
Recommendation System Using Neural 
Collaborative Filtering and Deep 
Learning 

Vaibhav Shah, Anunay, and Praveen Kumar 

Abstract Recommender systems have transformed the nature of the online service 
experience due to their quick growth and widespread use. In today’s world, the 
recommendation system plays a very vital role. At every point of our life, we use a 
recommendation system from shopping on Amazon to watching a movie on Netflix. 
A recommender system bases its predictions, like many machine learning algo-
rithms, on past user behavior. The goal is to specifically forecast user preference for 
a group of items based on prior usage. The two most well-liked methods for devel-
oping recommender systems are collaborative filtering and content-based filtering. 
Somehow, we were using the traditional methods, named content-based filtering 
(CB) and collaborative-based filtering (CF), which are lacking behind because of 
some issues or problems like a cold start and scalability. The approach of this paper 
is to overcome the problems of CF as well as CB. We built an advanced recom-
mendation system that is built with neural collaborative filtering which uses implicit 
feedback and finds the accuracy with the help of hit ratio which will be more accurate 
and efficient than the traditional recommendation system. 

Keywords Recommendation system · Neural collaborative filtering · Explicit 
feedback · Implicit feedback 

1 Introduction 

Search engines and recommendation systems have become an effective approach to 
generating relevant information in a short amount of time, thanks to the exponen-
tial increase of digital resources from the Internet. A recommendation system is a 
crucial tool for reducing information overload [1]. Intelligent tools for screening and

V. Shah (B) · Anunay 
Department of Computer Science and Engineering, Parul University, Vadodara, India 
e-mail: shahvaibhav348@gmail.com 

P. Kumar 
Department of Computer Science and Engineering, Indian Institute of Technology, Chennai, India 
e-mail: praveen2221cs11@iitp.ac.in 

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023 
Y. Singh et al. (eds.), Proceedings of International Conference on Recent Innovations 
in Computing, Lecture Notes in Electrical Engineering 1011, 
https://doi.org/10.1007/978-981-99-0601-7_10 

109

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-0601-7_10&domain=pdf
mailto:shahvaibhav348@gmail.com
mailto:praveen2221cs11@iitp.ac.in
https://doi.org/10.1007/978-981-99-0601-7_10


110 V. Shah et al.

selecting Websites, news articles, TV listings, and other information are among 
the latest developments in the field of recommendation systems. Such systems’ 
users frequently have a variety of competing needs. There are many variations in 
people’s personal tastes, socioeconomic and educational backgrounds, and personal 
and professional interests. Therefore, it is desirable to have customized intelligent 
systems that process, filter, and present information in a way that is appropriate for 
each user of them. Recommendation System Using Neural Collaborative filtering, 
Traditionally, relied on clustering, KNN, and matrix factorization techniques. 

Deep learning has outstanding success in recent years in a variety of fields, from 
picture identification to natural language processing. The traditional approach for 
recommendation systems is content filtering and collaborative filtering. Content 
filtering is used broadly for creating recommendation systems that use the content 
of items to create features that contest the user profile. Items are compared to the 
previous item which is liked by the user, and then, it recommends which is the best 
match to the user profile [2]. Collaborative-based filtering (CF) is the most popular 
method for recommendation systems which exploits the data which is gathered from 
user behavior in the past (likes and dislikes) and then recommends the item to the 
user. 

Collaborative filtering suffers from a cold start, sparsity, and scalability [3]. CF 
algorithms are often divided into two categories, such as memory-based methods 
(also known as nearest neighbor’s methods) and model-based approaches. Memory-
based approaches attempt to forecast a user’s choice based on the evaluations of other 
users or products who have similar preferences. Locality-sensitive hashing, which 
implements the closest neighbor’s method in linear time, is a common memory-based 
method methodology. On the other hand, modeling methods are developed with the 
help of data mining and ML techniques to reveal patterns or designs based on a 
training set [4]. However, an advanced recommendation system uses deep learning 
as it is more powerful than your traditional methods. Deep learning’s ability has also 
improved recommendation systems. Deep learning capability to grasp nonlinear and 
nontrivial connections between consumers and items, as well as include extensive 
data, makes it practically infinite, and consequential in levels of recommendation 
that many industries have so far achieved. Complex deep learning systems, rather 
than traditional methods, power today’s state-of-the-art recommender systems like 
Netflix and YouTube. 

2 Related Work 

2.1 Explicit Feedback 

In recommendation systems, explicit feedback is in the form of unswerving, qual-
itative, and measurable responses from users. Amazon, as an illustration, permits 
customers to rate their purchases on a scale of 1 to 10. These ratings come straight



Recommendation System Using Neural Collaborative Filtering … 111

from the customers, allowing Amazon to quantify their preferences. The thumbs-
up button on YouTube is yet another example of explicit feedback from users [5]. 
However, the problem with this feedback is that it is seldom. Remember when you 
hit the like button on YouTube or contributed a response (in the form of a rating) to 
your online purchases? Probably not. The count of videocassettes you specifically 
rate is lesser than the number of videos you fob watch on YouTube. 

2.2 Implicit Feedback 

Implicit feedback is collected tortuously through user communications and works as 
a substitution for user decisions. For example, even if one does not rate the videos 
explicitly, the videos one watches on YouTube are utilized in the form of implicit 
feedback to customize recommendations for that user. Let us look at another example 
of implicit feedback: The products you have window-shopped on Amazon or Myntra 
are utilized to propose additional items that are similar to them. Implicit feedback is 
so common that many people believe it is sufficient. 

Implicit feedback recommenders allow us to modify recommendations in here and 
now in short in real time, with every single hit and communication or interaction. 
Today, implicit feedback is used in online recommender systems, allowing the model 
to align its recommendations in real time with each user interaction. Though, implicit 
feedback has its deficiencies as well. Unlike explicit feedback, every interaction is 
assumed to be positive, and we are unable to capture negative preferences from users. 
How do we capture negative feedback? One technique that can be applied is negative 
sampling, which we will go through in a later section. 

2.3 Collaborative Filtering 

It is a technique of filtering items that a user might enjoy based on the response from 
other users. The cornerstone of a personalized recommender system is collaborative 
filtering, which involves modeling users’ preferences on products grounded on their 
prior interaction (ex, ratings, and hits). The collaborative filtering (CF) task with 
implicit feedback is a common term for the recommendation problem, with the goal 
of recommending a selection of items to users [6]. 

Tapestry was one of the first collaborative filtering-based recommender systems 
to be implemented. The explicit opinions of members from a close-knit community, 
such as an office workgroup [7], were used in this method. For Usenet news and 
videos, the GroupLens research system [8, 9] provides a pseudonymous collaborative



112 V. Shah et al.

filtering approach. Ringo [10] and video recommender [11] are emails and Web-based 
systems for making music and movie suggestions, respectively. 

Transforming Dataset into an Implicit Feedback Data 
As the previously stated, we will be using implicit feedback to train a recommender 
system. The MovieLens dataset, on the other hand, is based on explicit feedback. To 
achieve this, we will just binarize the ratings to make them ‘1’ (positive class) or ‘0’ 
(negative class). A value of ‘1’ indicates that the user has engaged with the piece, 
while a value of ‘0’ indicates that the user has not. 

It is crucial to note that providing implicit feedback changes the way our recom-
mender thinks about the problem. Instead of attempting to forecast movie ratings, 
we are attempting to forecast whether the user will interact with each film, to present 
users with the films that offer the highest probability of interaction. After finalizing 
our dataset, we now have a problem because every example dataset falls under the 
positive class. We would also need negative examples to train our model because we 
anticipate users are not interested in such films. 

3 System Model Approach (NCF) 

Although there are other deep learning architectures for recommendation systems, 
we believe that the structure that he-et-al. have proposed is the most manageable to 
implement and is also the most straightforward one. Most recommendation systems 
are based on content-based, collaborative-based filtering, or hybrid filtering which 
are nice models but not as much as they have their disadvantages which let them 
down somewhere. 

To overcome the disadvantages of these models, we come up with a powerful 
recommendation system using neural collaborative filtering which uses implicit feed-
back and finds the accuracy with the help of hit ratio which will be more accurate and 
efficient than the traditional recommendation system. The model we built (recom-
mendation system) gives the best result and accuracy for the search of movies and 
is similar to it for the recommendation. 

4 User Embeddings 

Before we get into the model’s architecture, let us get acquainted with the concept of 
embeddings. The similarity of vectors from a higher-dimensional space is captured 
by embedding a low-dimensional space. Let us take a closer look at user embeddings 
to better understand this notion. Let us say, we aim to serve our visitors based on 
their preferences for two genres of movies: action and fictional films. Assume the 
first dimension to represent the user’s preference for action films and the second 
dimension as their preference for fictional films (Fig. 1).



Recommendation System Using Neural Collaborative Filtering … 113

Fig. 1 a User embedding 
(2-dimensions). b 
Representation of Bob in the 
embedding Joe will be our 
next user. Joe enjoys both 
action and romance films. c 
Representation of Bob and 
Joe in the embedding Joe, 
like Bob, is represented by a 
two-dimension vector above 

Assume Bob to be our very first user. He enjoys action films and nonetheless 
dislikes romance films. We place Bob in a two-dimensional vector according to his 
preferences. 

An embedding is a name for this two-dimensional space. Embedding reduces 
the size of our users in a way that they could be denoted in a significant way in a



114 V. Shah et al.

Fig. 2 Representation of users (N-dimension vector) in two-dimensional space 

low-dimensional space. Users who have identical movie choices are grouped in this 
embedding (Fig. 2). 

Of course, we are not inadequate to serve our users in only two dimensions. To 
represent our consumers, we employ any number or a count of dimensions. At the 
expense of model complexity, a larger amount of dimensions would help us capture 
the attributes of each user more precisely. We will use eight dimensions in our code. 

5 Learned Embeddings 

Furthermore, we will define the features of the objects (movies) in a lower-
dimensional space using a second object embedding layer. You may wonder how 
we might get the embedding layer’s weights so that it can present an accurate picture 
of users and items. We yourself generated embedding in the prior example using Bob 
and Joe for action and romantic movies. Is it possible to learn such decisions auto-
matically? The answer is collaborative filtering (cf): We can recognize related users 
and movies by using the rating dataset and generating item and user embeddings 
based on existing ratings. 

6 Architecture of Model 

Now, since we have a good understanding of embedding, we can specify the archi-
tecture of a model. As you can see clearly, the item and user embeddings are crucial 
to our model. Let us have a look at the model architecture using the training sample 
below: 

UserId: 3 movieId: 1 interacted: 1 (Fig. 3).
The embedding layer, which is a fully connected layer that converts the sparse 

representation into a dense vector, is located above the input layer. Then, the user and



Recommendation System Using Neural Collaborative Filtering … 115

Fig. 3 a Visual 
representation of the model 
architecture. b Neural 
collaborative filtering 
framework



116 V. Shah et al.

item embeddings are fed to the multi-layered neural network which we call the neural 
collaborative filtering layers. This layer maps the latent vectors to their prediction 
scores. The capability of the model depends on the size of the final hidden layer X. 
In the final output layer, the prediction score ŷui is present, and the model is trained 
so as to minimize the loss between yui and ŷui. Item and user vectors for movieId = 
1 and userId = 3 are then one-hot encoded as inputs to the model. The true mark 
(interacted) is 1 because this is a positive sample (the video was genuinely rated by 
the user). 

The item input vector and the user input vector are, respectively, served to item 
embedding and user embedding, resulting in shorter, denser item, and user vectors. 
The embedded item and user vectors are amalgamated, here traversing through a 
sequence of totally connected layers that yield a prediction vector. Finally, we use 
a sigmoid function to arrive at the best possible class. Because 0.8 > 0.2, the most 
likely class is 1 (positive class) in the case above. 

7 Evaluating the Model 

Our model is currently being trained and is ready to be estimated/evaluated via the test 
dataset. We evaluate our models in traditional machine learning (ML) projects using 
measures like accuracy (for classification tasks) and RMSE (for regression tasks) 
or MAE. For estimating recommender systems, such metrics are far too simplistic. 
We must first understand how advanced recommender systems are used to define 
suitable and meaningful metrics for evaluating them. 

Take a look at Amazon’s Website, which also has a list of recommendations (given 
below) (Fig. 4). 

Fig. 4 Snapshot of Amazon’s Website providing recommendations



Recommendation System Using Neural Collaborative Filtering … 117

The idea here is that the user is not required to interact with each and every item 
on the suggestion list. Rather, we simply want the user to communicate/interact with 
at minimum a single element from the list of recommendations; if the user does 
that the recommendations will work perfectly. To replicate this, use the assessment 
guidelines below to get a list of ten recommended items per user.

• Choose or pick 99 items arbitrarily per user that they have not associated (interact) 
with up till now.

• Add the over 99 items alongside with the test item (the item that the user actually 
interacted with). The absolute is presently 100 items.

• Apply algorithm to the above 100 objects and rank them based on their forecast 
prospects.

• Select top ten items from the above rundown of 100 items of the list. If the test 
data item is already in the topmost ten, we call it a ‘hit.’

• Repeat the procedure for all users. The average hits are then used to calculate the 
hit ratio. 

This hit ratio is generally used for evaluating recommender systems (Table 1). 

#Of Cache Hits 
(#Of Cache Hits+#Of Cache Misses) = Hit Ratio 

OR 

Hit Ratio = 1 − Miss Ratio

8 Result and Discussion 

Alongside the rating, a timestamp column is present that displays the date and time 
when the review was submitted. Via this timestamp column, we will use the leave-
one-out methodology to complete our train test split strategy. The most recent review 
is used as the test set for each user, while the remaining is used as training data (refer 
to Fig. 5).

A total of 38,700 movies have been reviewed by people. The user’s most recent 
film review was for the 2013 blockbuster, Black Panther. For this user, we will utilize 
this movie as the testing data and the remaining rated movies as training data. When 
training and grading recommender systems, this train–test split strategy is widely 
utilized. We could not make a random split. 

Because we could be using a user’s current review for training and older ones for 
testing. With a look-ahead bias, it will induce data leakage, and the trained model’s 
performance will not be generalizable to real-world performance (Graph 1).



118 V. Shah et al.

Table 1 Number of 
recommendations versus 
calculated hit ratio 

Number of recommendations (N) Hit ratio 

1 0.19 

2 0.30 

3 0.40 

4 0.56 

5 0.58 

6 0.60 

7 0.63 

8 0.80 

9 0.80 

10 0.80 

11 0.89 

12 0.90 

13 0.90 

14 0.95 

15 0.95 

16 0.97 

17 0.99 

18 1.00 

19 1.00 

20 1.00

Fig. 5 Splitting pattern of training and test data



Recommendation System Using Neural Collaborative Filtering … 119

Graph 1 Number of recommendations versus calculated hit ratio

9 Conclusion 

Collaborative filtering makes recommendations by simultaneously comparing simi-
larities between people and items, addressing some of the drawbacks of content-based 
filtering. Serendipitous suggestions are now possible; in other words, collaborative 
filtering algorithms can suggest an item to user A based on the preferences of a user 
B who shares those interests. Furthermore, instead of relying on manually designing 
features, the embeddings can be learned automatically. In this paper, we demonstrated 
the modeling of a movie recommendation system using the principle of neural collab-
orative filtering (NCF) with a hit ratio of 86% which is more accurate than the other 
recommendation models/systems. Our model uses implicit feedback and finds the 
accuracy with the help of hit ratio which will be more accurate and efficient than the 
traditional recommendation system. The model complexity has also turned out to be 
less compared to the other state-of-the-art models. 

The model can help users discover new interests. In an isolation, the ML system 
might not be aware that the user is interested in a certain item, but the model might 
still suggest it since other users who share that interest might be. Recommendation 
systems have grown to develop the most indispensable source of authentic and rele-
vant information source in the ever-expanding world of the Internet. The relatively 
simple models consider a couple or a low range of parameters while the more complex 
ones make use of a much wider range of parameters to filter results, making them 
more user-friendly. With the knowledge of advanced techniques like the firefly algo-
rithm and the restricted Boltzmann machine, robust recommendation systems can 
also be developed. This could be an influential measure toward the further enhance-
ment of the current model to make it more efficient to use, increasing its business 
value even more (Table 2).



120 V. Shah et al.

Table 2 Comparison of 
various state-of-the-art 
models 

S. No. Model Model accuracy (%) 

1 NCF 86 

2 Firefly 84 

3 Hybrid 76 

4 Collaborative-based filtering 65 

5 Content-based filtering 63 

References 

1. Gao T, Jiang L, Wang X (2020) Recommendation system based on deep learning. In: Barolli 
L, Hellinckx P, Enokido T (eds) Advances on broad-band wireless computing, communication 
and applications. BWCCA 2019 

2. Wei J, He J, Chen K, Zhou Y, Tang Z Collaborative filtering and deep learning based 
recommendation system for cold start items. https://doi.org/10.1016/j.eswa.2016 

3. Shah V, Kumar P (2021) Movie recommendation system using cosine similarity and Naive 
Bayes, s (IJARESM) 9(5). ISSN: 2455–6211 

4. Lee H, Lee J (2019) Scalable deep learning-based recommendation systems. Article in ICT 
Express, published June 2019 

5. Dooms S, Pessemier TD, Martens L 2011) An online evaluation of explicit feedback mech-
anisms for recommender systems, WEBIST 2011. In: Proceedings of the 7th international 
conference on web information systems and technologies, Noordwijkerhout, The Netherlands 

6. He X, Liao L, Zhang H, Nie L, Hu X, Chua TS (2017) Neural collaborative filtering. In: 
Proceedings of the 26th international conference on world wide web (WWW ‘17). International 
World Wide Web Conferences Steering Committee, Republic and Canton of Geneva, CHE, pp 
173–182 

7. Goldberg D, Nichols D, Oki BM, Terry D (1992) Using collaborative filtering to weave an 
information tapestry. Communications of the ACM. December 

8. Konstan J, Miller B, Maltz D, Herlocker J, Gordon L, Riedl J (1997) GroupLens: applying 
collaborative filtering to usenet news 

9. Resnick P, Iacovou N, Suchak M, Bergstrom P, Riedl J (1994) GroupLens: an open architecture 
for collaborative filtering of netnews 

10. Shardanand U, Maes P (1995) Social information filtering: algorithms for automating ‘Word 
of Mouth’ 

11. Hill W, Stead L, Rosenstein M, Furnas G (1995) Recommending and evaluating choices in a 
virtual community of use 

12. Ma H, King I, Lyu MR (2011) Learning to recommend with explicit and implicit social 
relations” Facing the cold start problem in recommendation systems. Expert Syst Appl 
41(4):2065–2073 

13. Jeong CS, Ryu KH, Lee JY, Jung KD Deep learning-based tourism recommendation 
system using social network analysis. Received: 2020.04.02 Accepted: 2020.04.13 Published: 
2020.05.31

https://doi.org/10.1016/j.eswa.2016

	 Recommendation System Using Neural Collaborative Filtering and Deep Learning
	1 Introduction
	2 Related Work
	2.1 Explicit Feedback
	2.2 Implicit Feedback
	2.3 Collaborative Filtering

	3 System Model Approach (NCF)
	4 User Embeddings
	5 Learned Embeddings
	6 Architecture of Model
	7 Evaluating the Model
	8 Result and Discussion
	9 Conclusion
	References




