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Chapter 6 
Impacts of Climate Alterations 
on the Biosynthesis of Defensive Natural 
Products 

Pooja Singh and Krishna Kumar Choudhary 

Abstract Climate change fluctuations, specifically CO2 concentration, tempera-
ture, rainfall patterns, droughts, and soil salinity, are increasing due to anthropo-
genic activities. These variations are identified as major constraints to plant survival 
and therefore limit plant growth and productivity. Photosynthesis inhibition, exces-
sive ROS (reactive oxygen species) production, biomass reduction, increased patho-
gen infestation, and ultimately lower yields are the major limiting attributes that 
have attracted a lot of attention from researchers worldwide. Since climate change 
predictions indicate that ecological damage will be more frequent and severe in the 
upcoming futuristic scenarios, the question of fulfilling the food requirement of the 
ever-growing population becomes imperative. Plants are sensitive to the effects of 
climate change. Alterations in photosynthesis and carbon assimilation mechanisms 
are attributed to reduced productivity. To cope with these stresses, secondary metab-
olite production elicits defensive responses in plants. These natural by-products are 
synthesized from primary metabolites and protect against various abiotic and biotic 
stresses. Synthesis and accumulation of secondary metabolites differ among plant 
species growing in different environmental conditions. Phenolics, flavonoids, alka-
loids, terpenoids, tannins, glucosinolates, and so on are a useful array of natural 
products that increase plant resistance against various stresses. Although these are 
synthesized in minimal concentrations, they display a crucial role in the scavenging 
of ROS molecules. 
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6.1  Introduction 

Anthropogenic activities including the burning of fossil fuels, urbanization, and a 
rise in the concentration of greenhouse gases (GHGs) are the major factors respon-
sible for global climate change (Dutta et al. 2020). Elevated concentration of GHGs 
in the atmosphere since the industrial revolution has increased the concentration of 
CO2 from 280 ppm to >410 ppm and is expected to rise further to 730–1000 ppm by 
2100 (IPCC 2014). Recently, IPCC (2021) revealed that this enhancement in atmo-
spheric GHGs further raises the global temperature approximately by 0.84–1.10 °C, 
and consequently disturbing the rainfall patterns and prevailing drought conditions 
in arid regions of the world (IPCC 2014). Such variability in climate is influencing 
crop production with each successive year and somewhere evokes an uncertainty in 
terms of food production (Reddy and Hodges 2000). It is predicted that agricultural 
outputs will be declined (10–20%) by the end of 2080  in developing countries 
(Thompson and Cohen 2012). Consequently, the subject of achieving food security 
worldwide becomes a daunting task with an ever-growing population (Barnett 2011; 
Funk and Brown 2009; Rice and Garcia 2011). In the current scenario, about 1 bil-
lion people are food-deprived, 150 million children are chronically undernourished, 
50  million children are acutely malnourished with a higher mortality rate, and 
another 38 million children are overweight (Misselhorn et al. 2012; Fanzo 2018). 
The situation in India is similar to the global scenario: whether the increasing popu-
lation and demand for food supply will continue to rise with climate change. 
Temperature increases of 1–2 °C have a negative influence on the productivity of 
major cereal crops, which in turn affects the nutritional status of the population 
(Easterling et al. 2007; Rao et al. 2016). 

Climate change unavoidably disturbs plants by hampering the physiological and 
biochemical processes such as altered photosynthesis, plant–water interactions, and 
CO2 assimilations, which severely affects their growth and yield (Fig. 6.1) (Anjum 
et al. 2011). These variations induced oxidative stress in plants via increased gen-
eration of reactive oxygen species (ROS), leading to lipid peroxidation, DNA dam-
age, and inactivation of important enzymes (Akula and Ravishankar 2011). In 
addition to this, overproduction of ROS also inhibits CO2 fixation in chloroplasts, as 
they are the primary source of ROS generation (Asada 2006). In response to such 
constraints, plants have acquired alternative strategies such as increased antioxida-
tive response, phytohormones, osmotic adjustment, and enhanced production of 
secondary metabolites (Yadav et  al. 2021; Jogawat et  al. 2021; Zandalinas et  al. 
2022). Secondary metabolites play a vital role in plant defense against herbivory, 
insect attack, and environmental stress (Chomel et  al. 2016). Several biotic and 
abiotic stresses act as an elicitor for the stimulation of secondary metabolites 
(Radman et al. 2003; Ghorbanpour et al. 2014). Their synthesis and accumulation 
differ among plant species grown under different environmental conditions 
(Radušienė et al. 2012). Shikimate pathway, acetate–malonate pathway, and side 
reactions involving glycolysis and TCA cycle are different metabolic routes through 
which biosynthesis of secondary metabolites takes place in plants (Geilfus 2019; 
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Fig. 6.1 Effect of different abiotic stress responses in plants due to climate change 

Nabavi et  al. 2020). Phenolics, flavonoids, and terpenes synthesized in very low 
concentrations facilitate antioxidative defense mechanisms, thus increasing their 
acclimatization to oxidative stress in plants (Edreva et al. 2008). Phytohormones, 
particularly ABA and jasmonic acid (JA), are positively correlated with the produc-
tion of secondary metabolites, as they work in a synergistic manner. For example, 
ABA and JA were responsible for the increase in phenolics and flavonoid contents 
in Castanea sativa (Camisón et  al. 2019). This could protect the plants against 
increased oxidative stress through the activation of NAC transcription factors 
(Choudhary et al. 2021). 

6.2  Elevated CO2 and Temperature Stress 

Increased anthropogenic activities have accelerated the level of CO2 concentrations 
in the atmosphere. At the time of pre-industrialization, the CO2 levels were 280 ppm 
initially, but with increasing trends, it has been reported to be nearly 410  ppm 
(September 2019) (IPCC 2019). In view of this, a two-fold increase in CO2 concen-
tration has been expected (IPCC 2013). These elevated levels of CO2 not only causes 
global warming but also reduces ecosystem productivity. According to NOAA 
(2020), the surface temperature of land and oceans is 0.98  °C warmer than the 
twentieth-century average (13.9  °C). Kimball (2016) found that increasing CO2 
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concentration by 200 ppm will increase canopy temperature (ET) by 0.7 °C. Increased 
ET becomes a problem, particularly for developing countries, as it has reduced crop 
productivity and grain yield (Chaturvedi et al. 2017; Wang et al. 2017). CO2 levels 
play a significant role in plant metabolic processes. Short-term exposure to elevated 
CO2 (~400 ppm) reported enhanced photosynthesis, biomass, and decreased oxida-
tive stress. Various plants, such as Solanum lycopersicum L., Stevia rebaudiana L., 
and Parthenium hysterophorus L., have demonstrated the beneficial impact of ele-
vated CO2 (Hussin et al. 2017; Bajwa et al. 2019; Pan et al. 2020). However, pro-
longed exposure to higher CO2 levels (~800 ppm), promoted negative effects on 
plant growth, i.e., reduced photosynthesis, and altered biomass that ultimately 
affected crop yield and its quality (Wang et al. 2013). For instance, decreased pho-
tosynthesis and fruit yield has been observed under high CO2 concentrations in 
strawberry (Balasooriya et al. 2018). This significant reduction is due to the low 
availability of RuBisCO content and nitrogen concentration (Gamage et al. 2018; 
Rosa et al. 2019). Many crops, including Lactuca sativa and Spinacia oleracea, had 
lower nutritional quality (Mg, N, Fe, Zn, and S) under increased CO2 concentrations 
(Giri et al. 2016; Dong et al. 2018). 

Variable environmental factors influence secondary metabolite biosynthesis in 
plants. Phenolics such as flavonoids, condensed tannins, and alkaloids in response 
to elevated CO2 concentration have significantly modulated secondary metabolism 
in plants (Levine et al. 2008; Jia et al. 2014). CO2 enrichment in the atmosphere 
increases the susceptibility of plants to insect attack by boosting photosynthesis and 
higher production of carbohydrates (Ainsworth and Rogers 2007; Bernacchi et al. 
2007). To avoid insect damage, plants allocate the primary metabolites to secondary 
metabolites grown under high CO2 levels. In woody plants, phenolic compounds 
and terpenoids provide defense against herbivory at higher CO2 concentrations 
(Feeny 1976; Rhoades and Cates 1976). Robinson et al. (2012) reported increased 
total phenolics (19%), flavonoids (27%), and tannins (22%) in plants grown under 
elevated CO2. On the other hand, flavonoids such as quercetin, fisetin, and kaemp-
ferol were enhanced in the leaves and rhizomes of ginger, hence exhibiting higher 
antioxidative defense responses (Ghasemzadeh et  al. 2010). Similarly, soy-
bean plants mediate anti-herbivory by increasing the ratios of quercetin and kaemp-
ferol while decreasing the genistein concentration (Piubelli et  al. 2005). Higher 
phenylalanine ammonia-lyase (PAL) enzyme activity is linked with the upregula-
tion of secondary metabolites in elevated CO2. For example, a significant increase 
in phenolics and flavonoid concentration was observed in Eleais guneensis L. due 
to increased PAL enzyme activity (Ibrahim and Jaafar 2012). Similarly, Triticum 
aestivum L. exhibited higher PAL activity along with an accumulation of phenolic 
compounds (Mishra et al. 2013). Generally, warming conditions are associated with 
phenolic contents in leaves and increased terpenoid concentrations in foliage 
(Peñuelas and Staudt 2010; Zvereva and Kozlov 2006). However, under elevated 
CO2, phenolic concentrations were increased in the foliage while decreased in 
woody tissues (Zvereva and Kozlov 2006). On the other hand, terpenoid concentra-
tion was significantly lowered as CO2 concentration increased in conifers. Similarly, 
the emission of phenolics and flavonoid content was significantly intensified by 
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elevated temperature in Zingiber officinale L. (Ghasemzadeh et al. 2011). Several 
plant species, such as Thymus hyemalis L., Thymus vulgaris L., Valeriana jatamansi 
L., and Camellia sinensis L., have been reported with an increased concentration of 
secondary metabolites in plants (Biel et al. 2005; Vurro et al. 2009; Li et al. 2017; 
Kaundal et al. 2018). Sobuj et al. (2018) observed the differential response of flavo-
noid concentration in male and female plants. Under elevated CO2 conditions, 
female plants had a significantly higher concentration of flavonoids as compared to 
male plants. The anti-carcinogenic and anti-inflammatory activities of glucora-
phanin and sulforaphane have been linked to increased hydrolysis of glucosinolates 
(GSs) in response to elevated CO2 (Table 6.1) (Almuhayawi et al. 2020). Jasmonic 
acid (JA) plays an integral role in plant defense mechanisms through the elicitation 
of different secondary metabolites such as alkaloids, flavonoids, phenylpropanoids, 
and terpenoids (Tamogami et  al. 1997). For example, higher ascorbic acid and 
carotenoid content have been observed in Origanum majorana L. (Złotek 2017). 
Similarly, various plants have been reported to produce differential secondary 
metabolites being elicited by JA (Thakur et al. 2019).

Temperature stress also affects plant ontology and metabolic processes, i.e., 
physiological and biochemical changes such as chlorophyll pigment breakdown, 
leaf senescence, membrane damage, and protein denaturation (Waraich et al. 2012). 
Other effects of higher temperature (heat stress) can be identified by decreased 
quantum efficiency of Photosystem II (PSII), stomatal conductance, CO2 fixation, 
altered secondary metabolites, and ROS generation (Hasanuzzaman et  al. 2013; 
Verma and Shukla 2015). However, low temperature is responsible for disturbing 
the plant–water interactions and metabolic activities, ultimately hampering the 
plant growth and productivity (Chinnusamy et al. 2007). Plant growing under low 
temperature synthesizes cryoprotective substances such as soluble sugars (treha-
lose, raffinose, stachyose, and saccharose), sugar alcohols (inositol, ribitol, and sor-
bitol), and nitrogen-containing compounds (glycine betaine, proline) to maximize 
cold stress tolerance (Janská et al. 2010). In Arnica montana, enhanced ratios of 
quercetin–kaempferol have been reported under low temperature (Albert et  al. 
2009). Increased artemisinin content has been observed after exposure of Artemisia 
annua to cold stress (Yin et al. 2008; Vashisth et al. 2018). 

Variations in temperature influence the biosynthesis and accumulation of alka-
loids in plants. For instance, in Papaver somniferum L., the accumulation of mor-
phinane, benzylisoquinoline, and phthalisoquinoline becomes restricted at low 
temperature (Bernáth and Tetenyi 1979). Contrary to this, the concentration of iso-
flavonoids (genistein, genistin, and daidzein) is significantly enhanced in the roots 
of Glycine max L. at low temperature (Janas et al. 2002). Similarly, several studies 
have been reported with increased alkaloid contents in plants incubated at a higher 
temperature. For example, Lupinus angustifolius has been reported with higher 
alkaloids concentration when grown under elevated temperature (Jansen et  al. 
2009). In Catharanthus roseus L., increased concentrations of catharanthine, vin-
doline, and vinblastine were observed at a higher temperature, while incubation at 
low temperature resulted in a two- to four-fold reduction of catharanthine and vin-
doline contents (Dutta et al. 2007). These findings suggest that higher temperature 
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Table 6.1 Impact of CO2 and temperature stress on different secondary metabolites in plants 

Stress Dose Plants 
Endogenous response of 
secondary metabolites References

CO2 (400–1000 ppm) Triticum 
aestivum L. 

Flavonoid contents 
(homoorientin and 
rhamnoside) increased by 
28–64%; a significant 
increase in tyrosine and 
trans-caffeic acid 

Levine et al. 
(2008) 

(350– 
700 μmol mol−1) 

Significant reduction in 
total phenolic acids 
(21.4%), condensed 
tannins (22.2%), and 
indole alkaloids (48.1%) 

Jia et al. 
(2014) 

(700 ppm) Increased PAL activity by 
39.2% along with a 
significant increase in 
total phenolics by 11.7% 

Mishra et al. 
(2013) 

(400– 
800 μmol mol−1) 

Zingiber 
officinale L. 

Elevated flavonoids 
contents (kaempferol, 
fisetin, and naringenin) in 
leaves by 44.9% and 
rhizomes by 86.3%; 
phenolic compounds 
(gallic acid, vanillic acid, 
and ferulic acid) 
increased in leaves by 
112.2% and rhizomes by 
109.2% 

Ghasemzadeh 
et al. (2010) 

(400– 
1200 μmol mol−1) 

Eleais 
guineensis L. 

Enhanced total flavonoids 
by 132%; total phenolics 
by 91% 

Ibrahim and 
Jaafar (2012) 

(550 μmol mol−1) Valeriana 
jatamansi 

Elevated essential oil 
content by 17.7%; 
sesquiterpenes by 17.2% 

Kaundal et al. 
(2018) 

(800 μmol mol−1) Camellia 
sinensis L. 

Upregulated expression 
of catechins and theanine 
biosynthetic genes while 
caffeine synthetic genes 
were downregulated 

Li et al. 
(2017) 

(400 μmol m−2 s−1) Brassica 
oleracea L. 

Slight increase in 
myrosinase activity 
accounts for the effective 
production of 
sulforaphene 

Almuhayawi 
et al. (2020)

(continued)
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Stress Dose Plants 
Endogenous response of 
secondary metabolites References

Temperature (7.5–12.5 °C) Arnica 
montana L. 

Ratios of quercetin– 
kaempferol were 
significantly enhanced 

Albert et al. 
(2009) 

(4 °C) Artemisia 
annua L. 

Artemisinin content 
significantly elevated by 
27.16% 

Vashisth et al. 
(2018) 

(10 °C) Glycine max 
L. 

Increased concentration 
of isoflavonoids 
consisting of daidzein 
(200%), genistein 
(240%), and genistin 
(310%) 

Janas et al. 
(2002) 

(15.5 °C) Lupinus 
angustifolius 
L. 

Estimated increase in 
alkaloid contents by 
0.11% 

Jansen et al. 
(2008) 

(4 °C) Catharanthus 
roseus L. 

Significant reductions in 
catharanthine content by 
two-fold along with 
two- to four-fold 
reduction in vindoline 
content 

Dutta et al. 
(2007) 

(20 °C) Chamomilla 
recutita L. 

Increased concentrations 
of α-bisabolol were 
detected 

Fahlén et al. 
(1997) 

(40 °C) Pinus 
ponderosa L. 

Significant increase in 
sesquiterpenes 
(α-bergamotene, 
α-farnesene, 
β-caryophyllene, and 
β-farnesene) 
concentrations 

Helmig et al. 
(2007) 

(6–22 °C) Betula 
pendula L. 
Populus 
tremula L. 

DMNT (homoterpene) 
increased consistently; 
SQTs (β-bourbonene, 
γ-cadinene) were 
significantly enhanced 

Ibrahim et al. 
(2010) 

(26.8–31.2 °C) Panax 
quinquefolius 
L. 

Ginsenoside 
concentrations in roots 
significantly increased by 
49% 

Jochum et al. 
(2007) 

DMNT 4,8-dimethylnona-1,3,7-triene, PAL phenylalanineammonia-lyase, SQTs sesquiterpenes

Table 6.1 (continued)

enhanced the concentration of alkaloids in plants and low temperature significantly 
hinders their biosynthetic pathway genes (Dutta et  al. 2007). The antioxidative 
properties of terpenes provide stability to the thylakoid membrane of the chloro-
plast. In Chamomilla recutita, the combination of photoperiod (21-3h) and 
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temperature (20 ± 2 °C) resulted in the highest concentration of α-bisabolol (Fahlén 
et al. 1997). Temperature dependency is correlated with the yield of terpenoids. For 
example, pine species have been reported with increased emissions of sesquiterpene 
compounds (α-bergamotene, α-farnesene, β-caryophyllene, and β-farnesene) at 
elevated temperature (Table 6.1) (Helmig et al. 2007). Differential response of tem-
perature on volatile organic compounds (VOCs) has been studied in Betula pendula 
and Populus tremula, resulting in an exponential increase in DMNT (4,8-dimethyl- 
nona-1,3,7-triene) concentration (Ibrahim et al. 2010). In the roots of Panax ginseng 
and Panax quinquefolius, ginsenoside content was significantly enhanced under 
elevated temperature, while photosynthesis and biomass were considerably reduced 
(Yu et al. 2005; Jochum et al. 2007). 

6.3  Drought Stress 

High temperature and solar radiations are accompanied by water deficit conditions 
that induce drought (Xu et  al. 2010). Among abiotic stressors, drought hampers 
agricultural productivity by upto 50–70% (Verma and Deepti 2016). It has been 
estimated that drought affects 40% of the global population and now has been pre-
dicted to pose a risk of displacement to 700 million populations by 2030 (WHO 
2020). Drought stress severely alters plant growth through photosynthesis inhibi-
tion, decreased stomatal conductance, CO2 assimilation, and leaf senescence 
(Nezhadahmadi et al. 2013; Wang et al. 2018; Zargar et al. 2017). Plant defense 
responses, including secondary metabolites production, are triggered by decreased 
water potential and turgor pressure caused by increased transpiration rate (Ashraf 
et al. 2018). Drought stress induces ROS production through oxidative stress, result-
ing in enhanced production of flavonoids and phenolic acids (Larson and Weber 
2018). Through transcriptomics, Morales et al. (2017) identified pathways as well 
as genes involved in drought-tolerant quinoa. Upregulation of drought-tolerant 
genes such as GmbZIP44, GmbZIP46, GmbZIP62, and GmbZIP78 has been known 
to provide tolerance against drought (Xie et al. 2009). In addition, enhanced expres-
sion of the GmbZIP1 gene in wheat has been reported as an excellent resource for 
overcoming drought stress (Gao et al. 2011). Activation of the PAL gene resulted in 
enhanced phenolic and flavonoid contents in Lactuca sativa L. (Rajabbeigi et al. 
2013). Various plants such as Artemisia, Hypericum brasiliense, Hypericum perfo-
ratum, and Trachyspermum ammi have been reported with increased secondary 
metabolites such as artemisinin, betulinic, ruetin, hyperforin, and quercitin (Azhar 
et al. 2011; Zobayed et al. 2007; Verma and Shukla 2015). Similarly, water-deficit 
conditions (80–85% field capacity) decreased the number of total flavonoids in 
Glechoma longituba (Zhang et al. 2012). 

The major enzymes responsible for the biosynthesis of flavonoids include chal-
cone synthase (CHS), chalcone isomerase (CHI), flavone synthase (FNS), flavanone 
3-hydroxylase (F3H), flavonol synthase (FLS), dihydroflavonol 4--reductase (DFR), 
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and anthocyanidin synthase (ANS) (Shih et al. 2008). The antioxidant property of 
flavonoids lies in the position of hydroxyl groups and carbon modifications such as 
glycosylation, methylation, and prenylation (Rice-Evans et  al. 1997). Flavonoids 
under drought stress act as an antioxidant and protect plants from severe damage 
induced under water-deficit conditions (Nichols et al. 2015). For instance, in Pisum 
sativum L., flavonoid concentration was significantly increased by 45% in response 
to drought stress (Nogués et  al. 1998). Similarly, roots of Scutellaria baicalensis 
were reported with elevated concentrations of flavonoids (Yuan et al. 2012). This 
increased accumulation of flavonoids represents effective detoxification of H2O2 
molecules induced via drought stress (Hernández et al. 2009). In addition, drought 
stress also influenced phenolic concentration in plants, which was mediated via 
alteration in the phenylpropanoid pathway (Table 6.2) (Gharibi et al. 2019; Rezayian 
et  al. 2018; Li et  al. 2018). Salvia dolomitica and Salvia officinalis showed an 
increase in flavonoids (101%) and phenolics (139%) content under drought condi-
tions (Caser et al. 2018, 2019). Drought stress reduced oil, sesamin, and quercetin 
concentration, however, a significant increment was noticed in flavonoids and phe-
nolics contents in Sesamum indicum L " (Kermani et al. 2019). Biosynthesis of gly-
cine betaine via enhanced expressions of glycine betaine hydrogenase was 
responsible for the alleviation of drought stress in C. roseus (Jaleel et  al. 2007). 
Similarly, the artificial introduction of mannitol in seedlings elevated the concentra-
tions of carbohydrates, proline, thymol, and γ-terpinene (Razavizadeh and Komatsu 
2018). Water stress altered essential oil content (geraniol and citral) in Cymbopogon 
citratus L. (Singh-Sangwan et  al. 1994). However, moderate drought conditions 
exhibited a higher concentration of β-thujone and camphor in Salvia officinalis 
(Bettaieb et al. 2009). Additionally, Nowak et al. (2010) reported higher concentra-
tions of monoterpenes (33%) in the same plant. Essential oil contents do not always 
increase; however, it depends on the plant species and the severity of the stress. 
Paulsen and Selmar (2016) reported a considerable increase in terpene content, 
whereas the total amount of terpene was markedly reduced due to biomass reduction.

6.4  Salinity Stress 

Salinity stress is one of the major limiting factors in plant growth and development. 
Due to increased anthropogenic activities and global climate change, it is projected 
to worsen in the near future (Rengasamy 2010). For instance, salinity stress signifi-
cantly decreased crop yield by 10–50% in most salt-sensitive plant species (Panta 
et al. 2014). Globally, salinization has recorded an estimated economic loss of US$ 
27.3 billion/year (Qadir et  al. 2014). This significant increasing trend in salinity 
becomes a subject of great concern for national as well as global food security. 
Keeping this in view, the Indian government has planned to restore 26 million ha of 
salt-affected lands by 2030 (Kumar and Sharma 2020). Photosynthesis inhibition, 
ROS production, and reduced germination are some of the negative impacts com-
monly observed under salt stress. The generation of ROS mediated via salt stress 
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Table 6.2 Impact of drought stress on different secondary metabolites in plants 

Stress Dose Plants 
Endogenous response of secondary 
metabolites References 

Drought Field 
capacity 
(60– 
100%) 

Trachyspermum 
ammi L. 

Increased total phenolic contents 
(4.44 mg/g) was estimated 

Azhar et al. 
(2011) 

9–12 
days 

Hypericum 
perforatum L. 

70-fold higher hyperforin concentration; 
antioxidants increased by 2.5-fold 

Zobayed 
et al. (2007) 

Field 
capacity 
(80– 
85%) 

Glechoma 
longituba L. 

Significant increase in yield of total 
flavonoids 

Zhang et al. 
(2012) 

30–70 
days 

Scutellaria 
baicalensis L. 

Increased total flavonoid contents both in 
roots and leaves; baicalin and baicalein 
(major active compounds) contents 
remained unchanged 

Yuan et al. 
(2012) 

7–28 
days 

Achillea 
pachycephala L. 

Phenolic acids and flavones such as 
chlorogenic acid (7.23 mg/100 g DW) 
and luteolin (5.1 mg/100 mg DW) were 
markedly elevated, major flavonoid 
(apigenin-7-O-glucoside) present in 
abundant concentration (10.41 mg/100 g) 

Gharibi 
et al. (2019) 

PEG 
(0, 5, 10, 
15%) 

Brassica napus 
L. 

Influence of increased PAL enzyme activity 
on total phenols, flavonoids, and flavonols 
concentration accompanied with increased 
tocopherol content and decreased 
anthocyanin contents significantly 

Rezayian 
et al. (2018) 

PEG 
(5–10%) 

Cucumis sativus 
L. 

Upregulated expression of phenolic 
compounds (vanillic acid and 
4-hydroxycinnamic acid) 

Li et al. 
(2018) 

0–34 
days 

Salvia 
sinaloensis L. 

Altered chemical profiles of BVOC and 
EO; significant increase in phenolics, 
flavonoids, and monoterpenes (camphor) 
while sesquiterpene (Germacrene D) 
contents decreased significantly 

Caser et al. 
(2018) 

Salvia 
dolomitica L. 

Substantial reduction in total phenols and 
flavonoid contents; sesquiterpene 
hydrocarbons (66.32%) were significantly 
increased; monoterpene hydrocarbons 
(29.41%) and oxygenated hydrocarbons 
(2.19%) were considerably reduced 

Caser et al. 
(2019) 

– Sesamum 
indicum L. 

Elevated phenolics (caffeic, p-coumaric 
and ferulic acids) and flavonoids (rutin 
and apigenin) levels; oil contents, 
sesamin, and quercetin decreased 
significantly 

Kermani 
et al. (2019) 

Field 
capacity 
(25, 50, 
100%) 

Salvia officinalis 
L. 

Enhanced essential oil constituents 
(β-thujone, camphor, and 1,8-cineole) 

Bettaieb 
et al. (2009) 

BVOC biogenic volatile organic compounds, EO essential oils, PAL phenylalanineammonia-lyase
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alters plant metabolic activities such as the disruption of membrane and ion toxicity 
(Ashraf et al. 2015; Chaudhary and Choudhary 2021). Secondary metabolites can 
scavenge ROS through the enhanced accumulation of phenolic compounds. 
Polyphenol concentrations significantly increased in Cakile maritime after exposure 
to different concentrations of NaCl (0, 100, 400 mM), indicating a protective role 
against salt stress (Ksouri et al. 2007). Similarly, Cynara cardunculus were reported 
to have increased phenolic contents on exposure to moderate levels of NaCl 
(>75 mM) (Hanen et al. 2008). Fagopyrum esculentum L. under variable salt con-
centrations (10–200  mM) showed a remarkable increase in phenolic contents 
(isoorientin, rutin, orientin, and vitexin) compared to control (Lim et  al. 2012). 
Exposure to increased salinity levels (0–200 mM) significantly enhanced the total 
non-flavonoids (30%), total phenolics (135%), and total tannins (72%) content in 
Brassica napus L. (Falcinelli et al. 2017). In contrast, Brassica oleracea L. showed 
a decrease in phenolic compounds (chlorogenic and derivatives of sinapic acid), 
indicating the accumulation of phenolic acids in a plant-specific manner (Lopez- 
Berenguer et al. 2009). Similarly, Salvia macrosiphon L. has been reported with a 
remarkable decrease in total phenolics (2.6 times) after exposure to 8 dS ms−1 salin-
ity level (Valifard et  al. 2017). Furthermore, this lack of correlation, however, 
depends on the synergistic interactions of different antioxidant molecules (Tarchoune 
et al. 2012a, b). The effects of different salt concentrations on various plant species 
are shown in Table 6.3.

Salt stress stimulates the production of tropane alkaloids in Datura innoxia 
L. (Brachet and Cosson 1986). In C. roseus, vincristine content was significantly 
enhanced in response to 150 mM NaCl but gradually declined with increasing salin-
ity levels (Osman et al. 2007). Ali et al. (2008) reported altered ricinine content in 
Ricinus communis L. Similarly, reserpine and vincristine (alkaloids) contents sig-
nificantly increased in C. roseus and R. tetraphylla, respectively (Ahl and Omer 
2011). Rosmarinus officinalis governs increased concentrations of camphor and 
cineole on account of salt stress, whereas borneol, camphene, nopol, and α-terpineol 
concentrations were decreased significantly (Tounekti et  al. 2011). Furthermore, 
roots of Zea mays L. drastically improved the zealexins levels by five-fold at higher 
levels of NaCl (500 mM); however, kauralexins contents increased upto two-fold at 
lower levels (100  mM) (Vaughan et  al. 2015). Different concentrations of salt 
(0–150 mM) significantly enhanced the expression of flavonoid biosynthetic genes 
(CHS, FS, and PAL) and resulted in increased production of lutein and quercetin in 
Solanum nigrum L. (Ben Abdallah et al. 2016). 

6.5  UV-B Stress 

Depletion of the ozone layer raises its concern over increased exposure to UV-B 
radiation on plants and animals. UV-B radiation, which comprises 0.5% of total 
solar radiation, possesses a significant impact on terrestrial life forms (Rozema 
et al. 2009; Verdaguer et al. 2012; Correia et al. 2012). Equatorial regions receive 
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Table 6.3 Impact of salinity stress on different secondary metabolites in plants 

Stress Dose Plants 
Endogenous response of secondary 
metabolites References 

Salinity (0, 100, 
400 mM) 

Cakile maritima 
L. 

Significant increase in polyphenol 
concentration (56%) along with 
higher MDA contents 
(1.6–2.6-fold) 

Ksouri et al. 
(2007) 

(25– 
150 mM) 

Cynara 
cardunculus L. 

Two-fold increase in polyphenol 
concentrations at moderate salinity 
levels, 50-fold higher (IC50) 
antioxidant activity 

Hanen et al. 
(2008) 

(10– 
200 mM) 

Fagopyrum 
esculentum L. 

Two-fold increase in phenolic 
contents (isoorientin, orientin, 
rutin, and vitexin) with subsequent 
increase in antioxidant activity 
(60%); carotenoids contents 
elevated upto 40% 

Lim et al. 
(2012) 

(0–200 mM) Brassica napus 
L. 

Total phenolics increased upto 
135%, non-flavonoids upto 30%, 
and total tannins upto 72%; higher 
DPPH exhibited positive 
correlation with total phenolic 
contents 

Falcinelli et al. 
(2017) 

(4–80 mM) Brassica 
oleracea L. 

Enhanced glucosinolate and 
flavonoid levels; significant 
decrease in phenolic contents, i.e., 
chlorogenic acid and sinapic acid 
(63.8%) 

Lopez- 
Berenguer 
et al. (2009) 

2.3– 
6.8 dS m−1 

Salvia 
macrosiphon L. 

2.6 times decrease in phenolic 
compounds accompanied with 
significant increase in antioxidant 
activity; negative correlation is 
established 

Valifard et al. 
(2017) 

(100– 
150 mM) 

Catharanthus 
roseus L. 

Remarkable increase in alkaloid 
(vincristine) content (2-peak) 
attributed to increased levels of 
arginine 

Osman et al. 
(2007) 

(50– 
150 mM) 

Solanum nigrum 
L. 

Quercetin levels increased about 
2.6-fold; amount of carotenoids 
(lutein and β-carotene) was 
substantially high 

Ben Abdallah 
et al. (2016) 

DPPH 2,2-diphenyl-1-piacrylhydrazyl, MDA malondialdehyde content

about 12 kJ m−2 d−1 of solar UV-B radiation (Forster 2011). During the pre-1980s, 
about 6–14% of increment was detected. However, current scenarios reflect this 
percentage remaining elevated for the next decades (WMO 2010). UV-B influenced 
plants by reducing photosynthesis, biomass, deformities in chloroplast structure, 
and increased ROS generation (Pandey and Chaplot 2007; Yang et al. 2007; Kataria 
et al. 2014; Yao and Liu 2006; Kakani et al. 2003; Choudhary et al. 2017). Elevated 
UV-B levels significantly altered the concentrations of secondary metabolites such 
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Table 6.4 Impact of UV-B stress on different secondary metabolites in plants 
Stress Dose Plants Endogenous response of secondary metabolites References 

UV-B 
radiation 

5.4– 
31 kJ m−2 d−1 

Rosamatinus 
officinalis L. 

Predominant rosmarinic acid and carnosic 
concentrations followed by naringin and carnosol, 
while vanillic acid and hispidulin are considerably 
reduced 

Luis et al. 
(2007) 

5.8– 
7.2 kJ m−2 d−1 

Pisum 
sativum L. 

Significant increase in quercetin (114%) and 
kaempferol (72%) contents 

Choudhary 
and Agrawal 
(2014b) 

5.8– 
7.2 kJ m−2 d−1 

Vigna 
radiata L. 

Total flavonoids increased significantly by 36% 
along with maximum induction of PAL activity 
(105%) 

Choudhary 
and Agrawal 
(2014a) 

Glycine max 
L. 

Increased PAL activity (45%) correlates with 
increased kaempferol (83%) and quercetin (95%) 
contents; higher contents of lignin (60%) and wax 
(88%) 

Choudhary 
and Agrawal 
(2016) 

0.43– 
1.13 W m−2 

Glycyrrhiza 
uralensis L. 

Stimulated glycyrrhizin concentration in root 
tissues; melatonin present in roots and leaves 

Afreen et al. 
(2005) 

ambient+1.8 
kJ m−2 d−1 

Acorus 
calamus L. 

Increased percentage of aristolene, p-cymene, 
caryophyllene oxide, and carvacrol; reduced 
contents of β-asarone 

Kumari 
et al. 
(2009a, b) 

35 μmol s−1 m−2 Fagopyrum 
tataricum L. 

9.35-fold increase of rutin concentration in leaves with 
substantial increase in quercetin content; 30–40-fold 
higher abundance of FtCHI and FtCHS transcripts 

Huang et al. 
(2016) 

8.64– 
9.50 kJ m−2 d−1 

Glycine max 
L. 

Considerable increase in flavonoids concentration 
(quercetin, rutin, ferulic acid); no significant 
difference in phenolic compounds 

Mao et al. 
(2017) 

6.5– 
12.4 kJ m−2 d−1 

Olea 
europaea L. 

Significant decrease in phenolic contents (seciridoids, 
oleuropein (54%), and 2″-methoxy oleuropein) 
increased significantly by 68%; flavonoids 
(4′-methoxy luteolin) decreased; ouercetin- 3-O-
rutinoside, luteolin-7-O- glucoside, luteolin-7,4′-
diglucoside, and apigenin 7-O-glucoside contents 
remains unchanged; HCAds and 
β-hydroxyverbacoside increased significantly by 75% 

Dias et al. 
(2020) 

0.5– 
2.0 kJ m−2 d−1 

Brassica 
oleracea L. 

Accumulation of kaempferol-3-O-disinapoyl-
triglucoside-7-O-glucoside, kaempferol, and 
quercetin derivatives significantly decreased 

Neugart 
et al. (2012) 

ambient 
+9.6 kJ m−2 d−1 

Curcuma 
caesia L. 

Total flavonoid content increased by 62%, 
anthocyanin content by 44%; reduction in 
D-camphor, eucalyptol, curcumenol, isocurcumenol 
compounds; increment in 1,8-cineole, 
epicurzerenone, and elemene compounds; 
stimulation of anti-cancerous compounds 
(caryophllene, furanodiene, curzerene, 
epicurzerenone, and verrucarol) 

Jaiswal 
et al. (2020) 

54 kJ m−2 d−1 Cuminum 
cyminum L. 

Increased trends in flavonoid and alkaloid contents 
with more pronounced effect on expression levels of 
PAL and DAHPs 

Ghasemi 
et al. (2019) 

2.8 W m−2 Withania 
coagulans L. 

Enhanced contents of both withanolide A and 
withaferin by 3.42- and 1.38-folds; upregulated 
expression of terpenoid biosynthetic genes (FPPS, 
SQS, and CYP51G1) 

Tripathi 
et al. (2021) 

CHI chalcone isomerase, CHS chalcone synthase, CYP51G1 Cytochrome P45051G1, DAHPs 
deoxyriboninoheptulosinate-7-phosphate synthase, FPPS farnesyl pyrophosphate synthase, 
HCAds hydroxycinnamic acid, PAL phenylalanineammonia-lyase, SQS squalene synthase.
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as alkaloids, anthocyanins, cyanogenic glycosides, flavonoids, and tannins in plants 
(Table 6.4) (Hirata et al. 1993; Morales et al. 2010; Gouvea et al. 2012). For instance, 
in C. roseus, the amount of catharanthine and vindoline production was signifi-
cantly enhanced after supplemental UV-B radiation (Ramani and Jayabaskaran 
2008). In another study, increased kaempferol and quercetin contents have been 
reported in Populus trichocarpa (Warren et al. 2003). Similarly, different rice culti-
vars have been observed with increased C-glycosyl flavones content under high 
UV-B intensity. Enhanced UV-B radiation leads to a more pronounced effect on 
flavanols accumulation in Trifolium repens, resulting in increased quercetin levels 
by 200% (Hofmann et al. 2000). These flavanols protect by acting as UV-B filters 
and further help to scavenge ROS (Agati et al. 2009, 2011).

UV-B-absorbing compounds such as flavonoids and hydroxycinnamic acids 
(derivatives of phenolic acids) confer protection at elevated UV-B levels (Agati and 
Tattini 2010; Jansen et al. 2008; Qian et al. 2020). For example, an increased con-
centration of flavonoids was reported in Lactuca sativa and Gynura bicolor, which 
were grown under ambient and high UV-B radiation (García-Macías et al. 2007; 
Schirrmacher et  al. 2004). Accumulation of flavonoids in leaf epidermis confers 
resistance to the detrimental effects of UV-B radiation. Higher flavonoid contents 
illustrate increased PAL activity, a key enzyme involved in the phenylpropanoid 
pathway (Liu et al. 2002). Quercetin and kaempferol levels are certainly beneficial 
for plants to quench free radicals generated at the initial stage of UV-B exposure 
(Harborne and Williams 2000). Important crop plants, mainly Vigna radiata L., 
Pisum sativum L., and Glycine max L., demonstrated enhanced concentrations of 
quercetin and kaempferol contents induced via elevated UV-B exposure (Choudhary 
and Agrawal 2014a, b, 2016). In Fagopyrum tataricum, UV-B treatment resulted in 
a dramatic increase in concentrations of rutin (4.82  mg/g) DW and quercetin 
(0.04  mg/g) DW, respectively (Huang et  al. 2016). Similarly, Mao et  al. (2017) 
reported enhanced concentrations of rutin and quertein (flavonoids) in soyabean. 
Prolonged exposure to UV-B resulted in upregulation of flavonoid synthetic genes, 
i.e., FLS and F3′H in Gingko biloba (Zhao et al. 2020). The highest estimated flavo-
noid concentration was recorded in Alternanthera sessilis (Klein et  al. 2018). In 
Olea europaea L. leaves, abundant concentrations of luteolin-7-O-glucoside account 
for the species’ high tolerance to UV-B stress (Dias et al. 2020). 

UV-B elicitation greatly influences the biosynthesis of phenolic compounds in 
plants. Increased ROS production initially triggered by UV-B resulted in enhanced 
phenolic contents that acts direct scavenger of ROS (Solovchenko and Merzlyak 
2008). Ambient UV-B doses significantly enhanced flavonoid concentration in root 
and leaves of Tropaeolum majus L. and Brassica oleracea, suggesting UV-B as a 
systemic inducer of phenolic compounds in plants (Schreiner et al. 2009; Neugart 
et al. 2012). Phenolic compounds under UV-B exposure become elevated in post-
harvested fruits and crops, including apples, peaches, onions, and strawberries 
(Marais et al. 2001; Kataoka and Beppu 2004; Higashio et al. 2004). The upregula-
tion of phenylpropanoid enzymes by UV-B causes an increase in phenolic concen-
tration (Tomás-Barberán and Espín 2001; Treutter 2005). Moderate UV-B exposure 
increased catharanthine concentration in C. roseus (Ramani and Chelliah 2007). 
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Various plants such as Acorus calamus, Cyambopogon citratus, Mentha piperata, 
and Ocimum basilicum have been reported with important pharmacological com-
pounds, induced via UV-B (Kumari et al. 2009a, b; Dolzhenko et al. 2010; Maffei 
and Scannerini 2000). Sesquiterpenes such as artemisinin and Germacrene-D con-
centrations were found to be elevated by 11.6% and 10.5% under UV-B exposure 
(Kumari and Agrawal 2011; Rai et al. 2011). Another plant, Glycyrrhiza uralensis, 
exhibited a 1.5-fold increase in Glycyrrhizin content on exposure to UV-B dose 
(0.43 W m−2) (Afreen et al. 2005). One of the major pharmacological important 
diterpenes, carnosic acid, present in R. officinalis, becomes elevated with UV-B 
dose (31 kJ m−2 d−1) (Luis et al. 2007). 

Exposure to UV-B radiation induced the production of terpenoids in various 
medicinal plants such as Artemisia annua, Curcuma caesia, Cuminum cyminum L., 
and Vitis vignifera L. (Li et al. 2021; Jaiswal et al. 2020; Ghasemi et al. 2019; Gil 
et al. 2012). These terpenoids protect the plant leaves from heat stress induced via 
UV-B (Liu et al. 2017). Withaferin A and withanolide A contents are increased by 
1.38- and 3.42-fold in Withania coagulans L. (Tripathi et al. 2021). Thus, it can be 
concluded that UV-B can be used as a potential elicitor in increasing the contents of 
pharmacologically important compounds (Tripathi et al. 2021; Takshak and Agrawal 
2014, 2015; Choudhary et al. 2021). 

6.6  Tropospheric Ozone Stress 

Ozone (O3) is a potent air pollutant and greenhouse gas that may influence vegeta-
tion and human health directly or indirectly (DeLang et  al. 2021; Wedow et  al. 
2021). Consumption of fossil fuel increases the concentration of precursor gases 
such as nitrogen oxide, carbon monoxide, and volatile organic compounds (VOCs), 
including methane and CO2 that drive increased O3 concentrations (Bhatia et  al. 
2012). Currently, tropospheric O3 has reached 35–40 ppm globally and is expected 
to rise further to 70 ppm or more by 2050 (Frei 2015; Sicard et al. 2017; Pfister et al. 
2014). Being a strong antioxidant, O3 incorporates into plant tissues through sto-
mata and induces ROS production that ultimately causes lipid peroxidation, DNA 
and RNA degradation, and programmed cell death (Mishra and Agrawal 2015; 
Picchi et al. 2017; Choudhury et al. 2017). Likewise, a variety of responses marked 
by elevated O3, i.e., foliar injury, reduced chlorophyll and RuBisCO content, stoma-
tal conductance, photosynthesis inhibition, and alteration in carbon allocation, 
cause a reduction in biomass, yield, and its quality (Emberson 2020). The activation 
of the PAL enzyme corresponds to increased production of flavonoids, phenolic 
acids, and monolignols, which improves the tolerance ability of plants by acting as 
scavengers against O3 stress (Iriti and Faoro 2009). Long-term exposure to elevated 
O3 concentrations concerning accumulation of phenolic compounds has been exten-
sively studied (Richet et al. 2012). In Linum usitatissimum L., various secondary 
metabolites (flavonoids, anthocyanins, lignin, and wax) were enhanced under ele-
vated O3 (27.7–59.0 ppb) (Tripathi and Agrawal 2013). This enhancement reflects 

6 Impacts of Climate Alterations on the Biosynthesis of Defensive Natural Products



156

more utilization of assimilate in the production of secondary metabolites and less 
availability for reproductive organs that ultimately contribute to less yield (Singh 
et al. 2014). Fatima et al. (2018) investigated the effects of treatment of higher O3 
concentration (ambient + 30 ppb) on different wheat cultivars. These findings state 
that higher induction of flavonoids and total phenols subsequently declined repro-
ductive structures and final yield. Differential responses in the accumulation of total 
phenolic contents in early and late sown cultivars of wheat indicated a correlation 
with higher ascorbic acid involved in the production of polyphenols (Yadav et al. 
2019). Furthermore, various plants such as wheat, caster, groundnut, and cotton 
elucidate the sensitivity to ozone pollution (Chaudhary et  al. 2021; Rathore and 
Chaudhary 2019; Ghosh et al. 2020a, b; Chaudhary and Rathore 2021a, b). 

Weed invasion delineates the struggle of crop plants for their healthy survival 
under progressive climate change (Clements et al. 2014). It has been reported that 
weed interference causes an annual yield loss of 34% in some agronomically impor-
tant crop species (Oerke 2006). The reason behind the aggressiveness of weeds lies 
in their higher content of phenolics and alkaloids, which alters the nutrient uptake 
in the soil (Majeed et al. 2012). A recent study was performed on Chenopodium 
album L. and Triticum aestivum L. plants to investigate the allelopathic interaction 
with a concomitant elevation in the concentration of O3. The study revealed that O3 
raised the concentrations of ferulic acid (FA) and p-coumaric acid (CA) in the roots 
of the former and attributed a negative change in the root length of the latter (Ghosh 
et al. 2020a, b). Greater tolerance to O3 stress is determined by increased PAL activ-
ity (Di Baccio et al. 2008). Elevated O3 concentrations significantly increased total 
phenolic contents and PAL activity in Vigna radiata L. (Mishra and Agrawal 2015). 
Accumulated phenolic compounds triggered by higher O3 levels during the initial 
days of exposure were later observed with a slight decrement in Salvia officinalis 
L. This suggested that higher doses of O3 displayed a priming effect, and later, these 
plants failed to invest in their response strategy, indicating a slow production of 
secondary metabolites (Marchica et al. 2021). Brassica campestris L., a rich source 
of glucosinolate (GLS), exhibited an alteration in the amount of indole, aliphatic, 
and aromatic GLS (Han et al. 2021). 

Exposure to higher levels of O3 also affects isoprene emissions. Isoprene biosyn-
thesis in plants maintains photochemical efficiency and ROS levels induced via 
excess O3 (Pollastri et al. 2019; Loreto and Velikova 2001). O3-induced emission of 
isoprene has been documented in several studies (Hewitt et  al. 2009; Arab et al. 
2016). Taking this into account, date palm has a high potential to resist photochemi-
cal changes induced by short-term exposure to O3 (Du et al. 2018). A more realis-
tic Free-air CO2 enrichment (FACE) study demonstrated that emission of isoprene 
declined significantly with higher O3 concentrations, but the number of total mono-
terpenes stimulated in date palm leaves was attributed to increased emission of alde-
hyde volatiles (Table 6.5) (Paoletti et al. 2021).
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Table 6.5 Impact of tropospheric ozone stress on different secondary metabolites in plants 

Stress Dose Plants 
Endogenous responses of secondary 
metabolites References 

Ozone 27.7– 
59.0 ppb 

Linum 
usitatissimum L. 

Significant increment in flavonoids 
(32.8%) and anthocyanins (34.4%); 
increased lignin content (14.1%) and 
epicuticular wax 

Tripathi and 
Agrawal 
(2013) 

15–30 ppb Zea mays L. Higher carotenoid and flavonoids 
levels; more induction of phenols 
accompanied with higher PAL activity 

Singh et al. 
(2014) 

30 ppb Triticum 
aestivum L. 

Quercetin and kaempferol content 
responded differently; 
phenylpropanoid enzymes (CAD, 
4CL) showed enhanced activities 

Fatima et al. 
(2018) 

58.3 ppb Triticum 
aestivum L. 
Chenopodium 
album L. 

Strong stimulation of flavonols 
(kaempferol and Quercetin) and total 
phenolics in roots and leaves 

Ghosh et al. 
(2020a, b) 

68.9 ppb Vigna radiata L. Total phenols elevated significantly by 
34.2% along with increased PAL 
activity by 37% 

Mishra and 
Agrawal 
(2015) 

45–90 ppb Phoenix 
dactylifera L. 

Isoprene emission declined 
significantly at elevated O3 (−58% and 
−50%); stimulation of monoterpenes 
(α-pinene, β-octanal, nonanal, 
camphor, iso-bornrol) 

Paoletti et al. 
(2021) 

60 ppb Brassica 
campestris L. 

Significant increase in lycopene, total 
carotenoids, and lutein content; 
negative correlation between total 
aromatic GLS and total aliphatic GLS 

Han et al. 
(2021) 

CAD cinnamyl alcohol dehydrogenase, 4CL 4-coumarate CoA ligase, GLS glucosinolate synthase, 
PAL phenylalanineammonia-lyase 

6.7  Conclusion 

Climate change caused by increased anthropogenic activities has significantly 
altered CO2 concentrations, temperature fluctuations, water-deficit conditions, 
salinity stress, UV-B intensity, and tropospheric ozone concentrations on Earth’s 
surface. This is accompanied by a parallel decrease in physiological processes in 
plants. Elevated CO2 concentrations induce photosynthetic processes, but plants 
become more susceptible to insect attack at the same time. To avoid insect damage, 
plants allocate photo-assimilates to secondary metabolite production. Phenolics and 
terpenoids decreased as CO2 concentrations increased; however, these were signifi-
cantly intensified by elevated temperature. Higher temperature prevails drought 
conditions and, with a concomitant increase in salt levels, severely impacts plant 
growth and yield via ROS production and reduced osmotic potential, which medi-
ates biochemical changes. To confer resistance, plants facilitate antioxidative 
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defense mechanisms through enhanced production of phenolics and flavonoids. 
Similarly, increased UV-B exposure and ozone stress induce morphological, physi-
ological, and biochemical alterations in plants. Despite this, it needs to further 
investigate the synergistic role of different abiotic stresses responsible for actual 
synthesis and modulation at the same time. More importantly, scientists mimic the 
climate change perspectives through experimental studies, which raises concern 
about achieving food security and nutritional status worldwide. 
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