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Abstract. “Gongzhu” is a card game popular in Chinese circles at home and
abroad, which belongs to incomplete information game. The game process is
highly reversible and has complex state space and action space. This paper pro-
poses an algorithm that combines the Monte-Carlo (MC) method with deep neural
networks, called the Deep Monte-Carlo (DMC) algorithm. Different from the tra-
ditional MC algorithm, this algorithm uses a Deep Q-Network (DQN) instead of
the Q-table to update the Q-value and uses a distributed parallel training frame-
work to build the model, which can effectively solve the problems of computational
complexity and limited resources. After 24 h of training on a server with 1 GPU,
the “Gongzhu” agent performed 10,000 games against the agent that uses a Convo-
lutional Neural Network (CNN) to fit the strategies of human players. “Gongzhu”
agent was able to achieve a 72.6% winning rate, and the average points per game
was 63. The experimental results show that the model has better performance.

Keywords: Artificial intelligence - Gongzhu - Monte-Carlo - Deep
reinforcement learning - Long short-term memory

1 Introduction

The study of complete information game has been very mature. Especially in Go, from
the original “Deep Blue” [1] to the present AlphaGo [2], AlphaZero [3] and MuZero [4],
the agent has reached a high level and can beat the top professional human players. The
research of incomplete information game is gradually becoming one of the hot researches
due to the difficulty of its algorithm research. Common incomplete information games
include Texas Hold’em [5-11], “Doudizhu” [12-16] and Mahjong [17]. In terms of
Texas Hold’em, Zhang Meng designed a game solving framework that can quickly
adapt to the opponent’s strategy in 2022, including two stages of offline training and
online gaming. The performance of the constructed agent has been greatly improved
[18]. Zhou Qibin reduced the exploitability of the strategy by considering the possible
range of other players’ hands. In heads-up no-limit Texas Hold’em, the constructed agent
DecisionHoldem [19] publicly defeated the agent Slumbot [20] and Openstack [21]. In
terms of “Doudizhu”, Li Shuqin proposed a “Doudizhu” strategy based on the Alpha-
Beta pruning algorithm in 2022. In the WeChat applet of “Doudizhu”, the constructed
agent has performed several double-player endgame tests and won all of them [22]. Guan
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Yang proposed a technique called perfect information distillation, which allows the agent
to use global information to guide policy training, and the constructed agent PerfectDou
[23] beats the existing “Doudizhu” agent. In terms of mahjong, Wang Mingyan proposed
an algorithm based on the combination of knowledge and Monte-Carlo (MC) to construct
an adversary model to predict hidden information in 2021. The constructed agent KF-
TREE [24] won a silver medal in the Mahjong competition at the Computer Olympiad in
2019. Gao Shijing proposed an algorithm based on the combination of deep learning and
XGBoost, and the hybrid model constructed has a higher winning rate than the model
using either algorithm alone [25].

The research on “Gongzhu” is still in its infancy, and other incomplete informa-
tion game algorithms need strong hardware resources, and the algorithms used cannot
be directly applied to “Gongzhu”. At present, “Gongzhu” mainly adopts a supervised
learning method to fit the playing strategy of human players, which is computationally
complex and highly dependent on expert knowledge. In this paper, a Deep Monte-Carlo
(DMC) algorithm is proposed, which uses a Deep Q-Network (DQN) to replace the
Q-table to update the Q-value. The constructed model is based on distributed parallel
training, and a large amount of training data can be generated every second, which can
greatly improve training efficiency and effectively solve the problems of complex com-
puting and limited resources. After the model is trained on a single GPU server for 24 h,
its performance is stronger than that of the “Gongzhu” Convolutional Neural Network
(CNN) model, and the constructed agent has a certain strategy for playing cards.

2 “Gongzhu” Background

“Gongzhu” consists of a deck of 52 cards with the big and small kings removed. There
are a total of 4 players in the game, and each player randomly gets 13 cards. In the
game rules of “Gongzhu”, all cards are divided into two categories: “scored cards” and
“non-scored cards”. Table 1 shows the corresponding basic scores of “scored cards” in
“Gongzhu”.

Table 1. Scored cards and their corresponding score.

Cards |Hearts |Hearts |Hearts |Hearts] |Hearts |Hearts |Spades |DiamondsJ
A K Q (10-5) [(4-2) |Q

Score | =50 —40 -30 -20 —10 0 —100 +100

The “Gongzhu” game is divided into two stages: showing cards and playing cards. In
the stage of showing cards, 4 cards that can be shown are set, namely Clubs 10, Diamonds
J, Spades Q, and Hearts A. Players can choose to show or not to show according to the
initial hand situation, that is, there are 16 kinds of action spaces for showing cards. In
the two cases of showing cards and not showing cards, the corresponding scores of the
scored cards are different. In the stage of playing cards, the player needs to choose a card
of the same suit as the first player in the current round to play. If not, you can choose to
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discard a card of a different suit than the first, that is, there are 52 kinds of action spaces
for playing cards. The actions of the showing cards stage can determine the playing
strategy, and the whole game process is very reversible. Please refer to “China Huapai
Competition Rules (Trial)” [26] for the detailed rules of “Gongzhu”.

3 Representation of Cards

3.1 The Representation of Showing Cards

In the stage of showing cards, a total of 4 cards can be shown, and a 1 x 4 one-hot matrix
is used to encode the states and actions of the shown cards, in the form of [x0 x1 x2 x3],
and the matrix positions represent the Hearts A, Spades Q, Clubs 10 and Diamond J in
turn, if a card is showed by the player, the corresponding matrix position element is set
to 1, otherwise, it is set to 0. The element corresponding to the position of the matrix is
1 to show the card, and O to not show it.

3.2 The Representation of Playing Cards

In the stage of playing cards, each player can only play one card per round, using a 1
x 52 one-hot matrix to encode the states and actions of the played cards, in the form of
[x0 xI1...... x50 x51], the element corresponding to the matrix position is 1 to indicate
the card is played, and O to not. The position correspondence of each card in the 1 x 52
one-hot matrix is shown in Table 2.

Table 2. The position of all cards in a 1 x 52 one-hot matrix.

Cards Hearts (A-K) Spades (A-K) Clubs (A-K) Diamonds (A-K)
Matrix position 0-12 13-25 26-38 39-51

4 Deep Monte-Carlo Algorithm

4.1 Improved Monte-Carlo Algorithm

The traditional MC algorithm and the Q-learning algorithm use Q(s, a) to determine the
policy m, that is, the agent selects the action to obtain the maximum benefit according to
Q(s, a). The way to evaluate Q(s, a) is to average the returns from all episode visits to (s,
a). The update function of the Q-value is shown in (1), where R is the reward function,
y is the discount factor, and p is the learning rate.

Q(s,a) < Q(s,a) + P(R +ymax Q(s', @) — Q(s, a)) ey

The evaluation and update process of the Q-value can be naturally combined with
the neural network to obtain an improved MC algorithm, namely the DMC. Specifically,
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Table 3. Pseudo-code of the DMC algorithm.

Deep Monte-Carlo Algorithm

Input: State-action pair (s, a), learning rate p, discount factor y

Initialization: O(s, a)

for iteration=1,2,3, ...... do = For each episode
Initialize s
forr=1,2,3,...... T do = For each step of the episode
Choose a from s using policy derived from Q(e.g., e-greedy)

Take action a, observe R, s’

Q(spar) « Q(se,ap) + P(Rt +ymaxy (i1, ateq) — Q(Se, at))
= (Using a neural network and MSE)

s s’

Until s is terminal
end

end

the update of Q(s, a) is done using a neural network and Mean Square Error (MSE)
instead of a Q-table. The pseudo-code of the DMC algorithm is shown in Table 3.

Due to the high variance, the traditional MC algorithm is very inefficient when
dealing with games with incomplete information. The DMC algorithm has been well
verified in “Doudizhu” [16], and its algorithm is also very suitable for the “Gongzhu”
game. First: “Gongzhu” is an episodic task, it does not need to deal with incomplete
episodes; Second: the DMC algorithm can be easily parallelized and can generate more
samples per second of data, which improves the efficiency of training; so that the problem
of high variance can be solved. Third: The “Gongzhu” agent simulates game states and
actions without reward. This situation will slow down the speed of Q-learning and make
the model difficult to converge. The DMC algorithm can reduce the impact of this long
time without feedback [16]. Therefore, it is feasible to apply the DMC algorithm to the
“Gongzhu” game.

4.2 The Representation of States and Actions

In this experiment, the action is set to play the card of the “Gongzhu” agent. The state
is set to the hand cards of 3 players except for the “Gongzhu” agent, the cards collected
by 4 players, and the cards showed by 4 players, the cards played by the 3 players other
than the “Gongzhu” agent, the cards played in the current round, and the historical card
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information of the game in this round, of which the historical card information of this
round is sequential data, and the rest are non-sequential data. The state of each player’s
shown cards is represented by a 1 x 4 one-hot matrix; the remaining states of each player
are represented by a 1 x 52 one-hot matrix, and the historical card information is 13
rounds of 4 players, that is, the size of the one-hot matrix is 13 x 208, and the card
information of players of unknown rounds is filled with 0. The characteristic parameters
of the “Gongzhu” agent are shown in Table 4.

Table 4. Characteristic parameters of the “Gongzhu” agent.

Characteristic Matrix size
Action The agent plays the card 1 x52
State Except for the agent, the other 3 players have hand cards 3 x52

Cards collected by 4 players 4 x52

4 players showed cards 4 x52

Cards played by players other than the agent 3 x52

Cards that have been played in the current round 1 x52

The historical card information of this game 13 x 208

4.3 Network Structure Design

The input of the “Gongzhu” deep network is the concatenated representation of states
and actions, and the output is Q(s, a). Non-sequential data is encoded by a one-hot matrix
and connected by flattening matrices of different characteristics, and sequential data is
processed by the Long Short-Term Memory (LSTM) algorithm. The DQN consists of an
LSTM and a Multi-layer Perceptron (MLP) with 6 layers of hidden dimension of 512,
which replaces the Q-table in the traditional MC algorithm to complete the calculation
and update of the Q-value. The structure of the “Gongzhu” Q-network is shown in Fig. 1.

5 Experimental Process

5.1 Parallel Training

The parallel training method can make the model perform multiple iterations and updates
in unit time, which greatly improves the training efficiency and effectively solves the
problem of limited resources. The experimental process is divided into two categories:
the Actor process and the Learner process. The Actor process generates training data,
and the Learner process trains and updates the network. Figure 2 shows the distributed
parallel training framework of the “Gongzhu” deep neural network.

The parallel training of the “Gongzhu” deep neural network can be divided into 1
Actor process and 1 Learner process, of which 1 Actor process contains the actor pro-
cesses of 4 players. The Learner process will store 4 Q-networks for the 4 actor processes,
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Fig. 1. “Gongzhu” Q-network structure.
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Fig. 2. “Gongzhu” distributed parallel training framework.

which are called the global network of each player. The 4 global Q-networks will update
the Q-network with the MSE according to the data provided by the corresponding actor
process to achieve the goal of approximating the target value. At the same time, each
actor process also stores 4 Q-networks, which are called the local Q-networks of each
player. The local Q-network is periodically synchronized with the global Q-network,
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and the Actor repeatedly samples action trajectories from the game and computes Qfs,
a) for each state-action pair.

The communication between the Learner process and the Actor process is carried
out through buffers. The buffers can be divided into local buffers and shared buffers.
The two buffers store a total of 9 types of information: whether the game is over, the
game results of a batch of episodes, the target value of a batch of episodes, the encoding
matrix without action in the stage of playing cards, the information encoding matrix of
the action in the stage of playing stage, the historical playing information of a game, the
encoding matrix without action in the stage of showing cards, the information encoding
matrix of action in the stage of showing cards, and the target value of the stage of showing
cards.

5.2 Training Parameters

The parameters of the distributed parallel computing framework of the “Gongzhu” DMC
algorithm are shown in Table 5, and its training code and test files can be found at https://
github.com/Zhm0715/GZero.

Table 5. “Gongzhu” distributed parallel computing parameters.

Parameter name Parameter value
Actor process number 1

Actor process number 4

Learner process number 1

Exp-epsilon 0.11

Learner batch_size 32
Unroll_length (Time dimension) 100
Number_buffers (Shared-memory) 50
Num_threads (Learner) 4
Max_grad_norm 40

6 Experimental Analysis

6.1 Evaluation Indicators

The Actor process trains a self-playing agent for each position in the game (The first
round of cards is player A, and the counterclockwise rotation is player B, player C and
player D). The change curve of the Loss value of each position agent with the epoch is
shown in Fig. 3.

It can be seen from Fig. 3 that the Loss value of each position agent fluctuates greatly,
but the overall Loss value decreases with the increase of epoch, and finally tends to be
stable, and the model reaches a state of convergence.


https://github.com/Zhm0715/GZero
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The outcome of the game is determined by the player’s final score, and the player’s
score is particularly important. In order to facilitate the calculation, the reward of the
episode in the experiment is the original score divided by 100. The change curve of the

return reward of each position agent with the epoch is shown in Fig. 4.

As can be seen from Fig. 4, the reward of the episode returned by the agent at position
A changes smoothly in the early stage of training, but in the later stage of training, the
reward of the episode decreases with the increase of epoch. The rewards of episodes
returned by the agents at positions B, C, and D fluctuate to varying degrees in the early
stages of training. In the later stages of training, the reward of the episode increases with
the increase of epoch. It shows that with the increase of training times, the performance
of the agents in the B, C, and D positions is better than that of the agents in the A position.
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Fig. 4. The curve of the reward returned by episode with the epoch.

6.2 Simulated Game

After the training is completed, save the model, and the agent of the DMC model of
“Gongzhu” simulates 10,000 games with the agent of the “Gonzhu” CNN model that
has fitted 20,000 game data of real human players. The results of the simulated game
and the reward returned by the episode are shown in Table 6.

Table 6. Simulation game data results.

Position Agent Winning rate (%) Reward
North DMC 72.6 0.63
West CNN 14.9 —0.25
South CNN 227 0.16
East CNN 13.2 0.22

It can be seen from Table 6 that the North position is set as the agent of the DMC
model, and the three positions of West, South, and East are all set as the agent of the
CNN model. The agent of the DMC model can achieve a winning rate of 72.6% in the
simulated game, which is much higher than that of the agent of the CNN model. The
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episode reward returned by the agent of the DMC model is 0.63, that is to say, it can
obtain 63 points per round on average, which is the winner; while the episode reward
returned by the agent of the CNN model in the other three positions are all negative
values, which is the losers. From the above analysis, it can be seen that the performance
of the DMC model in actual combat is much better than that of the CNN model.

7 Conclusion

In this paper, a combination of MC algorithm and deep neural network is used to con-
struct a self-playing “Gongzhu” artificial intelligence model based on distributed parallel
computing. Through experimental training and simulated games, it can be seen that the
performance of the “Gongzhu” agent based on the DMC algorithm is better than that
of the CNN-based “Gongzhu” agent, and it has certain strategies for showing cards and
playing cards. However, in the early stage of training, the small amount of low-quality
training data generated by self-play is difficult to improve the overall effect of the model,
and it is easy to fall into the dilemma of local optimality. In response to these problems,
the next research will first use a large number of real game data of human master players
to conduct supervised learning to improve the quality of the early data, and then use the
reinforcement learning method of self-play to explore new strategies, so as to improve
the intelligent body performance.
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