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Abstract Long bone fractures are treated with internal fixation prostheses such 
as screws, pins, intramedullary nails, and bone plates, depending on the type and 
nature of the fracture. Different prostheses exhibit dissimilar fixation constructs 
which are vital for callus generation and fracture bridging. Metallic implants have 
a significant mismatch with bone mechanical properties and create stress concen-
trations at the plate, which results in stress shielding. This phenomenon impedes 
load transmission at the fracture site, which can lead to non-union, bone mass loss, 
delayed healing, refracture, and construct failure. Flexible fiber-reinforced composite 
prostheses respond to biological friendly healing (secondary healing) and promote 
callus generation and soft tissue maturation and can provide solutions to prob-
lems. These polymer implants promote bioactivity around the implant. Further, the 
polymer composites biomechanical properties can be tuned easily by adding the 
functional powders into matrix and changing the type or direction of reinforcement 
fibers. The performance of these composites from the published work according to 
different materials is discussed. This chapter concludes that the bioinspired polymer 
composites have the potential to replace traditional metallic implants for orthopedic 
applications. 
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1 Introduction 

Composites are defined as the materials that consist of two or more fundamen-
tally different components to achieve the target properties superior to those of indi-
vidual material used [1]. Usually there are two main parts of composites: matrix 
and reinforcements. Matrix is the base material, which acts as binder for the rein-
forcement fibers, transfers load, and defines the composite shape along with surface 
texture. While the reinforcements are used to enhance the mechanical properties of 
composites along the desired axis by changing the fibers’ orientation [2]. Compos-
ites majorly can be distinguished into ceramic matric composites (CMCs), polymer 
matric composites (PMCs), and metal matric composites (MMCs) [3]. 

Bone fracture occurs when the strain limit of bone exceeds. Fractures mostly 
occur in the long bones and the causes of such fractures include injuries from vehicle 
mishaps, falls, sports, and sometimes high muscular forces [4]. Fractures disrupt the 
blood supply with damage to the external tissues. Depending on these unpredictable 
forces the nature of fractures varies which may result in the fractured bones pieces 
to be aligned correctly (stable fracture) or misaligned (displaced fracture). Thus, the 
fractures could be classified according to

• The position of the fracture (shaft portions: proximal, medial, and distal).
• Shapes of fractures (crack, diagonal, along the length or shaft fractures).
• Open fractures (muscles or skin torn) or closed fractures (no skin rupture). 

A perfect implant must provide satisfactory initial healing and permit suitable 
load transfer to the fractured area. Implants such as bone plates, intramedullary 
nails, pins, and external fixators are used to fix the broken bones. Conventional 
implants are made up of metals displacing the poor biomechanical performance 
including bone resorption, fatigue degradation, implant failure, screw lag, X-ray 
artifacts, corrosive nature, and re-surgery [5]. Replacing materials should display the 
unique properties such as corrosion resistant, non-toxic, biocompatible, light weight, 
improved mechanical properties, and non-allergic as well. Advanced properties of 
polymer composites using reinforcement materials grabbed the researcher’s atten-
tion. Recently, bio-composite implants are of great attention to replace these conven-
tional metallic implants as the mechanical and biological properties can largely be 
altered [6]. Polymers are widely used as matrix and continuous synthetic or natural 
fibers (e.g., carbon fibers, glass fibers, bamboo fibers, etc.) as reinforcements for 
these biomedical implants [7]. Moreover, the surrounding tissue growth during their 
interaction with implants can also be enhanced due to antibacterial and bioactive 
nature of composite implants. That is why, these materials can be introduced as the 
replacement of broken bones or damaged parts and are named as biomaterials [8]. 
Such potential materials are used in dental and orthopedic implants, as their varying 
properties enable better biomechanical compatibility with bone tissues [9, 10]. 

Most challenging concerns to attain the required composite implants in medical 
are their fabrication methods. Various fabrication techniques are being followed by
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the researchers. The choice of proper fabrication methods to manufacture compos-
ites is one of the most challenging issues in medical science to achieve the desired 
implants. Traditional fabrication techniques including hand layup, gas foaming, 
phase separation, compression molding, hot extrusion, solvent casting, melt mixing, 
additive manufacturing, and much more [11]. These techniques have their own advan-
tages and disadvantages but still in the developing phase by the researchers to maxi-
mize the performance with reduced drawbacks. This chapter covers the biomechan-
ical aspects of composite implants, their manufacturing techniques, performance, 
and future aspects. 

2 Nature of Bone Healing 

Once the fracture occurs, all the emergency repairing cells in blood report the injury 
site and start the repairing procedure. Depending on the fracture’s nature, location, 
and biomechanical environment, the repairing procedure follows the specific healing 
mechanism [12] as follows: 

1. Primary healing (intramembranous ossification). 
2. Secondary healing (endochondral ossification). 

In primary healing, direct bone formation occurs where the mesenchymal cells 
directly differentiate into osteoblast cells and blood vessels growth without the callus 
formation at fracture site. Secondary healing is the common form of bone fracture 
healing with the process of callus formation as shown in Fig. 1. This type of healing 
follows the four main stages:

i. Hematoma formation: 
This is an inflammatory action where the blood clots at the fracture site 

as a result of the local cells’ death due to traumatic condition of blood vessels’ 
rupture. This process continues for first week which is the initial stage of calluses 
formation. 

ii. Fibro-cartilaginous callus formation: 
This period continues for second and third week after fracture occurrence. In 

this preliminary stage, the soft calluses define their shapes wrapping the frac-
ture site to stabilize the broken bones according to the available biomechanical 
environment. The mesenchymal cells are able to differentiate into fibroblast, 
chondrocytes, and osteoblasts which are responsible for the production of soft 
tissues, cartilaginous tissue, and bony tissues, correspondingly. The fibrous and 
cartilaginous tissues are more prominent with some portions of woven bones in 
calluses. 

iii. Bony callus formation: 
In this step, the woven bone is developed into mature lamellar bone. This 

process continues from first till fourth month in which almost whole fracture
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Fig. 1 Callus formation during fracture healing 

stabilizes the fractured bones and starts bearing the body weight. The stresses 
are reduced from the implant assembly and exchanged with the calluses.

iv. Resorption phase: 
In this process, the developed bone starts to dissolve itself in the physiological 

environment and restores its original shape. This process continues for months 
and years [13]. 

Depending on these healing mechanisms and fracture’s location, the fractures are 
majorly divided into two types: 

(a) Articular fractures: 
The fractures occur at the proximal and distal end of the long bones or the 

bones where trabecular bone is greater than the cortical bone. These fractures 
are generally minor or hair line fractures. Rigid fixation techniques are used to 
fix these fractures disgracing any movement. Direct bone formation takes place 
following the primary healing. 

(b) Diaphyseal fractures: 
Diaphysis (cylindrical shaft) of the long bones is the main candidate which 

faces such fractures where the cortical bone is the main runner. For the effecting 
healing of these fractures, the implant should provide sufficient stability to 
broken bones while allowing the micro-movement to promote the improved 
stimulus in calluses. This will allow the gradual sharing of body weight with 
stress relief at the implant-bones assembly.
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3 Why Composites? 

Metallic implants highly mismatch the material properties as that of bones resulting 
in the aforementioned complications, especially erosion during long-term remains 
[14]. An ideal implant should provide reasonable initial micro-movement at frac-
ture site to stimulate healing and permit suitable load transfer to the fractured area. 
The metallurgical composition of metallic implants was enhanced with improved 
corrosion resistance and edges design were presented in 1909 and afterward in 1912; 
these bone plates because of poor fatigue properties were abandoned. The following 
improvement was made in 1948, when a plate with sliding vertical pockets was 
created for the screws assembly to prevent stress concentration [15].  Due to insuf-
ficient structural stability, improvement in this plate design was also required. In 
1965, a new plate design was presented with a fixing tensioner that permitted the 
interfragmentary development of broken bones. This development process continued 
along with the introduction of locking compression plate and dynamic compression 
plate but still there are many controversial theories about the satisfactory perfor-
mance of metallic implants. Composite materials grabbed the attention of research 
due to their enhanced features as shown in Fig. 2. The preferred mechanical prop-
erties for special fracture cases can be achieved by altering the stacking sequence 
of the fibrous composites, while keeping the basic structure the same [16]. Elastic 
composite implants provide proper stability along with the favorable biomechanical 
environment to promote the secondary healing process and reduce the stress shielding 
phenomenon. This process increases the callus volume which envelops the fractured 
area causing the bony bridging to facilitate bone-implant stability and decrease the 
risk of implant failure [17]. In the last decade, one of the extensively studied areas is 
bio-composite materials for medical applications. Therefore, biodegradable, bioac-
tive, antibacterial, and nanomaterial FRP composites are strong candidates to meet 
the biomechanical requirements in the biomedical surgery as orthopedic implants 
(for knee, jaw, elbow, hip, leg, ribs, and dental) to collaborate with the biomechanics 
of bones [18, 19].

4 Materials for Composite Implants 

Large range of materials are used these days to achieve the target properties of 
implants for desired applications. The implant materials should be biocompatible 
means the material which acts as an appropriate host with minimum disturbance 
in the body function. These materials include metals, ceramics, powders, polymers, 
fibers, and their composites [20, 21] while their existence period and decomposition 
behavior define if they are non-degradable, partially degradable, fully degradable, 
biocompatible, or bioactive. These properties tend to differ in mechanical properties 
of these materials which are listed in Table. 1. The industry has grown over 150
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Composite 
materials 

Mechanical 
properties 

Biodegradable 
composites 

Partial 
degradable 

Controlled degradation 

Modified properties 

Dual properties 

Vast application Drug loading 

Bioactive 

No 2nd operation 

Time saving 

Pain relief 

Tailorable properties 

Compatible with bones 

Good fatigue life 

Light weight 

Fig. 2. Composites for implants application

billion US dollars [22], serving the quality life to millions of patients by treating 
their fractured bones.

4.1 Non-degradable Materials 

Non-degradable materials are those which maintain their integrity both mechanically 
and physically. Traditionally non-degradable metallic materials were massively used 
for the implants manufacturing. Advancement in artificial polymers technologies in 
recent years resulted in various medical devices and were effectively used for the 
treatment of patients around the world. These 

materials include stainless steel (SS), titanium (Ti), cobalt (Co), chromium (Cr), 
silver (Ag), and platinum (Pt) [23] while synthetic polymers include poly(ethylene), 
poly(propylene), poly(methyl methacrylate), poly(dimethyl siloxane), poly(ether 
ketone), and polyurethane [24]. 

Manufacturing of implants began with pure metals which displayed reduced 
strength and high corrosion. Improved mechanical- and corrosion-resistant prop-
erties of stainless steel brought an innovation in market as they are stiff, ductile, 
and dense. But release of metal ions and other chemical compounds caused mate-
rial deterioration with pitting and stress corrosion resulting in irritation and allergic 
reaction in the body [25, 26]. Titanium is light weight, higher torque, and fatigue 
resistant as compared to stainless steel [27]. Moreover, titanium implants are better 
corrosion resistant as oxide layer regenerates quickly. The high metal mechanical 
properties cause stress shielding along the bone resulting in bone resorption and mass 
loss. Various methods were introduced to reduce the structural stiffness of implant 
like in bone plate the higher density was maintained around the fracture and reduced
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Table 1 Material properties of biomaterial implants 

Material Material 
properties 

Degradation 
properties 

Medical applications 

Young’s 
modulus 
(GPa) 

Time 
(months) 

Lower limb 
long bones 

Cortical bone 
(longitudinal dir.) 

15–20 – – 

Cortical bone (transverse 
dir.) 

8.5 – – 

Cortical bone (hoop dir.) 6.9 – – 

Trabecular bone 1.1 – – 

Tissue 
phenotype in 
bone healing 
process 

Granulation tissue 0.00002 – – 

Fibrous tissue 0.001 – – 

Cartilage 0.005–0.5 – – 

Immature bone 0.5–1.0 – – 

Intermediate bone 1.0–2.0 – – 

Mature bone 2.0–6.0 – – 

Metals Stainless steel 190 Years Bone plates, IM 
rods, screws, joint 
replacements, tissue 
engineering, dental 
implants, heart 
valves, stent spinal 
implants 

Co-Cr alloys 210–235 Years 

Titanium 110 Years 

Titanium alloy 
(Ti-6Al-4V) 

116 Years 

Magnesium alloys 
(AZ91, AZ31, WE43, 
Mg-Ca, LAE442, 
Mg-Mn-Zn) 

45 Months ~ 
Years 

Ceramics Alumina 380 – Orthopedic 
prosthesis, bone 
fillers, dental 
implants, jawbone 
reconstructions, 
facial surgery, ear, 
nose and throat 
repair 

Zirconia 150–220 – 

Calcium phosphate (HA, 
TCP) 

35–110 – 

Bioglass 45S5 35 0.6–1 – 

13–93 60 0.6–1 – 

Polymers UHMWPE (ultra-high 
molecular weight 
polyethylene) 

12~4 – Bone plates, IM 
rods, screws, disks, 
dental implants, 
prosthesis, spine 
cage, suture anchors, 
meniscus repair 

PEEK (Polyether ether 
ketone) 

3.6 – 

Polysulfones (PS) 2.6 – 

Polyethylene 
terephthalate (PET) 

2.8 – 

Polylactic acid (PLA) 0.3–2 18~12

(continued)
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Table 1 (continued)

Material Material
properties

Degradation
properties

Medical applications

Polyglycolic acid (PGA) 0.7–5 0.4–3 

Poly(lactic-co-glycolic 
acid) (PLGA) 

1.4–2.8 0.6–2 

Polycaprolactone (PCL) 0.4–0.6 >24 

Polymer 
composites 

CF/PEEK, GF/PEEK, 
CF/epoxy 

10–70 Months ~ 
Years 

– 

BG/polylactide, 
polyglycolide and its 
copolymers 

– 

CF/PS, BG/PU, BG/PS, 
CF/UHMWPE 

–

moving toward the edges [28]. Attention was drawn for the further improvement 
using metallic alloys like Co-Cr (cobalt, chromium, and traces of molybdenum) 
and Ti-Co. Cr promotes oxide formation on the surface which decreases corrosion 
while molybdenum discourages bulk corrosion [29]. In artificial hip implants, Co-
based alloys are used due to better ductility with improved wearing resistance during 
physiological loading conditions where high-strength applications are required [30]. 
Titanium was then introduced as implant material with biocompatible, light weight, 
and mechanical properties closer to bone making it better option over others. It forms 
titanium oxide as corrosion-resistant layer on the surface. 

Polymer-based composites have more fatigue resistance compared to other mate-
rials with high strength and low stiffness. Carbon fiber-reinforced polymer (CFRP) 
composites are potential candidates for orthopedic applications [31]. Monitoring the 
implant designing factors in vivo and in vitro is a time-taking process with involve-
ment of various ethical issues. Thus, introducing the computer models to check the 
effect of implants’ performance is made much easier to tune the various designing 
parameters and their effect on fracture healing. It was concluded that these CFRP 
composites can effectively reduce the stress concentration in the bone [32, 33, 16, 
34]. Improvement in structure was done by sandwiching the flax/epoxy between 
glass/epoxy composite. This hybrid composite provided flexible inner surrounded 
with stiffer shell providing more ideal conditions for fixing bone fractures [35]. Only 
the mechanical performance of the implants was investigated while the biological 
response was not considered. In vivo tests need to be done for their biomechanical 
performance validation as a safe implant. 

Moving toward the synthetic polymers, chemical linkages made them resistant to 
degradation in the human body and were assessed broadly for medical applications 
but few displayed satisfactory results as implants. Major interest of using polymers 
was its altering mechanical properties by changing the reinforcement orientation. 
Ultra-high molecular weight poly(ethylene) (UHMWPE) being a tough material, 
resistant to wear, chemically stable, less friction, and reduced moisture permeability
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made them to dominate over four decades starting from 1962 as joint replace-
ment material [36]. Large number of 1.4 million patients were treated during this 
period. However, long-term biological exposure reduced their mechanical perfor-
mance which led to re-surgery. Investigation of this failure exposed the requirement 
of altering the fabrication process like mixing with additional materials, changing 
cross-linkage which improved the performance including surface properties [37]. 
Polypropylene (PP) was used as woven mesh to reinforce the implants but showed 
inflammatory response leading to pain [38]. Introduction of foreign materials during 
surgery is critical and the complete healing process can take 12 weeks. Thus, various 
materials were used as coatings or blends to improve the biomechanical response of 
the implants facilitating the bone repair. 

4.2 Partially Degradable Materials 

Partially degradable materials are those which display two behaviors at the same 
time, one is non-degradable part and the other is degradable. Non-degradable part 
maintains its physical, mechanical, and chemical integrity throughout its stay while 
degradable portion initially helps in the improvement of mechanical properties and 
then starts to degrade as time progress. The target of the implant is to provide the 
initial stability, but their mechanical properties should cooperate with bones. As the 
material starts to degrade, the bioactivity starts which enables the cell adhesion, 
stimulus to embryonic tissues, and antibacterial properties as well. These mate-
rials could be applied as coatings on the implant surfaces, blend during fabrication 
process, or fillers in the porous structures. Materials for surface coatings of implants 
include hydroxyapatite, calcium phosphate, polylactic acid (PLA), polylactic-co-
glycolide acid (PLGA), silver, MXene, magnesium, zinc oxide nanoparticles, and 
iodine [35, 39–41]. These coatings start to dissolve as they encounter the body fluid 
and perform their duties by releasing ions and nutrients. Further, to decrease the struc-
tural modulus of the solid implants for target application, various techniques were 
introduced like 3D printing (additive manufacturing) of porous structure [42–44]. 
These structures can be tuned by changing their cellular structure (cubic, honey-
comb, diamond, circular, and body-centered cubic) along with the pore size, shape, 
and strut thickness simply by modeling software [45]. These porous structures manu-
factured using metallic biomaterials can be filled using degradable polymers which 
are safe and broadly used in medical industry [46]. Recently, titanium bone plates 
with varying porosities of cubic cellular structures were prepared and the cavities 
were filled with polyglycolic acid (PGA). Titanium is responsible of the elastic– 
plastic properties as a major load carrier while PGA degraded till seventh week 
losing its maximum properties [47]. Thus, the partially degradable materials are 
multifunctional with better performance as of non-degradable materials.
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4.3 Fully Degradable Materials 

These are the materials that are completely resorbable with the passage of time into 
the body. The concept of these implants came due to the various complications with 
the materials discussed previously. Once the calluses heal properly, we go for the 
second surgery to remove the conventional metallic implants which will cause pain, 
disruption of soft tissues, blood loss, and sometimes infection. As the fracture heals, 
the calluses start sharing the load with the implant used to fix the broken bones. With 
the passage of time, the calluses are mature enough to withstand the body weight. 
Here is the point when implant should start losing its strength during the healing 
process with the load-sharing mechanism. This was the motivation of developing the 
biodegradable composites which will dissolve in the physiological environment once 
the fracture heals. It will diminish all conventional problems of metallic implants. 
Majorly, under clinical applications, the biodegradable materials are categorized into 
three groups, (a) metals, (b) bioceramics, and (c) polymers, and combinations of these 
materials as composites. 

(a) Recently, unidirectional magnesium alloy wires have been used to reinforce 
PLA for in vitro tests [48]. Magnesium alloys [49] were not invented for medical 
use but their biocompatible attitude and excellent mechanical properties made 
them a suitable candidate to be used as fixation devices which are comparable 
with those of human cortical bone. Thus, various alloys were developed for 
these applications such as Mg-Ca, Mg-Zn, and Mg-Al. Magnesium devices 
were introduced as bars and rods [50] at 5–20% volume content, and wires in 
uni-directional or braided form at 6–10% fraction at different angles. 

(b) Ceramics are well known because of their biocompatibility, bioactivity, and 
corrosion resistance behavior. But the drawbacks are their brittleness, complex 
shapes, high modulus, and poor fatigue. Thus, the ceramics are used as reinforce-
ment materials in polymers as they alone are not feasible for medical devices. 
Calcium phosphate, tri-calcium phosphate, and hydroxyapatite are well known 
bioceramics. 

(c) The origin of the natural polymers is starch, collagen, silk, alginate, and chitosan 
and synthetic polymers are polylactic acid, polyglycolic acid, poly-l-lactic acid 
(PLLA), polycaprolactone (PCL), polydioxanone (PDS), and polylactic co-
glycolic acid (PLGA). The use of these polymers alone cannot be used because 
of their low strength. 

Thus, polylactic acid (PLA) has been studied mostly because of its excellent 
biocompatible and biodegradable properties. To make the PLA compatible with the 
requirement of load-bearing bone fractures, various reinforcements are required. 
Its modulus and tensile strength have been described to be approximately 3.5 GPa 
and 59 MPa, correspondingly, which are much lower to bear the body weight [51]. 
As the reinforcement materials, Mehboob et al. [52] used unidirectional plasma-
treated bioactive glass (BG) fibers as they offer excellent biomechanical properties. 
30-second plasma treated displayed the elastic modulus of around 27 GPa with 118



Bioinspired Polymer Composite Implants 157

MPa strength. But the BGF/PLA showed fast degradation when exposed to body 
fluid and thus magnesium (AZ31) alloy wires were used for reinforcement in PLA. 
The mechanical tests were carried out with varying volume content of 20–50%. 
These wires showed better sustainability in the human body [6]. Composite with 50 
% volume content of Mg wires was selected for surface treatment of Mg wires for 
improved sustainability and stifled mass loss, stable pH, and encouraged the deposi-
tion of Ca and P compounds with better mechanical properties [6]. Further, research 
is going on to improve the biomechanical properties of these fully biodegradable 
composite implants to make them bioactive and antibacterial. 

5 Implant Types and Their Applications 

Treatment of broken bones is concerned not only with the repair of the bone anatomy 
but to consider the complete bone union with full recovery and increased callus 
volume. Callus is the soft tissue that envelops the fracture during early stabiliza-
tion and converts into bone as time progresses. Enhanced callus volume ensures 
the better quality of healing. Various implants are used during operation to stabi-
lize with minimum additional reduced injury to bone and surrounding soft tissues. 
These implants are majorly categorized into external (traction and pins) and internal 
devices (pins, screws, intramedullary nails, rods, and bone plates) for the treatment of 
orthopedic and dentistry fractures (see Fig. 3). Further the implants could be static or 
dynamic. Static implants are stiff and tightly screwed with bone without any relative 
motion while the dynamic implants are flexible around the assembly or with less stiff 
material providing the micro-movement at the fracture site. These devices are used 
according to the fracture location and its nature which decides the quality of bone 
union. Internal fixation devices are of main concern which are discussed in detail.

5.1 Screws 

Orthopedic screws (OS) are usually used as fixation devices to fix the bone plates, 
intramedullary nails, and treat the minor bone fractures independently. The screws 
geometry has four parts: head, thread, shaft, and tip. For tightening the screw, 
screwdriver is attached to the head. This head could be hexagonal, circular, slotted, 
and straight. Head produces counterforce when compression is generated during 
fastening any implant to the bone. The shaft is the smooth surface between the 
threaded area and the head. The threads consist of the core diameter, thread diam-
eter, pitch, and the lead with which screw advances during single complete turn into 
the bone. Thread core determines the contact area of the bone and screw resistance 
during pullout force. The screw tip is either fluted or round depending upon the 
way of insertion during tightening. Types of screws vary according to the length, its 
thread diameter, the distance between threads, and the design of their head and tip.
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CF/Epoxy, CF/C, CF/PS, CF/PEEK, 
CF/PTFE, CF/UHMWPE, CF/PE, 
UHMWPE/UHMWPE 
Bone particles/PMMA 

Titanium/PMMA, 
UHMWPE/PMMA, GF/PMMA, 
CF/PMMA, 
KF/PMMA, PMMA/PMMA, 
Bio-Glass/Bis-GMA 

CF/C, CF/Epoxy, 
GF/Polyester 

UHMWPE/PMMA 
CF/PMMA, 
GF/PMMA 
KF/PMMA 

CF/PC, GF/PP, 
GF/Nylon, 
GF/PMMA 

CF/C, Sic/C 

Fig. 3 Implants for fracture treatment

Based on these parameters and application, they are divided for the use of cortical 
and trabecular bone. For cortical screws, if the length of screw is very small and able 
to be tightened only in single cortical wall called as uni-cortical while the screws 
which hold both cortical walls when tightened are bi-cortical screws. These screws 
have dull ends with close spaced shallow threads overall the length [53, 54]. Mostly 
the holes are drilled before the insertion of these screws. The packing like the washer 
is placed if there is no bone plate between the screw head and the cortical bone to 
prevent any bone damage due to stress concentration. For trabecular bone, the screw 
threads are wide with large area to improve screw grip into the bone. Cannulated 
screws are hollow fixed using guide wire for better alignment to hold the multiple 
fracture segments instead of drilling. These are the basic types of screws used to 
repair small fractures. 

5.2 Bone Plates 

Bone plates are used to stabilize the broken bones by fixing them on the outer surface 
of the bone. These plates are available in different sizes, length, width, and shapes 
depending on the area of application. When fracture occurs, two different forces are 
produced on both sides of fractured bone: tensile and compressive forces. Pauwels 
defined the way of fracture fixation using tension band procedure for first time. During 
this principle, the bone plate is applied on the tension side of the fractured bone which 
neutralizes these tensile forces and translate them into compression forces. If the 
plate is directly applied on the compression side, it will bend or break due to fatigue. 
Plates help the primary function of muscles and joints by fixing the broken bones but
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early weight bearing is not recommended. Plates promote the risk of refracture after 
removal due to irritation, mass loss, and osteoporosis below the plate [55]. A rigid 
compression plate (CP) was first used in 1970 to fix the fractures and bone union 
was observed without callus formation promoting primary healing [56]. This fixation 
requires the plate compression against the bone relying on the tightening torque by 
the screw heads. CPs demonstrate disadvantages including: bending the plate before 
insertion to sit on the bone surface, damage of the one-third of vascular tissues, 
increased bone porosity around assembly, and mainly the stress shielding effect 
between the bone–bone plate [57]. To reduce the soft tissue injury, researcher tried 
to improve the plating technique by limiting the contact area of the bone plate–bone. 
Locking plate provides stability with locked screw heads into the plate maintaining 
the distance between bone plate–bone instead of compression with bone. To enhance 
the performance, flexible plates were prepared using vitallium alloys [58]. Still the 
controversies exist in using the completely rigid or flexible plates. It is believed 
that the micro-movement at the fracture site encourages fast fracture union due to 
the enlarged callus wrapping with combined primary and secondary healing process 
[59]. Bone plate rigidity depends on the material properties and cross-sectional area 
of the bone plate. That is why biomaterials with reduced stiffness and improved 
biomechanical performance implants are ruling the orthopedic industry by replacing 
the metallic implants [60]. Depending upon the fixation method and fracture’s nature, 
plates are broadly grouped into four types: compression plates, buttress plates, bridge 
plate, and neutralization plates. 

Compression plates as explained above are designed to fix fractures using 
compression. These compression plates are commonly referred to as the dynamic 
compression plates (DCPs). The holes in DCPs have tapered edges and the screw 
tights the plate against the bone without leaving any play. 

Buttress plates are used to hold the fractures in place rigidly mostly at the proximal 
and distal ends of the long bones like at the ankle or knee where the fracture faces 
large forces. These plates are mostly wide to increase the strength. As these plates are 
used around complex surfaces, thus designed into L-shaped, T-shaped, or rounded 
ends. 

Bridge plates as clear by the name are used to stabilize the comminuted fractures 
or large bone defects. Alone the function of this plate is very hard to stabilize the 
fracture and therefore scaffold-type artificial structure or bone grafts need to be 
placed between the fragments to relief the bone plate. 

Neutralization plates are general plates where neutralization indicates that how 
the plate works during fracture fixation. This plate reduces the loading phenomenon 
on the fracture site by caring the loads and transferring them across the plate instead 
of the fracture site. Neutralization plates are fixed with screws to neutralize the 
torsional force, bending force, and shear forces. Wedge- or butterfly-type fractures 
are commonly fixed using these plates.
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5.3 Intramedullary Nails 

Intramedullary (IM) nails have gained attention and accepted universally over more 
than past 50 years. The nails are inserted into the medullary canals of the long bones 
following the hammering (HP) or reaming procedures (RP) assembled with screws 
at the proximal and distal ends of bone. During hammering, the nail press fits with 
the bone into the canal by the frictional forces and secures the movement of separated 
bone fragments. This fixation method is preferred for the mid-shaft diaphyseal long 
bone fractures especially in lower limb. The advantage is that the insertion method 
of IM nails requires small incision without extensive surgical procedure. They are 
in contact at multiple points of longitudinal bone interface while during reaming, a 
reamer is used to drill a coaxial hole along the bone length into the medullary canal. 
Gap is created around 1mm between the IM nail and bone interface promoting the 
flexible fixation. HP is more stable during axial and rotational distortion of fracture 
while more damage is done to the bone marrow and trabecular bone with RP. An 
ideal intramedullary nail is still under development with improvement in design and 
material although the varying bone anatomy makes it impossible. Better implant 
should have the following conditions: 

It should provide enough stability by maintaining the alignment and position with 
reduced rotational movement as the axial compression is recommended. 
It should provide the needed biomechanical stimulus for bone union. 
It should be positioned in a way that its removal is facilitated after bone union. 

Fracture stability with torsional and bending stiffness in nailing mainly depends 
on the material properties, diameter of the medullary canal, number and types of 
screws, and the diameter of the nail. 

6 Fabrication Techniques 

Numerous fabrication methods are used to prepare bioactive composites for frac-
ture fixations. Commonly used fabrication processes include hot pressing, additive 
manufacturing, melt extrusion, injection molding, and compression molding. Various 
forms of implants with desired shapes can be fabricated including scaffolds, films, 
disks, screws, intramedullary nails, and bone plates. 

6.1 Melt Extrusion 

Melt extrusion in early 1930s was introduced in manufacturing industries. This tech-
nique was then used for the fabrication of orthopedic composite implants. During 
melt extrusion, raw material is melted and forced into a die of the desired shape.
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Various steps include: (1) heating the material until it melts, (2) mixing of desired 
materials to obtain the homogeneous composite blend, and (3) applying pressure 
using piston or screw to the prepared material into the die for desired composite 
shape. These advantages include the following: 

Cost-effective procedure. 
Various material combination. 
Solvent absence reduced toxicity. 
Elimination of time taking drying process. 
Complex shapes achievable. 

While melt extrusion also reveal some disadvantages. High energy systems are 
required for heating chambers, push drives and only 2D shapes can be achieved. 
Degradable materials including ceramics, metals, polymers, and glasses in powder 
form can be easily processed with polymer pellets or fibers to enhance the 
biomechanical properties of composite implants. 

6.2 Hot Compression Molding 

In this technique, various composite materials including several combinations of the 
long and short fibers, aligned and random-oriented fibers, powders, and ceramics 
can be fabricated. Films of the pure polymers or in combination with powders are 
prepared using hot compression into the mold. Then the reinforcements prepared 
in the form of mats, weaved or random-oriented fibers, are placed in between the 
polymer films during staking sequence. Once the staked layers are placed in the 
mold, the mold is preheated up to the glass-transition temperature and the pressure is 
applied to the upper moveable surface of the mold to compress the stacked layer for 
even distribution of matrix into the reinforcement materials removing all possible 
trapped air. Then the mold is left at room temperature to cool down the fabricated 
composite. Different shapes with varying volume fraction and fibers orientation can 
be achieved using this fabrication technique. 

6.3 Injection Molding 

This process is same as that of melt extrusion process. The main difference is the 
addition of mold in which the melted material is injected to the cavity of the enclosed 
mold with desired shape. The material is then allowed to cool by rapid heat removal 
for composite solidification. This process is automatic and the even distribution of 
matric cannot be controlled.
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6.4 Additive Manufacturing 

Additive manufacturing (AM) is a technique that is grabbing much attention in recent 
years for three-dimensional (3D) printing of material. This technique was brought 
to the medical industry for biomaterial printing. This technique includes various 
methods like the fused deposition modeling (FDM), selective laser sintering (SLS), 
bioprinting, direct metal laser sintering (DMLS), and stereolithography (SL). 

Fused deposition modeling is widely used for 3D printing mainly for the polymer 
materials along with their composites reinforced with chopped and continuous fiber. 
The materials used for FDM include thermoplastics including PLA or PLLA along 
with their blends such as carbon fibers, Kevlar, glass fibers, and onyx. The part is 
prepared using melted filament of thermoplastic extruded from the printer heated 
nozzle in semi-solid form to lay up the layer-by-layer structure. This technique aims 
high resolution with brilliant accuracy compared to other AM techniques. 

Selective laser sintering is another 3D printing technology which was first intro-
duced in 1980s. The high performance of SLS includes superior accuracy, resolution 
with smooth surface finish compared to other 3D plastic printing technologies. Any 
kind of shape can be produced using high power laser beam by fusing the small 
powder or polymer particles. The remaining unfused powder supports the printed 
structure without any additional structure attached. These printed parts have good 
mechanical properties compared to other 3D printing technologies along with low 
production cost with fast manufacturing making it trendy in AM. 

7 Future Directions; Challenges and Opportunities 

Degradable implants should meet two biomechanical criteria: one is initial integrity 
with degraded mechanical compatibility during healing period and second is the 
biocompatibility and bioactivity between the implant and the host bone fracture. 
Therefore, these two criteria should be considered while designing a biodegradable 
implant. The first objective is to provide the adequate initial mechanical support to 
the fractured bones followed by optimal gradual degradation. During this period of 
bone healing, the biodegradable implant provides temporary structural support for 
tissue differentiation process and completely degrades in a certain time frame, which 
depend on the severity of fracture, fracture site, fracture geometry, age, and weight. 
Generally, an orthopedic implant should provide the mechanical stability from 1 to 
6 months in lower limb long bone fractures. However, it remains a challenge to set 
the balance between implant mechanical properties and healing rate of fractured 
bones. Therefore, careful considerations should be given to the material of implant 
and fracture-related parameters influence the healing of bone fractures. Moreover, a 
reliable in vivo or in vitro degradation study should be conducted according to the 
FDA recommendations following ISO-10993 standard if biodegradable implant is 
designed. Therefore, a biodegradable implant and the clinical implications such as
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healing of bone fractures should be critically investigated. Additional functions such 
as bioactive materials, drug delivery mechanism, and bone healing monitoring via 
smart biosensors should be integrated into the biodegradable implants. Appropriate 
bioactivity, optimal amount of drug release, and the biosensors for real-time moni-
toring of healing status need more advancements and extensive investigations are 
required to design the next-generation biodegradable orthopedic implants. 
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