

(i)
t ε

( j)
t ε

(k)
t

)
= 0, i, j, k ∈

{1, . . . , d}.
(b) The matrix A given in (18.12) is of full rank.

The covariance of the system (18.1) is allowed to be time-varying, as follows:

Assumption 18.2 We assume that Ht = G(t/T ), where the matrix-valued function
G(·) is a lower triangularmatrixwith positive diagonal components. The components
{gk,l(r) : 1 ≤ k, l ≤ d} of the matrix G(r) are measurable deterministic functions on
the interval (0, 1], with supr∈(0,1] |gk,l(r)| < ∞, 1 ≤ k, l ≤ d. The functions gk,l(·)
satisfy a Lipschitz condition piecewise on a finite partition of (0, 1] in sub-intervals
(the partition may depend on k, l). The matrix�(r) = G(r)G(r)′ is positive definite
for all r and infr∈(0,1] λmin(�(r)) > 0,whereλmin(�)denotes the smallest eigenvalue
of the symmetric matrix �.

The OIRFs estimators we investigate in the following are obtained as products
between a functional of the innovation vector ut , and a centered functional of matrix
ut u′

t (the estimator of some square root matrix built using the covariance struc-
ture �(·)). The √

T -asymptotic normality of the OIRFs estimators is then deduced

from the asymptotic behavior of the two factors. The condition E
(
ε

(i)
t ε

( j)
t ε

(k)
t

)
= 0,
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i, j, k ∈ {1, . . . , d} is a convenient condition for simplifying the asymptotic vari-
ance of our estimators, that is, making it block diagonal. It is in particular fulfilled
if the errors (ut ) are Gaussian. The asymptotic results could be also deduced if this
condition fails, the asymptotic variance of the estimators would then include some
additional covariance terms.

Assumption 18.3 (i) The kernel K (·) is a bounded symmetric density function
defined on the real line such that K (·) is non-decreasing on (−∞, 0] and decreasing
on [0,∞) and

∫
R

|v|K (v)dv < ∞. The function K (·) is differentiable except over
a finite number of points and the derivative K ′(·) is a bounded integrable function.
Moreover, the Fourier transform F[K ](·) of K (·) satisfies ∫

R
|sF[K ](s)| ds < ∞.

(ii) The bandwidths bkl , 1 ≤ k ≤ l ≤ d, are taken in the range BT = [cbT , cbT ]
where 0 < c < c < ∞ and bT + 1/T b2+γ

T → 0 as T → ∞, for some γ > 0.
(iii) The kernel L(·) is a symmetric bounded Lipschitz, continuous, density func-

tion with support in [−1, 1].
(iv) The bandwidth h satisfies the condition h4T + 1/T h2 → 0 as T → ∞.

18.5.3 Proofs

Below, c, c′, c′′ and C , C ′, C ′′ are constants, possibly different from line to line.

Proof of Lemma 18.1. First, note that

H̃(r)H̃(r)′ − H̄(r)H̄(r)′ = 1

q

∫ r+q/2

r−q/2
H(v)H(v)′dv

−
[
1

q

∫ r+q/2

r−q/2
H(v)dv

][
1

q

∫ r+q/2

r−q/2
H(v)dv

]′

is a positive semi-definite matrix, irrespective of the values of r and q. Moreover,

H̃(r)H̃(r)′ = H̄(r)H̄(r)′ if and only if H(·) is constant over (r − q/2, r + q/2).
(18.17)

Indeed for any a ∈ R
d ,

a′ {H̃(r)H̃(r)′ − H̄(r)H̄(r)′
}

a

= 1

q

∫ r+q/2

r−q/2
a′
[

H(v) − 1

q

∫ r+q/2

r−q/2
H(u)du

] [

H(v) − 1

q

∫ r+q/2

r−q/2
H(u)du

]′
a dv

= 1

q

∫ r+q/2

r−q/2

∥
∥
∥
∥a′

[

H(v) − 1

q

∫ r+q/2

r−q/2
H(u)du

]∥∥
∥
∥

2

dv ≥ 0.
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This shows that H̃(r)H̃(r)′ − H̄(r)H̄(r)′ is positive semi-definite. Next, under our
assumptions, for each a ∈ R

d the mapping

v �→
∥
∥
∥
∥a′

[

H(v) − 1

q

∫ r+q/2

r−q/2
H(u)du

]∥∥
∥
∥

2

, (18.18)

is piecewise continuous on (0, 1). Thus, if H̃(r)H̃(r)′ = H̄(r)H̄(r)′, then neces-
sarily the mapping (18.18) is constant and equal to zero for each a. This implies
that H(·) is constant over (r − q/2, r + q/2). Conversely, when H(·) is constant,
then H̃(·) = H̄(·) and thus H̃(r)H̃(r)′ = H̄(r)H̄(r)′. Finally, the two statements in
the lemma are direct consequences of (18.17) and the positive semi-definiteness of
H̃(r)H̃(r)′ − H̄(r)H̄(r)′. �

Proof of Proposition 18.1. See [19]. �

To simplify the reading, before proceeding to the next proofs, let us put the OIRFs
notation in a nutshell. First, let S �→ C(S) be the operator thatmaps a positive definite
matrix into the lower triangular matrix of the Cholesky decomposition of S. Next,
consider a matrix-valued function r �→ A(r), r ∈ (0, 1], and, for any r ∈ (0, 1],
0 < q < 1 such that 0 < r − q/2 < r + q/2 < 1, let

I ntr,q(A) = 1

q

∫ r+q/2

r−q/2
A(v)dv, I ntT,r,q(A) = 1

[qT ] + 1

[qT/2]∑

k=−[qT/2]
A[rT ]−k .

If supr∈(0,1) ‖A(r)‖F < ∞ and the components of A(·) are piecewise Lipschitz con-
tinuous on each sub-interval of a finite number partition of (0, 1], then there exists a
constant c such that

sup
r,q

∥
∥I ntr,q(A) − I ntT,r,q(A)

∥
∥

F ≤ cT −1.

We can now rewrite the theoretical OIRFs we introduced above as follows: for any
i ≥ 1,

(approximated OIRFs) θ̃q
r (i) = �i H̃(r) = �i C(I ntr,q(�)),

and

(averaged OIRFs) θ̄q
r (i) := �i

{
1

q

∫ r+q/2

r−q/2
H(v)dv

}

= �i I ntr,q(C(�)).

Moreover, the estimators we introduced could be rewritten as follows: with the
matrix-valued function r �→ Û (r) = û[rT ]û′

[rT ], the usual approximated OIRFs esti-
mator is ˆ̃θq

r (i) = �̂ols
i
̂̃H(r) = �̂ols

i C
(
I ntT,r,q

(
Û
)) ;
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the new approximated OIRFs estimator is

ˆ̃θq,als

r (i) = �̂als
i C

(
I ntT,r,q

(
Û
))

,

and the averaged OIRFs estimator is

ˆ̄θq
r (i) = �̂als

i

q + h

q
I ntT,r,q+h

(
C
(
V̂
))

,

where

q + h

q
I ntT,r,q+h

(
C
(
V̂
)) = ¯̂H(r){1 + O(1/T )} = 1 + O(1/T )

[qT ] + 1

[(q+h)T/2]∑

k=−[(q+h)T/2]
Ĥ[rT ]−k

and Ĥ[rT ]−k is the lower triangular matrix of the Cholesky decomposition of V̂[rT ]−k ,
with V̂[rT ]−k being defined in (18.15).

Proof of Lemma 18.2. First, we use the mean value theorem to get

vech(I ntT,r,q (Û )) = vech(I ntT,r,q (U )) + ∂vech(I ntT,r,q (U (ϑ)))

∂ϑ ′ |ϑ=ϑ∗(ϑ̂O L S − ϑ0),

where Ût = ût û′
t , Ut = ut u′

t , Ut (ϑ) = ut (ϑ)ut (ϑ)′, ut (ϑ) = Xt − (X̃ ′
t−1 ⊗ Id)ϑ ,

for some ϑ∗ between ϑ̂O L S and ϑ0. Noting that ∂ut (ϑ)

∂ϑ ′ = −(X̃ ′
t−1 ⊗ Id), the con-

sistency of ϑ̂O L S and the fact that ut is not correlated with X̃t , together with basic
derivative rules, we have

∂vech(I ntT,r,q(U (ϑ))

∂ϑ ′
∣
∣
∣
ϑ=ϑ∗

= op(1).

Using the
√

T -convergence of ϑ̂O L S (see (18.6), this implies that

√
T vech(I ntT,r,q(Û ) − I ntr,q(�)) = √

T vech(I ntT,r,q(U ) − I ntr,q(�)) + op(1),
(18.19)

where we recall that I ntr,q(�) = q−1
∫ r+q/2

r−q/2 �(v)dv.
We next investigate the joint distribution of

√
T
[
(ϑ̂O L S − ϑ0)

′,
{
vech(I ntT,r,q(U ) − I ntr,q(�))

}′]′
. (18.20)

We write
(

ϑ̂O L S − ϑ0
vech(I ntT,r,q (U ) − I ntr,q (�))

)

=
({

I ntT,0.5,1(X̃)) ⊗ Id
}−1

0
0 Id(d+1)/2

)(
ϒ1

t
ϒ2

t

)

,
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where X̃t−1 = X̃t−1 X̃ ′
t−1, ϒ

1
t = vec(I ntT,0.5,1(Xu)), with Xu

t = ut X̃ ′
t and

ϒ2
t = vech(I ntT,r,q(U ) − I ntr,q(�)).

The vector ϒt = (ϒ1′
t , ϒ2′

t )′ is a martingale difference since the process (ut ) is inde-
pendent. On the other hand, we have T −1∑T

t=1 I ntT,0.5,1(X̃) ⊗ Id → 	3, from [20].
Then from the Lindeberg CLT and the Slutsky lemma, (18.20) is asymptotically nor-
mally distributed with mean zero. For the asymptotic covariance matrix in (18.11),
the top left block is given from the asymptotic normality result (18.6), while the
bottom right block can be obtained using the same arguments of [18, Lemmas
7.1–7.4]. The asymptotic covariance matrix is block diagonal since we assumed
that E(uit u jt ukt ) = 0, i, j, k ∈ {1, . . . , d} in Assumption 18.2, together considering
again that ut is independent with respect to the past of Xt . Hence the asymptotic
covariance matrix of (18.20) is given as in (18.11). The proof of Lemma 18.2 is now
complete. �

Next, let us recall the differentiation formula of the Cholesky operator, as follows:

� := ∂vec(C(�))

∂vec(�)
= (Id ⊗ C(�))Z(C(�)−1 ⊗ C(�)−1), (18.21)

where Z is a diagonal matrix such that Zvec(A) = vec(�(A)) for any d × d-matrix
A. Here � takes the lower triangular part of a matrix and halves its diagonal, i.e.,

�(A)i j =
⎧
⎨

⎩

Ai j i > j
1
2 Ai j i = j
0 i < j.

Note that

(C(�)−1 ⊗ C(�)−1)vec (�) = vec
(
C(�)−1�(C(�)′)−1

) = vec(Id),

thus

�vec (�) = (Id ⊗ C(�))Zvec(Id) = (Id ⊗ C(�))vec(�(Id))

= vec(C(�)�(Id)) = 1

2
vec(C(�)).

Proof of Proposition 18.2. Using our notations, we write

ˆ̃θq

r (i) − θ̃q
r (i) = �̂ols

i C(I ntT,r,q(Û )) − �i C(I ntr,q(�)).

From (18.19) and the consistency of the OLS estimator, we have
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√
T (�̂ols

i C(I ntT,r,q(Û )) − �i C(I ntr,q(�)))

= √
T (�̂ols

i C(I ntT,r,q(U ))−�i C(I ntr,q(�))) + op(1).

Now let us write

√
T vec

[
�̂ols

i C(I ntT,r,q(U ) − �i C(I ntr,q(�))
]

= √
T vec

[
(�̂ols

i − �i )C(I ntr,q(�)) + �i (C(I ntT,r,q(U ) − C(I ntr,q(�))

+ (�̂ols
i − �i )(C(I ntT,r,q(U )) − C(I ntr,q(�)))

]
. (18.22)

Using Lemma 18.2, [16, Rules (8) and (10) in Appendix A.13] and the delta method,
both

√
T vec{�̂ols

i − �i } and
√

T vec{(C(I ntT,r,q(U )) − C(I ntr,q(�)))} are asymp-
totically normal. Hence we have

(�̂ols
i − �i )(C(I ntT,r,q(U )) − C(I ntr,q(�))) = Op(T

−1),

and thus from (18.22),

√
T vec

[
�̂ols

i C(I ntT,r,q(U ) − �i C(I ntr,q(�))
]

= √
T vec

[
(�̂ols

i − �i )C(I ntr,q(�))

+ �i (C(I ntT,r,q(U ) − C(I ntr,q(�))
]

+ op(1).

Moreover, by the identity vec(ABC) = (C ′ ⊗ A)vec(B) for matrices of adequate
dimensions, we have, for the right-hand side of the above equation,

vec
{
(�̂ols

i − �i )C(I ntr,q(�))
} = (C(I ntr,q(�))′ ⊗ Id)vec(�̂

ols
i − �i ),

and

vec
{
�i (C(I ntT,r,q(U ) − C(I ntr,q(�))

}

= (Id ⊗ �i )vec{C(I ntT,r,q(U ) − C(I ntr,q(�))}
= (Id ⊗ �i )�

{
vec(I ntT,r,q(U )) − vec(I ntr,q(�)

} {1 + oP(1)}.

For the last equality,weused (18.21) and thedeltamethod argument. The convergence
(18.13) follows by Lemma 18.2 and the CLT. �

Proof of Proposition 18.4. Let us fix q̃ ∈ (0, 1) and consider the definitions in
(18.15) and (18.16) with the generic q̃ replacing q. Note that, given a d × d-matrix
valued function A(·)defined on (0, 1]with differentiable elements that haveLipschitz
continuous derivatives, we have
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I ntT,r,̃q+2h
(
vec(AV̂ )

)

= 1

[(q̃ + 2h)T ] + 1

[(q̃+2h)T/2]∑

k=−[(q̃+2h)T/2]
vec(A[rT ]−k V̂[rT ]−k)

= 1

q̃ + 2h

1

T

[(r+q̃/2)T ]∑

j=[(r−q̃/2)T ]+1

vec

([∫ r+q̃/2+h

r−q̃/2−h

1

h
L

(
v − j/T

h

)

A(v)dv

]

û j û
′
j

)

+ OP(1/T h)

= 1

q̃ + 2h

1

T

[(r+q̃/2)T ]∑

j=[(r−q̃/2)T ]+1

vec
(

A( j/T )̂u j û
′
j

)+ OP(h
2 + 1/T h)

= q̃

q̃ + 2h

1

[̃qT ] + 1

[̃qT/2]∑

j=−[̃qT/2]
vec

(
A(([rT ] − j)/T )̂u[rT ]− j û

′
[rT ]− j

)

+ OP(h
2 + 1/T h)

= q̃

q̃ + 2h
I ntT,r,̃q

(
vec(AÛ )

)+ OP(h
2 + 1/T h). (18.23)

The remainder OP(1/T h) comes from the approximation of A(·) with the values
calculated on the grid j/(T h). The remainder OP(h2) is given by the first-order
Taylor expansion using the Lipschitz continuity of the derivatives of the elements of
A(·). Both OP(1/T h) and OP(h2) vanish when A(·) is constant. This will crucially
serve to deduce the distribution of the indicator îr,q in the case where�(·) is constant
over the interval [r − q/2, r + q/2].

Moreover, we can write

vec(C(V̂ ))− vec(C(�)) = �
[
vec(V̂ )− vec (�)

]{1 + oP(1)}.

Gathering facts, we now consider vec(I ntT,r,q+h(C(V̂ ))). We have

vec
(
I ntT,r,q+h

(
C
(
V̂
)))

= I ntT,r,q+h
(
vec

(
C
(
V̂
)))

= I ntr,q+h (vec (C (�))) + OP(1/T h)

+ {
I ntT,r,q+h(�vec(V̂ )) − I ntr,q+h(�vec(�)) + OP(1/T h)

} {1 + oP(1)}
= q

q + h
I ntr,q (vec (C (�))) + OP(1/T h)

+ 1

q + h

∫ r−q/2

r−(q+h)/2
vec(C (�(v)))dv + 1

q + h

∫ r+(q+h)/2

r+q/2
vec(C (�(v)))dv

+
{

q−h

q+h
I ntT,r,q−h(�vec(Û ))+ OP(h2+1/T h)− I ntr,q+h(�vec(�)) + OP(1/T h)

}

× {1 + oP(1)},
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where we used (18.23) with q − h instead of q̃, for replacing I ntT,r,q+h(�vec(V̂ )). Moreover,
since �vec (�) = (1/2)vec(C(�)), we also have

I ntr,q+h(�vec(�))

= q − h

q + h
I ntr,q−h(�vec(�))

+ 1

2

1

q + h

∫ r−q/2

r−(q+h)/2
vec(C (�(v)))dv + 1

2

1

q + h

∫ r−(q−h)/2

r−q/2
vec(C (�(v)))dv

+ 1

2

1

q + h

∫ r+(q+h)/2

r+q/2
vec(C (�(v)))dv + 1

2

1

q + h

∫ r+q/2

r+(q−h)/2
vec(C (�(v)))dv

= q − h

q + h
I ntr,q−h(�vec(�)) + 1

q + h

∫ r−q/2

r−(q+h)/2
vec(C (�(v)))dv

+ 1

q + h

∫ r+(q+h)/2

r+q/2
vec(C (�(v)))dv + O(h2),

where we used, for the last equality, the change of variables v → v − h/2 (resp.
v → v + h/2) in the integral over the interval [r − q/2, r − (q − h)/2] (resp. [r +
q/2, r + (q + h)/2]) and the Lipschitz property of the elements on �(·). Thus, we
obtain

vec
(
I ntT,r,q+h

(
C
(
V̂
)))

= q

q + h
I ntr,q (vec (C (�))) + q − h

q + h

{
I ntT,r,q−h(�vec(Û )) − I ntr,q−h(�vec(�))

}

+ OP(h2 + 1/T h).

That means that

√
T

(
q + h

q
vec

(
I ntT,r,q+h

(
C
(
V̂
)))− vec

(
I ntr,q (C (�))

)
)

=
{

1− h

q

}√
T
{

I ntT,r,q−h(�vec(Û )) − I ntr,q−h(�vec(�))
}+ OP(

√
T h4 + 1/

√
T h2)

= √
T
{

I ntT,r,q−h(�vec(Û )) − I ntr,q−h(�vec(�))
}+ OP(h +

√
T h4 + 1/

√
T h2). (18.24)

It also means that

q + h

q
vec

(
I ntT,r,q+h

(
C
(
V̂
))) = vec

(
I ntr,q (C (�))

)+ OP(1/
√

T ). (18.25)

We now have the ingredients to derive the asymptotic normality of our averaged
OIRFs estimator

ˆ̄θq
r (i) = �̂als

i

q + h

q
I ntT,r,q+h

(
C
(
V̂
))
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of the averaged OIRFs θ̄
q
r (i) = �i I ntr,q(C(�)). First, note that by (18.25) and the√

T -convergence of vec(�̂als
i ),

√
T vec

( ˆ̄θq
r (i) − θ̄q

r (i)
)

= vec

[√
T
(
�̂als

i − �̂i
)

I ntr,q(C(�))

+ �̂i

√
T

{
q + h

q
I ntT,r,q+h

(
C
(
V̂
))− I ntr,q(C(�))

}]

+ oP(1).

By (18.24), the
√

T -asymptotic normality of

(Id ⊗ �i )

{
q + h

q
vec

(
I ntT,r,q+h(C(V̂ ))

)− vec
(
I ntr,q (C (�))

)
}

= (Id ⊗ �i )
{
vec

( ¯̂H(r)
)

− vec
(
I ntr,q (C (�))

)}

follows from the CLT applied to

√
T (Id ⊗ �i )

{
I ntT,r,q−h(�vec(Û )) − I ntr,q−h(�vec(�))

}

= √
T (Id ⊗ �i )�

{
vec(I ntT,r,q−h(Û )) − vec(I ntr,q−h(�))

}

= √
T (Id ⊗ �i )�

{
vec(I ntT,r,q−h(U )) − vec(I ntr,q−h(�))

} {1 + oP(1)}
= √

T (Id ⊗ �i )�
{
vec(I ntT,r,q(U )) − vec(I ntr,q(�))

} {1 + oP(1)}.

The result follows from the
√

T -asymptotic normality of vec(�̂als
i ) and the zero-

mean condition for the product of any three components of the error vector, see
Assumption 18.2. �
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Chapter 19
Robustness Aspects of Optimal Transport

Elvezio Ronchetti

Abstract Optimal transportation is a flourishing area of research and applications
in many different fields. We provide an overview of the stability issues related to
the use of these techniques by means of a structured discussion of different results
available in the literature, which have been developed to face these problems. We
point out that important open problems still remain in order to achieve a complete
theory of robust optimal transportation.

19.1 Introduction

Professor Masanobu Taniguchi has always been eager to discuss new ideas about
challenging problems, and his research has covered several different fields. For the
paper of this Festschrift in his honor, we chose to overview and discuss robustness
aspects of optimal transportation methods and to outline open challenging problems.
Optimal transportation is an important and trending research area with applications
in many different fields, whereas robustness is a key issue related to the stability of
the results of an analysis obtained using optimal transport techniques in the presence
of deviations from assumed models. We provide an overview of the available results
in the literature (which are all quite recent) and show the link between penalization
and concepts from the classical theory of robust statistics.

The rest of the paper is organized as follows. Section19.2 summarizes the key
elements of optimal transportation, which are needed to discuss its robustness
issues. These include Monge’s and Kantorovich’s formulations and the key con-
cept of the Wasserstein distance. Section19.3 discusses the basic approach to define
robust estimators via the Wasserstein distance and the important link between robust
M-estimators and penalized estimators in a saturated linear model. Section19.4
presents an interesting approach to robust optimal transport, which is based on penal-
ization and establishes the link with familiar ideas from the classical theory of robust
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statistics, such as truncation of score functions. Finally, Sect. 19.5 discusses possible
alternative approaches to obtain robust estimators through the definition of multi-
variate ranks and provides an outlook on open problems.

19.2 Optimal Transport

Optimal transportation goes back to [36], who considered the problem of finding
the optimal way to move given piles of sand to fill up given holes of the same
total volume. Monge’s problem was revisited by [28], who considered the economic
problem of optimal allocation of resources. Nowadays optimal transportation is a
flourishing area of research and applications in many fields, including mathematics,
statistics, economics, computer vision, imaging, and machine learning. Book-length
presentation are provided by [44, 52]. A statistical perspective can be found in [31].

19.2.1 Basic Formulation

19.2.1.1 Optimal Transport: Monge’s Formulation

Let μ and ν be two probability measures over (R,B), where B is the Borel sigma-
field and c : R2 → R a Borel-measurable cost function, i.e. c(x, y) is the cost of
transporting x to y. Then, for X ∼ μ, Y ∼ ν, solve

inf
T :X→Y

∫
R

c(x,T (x))dμ. (19.1)

The solution to (19.1) is the optimal transportation map T , such that T#μ = ν (to
be read: T pushes μ forward to ν).

19.2.1.2 Optimal Transport: Kantorovich’s Formulation

Monge’s problem (defined using c(x, y) = |x − y|) remained open until the 1940s,s,
when it was revisited by [28], whose objective was to minimize

KP(μ, ν) = inf
γ∈�(μ,ν)

∫
X×X

c(x, y)dγ (x, y), (19.2)

where “KP” stands forKantorovich’s problemand the infimum is over all pairs (X, Y )

of (μ, ν), belonging to �(μ, ν), the set of probability measures γ onX × X, satisfy-
ing γ (A × X) = μ(A) and γ (X × B) = ν(B), for Borel sets A, B. Kantorovich’s
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problem is more general than Monge’s problem, since it allows mass splitting. It can
be solved via its dual formulation and under some conditions (see e.g. [44, Theorem
1.40]) there is no duality gap, i.e. the extremum of the primal problem (19.2) equals
the extremum of the dual problem.

19.2.2 Wasserstein Distance

The solution toKP(μ, ν)with c(x, y) = |x − y|p defines the p-Wasserstein distance,
for p ≥ 1,

Wp(μ, ν) =
(

inf
γ∈�(μ,ν)

∫
X×X

|x − y|pdγ (x, y)

)1/p

. (19.3)

Let P(X) be the set of all probability measures defined on X (a convex subset of
R) with finite second moment. Then, the Wasserstein space (P(X), W2) is a metric
space and a geodesic space; see [40]. Thus, in (P(X), W2), for μ, ν ∈ P(X), there
exists a continuous path going fromμ to ν, such that its length is the distance between
the two measures. An excellent discussion of Wasserstein distances and Wasserstein
spaces can be found in [39, 40].

The Wasserstein distance has gained importance in machine learning due to its
ability to capture the geometric structure of the sample space. This makes it par-
ticularly useful in applications for instance in computer vision and image analysis.
Moreover, new developments are appearing in risk management; see [29].

From a statistical point of view, the Wasserstein distance can be used to evaluate
the accuracy of approximations to the exact distribution of an estimator; see [31]. For
instance, let {Xi }, i = 1, . . . , n, be iid random variables with E[Xi ] = 0, V [Xi ] = 1,
and Sn := √

n X̄n with exact CDF Pn , saddlepoint CDF Psad (a higher-order approx-
imation obtained using saddlepoint methods; see [11]), standard normal CDF �

(obtained by means of the central limit theorem). Then, W1(Pn,�) = O(n−1/2) and
W1(Pn, Psad) = O(n−1), which implies that Psad is closer to the exact Pn than the
normal � in the Wasserstein distance.

19.3 Robust Approaches

It is a basic tenet of science that models are only approximations to reality. Already
in 1960, [51] showed the dramatic loss of efficiency of optimal procedures in the
presence of small deviations from the assumed stochastic model.

Robust statistics deals with deviations from ideal models and their dangers for
corresponding inference procedures. Its primary goal is the development of proce-
dures which are still reliable and reasonably efficient under small deviations from the
model, i.e. when the underlying distribution lies in a neighborhood of the assumed
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model. Therefore, one can view robust statistics as an extension of parametric statis-
tics, taking into account that parametric models are at best only approximations
to reality. Robust statistics (stability) has to play a major role nowadays with the
flourishing of (new) procedures to analyze complex data; see the discussions in
[22, 55].

From the seminal papers [20, 24, 51] which marked the beginning of the sys-
tematic development of the theory and applications of robust statistics, a large and
rich literature on robust statistics has emerged in the past decades. An account of the
basic general theory can be found in the classical books [21, 25] (2nd edition [26]),
[34]. Additional general books include [10, 16, 23, 27, 37, 41, 43, 50], [53, Chap.
5], and the quantile regression approach in [30]. Recent reviews are provided in
[1, 42].

19.3.1 Robustifying Estimators via Wasserstein Distance

In this context, it seems natural to consider the Wasserstein distance as the basis of a
minimum distance estimator. Specifically, given a family of parametric models {νθ }
for the distribution of the data and the empirical measure μn of the sample, we can
define a minimum Kantorovich estimator (MKE) by

θ̂ = arg minθ∈�KP(μn, νθ ),

as proposed in [4] in the setting of independent data. Recently, this idea has been
applied by [14] in time series to obtain an estimator of θ whichminimizes theWasser-
stein distance between the asymptotic theoretical distribution of the periodogram
ordinates (an exponential distribution with expectation f (·; θ), the spectral density)
and the empirical distribution.

Minimum distance estimators have been often suggested as robust alternatives
to maximum likelihood estimators, but in spite of the large body of work (for a
book-length presentation see [5]), the available results on the robustness of mini-
mum distance estimators cannot be applied in a straightforward way in this case; see
the discussion in [6]. Indeed results on existence and consistency of the MKE can be
found in [4, 6], but the asymptotic distribution of the MKE (see [6, Theorem 2.3]) is
not implied by the standard linear form θ̂ = θ + 1

n

∑n
i=1 I F(Xi ; θ̂ , μ) and this does

not allow to read the influence function (IF) and robustify the estimator using the
standard robustness theory by imposing a bounded influence function as in [21]. Note
however that some results in this direction for the location-scale model are available
in [3]. Therefore, in spite of the appealing properties of the Wasserstein distance,
no general theory is yet available to claim robustness properties for the MKE. In
fact, [54] provides a critical discussion on the properties of the MKE. It indicates its
limits and shows its inferiority in terms of mean squared error with respect to min-
imum distance estimators based on the Kolmogorov distance. Moreover, it stresses
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its lack of robustness, especially in the presence of data with heavy tail distributions.
Section19.4 will shed more light on possible robustifications of the estimator.

Finally, let us mention a different way to achieve robustness as suggested by [49].
If we rewrite the 1-Wasserstein distance (19.3) using its dual formulation, i.e.

W1(μ, νθ ) = sup
φ∈BL

Eμ[φ(X)] − Eνθ
[φ(Y )], (19.4)

where BL is the unit ball of the Lipschitz functions space, we can estimate robustly
both expectations on the right-hand side of (19.4) by using the Median-of-Means
estimator introduced by [8, 33] and this will lead to a robust estimator for θ .

19.3.2 Saturation in Linear Models

A complementary perspective between robustness and sparsity in linear models is
provided by the so-called saturated regression model (or mean-shift outlier model):

yi =
d∑

j=1

xi jβ j + γi + εi , i = 1, . . . , n,

where d < n and the γ ′
i s are nonzero when observation i is an outlier.

Minimizing

n∑
i=1

(yi −
d∑

j=1

xi jβ j − γi )
2 +

n∑
i=1

pλ(|γi |) (19.5)

over the β ′
j s and the γ ′

i s for a given penalty pλ(·) with a generic penalty parameter
λ, we obtain an estimator of the β ′

j s matching the one obtained by minimizing

n∑
i=1

ρ(yi −
d∑

j=1

xi jβ j )

for some loss function ρ(·). This is an M-estimator for the β ′
j s with score function

ψ(·), the derivative of ρ(·). For instance, the Huber estimator is obtained by using
the Lasso penalty.

This idea goes back to [45] (in the case of theHuber estimator), [13] (in the context
of approximatemessage passing), [35, 46, 47]. It has been also successfully exploited
by David Hendry and coauthors in the econometrics literature (Autometrics) as a
variable selection tool and more recently as an outlier detection technique. A very
recent development includes a double (L0 − L2) penalization method by [48].



450 E. Ronchetti

In the past few years, this approach has become a popular tool in the machine
learning community to enforce robustness in available algorithms.We believe that its
connection to M-estimation opens the door to a beneficial cross-fertilization between
the sparse modeling literature and robust statistics. In the next section, we outline
this approach in optimal transport and its link with classical methods developed in
the robustness literature.

19.4 Robust Optimal Transport

In this section, we present an interesting approach by [38], which establishes the link
between penalization and basic ideas of the classical theory of robust statistics in the
spirit of Sect. 19.3.2.

To achieve outlier robustness in MKE, [38] introduced two formulations of a
modified optimal transport, which lead to robust versions of MKE. The first one is
based on the minimization

ROBOT(μ, νθ ) := inf
θ∈�,μ+s∈P(X)

KP(μ + s, νθ ) + λ||s||T V , (19.6)

where “ROBOT” stands for robust optimal transport,P(X) is the set of all probability
measures defined onX (a convex subset ofR) with finite secondmoment, and || · ||T V

is the total variation norm defined as ||μ||T V = ∫
1
2 |μ(dx)|. One can notice the same

structure between (19.5) and (19.6).
The second formulation is based on the minimization of (19.2) with a modified

cost function

KPλ(μ, νθ ) = inf
γ∈�(μ,νθ )

∫
X×X

cλ(x, y)dγ (x, y), (19.7)

where cλ(x, y) = min{c(x, y), 2λ} is a truncated cost function and λ a generic trun-
cation parameter.

The paper [38] proved two key results. The first one states that (19.6) and (19.7)
lead to the same optimal transport, linking penalization with a basic idea in the theory
of robust statistics, namely, the truncation of score functions. This corresponds to
the result presented in Sect. 19.3.2. The second one states that

ROBOT(μ̃, νθ )

≤ min{KP(μ, νθ ) + λε||μ − μc||T V ,KP(μ̃, νθ ), λ||μ̃ − νθ ||T V }, (19.8)

where μ̃ = (1 − ε)μ + εμc for some ε ∈ [0, 1).
Since the total variation norm is bounded by 1, (19.8) implies that ROBOT(μ̃, νθ )

is bounded for any measure μ̃ in a ε-neighborhood ofμ defined by the total variation
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norm. In practice this means that ROBOT(μ̃, νθ ) cannot go to infinity in the presence
of a small amount of contamination in the data.

A final remark is made about the truncated cost function cλ(x, y). If we use the
familiar quadratic function for the original cost function, the modified cost function
cλ corresponds in the language of robust statistics to the so-called “hard rejection,”
which is known to provide robustness with an important loss of efficiency at the
model; see [21]. Therefore, a Huber loss function could be more appropriate than cλ

because it would lead to a small loss of efficiency at the model. However, no proof
of robustness in the spirit of (19.8) is available in this case.

19.5 Related Techniques and Outlook

There are several recent papers where optimal transport is used to define a new notion
of multivariate ranks. This leads to new rank estimators, which are known to have
robustness properties and can be viewed as robust alternatives to classical estimators
in a variety of models; see [9, 12, 15, 17–19].

Robust optimal transport methods in generative models were discussed in [2] and
various related robustness issues in [7, 32].

In spite of the promising recent work discussed in this overview, it is fair to say
that a full-fledged optimality theory as in [21, 25] is still lacking for robust optimal
transport. For instance, concepts of local stability such as the influence function and
of global reliability such as the breakdown point still have to be developed.Moreover,
minimax estimators obtainedwith respect to neighborhoods of themodel distribution
as in [25] would be important steps toward such a theory.

Acknowledgements The author would like to thank Davide La Vecchia and Yannis Yatracos
for useful discussions and references on this topic, and the editorial team for many remarks that
improved the clarity of the paper.
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Chapter 20
Estimating Finite-Time Ruin Probability
of Surplus with Long Memory
via Malliavin Calculus

Shota Nakamura and Yasutaka Shimizu

Abstract Weconsider a surplus process of a drifted fractionalBrownianmotionwith
the Hurst index H > 1/2, which appears as a functional limit of drifted compound
Poisson risk models with correlated claims. This is a kind of representation of a
surplus with a long memory. Our interest is to construct confidence intervals of the
ruin probability of the surplus when the volatility parameter is unknown. We obtain
the derivative of the ruin probability w.r.t. the volatility parameter via the Malliavin
calculus, and apply the delta method to identify the asymptotic distribution of an
estimated ruin probability.

Keywords Finite-time ruin probability · Long memory surplus · Fractional
Brownian motion · Malliavin calculus
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20.1 Introduction

In the classical ruin theory initiated by [9], the insurance surplus is described by a
drifted compound Poisson process such as

Xt = x + ct −
Nt∑

i=1

Ui , (20.1)

where x, c > 0, N is a Poisson process, and Ui ’s are IID random variables with
mean μ, representing claim sizes. One of the directions to extend the model is the
following drifted Lévy surplus (Rt )0<t<T :
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Rt = u + dt + σWt − Vt , (20.2)

where u, d, σ > 0,Wt is a standard Brownian motion and Vt is a Lévy subordinator.
The model (20.2) is a natural extension of (20.1) and considers claim sizes with
stationary independent increment. Statistical inference for ruin probability based
on the model (20.2) has been studied by many authors; see, e.g., [1, 14] and the
references therein. However, such an independent assumption is often unrealistic in
a certain insurance contract because large claims can be successive once a large claim
has occurred. Therefore, it would be better to assume that (Ui )i∈N are correlated. The
paper [10, Theorem 3] assumed that there exists a constant D ∈ (0, 1) and a slowly
varying function L: L(t x) ∼ L(x) as x → ∞ for any t > 0, such that

E[UiUi+k] ∼ k−DL(k), k → ∞, (20.3)

under which the process (Ui )i∈N has a long memory, i.e.,
∑∞

k=1 Cov(U1,Uk) = ∞.
Let us consider a sequence of such a long memory surplus processes Xn =(

Xn
t

)
t∈[0,T ] indexed by n = 1, 2, . . . :

Xn
t = xn + cnt −

Nn
t∑

i=0

Ui ,

where xn, cn are positive sequences,
(
Nn
t

)
t∈[0,T ] is a Poisson processwith the intensity

n and Ui ’s are correlated random variables (see (20.3)). Then, according to [10,
Theorem 3], there exists a norming sequence (ηn)n∈N and some constants u and θ

such that the process Xn/ηn converges weakly in a functional space D[0,∞), a space
of càdlàg functions with the Skorokhood topology, i.e.,

Xn
t

ηn

d−→ u + θ t − WH
t in D[0,∞) (n → ∞),

where WH is a fractional Brownian motion with the Hurst parameter H ∈ ( 12 , 1). In
such a way, the surplus driven by a fractional Brownian motion naturally appears as
a limit of a Poissonian model with a long memory.

Some earlierworksmodel a surplus by fractionalBrownianmotions. The paper [8]
discussed the surplus of insurance and reinsurance companies as the two-dimensional
fractional Brownian motion and derived asymptotic of the ruin probability when the
initial capital tends to infinity. The paper [3] considered a drifted mixed fractional
Brownian motion as a surplus model and estimated the ruin probability with an
unknown drift parameter. In this paper, we are interested in the following drifted
fractional Brownian motion as a surplus model:

Xt = u + σθ t − σWH
t , (20.4)
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where θ > 0 and H ∈ ( 12 , 1) are known parameters and σ > 0 is an unknown param-
eter. Since our model is a normalized limit of a classical type surplus with a known
premium rate cn , the drift will be known under a suitable scaling. Therefore we
assume θ is known although the scaling parameter σ is unknown.

Our interest is to estimate the finite-time ruin probability, which is defined as, for
any T ∈ (0,∞),

�σ(u, T ) := P

(
inf

0≤t≤T
Xt < 0

)
.

The rest of the paper is organized as follows. In Sect. 20.2, we prepare some
notation and give a brief review of the Malliavin calculus. In Sect. 20.3, we provide
a result on estimating the volatility parameter σ and the ruin probability by the delta
method. In this procedure, the partial derivative ∂

∂σ
�σ (u, T ) is required to obtain

confidence intervals of the ruin probability, so we derive its explicit form using the
integration by parts formula in the Malliavin calculus in Sect. 20.4.

20.2 Preliminaries

20.2.1 Notation

We use the following notations.

• A � B means that there exists a universal constant c > 0 such that A ≤ cB.
• The partial derivative of the function f at the point x ∈ R

n with respect to the i th
variable is denoted by ∂i f (x).

• Let A
||·||

be the closure of the subset A of the norm space (B, || · ||).
• Let ⊗ be the tensor product of the norm space.
• Let Hn(·) denote the n-th order Hermite polynomial, which is defined by

Hn(x) = (−1)n

n! e
x2

2
dn

dxn

(
e− x2

2

)
(n ≥ 1).

• Let D(A) be the Skorokhod space on the set A ⊂ R+.
• Let C∞

↑ (Rn) be the set of all infinitely continuously differentiable functions f :
R

n → R such that f and all of its partial derivatives are of polynomial growth.
• Let C∞

b (Rn) be the set of all infinitely continuously differentiable functions f :
R

n → R such that f and all of its partial derivatives are bounded.
• For any p > 1 and f, g ∈ L p(R) we define the convolution f ∗ g as

f ∗ g(x) :=
∫

R

f (x − y)g(y)dy.
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• Let �(·) and B(·, ·) be the gamma function and the beta function, i.e.,

�(x) =
∫ ∞

0
t x−1etdt (x > 0)

B(x, y) =
∫ 1

0
t x−1 (1 − t)y−1 dt (x, y > 0).

• We denote the left and right-sided fractional integrals I α
a± f (·) and derivatives

Dα
a± f (·) by

I α
a+ f (x) = 1

�(α)

∫ x

a
(x − y)α−1 f (y)dy,

I α
b− f (x) = 1

�(α)

∫ b

x
(y − x)α−1 f (y)dy,

Dα
a+g(x) = 1

�(1 − α)

(
g(x)

(x − a)α
+ α

∫ x

a

g(x) − g(y)

(x − y)α+1
dy

)
,

Dα
b−g(x) = 1

�(1 − α)

(
g(x)

(b − x)α
+ α

∫ b

x

g(x) − g(y)

(y − x)α+1
dy

)
,

for any 0 < α < 1, x ∈ (a, b), f ∈ L1(a, b) and g ∈ I α
a+(L p)

(
resp. g ∈ I α

b−(L p)
)

where p > 1 (see [13] for details).

20.2.2 Malliavin Calculus

We briefly introduce the Malliavin calculus; see, e.g., [12, Chaps. 1 and 5]. In the
sequel, we denote by G a real separable Hilbert space.

20.2.2.1 Malliavin Calculus on a Real Separable Hilbert Space

Definition 20.1 We say that a stochastic process (Wg)g∈G is an isonormal Gaussian
process associatedwith the real separableHilbert spaceG ifW is a centeredGaussian
family of random variables such that E[WhWg] = 〈h, g〉G for any h, g ∈ G.

In the following, we assume that the isonormal Gaussian W (·) is defined on the
complete probability space (	,G,P), where G is the σ -algebra generated by W
throughout in this paper.

Definition 20.2 Let G be the σ -algebra generated by an isonormal Gaussian W . If
a random variable F : 	 → R satisfies

F = f (W (g1), . . . ,W (gn)) ( f ∈ C∞
↑ (Rn), g1, . . . , gn ∈ G), (20.5)
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F is called a smooth random variable, and the set of all such random variables is
denoted by SG .

Definition 20.3 The derivative of a smooth random variable F of the form (20.5) is
the G-valued random variable given by

DGF =
n∑

i=1

∂i f (W (g1), . . . ,W (gn)) gi .

Since the operator DG defined in Definition 20.3 is a closable operator, we can

extend DG as a closed operator on D
1,p
G := SG

‖·‖1,p
where the seminorm ‖ · ‖1,p on

SG is defined by

‖F‖1,p := (E[F p] + E
[‖DGF‖p

G

]) 1
p ,

for any p ≥ 1.
The above definitions can be extended to Hilbert-valued random variables. Con-

sider the family SG(V ) of V -valued smooth random variables of the form

F =
n∑

i=1

Fivi (vi ∈ V, Fi ∈ SG).

Define DGF :=∑n
i=1 D

GFi ⊗ v j . Then DG is a closable operator from SG(V ) into
L p(	;G ⊗ V ) for any p ≥ 1. Therefore, DG is a closed operator on D

1,p
G (V ) =

SG(V )
‖·‖1,p,V

for the seminorm ‖ · ‖1,p, defined by

‖F‖1,p,V := (E [‖F‖p
V

]+ E
[‖DGF‖p

G⊗V

]) 1
p ,

on SG(V ). In particular, we define D1,∞
G and DG

1,∞(V ) by

D
1,∞
G :=

∞⋂

p=1

D
1,p
G , DG

1,∞(V ) :=
∞⋂

p=1

DG
1,p(V ).

The following proposition is the chain rule for DG .

Proposition 20.1 Suppose that F = (F1, . . . , Fm) is a random vector whose com-
ponents belong to DG

1,∞. Let f ∈ C∞
p (Rm). Then f (F) ∈ DG

1,∞, and

DG( f (F)) =
m∑

i=1

∂i f (F)DGFi .

Next, we consider the divergence operator.



460 S. Nakamura and Y. Shimizu

Definition 20.4 The divergence operator δG is an unbounded operator on L2(	;G)

with values in L2(	) such that:

(1) The domain of δG , denoted by Domδ, is the set of stochastic processes u ∈
L2(	;G) such that

∣∣E
[〈
DGF, u·

〉
G

]∣∣ ≤ c(u)‖F‖L2(	),

for any F ∈ D
1,2
G , where c(u) is some constant depending on u.

(2) If u· belongs to DomδG , then δG(u) is characterized by

E
[
FδG(u)

] = E
[〈
DGF, u

〉]
,

for any F ∈ D
1,2
G .

The following proposition allows us to factor out a scalar random variable in a
divergence.

Proposition 20.2 Let F ∈ D
1,2
G and u ∈ Dom δG such that Fu ∈ L2(	;G). Then

Fu ∈ Dom δG and

δG(Fu) = FδG(u) − 〈DGF, u
〉
G .

20.2.2.2 Malliavin Calculus for the Fractional Brownian Motion

We introduce the fractional Brownian motion and the Hilbert space associated with
the fractional Brownian motion.

Definition 20.5 AventedGaussian process (WH
t )t≥0 is called a fractional Brownian

motion of the Hurst index H ∈ (0, 1) if it has the covariance function

RH (t, s) := E[WH
t W H

s ] = 1

2
(s2H + t2H − |t − s|2H ).

In this paper, we will only use the fractional Brownian motions with the Hurst
index H > 1

2 .We denote byE the set of step functions on [0, T]. LetH be the Hilbert
space defined as the closure of E with respect to the scalar product

〈
1[0,t], 1[0,s]

〉
H = RH (t, s),

which yields for any φ,ψ ∈ H ,

〈ψ, φ〉H := H(2H − 1)
∫ T

0

∫ T

0
|r − u|2H−2ψ(r)φ(u)drdu.



20 Estimating Ruin Probability via Malliavin Calculus 461

It is easy to see that the covariance of the fractional Brownian motion can be written
as

〈
1[0,t], 1[0,s]

〉
H = H(2H − 1)

∫ t

0

∫ s

0
|r − u|2H−2dudr

= RH (t, s).

Therefore, the fractional Brownian motionWH can be expressed asWH
t = W (1[0,t])

for the isonormal Gaussian W associated with the Hilbert space H . Consider the
square integrable kernel

KH (t, s) := cHs
1
2 −H

∫ t

s
(u − s)H− 3

2 uH− 1
2 du,

where cH =
[

H(2H−1)
B(2−2H,H− 1

2 )

] 1
2
and t > s. Define the isometric function K ∗

H : E →
L2(0, T ) by

(K ∗
Hφ)(s) :=

∫ T

s
φ(t)

∂KH

∂t
(t, s)dt.

Then, the operator K ∗
H is an isometry between E and L2(0, T ) that can be extended

to the Hilbert spaceH . The operator K ∗
H can be expressed in terms of the fractional

integrals, i.e.,

(K ∗
Hφ)(s) = cH�(H − 1

2
)s

1
2 −H (I

H− 1
2

T− ·H− 1
2 φ(·))(s).

Finally, we consider the Malliavin calculus on H . For the sake of simplicity, we
will use the notation DWH

,D
1,p
W H , and δW

H
as the derivative operator, the domain

of the derivative, and the divergence operator associated with the Hilbert space H ,
respectively. In the sequel, we present two results on the derivative operator for
fractional Brownian motion (for the proof, see [5, Lemma 3.2]).

Proposition 20.3 For any F ∈ D
1,2
WH

= D
1,2
L2(0,T )

K ∗
H D

WH F = DL2([0,T ])F.

Proposition 20.4 sup
0≤t≤T

(WH
t − θ t) belongs to D

1,2
WH

and DWH
t sup

0≤t≤T
(WH

t − θ t) =
1[0,τ ](t), for any t ∈ [0, T ], where τ is the point where the supremum is attained.
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20.3 Statistical Problems

Suppose that we have the past surplus data in [0, T0]-interval at discrete time points
[kT0]
n (k = 0, 1, . . . , n). Our goal is to estimate the finite-time ruin probability for

each T ∈ (0,∞] from the discrete data (X [kT0 ]
n

)k∈{0,1,...,n}.

20.3.1 Estimation of σ

Fix 0 < H < 3
4 . We use the results in [4] to construct the estimator for the true value

of σ by using a power variation of the order p > 0. We define the power variation
of (Xt ) (see [4]), as follows:

V n
p (X)t :=

[nt]∑

i=1

∣∣∣X i
n
− X i−1

n

∣∣∣
p
.

Let

σ̂t,n :=
(

V n
p (X)t

cpn1−pH t

) 1
p

(20.6)

be an estimator σ̂t,n of σ0, where cp = 2
p
2 �
(

p+1
2

)

�( 1
2 )

. We obtain the asymptotic normality

of σ̂t,n as in the following theorem.

Theorem 20.1 Let p > 1 and 0 < H < 3
4 . Then

√
n
((

σ̂t,n
)p − σ p

) L−→ v1σ p

cp
Wt (n → ∞),

in law in the space D[0, T0] equipped with the Skorohod topology, where

v21 = μp + 2
∑

j≥1

(
γp (ρH ( j)) − γp(0)

)
,

μp = 2p

(
1√
π

�

(
p + 1

2

)
− 1

π
�

(
p + 1

2

)2
)

,

γp(x) = (1 − x2)
p+1
2 2p

∞∑

k=0

(2x)2k

π(2k)!�
(
p + 1

2
+ k

)2

,

ρH (n) = 1

2

(
(n + 1)2H + (n − 1)2H − 2n2H

)
,
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and (Wt )t∈[0,T0] is a Brownian motion independent of the fractional Brownian motion
W H

t .

Proof It is sufficient to prove that

n− 1
2 +pH V n

p (u + σθT0) → 0 (n → ∞), (20.7)

in probability, uniformly on [0, T0], by [4, p. 272]. Thus, we show that

n− 1
2 +pH V n

p (u + σθT0) = n− 1
2 +pH

[nT0]∑

i=1

∣∣∣∣u + σθ
i

n
−
(
u + σθ

i − 1

n

)∣∣∣∣
p

→ 0 a.s.,

as n → ∞. We note that (1 − H)p > 1
2 , hence, we have

n− 1
2 +pH

[nT0]∑

i=1

∣∣∣∣u + σθ
i

n
−
(
u + σθ

i − 1

n

)∣∣∣∣
p

= n− 1
2 +pH

[nT0]∑

i=1

∣∣∣∣σθ(
i

n
− i − 1

n
)

∣∣∣∣
p

= n− 1
2 +pH |σθ |p [nT0]

np

→ 0,

as n → ∞ and this proof is completed. �

20.3.2 Simulation-Based Inference for �σ(u, T )

Using the estimator σ̂t,n of σ0 given in (20.6), we can estimate �σ(u, T ) by

�̂t,n(u, T ) := �σ̂t,n (u, T ),

and, with the aid of the delta method (c.f., [15, p. 374]), it follows that

√
n
(
�̂t,n(u, T ) − �(u, T )

)→ ∂σ�σ0(u, T )
1

p

v1σ0

cp
Wt (n → ∞),

in law in the space D[0, T0] equipped with the Skorohod topology, if �σ(u, T ) is
differentiable at the true volatility parameter σ . This leads us anα-confidence interval
for �σ(u, T ) such as

Iα(�) :=
[
�̂T0,n(u, T ) ± zα/2√

n
|∂σ�σ̂T0 ,n (u, T )|

√
T0v1σ̂T0,n

pcp

]
, (20.8)
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where [a ± b] stands for the interval [a − b, a + b] for a, b > 0, and zα stands for
the upper α-quantile of the standard normal distribution.

Now, the problem is to compute the following quantity:

∂k
σ�σ (u, T ) =

(
∂

∂σ

)k

P

(
inf

0≤t≤T
Xσ
t < 0

)
, k = 0, 1. (20.9)

• k = 0: Since �σ(u, T ) does not have a closed expression, we will compute it by
the Monte Carlo simulation for a given value of σ , that is, we generate sample
paths of Xt = u + σθ t − σWH

t for given σ , say
(
X (k)

)
k=1,2,...,m independent each

other, to obtain

�̃(u, T ) = 1

m

m∑

k=1

1{τ (k)≤T }, τ (k) := inf{t > 0|X (k)
t < 0},

which goes to the true �σ(u, T ) almost surely as m → ∞ by the strong law of
large numbers. However, the event of ruin in [0, T ] is often very rare and most
of the indicators of summand will be zero, which may lead to an underestimation
of the true value �σ(u, T ). Changing the measure P into a suitable one, more
efficient sampling procedure (importance sampling) will be proposed.

• k = 1: Computing ∂σ�σ (u, T ) is not straightforward because the integrand of the
righthand side of (20.9) is not differentiable in σ , and we cannot differentiate it
under the expectation sign E. Moreover, computing numerically, e.g., for small
ε > 0,

�σ+ε(u, T ) − �σ(u, T )

ε
or

�σ+ε(u, T ) − �σ−ε(u, T )

2ε
, (20.10)

we have to compute �σ+ε and �σ−ε(u, T ) separately, which usually takes much
time. In addition, since the accuracy of the calculation in (20.10) depends on ε,
the problem of determining the value of ε also arises. Importance sampling can
give the fast convergence with the variance reduction.

20.4 Differentiability of �σ

Fix H > 1
2 . We discuss the differentiability of �σ(u, T ) w.r.t. σ after the ideas of

[7, 16].

Theorem 20.2 The finite-time ruin probability �σ(u, T ) is differentiable w.r.t. σ

and
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∂σ�σ (u, T ) = E

⎡

⎢⎣1[σ sup
0≤t≤T

(WH
t −θ t)<u]δW

H

⎛

⎜⎝
uA(·) sup

0≤t≤T
(WH

t − θ t)

σ
∫ T
0 ψ(Yt )dt

⎞

⎟⎠

⎤

⎥⎦ , (20.11)

where

uA(t) := dH

cH�(H − 1
2 )

t
1
2−H D

H− 1
2

T−
[
(·)2H−1D

H− 1
2

0+
(
(·) 1

2−Hψ(Y·)
)

(·)
]

(t) (20.12)

= dH

cH B
(
H − 1

2 , 3
2 − H

)
�
(
3
2 − H

) t
1
2−H

×
{

1

(T − t)H− 1
2

[
ψ(Yt ) +

(
H − 1

2

)
t2H−1

∫ t

0

t
1
2−Hψ(Yt ) − s

1
2−Hψ(Ys)

(t − s)H+ 1
2

ds

]

+
(
H − 1

2

)∫ T

t

{ψ(Yt ) +
(
H − 1

2

)
t2H−1 ∫ t

0
t
1
2−H

ψ(Yt )−u
1
2−H

ψ(Yu)

(t−u)
H+ 1

2
du

(s − t)H+ 1
2

−
ψ(Ys) +

(
H − 1

2

)
s2H−1 ∫ s

0
s
1
2−H

ψ(Ys )−u
1
2−H

ψ(Yu)

(s−u)
H+ 1

2
du

(s − t)H+ 1
2

}
ds

}
,

Yt := 8

(
4
∫ T

0

∫ T

0

|WH
s − θs − (WH

u − θu)|r
|s − u|m+2 dsdu

) 1
r m + 2

m
t
m
r , (20.13)

dH =
(
cH�

(
H − 1

2

))−1
, (20.14)

for any even integers r, m such that r H > m + 2 and ψ ∈ C∞
b (R+) satisfies

ψ(x) =
{
1 (x ≤ u

2σ )

0 (x > u
σ
).

In the proof of (20.11), it suffices to show that

∂σE

[
φ(σ sup

0≤t≤T
(WH

t − θ t))

]

= E

⎡

⎢⎣φ

(
σ sup
0≤t≤T

(WH
t − θ t)

)
δW

H

⎛

⎜⎝
uA(·) sup

0≤t≤T
(WH

t − θ t)

σ
∫ T
0 ψ(Yt )dt

⎞

⎟⎠

⎤

⎥⎦ (20.15)

holds for a sufficiently smooth function φ : R+ → R instead of 1(−∞,0)(·) in (20.11)
from the density argument. In the following, we impose the following conditions
on φ:



466 S. Nakamura and Y. Shimizu

(1) φ ∈ C∞
b (R+).

(2) The function φ is constant on [0, u].
We prove the following properties of Yt .

Lemma 20.1 For Yt defined in (20.13), the following (i)–(iv) hold.

(i) |WH
t − θ t | ≤ Yt (t ∈ [0, T ]).

(ii) ψ(Yt ) ∈ D
1,∞
WH (t ∈ [0, T ]).

(iii) There exists a function α : R → R+, with limq→∞ α(q) = ∞, such that, for
any q ≥ 1, one has: ∀t ∈ [0, T ] E[Yq

t ] ≤ Cqtα(q).

(iv)
(∫ T

0 ψ(Yt )dt
)−1 ∈ L p(	) (p ≥ 1).

Proof We can show (i) and (ii) similarly as in [7, proof of Lemma 2.1]. Note (iii)
follows immediately from (ii). To prove (iv), it is sufficient to show that

P

(∫ T

0
ψ(Yt )dt ≤ ε

)
= O(ε p) (ε ↓ 0)

holds from [12, p. 133]. Since

∫ T

0
ψ(Yt )dt =

∫ ε
σ

0
ψ(Yt )dt +

∫ T

ε
σ

ψ(Yt )dt ≥ ε

σ

holds on
[

u
2σ > Y ε

σ

]
, we obtain

[
σ

∫ T

0
ψ(Yt )dt ≤ ε

]
⊂
[ u

2σ
≤ Y ε

σ

]
.

Therefore, for any q ≥ 1 such that α(q) ≥ p we have

P

(∫ T

0
σψ(Yt )dt < ε

)
≤ P

( u

2σ
≤ Y ε

σ

)

≤
( u

2σ

)−q
E

[
Y q

ε
σ

]

≤
( u

2σ

)−q ( ε

σ

)α(q)

= O(ε p).

�

Proposition 20.5 For Yt defined in (20.13), we have

(
DWH

s φ

(
σ sup
0≤t≤T

(WH
t − θ t)

))
ψ(Yt ) = φ′(σ sup

0≤t≤T
(WH

t − θ t))σψ(Yt ).
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Proof The proof is analogous to the proof of [7]. Let

A := [0 ≤ σ sup
0≤t≤T

(WH
t − θ t) ≤ u].

Since φ′(σ sup
0≤t≤T

(WH
t − θ t)) = 0 on A from the assumption of the function φ, we

get

(
DWH

s φ

(
σ sup
0≤t≤T

(WH
t − θ t)

))
ψ(Yt ) = φ′

(
σ sup
0≤t≤T

(WH
t − θ t)

)
σ1[s≤τ ]ψ(Yt )

= 0

= φ′
(

σ sup
0≤t≤T

(WH
t − θ t)

)
σψ(Yt )

on A. On the other hand, on Ac = [σ sup
0≤t≤T

(WH
t − θ t) > u], for any ω ∈ Ac ∩

[φ(Yt ) �= 0] we have

σ sup
0≤t≤T

(WH
t (ω) − θ t) > u, Yt (ω) <

u

σ
.

Therefore, we get

Yt (ω) <
u

σ
< sup

0≤t≤T
(WH

t (ω) − θ t)) = WH
τ (ω) − θτ(ω) ≤ Yτ (ω),

so we have t ≤ τ since Yt is an non-decreasing process. �

In the sequel, we consider the smoothness of uA in the Malliavin sense. Let K̃ ∗
H

be the restriction of K ∗
H to L2(0, T ), and let K̃ ∗,ad j

H be the adjoint operator of K̃ ∗
H in

L2(0, T ). Then, by [16], we have

(
K̃ ∗,ad j

H

)−1
(ψ(Y·)(t)

= dH t
H− 1

2 D
H− 1

2
0+ t

1
2 −Hψ(Yt )

= dH
�( 32 − H)

(
t
1
2 −Hψ(Yt ) −

(
H − 1

2

)
t H− 1

2

∫ t

0

t
1
2 −Hψ(Yt ) − s

1
2 −Hψ(Ys)

(t − s)H+ 1
2

ds

)
,

and
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K̃ ∗−1
H (u·)(t)

= 1

cH�
(
H − 1

2

) t
1
2 −H D

H− 1
2

T−
(
(·)H− 1

2 u(·)
)

(t)

= 1

cH B
(
H − 1

2 , 3
2 − H

)
{

ut

(T − t)H− 1
2

+
(
H − 1

2

)
t
1
2 −H

∫ T

t

sH− 1
2 us − t H− 1

2 ut

(s − t)H+ 1
2

ds

}
,

where dH = (cH�
(
H − 1

2

))−1
. So we get uA = K̃ ∗−1

H ◦ K̃ ∗,ad j−1
H (ψ(Y·)). Since

K̃ ∗
H : L2(0, T ) → K ∗

H [L2(0, T )] is the isometric isomorphism, the following lemma
holds.

Lemma 20.2 For any stochastic process ut , if

u· ∈ D
1,p
K ∗

H [L2(0,T )](K
∗
H [L2(0, T )]),

then

K̃ ∗−1
H (u·) ∈ D

1,p
W H (H).

Proof Whenu· = Fv holds for F ∈ D
1,p
K ∗

H [L2(0,T )] and v ∈ K ∗
H [L2(0, T )] ⊂ L2(0, T ),

we have

DWH
(K̃ ∗−1

H (u·)) = DWH
(F K̃ ∗−1

H (v·))

= DWH
F ⊗ K̃ ∗−1

H (v)

= K̃ ∗−1
H (DK ∗

H [L2(0,T )]F) ⊗ K̃ ∗−1
H (v)

= K̃ ∗−1
H ⊗ K̃ ∗−1

H (DK ∗
H [L2(0,T )]F ⊗ v)

= K̃ ∗−1
H ⊗ K̃ ∗−1

H (DK ∗
H [L2(0,T )]u·).

Whenu ∈ D
1,p
K ∗

H [L2(0,T )](K
∗
H [L2(0, T )]), there existsun ∈ SK ∗

H [L2(0,T )](K ∗
H [L2(0, T )])

such that un → u in D
1,p
K ∗

H [L2(0,T )](K
∗
H [L2(0, T )]), and we have

K̃ ∗−1
H un → K̃ ∗−1

H u in L p(	;H),

since K̃ ∗
H is the isometric isomorphism. Thus we have

∥∥∥DWH
(K̃ ∗−1

H (un)) − K̃ ∗−1
H ⊗ K̃ ∗−1

H (DW (u)

∥∥∥
L p(	;H⊗H)

=
∥∥∥K̃ ∗−1

H ⊗ K̃ ∗−1
H (DK ∗

H [L2(0,T )]un − DK ∗
H [L2(0,T )]u)

∥∥∥
L p(	;H⊗H)

≤
∥∥∥DK ∗

H [L2(0,T )]un − DK ∗
H [L2(0,T )]u

∥∥∥
L p(	;L2(0,T )⊗L2(0,T ))

→ 0,
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and so we obtain K ∗−1
H (u·) ∈ D

1,p
W H (H). �

Proposition 20.6 For uA given in (20.12),

u A ∈ D
1,∞
WH (H).

Proof It suffices to show that
∫ t
0

t
1
2 −H

ψ(Yt )−s
1
2 −H

ψ(Ys)

(t−s)H+ 1
2

ds ∈ D
1,∞
WH

(
K̃ ∗

H

(
L2(0, T )

))

from Lemma 20.2 and ψ(Yt ) ∈ D
1,p
W H (H). Let

an :=
n−1∑

i=0

t
1
2 −Hψ(Yt ) − ( t2 + i t

2n

) 1
2 −H

ψ(Y t
2

i t
2n

)

(
t − ( t2 + i t

2n

))H+ 1
2

t

2n
,

bn :=
n−1∑

i=0

t
1
2 −Hψ(Yt ) − ( i t2n

) 1
2 −H

ψ(Y it
2n

)

(
t − ( i t2n

))H+ 1
2

t

2n
.

We can show

an →
∫ t

t
2

t
1
2 −Hψ(Yt ) − s

1
2 −Hψ(Ys)

(t − s)H+ 1
2

ds a.s.,

bn →
∫ t

2

0

t
1
2 −Hψ(Yt ) − s

1
2 −Hψ(Ys)

(t − s)H+ 1
2

ds a.s.,

as n → ∞. We first show that

an
L p(	)−−−→

∫ t

t
2

t
1
2 −Hψ(Yt ) − s

1
2 −Hψ(Ys)

(t − s)H+ 1
2

ds (n → ∞),

and that DWH an converges in L p(	). Defining

AT := 8

(
4
∫ T

0

∫ T

0

|WH
s − θs − (WH

u − θu)|r
|s − u|m+2

dsdu

) 1
r m + 2

m
,

we have

|an| ≤
∣∣∣∣∣∣

n−1∑

i=0

t
1
2 −Hψ(Yt ) − ( t2 + i t

2n

) 1
2 −H

ψ(Yt )
(
t − ( t2 + i t

2n

))H+ 1
2

t

2n

∣∣∣∣∣∣

+
∣∣∣∣∣∣

n−1∑

i=0

(
t
2 + i t

2n

) 1
2 −H

ψ(Yt ) − ( t2 + i t
2n

) 1
2 −H

ψ(Y t
2 + i t

2n
)

(
t − ( t2 + i t

2n

))H+ 1
2

t

2n

∣∣∣∣∣∣
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�

∣∣∣∣∣∣

n−1∑

i=0

(
t
2

)− 1
2 −H

ψ(Yt )
(
t − ( t2 + i t

2n

))H− 1
2

t

2n

∣∣∣∣∣∣
+
∣∣∣∣∣∣

n−1∑

i=0

(
t
2

) m
r − 1

2 −H
AT

(
t − ( t2 + i t

2n

))H− 1
2

t

2n

∣∣∣∣∣∣

�

∣∣∣∣∣∣

n−1∑

i=0

ψ(Yt )
(
t − ( t2 + i t

2n

))H− 1
2

t

2n

∣∣∣∣∣∣
+
∣∣∣∣∣∣

n−1∑

i=0

AT
(
t − ( t2 + i t

2n

))H− 1
2

t

2n

∣∣∣∣∣∣

=: f 1n (t) + f 2n (t).

Note that
(
f 1n (t)

)p L1(	)−−−→
(∫ t

t
2

ψ(Yt )

(t−s)H− 1
2
ds

)p

. Indeed, we have

∥∥∥∥∥ f
1
n (t) −

∫ t

t
2

ψ(Yt )

(t − s)H− 1
2

ds

∥∥∥∥∥
L p(	)

≤ ‖ψ(Yt )‖L p(	)

∣∣∣∣∣∣

n−1∑

i=0

1
(
t − ( t2 + i t

2n

))H− 1
2

t

2n
−
∫ t

t
2

1

(t − s)H− 1
2

ds

∣∣∣∣∣∣

→ 0 (n → ∞).

Similarly,
(
f 2n
)p L1(	)−−−→

(∫ t
t
2

AT

(t−s)H− 1
2
ds

)p

, so we obtain

an
L p(	)−−−→

∫ t

t
2

t
1
2 −Hψ(Yt ) − s

1
2 −Hψ(Ys)

(t − s)H+ 1
2

ds (n → ∞). (20.16)

Also, since

DWH
an =

n−1∑

i=0

DWH
AT

(
t
1
2 + m

r −Hψ ′(Yt ) − ( t2 + i t
2n

) 1
2 + m

r −H
ψ ′(Y t

2 + i t
2n

)
)

(
t − ( t2 + i t

2n

))H+ 1
2

t

2n
,

we have

∣∣∣DWH
an
∣∣∣ �

∣∣∣∣∣∣

n−1∑

i=0

DWH
AT
(
t
2

) m
r −H− 1

2 ψ ′(Yt )
(
t − ( t2 + i t

2n

))H− 1
2

∣∣∣∣∣∣
+
∣∣∣∣∣∣

n−1∑

i=0

DWH
AT
(
t
2

)2 m
r −H− 1

2 AT

(t − s)H− 1
2

∣∣∣∣∣∣

�

∣∣∣∣∣∣

n−1∑

i=0

DWH
ATψ ′(Yt )

(
t − ( t2 + i t

2n

))H− 1
2

∣∣∣∣∣∣
+
∣∣∣∣∣

n−1∑

i=0

AT DWH
AT

(t − s)H− 1
2

∣∣∣∣∣ .
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Thus we get

DWH
an

L p(	)−−−→
∫ t

t
2

DWH
AT

(
t
m
r + 1

2 −Hψ ′(Yt ) − s
m
r + 1

2 −Hψ ′(Ys)
)

(t − s)H+ 1
2

ds (n → ∞)

in the same way as in (20.16). Second, we show that

bn
L p(	)−−−→

∫ t
2

0

t
1
2 −Hψ(Yt ) − s

1
2 −Hψ(Ys)

(t − s)H+ 1
2

ds (n → ∞),

and that DWH bn converges in L p(	). Now, we have

|bn| ≤
(
2

t

)H+ 1
2

{
n−1∑

i=0

∣∣∣∣∣t
1
2 −Hψ(Yt ) −

(
i t

2n

) 1
2 −H

ψ(Y it
2n

)

∣∣∣∣∣

}
t

2n

�
(
2

t

)H+ 1
2

{
t
1
2 −Hψ(Yt ) +

n∑

i=0

(
i t

2n

) m
r + 1

2 −H

AT
t

2n

}

=:
(
2

t

)H+ 1
2

f 3n (t), (20.17)

where
∥∥∥∥∥ f

3
n (t) −

∫ t
2

0

(
t
1
2 −Hψ(Yt ) − s

1
2 −H AT

)
ds

∥∥∥∥∥
L p(	)

� ‖AT ‖L p(	)

∣∣∣∣∣

n−1∑

i=0

(
i t

2n

) m
r + 1

2 −H t

2n
−
∫ t

2

0
s

m
r + 1

2 −Hds

∣∣∣∣∣

→ 0 (n → ∞).

Thus we have bn
L p(	)−−−→ ∫ t

2
0

t
1
2 −H

ψ(Yt )−s
1
2 −H

ψ(Ys)

(t−s)H+ 1
2

ds. From (20.17), we obtain

DWH
bn

L p(	)−−−→
∫ t

2

0

DWH
AT

(
t
m
r + 1

2 −Hψ ′(Yt ) − s
m
r + 1

2 −Hψ ′(Ys)
)

(t − s)H+ 1
2

ds (n → ∞)

in the same way as for an . Therefore, since DWH is a closable operator, we have

∫ t

0

t
1
2 −Hψ(Yt ) − s

1
2 −Hψ(Ys)

(t − s)H+ 1
2

ds ∈ D
1,∞
WH .

�
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Proof of Theorem 20.2 From Proposition 20.1 we have

φ′(σ sup
0≤t≤T

(WH
t − θ t))σ

〈
1[0,τ ], uA

〉
H

= φ′(σ sup
0≤t≤T

(WH
t − θ t))σ

〈
K̃ ∗

H (1[0,τ ]), K̃
∗,ad j−1
H (ψ(Y·))

〉

L2(0,T )

= φ′(σ sup
0≤t≤T

(WH
t − θ t))σ

〈
1[0,τ ], ψ(Y·)

〉
L2(0,T )

= φ′(σ sup
0≤t≤T

(WH
t − θ t))σ

∫ T

0
ψ(Yt )dt.

Thus, since

∂σE

[
φ

(
σ sup

0≤t≤T
(WH

t − θ t)

)]

= E

[
φ′(σ sup

0≤t≤T
(WH

t − θ t)) sup
0≤t≤T

(WH
t − θ t)

]

= E

[
φ′(σ sup

0≤t≤T
(WH

t − θ t)) sup
0≤t≤T

(WH
t − θ t)

∫ T
0 ψ(Yt )dt
∫ T
0 ψ(Yt )dt

]

= E

[
φ′(σ sup

0≤t≤T
(WH

t − θ t))σ sup
0≤t≤T

(WH
t − θ t)

〈
1[0,τ ], uA(·)

〉
H

σ
∫ T
0 ψ(Yt )dt

]

= E

⎡

⎢⎣

〈
DWH

(φ(σ sup
0≤t≤T

(WH
t − θ t))),

uA(·) sup
0≤t≤T

(WH
t − θ t)

σ
∫ T
0 ψ(Yt )dt

〉

H

⎤

⎥⎦ ,

and
uA(·) sup

0≤t≤T
(WH

t −θ t)

σ
∫ T
0 ψ(Yt )dt

∈ DomδW
H
, we get (20.15). Next we show that (20.11) holds.

Defining gn : R+ → R by

gn := 1[u+ 1
n ,u+n+ 1

n ] ∗ ρ 1
n

(n ≥ 2, ρ : molifier),

then we have gn ∈ C∞
b (R) and gn(x) = 0 on [0, u]. Also we get gn → 1(u,∞) as

n → ∞ and

fn(σ ) := E[gn(σ sup
0≤t≤T

(WH
t − θ t))]

→ E[1(u,∞)(σ sup
0≤t≤T

(WH
t − θ t))]

= E[1[u,∞)(σ sup
0≤t≤T

(WH
t − θ t))].
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Therefore, for any compact set K ⊂ R+ and V ∗
T := sup

0≤t≤T
(WH

t − θ t), we have

∣∣∣∣∣∣∣
sup
σ∈K

⎛

⎜⎝∂σ fn(σ ) − E

⎡

⎢⎣1[u,∞)(σ sup
0≤t≤T

(WH
t − θ t))δW

H

⎛

⎜⎝
uA(·) sup

0≤t≤T
(WH

t − θ t)

∫ T
0 σψ(Yt )dt

⎞

⎟⎠

⎤

⎥⎦

⎞

⎟⎠

∣∣∣∣∣∣∣

≤ 1

inf
σ∈Kσ

∥∥∥∥∥∥∥
δW

H

⎛

⎜⎝
uA(·) sup

0≤t≤T
(WH

t − θ t)

∫ T
0 σψ(Yt )dt

⎞

⎟⎠

∥∥∥∥∥∥∥
L2(	)

sup
σ∈K

E

[(
gn(σV

∗
T ) − 1[u,∞)(σV

∗
T )
)2] 1

2

� sup
σ∈K

{
P

(
σV ∗

T ∈ [u, u + 2

n
]
)

+ P
(
σV ∗

T ∈ [u + n,∞)
)}

=: sup
σ∈K

{
h1n(σ ) + h2n(σ )

}
. (20.18)

In considering the compact uniform convergence of h1n(σ ) and h2n(σ ) w.r.t. σ , it
suffices to show only the continuity of h1n(σ ) and h2n(σ )w.r.t. σ by the Dini theorem.

The problem here is that when σ changes, the interval
[
u
σ
,
u+ 2

n
σ

]
also moves, so the

continuity of the measure P cannot be exploited. Therefore, for any (σm) ⊂ K such
that σm ↓ σ(m → ∞), we shall show that for any m ∈ N there exists a fixed point

that in
[

u
σm

,
u+ 2

n
σm

]
. For (σm) ∈ K such that σm ↓ σ(m → ∞), take ε > 0 satisfying

ε <
2
nσ

2u− 2
n
and N ∈ N large enough to satisfy

∣∣∣ 1
σN

− 1
σ

∣∣∣ < ε. Then,

u

σN
< u

(
1

σ
+ ε

)
<

(
u + 2

n

)(
1

σ
− ε

)
<

u + 2
n

σN
,

since
(
2u + 2

n

)
ε < 2

nσ
and
∣∣∣ 1
σN

− 1
σ

∣∣∣ < ε. Therefore,we can show that h1n(σ ) is right-

continuous w.r.t. σ because we can take a := u
(
1
σ

+ ε
)
independent of N ∈ N such

that u
σN

< a <
u+ 2

n
σN

. In the same way, we can show the case of σm ↑ σ(m → ∞),
so we obtain the continuity of h1n(σ ) and h2n(σ ). Thus, (20.18) converges to 0 as
n → ∞, and this proof is complete. �
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Chapter 21
Complex-Valued Time Series Models
and Their Relations to Directional
Statistics

Takayuki Shiohama

Abstract The fluctuation of stationary time series often shows a certain periodic
behavior and this pattern is usually summarized via a spectral density. Since spectral
density is a periodic function, it can be modeled by using a circular distribution
function. In this paper, several time series models are studied in relation to a circular
distribution. As an introduction, we illustrate how to model bivariate time series data
using complex-valued time series in the context of circular distribution functions.
These models are extended to have a skewed spectrum by incorporating a sine-
skewing transformation. Two parameter estimation methods are considered and their
asymptotic properties are investigated. These theoretical results are verified via a
MonteCarlo simulation.Real data analyses illustrate the applicability of the proposed
model.

Keywords Circular statistics · Maximum likelihood estimation · Sine-skewed
model · Spectral density · Time series analysis

21.1 Introduction

The spectral density of a time series is a periodic function, and it is closely related to
the circular density function used in the field of directional statistics. The relation-
ship between time series spectra and circular density was investigated by [24]. The
well-known circular distributions include a wrapped Cauchy, cardioid, and various
extended families of circular distributions [12, 13] are related to the spectral density
of AR(1), MA(1), AR(2), and ARMA(1, 1) models. The circular distributions have
been characterized by the location and concentration parameters (μ, ρ), whereas the
spectral densities of real-valued AR(1) andMA(1) models have peaks at frequencies
of 0 or π , which indicates the location is restricted at μ = 0 or μ = π . A phase
rotation or shift in spectral densities can be realized by multiplying eiμ to the AR or
MA coefficients of time series models; the resulting spectral density function has a
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mode or a location at μ. This fact has motivated us to consider complex-valued time
series modeling.

In directional statistics, angular-valued time series models have been widely pro-
posed for various geometricmanifold structures such as a circle, torus, or hyper-torus.
Some circular time series models have been considered in the literature; for example,
the circular Markov models [2] and the higher-order circular Markov model [19].
In addition, these studies showed the relationship between a circular time series
analysis and the time series spectral analysis. Unlike [24] who revisited the circular
distributions from the point of view of time series spectral analysis, we focus on
complex-valued time series modeling. That is, the observed process is on the com-
plex plane when considering a stationary time series with complex-valued AR and/or
MA coefficients.

Complex-valued random processes are conventional approaches for modeling
phenomena of fluctuations, including waves in oceanography, electro-magnetics,
and communications [21, 22]. A complex-valued random variable could be replaced
by a pair of real random variables, and these real and imaginary components are
assumed to be independent and identically distributed (i.i.d.). This assumption is
said to be statistically proper. Early works of the proper complex statistical modeling
include [8, Sect. 6.5] and [16, 18]. The maximum likelihood estimation of the proper
complex-valued AR(1) was investigated by [14]. In contrast to proper complex-
valued processes, the theory of improper complex-valued processes differs from
the techniques of proper cases, see [20–22] for more details. Several approaches
for modeling complex-valued random walk include [9, 11]. Recently, [7] studied
complex-valued time series using a spectral density characterized by a generalized
von Mises distribution.

We introduce several bivariate models using complex-valued AR models in the
stationary time series; for example, bivariate random walks whose increments are
complex-valued AR or MA models. We consider an exponential model because its
spectral density function has a form of von Mises density on the circle. Further,
we consider the complex-valued process whose spectral density is given by a sine-
skewed circular density function [1].

The spectral analysis of a bivariate time series is performed to investigate the cross-
spectrum and the spectra of both time series, which are summarized by a spectral
densitymatrix. The asymmetric characteristics of the bivariate time series are summa-
rized in this function because the cross-spectrum function involves complex-values;
therefore, quantities such as the phase spectrum, gain spectrum, and coherency
can provide useful frequency domain information about the data. In contrast, our
complex-valued time series models do not have these cross-spectrum functions, and
the asymmetric characteristics of the bivariate time series are summarized by a single
asymmetric spectral density. Thus, we hope that this asymmetric spectrum provides
useful information on the asymmetric characteristics of the bivariate process.

The complex-valued time series models introduced in this paper are applied to the
two real datasets. Therefore, methods of moments estimator and Whittle estimator
are considered, together with their asymptotic properties. Note that some time series
models do not necessarily impose an identifiability assumption (see [17]).
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The rest of this paper is organized as follows. Section21.2 introduces some basic
definitions for the complex-valued time series model. The sine-skewed extension
of the complex-valued wrapped Cauchy and von Mises processes is also given.
The methods for estimating unknown parameters are investigated in Sect. 21.3.
Section21.4 provides someMonte Carlo simulations. Section21.5 analyzes two real
datasets. Finally, this paper is summarized in Sect. 21.6.

21.2 Complex-Valued Time Series

A complex-valued random variable Z is a map from some probability space into the
field of complex numbers whose real and imaginary parts are random variables. For
complex-valued random variables Z(= X + iY ), Z1 and Z2, we define

E(Z) = E(X) + i E(Y ), Var(Z) = E |Z − E(Z)|2, (21.1)

Cov(Z1, Z2) = E(Z1 − E(Z1))(Z2 − E(Z2)).

The following properties are useful for evaluating autocovariance functions:

Cov(αZ1, βZ2) = αβCov(Z1, Z2), Cov(Z1, Z2) = Cov(Z2, Z1).

A complex-valued time series is a sequence of complex-valued random variables
Zt . For a stationary complex-valued process {Zt }, the autocovariance function is
defined by γZ (h) = Cov(Zt+h, Zt ). Recall that the autocovariance function is a con-
jugate symmetric such that γZ (h) = γZ (−h). The autocorrelation function is defined
by ρZ (h) = γZ (h)/γZ (0), and the sample autocovariance function for a zero mean
complex-valued process is defined by

γ̂Z (h) = 1

n − |h|
n−|h|∑

t=1

Zt+h Zt .

The sample autocorrelation function is defined by ρ̂Z (h) = γ̂Z (h)/γ̂Z (0).
For the zero mean random variables X and Y with correlation coefficient ρXY , the

variance given in (21.1) becomes

Var(Z) = E |Z |2 = E[(X + iY )(X − iY )] = σ 2
X + σ 2

Y ,

where σ 2
X and σ 2

Y are the variance of X and Y , respectively. Since this Var(Z) does
not carry information about the correlation coefficient between the pairs (X,Y ), we
need another complex second-order moment as

Ṽar(Z) = E(Z)2 = E[(X + iY )2] = σ 2
X − σ 2

Y + 2iρXYσXσY ,
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which is referred to as the complementary variance or pseudo-variance (see [18, 21]).
If σ 2

X = σ 2
Y and ρXY = 0, the complementary variance becomes zero. This is the so-

called proper or circular case; all others are called improper cases. For the improper
case, the complementary autocovariance function is defined by γ̃Z (h) = E(Zt+h Zt ).
In order to investigate the complementary autocovariance structure of the process,
we need an augmented process as Zt = (Zt , Zt )

T , which is beyond the focus of this
paper. Hereafter, we restrict our attention to the proper complex-valued process {Zt }
and assume that the process has zero mean.

21.2.1 Wrapped Cauchy Process

We consider the complex-valued AR(1) process {Zt } defined by

Zt = ρe−iμZt−1 + εt , (21.2)

where {εt } is a complex-valuedwhite noisewith zeromean, variance E |εt |2 = σ 2
ε and

E(ε2t ) = 0. The parameters ρ and μ are the amplitude and argument of a complex-
valued AR coefficient of order 1 that satisfy 0 ≤ ρ < 1 and μ ∈ [0, 2π). Recall that
forμ = 0 andμ = π , the AR coefficient corresponds to ρ and−ρ, respectively. The
process {Zt } has the spectral density

fZ (λ) = σ 2
ε

2π

1

1 + ρ2 − 2ρ cos(λ − μ)
. (21.3)

In directional statistics, the spectral density (21.3) corresponds to the wrapped
Cauchy distribution when σ 2

ε = 1 − ρ2 due to the normalization
∫ π

−π
fZ (λ)dλ = 1.

21.2.2 von Mises Process

The paper [5] considered the spectrum of the time series has the form

f (λ) = σ 2
ε

2π
exp {θ cos(λ)} .

This spectrum can be archived by taking the characteristic polynomial function of
the MA process as α(z) = eθ z . Then by setting θ = κeiμ, the corresponding spectral
density becomes

f (λ) = σ 2
ε

2π
exp {2κ cos(λ − μ)} ,
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which is the density function of the von Mises distribution on the circle when σ 2
ε =

1/I0(2κ), where Ip(·) is the p-th order modified Bessel function of the first kind.

Since the Taylor expansion for the eθ z is given by eθ z = ∑∞
j=0

(θ z) j

j ! , this indicates
that the von Mises process corresponds to the MA(∞) process that is satisfied with
|θ | < 1 for an invertibility condition. Hence, the von Mises process is given by

Zt =
∞∑

j=0

(
κeiμ

) j

j ! εt− j , (21.4)

where {εt } is a complex-valued white noise with zero mean, variance E |εt |2 = σ 2
ε

and E(ε2t ) = 0. The model parameters are κ ∈ (0, 1] and μ ∈ [0, 2π).

21.2.3 Sine-Skewed Process

The following filtered time series spectrum representation is useful to define a sine-
skewed process. For this, we need to define a transfer function. The transfer function
with a filter coefficient ψ j is given by

ψ(λ) =
∞∑

j=−∞
ψ j e

i jλ.

Let Zt be a stationary time series with spectral density fZ (λ) and let
∑∞

j=−∞ |ψ j | <

∞. Then Yt = ∑∞
j=−∞ ψ j Zt− j has a spectral density fY (λ) defined as

fY (λ) = |ψ(λ)|2 fZ (λ).

Consequently, setting the transfer function as

ψ(λ) =√
1 + η sin(λ − μ) =

∞∑

j=−∞
ψ j e

i j (λ−μ),

then, the time series {Yt } defined by Yt = ∑
j ψ j Zt− j has the spectral density

fY (λ) = (1 + η sin(λ − μ)) fZ (λ),

which corresponds to the sine-skewed wrapped Cauchy (SSWC) and sine-skewed
von Mises (SSVM) density functions when fZ (λ − μ) is the wrapped Cauchy
and von Mises process, respectively. Denote ϕ(SSWC) = (μ, ρ, η)T and ϕ(SSVM) =
(μ, κ, η)T by the parameter vectors of the SSWC and SSVM processes, respectively.
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The following theorem states the autocorrelation structures for the SSWC pro-
cesses.

Theorem 21.1 We assume that Var(εt ) = 1 − ρ2 in model (21.2) and ψ(λ) =√
1 + η sin(λ − μ). Then, the SSWC process {Yt } has the following autocorrelation

function:

γ
(SSWC)
Y (h) = ρ

(SSWC)
h eihμ

(SSWC)
h , (21.5)

where ρ
(SSWC)
h =

√
α2
h(ϕ

(SSWC)) + β2
h (ϕ

(SSWC)) and μ
(SSWC)
h = arg(αh(ϕ

(SSWC)) +
iβh(ϕ

(SSWC))) with

αh(ϕ
(SSWC)) = cos(hμ)ρ|h| − sin(hμ)

η

2
(ρ|h−1| − ρ|h+1|),

βh(ϕ
(SSWC)) = sin(hμ)ρ|h| + cos(hμ)

η

2
(ρ|h−1| − ρ|h+1|).

When h = 1, it reduces to

γ
(SSWC)
Y (1) =

√
ρ2 + η2(1 − ρ2)2/4{cosμ1(ϕ

(SSWC)) + i sinμ1(ϕ
(SSWC))}.

The following theorem is the autocorrelation structures for the SSVM processes.

Theorem 21.2 We assume that Var(εt ) = 1/I0(2κ) in model (21.4) and ψ(λ) =√
1 + η sin(λ − μ). Then, the SSVM process {Yt } has the following autocorrelation

function:

γ
(SSVM)
Y (h) = ρ

(SSVM)
h eihμ

(SSVM)
h , (21.6)

where ρ
(SSVM)
h =

√
α2
h(ϕ

(SSVM)) + β2
h (ϕ

(SSVM)) and μh(ϕ) = arg(αh(ϕ
(SSVM)) +

iβh(ϕ
(SSVM))) with

αh(ϕ
(SSVM)) = Ih(2κ)

I0(2κ)

{
cos(hμ) − hη

2κ
sin(hμ)

}
,

βh(ϕ
(SSVM)) = Ih(2κ)

I0(2κ)

{
sin(hμ) + hη

2κ
cos(hμ)

}
.

When h = 1, it reduces to

γ
(SSVM)
Y (1) = I1(2κ)

2κ I0(2κ)

√
4κ2 + η2{cosμ1(ϕ

(SSVM)) + i sinμ1(ϕ
(SSVM))}.

For the proof of Theorems 21.1 and 21.2, we refer the reader to [1, 17] for detailed
derivations of the trigonometric moments of the sine-skewed circular distributions.
Notice that the Fourier coefficients of the series expansion of the circular density
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Fig. 21.1 Sample paths of the SSWC process (left panel) and the SSVM process (right panel). The
skewness parameters are η = 0.5 and η = −0.5 for the SSWC and SSVM processes, respectively

function corresponds to the autocorrelation function of a time series with spectral
density fY (λ).

For the SSVMprocess, the absolute value of the autocorrelation at lag 1 is bounded
above by |γ (SSVM)

Y (1)| ≤ |I1(2)/I0(2)| ≈ 0.6978 when η = 0 due to the restriction
|κeiμ| < 1. This fact shows the limitation to fit a time series whose autocorrelation
at lag 1 has strong dependent structures.

The simulated sample paths for the SSWC and SSVM processes are plotted in
Fig. 21.1. For the SSWCmodels, we chooseμ = π/6, ρ = 0.8, and η = 0.5, and we
setμ = −π/6, κ = 0.6, and η = 0.5 for the SSVM process. A cyclical pattern in the
wrapped Cauchy process was apparent; however, it was not confirmed for the von
Mises processes. Thiswas verified via the fact that the autocorrelation at lag 1 became
γ
(SSWC)
Y (1) = 0.648 + 0.478i and γ

(SSVM)
Y (1) = 0.337 − 0.441i , as apparent by the

opposite sign for the imaginary part in the autocorrelation function.
The autocorrelation functions for the SSWC and SSVM processes are plotted in

the complex plane in Fig. 21.2. The parameters are the same as those used in Fig. 21.1.
We see the conjugate symmetric property of the complex-valued autocorrelation
functions because the plots show symmetry with respect to the x axis. The wrapped
Cauchy process shows strong persistence with fluctuational patterns.

The spectral density functions of the SSWC and SSVM processes are plotted in
Fig. 21.3. The parameters μ, ρ, and κ are the same as those used in Figs. 21.1 and
21.2; the skewness parameters are changed based on η = 0, 0.5, 0.9 for the SSWC
and η = 0,−0.5,−0.9 for the SSVM processes. As indicated by [1], the degree of
skewnessweakenedwhen the concentration of the spectral distribution became large.
This is the case for the SSWC process with ρ = 0.8, whereas for the SSVM cases,
the larger η, the more apparent is the effect of the skewness as the location shifts to
the left.

Finally, we plot the log periodogramof the simulated time serieswith its smoothed
estimators. The true log-spectral density with the non-skewed spectral density is
shown in Fig. 21.4. The length of the simulated sample path is 500, and we can see
that the estimated smoothed periodograms are well-fitted to the true sine-skewed
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(right panel). The parameters are the same as those used in Fig. 21.1. The numbers in the plot
represent the lag indicators
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SSVM process

spectral density; the symmetric spectral density fails to capture the structure of the
skewness of the spectra.

21.2.4 Random Walks

The stochastic processes proposed so far can be extended to the random walk. We
consider the complex-valued random walk plus complex-valued noise as follows:

Xt = Xt−1 + Zt ,

where {Zt } represents the complex-valued processes defined so far. Thesemodels can
provide useful information of the trajectories of the object in geographical science
when considering the bivariate data as the complex plane. The applications can be
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Fig. 21.5 Sample paths of the bivariate randomwalkwith complex-valuedwrappedCauchy process
with μ = π/6 (left panel) and μ = −π/6 (right panel)

found in various fields in natural science, environmental science, ecology, and so
forth.

Figure21.5 plots the trajectories of the complex-valued random walks with
wrapped Cauchy noise with ρ = 0.8, μ = π/6, and μ = −π/6. The initial value
of the process is set as X0 = (0, 0)T . These figures show that the parameter μ con-
trols the direction of themovement; forμ > 0, the sample trajectories have clockwise
rotations and vice versa.

This specification indicates that the complex-valued local linear trend model is
given as

Xt = mt + ε1,t , mt+1 = mt + vt + ε2,t , vt+1 = ρ−iμvt + ε3,t ,

where εi,t , i = 1, 2, 3, represent the complex-valued random variables whose real
and imaginary variables follow a normal distribution. Recall that the process {vt }
follows a complex-valuedwrappedCauchyprocess; thismodel canprovide smoothed
trends in the two-dimensional plane.
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21.3 Parameter Estimation

We discusses parameter estimation for the sine-skewed processes in the complex
plane.We have three parameters ϕ(SSWC) = (μ, ρ, η)T to be estimated for the SSWC
process and ϕ(SSVM) = (μ, κ, η)T for the SSVM process. For the sake of simplicity,
we denote the parameters of the model by ϕ = (μ, β, η)T , where β denotes the
concentration of the spectral density function. The corresponding parameter space
is defined by

� = {
(μ, β, η)

∣∣ 0 ≤ μ < 2π, 0 < β < 1, −1 ≤ η ≤ 1
}
. (21.7)

Estimation methods considered here are a method of moments and the Whittle like-
lihood method, instead of a conditional least squares type method. We recommend
these methods in practice, because of the computational efficacy.

Let the parameter spaces of ϕ(SSWC) and ϕ(SSVM) be

�WC = {
(μ, ρ, η)

∣∣ 0 ≤ μ < 2π, 0 < ρ < 1, −1 ≤ η ≤ 1
}

and

�VM = {
(μ, κ, η)

∣∣0 ≤ μ < 2π, 0 < κ ≤ 1,−1 ≤ η ≤ 1
}
,

respectively. The following lemma states the identifiability of the sine-skewed spec-
tral densities.

Lemma 21.1 ([17, Propositions 1 and 2])

(a) The family { fSSWC(λ|μ, ρ, η)| (μ, ρ, η)T ∈ �WC} of the SSWC spectral density
function is identifiable.

(b) The family { fSSVM(λ|μ, κ, η)| (μ, κ, η)T ∈ �VM} of the SSVM spectral density
function is identifiable.

It can be shown that the SSWC and SSVM processes are expressed by the linear
process using complex-valued coefficient α j (ϕ) ∈ C, j = 1, . . . ,∞. Hence, we
consider a scalar complex-valued process {Zt ; t ∈ Z} given by

Zt =
∞∑

j=0

α j (ϕ)εt− j ,

where {εt } is an i.i.d. complex-valued Gaussian process with zero mean, variance
E(εtεt ) = σ 2

ε , and complementary variance E(ε2t ) = 0. The last condition of zero
complementary variance indicates that the process is proper. The proper assump-
tion indicates that the white noise process εt = ut + ivt satisfies σ 2

u = σ 2
v and

Cov(ut , vt ) = 0. We call the process defined above a proper complex-valued Gaus-
sian process. Recall that if the process is proper, complementary autocovariance
function satisfies γ̃Z (h) = E[Zt+h Zt ] = 0 for all h ∈ Z.
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21.3.1 Method of Moments Estimation

The sample autocorrelation function should bematched to the theoretical one because
we can evaluate the theoretical autocorrelation function of the sine-skewed process;
this provides the method of moments (MM) estimator. For the SSWC process, the
estimating function is given by

n∑

i=3

g(SSWC)(Zi ,ϕ) =
⎛

⎝

√
ρ2 + η2(1 − ρ2)2/4 · cos(μ1(ϕ)) − Re(γ̂Z (1))√
ρ2 + η2(1 − ρ2)2/4 · sin(μ1(ϕ)) − Im(γ̂Z (1))√
ρ4 + η2(ρ − ρ3)2/4 · cos(μ2(ϕ)) − Re(γ̂Z (2))

⎞

⎠ = 0.

The third equation above can be replaced by

√
ρ4 + η2(ρ − ρ3)2/4 · sin(μ2(ϕ)) − Im(γ̂Z (2)) = 0.

Then the MM estimator ϕ̂
(MM) is given by the solution of the equations

n∑

i=3

g(SSWC)(Zi , ϕ̂
(MM)

) = 0.

Let ϕ0 be the solution of

E
[
g(SSWC)(Z;ϕ0)

] = 0,

where the expectation is taken under the true joint distribution of Z = (Z1, Z2, Z3)
T .

A similar estimating function is constructed for the SSVM process as

n∑

i=3

g(SSVM)(Zi , ϕ) =
⎛

⎜⎝
I1(2κ)/(2κ I0(2κ))

√
4κ2 + η2 · cos(μ1(ϕ)) − Re(γ̂Z (1))

I1(2κ)/(2κ I0(2κ))
√
4κ2 + η2 · sin(μ1(ϕ)) − Im(γ̂Z (1))

I2(2κ)/(κ I0(2κ))
√

κ2 + η2 · cos(μ2(ϕ)) − Re(γ̂Z (2))

⎞

⎟⎠ = 0.

The third equation above can be replaced by

I2(2κ)/(κ I0(2κ))
√

κ2 + η2 · sin(μ2(ϕ)) − Im(γ̂Z (2)) = 0.

We are ready to establish the asymptotic normality of the MM estimator with an
additional assumption stated below.

Assumption 21.1

(a) The process satisfies E |Zt |4 < ∞ and
∑∞

h=1 h|γZ (h)|2 < ∞.
(b) The parameter spaces �WC and �VM are compact and the true parameter vector

ϕ0 belongs to the interior of �WC or �VM.
(c) The autocovariance functions defined by (21.5) and (21.6) are twice continuously

differentiable and their absolute values are bounded by some constant for all ϕ.
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(d) E[supϕ∈� ‖g(Model)(Z ,ϕ)‖] < ∞ for Model ∈ {SSWC,SSVM}.
(e) The matrix A(ϕ0) = E

[
− ∂

∂ϕT g(Model)(Z,ϕ0)
]
is nonsingular.

Theorem 21.3 Suppose that Assumption 21.1 holds. Then, the following asymptotic
normality holds for the SSWC and SSVM processes:

√
n(ϕ̂

(MM) − ϕ0) →d N
(
0, A(ϕ0)

−1B(ϕ0)A(ϕ0)
−1
)
,

where

A(ϕ0) = E

[
− ∂

∂ϕT
g(Model)(Z,ϕ0)

]
,

B(ϕ0) = E
[
g(Model)(Z,ϕ0)g

(Model)(Z,ϕ0)
T
]
,

for Model ∈ {SSWC, SSV M}.
Proof Here we provide a sketch of the proof. The Taylor expansion of Gn(ϕ) =
1
n

∑n
i=1 g

(Model)(Zi ,ϕ) gives

0 = Gn(ϕ̂) = Gn(ϕ0) + G′
n(ϕ0)(ϕ̂ − ϕ0) + Rn, G′

n(ϕ0) = ∂

∂ϕT
Gn(ϕ)

∣∣∣∣
ϕ=ϕ0

.

By Assumptions 21.1(a, c), the absolute value of the second derivative of Gn(ϕ) is
bounded above. Hence, we can show that

√
n(ϕ̂ − ϕ0) = [−G′

n(ϕ0)
]−1 √

nGn(ϕ0) + √
nRn.

From the identifiability result given in Lemma 21.1, we observe that E[‖g(Z,ϕ)‖]
has a unique minimum at ϕ0. This together with Assumptions 21.1(b–d) implies the
consistency of the MM estimator, such that ϕ̂(MM) →p ϕ0. In addition, we observe
that, as n → ∞,

− G′
n(ϕ0) = 1

n

n∑

i=1

[
− ∂

∂ϕT
g(Zi ,ϕ0)

]
→p E

[
− ∂

∂ϕT
g(Z,ϕ0)

]
= A(ϕ0),

√
nG′

n(ϕ0) →d N (0, B(ϕ0)), B(ϕ0) = E
[
g(Z,ϕ0)g(Z,ϕ0)

T
]
,√

nRn →p 0.

Here the existence of the matrix B(ϕ0) follows from Assumption 21.1(a), which
together with Assumption 21.1(e) yields the asymptotic normality. �

The MM estimator is related to the Yule–Walker estimator in the AR models. We
consider the wrapped Cauchy (WC) process for simplicity. Multiplying Zt−1 from
both sides of (21.2) and taking the expectation, we get
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E(Zt Zt−1) = ρ−iμE(Zt−1Zt−1) + E(εt Zt−1) ⇐⇒ γZ (1) = ρ−iμγZ (0).

Then, ρ̂−iμ̂ = ρ̂Z (1). Rewriting the sample autocorrelation at lag 1 as ρ̂Z (1) = A +
Bi , the MM estimator for ρ and μ are expressed as

n∑

t=2

g(zt , η) =
⎛

⎝
ρ cosμ − Re

(∑n
t=2 Zt Zt−1∑n
t=1 Zt Zt

)

ρ sinμ − Im
(∑n

t=2 Zt Zt−1∑n
t=1 Zt Zt

)

⎞

⎠ =
(
0
0

)
.

The explicit expressions for the estimators are given by

μ̂
(MM)
WC = atan2(B, A), ρ̂

(MM)
WC = A

cos μ̂
(MM)
WC

= B

sin μ̂
(MM)
WC

.

Similarly, the MM estimator for the von Mises (VM) process is given by

μ̂
(MM)
VM = atan2(B, A),

I1(2κ̂
(MM)
VM )

I0(2κ̂
(MM)
VM )

= A

cos μ̂
(MM)
VM

= B

sin μ̂
(MM)
VM

.

Note that κ̂ (MM)
VM must be solved numerically.

21.3.2 Whittle Estimation

Wenow apply theWhittle likelihoodmethod to estimate the unknown parameter vec-
tor ϕ. Let Zn = (Z1, . . . , Zn)

T and its conjugate transpose be Z∗
n = (Z1, . . . , Zn).

Let the n × n Hermitian covariance matrix RZ be

RZ ( fϕ) = [γZ (k − j)] j,k=1,...,n,

whose ( j, k)-th element is

γZ ( j − k) = 1

2π

∫ π

−π

ei( j−k)λ fϕ(λ)dλ,

with γZ (k − j) = γZ ( j − k). The proper normal probability density function of the
joint complex-valued random variables is given by

p(z) = 1

πndetRZ ( fϕ)
exp

{−Z∗
nRZ ( fϕ)−1Zn

}
,

see, for example, [21, p. 39]. Then the log-likelihood function of the observed
sequence Zn becomes



488 T. Shiohama

�(ϕ) = − log detRZ ( fϕ) − Z∗
nRZ ( fϕ)−1Zn.

The periodogram of the complex-valued processes is defined by

In(Zt ; λ) = 1

2πn

∣∣∣∣∣

n∑

t=1

Zte
itλ

∣∣∣∣∣

2

.

By similar argument of [4, Sect. 10.8], we can see that

log detRZ ( fϕ) + Z∗
nRZ ( fϕ)−1Zn =

n∑

j=1

(
log fϕ(λ j ) + In(Zt ; λ j )

fϕ(λ j )

)
+ O(1).

Then, the Whittle estimator for the parameter vector ϕ is obtained by minimizing

D( fϕ, In) =
∫ π

−π

{
log fϕ(λ) + In(Zt ; λ)

fϕ(λ)

}
dλ,

i.e.,

ϕ̂
(W ) = argmin

ϕ∈�

D( fϕ, In),

where the parameter space � is given in (21.7). Let ϕ0 be the minimizer of the
function D( fϕ, f ) such that ϕ0 = argminϕ∈� D( fϕ, f ).

The Whittle estimator is asymptotically efficient under proper complex-valued
Gaussian assumptions because the function D( fϕ, In) is an approximation to the
proper complex-valued Gaussian likelihood function. In addition, the Whittle esti-
mator is a quasi-likelihood estimator for the case when the complex-valued error
terms are improper and we misspecify the underlying complex-valued density func-
tions or time series models.

The following assumption is required for the asymptotic results of the Whittle
estimator.

Assumption 21.2

(a) The spectral density fϕ(λ) and f −1
ϕ (λ) are continuous for ϕ and λ. In addition,

fϕ(λ) is twice differentiable with respect the ϕ and derivatives are continuous
with respect to λ ∈ [−π, π ] and ϕ.

(b) There exists constants M > 0 and m > such that for any λ ∈ [0, 2π),

sup
ϕ∈H

fϕ(λ) < M and inf
ϕ∈H fϕ(λ) > m.

(c) The matrix I(ϕ0) = 1
4π

∫ π

−π
∂
∂ϕ

log fϕ0(λ) ∂
∂ϕT log fϕ0(λ)dλ is nonsingular.

The following asymptotic normality holds for ϕ̂
(W ).
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Theorem 21.4 We assume that the process {Zt } represents a proper complex-valued
Gaussian stationary process and Assumptions 21.1(a, b) and 21.2 hold. In addition,
the true spectral density f is specified by fϕ0 . Then,

√
n(ϕ̂

(W ) − ϕ0) →d N
(
0, I−1(ϕ0)

)
,

where

I(ϕ0) = 1

4π

∫ π

−π

∂

∂ϕ
log fϕ0(λ)

∂

∂ϕT
log fϕ0(λ)dλ.

Proof From the Kullback–Leibler inequality and the identifiability lemma given by
Lemma21.1, D( fϕ, fϕ0) isminimized byϕ0. For theWhittle estimator ϕ̂(W ) such that
D( fϕ, fϕ0) ≤ D( fϕ, fϕ̂(W ) ) and Assumption 21.2(b), we observe D( fϕ, fϕ̂(W ) ) →
D( fϕ, fϕ0) and this implies ϕ̂

(W ) → ϕ0 in probability. From Assumption 21.2(a)
and f = fϕ0 , we have

∂

∂ϕ
D( fϕ, In)

∣∣∣∣
ϕ=ϕ̂

(W )

= 0

and

√
n(ϕ̂(W ) − ϕ0)

=
(

− ∂

∂ϕ∂ϕT
D( fϕ, In)

∣∣∣∣
ϕ=ϕ̃

)−1 √
n

(
∂

∂ϕ
D( fϕ, In)

∣∣∣∣
ϕ=ϕ0

− ∂

∂ϕ
D( fϕ, fϕ0 )

∣∣∣∣
ϕ=ϕ0

)
,

where ϕ̃ satisfies
∥∥ϕ̃ − ϕ0

∥∥ ≤
∥∥∥ϕ̂(W ) − ϕ0

∥∥∥. We have

√
n

∂

∂ϕ
D( fϕ, In)

∣∣∣∣
ϕ0

→d N (0, I(ϕ0)).

In addition, we have

− ∂

∂ϕ∂ϕT
D( fϕ, In)

∣∣∣∣
ϕ̃

→p
1

4π

∫ π

−π

( f (λ) − fϕ0(λ))
∂2

∂ϕ∂ϕT
fϕ0(λ)−1dλ + I(ϕ0),

where the first term vanishes from the corrected model assumption. Then we obtain
the desired result. �

The non-Gaussian extension of the process {Zt } is possible; for example, [6, 10,
23]. In such a case, it must be investigated the fourth-order cumulant spectra of the
complex-valued process {Zt }, and we leave this to future research.
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Table 21.1 Simulation results for the SSWC process. The true parameters were set at μ = π/6,
ρ = 0.8, and η = 0.5

MM Whittle

μ̂(MM) ρ̂(MM) η̂(MM) μ̂(W) ρ̂(W) η̂(W)

n = 250

Mean 0.5229 0.7957 0.4979 0.4985 0.7967 0.4909

RMSE 0.0444 0.0309 0.1019 0.0402 0.0149 0.0860

n = 500

Mean 0.5237 0.7984 0.5001 0.5125 0.7986 0.4931

RMSE 0.0316 0.0197 0.0699 0.0287 0.0102 0.0600

n = 1000

Mean 0.5238 0.7984 0.4980 0.5177 0.7994 0.4957

RMSE 0.0202 0.0137 0.0505 0.0183 0.0067 0.0437

21.4 Monte Carlo Simulations

We simulated the SSWC and SSVM processes with different sample size n =
250, 500, 1000. The model parameters were the same as those used in Sect. 21.2:
ϕSSWC = (μ, ρ, η)T = (π/6, 0.8, 0.5)T for the SSWC process and ϕSSVM =
(μ, κ, η)T = (−π/6, 0.6,−0.5)T for the SSVM process. The error {εt } was i.i.d.
complex-valued normal noise with zero mean and variance σ 2

ε = 1 − ρ2 for the
SSWC process and σ 2

ε = 1/I0(2κ) for the SSVM process. The bias and root mean
squared errors (RMSE) for the MM estimator ϕ̂

(MM) and the Whittle estimator ϕ̂
(W)

were calculated with 1,000 replicated time series. The results are summarized in
Tables21.1 and 21.2 for SSWC and SSVM processes, respectively.

Table 21.2 Simulation results for the SSVM process. The true parameters were set at μ = −π/6,
κ = 0.6, and η = −0.5

MM Whittle

μ̂(MM) κ̂ (MM) η̂(MM) μ̂(W) κ̂ (W) η̂(W)

n = 250

Mean −0.5447 0.6039 −0.4674 −0.5467 0.5844 −0.4668

RMSE 0.2883 0.0976 0.2815 0.2566 0.0886 0.2419

n = 500

Mean −0.5671 0.6044 −0.4449 −0.5523 0.5910 −0.4617

RMSE 0.2396 0.0730 0.2519 0.1994 0.0604 0.2018

n = 1000

Mean −0.5578 0.6025 −0.4544 −0.5552 0.5998 −0.4624

RMSE 0.1983 0.0545 0.2139 0.1610 0.0409 0.1695



21 Complex-Valued Time Series Models and Their Relations 491

eruptions
w

aiting

0 100 200

2

3

4

5

50

60

70

80

90

Fig. 21.6 Time series plots of the bivariate process of the Old Faithful geyser data

The following findings were made by the inspection of the tables. The RMSE
decreases with an increase in the sample size, and this indicates the consistency of
both estimators. The RMSE of the Whittle estimator is smaller than that of the MM
estimator for all cases. Further, this fact indicates the asymptotic efficiency of the
Whittle estimator. The bias and RMSE of the SSVM process are considerably higher
than those of the SSWC process because the autocorrelation at lag 1 of the SSWC
process is higher than that of the SSVM process; this results in smaller asymptotic
variances of the estimator.

21.5 Data Analysis

Two datasets were considered to demonstrate the applicability of the proposed
models, and the fitting performances were compared between models and estimation
methods.

21.5.1 Old Faithful Geyser Data

The first example was the well-known Old Faithful geyser data; this dataset was
considered by [3] and investigated byfitting hiddenMarkovmodels andfinitemixture
models by various researchers. The waiting time between eruptions and the eruption
duration for the Old Faithful geyser in Yellowstone National Park were measured,
and the sample size was set as n = 272. Figure21.6 shows a time series plot of the
bivariate process of the Old Faithful geyser data. The negative autocorrelations of
both series are confirmed and the scatterplots and transitions in the two-dimensional
plane are plotted in Fig. 21.7.
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Fig. 21.7 Scatterplot of the waiting time and eruptions (left) and its time paths (right)

Table 21.3 Estimated parameters for different estimation methods

Wrapped Cauchy process

μ̂ ρ̂ η̂ −L(ϕ̂) ρ1(ϕ̂) μ1(ϕ̂)

MM 3.1416 0.5450 0.1100 323.90 0.5463 −3.071

Whittle 3.1210 0.5439 0.1011 323.99 0.5450 −3.097

von Mises process

μ̂ κ̂ η̂ −L(ϕ̂) ρ1(ϕ̂) μ1(ϕ̂)

MM 2.7786 0.6536 0.6282 301.88 0.6044 −3.057

Whittle 2.7371 0.4986 0.5172 318.46 0.5017 −3.068

The data were transformed by standardization with mean 0 and variance 1, and by
taking these series as the complex plane such that zt = xt + iyt , where xt and yt were
the standardized waiting time and eruptions, respectively. Further, the process {zt }
was normalized via a transformation z̃t = zt/

√
γ̂z(0). We fitted the time series {z̃t }

using the SSWC and SSVM processes. The estimated parameters were summarized
in Table21.3. In Table21.3, the Whittle likelihood −L(ϕ̂) was shown to compare
the fitted performances among the models. According to Table21.3, we saw that the
μ was around π , and it indicated that the transition was in the opposite direction
from the observed point to the next. For the SSVM process, these characteristics
were captured by the skewing parameter η, which was considerably larger than that
of the SSWC process. The values of the autocorrelation at lag 1 calculated from the
estimated parameters were also shown in Table21.3, which indicated that the mean
locations of the frequency were almost the same among the models at −π and the
persistence of the dependencies varied from 0.5 to 0.6.

The periodogram with the estimated parametric spectral densities was plotted in
Fig. 21.8. The positively skewed structure of the periodogram was well captured by
fitting the SSVM process.

Finally, we fitted the VAR(p) for the model comparison. The selected lag of the
standardized time series was 1 for both AIC and BIC; the estimated model was
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Fig. 21.8 Periodogram together with estimated spectral density functions for Old Faithful geyser
dataset

(
Y1,t
Y2,t

)
=

(−0.5616 0.0246
−0.3143 −0.2670

)(
Y1,t−1

Y2,t−1

)
+
(

ε1,t
ε2,t

)
,

(
ε1,t
ε2,t

)
∼ N

((
0
0

)
,

(
0.713 0.607
0.607 0.684

))
.

Our proposed model has four parameters including the complex-valued white noise
variance, whereas the simplest VAR(1) model has seven parameters. The skewness
in the spectral density is attributed to the asymmetric effects of the cross-spectrum
of the observed time series; this was confirmed by the off-diagonal elements of the
VAR(1) coefficients.

21.5.2 Real Wage and Unemployment Rate in Canada

In the second example, the time series of the real wage and unemployment rate in
Canada was investigated. This dataset was illustrated by [15] by fitting the vector
error correction model. The datasets covered the period from the first quarter of
1980 to the fourth quarter of 2000, and the sample size was n = 84. From the time
series plot shown in the left panel of Fig. 21.9, we observed that the process was
nonstationary, and therefore, we detrended the data by taking the first difference of
the series. The trajectory of the normalized detrended series was plotted in the right
panel of Fig. 21.9, and it shows no clear patterns in the transition.
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Fig. 21.9 Scatterplots of the real wage and unemployment rate data (left) and its first difference
series (right)

Table 21.4 Estimated parameters for different estimation methods for the changes in real wage
and unemployment rate in Canada

Wrapped Cauchy process

μ̂ ρ̂ η̂ −L(ϕ̂) ρ1(ϕ̂) μ1(ϕ̂)

MM 0.3752 0.5422 −0.4521 91.60 0.5152 0.0890

Whittle 0.2541 0.4603 −0.4869 94.00 0.4723 −0.1408

von Mises process

μ̂ κ̂ η̂ −L(ϕ̂) ρ1(ϕ̂) μ1(ϕ̂)

MM 0.7085 0.5733 −0.8258 73.53 0.6112 0.2582

Whittle 0.5052 0.3387 −0.6982 91.56 0.4605 −0.2345

Estimated parameters are summarized in Table21.4. We observed that the SSWC
process has a better fitting performance than that of the SSVMprocess in terms of the
likelihood values. The fitted parameters forμ and λ are different between the models
such that the parameters more skewed to the left spectral densities are fitted using the
SSVM process. The fitted spectral densities with the periodogram were plotted in
Fig. 21.10, and it indicated that the proposed skewed model can adequately capture
the asymmetry of the data periodogram.

Finally, we fitted the VAR(p) for model comparison. The selected lag of the
standardized time series was 1 for both the AIC and the BIC. The estimated model
was given by

(
Y1,t
Y2,t

)
=

(
0.3653 0.1566
0.1535 0.5020

)(
Y1,t−1

Y2,t−1

)
+
(

ε1,t
ε2,t

)
,

(
ε1,t
ε2,t

)
∼ N

((
0
0

)
,

(
0.806 0.194
0.194 0.676

))
.

This result indicates that the source of the skewness in the spectral density is caused
by the different effects on the autocorrelations at lag 1 of the series such that the
larger autocorrelation in the unemployment series compared to the real wages yields
a negatively skewed spectrum.
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Fig. 21.10 Periodogram together with estimated spectral density functions for Canada data

21.6 Summary and Conclusions

We have considered the complex-valued time series models. The proposed models
included the complex-valued AR(1) and MA(∞) models whose spectral densities
corresponded to thewrappedCauchy and vonMises distributions on a circle. Further,
the SSWC and SSVM processes have been introduced, and two estimators (the MM
and Whittle estimators) have been discussed, together with their asymptotic distri-
butions. These estimation methods have been investigated via numerical simulations
and two real datasets.
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Chapter 22
Semiparametric Estimation of Optimal
Dividend Barrier for Spectrally Negative
Lévy Process

Yasutaka Shimizu and Hiroshi Shiraishi

Abstract We discuss a statistical estimation problem of an optimal dividend barrier
when the surplus process follows aLévy insurance risk process. The optimal dividend
barrier is defined as the level of the barrier that maximizes the expectation of the
present value of all dividend payments until ruin. In this paper, an estimator of the
expected present value of all dividend payments is defined based on “quasi-process”
in which sample paths are generated by shuffling increments of a sample path of
the Lévy insurance risk process. The consistency of the optimal dividend barrier
estimator is shown. Moreover, our approach is examined numerically in the case of
the compound Poisson risk model perturbed by diffusion.

22.1 Introduction

In risk theory, surplus process is a very important model for understanding how the
capital or surplus of an insurance company evolves over time. The classical model
for the surplus process is the so-called “Cramér–Lundberg insurance risk model”.
In this model, the insurance company collects premiums at a fixed rate c > 0 from
its customers. On the other hand, a customer can make a claim causing the surplus
to jump downwards. The claim frequency follows a Poisson process, and the claim
sizes are assumed to be independent and identically distributed (i.i.d.). A natural
generalization of the Cramér–Lundberg model is a spectrally negative Lévy process
also called “Lévy insurance risk model”, which has been studied in many actuarial
literature, such as [5, 6, 12] and so on. Thanks to the Lévy insurance risk model,
we can grasp many realistic social phenomena in the surplus process such as the
fluctuation of premium income, the effect of investment result, the effect of the small

Y. Shimizu
Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
e-mail: shimizu@waseda.jp

H. Shiraishi (B)
Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama Kanagawa, 223-8522, Japan
e-mail: shiraishi@math.keio.ac.jp

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
Y. Liu et al. (eds.), Research Papers in Statistical Inference for Time
Series and Related Models, https://doi.org/10.1007/978-981-99-0803-5_22

497

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-0803-5_22&domain=pdf
mailto:shimizu@waseda.jp
mailto:shiraishi@math.keio.ac.jp
https://doi.org/10.1007/978-981-99-0803-5_22


498 Y. Shimizu and H. Shiraishi

claim, and so on. In this paper, we also suppose that the surplus of an insurance
company follows the Lévy insurance risk process.

In risk theory, the central topics are the ruin time or ruin probability, but there is
a dividend problem as one of the applications. In the dividend problem introduced
by De Finetti [4] (especially, the so-called “constant barrier strategy”), assuming
that there is a horizontal barrier of level ϑ , such that when an insurance company’s
surplus reaches level ϑ , dividends are paid continuously such that the surplus stays
at level ϑ until it becomes less than ϑ . The optimal strategy is to maximize the
expectation of the present value of all dividend payments and the “optimal dividend
barrier” is defined as a barrier of level ϑ where the maximization can be achieved.
Bühlmann [1], Lin [8], Gerber et al. [7], Li [9] and Loeffen [10] derived the optimal
dividend barrier explicitly in some special models such as the Cramér–Lundberg
model with exponential claim amount distribution. On the other hand, Kyprianou
[12] discussed a stochastic control problem for the optimal dividend strategy when
the surplus process follows the Lévy insurance risk process. In these papers, the
main concern is the property from a probabilistic point of view, but there is a limited
contribution in the statistical point of view. From the statistical point of view in
ruin theory, a ruin probability by Croux and Veraverbeke [3] and Shimizu [14], a
Gurber–Shiu function by Feng and Shimizu [6] and an optimal dividend problem in
the Cramér–Lundberg model by Shiraishi and Lu [16] were discussed, respectively.
In this paper, we discuss the statistical estimation problem in the Lévy insurance risk
process.

Considering the optimal dividend problem in a statistical estimation framework,
it can be reduced to an M-estimation problem if we can define our optimal divi-
dend barrier estimator as a maximizer of an objective function that corresponds to
an estimator of the expectation of the present value of all dividend payments. Note
that, for the usual M-estimator, the objective function sometimes called a contrast
estimator is defined by a sample mean of i.i.d. random variables. In the same way,
our contrast estimator would be defined by a sample mean of the present value of
all dividend payments. However, since the present value of all dividend payments
is path dependent, in order to construct the contrast estimator, we need to provide
a number of independent copies of sample paths; consequently, it is impossible to
observe multiple sample paths. In addition, in practical point of view, it is reasonable
to assume that the surplus of an insurance portfolio is observable discretely not con-
tinuously, such as hourly, daily, monthly, and so on. To overcome these problems, we
introduce “quasi-process”, that is, an approximation of the true Lévy insurance risk
process. The quasi-process is composed by rearranging the increments of discretely
observed data, thus, it is possible to generate multiple sample paths by changing the
permutation. Essentially, it takes advantage of the exchangeability of the increments
in the Lévy insurance risk process. Generating multiple quasi-process, it is possi-
ble to provide a number of (approximated) present values of all dividend payments,
which implies that a contrast estimator can be defined. In our estimation procedure,
the complexity of an estimator is characterized by the class of functions. In other
words, our procedure is applicable not only to the optimal dividend problem but also
to many statistical inference problems defined as an M-estimation problem.
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The rest of the paper is organized as follows. Section 22.2 defines the surplus
process following the Lévy insurance risk process and the true optimal dividend bar-
rier as a maximizer of the expectation of the present value of all dividend payments.
We define the quasi-process from discretely observed data and show its weak con-
vergence in Sect. 22.3. Then, the optimal dividend barrier estimator is also defined.
Section 22.4 shows the consistency of the optimal dividend barrier estimator. To do
so, the uniform consistency for the contrast estimator in the function set is shown
based on the empirical process theory. In Sect. 22.5, we examine our approach numer-
ically.When the surplus process follows the compound Poisson risk model perturbed
by diffusion discussed in [9], it is numerically confirmed that our proposed estimator
converges in probability to the true optimal dividend barrier as observed interval
goes to 0 and the size of the permutation set goes to infinity. We place all the proofs
of the theorems and lemmas in Sect. 22.6.

22.2 Optimal Dividend Barrier

Given a stochastic basis (�,F ,P;F) with a filtration F = (Ft )t≥0, we consider a
F−Lévy process X = (Xt )t≥0 starting at X0 = u of the form

Xt = u + ct + σ Wt − St , (22.1)

where u, σ ≥ 0, c > 0, W = (Wt )t≥0 is a Wiener process and S = (St )t≥0 is a pure-
jump Lévy process, independent of W , with the characteristic exponent

ψS(λ) = logE[eiλS1 ] =
∫
R

(
eiλz − 1 − iλz1{|z|≤1}

)
ν(dz).

When ν((−∞, 0)) = 0 and
∫
(0,∞)

(1 ∧ x)ν(dx) < ∞, S is called a subordinator,
that is, a special class of Lévy processes taking values in [0,∞) and having non-
decreasing paths. LetD∞ := D[0,∞) be a space of càdlàg functions on [0,∞), and
the subset D̃∞(⊂ D∞) be also a space of càdlàg functions on [0,∞), restricted as
follows:

For all X ∈ D̃∞ , X has the form (22.1), where c > E[S1] and S is a subordinator
with

∫
(0,∞)

x2ν(dx) < ∞.

Then, D̃∞ belongs to the class of spectrally negative Lévy processes withE[S2
t ] <

∞ for all t > 0 (see, e.g., [13]). In this paper, we suppose that X ∈ D̃∞ is an insurance
risk process where u(= X0) is the insurer’s initial surplus, c is a given premium rate
per unit time,with the net profit condition c > E[S1], and S = (St )t≥0 is the aggregate
claims process.

Let � = (u, ϑ̄) ⊂ R, where ϑ̄ is a known positive value. For an insurance risk
process X ∈ D̃∞ and ϑ ∈ �, we introduce a process ξϑ = (ξϑ

t )t≥0 by ξϑ
0 = 0 and
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ξϑ
t = ϑ ∨ X̄t − ϑ = (

X̄t − ϑ
) ∨ 0 for t > 0,

where X̄t = sup0≤s<t Xs . Note that ξϑ ≡ ξϑ(X) is called the dividend strategy con-
sisting of a process with initial value zero, which has paths that are left-continuous,
non-negative, non-decreasing and adapted to the filtration of insurance risk process X
defined by (22.1). Let
 ≡ 
(X) = {

ξϑ(X)|ϑ ∈ �
}
be the family of dividend strate-

gies, and for each ξϑ ∈ 
, write τϑ ≡ τϑ(X) = inf{t > 0|Uϑ
t := Xt − ξϑ

t < 0} for
the time of ruin under the dividend strategy ξϑ . Here we call Uϑ = (Uϑ

t )t≥0 the
controlled risk process and τϑ the time of ruin for the controlled risk process (see,
e.g., Kyprianou [12]); ξϑ

t represents the cumulative dividends that the insurer has
paid out until the time t under a dividend strategy in which the dividend payments
are continued while the controlled risk process attains ϑ up to the time of ruin τϑ

(see, e.g., Loeffen [10]). The expected present value of all dividend payments, with
discounting at rate r > 0, associated with the dividend strategy ξϑ is given by

v(ξϑ) = E
[
hϑ(X)

]
, hϑ(X) =

∫ τϑ (X)

0
e−r t dξϑ

t (X). (22.2)

Loeffen [10] and Yin, et al. [18] discussed the concavity for v(ξϑ) under some
conditions. We suppose that v(ξϑ) is a bounded, infinitely differentiable, and strictly
concave function with respect to ϑ ∈ �. Then, for any ε > 0, there exists ϑ0 ∈ �

such that for allϑ ∈ � satisfying |ϑ − ϑ0| > ε, it follows v(ξϑ) < v(ξϑ
0 ).We assume

the suitable conditions for v(ξϑ) in our main theorem (Theorem 22.2). In insurance
risk theory, the expected present value of a ruin-related “loss” up to time of ruin
was often discussed (e.g., Feng [5] and Feng and Shimizu [6]). Among them, the
dividend problem discussed in [4] consists of solving the stochastic control problem
v(ξ∗) := supξϑ∈
 E

[
hϑ(X)

]
which corresponds to a optimization problem:

ϑ0 := argmax
ϑ∈�̄

E
[
hϑ(X)

]
. (22.3)

In this paper, we consider a statistical estimation problem for ϑ0 when we observe
an insurance risk process X ∈ D̃∞ discretely.

22.3 Estimation of Optimal Dividend Barrier

LetD∞ be the Borel field on D∞ generated by the Skorokhod topology. We denote
a distribution of X on D∞ by P := P ◦ X−1 and write

P f :=
∫
D∞

f (x)P(dx) = E[ f (X)],
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for a measurable function f : D∞ → R. Suppose that for a B ∈ N, random elements
X (1), X (2), . . . , X (B) are independent copies of process X ∈ D̃∞(⊂ D∞), and denote
its empirical measure as

P
∗
B := 1

B

B∑
β=1

δX (β) ,

where δx is the delta measure concentrated on x ∈ D̃∞. In practice, it is often impos-
sible to observe the independent copies of X and to observe the sample path con-
tinuously. To overcome these problems, we consider a construction of “multiple
quasi-processes” from a discrete sample path. Suppose that we observe a discrete
sample path from an insurance risk process X = (Xt )t≥0 ∈ D̃∞, where the discrete
sample path consists of {Xtk }k=0,1,...,n with

0 = t0 < t1 < · · · < tn = T, hn ≡ tk − tk−1.

LetX = (�1X,�2X, . . . ,�n X)be a vector of incrementswith�k X := Xtk − Xtk−1 ,
and let

�n :=
{

im =
(

1 2 · · · n
im(1) im(2) · · · im(n)

)∣∣∣m = 1, 2, . . . , n!
}

be a family of all the permutations of (1, 2, . . . , n). Since �k X , 1 ≤ k ≤ n, are i.i.d.
for each n, X is exchangeable, i.e., for any permutation i ∈ �n ,

i(X) := (�i(1) X, . . . ,�i(n) X)

has the same distribution as X.

Definition 22.1 For givenX and i ∈ �n , a stochastic process X̂ i,n = (X̂ i,n
t )t≥0 given

by

X̂ i,n
t = u +

n∑
k=1

�i(k) X · 1[tk ,∞)(t)

is said to be a quasi-process of X for a permutation i ∈ �n .

Note that a path of the quasi-process X̂ i,n = (X̂ i,n
t )t≥0 belongs to D∞ (but not to

D̃∞), a right continuous step function that has a jump at t = tk (k = 1, 2, . . . , n) with
the amplitude �i(k) X . For the discrete sampling scheme, we impose the following
assumption.

Assumption 22.1 (High-Frequency sampling in the Long Term; HFLT) hn → 0
and T = nhn → ∞ as n → ∞.

Shimizu and Shiraishi [15] showed the followings under HFLT.
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Theorem 22.1 Under Assumption 22.1, we have, for any sequence of permutations
{i n} ⊂ �n,

X̂ in ,n � X in D∞ as n → ∞.

For a given sizeαn(≤ n!), let An := {i(1), . . . , i(αn)} be a set of i.i.d. samples drawn
uniformly from �n , i.e., for a given m = 1, 2, . . . , n!,

P(i(k) = im) = 1

n! for every k = 1, 2, . . . , n!.

Based on An , we introduce two empirical measures P∗
αn

and Pαn by

P
∗
αn

:= 1

αn

αn∑
k=1

δX (k) , Pαn := 1

αn

αn∑
k=1

δX̂ i(k),n .

Next, we propose an estimator ofϑ0 defined by (22.3) based on the empiricalmeasure
of the quasi-process.

Definition 22.2 Given a vector of increments X and permutation sets {An}n∈N, we
denote a maximum contrast estimator of ϑ0 defined by (22.3) as

ϑ̂n = argmax
ϑ∈�̄

Pαn hϑ ,

where

Pαn hϑ = 1

αn

∑
i∈An

hϑ(X̂ i,n) = 1

αn

∑
i∈An

∫ τϑ (X̂ i,n)

0
e−r t dξϑ

t (X̂ i,n).

For the moments of hϑ(X̂ i,n), we have following result.

Lemma 22.1 Under Assumption 22.1, we have, for any ϑ ∈ � and i ∈ �n,

E

[
hϑ(X̂ i,n)m

]
= O(1), m = 1, 2.

22.4 Asymptotic Results

Our main result in this paper is to provide the consistency for ϑ̂n defined in Defini-
tion 22.2. To do so, we assume that a size of permutation sets αn := �An satisfies
followings.

Assumption 22.2 (Size of permutation sets)
n

αn
→ 0 as n → ∞.
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We recall that the empirical measure of the quasi-process Pαn is asymptotically
equivalent in law with P

∗
αn

based on the independent copy X (1), . . . , X (αn) of the
process X . Moreover, we introduce a sequence of a family of measurable functions
H = {Hn}n∈N on D̃∞, whereHn is a family of measurable functions hϑ

n : D̃∞ → R

for each ϑ ∈ �, given by

hϑ
n (X) =

∫ τϑ
n (X)

0
e−r t dξϑ

n,t (X), (22.4)

where τϑ
n (X) = τϑ(X̂ iid,n) and ξϑ

n,t (X) = ξϑ
t (X̂ iid,n) for all X ∈ D̃∞, ϑ ∈ � and n ∈

N. Here iid ∈ �n is an identical permutation, i.e., iid =
(
1 2 · · · n
1 2 · · · n

)
. For the class

Hn = {hϑ
n : D̃∞ → R|ϑ ∈ �}, we denote by N (ε,Hn, L1(Pαn )) the covering num-

ber of L1(Pαn )which is theminimumnumber of ε-balls needed to coverHn , where an
ε-ball around a function g ∈ L1(Pαn ) being the set {hϑ

n ∈ L1(Pαn )| ‖hϑ
n − g‖Pαn ,1 =

Pαn (|hϑ
n − g|) < ε}, with ‖ · ‖Pαn ,1 being the L1(Pαn )-norm. In addition, we denote

by N[](ε,Hn, L1(Pαn )) the bracketing number which is the minimum number of
ε-brackets in L1(Pαn ) needed to ensure that every hϑ

n ∈ Hn lines in at least one
bracket, where an ε-bracket in L1(Pαn ) is a pair of functions l, u ∈ L1(Pαn ) with
Pαn

(
1{l(X)≤u(X)}

) = 1 and ‖l − u‖Pαn ,1 ≤ ε. For the covering number and bracketing
number, we have the following result.

Lemma 22.2 Under Assumptions 22.1 and 22.2, we have, for any ε > 0

E
[
N (ε,Hn, L1(Pαn ))

] = o(αn) and E
[
N[](ε,Hn, L1(Pαn ))

] = o(αn).

This lemma implies that both of the covering number and bracketing number
diverge slower than αn . This result is applied for the proof of uniformly consistency
below. The following result is due to a slight modification by Kosorok [11, Theorem
8.15].

Lemma 22.3 Under Assumptions 22.1 and 22.2, we have

sup
ϑ∈�̄

|(Pαn − P)hϑ
n | =: ‖Pαn − P‖Hn

p→ 0.

This lemma shows that two measure Pαn and P are asymptotically equivalent
on the function space Hn . On the other hand, the true optimal dividend barrier ϑ0

defined by (22.3) is a maximizer of E
[
hϑ(X)

] = Phϑ , where hϑ /∈ Hn . Hence, we
have to evaluate the difference between hϑ and hϑ

n ∈ Hn defined by (22.2) and (22.4)
based on the measure P . The following lemma is also applied for the proof of our
main result.
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Lemma 22.4 Under Assumptions 22.1 and 22.2, we have

sup
ϑ∈�̄

|P(hϑ
n − hϑ)| → 0.

By Lemmas 22.3 and 22.4, we can show the consistency for ϑ̂n , as follows.

Theorem 22.2 Suppose that Assumptions 22.1 and 22.2 are hold, and that there
exists ϑ0 ∈ � such that, for any ε > 0,

sup
ϑ∈�̄:|ϑ−ϑ0|>ε

Phϑ < Phϑ0 . (22.5)

Then, ϑ̂n is weakly consistent to ϑ0, i.e.,

ϑ̂n
p→ ϑ0, n → ∞.

22.5 Numerical Results

In this section, we present simulation results to evaluate the finite-sample perfor-
mance of the proposed estimator of the optimal dividend barrier based on the dis-
crete sample from spectrally negative Lévy processes.We consider the following data
generating process (DGP), sampling scheme, permutation set, and discount rate.

• DGP (Brownian motion + compound Poisson process): Let Xt = u + ct +
σ Wt − St , where u = 10, c = 15, σ = 2, W = (Wt )t≥0 is a standard Brownian
motion, and St = ∑Nt

r=1 ξr is a compound Poisson process. The Poisson process
N = (Nt )t≥0 has intensity λ > 0. We set λ = 5. The jump size {ξr } is a sequence
of i.i.d. random variables having exponential distribution with parameter 1/2, that
is, E[ξr ] = 2.

• Sampling scheme:Weconsider the sampling interval hn = 1, 0.1, 0.01, 0.001 and
the terminal T = 100 (fixed), which implies that sample size n is n = T/hn =
100, 1000, 10000, respectively.

• Permutation set: We consider the subset of permutation set An = {im j | j =
1, . . . , αn} ⊂ �n with αn = 10, 100, 1000, where the suffix m j is independently
selected with same probability from {1, 2, . . . , n!}.

• Discount rate: We set r = 0.2.
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22.5.1 Quasi-process

Wefirst examine the finite-sample performance of the quasi-process X̂ i,n = (X̂ i,n
t )t≥0

for each hn and αn . Figure22.1 shows 100 sample paths for the risk process of an
insurance business X = (Xt )t≥0 defined above. It looks that we cannot know the
distribution of X only from one sample path without any additional assumption. In
this study,we consider such a situation.Whenwe suppose that only one sample path is
observed discretely, we would like to know its distribution. In Fig. 22.1, the blue line
is observed discretely. Under the sampling scheme defined above, we can construct
a number of sample paths of the quasi-process X̂ i,n from one sample path. Then, we
can approximate the distribution of X based on these sample paths. In Fig. 22.2, the
blue line is an observed (but discretely) sample path from the stochastic process X
(this is the same as Fig. 22.1). From this sample path, we construct αn sample paths
of the quasi-process X̂ i,n based on Definition 22.1. Each sample path depends on the
observed sample path and the permutation i ∈ An ⊂ �n . The top figure shows the
case of hn = 1 andαn = 100, and the bottomfigure shows the case of hn = 0.001 and
αn = 100. It looks that the top figure is not, but the bottomfigure iswell approximated
by the distribution of X . This phenomenon comes from the exchangeability of the
increments of the Lévy processes and if the sampling interval hn is sufficiently small
and the size of the permutation set αn is sufficiently large, we can well approximate
the distribution of X even from only one sample path.

Risk−process of an insurance business
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Fig. 22.1 100 sample paths for the risk process of an insurance business X
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Fig. 22.2 (Discretely)
observed sample path (blue
line) and αn(= 100) sample
paths for the quasi-process
(top (hn = 1) and bottom
(hn = 0.001))
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22.5.2 Maximum Contrast Estimator

Next, we examine the behavior of the objective function hϑ
n (X̂ i,n). Given a sam-

ple path of the quasi-process X̂ i,n , we can construct hϑ
n (X̂ i,n) as a function of the

parameter ϑ . Since each sample path of the quasi-process X̂ i,n = (X̂ i,n)t≥0 is locally
constant on time t , we can write

hϑ
n (X̂ i,n) =

∫ τϑ
n (X̂ i,n)

0
e−r t dξϑ

n,t (X̂ i,n) =
n∑

k=1

1{τϑ
n (X̂ i,n)>tk }e

−r tk �kξ
ϑ
n (X̂ i,n),

where �kξ
ϑ
n (X̂ i,n) = ξϑ

n,tk (X̂ i,n) − ξϑ
n,tk−1

(X̂ i,n) with ξϑ
n,t0(X̂ i,n) = 0. Figure22.3

shows the plots of hϑ
n (X̂ i,n) for five sample paths of the quasi-process X̂ i,n . In this

figure, the horizontal axis represents the magnitude of ϑ and the vertical axis rep-
resents the magnitude of hϑ

n . Under a fixed sample path, it can be seen that hϑ
n is a

locally decreasing function with some positive jumps. The locally decreasing prop-
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Fig. 22.3 Plots of hϑ
n for 5 sample paths of the quasi-process

erty is that the total dividend amount tends to decrease as the dividend barrier ϑ

increases while the ruin time τϑ
n is fixed. On the other hand, the existence of a posi-

tive jump shows that the total dividend amount increases discontinuously since the
ruin time is extended at some ϑ .

Figure22.4 shows the behavior of the contrast function Pαn hϑ
n =

1
αn

∑
i∈An

hϑ
n (X̂ i,n) for some hn and αn . The left figure shows plots of the contrast

function for the size of the permutation set αn = 5, 20, 100 under fixed sampling
interval hn = 1, and the dotted line shows its maximization point. It can be seen that
the function approaches the true function as αn increases which implies that the max-
imization point tends to the true maximation point, that is, our proposed estimator ϑ̂n

converges to the true optimal dividend barrier ϑ0. On the other hand, the right figure
shows plots of the contrast function for hn = 1, 0.1, 0.01 under fixed αn = 100. It
can be seen that the function approaches the true function as hn decreases which
implies that our estimator converges to the true optimal dividend barrier. In both
figures, the black line represents the true objective function E[hϑ(X)] (see, e.g., [9]).
These figures confirm the validity of the theoretical result in Theorem 22.2.

22.5.3 Simulation Result

Now,we examinemean, standard deviation (std), bias, andMSE for hn = 1, 0.1, 0.01
andαn = 10, 100, 1000.Wegenerate 100 replications for each run of the simulations.
Figure22.5 shows the box-plot for estimated values ϑ̂

( j)
n for each αn and hn . The left

figure is the case of αn = 10, the middle figure is the case of αn = 100, and the
right figure is the case of αn = 1000. In each figure, the left box is the case of
hn = 1, the middle box is the case of hn = 0.1, and the right box is the case of
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Fig. 22.4 Plots of the contrast function for the size of the permutation set αn = 5, 20, 100 under
fixed sampling interval hn = 1 (left), and for hn = 1, 0.1, 0.01 under fixed αn = 100 (right). The
dotted line shows thesemaximization points, and the black line represents the true objective function
E[hϑ (X)]
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Fig. 22.5 Box plots for the estimated values of the optimal dividend barrier for αn = 10 (left),
αn = 100 (middle), and αn = 1000 (right). In each figure, hn = 1 (left), hn = 0.1 (middle), and
hn = 0.01 (right). The red line shows the true value

hn = 0.01. The red line shows the true value ϑ0 = 12.93958. In view of the median
(and mean) of the estimated values, it can be seen that the value converges to the
true value as αn increases and hn decreases. On the other hand, in view of the
dispersion, it looks that the estimated values shrink as αn increases. However, when
hn is not sufficiently small, it seems that the estimated values converge to a value
different from the true value. This phenomenon indicates that it is a warning that
an asymptotic bias will occur unless the sampling interval hn is sufficiently small.
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Table 22.1 Mean, std, bias, and MSE for the estimated values in 100 replications where the true
optimal dividend barrier is ϑ0 = 12.93958

αn hn Mean std bias MSE

10 1 9.482 1.039 –3.45 13.03

0.1 11.778 2.106 –1.16 5.78

0.01 12.560 2.126 –0.37 4.66

100 1 9.681 0.489 –3.25 10.85

0.1 12.009 1.290 –0.92 2.52

0.01 12.964 1.558 0.02 2.42

1000 1 9.895 0.260 –3.04 9.33

0.1 11.680 0.998 –1.25 2.58

0.01 12.680 1.183 –0.25 1.46

Table 22.1 showsmean
(
μn := 1

B

∑B
j=1 ϑ̂

( j)
n

)
, std

(
σn :=

√
1
B

∑B
j=1(ϑ̂

( j)
n − ϑ0)2

)
,

bias
(

1
B

∑B
j=1(ϑ̂

( j)
n − ϑ0)

)
, and MSE

(
μ2

n + σ 2
n

)
of the estimated values ϑ̂

( j)
n for

αn = 10, 100, 1000, hn = 1, 0.1, 0.01 and B = 100. It can be seen that the mean
converges to the true value, and the MSE converges to 0 as αn increases and hn

decreases. Note that the bias tends to have a negative value which implies that the
distribution of the estimator tends to be asymmetric. From the insurer’s point of view,
this phenomenon is a warning because setting a lower dividend barrier poses a risk
to insurers.

22.6 Proofs

This section gives proofs of lemmas and theorems.

22.6.1 Proof of Lemma 22.1

From the definition, we can write

hϑ(X̂ i,n) =
∫ τϑ (X̂ i,n)

0
e−r t dξϑ

t (X̂ i,n) ≤
∫ ∞

0
e−r t d X̂

i,n

t

=
n∑

k=1

e−r tk (�i(k) X ∨ 0) ≤
n∑

k=1

e−r tk |�i(k) X |,
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where X̂
i,n

t = sup0≤s<t X̂ i,n
s and {|�i(k) X |}k=1,...,n is a sequence of i.i.d. random vari-

ables. From (22.1), we have

|�i(k) X | d= |�k X | = |Xk − Xk−1| d= |chn + σ Whn − Shn | ≤ chn + σ |Whn | + Shn .

It is easy to see E
[|Whn |k

]
� hn . Since ϕn(λ) := E

[
eiλShn

] = ehnψS(λ), we have

E
[
Shn

] = i−1 dϕn(λ)

dλ

∣∣
λ=0 = hnE[S1] � hn,

E
[
S2

hn

] = −d2ϕn(λ)

(dλ)2

∣∣
λ=0 = hnE[S2

1 ] − h2
nE[S1]2 � hn,

which imply that E
[|�i(k) X |m] � hn for m = 1, 2. By the Taylor expansion, we

have
n∑

k=1

e−r tk = e−rhn (1 − e−rnhn )

1 − e−rhn
� 1

1 − e−rhn
� h−1

n .

Therefore, we have

E

[
hϑ(X̂ i,n)

]
≤

n∑
k=1

e−r tkE
[|�i(k) X |] = O(h−1

n )O(hn) = O(1),

E

[
hϑ(X̂ i,n)2

]
≤

n∑
k=1

e−2r tkE
[|�i(k) X |2] = O(h−1

n )O(hn) = O(1).

22.6.2 Proof of Lemma 22.2

By definition, τϑ
n ∈ {t1, t2, . . . , tn} for any X ∈ D̃∞ and ϑ ∈ �. Note that if

Uϑ
tn (X̂ iid,n) := X̂ iid,n

tn − ξϑ
tn (X̂ iid,n) ≥ 0, we define τϑ(X̂ iid,n) = τϑ

n (X) = tn . This
implies that we can divideHn intoHn,k (k = 1, . . . , n), whereHn,k = {hϑ

n,k, ϑ ∈ �}
with hϑ

n,k(X) = ∫ tk
0 e−r t dξϑ

n,t (X). For a fixed X ∈ D̃∞, it can be seen that ξϑ
n,t (X) ≤

ξϑ ′
n,t (X) for any n ∈ N, t > 0 if ϑ ≥ ϑ ′, which implies that

Pαn

(
1{

hϑ̄
n,k (X)≤hϑ

n,k (X)≤hu
n,k (X)

}
)

= 1, ∀ϑ ∈ � = (u, ϑ̄).

In addition, since u ≤ X̂
iid,n

tl−1
≤ X̂

iid,n

tl (l = 1, . . . , n), where X̂
iid,n

t = sup0≤s<t X̂ iid,n
s ,

we can write
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∣∣∣
{
ξ u

n,tl (X̂ iid,n) − ξ u
n,tl−1

(X̂ iid,n)
}

−
{
ξ ϑ̄

n,tl (X̂ iid,n) − ξ ϑ̄
n,tl−1

(X̂ iid,n)
}∣∣∣

=
∣∣∣∣
(

u ∨ X̂
iid,n

tl−1

)
−
(

u ∨ X̂
iid,n

tl

)
−
(

ϑ̄ ∨ X̂
iid,n

tl−1

)
+
(

ϑ̄ ∨ X̂
iid,n

tl

)∣∣∣∣
= 1{X̂

iid ,n

tl−1
≤ϑ̄}

∣∣∣∣
(

X̂
iid,n

tl − X̂
iid,n

tl−1

)
∧
(

ϑ̄ − X̂
iid,n

tl−1

)∣∣∣∣
≤ |�l X | ,

which implies that

‖hu
n,k − hϑ̄

n,k‖Pαn ,1 = Pαn

(
|hu

n,k(X) − hϑ̄
n,k(X)|

)

= Pαn

(∣∣∣∣
∫ tk

0
e−r t

{
dξ u

n,t (X) − dξ ϑ̄
n,t (X)

}∣∣∣∣
)

≤
k∑

l=1

e−r tlPαn

(∣∣∣∣
{
ξ u

n,tl (X̂ iid,n) − ξ u
n,tl (X̂ iid,n)

}

−
{
ξ ϑ̄

n,tl (X̂ iid,n) − ξ ϑ̄
n,tl (X̂ iid,n)

}∣∣∣∣
)

≤
k∑

l=1

e−r tlPαn (|�l X |)

d=
(

k∑
l=1

e−r tl

)
|�1X | .

Since
∑k

l=1 e−r tl = O(h−1
n ) and E [|�1X |] = O(hn), we have for any ε > 0

n∑
k=1

E

[‖hu
n,k − hϑ̄

n,k‖Pαn ,1

ε

]
≤ 1

ε

n∑
k=1

(
k∑

l=1

e−r tl

)
E [|�1X |]

= n

ε
O(h−1

n )O(hn) = O(n).

Note that the L1(Pαn )-size of the brackets is bounded by ε, which implies that

E
[
N[](ε,Hn, L1(Pαn ))

] =
n∑

k=1

E
[
N[](ε,Hn,k, L1(Pαn ))

]

≤
n∑

k=1

E

[‖hu
n,k − hϑ̄

n,k‖Pαn ,1

ε
+ 1

]
.

Therefore, from Assumption 22.2, it follows that
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E
[
N[](ε,Hn, L1(Pαn ))

] = o(αn).

From the relationship between bracketing number and covering number (cf., Kosorok
[11, Lemma 9.18]), we have

E
[
N (ε,Hn, L1(Pαn ))

] ≤ E
[
N[](ε,Hn, L1(Pαn ))

] = o(αn).��

22.6.3 Proof of Lemma 22.3

By the symmetrization result (cf., Kosorok [11, Theorem 8.8]), we can write

E
[‖Pαn − P‖Hn

] ≤ 2EX

[
Eε

[
sup
ϑ∈�

∣∣Pαn

(
εhϑ

n (X)
)∣∣∣∣∣X

]]

= 2EX

⎡
⎣Eε

⎡
⎣sup

ϑ∈�

∣∣∣∣∣∣
1

αn

∑
i∈An

ε(i)hϑ
n (X (i))

∣∣∣∣∣∣
∣∣∣X (i), i ∈ An

⎤
⎦
⎤
⎦ ,

where {ε(i)} is a sequence of independent Rademacher random variables which are
independent of {X (i)} and satisfyP(ε(i) = −1) = P(ε(i) = 1) = 1/2, andEX ,Eε are
the expectations with respect to X (i), ε(i), respectively. For any fixed n ∈ N, δ > 0
and {X (i)}i∈An , let Hn, j ( j = 1, . . . , N (δ,Hn, L1(Pαn ))) be a sequence of finite δ-
balls in L1(Pαn ) over Hn (i.e., Hn, j is a subset of Hn and for any hϑ

n , hϑ ′
n ∈ Hn, j ,

‖hϑ
n − hϑ ′

n ‖Pαn ,1 < δ and ∪ jHn, j ⊃ Hn). For each Hn, j , we fix ϑ j (satisfying ϑ j �=
ϑ j ′ if j �= j ′) which is a representative h

ϑ j
n such that for any hϑ

n ∈ Hn, j

Eε

⎡
⎣
∣∣∣∣∣∣
1

αn

∑
i∈An

ε(i)hϑ
n (X (i))

∣∣∣∣∣∣
∣∣∣X (i), i ∈ An

⎤
⎦

≤ Eε

⎡
⎣
∣∣∣∣∣∣
1

αn

∑
i∈An

ε(i)h
ϑ j
n (X (i))

∣∣∣∣∣∣
∣∣∣X (i), i ∈ An

⎤
⎦+ δ,

which implies that

Eε

⎡
⎣sup

ϑ∈�

∣∣∣∣∣∣
1

αn

∑
i∈An

ε(i)hϑ
n (X (i))

∣∣∣∣∣∣
∣∣∣X (i), i ∈ An

⎤
⎦

≤ Eε

⎡
⎣max

j

∣∣∣∣∣∣
1

αn

∑
i∈An

ε(i)h
ϑ j
n (X (i))

∣∣∣∣∣∣
∣∣∣X (i), i ∈ An

⎤
⎦+ δ. (22.6)
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Let Z j = 1
αn

∑
i∈An

ε(i)h
ϑ j
n (X (i)) and Z = max j |Z j |. Then,

‖Z‖1|X := Eε[|Z | |X (i), i ∈ An] ≤ Eε[Z2|X (i), i ∈ An]1/2 =: ‖Z‖2|X ,

from Jensen’s inequality. On the other hand, based on the nondecreasing, nonzero
convex function ψ2(x) = exp(x2) − 1, we introduce the Orlicz-norm

‖Z‖ψ2|X := inf

{
c > 0

∣∣∣ Eε

[
ψ2(|Z |)

c

∣∣∣X (i), i ∈ An

]
≤ 1

}
,

for which ‖Z‖2|X ≤ ‖Z‖ψ2|X . Applying the maximal inequality (cf., Kosorok [11,
Lemma 8.2]), we have

‖Z‖ψ2|X = ‖max
j

|Z j |‖ψ2|X ≤ Kψ−1
2 (N (δ,Hn, L1(Pαn )))max

j
‖Z j‖ψ2|X ,

where the constant K depends only on ψ2, which implies that the left-hand-side of
(22.6) is bounded by

√
log
{
1 + N (δ,Hn, L1(Pαn ))

}
max

j

∥∥Z j

∥∥
ψ2|X + δ,

up to a constant. By Hoeffiding’s inequality (cf., Kosorok [11, Lemma 8.7]), we have

Eε

[
1{|Z j |>x}

∣∣∣X (i), i ∈ An

]
= Pε

(
|Z j | > x

∣∣∣X (i), i ∈ An

)
≤ 2 exp

(
−1

2
x2/‖Z j ‖2ε

)
,

for any x > 0 and each j , where ‖Z j‖ε = Eε[|Z j | |X (i), i ∈ An]. Hence, from
Kosorok ([11, Lemma 8.1]) and Jensen’s inequality,

∥∥Z j

∥∥
ψ2|X ≤

(
1 + 2

1/(2‖Z j‖2ε)
)1/2

= √
6‖Z j‖ε

≤
√
6

αn
Eε

⎡
⎣
∣∣∣∣∣∣
∑
i∈An

ε(i)h
ϑ j
n (X (i))

∣∣∣∣∣∣
∣∣∣X (i), i ∈ An

⎤
⎦

≤
√
6

αn

⎧⎨
⎩Eε

⎡
⎣
∣∣∣∣∣∣
∑
i∈An

ε(i)h
ϑ j
n (X (i))

∣∣∣∣∣∣
2∣∣∣X (i), i ∈ An

⎤
⎦
⎫⎬
⎭

1/2

=
√

6

αn

⎧⎨
⎩

1

αn

∑
i∈An

∣∣∣hϑ j
n (X (i))

∣∣∣2
⎫⎬
⎭

1/2



514 Y. Shimizu and H. Shiraishi

=
√

6

αn

√
Pαn

(
(h

ϑ j
n )2

)
,

which, together with Lemma 22.1, implies that

EX

[∥∥Z j

∥∥
ψ2|X

]
≤
√

6

αn
EX

[√
Pαn

(
(h

ϑ j
n )2

)]

≤
√

6

αn

{
EX

[
Pαn

(
(h

ϑ j
n )2

)]}1/2 = O

(
1√
αn

)
,

uniformly in ϑ j ∈ �. From this and Lemma 22.2, E‖Pαn − P‖Hn converges to 0 as
n → ∞ and δ → 0.

22.6.4 Proof of Lemma 22.4

From the definition, we can write for any ϑ ∈ �

P(hϑ
n − hϑ) = E

[∫ τϑ
n (X)

0
e−r t dξϑ

n,t (X)

]
− E

[∫ τϑ (X)

0
e−r t dξϑ

t (X)

]

= E

[∫ ∞

0

{
1{τϑ

n (X)>t} − 1{τϑ (X)>t}
}

e−r t dξϑ
n,t (X)

]

+ E

[∫ ∞

0
1{τϑ (X)>t}

{
1{X̂

i,n

t >ϑ} − 1{X̄t >ϑ}

}
e−r t d X̂

i,n

t

]

+ E

[∫ ∞

0
1{τϑ (X)>t}1{X̄t >ϑ}e

−r t d

{
X̂

i,n

t − X̄t

}]

=: I1 + I2 + I3 (say),

where X̂
i,n

t = sup0≤s<t X̂ i,n
s . For the term I1, Lemma 22.1 yields

|I1| ≤
∣∣∣∣E
[∫ T

0

{
1{τϑ

n (X)>t} − 1{τϑ (X)>t}
}

e−r t dξϑ
n,t

]∣∣∣∣+ O
(
e−rT

)
, (22.7)

for anyfixedT > 0.Denoting Fϑ
n,τ (t) = P

(
τϑ

n (X) ≤ t
)
and Fϑ

τ (t) = P
(
τϑ(X) ≤ t

)
,

the first term of the right hand side of (22.7) is bounded by

E

[∫ ∞

0
e−r t dξϑ

n,t

] ∣∣Fϑ
n,τ (T ) − Fϑ

τ (T )
∣∣ .
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Let D̃T ⊂ D̃∞ be a space of càdlàg functions on [0, T ]. We now consider the Sko-
rokhod topology (D̃T , dT ), where dT is the Skorokhod metric defined by

dT (x, y) = inf
λ∈�T

(max {‖x ◦ λ − y‖T , ‖λ − I‖T }) ,

for any x = (xt ), y = (yt ) ∈ D̃T (cf., Billingsley [2]). Note that �T is the class of
strictly increasing, continuous mappings of [0, T ] onto itself, x ◦ λ = (xλt ) for any
λ = (λt ) ∈ �T , I is the identity map on [0, T ] and ‖z‖T = sup0<t≤T zt . On this

topology, we define a map gϑ : (D̃T , dT ) → (R̄, | · |) by

gϑ(x) = inf
0<t≤T

{
xt −

(
sup
0<s<t

xs − ϑ

)
∨ 0

}
.

Then, it is easy to see that

|gϑ(x) − gϑ(y)|
=
∣∣∣∣ inf
0<t≤T

{
xt +

(
inf

0<s<t
(−xs) + ϑ

)
∧ 0

}
− inf

0<t≤T

{
yt +

(
inf

0<s<t
(−ys) + ϑ

)
∧ 0

}∣∣∣∣
≤ sup

0<t≤T
| inf
0<s<t

xs − inf
0<s<t

ys |

+ sup
0<t≤T

∣∣∣∣
{

inf
0<s<t

(−xs) + ϑ

}
∧ 0 −

{
inf

0<s<t
(−ys) + ϑ

}
∧ 0

∣∣∣∣
≤ sup

0<t≤T
|xt − yt | + sup

0<t≤T

∣∣∣∣ sup
0<s<t

xs − sup
0<s<t

ys

∣∣∣∣
≤ 2 sup

0<t≤T
|xt − yt |

� dT (x, y),

which implies that g is continuous on (D̃T , dT ). Therefore, by using the continuous
mapping theorem, Theorem 22.1 implies

inf
0<t≤T

Uϑ
t (X̂ iid,n) = gϑ(X̂ iid,n) � gϑ(X) = inf

0<t≤T
Uϑ

t (X).

From the definition of the weak convergence, it follows that

|Fϑ
n,τ (T ) − Fϑ

τ (T )| = ∣∣P (τϑ
n ≤ T

)− P
(
τϑ ≤ T

)∣∣
=
∣∣∣∣P
(

inf
0<t≤T

Uϑ
t (X̂ iid,n) < 0

)
− P

(
inf

0<t≤T
Uϑ

t (X) < 0

)∣∣∣∣ → 0,

as n → ∞ for any ϑ ∈ �. Since E
[∫∞

0 e−r t dξϑ
n,t

] = O(1) from Lemma 22.1, we
have |I1| → 0 as n → ∞ and T → ∞. In the sameway,we have |I2| → 0 as n → ∞
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and T → ∞. For the term I3, Lemma 22.1 yields

|I3| ≤
∣∣∣∣E
[∫ T

0
1{τϑ (X)>t}1{X̄t >ϑ}e

−r t d

{
X̂

i,n

t − X̄t

}]∣∣∣∣+ O(e−rT ),

for any fixed T > 0. Then, there exists a constant M > 0 such that

∣∣∣∣E
[∫ T

0
1{τϑ (X)>t}1{X̄t >ϑ}e

−r t d

{
X̂

i,n

t − X̄t

}]∣∣∣∣

≤ E

⎡
⎢⎢⎣ sup

t∈[0,T ]

∣∣∣∣X̂
i,n

t − X̄t

∣∣∣∣
X̄t

∫ T

0
e−r t d X̄t

⎤
⎥⎥⎦

≤ ME

[
sup

t∈[0,T ]

∣∣∣X̂ i,n
t − Xt

∣∣∣
∫ T

0
e−r t d X̄t

]
(22.8)

≤ ME

⎡
⎣
(

sup
t∈[0,T ]

∣∣∣X̂ i,n
t − Xt

∣∣∣
)2
⎤
⎦

1/2

E

[(∫ T

0
e−r t d X̄t

)2
]1/2

→ 0, (22.9)

as n → ∞. Note that (22.8) is shown by supt | sups<t xs − sups<t ys | ≤ supt |xs −
ys | and X̄t ≥ u, and (22.9) is shown by E

[(
supt∈[0,T ]

∣∣∣X̂ i,n
t − Xt

∣∣∣
)2] = o(1) from

Theorem 22.1 and E

[(∫ T
0 e−r t d X̄t

)2] = O(1). Hence, |I3| → 0 as n → ∞ and

T → ∞. Therefore, we have

|P(hϑ
n − hϑ)| ≤ |I1| + |I2| + |I3| → 0,

as n → ∞ and T → ∞, uniformly in ϑ ∈ �.

22.6.5 Proof of Theorem 22.2

Lemmas 22.3 and 22.4 imply that

sup
ϑ∈�̄

|Pαn hϑ
n − Phϑ | ≤ sup

ϑ∈�̄

|(Pαn − P)hϑ
n | + sup

ϑ∈�̄

|P(hϑ
n − hϑ)| p→ 0,

as n → ∞. Combining this and (22.5), we immediately have the conclusion from
van der Vaart ([17, Theorem 5.7]).
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Chapter 23
Local Signal Detection for Categorical
Time Series

David S. Stoffer

Abstract Frequency domain signal detection for qualitative-valued time series was
developed under the assumption of homogeneity using the concept of the spectral
envelope.The techniquewasdeveloped in relation to the optimal scalingof qualitative
data. After reviewing some established results, we present a method for fitting a local
spectral envelope to heterogeneous sequences based on aminimumdescription length
criterion for choosing the best fitting model based on parsimony. In particular, we
focus on the detection of breakpoints in long sequences. Because of the enormous
size of the search space, optimization is accomplished using a genetic algorithm to
effectively tackle the problem.

Keywords Breakpoint detection · Genetic algorithm · Minimum description
length · Nonhomogeneous processes · Qualitative time series · Scaling categorical
data · Spectral envelope

23.1 Introduction

Categorical-valued time series are frequently encountered in diverse applications
such as economics, medicine, psychology, geophysics, and genomics, to mention a
few. The fact that the data are qualitative does not preclude the need to detect signals
in the same way that is done with quantitative-valued time series. Here, we explore
an approach based on scaling and the spectral envelope introduced in [17].

First we discuss the concept of scaling categorical random variables, and then we
use the idea to develop frequency domain analysis of qualitative-valued processes.
In doing so, the concept of the spectral envelope and optimal scaling is introduced.
While the spectral envelope and the corresponding optimal scaling are a population
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Table 23.1 Per minute infant EEG sleep states (read across and down)

REM REM REM REM REM REM REM REM REM REM REM REM

REM REM REM REM REM REM REM NR2 NR2 NR2 NR3 NR2

NR3 NR4 NR4 NR4 NR4 NR4 NR2 NR4 NR4 NR4 NR4 NR4

NR4 NR4 NR4 NR4 NR4 NR4 NR1 NR1 NR1 NR1 NR1 NR1

NR1 NR1 REM REM REM REM NR1 REM REM REM REM REM

REM REM REM REM REM REM REM REM REM REM REM REM

REM NR2 NR2 NR3 NR2 NR4 NR4 NR4 NR4 NR4 NR4 NR4

NR4 NR4 NR4 NR4 NR4 NR4 NR4 NR2 NR1 NR1 NR1 NR1

NR1 NR1 NR1 REM REM REM REM REM REM REM REM REM

REM REM REM REM REM REM REM REM REM REM REM REM

concept, we also review efficient estimation in the homogeneous case. Pertinent
theoretical results are also summarized. Examples of using themethodology on sleep
state and DNA sequences, which are typically heterogeneous, are given. The main
contribution here is the development of a local procedure usingminimum description
length (MDL) coupled with optimization via a genetic algorithm (GA).

Our work on the spectral envelope was motivated by collaborations with neu-
rologists who performed sleep studies on neonates with an interest in sleep cycles.
For example, Table 23.1 shows the per minute sleep state of an infant taken from a
study on the effects of prenatal exposure to alcohol. Details can be found in [16], but
briefly, an electroencephalographic (EEG) sleep recording of approximately 2h was
obtained on a full term infant 24–36h after birth, and the recording was scored by a
pediatric neurologist for sleep state. The classification of sleep state is accomplished
using a protocol defined by the AmericanAcademy of SleepMedicine. There are two
main types of sleep, Non-Rapid Eye Movement (Non-REM), also known as quiet
sleep and Rapid Eye Movement (REM), also known as active sleep. In addition,
there are four stages of Non-REM (NR1 – NR4), with NR1 being the “most active”
of the four states, and finally awake (AW), which naturally occurs briefly through
the night. Each stage of sleep has its own unique characteristics including variations
in brain wave patterns, eye movements, and muscle tone. This particular infant was
never awake during the study.

Somnologists usually order sleep states by brain activity and movement using the
values 1, 2, 3, . . . , however, the idea of ordering sleep states is somewhat tenuous. For
example, for a typical normal healthy adult, sleep begins in stage NR1 and progresses
into stages NR2, NR3, and NR4. Sleep moves through these stages repeatedly before
entering REM sleep. But sleep does not progress through these stages in sequence.
Typically, sleep transitions betweenREM and stageNR2 so that one canmovebetween
the states without passing through other sleep states. Moreover, there are no reasons
to believe—and no one has suggested—that the distance between, say, NR4 and NR3
is the same as between NR2 and NR1.
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Fig. 23.1 Time plot of the EEG sleep state data in Table 23.1 using the scaling in (23.1) [top] and
using the scaling in (23.2) [bottom]

It is not too difficult to notice a pattern in the data if one concentrates on REM
versus Non-REM sleep states. But, it would be difficult to try to assess patterns in
a longer sequence—or if there were more categories—without some graphical aid.
One simple method would be to scale the data, that is, assign numerical values to
the categories and then draw a time plot of the scales. As previously mentioned, an
obvious scaling that is frequently used by somnologists is

NR4 = 1, NR3 = 2, NR2 = 3, NR1 = 4, REM = 5, AW = 6, (23.1)

and the top of Fig. 23.1 (often referred to as a hypnogram) shows the time plot using
this scaling. This scaling, of course, assumes equidistance between the sleep states.
Another interesting scaling might be to combine the quiet states and the active states:

NR4 = NR3 = NR2 = NR1 = 0, REM = AW = 1. (23.2)

The time plot using scalings (23.1) and (23.2) shown in Fig. 23.1 are similar and
we notice the general cyclic (in and out of REM sleep) behavior of this infant’s
sleep pattern. Figure 23.2 shows the estimated spectrum of the sleep data using the
scalings in both (23.1) and (23.2). Note that there is a large peak at the frequency
corresponding to 1 cycle every 60 min using either scaling. Most of us would feel
comfortable with this analysis even though we made arbitrary and ad hoc choices
about the particular scaling. It is evident from the data (without any scaling) that if
the interest is in infant sleep cycling, this particular sleep study indicates that the
infant cycles between REM and Non-REM sleep at a rate of about one cycle per
hour.
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Fig. 23.2 Estimated spectra of the eeg sleep state data in Table 23.1 based on the scaling in (23.1)
[solid line] and on the scaling in (23.2) [dashed line]. The peaks in each correspond to a frequency
of one cycle every 60 min

The intuition used in the previous example is lost when one considers a long
nucleotide DNA sequence. Briefly, a DNA strand can be viewed as a long string of
linked nucleotides. Each nucleotide is composed of a nitrogenous base, a five carbon
sugar, and a phosphate group where four different bases can be grouped by size,
the pyrimidines, thymine (T) and cytosine (C), and the purines, adenine (A), and
guanine (G). The nucleotides are linked together by a backbone of alternating sugar
and phosphate groups with the 5′ carbon of one sugar linked to the 3′ carbon of the
next, giving the string direction. DNA molecules occur naturally as a double helix
composed of polynucleotide strands with the bases facing inward. The two strands
are complementary, so it is sufficient to represent a DNA molecule by a sequence of
bases on a single strand. Thus, a strand of DNA can be represented as a sequence of
letters, termed base pairs (bp), from the finite alphabet {A,C,G,T}. The order of the
nucleotides contains the genetic information specific to the organism. Expression of
information stored in thesemolecules is a complexmultistage process. One important
task is to translate the information stored in the protein-coding sequences (CDS) of
the DNA. A common problem in analyzing long DNA sequence data is in identifying
CDS that are dispersed throughout the sequence and separated by regions of non-
coding (which makes up most of DNA). Table 23.2 shows part of the Epstein–Barr
virus (EBV) DNA sequence. The entire sequence consists of over 172,000 bp.

Frequently, geneticists scale according to the purine–pyrimidine alphabet, A =
G = 0 and C = T = 1, but this is not necessarily of interest for every nucleotide
sequence. There are numerous other alphabets of interest, for example, one might
focus on the strong–weak hydrogen bonding alphabet S = {C,G} = 0 and W =
{A,T} = 1; the bpC and G have a strong hydrogen bonding interactionwhereasA and
T have a weak bonding. In addition, there is no compelling theory that states that any
reduction alphabet should be considered. While model calculations as well as exper-
imental data strongly agree that some kind of periodic signal exists in certain—this
is DNA sequence, there is a large disagreement about the exact type of periodicity.
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Table 23.2 Part of the Epstein–Barr virus (EBV) DNA sequence (read across and down)
AGAATTCGTC TTGCTCTATT CACCCTTACT TTTCTTCTTG CCCGTTCTCT TTCTTAGTAT

GAATCCAGTA TGCCTGCCTG TAATTGTTGC GCCCTACCTC TTTTGGCTGG CGGCTATTGC

CGCCTCGTGT TTCACGGCCT CAGTTAGTAC CGTTGTGACC GCCACCGGCT TGGCCCTCTC

ACTTCTACTC TTGGCAGCAG TGGCCAGCTC ATATGCCGCT GCACAAAGGA AACTGCTGAC

ACCGGTGACA GTGCTTACTG CGGTTGTCAC TTGTGAGTAC ACACGCACCA TTTACAATGC

ATGATGTTCG TGAGATTGAT CTGTCTCTAA CAGTTCACTT CCTCTGCTTT TCTCCTCAGT

CTTTGCAATT TGCCTAACAT GGAGGATTGA GGACCCACCT TTTAATTCTC TTCTGTTTGC

ATTGCTGGCC GCAGCTGGCG GACTACAAGG CATTTACGGT TAGTGTGCCT CTGTTATGAA

ATGCAGGTTT GACTTCATAT GTATGCCTTG GCATGACGTC AACTTTACTT TTATTTCAGT

TCTGGTGATG CTTGTGCTCC TGATACTAGC GTACAGAAGG AGATGGCGCC GTTTGACTGT

TTGTGGCGGC ATCATGTTTT TGGCATGTGT ACTTGTCCTC ATCGTCGACG CTGTTTTGCA

GCTGAGTCCC CTCCTTGGAG CTGTAACTGT GGTTTCCATG ACGCTGCTGC TACTGGCTTT

CGTCCTCTGG CTCTCTTCGC CAGGGGGCCT AGGTACTCTT GGTGCAGCCC TTTTAACATT

In addition, there is disagreement about which nucleotide alphabets are involved in
the signals, e.g., compare [6, 12].

Ifwe consider the naive approach of arbitrarily assigning numerical values (scales)
to the categories and then proceeding with a spectral analysis, the result will depend
on the particular assignment of numerical values. The obvious problem of being arbi-
trary is illustrated as follows: Suppose we observe the sequence ATCTACATG . . . ,
then using the purine–pyrimidine alphabet A = G = 0 and C = T = 1 yields the
numerical sequence 011 101 010 . . ., which is not very interesting. However, if we
used the strong–weak bonding alphabet, W = {A,T} = 0 and S = {C,G} = 1, then
the sequence becomes 001 001 001 . . ., which is very interesting.

In addition, if one considers the sequence {G,A,T,A,G,A,T,A, . . .}, it is repeat-
ing every four bp (G, A, T, A, …). But, the sequence is also repeating every two bp if
we consider the sequence in terms of not-A [!A] and A, (!A,A, !A,A, . . . ). It should
be clear then that one does not want to focus on only one scaling. Instead, the focus
should be on finding scalings that bring out all of the interesting features in the data.
Rather than choose values arbitrarily, the spectral envelope approach selects scales
that help emphasize any periodic feature that exists in a categorical time series of
virtually any length in a quick and automated fashion. In addition, the technique can
help in determiningwhether a sequence ismerely a random assignment of categories.

23.2 Spectral Envelope

As a general description, the spectral envelope is a frequency based, principal com-
ponents technique applied to a multivariate time series. In this section, we review the
basic concept and its use in the analysis of categorical time series. Technical details
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can be found in [17]. In addition, various extensions and applications may be found
in [8, 18].

In establishing the spectral envelope for categorical time series, we addressed the
basic question of how to efficiently discover periodic components in categorical time
series. Let {Xt ; t = 0,±1,±2, . . .} be a categorical-valued time series with finite
state-space C = {c1, c2, . . . , ck+1}. Assume that Xt is stationary and p j = Pr{Xt =
c j } > 0 for j = 1, 2, . . . , k + 1. For β = (β1, β2, . . . , βk+1)

′ ∈ R
k+1, denote by

Xt (β) the real-valued stationary time series corresponding to the scaling that assigns
the category c j the numerical value β j , for j = 1, 2, . . . , k + 1. Our goal was to
find scalings β so that the spectral density, f (ω;β), assuming it exists, of the scaled
process is in some sense interesting, and to summarize the spectral information by
what we called the spectral envelope.

We choose β to maximize the power (variance) at each frequency ω, across fre-
quencies ω ∈ (0, 1/2], relative to the total power σ 2(β) = var{Xt (β)}. That is, we
choose β(ω), at each ω of interest, so that

λ(ω) = sup
β �∝1

{
f (ω;β)

σ 2(β)

}
,

where 1 is the (k + 1) × 1 vector of ones. Note that λ(ω) is not defined if β ∝ 1
because such scalings correspond to assigning each category the same value; in
this case, f (ω; β) ≡ 0 and σ 2(β) = 0. The optimality criterion λ(ω) possesses the
desirable property of being invariant under location and scale changes of β.

As in most scaling problems for categorical data, it was useful to represent
the categories in terms of the vectors e1, e2, . . . , ek+1, where e j represents the
(k + 1) × 1 vector with a one in the j th row, and zeros elsewhere. We then defined
a (k + 1)-dimensional stationary time series Y t by Y t = e j when Xt = c j . The
time series Xt (β) can be obtained from the Y t time series by the relationship
Xt (β) = β ′Y t . Assume that the vector process Y t has a continuous spectral den-
sity matrix denoted by fY (ω). For each ω, fY (ω) is a (k + 1) × (k + 1) complex-
valued Hermitian matrix. Note that the relationship Xt (β) = β ′Y t implies that
fY (ω; β) = β ′ fY (ω)β = β ′ f reY (ω)β, where f reY (ω) denotes the real part of fY (ω).
The optimality criterion can thus be expressed as

λ(ω) = sup
β �∝1

{
β ′ f reY (ω)β

β ′Vβ

}
, (23.3)

where V is the variance–covariancematrix ofY t .The resulting scalingβ(ω) is called
the optimal scaling.

In this case, Y t is a multivariate point process and any particular component of
Y t is the individual point process for the corresponding state (for example, the first
component of Y t indicates whether or not the process is in state c1 at time t). For
any fixed t , Y t represents a single observation from a simple multinomial sampling
scheme. It readily follows that V = D − p p′, where p = (p1, . . . , pk+1)

′, and D
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is the diagonal matrix D = diag{p1, . . . , pk+1}. Since, by assumption, p j > 0 for
j = 1, 2, . . . , k + 1, it follows that rank(V ) = k with the null space of V being
spanned by 1. For any (k + 1) × k full rank matrix Q whose columns are linearly
independent of 1, Q′V Q is a k × k positive definite symmetric matrix.

With the matrix Q as previously defined, define λ(ω) to be the largest eigenvalue
of the determinantal equation

|Q′ f reY (ω)Q − λQ′V Q| = 0,

and let b(ω) ∈ R
k be any corresponding eigenvector, that is,

Q′ f reY (ω)Qb(ω) = λ(ω)Q′V Qb(ω).

The eigenvalue λ(ω) ≥ 0 does not depend on the choice of Q. Although the eigen-
vector b(ω) depends on the particular choice of Q, the equivalence class of scalings
associated with β(ω) = Qb(ω) does not depend on Q. A convenient choice of Q is
Q = [ Ik | 0k ]′, where Ik is the k × k identity matrix and 0k is the k × 1 vector of
zeros. For this choice, Q′ f reY (ω)Q and Q′V Q are the upper k × k blocks of f reY (ω)

and V , respectively. This choice corresponds to setting the last component of β(ω)

to zero.
The value λ(ω) itself has a useful interpretation; specifically, λ(ω)dω represents

the largest proportion of the total power that can be attributed to the frequencies
ωdω for any particular scaled process Xt (β), with the maximum being achieved by
the scaling β(ω). Because of its central role, λ(ω) was defined to be the spectral
envelope of a stationary categorical time series.

The name spectral envelope is appropriate since λ(ω) envelopes the standardized
spectrum of any scaled process. That is, given any β normalized so that Xt (β) has
total power one, f (ω;β) ≤ λ(ω) with equality if and only if β is proportional to
β(ω). That is, for any scaling of the categories, the standardized spectral density of a
scaled sequence is no bigger than the spectral envelope, with equality only when the
numerical assignment is proportional to the optimal scaling, β(ω). The importance
of this fact is demonstrated in Fig. 23.3.

Although the law of the process Xt (β) for any one-to-one scaling β completely
determines the lawof the categorical process Xt , information is lostwhenone restricts
attention to the spectrum of Xt (β). Less information is lost when one considers the
spectrum of Y t . Dealing directly with the spectral density fY (ω) itself is somewhat
cumbersome since it is a function into the set of complex Hermitian matrices. Alter-
natively, one can view the spectral envelope as an easily understood, parsimonious
tool for exploring the periodic nature of a categorical time series with a minimal loss
of information.

The constraint that β(ω) is real valued leads to restricting attention to the real
part of the spectrum as seen in (23.3). If we allow complex-valued scalings, then
we would concentrate on the latent roots and vectors of the complex-valued spectral
matrix function, fY (ω). In this case, the problem is related to principal component
analysis or canonical analysis of time series in the spectral domain as discussed in
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Fig. 23.3 Demonstration of the spectral envelope: The short dashed line indicates a spectral density
corresponding to some scaling. The long dashed line indicates a spectral density corresponding to
a different scaling. The solid line is the spectral envelope, which can be thought of as throwing a
blanket over all possible spectral densities corresponding to all possible scalings of the sequence.
Because the spectral density of the first scaling attains the value of the spectral envelope at frequency
0.1, the corresponding scaling is optimal at that frequency. The spectral density of the second scaling
is near the spectral envelope at frequency 0.35, hence the corresponding scaling is near-optimal, but
can be improved. In addition to finding interesting frequencies (e.g., there is something interesting
at frequency 0.2 that neither scaling 1 or 2 discovers), the spectral envelope reveals frequencies for
which nothing is interesting (e.g., no matter which scaling is used, there is nothing interesting in
this sequence at frequencies below 0.05)

[3]. Although in [3], the problem is formulated in terms of data compression, the
problems are similar and the relationship is discussed in more detail in [18]. As a
note, we mention that this technique is not restricted to the use of sinusoids. In [16],
the use of theWalsh basis of square-wave functions that take only the values±1 only
is described.

If we observe a finite realization of the stationary categorical time series Xt or,
equivalently, the multinomial point process Y t , for t = 1, . . . , n, the theory for esti-
mating the spectral density of a multivariate, real-valued time series is well estab-
lished and can be applied to estimating fY (ω), the spectral density matrix of Y t .
Given an estimate f̂ Y (ω) of fY (ω), estimates λ̂(ω) and β̂(ω) of the spectral enve-
lope, λ(ω), and the corresponding scalings, β(ω), can then be obtained. Estimation
is discussed briefly in the next section.
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23.2.1 Estimation

In view of the dimension reduction mentioned in the previous section, the easiest
way to estimate the spectral envelope is to fix the scale of the last state at 0, and then
select the indicator vectors to be k-dimensional (which we will assume henceforth).
That is, to estimate the spectral envelope and the optimal scalings given a station-
ary categorical sequence, {Xt ; t = 1, . . . , n}, with state-space C = {c1, . . . , ck+1},
perform the following tasks.

• Form k × 1 vectors {Y t , t = 1, . . . , n} as follows:

Y t = e j if Xt = c j , j = 1, . . . , k;
Y t = 0 if Xt = ck+1,

where now e j is a k × 1 vector with a 1 in the j th position as zeros elsewhere, and
0 is the k × 1 vector of zeros.

• Calculate the (fast) Fourier transform of the data,

d(ω j ) = n−1/2
n∑

t=1

Y t exp(−2π i t j/n).

Note that d(ω j ) is a k × 1 complex-valued vector. Calculate the periodogram,
In(ω j ) = d(ω j )d

∗(ω j ), for j = 1, . . . , 
n/2�, where ∗ denotes conjugate trans-
pose.

• Smooth the periodogram as preferred to obtain f̂Y (ω), a consistent estimator, and
retain the real part of the spectralmatrix estimate. Time series texts such as [14] that
cover the spectral domain have an extensive discussion on consistent estimation
of a spectral density. Most spectral density estimators can be written in the form

f̂Y (ω) =
∫ 1/2

−1/2
Kn(ω − λ)In(λ)dλ,

where Kn(ω) is the spectral window, Kn(ω) = 1
bn
K ( ω

bn
) for the chosen kernel K .

The integral is typically approximated by a sum, and the amount of smoothing is
controlled by the bandwidth, bn , of the window.

• Calculate the k × k covariance matrix of the data, S = n−1 ∑n
t=1(Y t − Y)(Y t −

Y)′, where Y is the sample mean of the data.
• For each ω j = j/n, for j = 1, . . . , 
n/2�, determine the largest eigenvalue and
the corresponding eigenvector of the matrix 2n−1S−1/2 f̂ reY (ω j )S−1/2. Note that
S−1/2 is the inverse of the unique square root matrix of S.

• The sample spectral envelope λ̂(ω j ) is the eigenvalue obtained in the previous
step. If b(ω j ) denotes the eigenvector obtained in the previous step, the optimal
sample scaling is β̂(ω j ) = S−1/2b(ω j ); this will result in k-values, the (k + 1)-st
value being held fixed at zero.
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Any standard programming language can be used to do the calculations. The R
package astsa [15], which supports the text [14], includes a script that calculates
the spectral envelope as well as additional scripts to handle various types of data
files.

Under the conditions for which f̂Y (ω) has an asymptotic distribution (e.g., see
[3]), if λ(ω) is a distinct root (which implies that λ(ω) > 0), then, independently, for
any collection of Fourier frequencies {ωi ; i = 1, . . . , M}, M fixed, and for large n
and ν2

n ∼ n bn (as n, νn → ∞ but bn → 0),

νn
λ̂(ωi ) − λ(ωi )

λ(ωi )
∼ AN(0, 1). (23.4)

For example, when estimation is accomplished by a symmetric moving average of
the periodogram,

f̂ Y (ω) =
rn∑

q=−rn

hq In(ω j+q), (23.5)

where {ω j+q; q = 0,±1, . . . ,±rn} is a band of frequencies and ω j is the funda-
mental frequency closest to ω, and such that the weights satisfy hq = h−q ≥ 0 and∑rn

q=−rn
hq = 1, then

ν−2
n =

rn∑
q=−rn

h2q .

If a simple average is used, hq = 1/(2rn + 1), then ν2
n = (2rn + 1) and the bandwidth

is bn = ν2
n/n. Based on these results, asymptotic normal confidence intervals and

tests for λ(ω) can be readily constructed.
Significance thresholds for consistent spectral envelope estimates can easily be

computed using the following approximations. Using a first-order Taylor expansion
we have

log λ̂(ω) ≈ log λ(ω) + λ̂(ω) − λ(ω)

λ(ω)
,

so that (n, νn → ∞, bn → 0)

νn[log λ̂(ω) − log λ(ω)] ∼ AN(0, 1). (23.6)

It also follows that E[log λ̂(ω)] ≈ log λ(ω) and var[log λ̂(ω)] ≈ ν−2
n . If there is no

signal present in a sequence of length n, we expect λ( j/n) ≈ 2/n for 1 < j < n/2,
and hence approximately (1 − α) × 100% of the time, log λ̂(ω) will be less than
log(2/n) + (zα/νn) where zα is the (1 − α) upper tail cutoff of the standard normal
distribution. Although this method is a bit crude, from our experience, thresholding
at very small α-levels (say, α = 10−4 to 10−6, depending on the size of n) works
well.
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Finally, we mention that inference for estimators of the scaling vectors β(ω) is
discussed in [17, Theorem 3.3]. If f̂Y (ω) is a consistent spectral estimator and if for
each i = 1, . . . , M the largest root of f reY (ωi ) is distinct, then

νn[β̂(ωi ) − β(ωi )] ∼ AN(0, 	i ),

independently for i = 1, . . . , M . The asymptotic covariance structure is given by
	i = V−1/2
i V−1/2, where


i = {λ(ωi )H(ωi )
+ f reY (ωi )H(ωi )

+ − a(ωi )a(ωi )
′}/2,

withH(ωi ) = f reY (ωi ) − λ(ωi )Ik−1, and a(ωi ) = H(ωi )
+ f imY (ωi )V 1/2b(ωi ),where

H(ωi )
+ refers to the Moore–Penrose inverse of H(ωi ). The vector b(ω) is a normal-

ized version ofβ(ω) chosen so that b(ω)′V−1b(ω) = 1 and the first non-zero element
of V 1/2b(ωi ) is positive. Notice that the distribution of the scaling vectors depends on
the imaginary part of the spectral matrix, however, some simplified approximations
are given in [17].

23.2.2 An Example

As a simple example of the kind of analysis that can be accomplished, we consider
the gene BNRF1 (3954 bp long) from EBV. Since we are considering the nucleotide

0.0 0.1 0.2 0.3 0.4 0.5

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

frequency

Sp
ec

tra
l E

nv
el

op
e 

(%
)

Fig. 23.4 Sample spectral envelope of the gene BNRF1 (3954 bp long) from EBV. There is a large
peak in the spectrum at the period of 3 bp
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Fig. 23.5 Dynamic spectral envelope estimates for the BNRF1 gene of the EBV based on blocks of
500 bp. The horizontal axis indicates the location of the 500 bp blocks used to calculate the spectral
envelope. Darker regions indicate larger values of the spectral envelope

sequence consisting of four bp, we use the following indicator vectors to represent
the data:

Y t = (1, 0, 0)′ if Xt = A; Y t = (0, 1, 0)′ if Xt = C;
Y t = (0, 0, 1)′ if Xt = G; Y t = (0, 0, 0)′ if Xt = T,

so that the scale for the thymine nucleotide, T, is set to zero. Figure23.4 shows the
spectral envelope estimate of the entire coding sequence. The figure also shows a
strong signal at frequency 1/3; the corresponding optimal scaling is A = 0.27,C =
0.56,G = 0.79,T = 0.0, which indicates the signal is not in terms of any alphabet
that collapses the nucleotides such as the purine–pyrimidine (0-1) alphabet, which
biotechnologists tend to use, would lead to wrong conclusions.

Figure23.5 shows a dynamic spectral envelopewith a block size of 500. Evidently,
even within small segments of the gene, it is not homogeneous. There is, however, a
basic cyclic pattern that exists through most of the gene as evidenced by the peak at
ω = 1/3 except at the end of the gene. In the next section, we will develop a less ad
hoc method.

23.3 Local Analysis

Let a categorical-valued time series {Xt ; t = 1, . . . , n} consist of an unknown num-
ber of segments, m, and let ξ j be the unknown location of the end of the j th
segment, j = 0, 1, . . . ,m, with ξ0 = 0 and ξm = n. Then conditional on m and
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ξ = (ξ0, . . . , ξm)′, assume that the process {Xt } is piecewise stationary. That is,

Xt =
m∑
j=1

Xt, j 1t, j , (23.7)

where, for j = 1, . . . ,m, the indicator processes Y t, j corresponding to Xt, j have
spectral density fj (ω) that may depend on parameters, and 1t, j = 1 if t ∈ [ξ j−1 +
1, ξ j ] and 0 otherwise. The piecewise assumption is not very restrictive because
slowly varying series may be approximated by a piecewise process, e.g., see [1].

23.3.1 Local Whittle Likelihood

An essential part of the local procedure is the calculation of the local likelihood. In
our case, the estimation of the spectral matrix is done nonparametrically via kernel
smoothing. Hence, Whittle’s form of the likelihood (see [22]) suits our analysis
because it depends only on the Fourier transform of the data and a smooth estimate
of the spectral matrix function.

Consider a realization x = {x1, . . . , xn} from process (23.7), where the break-
points are known. Let n j be the number of observations in the j th segment. We
assume that the spectra are positive definite, and that each n j is large enough for the
localWhittle likelihood to provide a good approximation.Given a partition of the time
series x, the j th segment consists of the observations x j = {xt : ξ j−1 + 1 ≤ t ≤ ξ j },
j = 1, . . . ,m, with underlying spectral densities fj and Fourier transforms d j eval-
uated at frequencies ωk j = k j/n j , for 0 ≤ k j ≤ n j − 1. For a given partition ξ , the
approximate likelihood of the time series is given by

L( f1, . . . , fm | x, ξ) ≈
m∏
j=1

(2π)−n j/2

×
n j−1∏
k j=0

exp
{
−1

2

[
log | fj (ωk j )| + d∗

j (ωk j ) f
−1
j (ωk j )d j (ωk j )

]}
, (23.8)

where | · | denotes determinant. Conditional on the breakpoints, the local spectral
envelope functions can be defined in terms of the local spectral matrix functions in
an obvious manner.
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23.3.2 Minimum Description Length

Here, we derive an MDL criterion for choosing the best fitting model, where “best”
is defined as the model that enables the best compression of the observed series
x = {x1, . . . , xn}.

There are various versions of the MDL principle as put forth by [10, 11] and the
version adopted here is a two-part code. Let F denote the model and F̂ the fitted
model. In this case, the first part, denoted by C, represents the complexity of the fitted
model F̂ , and the second part, denoted by A, represents the accuracy of the fitted
model F̂ . The idea of theMDL principle is to find the best pair ofC andA so that via
encoding (or compressing), x can be transmitted (or stored) with the least amount
of codelength (or memory). To quantify this idea, let CLF (·) denote the codelength
of an object based on model F . Then we have the decomposition

CLF (x) = CLF (C) + CLF (A | C) (23.9)

for the data x. This approach leads to familiar concepts such as BIC [13] where
model accuracy is measured by the negative of the log-likelihood evaluated at the
estimated parameters, and complexity is based on the number of parameters in the
model and the sample size.

For the complexity term in (23.9), we must consider the various parameters
of the model, which includes the number of segments, m; the change points,
ξ = (ξ1, . . . , ξm); and the individual bands in each segment, B1, . . . , Bm where
Bj ∼ n jbn j for j = 1, . . . ,m is the number of frequencies included in the smoothing
band for segment j as described in (23.5). In this case, we have

CLF (C) = CLF (m) + CLF (ξ1, . . . , ξm | m) + CLF (B1, . . . , Bm | m, ξξξ). (23.10)

The values Bj determine the number of distinct bands of frequencies for which f j (ω)

is estimated. We mention that [5] presented a method based on [10] to choose the
bandwidth via stochastic complexity and MDL in the case of stationarity. However,
their approach is rarely used because it is overly complex and involves putting a prior
on the value of spectral density in each band, which in turn depends on the bandwidth
and leads to a somewhat circular argument.

To evaluate (23.10), the codelength for an integerm is log2 m bits. For the second
term, we note that knowledge of the breakpoints, ξ j , is equivalent to knowledge of
the number of observations in segment j , namely, n j . Noting that the n j are bounded
by the number of observations, n, we have a bound, CLF (n j ) = log2 n so that

CLF (ξ1, . . . , ξm | m) = CLF (n1, . . . , nm | m) = m log2 n.

Each bandwidth value will cost about log2 Bj bits. In addition, the bandwidth in
each segment j = 1, . . . ,m is determined bymaximizing the likelihood based on the
segment data of n j observations. For this, we can use a result of Rissanen that states
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a maximum likelihood estimate of p parameters computed from n j observations can
be effectively encoded with 1

2 p log2 n j bits, making the third term

CLF (B1, . . . , Bm | m, ξξξ) = log2 Bj + p

2

m∑
j=1

log2 n j ,

where, in this case, p is the number of parameters in the spectral matrix. For a
k-dimensional spectral matrix, there are k real-valued parameters on the diagonal
and k(k − 1)/2 complex-valued parameters on the lower off-diagonals, each with
one real and one imaginary part (the upper off-diagonals are the conjugates); hence,
p = k + k(k − 1) = k2 .

For the second term in (23.9), it is shown in [11] that the codelength of the accuracy
term, A, is the negative of the log2 likelihood of the fitted model C. In our case, we
use the Whittle likelihood approximation given in (23.8).

Combining the results and working with natural log instead of base 2, we obtain
an approximation to the MDL of the model,

MDL = logm + m log n +
m∑
j=1

log Bj + k2

2

m∑
j=1

log n j

+
m∑
j=1

{n j

2
log(2π) + 1

2

n j−1∑
k j=0

[
log | fj (ωk j )| + d∗

j (ωk j ) f
−1
j (ωk j )d j (ωk j )

]}
.

(23.11)

23.3.3 Optimization via Genetic Algorithm

Because the search space is enormous and optimization is a nontrivial task, we use
a GA to effectively tackle the problem. A tutorial may be found in [21]. In addition,
MATLAB has a toolbox with supporting videos demonstrating GAs that are also
good references (see [7]). Our GA is similar to the one specified in [4] who used it
to fit local autoregressions to nonstationary univariate time series.

Briefly, GAs are a class of iterative optimizationmethods that use the principles of
evolutionary biology. The algorithm typically beginswith some initial randomly cho-
sen population and each generation afterward produces an offspring population using
genetic operators. Genetic operators include selection, recombination or crossover,
and mutation, which are based on the principle of natural selection to find the best
solutionwhile using the principle of diversity to avoid convergence to a localminima.

• Selection operators are used to select which offspring survive to the next gener-
ation. It is crucial that the fitter individuals are not kicked out of the population,
while at the same time diversity should be maintained in the population. Trunca-
tion is the simplest selection operator which simply chooses the fittest individuals
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Fig. 23.6 Flow chart of a Genetic Algorithm. The algorithm typically begins with an initial ran-
domly chosen population. Afterward, each generation produces an offspring population using
genetic operators. Selection operators are used to select which offspring survive to the next genera-
tion. Recombination operators, often referred to as Crossover, are used to mix two or more parents
to produce similar, but slightly different offspring. Mutation operators are used to further preserve
the diversity of a population to ensure convergence to an optimum

from the parent and offspring population. Tournament selection is another selec-
tion operator that randomly sorts the individuals into blocks and chooses the best
individual from each block. In Age-Based Selection, there is not a notion of a fit-
ness but it is based on the premise that each individual is allowed in the population
for a finite generation where it is allowed to reproduce and then it is kicked out
of the population no matter how fit. In Fitness-Based Selection, the children tend
to replace the least fit individuals in the population. The selection of the least fit
individuals may be done using a variation of any of the selection policies described
before, e.g., tournament selection.

• Recombination operators, often referred to as crossover, are used to mix two or
more parents to produce similar, but slightly different offspring. Most crossover
operators convert the individual into binary representation to perform the opera-
tions. One-point crossover crosses the binary digits at some crossover point of two
parents to create two new individuals.

• Mutation operators are used to further preserve the diversity of a population to
ensure convergence to an optimum.A simple type ofmutation involves the addition
of a number chosen from a standard normal. Another type of mutation known as
flip bit also performs operations on the binary representation of a number where
each bit in the representation has some probability of being mutated.

A flow chart of a GA is shown in Fig. 23.6. We give explicit details of the GA we
used in the next example.
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23.3.4 Another Example

Here, we focus on an analysis of the CDS BNRF1 of EBV, which is roughly 4000 bp
long. We selected a subsequence of length n = 1000 starting at bp 2500 of the CDS.
We choose this section because we know from previous experience (see [18]) that,
while most of the CDS contains a signal of period 3, there is a part that appears to
be noise. We kept the choice of kernel and corresponding bandwidth simple in that
we used the modified Daniell kernel (which is the default in R) with two passes, but
allowing the bandwidth to grow. TheDaniell kernel corresponds to simple averaging.
The modified version simply puts half weights at the ends. For example, if r = 1
in (23.5), the modified Daniell weights are (1/4, 1/2, 1/4). Passing those again yields
weights (1/16, 4/16, 6/16, 4/16, 1/16). If one thinks of the first set of weights as a discrete
distribution of a random variable with support {−1, 0, 1}, then the second pass is the
distribution of the sum of two independent random variables with that distribution.
Thus, in the GA, the value of r in a segment is allowed to grow. In this case, we
used an approximation suggested by [19] to obtain the size of the band of the kernel
in segment j as Bj = ν2

r j in the notation surrounding (23.5). In the case of simple
averaging, we have Bj = 2r j + 1.

There are many variations of a GA. For this example, we implemented an Island
Model, where instead of running only one search in one giant population, we simulta-
neously run N I (Number-of-Islands) canonicalGAs in N I different sub-populations.
The key feature is that a number of individuals aremigrated among the islands accord-
ing to some migration policy. The migration can be implemented in numerous ways
(e.g., see [2]) and here we adopted the migration policy that after every Mi genera-
tions, the worst MN chromosomes from the j th island are replaced by the best MN

chromosomes from the ( j − 1)-st island, for j = 1, . . . , N I . For j = 1, the best MN

chromosomes are migrated from the N I th island. Here, we used N I = 40, Mi = 5,
MN = 2, and a sub-population size of 40.

Chromosome Representation: The performance of a GA depends on how a pos-
sible solution is represented as a chromosome. For our problem, the chromosome
carries complete information for any model F , i.e., the number of segments m,
the breakpoints ξ j , and the segment bands Bj . Once these parameters are speci-
fied, the Whittle likelihood is uniquely determined. For our problem, a chromosome
δ = (δ1, . . . , δn) is of length n with gene values δt defined as δt = −1 if there is not a
breakpoint at position t , and δt = Bj if t = ξ j−1 and the band of the j th piece is Bj .
Furthermore, any band size, Bj , is limited to P0 = 2r0 + 1 = 21 (or 10 fundamental
frequencies on either side of the center frequency) and a minimum span on the n j ,
ranging from 30 to 70, is specified depending on the size of the band.

Initial Population Generation: The GAs started with an initial population of ran-
dom chromosomes, and the following strategy was used to generate each of them.
First, select a value for B1 ∈ {0, . . . , P0} with equal probabilities and set δ1 = B1.
Then the next n j1 − 1 genes δ2, . . . , δn j1

are set to −1 so that the minimum span
constraint is imposed for this first piece. The next gene δn j1+1 in line will either be
initialized as a breakpoint with probability π , or it was assigned −1 with probability
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1 − π . If it is to be initialized as a breakpoint, then we set δn j1
= r2, where r2 is ran-

domly drawn from {0, . . . , P0}. Otherwise, if δnn1 is assigned −1, the initialization
process will move to the next gene in line and decide if this gene should be a break-
point gene. This process continues in a similar fashion, and a random chromosome
is generated when the process hits the last gene δn . In the example, we set π = 10/n
where n is the length of the sequence.

Crossover and Mutation: Once a set of initial random chromosomes is generated,
new chromosomes are generated by either a crossover or a mutation operation. In
our implementation, we set the probability for conducting a crossover operation as
1 − π . For the crossover operation, two parent chromosomes are chosen from the
current population. The parents are chosen with probabilities inversely proportional
to their ranks sorted by their MDL values so that chromosomes having smaller MDL
values have a higher chance of being selected. From these two parents, the gene
values δt of the child chromosome are inherited as follows. First, δ1 will take on the
corresponding value from either the first or second parent with equal probabilities. If
the value is −1, then the same gene-inheriting process will be repeated for the next
gene in line. Otherwise, the bandwidth is that of the current piece with the minimum
span constraint imposed. The same gene-inheriting process will be applied to the
next available δt .

For mutation, one child is reproduced from one parent. The process starts with
t = 1 and every δt can take on one of the following three values: (i) with probability
πr it will take the corresponding δt value from the parent, (ii) with probability πN it
will take the value −1, or (iii) with probability 1 − πr − πN , it will take a randomly
generated bandwidth (subject to the constraints). In our example in the next section,
we set πr = πN = .3.

Declaration of Convergence: In our example, we use the Island Model in which
migration is allowed for every Mi = 5 generations. At the end of each migration,
the overall best chromosome is noted. If this best chromosome does not change for
10 consecutive migrations, or the total number of migrations exceeds 20, this best
chromosome is taken as the solution to this optimization problem.

The GA found two breakpoints at t = 456 and 851. Figure23.7 shows the esti-
mated spectral envelope for each of the three segments as well as for the entire
sequence along with significance thresholds. The segment locations appear in the
upper right of each plot and the significance threshold used in the figure is 0.0001 for
all plots. The first segment shows the typical 3 bp cycle, which was seen in the first
example usingHVS-BNRF1 and again in the spectral envelope of the entire sequence
shown at the bottom right (marked “ALL”). The large values near the zero frequency
appear to indicate fractional noise, which is not unusual for DNA sequences, e.g.,
see [20]. The second and third segments appear to be noise, but the variability in
the third segment is slightly larger than the second; in addition, there appears to be
fractional noise in the third segment.

The sleep data used in the introduction is included in the R package astsa
[15] and it is from the third subject included in the data frame sleep1. The DNA
sequences used throughout this paper may be found online at the National Center
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Fig. 23.7 The estimated spectral envelopes for the various segments found by the genetic algorithm
in a section of 1000 bp of EBV-BNRF1. The values in the upper right corner are the locations of the
segments. The horizontal dashed lines are 0.0001 significance threshold as discussed after (23.6).
The graphic on the bottom right is the spectral envelope for the entire 1000 bp and the corresponding
threshold is the 0.0001 level

for Biotechnology Information (NCBI). The EBV sequence may be found at [9].
The EBV sequence is also included as a dataset in astsa as is the CDS BNRF1 (as
bnrf1ebv).
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Chapter 24
Topological Inference on
Electroencephalography

Yuan Wang

Abstract Statistical inference of electroencephalography (EEG) from diverse clin-
ical groups often requires considerable technicality and computational power. Moti-
vated by topological data analysis,we now take a newanalytical angle onEEGsignals
by characterizing their shape with persistent homology (PH). This paper reviews our
recent studies where novel statistical inference procedures are developed for PH
features of EEG signals to address clinical questions in brain disorders.

24.1 Introduction

Electroencephalography (EEG) is one of the oldest imaging modalities for recording
electrophysiological activities of the brain. Scalp EEG remains popular in clinical
evaluation and research studies of brain disorders due to its noninvasive nature, high
temporal resolution, and flexibility in setup under various experimental paradigms.
EEG activities of patients with brain disorders such as epilepsy and post-stroke
aphasia are complex due to the variable neuroanatomical damage/malformation and
behavioral symptoms of individual patients. Classical signal processing frameworks
typically transform EEG signals from time domain into spectral domain through
Fourier and wavelet transforms. The physiological artifacts in standard temporal and
spectral features of EEG signals of patients with neuroanatomical impairment can be
difficult to separate from underlying brain processes in resting state or in response to
stimuli of a task [7, 14]. Moreover, standard group analysis on clinical EEG signals
is conducted over temporal or spectral features of signals at a fixed scale, which
is useful when we want to infer local signal differences but not when we want to
incorporate multiscale features in inference.

A new signal processing approach has been advanced through persistent homol-
ogy (PH), a major workhorse of topological data analysis (TDA). The topological
signal processing approach reveals changes of topological structures across different
temporal and spectral scales of signals that are unobservable through the standard

Y. Wang (B)
University of South Carolina, 915 Greene Street, Columbia, South Carolina, USA
e-mail: wang578@mailbox.sc.edu

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
Y. Liu et al. (eds.), Research Papers in Statistical Inference for Time
Series and Related Models, https://doi.org/10.1007/978-981-99-0803-5_24

539

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-0803-5_24&domain=pdf
mailto:wang578@mailbox.sc.edu
https://doi.org/10.1007/978-981-99-0803-5_24


540 Y. Wang

signal processing approach [12, 13, 18, 19]. Current topological signal processing
frameworks either extract topological features from a system of signals with the PH
algorithm after a sliding window embedding [5, 8, 12, 13, 15], or directly decoding
multiscale features in the temporal domain of a signal with the PH algorithm [18,
19]. The former approach has been applied to study financial and video time series,
whereas the latter approach has been almost exclusively applied to study EEG signals
in brain disorders. In the latter approach, the topological evolution of time segments
is summarized through the PH feature persistence landscape (PL) and tests hypothe-
ses on the PLs of signals are based on permuting labels of frequency components
in the signals [18] or layers of the PLs [19]. This topological inference framework
has been shown in simulation studies to stay robust under certain transformations,
such as amplitude translation and frequency scaling of the underlying signal while
maintaining sensitivity to topological tearing in the signals. In comparison, statistical
tests on standard temporal and spectral features, such as local variance and spectral
powers, are empirically sensitive to noisy perturbations and non-topological signal
transforms. In addition, the exact inference on the layers in PLs of signals has been
empirically shown to drastically improve the computational speed over the standard
permutation procedure of randomly permuting frequency components in signals [19].

The studies of [16–22] were motivated by the challenge to perform group analysis
on the EEG signals of a diverse group of individuals with epilepsy or post-stroke
aphasia. In this paper, we provide a coherent review of the methods proposed in
these studies. Section24.2 covers the basics of PH. Section24.3 then shows how this
helps us extract topological features from signals and perform statistical inference
on these features. Section24.4 highlights the rationale behind simulation studies
for evaluating the performance of topological inference methods, while Sect. 24.5
takes stock of interesting applications of these inference methods. Last but not least,
directions for future studies are reiterated in Sect. 24.6.

24.2 Preliminary

In simplicial homology, a topological space is represented by combinatorial struc-
tures of vertices and edges called simplicial complexes. Let v1, . . . , vp be p affinely
independent points in the Euclidean space R

3. Then each of the vertices vi , i =
1, . . . , p, is a simplex of the 0th dimension, or 0-simplex. In general, an (s − 1)-
simplex � for s = 1, 2, . . . , is the convex hull of a subset {vi1 , . . . , vis } of the p
vertices. For instance, an edge joining two vertices is a 1-simplex, a triangle formed
by three edges is a 2-simplex, and a tetrahedron formedby four triangles is a 3-simplex
(Fig. 24.1). A face of� is the convex hull of a nonempty subset of {vi1 , . . . , vis }, e.g.,
the faces of a tetrahedron are its vertices, edges, and triangles. A simplicial complex
K on {v1, . . . , vp} is constructed by attaching its simplices combinatorially: a sim-
plex joinsK when all of its faces have joined and the intersection of two simplices in
the complexK must be a face to each of the simplices. A subcomplex ofK consists
of a subcollection of its simplices attached in the same way.
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Fig. 24.1 Simplices in R3; one point v0 is a 0-simplex, a pair of points v0 and v1 joined by an edge
is a 1-simplex, a triangle formed by three points v0, v1, v2 joined by three edges is a 2-simplex, and
a tetrahedron formed by 4 triangles is a 3-simplex

Suppose we have a simplicial complex K and a real-valued monotone function
f : K → R such that f (τ1) ≤ f (τ2) when τ1 is a face of τ2. The monotonicity of
f implies that the sublevel set K = f −1((−∞, λ]) is a subcomplex of K for any
λ ∈ R. By including faces inK monotonely with respect to a sequence of λ, we filter
through the sequence of subcomplexes of K :

∅ = K0 ⊂ K1 ⊂ · · · ⊂ Km = K,

wherem is bounded by the number of simplices inK . The sequence of subcomplexes
is called a filtration of K and the λ is the filtration value. The filtration induces a
homomorphism chain for each dimension k:

0 = Hk(K0) → Hk(K1) → · · · → Hk(Km) = Hk(K),

where each arrow indicates a homomorphism Hi, j
k between the respective k-

dimensional homology groups Hk(Ki ) and Hk(K j ) ofKi andK j . The k-dimensional
persistent homology group is the image of the homomorphism Hi, j

k for 0 ≤ i ≤
j ≤ m.

The k-dimensional Betti number is defined as

β
i, j
k = rank(Hi, j

k ),

which counts the number of distinct k-dimensional homological features that are
born before or at Ki and die after K j [4]. Betti numbers are topological features at
fixed scales. The power of PH comes through tracking homological features across
scales. If a homological feature of a certain dimension, i.e. cluster or cycle, is born
atKi and dies atK j , then f (K j ) − f (Ki ) is called the persistence of the feature. A
feature that is born at a finite time and never dies is said to have infinite persistence.
Longer persistence indicates a more prominent feature and shorter persistence likely
corresponds to noise [2].
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24.3 Methods

In this section, we describe PH on univariate signals and statistical inference on PH
features of signals.

24.3.1 Persistent Homology on a Signal

The bulk of existing topological signal processing methods extract homological fea-
tures with respect to a sliding window embedding on a system of one-dimensional
signals [5, 8, 12, 13, 15]. The embedding provides a basis for ‘inflating’ the dimen-
sion of the one-dimensional signals so that the standard higher-order homological
features can be extracted from the transformed data. Themethods used in [16–22] for
topological feature extraction is motivated byMorse theory connecting the geometry
and topology of an object through its critical points [9]. Although we can only extract
the 0th-dimensional homological features (clusters of time segments) this way, they
already provide a vast amount of topological information and insight into biomedical
problems.

24.3.1.1 Filtration

We have used two types of filtrations for extracting topological features from a
univariate signal: sublevel-set filtration, featured in [16, 18, 19, 22] and gradient
filtration, featured in [20, 24]. The former filters through a signal vertically, whereas
the latter does not restrict the orientation of filtration.

Sublevel-set filtration. Given a smooth signal h : t ∈ [0, T ] → R, the sublevel set

Kλ := {t ∈ [0, T ]|h(t) ≤ λ} (24.1)

below the horizontal threshold at λ contains time segments corresponding to signal
amplitude/electrical potential at or below the threshold. As the threshold moves up
and hits h(t) at the unique critical points (tc1 , h(tc1)), . . . , (tcM , h(tcM )) satisfying

dh

dt
(tci ) = 0 and

d2h

dt2
(tci ) �= 0, i = 1, . . . , M, (24.2)

time segments emerge and merge in the sublevel set Kλ as the threshold hits local
minimums and maximums respectively. This yields the sublevel-set filtration. The
smoothness condition is easily satisfiedwith smoothingprocedures,which is standard
practice for stabilizing the subsequent analysis. We have used the weighted Fourier
series in our studies for this purpose (see [18] for a detailed account). But we want
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Fig. 24.2 An example of a sublevel-set filtration on a one-dimensional piecewise linear signal. As
the horizontal threshold moves up, the time segments born at local minimums B1, B2, and B3 are
annihilated at the local maximums D1, D2, and D3, respectively according to the Elder Rule

to point out here that the filtration also works directly on the observed signals taken
as piecewise linear functions (Fig. 24.2). Time segments emerge or merge in the
sublevel set Kλ as the horizontal threshold moves up and hits h(t) at the unique
change points (tc1 , h(tc1)), . . . , (tcM , h(tcM )) satisfying

(
h(tc j+1) − h(tc j )

) (
h(tc j ) − h(tc j−1)

)
< 0, j = 1, . . . , M. (24.3)

Note that the M points are the discrete analog of the critical points if the function h
is smooth. A change point (tc j , h(tc j )) is analogous to a local minimum if

h(tc j+1) − h(tc j ) > 0 and h(tc j ) − h(tc j−1) < 0,

and a local maximum if

h(tc j+1) − h(tc j ) < 0 and h(tc j ) − h(tc j−1) > 0.

At amerging juncture, the older of the two time segments lives on and the younger
time segment is annihilated—this is known as the Elder Rule [4]. In other words, a
local minimum where a time segment is born is associated with the birth of the time
segment, whereas a local maximum corresponding to two time segments merging is
associated with the death of the younger time segment.
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Gradient filtration.We have generalized the sublevel-set filtration to filter a signal
with a threshold oriented in an arbitrary direction [20]. By treating the smoothed ĝ
as a two-dimensional curve γg : [0, 1] → R

2, the method quantifies the topological
evolution of the arcs on one side of γg cut off by a straight line, as expressed by the
sublevel set

Kλ := {((t, y) ∈ γg : y + κt ≤ λ}, (24.4)

where y + κt = λ with a fixed gradient −κ ∈ R and increasing intercept λ ∈ R is a
straight line in R2 moving in the direction of increasing λ. Suppose the line touches
the curve γg tangentially at (tc1 , g(tc1)), . . . , (tcM , g(tcM )), i.e. y and t in the line
y + κt = λ that satisfies

y − g(tci ) = g′(tci )(t − tci ), i = 1, . . . , M,

as λ (intercept) of the line increases. The tci , i = 1, . . . , M , are critical points where
the connectedness of the arcs in the sublevel set Kλ changes as the line moves in the
direction of increasing λ (Fig. 24.3 left). Assuming that the line hits at most one g(tci )
at a time, the process yields a sequence of sets of connected arcs ∅ = K0 ⊂ K1 ⊂
· · · ⊂ KM = γg . In otherwords, ifλ1 < λ2 < · · · < λM are the values of the intercept
λ of the line as it hits the tci , i = 1, . . . , M in γg , then Ki = Kλi , i = 1, . . . , M , with

κ = −1

κ = 0

κ = −1

κ = 0

Fig. 24.3 Top and bottom row (right two): Gradient filtration with gradient −κ = 1. The red arcs
form snapshots of the sublevel set in the gradient filtration under different thresholds. As the straight
line moves in the direction of increasing λ (intercept of line), arcs emerge (birth) and merge (death)
in the sublevel set, where we code the corresponding intercepts of the thresholds with the y-axis as
the birth and death times of the arcs. Bottom row (left): The corresponding persistence landscapes
(PLs) of the two filtrations with −κ = 1 and 0
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λ0 = −∞. This process forms a gradient filtration on γg . At a merging junction, a
younger arc dies and an elder arc survives–the Elder Rule. In other words, a critical
point where an arc is born is associated with the birth of the arc, whereas a critical
point corresponding to two arcs merging is associated with the death of the younger
arc. Here, we designate the corresponding intercepts λ as the birth and death times
of the arcs.

In a gradient filtration,we extract the homological information fromγg through the
connectedness of arcs in its sublevel set Kλ to the right of the threshold y + κt = λ.
This is a generalization of the horizontal sublevel-set filtration tracking through
connectedness of time segments corresponding to the signal amplitude/electrical
potential of g(t), t ∈ [0, T ], below the horizontal threshold y = λ [18, 19, 21]. As
λ increases, arcs emerge and merge in the filtration as the threshold y + κt = λ

hits the points (tc1 , g(tc1)), . . . , (tcM , g(tcM )), where the threshold touches the curve
γg tangentially. This is analogous to time segments emerging and merging in the
sublevel-set filtration as the horizontal threshold touches local minimums and max-
imums of the signal.

24.3.1.2 Persistence Descriptors

If a time segment in a sublevel-set filtration or an arc in a gradient filtration is born
at Ki and dies entering K j , then pers(γ ) = λ j − λi is called the persistence of the
time segment or arc. A time segment or an arc that is born at a finite time and never
dies is said to have infinite persistence. A barcode encodes the birth and death times
of time segments or arcs in a collection of bars {(ai , bi )}Li=1, where the length of a bar
corresponds to persistence. A persistence diagram (PD) encodes the birth and death
times as the x and y coordinates of points above the y = x line, where the vertical
drop from a point to the y = x line corresponds to persistence. Barcode and PD do
not possess a natural statistical framework and require additional manipulation in
complex data analysis. The persistence landscape (PL), on the other hand, forms a
separable Banach space and has a well-defined statistical framework [1]. A PL can be
constructed through a PD or barcode. Given a bar (ai , bi ) in a barcode {(ai , bi )}Li=1,
we define the piecewise linear bump function r(ai ,bi ) : R → R by

r(ai ,bi )(λ) = max(min(λ − ai , bi − λ), 0), (24.5)

where λ denotes the filtration value. The PL ν = {ν	 : 1 ≤ 	 ≤ L} of the barcode
{(ai , bi )}Li=1 is then defined as

ν	(λ) =
{

	-th largest value of {r(ai ,bi )(λ)}Li=1 1 ≤ 	 ≤ L ,

0 	 > L ,
(24.6)

thus making ν a multi-valued function. Figure24.4 shows the PL constructed on a
barcode obtained from the sublevel-set filtration in Fig. 24.2, where the PL layers
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Fig. 24.4 An example of a sublevel-set filtration on a one-dimensional piecewise linear function
(left) and the corresponding persistence diagram (black dots), barcode (vertical drops from the black
dots to the y = x line), and persistence landscape (red, blue, and green outlines of the intersecting
bump functions on the barcode)

are the outlines of the bump functions built on the bars of the barcode. Note that
the second and third layers of the PL in Fig. 24.4 trace over the bump functions of
two bars as the bump functions intersect. For 1 ≤ p ≤ ∞, the p-landscape distance
between two PLs ν1 and ν2 is defined as


p(ν
1, ν2) = ||ν1 − ν2||p. (24.7)

The paper [1] showed that PL is stablewith respect to the supremumnorm, as follows.

Theorem 24.1 ([1]; ∞-landscape stability theorem) Let h1, h2 : X → R be real-
valued functions on a topological space X and ν1, ν2 be the corresponding persis-
tence landscapes. Then


∞(ν1, ν2) ≤ ||h1 − h2||∞,

where 
∞ is the ∞-landscape distance and

||h1 − h2||∞ := sup
t∈X

|h1(t) − h2(t)|.

Suppose we have n trials of EEG signals f j , j = 1, . . . , n sampled at t =
t1, . . . , tm ∈ [0, T ], from the underlying waveform g:

f (t) = g(t) + ε, t ∈ [0, T ], (24.8)
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where we assume that the white noise ε follows a Gaussian distribution with mean 0
and variance σ 2. We average across the n trials of EEG signals to obtain an estimate
of g:

ĝn(ti ) := 1

n

n∑

j=1

f j (ti ), i = 1, . . . ,m. (24.9)

By Theorem 24.1, the distance between the PLs of g and its estimate ĝ is bounded
by the distance between g and ĝ:


∞(ν̄ ĝn , ν̄g) ≤ ||̂gn − g||∞. (24.10)

We can thus establish an upper bound for 
∞(ν̄ ĝn , ν̄g) (Corollary 24.1) via the
supremum norm ||̂gn − g||∞ (Theorem 24.2), as follows.

Theorem 24.2 ([22]) Suppose, for any participant s, a signal f j (ti ) is sampled at
fixed time points ti , i = 1, . . . ,m for any j = 1, . . . , n, and

E f j (ti ) = g(ti ),∀i = 1, . . . ,m, j = 1, . . . , n.

Then
lim sup
n→∞

E||̂gn − g||∞ ≤ C,

for C > 0.

Corollary 24.1 ([22]) For the model (24.8) and estimate ĝn defined by (24.9),

lim sup
n→∞

E
∞(ν̄ ĝn , ν̄g) ≤ C,

for C > 0.

24.3.2 Permutation-Based Topological Inference

We have developed two permutation tests for comparing persistence features in two
signals or two groups of signals.

24.3.2.1 Spectral Permutation Test

In [18], we advanced a spectral permutation test based on permuting Fourier coef-
ficients of single-trial signals to resolve an issue of time-based bootstrap breaking
topology of characteristic waveforms related to epileptic seizures. The procedure
begins by denoising/smoothing EEG signals from two clinical phases, i.e. before vs
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during seizure, with weighted Fourier series (WFS) derived from a heat diffusion
problem. Then we extract PLs from the sublevel-set filtration of the denoised signals.
Our goal is to compare the PLs of the denoised signals from the two clinical phases
by testing the equality of the PLs ν1 and ν2 of the two phases:

H0 : ν1 = ν2. (24.11)

Since we have only one epoch in each clinical phase, we require an inference
framework on PLs incorporating a natural resampling approach. Resampling in the
time domain by chopping up the signals would break up characteristic waveforms.
As we estimate the underlying neural processes in the two phases by truncatedWFS,
we resample in the frequency domain by randomly permuting the Fourier coefficients
in the twoWFS respective to their frequency components. Following the resampling
step,we reconstruct twoWFS in the time domain.Wemeasure the difference between
the PLs ν1 and ν2 of the WFS by their L2 distance:

L2(ν
1, ν2) =

(∫ N∑

k=1

|ν1(k, x) − ν2(k, x)|2dx
)1/2

, (24.12)

where N is the larger of the number of layers of the two PLs. For each permutation,
we calculate the L2(ν

1′
, ν2′

) between the PLs ν1′
and ν2′

of the two reconstructed
WFS. We then measure the statistical significance of L2(ν

1, ν2) between the PLs by
comparing it with the empirical distribution of the L2(ν

1′
, ν2′

) from the permutations.
Two phases of a signal are said to be topologically invariant in the statistical sense
if the difference between their PLs is not statistically significant.

This spectral permutation test is obviously limited to single-trial signals and has
recently been extended to multi-trial signals in [23]. An interim approach we devel-
oped for comparing persistence features representing twogroups ofmulti-trial signals
is the exact permutation test [19, 21, 22].

24.3.2.2 Exact Permutation Test of Persistence Features

We adapted an exact inference framework [3] to construct a fast permutation test
for comparing persistence and PLs between two groups of multi-trial EEG signals.
The idea is to apply a combinatorial procedure in computing the exact p-value of
a Komogorov–Smirnov test comparing two monotone increasing functions. It dras-
tically speeds up the permutation test. Two versions of the exact permutation test
exist, with the early version based on the raw areas under the layers of the PLs
[19, 21], and the later version based on the percentiles of the areas under the layers
of the PLs [22]. The early version of the test requires an equal number of layers in the
PLs, which is in practice rarely satisfied, and so would require truncation of layers
in one of the PLs. But it loses information in the truncated PL. The later version,
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on the other hand, resolves the issue through percentiles and can also be used for
comparing persistence in two groups of multi-trial signals.

Exact inference on persistence.We compare the grand average EEG signals of two
groups at each channel through an exact permutation test on their ordered persistence

{
pers11 , . . . , pers

1
L1

}
and

{
pers21 , . . . , pers

2
L2

}
.

By denoting the 	-th percentiles of the two groups of persistence as P̂1
	 and P̂2

	 ,
	 = 1, . . . , L , with L being a pre-specified integer between 1 and 100. We then test
the null hypothesis on the population percentiles

H0 : P1
	 = P2

	 , for all 	 = 1, . . . , L .

The test statistic is
D(ψ1, ψ2) = sup

t
|ψ1(t) − ψ2(t)|, (24.13)

where the monotone step functions ψ1(t) and ψ2(t) come from the observed per-
centiles P̂1

	 and P̂2
	 , 	 = 1, . . . , L:

ψi (t) =
⎧
⎨

⎩

0 if t < P̂ i
1 ,

	 if P̂ i
	 ≤ t < P̂ i

	+1, 1 ≤ 	 < L ,

L if t ≥ P̂ i
L ,

(24.14)

for i = 1, 2. The exact p-value of an observed value d of the test statistic D is given
by

P(D ≥ d) = 1 − B(L , L)
(2L)!
L!L!

, (24.15)

where B(L , L) is computed iteratively as

B(u, v) = B(u − 1, v) + B(u, v − 1)

within the domain |u − v| < d, under the boundary condition B(0, L) =
B(L , 0) = 1.

Exact inference on persistence landscapes. We compare the average PLs of the
two groups through the areas

{
A1
1, . . . , A

1
L1

}
and

{
A2
1, . . . , A

2
L2

}

under the reversely ordered layers of the two average PLs.We test the null hypothesis
on the 	-th population percentiles of these areas
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H0 : P1
	 = P2

	 , for all 	 = 1, . . . , L ,

where L is a pre-specified integer between 1 and 100. This way we compare per-
centiles of the areas under the PL layers [22] instead of the raw areas under the layers
[19, 21], which allows comparing the same number of percentiles in two PLs without
having to truncate the PL with more layers when the two numbers of layers are not
equal. In application, we can use all integer percentiles rather than a select number of
percentiles because we want to include all topological information in the inference
procedure. The test statistic and p-value are computed as (24.13)–(24.15).

Although the exact permutation approach can be used to compare the persistence
features of two groups of signals, it cannot directly permute the labels of the signals,
which is a limitation that the new spectral permutation test [23] has overcome.

24.4 Simulations

Wehave designed the simulation studies in [18, 19, 22] under performance evaluation
criteria developed for topological inference. Standard performance metrics for a
statistical test are the false positive rate and power. For topological inference, wewant
to control the rate of topological false positives while maintaining decent power;
in other words, we require the tests on PLs to stay robust when the underlying
signals have similar PH while staying sensitive to dissimilar PH. We know from
algebraic topology that the homology of a topological space is preserved under
continuous transformation, without tearing or gluing, of the space [6]. Yet, continuity
alone does not guarantee the preservation of PH in the sublevel set of a signal. To
preserve PH, signal transformations also need to respect the pairing of birth and
death times. A theoretical framework for quantifying such transformations under
the sublevel-set and gradient filtrations is still in development, so we only simulate
baseline transformations such as translation and scaling of amplitude and frequency
that are intuitively PH-preserving. On the other hand, it is much easier to construct
transformations that destroy the PH of the signal by introducing discontinuities in
the signal. We only need to introduce tearing in the signal by multiplying the signal
pointwise by a step function with all piecewise time intervals containing at least one
but not all critical points of the signal; in other words, we break up the signal at
a few time points and consecutively push the signal segments in opposite vertical
directions.

We typically simulate up to 1000 sets of signals for the performance evaluation.
For each set of signals, a permutation test is applied to compare the original signal(s)
and their transformed counterpart(s), yielding a p-value. The false positive rate is
calculated as the percentage of p-values that fall under the pre-specified significance
level, e.g., 5%, (detecting a false positive) out of the number of simulated sets of sig-
nals undergoing PH-preserving transformations. Power is calculated as the percent-
age of p-values that fall under the significance level (detecting a true positive) out of
the number of simulated sets of signals undergoing tearing transformations. Under
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these settings, we evaluated the performance of the spectral permutation method
proposed in [18] that tests the equality between the PLs of two signals. The false
positive rates of the proposed tests under amplitude translation and scaling and fre-
quency scaling of a signal stay controlled under the significance level of 5%, while
the power of the proposed test when a signal undergoes tearing stays above 90%.
Results are consistent with the exact permutation test proposed in [19] on signals
simulated under the same settings. We also evaluated the performance of the exact
permutation method proposed in [22] that tests for differences in persistence or PLs
extracted from two groups of multi-trial signals. We simulated sets of multi-trial
signals under the same settings as [18, 19] and the results were largely consistent
with the single-trial simulations.

24.5 Applications

Although our permutation-based topological inference approach has been set up
for univariate tests, we can still obtain significant insight through these tests by
identifying the spatial distribution of neural deficits through mass univariate testing
with adjustment for multiple comparisons. In application to single-trial EEG signals
[18], we obtained the spatial pattern of insignificant p-values computed by counting
the proportion of PLs of reconstructed WFS having L2 distances exceeding that of
the observed PLs before and during seizure and after Bonferroni correction for tests
at 8 channels. The spatial pattern indicates that EEG signals in the epileptogenic
zone before a seizure attack already has similar topological patterns as those during
the seizure, which is consistent with the diagnosis of the left temporal lobe being the
epileptogenic zone. The results were also confirmed by the exact permutation test
applied to the same dataset in [19]. These permutation tests on persistence features
picked up patterns in EEG signalswhichwere overlooked by state-of-the-artmethods
that previously analyzed this same dataset and showed the evolution of the spectral
power and coherence during seizure but not the location of seizure onset [10, 11].
The findings indicate that topological inference may provide a promising metric for
seizure localization.

In application to multi-trial EEG signals recorded under an event-related potential
(ERP) paradigm [21, 22], we used the exact permutation test to compare persistence
features inERP response of individualswith aphasia andhealthy controlswith respect
to speech onset or in response to two auditory feedback stimuli (upward and down-
ward pitch shifts). The application revealed a spatial pattern of topological difference
that highlighted neural deficits in aphasic individuals, with strong topological differ-
ences between the aphasia and control groups in the parietal-occipital and occipital
regions with respect to speech onset. We used here persistence and PL to summarize
the evolution of time segments in the gradient filtration on the ERPs. The spatial
pattern of neural deficits was enhanced in the application of the exact permutation
test on the gradient filtration in [20], with the parietal-occipital and occipital regions
showing significant p-values with respect to speech onset and in response to both
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auditory feedback stimuli. These applications open up a new avenue for quantifying
speech-language deficits through topological studies of concurrent changes in vocal
motor behavior and EEG activity.

Note that our summary of the topological evolution in the single-trial EEG signals
or ERP response provides a unique account of the relationship between temporal and
spectral information across different scales. This enables the persistence and PL tests
to detect systematic differences in multiscale, instead of fixed scale, temporal and
spectral information of signals. In comparison, spectral analysis of the EEG data in
the applications reveals the extensive differences between phases of a seizure attack
or between the aphasia and control groups in a diffused pattern of brain regions,
instead of pointing to a more focused region of difference like the pattern revealed
by the topological analysis.

24.6 Discussion

The topological signal processing and inference approaches reviewed in this paper
provide a basis for investigation beyond univariate signals. For instance, we have
constructed topological correlation out of PLs extracted across gradient filtration
and applied it to study the connectivity of EEG signals recorded in two clinical
phases of epileptic seizures [24]. We have also extended the spectral permutation
test to multi-trial graph signals in [23]. As pointed out in [22], the exact topolog-
ical inference framework drastically improves the average computation time over
standard permutation test, which will facilitate application to a much larger patient
group in the future. The fast computational implementation can be incorporated into
statistical analysis of large-scale clinical EEG signals recorded in week-long clin-
ical monitoring settings. Furthermore, the framework can be used for semi-online
detection of changes in studies such as induced stroke in rats and cognitive studies
on learning.
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Chapter 25
UMVU Estimation for Time Series

Xiaofei Xu, Masanobu Taniguchi, and Naoya Murata

Abstract This paper introduces the sufficiency, completeness, and uniformly min-
imum variance unbiased estimation for Gaussian circular ARMA processes. We
propose a uniformly most powerful (UMP) test by monotone likelihood ratio for
the coefficient parameter of the Gaussian circular AR(1) models. The numerical
study shows good performance of the UMP test with composite null and composite
alternative hypotheses for the Gaussian circular AR(1) models.

25.1 Introduction

Autoregressive moving average (ARMA) model is one of the most important time
series models which account for the serial dependence among the historical, present,
and future values of time series. Dating back to the 1940s, a foundation of infer-
ence for AR-type models has been developed by [7] where the maximum-likelihood
estimators (MLEs) are proved to be consistent. A comprehensive introduction to
estimation and hypothesis testing theories of time series models was given by [2].
See also [3, 4] for more discussion on various univariate and multivariate ARMA
models and their applications in various fields.

Numerous estimators and hypothesis testings for time series models have been
studied in the literature. For independent observations, we refer the readers to [6, 8]
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for a good overview of methods and theories of hypothesis testing. Among them,
the uniformly most powerful (UMP) test, which maximizes the power of all alter-
natives in the class of alternatives even when there is more than one, has been of
interest in the literature. Ideally one would like to use a UMP test. However, the
UMP tests rarely exist in general frameworks with two-sided hypotheses or with
multiparameters (see [8]). A UMP test was proved to exist for certain two-sided
hypotheses problems for one-parameter exponential families (see [6]). Many UMP
testing problems thus reduce to consider one of testings with a simple null hypothesis
against a simple or composite alternative. For the ARMA(p, q) model with obser-
vations {Xt , t = 1, . . . , n} and noises {εt , t = 1, . . . , n}, a circular assumption that
X−� ≡ Xn−� for � = 0, 1, . . . , p − 1 and ε−� ≡ εn−� for � = 0, 1, . . . , q − 1 was
introduced by [1]. In this paper, we introduce the sufficiency, completeness, and
uniformly minimum variance unbiased (UMVU) estimation for Gaussian circular
ARMA processes. Then a UMP test for the coefficient parameter of Gaussian cir-
cular AR(1) models is discussed. Numerical studies show good performance of the
UMP test for the testing problem with composite null and alternative hypotheses.

The rest of the paper is organized as follows. In Sect. 25.2, we introduce a UMVU
estimator which is sufficient and complete for Gaussian circular ARMA models.
In Sect. 25.3, we derive a UMP test with composite null and composite alternative
hypotheses, assuming that the underlying family has monotone likelihood ratio. In
Sect. 25.4, we conduct a numerical simulation to investigate the finite sample perfor-
mance of a UMP test for the Gaussian circular AR(1)models. Section 25.5 concludes
this paper.

25.2 Methodology

Suppose that {Xt , t = 1, . . . , n} is a Gaussian circular ARMA(p, q) process with
zero mean and spectral density fθ (λ), where the parameter vector is denoted by
θ = (θ1, . . . , θd)

� ∈ � ⊂ R
d . Let

I(λ j ) = 1

2πn

∣
∣
∣
∣
∣

n−1
∑

t=0

Xte
−i tλ j

∣
∣
∣
∣
∣

2

,

where λ j = 2π j/n. Under the circular assumption, it was shown in [1] that I(λ j ), for
j = 1, . . . , n, is independently distributed as fθ (λ j )χ

2
2 /2. LettingY j = fθ (λ j )χ

2
2 /2,

we can see that the joint probability density of Yn ≡ (Y1, . . . ,Yn)� is given by

L(θ) =
(√

2π fθ (λ0)I(λ0)

�(n−1)/2�
∏

j=1

fθ (λ j )
)−1

exp

⎧

⎨

⎩
− I(λ0)

2 fθ (λ0)
−

�(n−1)/2�
∑

j=1

I(λ j )

fθ (λ j )

⎫

⎬

⎭
.

Denote the log-likelihood by �(θ) = log L(θ).



25 UMVU Estimation for Time Series 557

Assumption 25.1 �(θ) is differentiable with respect to θk, k = 1, . . . , d, and
∂

∂θk
�(θ) is square-integrable for k = 1, . . . , d.

Suppose that T(Yn) = (T1(Yn), . . . , Td(Yn))
� is an unbiased estimator of θ , i.e.,

E(T(Yn)) = θ , θ ∈ 	.

Then, given a set of values φk, k = 1, . . . , d, with (φ1, . . . , φd)
� ∈ � ⊂ R

d , we
have, for k = 1, . . . , d,

∫ ∞

−∞
Tk(yn)

{ L(θ1, . . . , θk−1, φk, θk+1, . . . , θd) − L(θ)

(φk − θk)L(θ)

}

L(θ)dyn = 1, (25.1)

which, as φk → θk , leads to

∫ ∞

−∞
Tk(yn)

{ ∂

∂θk
log L(θ)

}

L(θ)dyn = 1.

Hence we have

Cov

[

Tk(Yn),
∂

∂θk
log L(θ)

]

= 1, k = 1, . . . , d.

By Schwarz’s inequality,

Vθ (Tk(Yn)) ≥ Fk(θ)−1, k = 1, . . . , d, (25.2)

where Fk(θ) = Vθ (
∂

∂θk
log L(θ)). The equality in (25.2) holds, i.e.,T(Yn) is efficient,

if and only if

T(Yn) = A1(θ)
∂

∂θ
log L(θ) + a2(θ) a.e. (25.3)

for some d × d matrix A1(θ) and d × 1 vector a2(θ).
Integrating (25.3) with respect to θ , and solving this with respect to L(θ), we have

L(θ) = exp
[

G1(θ)�T(Yn) + g2(θ) +U (Yn)
]

a.e.

for some d × 1 vector G1(θ), and scalar-valued g2(θ) and U (Yn). We can see that
T(Yn) is sufficient (see [6, Factorization theorem, p. 54]) and complete (see [6,
Theorem 1, p. 149]).

Note that

I(λ j ) = 1

2π

n−1
∑

l=−n+1

R̂(�)e−i�λ j , (25.4)



558 X. Xu et al.

where R̂(�) = 1

n

n−|l|
∑

t=1

YtYt+|�|.

Let θ = (R(0), . . . , R(d − 1))�, d − 1 ≤ p − q, where R( j) = E(YtYt+ j ) and

Tk(Yn) = 2π

n

n
∑

j=1

eiλ j kY j , k = 1, . . . , d. If Tk(Yn) satisfies (25.3), there exist real-

valued c1, c2, and c3 such that

n
∑

j=1

eiλ j kY j = c1

n
∑

j=1

−1

fθ (λ j )

∂

∂θk
fθ (λ j ) + c2

n
∑

j=1

1

fθ (λ j )
2

∂

∂θk
fθ (λ j )Y j + c3 a.e.

Hence,

eiλ j k = c2
fθ (λ j )

2

∂

∂θk
fθ (λ j ) a.e.

From [5, p. 310], we obtain the following theorem.

Theorem 25.1 Under Assumption 25.1, it holds that

(i) (T1(Yn), . . . , Td(Yn))
� =

(

R̂(0), . . . , R̂(d − 1)
)� say= S.

(ii) S is sufficient and complete.

Remark 25.1 R̂(�) is not unbiased for R(�). However, R̂∗(�) := n

n − |�| R̂(�) is

unbiased for R(�).

Remark 25.2 The conclusion (i i) in Theorem 25.1 is straightforward if we use the
theory of exponential family.

Corollary 25.1
(

R̂∗(0), . . . , R̂∗(d − 1)
)�

is a UMVU estimator of (R(0), . . . ,

R(d − 1))�.

25.3 Tests by Monotone Likelihood Ratio

Let Pθ (Yn) be the joint probability density function (pdf) of Yn . The family
{Pθ (Yn), θ ∈ �} is said to have monotone likelihood ratio if there exists a real-
valued function T(Yn) such that

(i) for any θ < θ ′, the pdf Pθ and Pθ ′ are distinct, and
(ii) Pθ ′(Yn)/Pθ (Yn) is a non-decreasing function of T(Yn).

Then we have the following lemma.
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Lemma 25.1 ([6, Theorem 3.4.1, p. 65]) Suppose that Pθ (Yn) has monotone like-
lihood ratio in T (Yn). Then for testing H0 : θ ≤ θ0 against H1 : θ > θ0, there exists
a UMP test, which is given by

ϕ(Yn) =

⎧

⎪⎨

⎪⎩

1 when T(Yn) > c

r when T(Yn) = c

0 when T(Yn) < c,

where c and r are determined by Eθ0(ϕ(Yn)) = α.

Now, let {Yt } be generated from the Gaussian circular AR(1) model:

Yt = θYt−1 + εt ,

where {εt } is a sequence of i.i.d. variables from N (0, 1). The log-likelihood of Yn is

−
∫ π

−π

|1 − θeiλ|2{R̂(0) + eiλ R̂(1) + · · · + ei(n−1)λ R̂(n − 1)
}

dλ.

Then theMLEof θ is givenby R̂(1)/R̂(0) = T(Yn) (say).Repeating the discussionof
(25.1)–(25.4), we have L(θ) = exp [G1(θ)T(Yn) + g2(θ) +U (Yn)], which implies
that T(Yn) is sufficient and complete. The likelihood ratio of L(θ) and L(θ ′) is
proportional to

∫ π

−π

{|1 − θeiλ|2 − |1 − θ ′eiλ|2}{R̂(0) + eiλ R̂(1) + · · · + ei(n−1)λ R̂(n − 1)
}

dλ

=
∫ π

−π

{

θ2 − (θ ′)2 + 2(−θ + θ ′) cos λ
}{

R̂(0) + · · · + ei(n−1)λ R̂(n − 1)
}

dλ

= (θ − θ ′)(θ + θ ′)R̂(0) + (−θ + θ ′)R̂(1).

Hence, if we take T(Yn) = R̂(1)/R̂(0), we can apply Lemma 25.1 to obtain the
following theorem.

Theorem 25.2 The UMP test of H0 : θ ≤ θ0 against H1 : θ > θ0 at a significance
level α has the rejection region T(Yn) > c, where c is determined by

α = Prθ0(T(Yn) > c).

25.4 Simulation

In this section, we conduct a numerical simulation to investigate the finite sample per-
formance of the proposed UMP test statistic T(Yn) = R̂(1)/R̂(0) of the hypothesis
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test for the Gaussian circular AR(1) model:

H0 : θ ≤ θ0 against H1 : θ > θ0.

We investigate the test performance under different parameters θ and sample
sizes n for a Gaussian circular AR(1) model as an illustration. As stated in previous
sections, the circular assumption in [1] requires that Y−t = Yn−t , for t = 0, . . . , p −
1, and ε−t = εn−t , for t = 0, . . . , q − 1, for stationary ARMA(p, q) models. We
now generate the Gaussian circular AR(1) model satisfying assumption Y0 = Yn .
Let

M =
[

0 1
In−1 0

]

n×n

be ann × nmatrix,where In−1 is an (n − 1) × (n − 1) identifymatrix. TheGaussian
circular AR(1) model for Yn is

Yn − θMYn = ε, ε ∼ N (0n, Inσ 2),

that is,
Y1 − θYn = ε1,

Yt − θYt−1 = εt , for t = 2, . . . , n.
(25.5)

Based on the model (25.5) we generate the Gaussian circular AR(1) model with
θ0 = 0.1, 0.3, 0.5, 0.7, and 0.9, respectively. Since the distribution of the test statistic
T(Yn) is not available, we consider using a Monte Carlo simulation to obtain the
kernel density estimate (KDE) for the density of T(Yn). We compute the critical
value c as 1 − α quantile of its KDE, satisfying

α = Prθ0(T
(s)(Yn) > c), (25.6)

where T(s)(Yn) denotes the value of the statistic in the sth iteration. We set
α = 0.05, θ0 = 0.5, n = 100, and replication S = 1000. It is known that the KDE
suffers from the problem of bandwidth selection. Figure25.1 shows the effect of
bandwidth to the KDE of T(Yn). The left plot displays the KDEs with bandwidths
h = 0.005, 0.015, 0.025, 0.1, and the right plot shows the KDE using optimal band-
width selected by four methods: “Rule-of-thumb variation” (nrd), “Unbiased cross-
validation” (ucv), “Biased cross-validation” (bcv), and “Sheather–Jones method”
(SJ) (see [9]), respectively. It is not surprising that bandwidth has significant effect
to the KDE of T(Yn) with a too small (large) bandwidth leading to undersmoothing
(oversmoothing) KDE.Meanwhile, the optimal bandwidthworkswell for the density
estimate and the performance is not sensitive to the bandwidth selection techniques.
Hence, we adopt the default method “Rule-of-thumb variation” inR software for the
bandwidth selection in the following study without loss of generality. Figure25.2
displays the KDE (“Rule-of-thumb variation” method) of T(Yn) with n =100, and
θ0 = 0.1, 0.5, and 0.9, respectively. It shows that when θ = 0.1 and 0.5, the KDE
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Fig. 25.1 The KDE of T(Yn) for the Gaussian circular AR(1) model with θ0 = 0.5 and n = 100.
The left panel displays the KDE using different bandwidth h, the right panel shows the KDE with
optimal bandwidth selected by different techniques

Fig. 25.2 The histogram and KDE of T(Yn) for the Gaussian circular AR(1) model with θ0 = 0.1,
0.5, and 0.9, respectively, and n =100. The KDE is obtained using the default Gaussian kernel with
the optimal bandwidth selected by “Rule-of-thumb variation” technique in R software. The blue
vertical line indicates the 95% quantile of empirical distribution

of T(Yn) displays more symmetric pattern, while it exhibits obvious left skewness
when θ0 is close to 1 (θ0 = 0.9).

Next, we generate new observations from the Gaussian circular AR(1) model
with different AR coefficients θ . In specific, for θ0 = 0.1, 0.3, 0.5, and 0.7, we
set θ as θ0, θ0 ± 0.01, and θ0 ± 0.2, respectively. While for θ0 = 0.9, we set θ as
θ0, θ0 ± 0.01, θ0 − 0.2, and θ = θ0 + 0.08, respectively. The setup of the parameter
values is shown in Table 25.1. The empirical size and power of the proposed test are
measured by the rejection probability, defined by
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Table 25.1 The test results based on the Gaussian circular AR(1) model with various θ0, θ , and n.
The average of test statistic T(Yn) and rejection probability (“Ratio” column) is reported

n = 50 n = 100 n = 500 n = 1000

θ0 θ T(Yn) Ratio T(Yn) Ratio T(Yn) Ratio T(Yn) Ratio

0.1 −0.1 −0.099 0.002 −0.098 0.000 −0.100 0.000 −0.100 0.000

0.09 0.083 0.042 0.084 0.030 0.091 0.030 0.091 0.029

0.1 0.093 0.042 0.096 0.036 0.099 0.061 0.100 0.051

0.11 0.093 0.034 0.103 0.044 0.108 0.083 0.110 0.102

0.3 0.285 0.395 0.289 0.604 0.299 1.000 0.299 1.000

0.3 0.1 0.098 0.000 0.092 0.000 0.099 0.000 0.099 0.000

0.29 0.272 0.047 0.280 0.061 0.286 0.019 0.290 0.029

0.3 0.291 0.051 0.292 0.068 0.298 0.031 0.301 0.059

0.31 0.294 0.058 0.306 0.088 0.309 0.063 0.308 0.087

0.5 0.472 0.465 0.484 0.711 0.498 1.000 0.498 1.000

0.5 0.3 0.285 0.002 0.290 0.000 0.300 0.000 0.298 0.000

0.49 0.461 0.041 0.478 0.033 0.486 0.035 0.489 0.027

0.5 0.477 0.065 0.484 0.042 0.498 0.071 0.499 0.061

0.51 0.478 0.070 0.494 0.057 0.506 0.114 0.508 0.116

0.7 0.659 0.591 0.678 0.798 0.694 1.000 0.697 1.000

0.7 0.5 0.471 0.000 0.485 0.000 0.496 0.000 0.500 0.000

0.69 0.652 0.033 0.670 0.035 0.686 0.026 0.686 0.017

0.7 0.659 0.038 0.682 0.051 0.695 0.059 0.698 0.039

0.71 0.669 0.057 0.693 0.066 0.706 0.092 0.707 0.112

0.9 0.849 0.731 0.872 0.921 0.895 1.000 0.897 1.000

0.9 0.7 0.661 0.000 0.679 0.000 0.697 0.000 0.698 0.000

0.89 0.840 0.049 0.862 0.021 0.884 0.010 0.888 0.004

0.9 0.849 0.049 0.873 0.043 0.894 0.047 0.897 0.050

0.91 0.855 0.085 0.882 0.087 0.905 0.133 0.908 0.203

0.98 0.939 0.645 0.954 0.754 0.974 1.000 0.977 1.000

S
∑

s=1

I (T(s)(Yn) ≥ c)/S,

with I being the indicator. We set S = 1000 and n = 50, 100, 500, 1000,
respectively.

Table 25.1 reports the average value of the test statistic T(Yn) and the empirical
size/power of the UMP test. The results show that the proposed UMP test generally
delivers good performance under various combinations of θ0, θ , and n. For example,
under H0 with θ ≤ θ0 and θ − θ0 = −0.2, the rejection probability is close or equal
to 0 for all experiments. Under the alternative hypothesis with θ − θ0 = 0.2, the
power equals 1 when n ≥ 500.
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The results also show that the test performance improves under greater divergence
between θ and θ0 and/or with larger sample sizes. For example, when n = 50 and H1

holds, if the divergence, θ − θ0, increases from 0.01 to 0.2, the power of the test also
increases from 0.034 to 0.395, which indicates larger rejection probability and better
test performance. Moreover, when θ0 = 0.1 and θ = 0.3 (i.e., under H1), the power
of the test is 0.395 when n = 50, and increases to 1 when n = 500 or 1000. For the
case of θ0 = 0.9 and θ = 0.89 (i.e., under H0), the rejection probability decreases
from 0.049 to 0.004 when n increases from 50 to 1000.

When |θ − θ0| = 0.01, i.e., the divergence is very small, the test performance is
still acceptable if n is large. For example, for the case θ0 = 0.5 and θ = 0.51 under
H1, the power of the test is 0.07 for n = 50 and 0.057 for n = 100, which are only
slightly larger than the nominal level 0.05. On the other hand, when n = 500 or 1000,
the power becomes 0.114 or 0.116, which is significantly larger than the nominal
level. When θ = θ0, the power varies around the nominal level. In summary, the
UMP test statistic T(Yn) delivers good performance for the Gaussian circular AR(1)
model.

25.5 Conclusion

In this paper,we have introduced the sufficiency, completeness, andUMVUestimator
for theGaussian circular ARMAmodels.We have proposed aUMP test bymonotone
likelihood ratio for the coefficient parameter of the Gaussian circular AR(1) models.
In numerical study, the proposed UMP test provides good performance with satisfied
empirical size and power under different combinations of AR coefficients and sample
sizes for a Gaussian circular AR(1) model. We found that the UMP test has better
performance under the greater divergence between θ and θ0 or with larger sample
sizes.
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Chapter 26
A New Generalized Estimator for AR(1)
Model Which Improves MLE Uniformly

Yujie Xue and Masanobu Taniguchi

Abstract For the first-order autoregressive model, Ochi (Journal of Time Series
Analysis 4:57–67, 1983) introduced a generalized estimator of the coefficient α with
two constants c1 and c2, which includes Daniels’ estimator, least-squares estimator,
and Durbin’s estimator. From Fujikoshi and Ochi (Annals of the Institute of Sta-
tistical Mathematics 36:119–128, 1984), compared with a third-order approximated
estimator of maximum likelihood estimator, it was shown that the modified maxi-
mum likelihood estimator (MLE) is better than the modified Ochi’s estimator in the
third-order sense if we modify the both estimators to be “third-order asymptotically
median unbiased”. In this paper, we propose a new estimator when the c1 and c2
depend on α, i.e., c1(α) and c2(α). Then we show that it improves the MLE uni-
formly in the sense of the third-order mean square error “without bias-adjustments”.
Because α is unknown, the feasible estimator with c1(α̂) and c2(α̂) is proposed with
the replacement of α bt a consistent estimator α̂.

26.1 Introduction

In time series analysis, an autoregressive (AR) model is treated as one of the basic
models used for forecastingwhen there is some correlation between values.Many lin-
ear and nonlinear models (autoregressive integrated moving average model, autore-
gressive conditional heteroscedasticity model, the threshold autoregression model,
etc.) have been introduced based on this model as well. As a simple but effective
model, ARmodels have been broadly applied inmany fields such as finance, seismol-
ogy, and brain-computer interface. To estimate theARparameters, several techniques
such as Kalman filter, Yule-Walker, expectation-maximization, least-square, Burg,
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forward-backward algorithm, etc. were used. Especially, for the AR(1) coefficient,
Ochi [5] proposed an estimator α̂(c1, c2) by using two constants for the edge points
of the data of size n. Yule-Walker’s estimator [2], the least-square estimator, and
Burg’s estimator [3] of the AR(1) coefficient are examples with special choices of
those two constants. Besides, Anderson [1] introduced a third-order approximated
estimator α̃ML for the maximum likelihood estimator (MLE) α̂ML whose explicit
form is not available. In this paper, firstly, in Sect. 26.2 we review the comparison
between α̂(c1, c2) and α̃ML when both are modified to be the third-order asymptot-
ically median unbiased (AMU). It is shown that the modified MLE α̃∗

ML is better
than the modified Ochi’s estimator α̂∗

n(c1, c2) uniformly in the third-order sense.
In Sect. 26.3, we propose a new estimator whose constants c1 and c2 are functions
of α, i.e., α̂(c1(α), c2(α)). It is shown that the new estimator improves the MLE
uniformly in the sense of the third-order mean square error (MSE). Because α is
unknown, we propose a feasible estimator α̂(c1(α̂), c2(α̂)), where α̂ is a consistent
estimator. Lastly, in Sect. 26.4, some numerical studies are provided to illustrate the
theoretical finding.

26.2 A Generalized Estimator of the AR Coefficient

Suppose that {yt } is generated by

yt = αyt−1 + ut ,

where |α| < 1 and ut ∼ N (0, σ 2). To estimate α, Ochi [5] introduced the estimator

α̂(c1, c2) = X1

X2 + c1y21 + c2y2n
,

where c1 and c2 are constants, and X1 = ∑n
k=2 yk yk−1, X2 = ∑n−1

k=2 y
2
k . The estimator

α̂(1/2, 1/2) is Daniels’ estimator, α̂(1, 0) is the least-squares estimator, and α̂(0, 1)
is Durbin’s estimator. Hence α̂(c1, c2) includes a variety of famous estimators. Ochi
[5] derived the third-order Edgeworth expansion of the distribution of

√
n{α̂(c1, c2)

− α}.
As for the another estimator of α, theMLE α̂ML is commonly used, but the explicit

form of it is not available. Anderson [1] showed that

α̃ML =
(

1 − 1

n

)
X1

X2

is the third-order approximation for α̂ML .
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Let α̃∗
ML and α̂∗

n(c1, c2) be the modified third-order AMU estimators of α̃ML and
α̂(c1, c2), respectively. Fujikoshi and Ochi [4] showed

lim
n→∞ n[P{−a <

√
n(α̃∗

ML − α) < b} − P{−a <
√
n(α̂∗

n(c1, c2) − α) < b}] ≥ 0

for any a > 0, b > 0. Hence the MLE is better than α̂(c1, c2) in the sense of the
third-order probability concentration around the true value, if we modify the both
estimators to be third-order AMU.

26.3 A New Estimator Which Improves MLE Uniformly

In the previous section, we showed that, if we modify and α̂(c1, c2) to be third-order
AMU, the modified α̂∗

ML is better than the modified α̂∗(c1, c2) uniformly. However,
comparison in the class of the third-orderAMUmaybeunnatural.We should compare
estimators “without bias or median adjustments”. In view of this, we propose a new
estimator which improves the MLE uniformly in the sense of the third-order MSE.

Now, we observe that

α̂n(c1, c2) = X1

X2

{

1 + c1y21
X2

+ c2 y2n
X2

}

= X1

X2

[

1 − c1y
2
1

X2
− c2y

2
n

X2
+ Op

(
1

n2

)]

=
(

1 − 1

n

)
X1

X2

(

1 − 1

n

)−1 [

1 − c1y
2
1

X2
− c2y

2
n

X2

]

+ Op

(
1

n2

)

= α̃ML

[

1 + 1

n
+ 1

n2
+ · · ·

][

1 − c1R(0) + c1y
2
1 − c1R(0)

X2

− c2R(0) + c2y
2
n − c2R(0)

X2

]

+ Op

(
1

n2

)

,

(26.1)

where R(0) = Ey2t . Note that

X2 = EX2 + X2 − EX2

= (n − 2)R(0) + X2 − EX2

= nR(0)

[

1 − 2

n
+ X2 − EX2

nR(0)

]

, (26.2)

which leads to



568 Y. Xue and M. Taniguchi

1

X2
= 1

nR(0)

[

1 + 2

n
+ Op

(
1√
n

) ]

.

From (26.1) and (26.2), it follows that

α̂(c1, c2) = α̃ML

[

1 − c1
n

− c2
n

+ 1

n

]

+ Op

(
1

n
√
n

)

. (26.3)

Let c̃ = c1 + c2 − 1. Applying Shiraishi et al. [6, Theorem 2(i)] to Eq. (26.3) (here,
we set s(α) = c̃α, which is the difference between the second-order bias of α̃ML and
that of α̂(c1, c2)), we have

n2[E(α̃ML − α)2 − E{α̂(c1, c2) − α}2] = 2c̃

g
+ 2μMLc̃α − c̃2α2 + o(1),

where g = EZ2
α , and Zα is the derivative of the log-likelihood of {yt } with respect to

α. From Taniguchi [7, p. 31], we know μML = −2α and g = 1
1−α2 , hence, we obtain

n2[E(α̃ML − α)2 − E{α̂(c1, c2) − α}2] = φ(c̃) + o(1),

where

φ(c̃) = c̃(2 − 6α2 − c̃α2) ≤ (1 − 3α2)2

α2

(the equality holds iff c̃ = 1−3α2

α2 ; hereafter, the i.i.d. case of α = 0 is excluded). This
motivates us to select Ochi’s constants c1 and c2 as a function of α. That is, we
suggest making use of c1(α) and c2(α), in such a way that the resulting estimator
α̂(c1(α), c2(α)) improves the MLE. In summary, we have:

Theorem 26.1 The estimator α̂(c1(α), c2(α)) improves the MLE α̃ML uniformly in
the sense of the third-order MSE, whenever c1(α) + c2(α) − 1 = (1 − 3α2)/α2.

In Theorem 26.1, (c1(α), c2(α)) cannot be identified; however, if we take, for sim-
plicity, c1(α) = c2(α), i.e., c1(α) = c2(α) = 1

2α2 − 1 = c(α) (say), then the resulting
(infeasible) estimator α̂(c(α), c(α)) improves theMLE uniformly.We propose a fea-
sible estimator α̂(c(α̂), c(α̂)), where α̂ is a

√
n-consistent estimator of α. Then, we

have

Theorem 26.2 The estimator α̂(c(α̂), c(α̂)) improves the MLE uniformly in the
sense of the third-order MSE.
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Table 26.1 TheMSEs (×10−3)when n = 50, 100, 300, where α̂1 stands for α̂(c1(α), c2(α)), and
α̂2 and α̂3 stand for α̂(c1(α̂(1, 0)), c2(1, 0)) and α̂(c1(α̂(1/2, 1/2)), c2(α̂(1/2, 1/2))), respectively

n α −0.9 −0.7 −0.5 −0.3 −0.1 0.1 0.3 0.5 0.7 0.9

50 α̃ML 6.100 12.766 15.708 17.641 17.626 19.121 16.899 15.353 12.874 6.006

α̂1 6.238 12.677 15.955 16.097 8.440 8.657 16.512 15.572 12.671 6.057

α̂2 6.229 12.750 16.213 16.429 8.364 8.540 16.934 15.797 12.758 6.064

α̂3 6.235 12.755 16.210 16.428 8.362 8.539 16.930 15.795 12.762 6.073

100 α̃ML 2.053 5.481 7.310 9.033 9.104 9.457 8.554 7.092 5.919 2.701

α̂1 2.039 5.460 7.363 8.650 6.291 6.424 8.515 7.231 5.848 2.545

α̂2 2.047 5.499 7.522 8.977 6.565 6.602 8.797 7.357 5.886 2.555

α̂3 2.048 5.500 7.522 8.976 6.565 6.601 8.796 7.354 5.887 2.556

300 α̃ML 0.692 1.760 2.808 3.251 3.303 3.320 3.073 2.624 1.808 0.668

α̂1 0.676 1.760 2.801 3.205 2.989 3.054 3.052 2.624 1.808 0.644

α̂2 0.676 1.760 2.802 3.234 3.116 3.173 3.058 2.625 1.812 0.645

α̂3 0.676 1.760 2.802 3.234 3.116 3.173 3.058 2.625 1.812 0.645

26.4 Numerical Studies

In the simulations, we generate the Gaussian AR(1) model

yt = αyt−1 + ut ,

with α = −0.9, −0.7, −0.5, −0.3, −0.1, 0.1, 0.3, 0.5, 0.7, 0.9, and ut ∼
N (0, 1). Then we calculate the MSEs of α̃ML , α̂(c(α), c(α)), and α̂(c(α̂), c(α̂)),
using α̂ = α̂(1, 0) (the least-squares estimator) or α̂(1/2, 1/2) (Daniels’ estimator).
ĉ∗
1 and ĉ∗

2 are calculated by the data of size 10000. Table 26.1 shows that the MSEs
decrease as the sample size n increases, in which α̂1 stands for α̂(c(α), c(α)), and
α̂2 and α̂3 stand for α̂(c(α̂(1, 0)), c(1, 0)) and α̂(c(α̂(1/2, 1/2)), c(α̂(1/2, 1/2))),
respectively. The proposed estimator has a better performance, compared to theMLE.
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