
Design and Implementation
of Autonomous Navigation System Based

on Tracked Mobile Robot

Hui Li, Junhan Cui, Yifan Ma, Jiawei Tan, Xiaolei Cao, Chunlong Yin,
and Zhihong Jiang(B)

School of Mechatronical Engineering, Beijing Advanced Innovation
Center for Intelligence Robots and System, Beijing Institute of Technology,

Beijing 100081, China

jiangzhihong@bit.edu.cn

Abstract. In this paper, we introduce an autonomous exploration
and rescue robot system based on a tracked mobile robot platform
equipped with a 7 degree-of-freedom (DoF) manipulator, which realizes
autonomous navigation in indoor environments and autonomous stair
climbing for safe and efficient search and rescue tasks. In Sect. 2, the
hardware design of the robot system is presented, which allows flexi-
ble movement and high passability to complete obstacle crossing and
stair climbing. In Sects. 3 and 4, the indoor navigation algorithm and
the stair detection algorithm of the robot system are presented, respec-
tively. The ROS-based system uses the cartographer algorithm for map
construction, ROS navigation for autonomous navigation and obstacle
avoidance, and a depth camera for stair detection. The process of a four-
flipper tracked mobile robot stair climbing is designed. The robot system
is experimentally verified in Sect. 5.

Keywords: Tracked robot · SLAM · Path planning · Navigation ·
Autonomous stair climbing

1 Introduction

Mobile rescue robots play an extremely important role in search and rescue
efforts for building fires and other situations. When building structures and fire
conditions are not clear, firefighters who rashly enter a building on fire for rescue
may face huge unknown risks; In response to this situation, we have designed
a robot that can autonomously search and rescue in an indoor environment.
The robot can perform SLAM mapping, autonomous navigation and movement
in such indoor environment. In addition, it has the capability of autonomously
climbing stairs to achieve autonomous exploration and rescue between multiple
floors.

Supported by the National Natural Science Foundation of China (61733001, U22B2079,
61873039, 62103054, U1913211, U2013602, 62273049).

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
F. Sun et al. (Eds.): ICCSIP 2022, CCIS 1787, pp. 329–350, 2023.
https://doi.org/10.1007/978-981-99-0617-8_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-0617-8_23&domain=pdf
https://doi.org/10.1007/978-981-99-0617-8_23

330 H. Li et al.

At present, Indoor navigation methods of mobile robots are mostly based
on wheeled robots [2], but wheeled robots have many limitations, such as being
unable to complete some obstacle-crossing operations in the indoor environ-
ment, and being unable to complete climbing stairs to explore multiple floors.
much research on stair-climbing robots does not involve the navigation method
of indoor mobile robots as well. For example, the article [1,5] proposes an
autonomous stair climbing method based on tracked mobile robots. In addi-
tion, some methods for stair detection have not been applied to mobile robots,
such as the stair detection algorithm proposed in the article [9,10] for disabled
people carrying wearable devices.

In view of the existing problems, we use a tracked mobile robot with four
flippers to carry out indoor rescue exploration tasks. the tracked robot with
high-power motor could move quickly in an indoor environment, and due to its
differential configuration, it can turn around and change direction in a narrow
space, so it has high dexterity and can complete narrow obstacle avoidance tasks
in space. At the same time, because the tracked robot has flippers at the front
and rear, it also has high passability under the promise of satisfying dexterity
and can complete tasks such as climbing stairs and crossing various obstacles.

The four-flipper tracked mobile robot has excellent performance, this paper
proposes a method of autonomous mobile navigation and autonomous stair
climbing based on it. The proposed method realizes the robot’s autonomous
navigation, obstacle avoidance, and autonomous stair climbing in the indoor
environment so that the robot can complete detection and rescue tasks in vari-
ous complex environments.

This paper assumes that the robot is located in a multi-story indoor envi-
ronment, and the task objectives are as follows: (i) Detecting the floor and
generating a floor map. (ii) Rescue would be carried out while the situation is
found during the detection process, otherwise, entering the stairwell and carry-
ing out detection on the next floor. (iii) Detecting stairs, completing the task
of autonomous stair climbing, and entering the next floor for exploration. In
the second section, the hardware components of the whole robot system and
the experiment environment are mainly described. In the third and fourth sec-
tions, the autonomous navigation algorithm and the autonomous stair-climbing
method of the robot are introduced. In the fifth section, the process and results
of the whole experiment are presented.

2 Robot System Design

The four-flipper tracked mobile robot designed in this paper is used for the
rescue of simulated fire buildings. The robot system consists of a four-flipper
tracked robot platform, a 7-DoF redundant manipulator and sensors. The overall
structure of the robot is shown in Fig. 1.

The robot system is driven by a vehicle-mounted 48 V lithium battery, with
a weight of 180 kg. It adopts a four-flipper tracked robot platform and a
humanoid manipulator configuration scheme. A four-flipper tracked robot plat-
form is designed in this paper, two main tracks provide power, and four flippers

Design and Implementation of Autonomous Navigation System 331

Fig. 1. The overall appearance of the robot.

are used as an auxiliary, which can make the tracked platform have high pass-
ability and stability. The tracked platform is 986 mm long, 731 mm wide, 306
mm high, and 623 mm in length of the flipper. The left and right tracks are
driven by two 2000 W tracked motors, and the flipper are driven by two 400 W
motors.

The industrial computer of the robot system designed in this paper is
the Nvidia Jetson AGX Xavier computer, and the operating environment is
Ubuntu18.04, ROS melodic. The entire robot system is developed based on the
ROS system to implement algorithms such as SLAM mapping, autonomous
navigation, and stair detection. The hardware framework and communication
method of the robot system designed in this paper are shown in Fig. 2.

In the robot system designed in this paper, the sensors used in the navigation
and detection algorithms are lidar, IMU, and depth camera. The lidar is Velo-
dyne VLP-16, the IMU is Xsens MTI-630, and the depth camera is Microsoft
Kinect v2. Lidar and IMU are used for SLAM mapping of robots, mobile navi-
gation, and obstacle avoidance, IMU is also used for state feedback when robots
climb stairs, and depth cameras are used for the detection and recognition of
stairs.

332 H. Li et al.

Fig. 2. The hardware framework and communication method of the robot system.

3 Mapping and Navigation Algorithm

In this paper, the cartographer algorithm developed by Google was adopted to
complete the SLAM mapping of the robot in the indoor environment. Based
on the ROS system, the localization of the cartographer and the move base
developed by [2] were used to realize the mobile navigation of the robot in the
indoor environment.

3.1 Cartographer Algorithm

Google Cartographer algorithm adopts the theoretical framework of SLAM based
on graph optimization. It is mainly composed of Local SLAM and Global SLAM.
The Local SLAM is responsible for scan-to-submap and submap insertion, the
Global SLAM is responsible for optimizing pose estimation, and the branch
and bound method is used to complete the global loop closures detection. The
mathematical model of the Cartographer algorithm is expressed as:

xk = f(xk−1, uk) + wk (1)

Design and Implementation of Autonomous Navigation System 333

zk,j = h(yj , xk) + vk,j (2)

Equation (1) is called the motion equation, and the current position xk is cal-
culated by the position xk−1 at the previous moment and the sensor data uk.
Equation (2) is called the observation equation, which represents the observation
data zk,j generated when the landmark yj is observed at the position xk.

The cartographer algorithm introduces the concept of a submap in the Local
SLAM part. When the Local SLAM module receives a new frame of lidar data,
it uses odometry and IMU data to calculate the trajectory to obtain the robot
pose estimate. Then the robot pose estimate is used as the initial value to match
with the newly established submap, to complete the update of the robot pose
estimate. The filtered frame data is inserted into the best position of the submap
to form a new submap.

When a new laser data frame arrives, the coordinate transformation needs
to be done which transforms the laser data coordinate to the submap coordinate
before inserting the new laser data frame into submap.

Tξp =
{

cos ξθ − sin ξθ

sin ξθ cos ξθ

}
p +

{
ξx

ξy

}
(3)

The front end of the Cartographer algorithm, scan matching is based on the scan-
to-map correlation method [8], modeled by the Maximum Likelihood Estimation:

x∗
k = arg max

xk

{p(zk|xk, yk)p(xk|xk−1, uk)} (4)

Since the laser data of each frame is independent to each other, it can be con-
sidered to be uncorrelated, then:

p(zk|xk, yk) =
∏

i

p(zi
k|xk, yk) ∝

∑
i

log p(zi
k|xk, yk) (5)

Equation (5) splits the probability of the entire observation data of one frame
into the probability of each point of the current frame data. Before calculating
this probability, the data frame and map need to be discretized. The process for
updating an occupancy grid map is as follows:

odds(x) =
p(x)

1 − p(x)
(6)

Mnew(x) = clamp[odds−1(odds(Mold(x)) · odds(Phit))] (7)

When new data frames additions are finished, the submap is complete. But maps
generated by Local SLAM module alone have a large cumulative error over time.
The Global SLAM module is responsible for optimizing the pose estimation [7],
and the branch and bound method is used to complete the global loop closure
detection [6].

334 H. Li et al.

3.2 Trajectory Planning Algorithm

The whole path planning process is devided into two parts. Firstly, a general path
is planned by the global path planner, and then the local path planner divides it
into several small segments and performs local path planning. The advantage is
that the obstacles saved on the map can be avoided during global planning, and
new obstacles (including dynamic obstacles) can be avoided during local path
planning. Global path planning and local path planning cooperate to complete
the navigation together.

The Dijkstra algorithm and the A* algorithm are used for global path plan-
ning, and Dynamic Window Approach(DWA) is used for local path planning
[4].

Global Path Planner. The global path planner mainly receives cartographer
positioning information, global map information, and navigation end-point infor-
mation. The Dijkstra algorithm and A* algorithm are mainly used in the shortest
path planning in 2D grid maps, and the global path planning algorithm used in
this paper is the A* algorithm.

Dijkstra algorithm is a typical breadth-first-based shortest path search algo-
rithm, which is used to calculate the shortest path from a specific vertex to all
other vertices in a graph or network. The main feature of this algorithm is that
it starts from one vertex and expands layer by layer until the expansion covers
all vertices. Dijkstra algorithm is essentially a greedy algorithm, and the key is
to obtain a local optimal solution in each step in order to expect a global optimal
solution.

Dijkstra algorithm will calculate the shortest path from the starting vertex
to every vertices in the graph. Such a search is blind and consumes a lot of
computing power and time.

In order to solve the blindness of the search direction in the Dijkstra algo-
rithm, the A* algorithm is improved by a heuristic function. The A* algorithm
calculates the priority of each vertex by Eq. (8).

f(n) = g(n) + h(n) (8)

In the heuristic function of the A* algorithm, f(n) is the overall priority of node
n. When selecting the next node to traverse, the node with the highest overall
priority (least cost) is selected. g(n) is the cost of the node from the starting
point and h(n) is the estimated cost of node n to the end point.

The heuristic function h(n) affects the behavior of the A* algorithm. When
h(n) = 0, the A* algorithm degenerates into Dijkstra algorithm; When h(n)
is much greater than g(n), the A* algorithm becomes the best priority search
algorithm, and the outputs cannot be guaranteed to be the shortest path; When
h(n) is always less than or equal to the cost of node n to the end point, the A*
algorithm guarantees that the shortest path will be found. The navigation map
used in this paper is a 2D grid map generated by the cartographer algorithm,

Design and Implementation of Autonomous Navigation System 335

Algorithm 1: A* algorithms
Input: Start, End.
Output: Path.

1 initialization Start and End;
2 while True do
3 if open list == NULL then
4 Search failed, return;
5 end
6 Take the g(n) + h(n)g(n) + h(n)g(n) + h(n) smallest node in the open list Add the node to the

closed list;
7 if current node == End then
8 Find the path, return;
9 end

10 Traverse current node neighbors that are not in the closed list;
11 if node in open list then
12 Update node of the g(n) ;
13 else
14 Calculate the g(n) of the node;
15 add open list;

16 end

17 end

therefore the Euclidean distance from the current point to the target point can
be used as the heuristic function h(n)

h(n) =
√

(p2.x − p1.x)2 + (p2.y − p1.y)2 (9)

Under the same grid map, the Dijkstra algorithm and the A* algorithm are used
for path planning, as shown in Fig. 3 and Table 1.

Table 1. Dijkstra and A* algorithm comparison

Trajectory length Point 1 Point 2 Point 3

Dijkstra algorithm 192.0 220.4 255.9

A∗ algorithm 192.0 220.4 255.9

Planning time point 1 point 2 point 3

Dijkstra algorithm 22.309 s 30.545 s 33.493 s

A∗ algorithm 2.065 s 8.908 s 13.629 s

It can be seen from the simulation that comparing the two path planning
algorithms, although the generated path is not completely consistent, the length
of path is completely consistent, and both are the shortest path result. From
the perspective of planning time, the planning time of the A* algorithm is much

336 H. Li et al.

Fig. 3. Dijkstra algorithm and A* algorithm comparison.

lower than that of the Dijkstra algorithm. Therefore, it can be concluded that
the A* algorithm can greatly shorten the planning time without affecting the
path planning performance.

Local Path Planner. The local path planner receives occupancy grid map
generated by mapping algorithm and global path generated by the global path
planner, and completes the local path planning based on the DWA, and then
outputs the speed command of the tracked mobile platform movement.

DWA algorithm is a typical action sampling algorithm, which can avoid new
obstacles and dynamic obstacles to solving the local obstacle avoidance problem
of the robot. The DWA algorithm considers the motion constraints of the robot
velocity and acceleration. It forms a velocity vector space composed of linear
velocity and angular velocity, and samples the velocity space to simulate the

Design and Implementation of Autonomous Navigation System 337

trajectory, and then scores the simulated trajectory through a predetermined
cost function, and then selects the trajectory with the highest score as the out-
put. Then the speed command is obtained for the difference of the trajectory.
Choosing a velocity space considers the three main constraints:

– Both linear and angular velocity of robot motion are limited by the maximum
and minimum velocity.

– The dynamic performance of the motor is limited, and the motor power that
drives the robot is limited.

– Restrictions on braking safety distances.

The kinematic model of the tracked mobile platform in this paper is adopted a
differential drive kinematic model, i.e., it can only move forward, backward and
rotate. The kinematic model is shown in Eq. (10).

x(tn) = x(t0) +
∫ tn

to
v(t) cos(θ(t))dt

y(tn) = y(t0) +
∫ tn

to
v(t) sin(θ(t))dt

θ(tn) = θ(t0) +
∫ tn

to
ω(t)dt

(10)

Under the control in several discrete time Δt, the state of the tracked mobile
platform changes as follows:

x(tn) = x(t0) +
n−1∑
i=0

∫ ti+1

ti
(v (ti) + v̇iΔt) cos

(
θ (ti) + ω(ti)Δt + 1

2 ω̇i(Δt)2
)

dt

y(tn) = y(t0) +
n−1∑
i=0

∫ ti+1

ti
(v (ti) + v̇iΔt) sin

(
θ (ti) + ω(ti)Δt + 1

2 ω̇i(Δt)2
)

dt

(11)
At each moment Δt, the linear and angular velocity are sampled to calculate
the simulated trajectory, as shown in Fig. 4:

v(ti) ∈ {
vmin, vmin + Δv, · · · , vmax

}
, vmin,max = v(ti−1) ∓ v̇maxΔt

ω(ti) ∈ {
ωmin, ωmin + Δω, · · · , ωmax

}
, ωmin,max = ω(ti−1) ∓ ω̇maxΔt

(12)

Several trajectories generated are evaluated and scored, and the evaluation
functions used are:

G(v, ω) = σ(α · heading(v, ω) + β · dist(v, ω) + γ · velocity(v, ω)) (13)

In (13), heading(v, ω) is the azimuth evaluation term used to evaluate the gap
between the end point of the trajectory and the current robot orientation. In gen-
eral, choosing trajectory with smaller azimuth makes the robot walk as straight
as possible. dist(v, ω) is the trajectory distance evaluation term that represents
the distance between the trajectory and the nearest obstacle. A higher value
indicates that the trajectory is safer dist(v, ω) is the speed evaluation term. α,

338 H. Li et al.

Fig. 4. Simulated trajectory after velocity and angular velocity sampling.

β, and γ are the weighting coefficients of the three evaluation term. The physical
meaning is that it is expected that the mobile platform can avoid obstacles, face
the target, and drive at a high speed.

DWA’s algorithm flow can be summarized as: The simulation results are
shown in Fig. 5.

Algorithm 2: DWA algorithms
Input: Start, End.
Output: Speed control.

1 Initialization (maximum and minimum velocity of mobile platform, evaluation
function weight, etc.);

2 while True do
3 if Arrived then
4 Reach the target point, return;
5 end
6 Calculate the speed range of the current sample (dynamic window);
7 Traverse all v,ω and simulate trajectories;
8 The evaluation function is scored;
9 Select the optimal v, ω and send it to the mobile platform;

10 move;

11 end

Design and Implementation of Autonomous Navigation System 339

Fig. 5. DWA algorithm simulation.

4 Autonomous Stair Climbing Algorithm

In this paper, we assume a scenario that the robot needs to go to the next floor
after exploring one floor. Arriving near the stairs, once the depth camera carried
by the robot detects the nearby stairs, the robot judges the stairs data output
from the stair detection algorithm. If the length, width, and height of the stairs
meet the conditions for robot climbing, the robot is navigated directly in front
of the first step of the stairs, completes the stairs climbing preparatory posture,
and then begins to climb the stairs autonomously.

This section mainly introduces the stair detection algorithm and the robot
climbing strategy.

4.1 Stair Detection Algorithm

The stair detection algorithm bases on the point cloud photos taken by the
Kinect depth camera, and still uses ROS as a framework to process the point
cloud data by using the Point Cloud Library (PCL).

The point cloud data taken by the Kinect camera is too large, so in order to
avoid affecting the calculation speed of the algorithm, it is necessary to carry out
pre-processing first. The voxel filtering and statistical filtering are performed on
the point cloud data to compress them, reduce computation load, and smooth
the surface by eliminating the outlier points.

After preprocessing the point cloud data, the stair detection algorithm is
courried out next. First, the point cloud photos are segmented to divide all the
planar regions of the scene, and then these planar regions are classified and the
planar regions identified as “steps” are modeled. Specifically, the algorithm is as
follows (Fig. 6):

340 H. Li et al.

(a) Normal estimation (b) Region growth (c) Planar test

(d) Plane clustering (e) Plane classification (f) Stair modeling

Fig. 6. Point cloud processing methods.

Normal Estimation. The normal estimation [11] bases on local surface fitting
method. In the point cloud, for any point pi, its neighborhood pj ⊂ Nbhd(pi)
is obtained by the KnnSearch method (K is set to 16 in this paper), and the
centroid of the neighborhood is calculated:

oi =
1
k

k∑
j=0

pj (14)

After obtaining the centroid of the neighborhood, the covariance matrix is con-
structed as follows:

cov =
1
k

∑
pj⊂Nbhd(pi)

(pj − oi) · (pj − oi)
T (15)

The SVD decomposition is performed on the covariance matrix, and the eigen-
vector corresponding to the obtained smallest eigenvalue is the normal ni of the
point.

Region Growth. The region is obtained by using the region growth method.
The region growth method starts with a seed, which is the point with the min-
imum curvature, and then expands the region towards neighboring points with
small angle between the normals and similar curvature values. The new seeds are
updated as the neighboring points that meet the normal and curvature thresh-
olds. And repeat this process until the region can no longer expand. Then, a new

Design and Implementation of Autonomous Navigation System 341

initial seed is selected among the remaining points, and the process starts again
until the regions are smaller than a certain threshold. Based on this method,
the point cloud image is divided into several regions, which is convenient for
subsequent detection and classification of each region.

Planar Test. The detected object are steps, floors and walls that all of which
are flat, so the planar test is required for several areas divided by using the
regional growth method. Due to the work way of the region growth algorithm,
most regions are highly flat, but it cannot be ruled out that the regions are a
surface with a small curvature. The RANSAC algorithm [3] is used to perform
the plane test by finding the largest plane in each region, if the number of outer
points is less than a threshold, it will be considered a plane and the fitted plane
equation is obtained.

Plane Clustering. According to the position relationship of each region plane,
the plane clustering is performed. If the difference in plane normal vectors
between two regions is small, the vertical distance is small, and their boundaries
are adjacent, it is considered as a planar region. At the same time, according
to the direction of the normal vector of the plane, only the horizontal and per-
pendicular planes to the ground are retained, and other planes are regarded as
obstacles without performing the subsequent plane classification.

Plane Classification. The existing regions are all horizontal or vertical planes,
which are divided into different categories according to the normal vector and
relative position of the planes. The planes that is close to 0◦ to the ground are
preliminarily defined as “steps”, and the planes that are close to 90◦ to the
ground are preliminarily defined as “wall”. And then these regions are further
divided through their position relations.

Areas with a plane height of approximately zero are classified as floors, and
areas with positive or negative heights are classified as steps. This paper sets
the height range of the step to the minimum Hmin = 13 cm and maximum
Hmax = 18 cm, with a allowable measurement error Htol = 3 cm, and the plane
height above the ground Hmin −Htol = 10 cm is regarded as the candidate plane
for the step.

After having a step candidate plane, it is necessary to establish a connection
between each step, which can eliminate non-step planes and also allow the steps
to form a hierarchy. The strategy of this paper is to analyze each step from the
bottom up:

– The first is to screen out the first step and determine whether the plane
height is between Hmin − Htol = 10 cm and Hmax + Htol = 18 cm, and meet
this condition as the first step. If there are multiple planes that are satisfied,
connectivity of that plane to the upper and lower layers is required.

342 H. Li et al.

– Once the first step is in place, the algorithm selects the remaining step can-
didates by height and begins testing connectivity and height conditions to
determine whether they belong to the current layer or to the new layer.

– When all the candidates have been checked, if the number of floors is greater
than 1, the algorithm starts modeling the stairs and outputs the stair param-
eters (length, width and height).

Stair Modeling. This paper refers to the method used in [10] to model the
stair. The method makes full use of the geometric relationship of each plane to
constrain the length, width and height of the stairs, uses the PCL library to
draw and display the stair model, at the same time output the parameters of
the stair.

4.2 Stair Climbing Strategy

Through the stair detection algorithm in the previous section, the length, width
and height (Lstair,Wstair,Hstair) of the stairs and the coordinates of the center
point of the first stair in the depth camera coordinate system (PCamera

stair) can be
obtained. After obtaining the stair information, If Eq. (16) is satisfied, robot can
begin to climb the stairs (Fig. 7).

Fig. 7. Simulation scene graph.

⎧⎨
⎩

θstair = Hstair/Wstair
< θmax = 40◦

Lstair > 1.5Wrobot

Hstair < Hmax = 50 cm
(16)

Design and Implementation of Autonomous Navigation System 343

If the detected stair meets the climbable criteria, a navigation point PRobot
nav

is published, the robot navigates to the target point and enters the state of
readiness to climb the stairs. The navigation point is determined by the following
equation:

PRobot
nav = TRobot

CameraPCamera
nav = PCamera

stair + d
n (17)

where PRobot
nav is the coordinate of the navigation point in the robot’s coordi-

nate system; PCamera
nav is the coordinate of the navigation point in the camera

coordinate system; PCamera
stair is the coordinates of the first stair in the camera

coordinate system;
n is the unit normal vector of the vertical plane of the first
stair in the camera coordinate system; TRobot

Camera represents the transformation
matrix from the camera coordinate system to the robot coordinate system; d
represents the distance directly in front of the stairs where the navigation point
is located.

After the robot enters the preparatory climbing point, it begins to climb the
stairs, the process is shown in Fig. 8.

Fig. 8. Preparation and ascent phases.

As shown in Fig. 8(a), the robot navigates to the front of the stairs and
adjusts the inclination angle of the flippers to the inclination angle of the stairs;
The robot advances, reaches the state of Fig. 8(c), the whole robot cling to the
steps, at this time the robot inclination angle is the angle of the stairs, exceeding
the threshold angle, and the front flipper returns to the horizontal position; As
shown in Fig. 8(d), the robot’s flipper are placed horizontally, increasing the
length of the robot on the stairs to improve the stability of the robot’s climbing.

During the landing state, the control of the front flipper let the robot to land
smoothly after crossing the last step. The strategy adopted in this paper is using
current loop to control the front flipper motor during the landing stage, and the

344 H. Li et al.

Fig. 9. Landing phase.

advantage is the front flipper can naturally sag to make the robot’s center of
gravity as far forward as possible before the robot lands; At the moment of
landing, the front flipper is close to the ground to avoid impact on the robot,
and at the same time, it can be slowly rotated to make the robot land smoothly.

As shown in Fig. 9(a), when the stair detection algorithm cannot detect the
stairs, it means that the robot is about to enter the landing state, and the front
flipper enters the damping mode and begins to hold the ground. Equation (18)
gives the expected current of the front flipper motor, so that the front flipper
can just overcome the friction of the reducer and rotate to ensure that the front
flipper can always be close to the ground. After crossing the equilibrium point,
the damping of the front flipper can effectively reduce the robot’s falling speed.

Iref =
(Tf + ΔT) − Dq̇

KT N
(18)

where, KT is the coefficient of electric current torque, N is the deceleration ratio
of the reducer, Tf is the friction torque of the flipper, ΔT is the margin after
the offset torque overcomes the friction torque, q̇ is the angular velocity of the
flipper, and D is the damping coefficient.

5 Experiment

The experimental part of this paper mainly simulates the detection process of the
robot on one floor (SLAM mapping and navigation) and the process of climbing
the stairs to the next floor after discovering stairs.

Design and Implementation of Autonomous Navigation System 345

5.1 SLAM Mapping and Navigation Experiment

The experimental scene is in a circular corridor outside the laboratory, where the
robot will perform 2D SLAM mapping based on cartographer. The experimental
results are shown in Fig. 10:

Fig. 10. Cartographer map and actual scene.

Table 2. Cartographer measurement data

Index Figure measured
value/m

The measured
value/m

Absolute
error/m

Relative
error/%

1 6.01 6.18 0.17 2.75

2 9.98 10.15 0.17 1.67

3 10.04 10.15 0.11 1.08

4 10.10 10.15 0.05 0.49

5 10.00 10.15 0.15 1.48

6 13.80 13.93 0.13 0.93

7 10.38 10.63 0.25 2.35

8 10.38 10.50 0.12 1.14

9 14.65 14.86 0.21 1.41

10 2.00 1.95 0.05 2.56

From Table 2, the average relative error of 2D map of the robot system in
indoor environment is 1.57% and the maximum relative error is 2.75%, and wall
boundary and obstacle boundary are sharply demarcated.

After completing the SLAM mapping, the unmanned navigation operation is
carried out indoors, and the experimental content is to complete the fixed-point

346 H. Li et al.

navigation and obstacle avoidance experiments: In the robot navigation and
obstacle avoidance experiment, the robot completed the obstacle avoidance of
the original obstacles and new obstacles on the map, smoothly reached the desig-
nated target point, and completed the robot’s navigation and obstacle avoidance
task in the indoor environment (Fig. 11).

Fig. 11. Navigation and obstacle avoidance experiment diagram.

In this experiment, the robot completes the SLAM mapping of the corri-
dor in the indoor environment, and can complete the trajectory planning and
autonomously navigate to the target point, which verifies the robot’s ability to
unmanned autonomous exploration in the indoor environment.

Design and Implementation of Autonomous Navigation System 347

5.2 Stair Detection Experiment

After the robot completes the exploration of this floor, it goes to the staircase,
and in the process of approaching the staircase, the stair detection algorithm
detects the staircase and calculates the coordinates of the length, width and
height of stairs and the center point of the stairs in the coordinate system of the
camera (Fig. 12).

Fig. 12. Stair detection experiment.

Table 3. Stair detection data.

Length/m Width/m Height/m Angle/◦

Algorithm detection value 1.645 0.287 0.161 29.29

The measured value 1.600 0.270 0.150 29.05

Absolute error 0.045 0.017 0.011 0.24

Relative error 2.81 6.29 7.33 0.83

It can be seen from Table 3 that the absolute error between the detected stair
parameters and the actual stair parameters is within 5 cm, the relative error is
within 8%, and the calculated stair inclination error is 0.24◦, and the relative
error is only 0.83%, indicating that the stair detection algorithm in this paper
has high accuracy.

5.3 Stair Climbing Experiment

The stair parameters obtained by the stair detection algorithm meet the condi-
tion of Formula (16), that is, the condition of climbing the stairs, and the robot
can climb the stairs autonomously. The robot navigates to the preparation point
of climbing the stairs and starts to climb the stairs. The experimental process is
shown in Fig. 13, 14:

Experiments show that the autonomous stair climbing algorithm based on
four-flipper tracked mobile robot proposed in this paper can effectively complete
the function of autonomous stair climbing (Fig. 15).

348 H. Li et al.

Fig. 13. Preparation and ascent phases.

Fig. 14. Landing phase.

Fig. 15. Angle of robot.

Design and Implementation of Autonomous Navigation System 349

6 Summarize

In this paper, a tracked rescue robot system is designed for the scene of building
rescue, which can be targeted to complete the unmanned autonomous detection
and rescue in the indoor environment, and can detect the stairs to complete the
task of autonomous stair climbing. Based on the cartographer algorithm, the
SAM mapping in indoor environment is realized by using lidar and IMU, and
the autonomous navigation function of tracked mobile robot is realized based
on ROS system. The stair detection algorithm in literature [10] is improved and
applied to the detection of stairs by mobile robots during driving, which has
higher accuracy and stability. Finally, as the robot fit with the stair detection
algorithm and the robot navigation algorithm, a strategy for climbing stairs on
the four-flipper tracked robot platform is proposed, which realizes the function
of the tracked mobile robot to climb the stairs autonomously. The robot system
designed in this paper provides a new tool for the search and rescue work in case
of building fire, and plays a role in protecting people’s lives and property.

References

1. Chen, B., Wu, J., Wang, F., Yang, D., Zhang, W.: Motion planning for autonomous
climbing stairs for flipper robot. In: 2020 IEEE International Conference on Real-
time Computing and Robotics (RCAR), pp. 531–538 (2020). https://doi.org/10.
1109/RCAR49640.2020.9303039

2. Deng, Y., Shan, Y., Gong, Z., Chen, L.: Large-scale navigation method for
autonomous mobile robot based on fusion of GPS and lidar SLAM. In: 2018 Chi-
nese Automation Congress (CAC), pp. 3145–3148 (2018). https://doi.org/10.1109/
CAC.2018.8623646

3. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model
fitting with applications to image analysis and automated cartography. Commun.
ACM 24(6), 381–395 (1981)

4. Fox, D., Burgard, W., Thrun, S.: The dynamic window approach to collision avoid-
ance. IEEE Robot. Autom. Mag. 4(1), 23–33 (1997)

5. Guo, J., Shi, J., Zhu, W., Wang, J.: Approach to autonomous stair climbing for
tracked robot. In: 2017 IEEE International Conference on Unmanned Systems
(ICUS), pp. 182–186 (2017). https://doi.org/10.1109/ICUS.2017.8278337

6. Hess, W., Kohler, D., Rapp, H., Andor, D.: Real-time loop closure in 2D lidar
SLAM. In: 2016 IEEE International Conference on Robotics and Automation
(ICRA), pp. 1271–1278 (2016). https://doi.org/10.1109/ICRA.2016.7487258

7. Konolige, K., Grisetti, G., Kümmerle, R., Burgard, W., Limketkai, B., Vincent, R.:
Efficient sparse pose adjustment for 2D mapping. In: 2010 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pp. 22–29 (2010). https://doi.org/
10.1109/IROS.2010.5649043

8. Olson, E.B.: Real-time correlative scan matching. In: 2009 IEEE International
Conference on Robotics and Automation, pp. 4387–4393 (2009). https://doi.org/
10.1109/ROBOT.2009.5152375

9. Perez-Yus, A., Gutiérrez-Gómez, D., Lopez-Nicolas, G., Guerrero, J.: Stairs detec-
tion with odometry-aided traversal from a wearable RGB-D camera. Comput. Vis.
Image Underst. 154, 192–205 (2017)

https://doi.org/10.1109/RCAR49640.2020.9303039
https://doi.org/10.1109/RCAR49640.2020.9303039
https://doi.org/10.1109/CAC.2018.8623646
https://doi.org/10.1109/CAC.2018.8623646
https://doi.org/10.1109/ICUS.2017.8278337
https://doi.org/10.1109/ICRA.2016.7487258
https://doi.org/10.1109/IROS.2010.5649043
https://doi.org/10.1109/IROS.2010.5649043
https://doi.org/10.1109/ROBOT.2009.5152375
https://doi.org/10.1109/ROBOT.2009.5152375

350 H. Li et al.

10. Pérez-Yus, A., López-Nicolás, G., Guerrero, J.J.: Detection and modelling of stair-
cases using a wearable depth sensor. In: Agapito, L., Bronstein, M.M., Rother, C.
(eds.) ECCV 2014. LNCS, vol. 8927, pp. 449–463. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-16199-0 32

11. Qin, X.-J., Hu, Z.-T., Zheng, H.-B., Zhang, M.-Y.: Surface reconstruction from
unorganized point clouds based on edge growing. Adv. Manuf. 7(3), 343–352
(2019). https://doi.org/10.1007/s40436-019-00262-5

https://doi.org/10.1007/978-3-319-16199-0_32
https://doi.org/10.1007/978-3-319-16199-0_32
https://doi.org/10.1007/s40436-019-00262-5

	Design and Implementation of Autonomous Navigation System Based on Tracked Mobile Robot
	1 Introduction
	2 Robot System Design
	3 Mapping and Navigation Algorithm
	3.1 Cartographer Algorithm
	3.2 Trajectory Planning Algorithm

	4 Autonomous Stair Climbing Algorithm
	4.1 Stair Detection Algorithm
	4.2 Stair Climbing Strategy

	5 Experiment
	5.1 SLAM Mapping and Navigation Experiment
	5.2 Stair Detection Experiment
	5.3 Stair Climbing Experiment

	6 Summarize
	References

