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Abstract In this paper a novel definition of the fractional-order derivative operator
will be introduced. This operator will be called “pro rata” due to its ratio form as
well as its geometric behavior that it is proportional to the fractional-order value.
Some properties and theorems will be investigated. As an inverse of the fractional-
order derivative operator, the integral of fractional order will be introduced. Some
illustrative examples will be given.
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1 Introduction

Non-integer calculus is the calculus of differentiation and integration of arbitrary
orders (real or complex), called fractional-order derivatives and integrals, which
generalizes the concept of differentiation and fold integration of integer-order [19,
21]. The history of non-integer calculus set out approximately in themeanwhilewhen
the traditional calculus was recognized. It was early reported in a letter between the
mathematical geniuses Leibniz and L’Hôpital in 1695, where the semiderivative’s
idea was proposed. From that time forward, a lot of well-known physicists and
mathematicians have mainly investigated fractional-order derivatives and integrals
in a purely mathematical context, without its real applications, the basic concepts
being connected with the names of Grunwald, Letnikov, Riemann, Abel, Liouville,
and many more. But over the past few decades, it was turned out that the non-integer
calculus has gained much attention as a result of its common appearance in different
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implementations in the scopes of engineering, electrical networks, fluid mechanics,
diffusive transport, control theory, optics and signal processing, etc. [1–5, 7, 8, 16,
26, 27]. It should be noted that in current literature the terms “derivative” is used for
positive orders and “integral” (for negative orders).

In the scope of mathematics, there exist several definitions of fractional-order
differentiation and integration in the literature presently, involving Caputo [9, 10],
Riemann-Liouville [11, 20], Crünwald-Letnikov [14], Riesz [24, 25], Weyl [6, 24,
25], Jumarie [15],Hadamard [24, 25]. Themost famous definition that has beenpopu-
larized is due to Riemann and Liouville, which depends in its construction on the nth-
Cauchy’s integral formula that relies only on a straightforward integration. The def-
inition is obtained as follow: Let a, T, α ∈ R such that a < T , n = max{0, [α] + 1}
and f (t) be an integrable function on (a, T ). For n > 0, if f (t) is n-times differen-
tiable function on (a, T ) except on a set of measure zero, then for t ∈ (a, T )

RDα
a f (t) = 1

Γ (n − α)

dn

dtn

∫ t

a

f (x)

(t − x)α−n+1
dx = dn

dtn

[
R I n−α

a f (t)

]
(1)

where I α
a is the fractional integral operator of order α > 0. In particular, this operator

can be outlined as the convolution integral of the function tα−1 and the function f
itself, i.e.,

R I α
a f (t) = 1

Γ (α)

∫ t

a
(t − x)α−1 f (x) dx (2)

where Γ (·) is the gamma function, which is defined by

Γ (z) =
∫ ∞

0
e−t t z−1dt, Re(z) > 0. (3)

In fact, formula (2) is a generalized formulation of the followingCauchy’s formula
for repeated integration of a continuous function f on R, if α ∈ N and (n − 1)! is
replaced by its generalization Γ (α), see [22]:

∫ s

a

∫ s1

a

∫ s2

a
. . .

∫ sn−1

a
f (sn)dsndsn−1 . . . ds2ds1 = 1

(n − 1)!
∫ s

a
(s − t)n−1 f (t)dt,

(4)
for n ∈ N, a, s ∈ R, s > a.

On the other hand, if α = k with k ∈ N, then we have n = k + 1 and also we get

RDk
a f (t) = 1

Γ (1)

dk+1

dtk+1

∫ t

a
f (x) dx = dk f (t)

dtk
. (5)

A useful alternative operator for the fractional-order Riemann-Liouville deriva-
tive operator was introduced originally by Caputo in 1967. This operator was then
approved byMainardi and Caputo in 1971 to be called later on by the fractional-order
Caputo derivative operator. The definition of this operator can be defined as
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C Dα
a f (t) = 1

Γ (n − α)

∫ t

a

f (n)(x)

(t − x)α−n+1
dx, n − 1 < α < n (6)

It is clear that the fractional-order Caputo derivative operator is more limiting than
the fractional-order Riemann-Liouville derivative operator. This is because it needs
the existence of the nth-derivative of the function under consideration. At the same
time, it is worth noting that the functions that not having the 1st-order derivative could
have, in view of Riemann-Liouville sense, derivatives of fractional-order values less
than one. In addition, it should be also noted that the fractional-order derivative of
an arbitrary function does not need to be a continuous function at the origin and it
does not need to be differentiable too.

However, the Caputo operator has confirmed its ability to greatly match with
observational data that is typically used to describe the performance of several engi-
neering and applied science problems. It is very important to point out that the
Riemann-Liouville definition has certain drawbacks and limitations, especially in
describing several real-life applications. This actually backs the fact that asserts
these applications need certain definitions of the fractional-order derivative that can
allow the usage of initial conditions that are physically interpretable. For instance,
the fractional-order Riemann-Liouville derivative operator of a constant function
does not equal zero. Besides, the fractional-order derivative of a given function will
have a singularity at the origin, whenever it is constant at the origin. In this regard,
it has been shown that the Caputo operator is highly advantageous for such tasks.
In particular, such operator has an ability of using the initial conditions reported for
the problems formulated by using certain differential equations of fractional order.
Moreover, the fractional-order derivative of a constant function is zero by using this
operator.

To this point,we have introduced two expressions of the fractional-order derivative
operators. Actually, the existence of several expressions of the identical notion raises
the query, are these definitions equivalent? The brief reply to this query in general
is no, although the differentiation and integration operators are interchanged in the
corresponding definitions of the Caputo fractional derivative and Riemann-Liouville
fractional derivative. More particularly, it can be noted that, with the help of using
Riemann-Liouville operator, the function at hand is first integrated n − α-times and
then differentiated n-times. On the other hand, with the help of using the Caputo
operator, the same function is first differentiated n-times and then integrated n − α-
times. In general, the two aforesaid definitions cannot be coincided. That is

RDα f �= C Dα f. (7)

However, it was shown in [13] that the above two definitions can be coincided if and
only if the function f (x) together with its first n − 1-derivatives vanish at x = 0.
More precisely, for t > 0, n − 1 < α < n, and n ∈ N, we have
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C Dα f (t) = RDα f (t) −
n−1∑
k=0

t k−α

Γ (k + 1 − α)
f (k)(0). (8)

Proposition 1 Let n − 1 < α < n, n ∈ N, α ∈ R and f (t) be a function such that
C Dα f (t) exists. Then the following properties for the Caputo fractional derivatives
hold:

lim
α→n−

C Dα f (t) = f (n)(t), (9)

lim
α→n−1+

C Dα f (t) = f (n−1)(t) − f (n−1)(0). (10)

In the same regard, it should be mentioned here that there is another operator
for computing the fractional-order derivatives. This operator is called the Crünwald-
Letnikov operator. It can be obtained under the assumption that assumes the function
f (t) must be n-times continuously differentiable on [a, t]. However, the Crünwald-
Letnikov operator can be defined as follows:

GDα
a f (t) =

n−1∑
k=0

f (k)(a)

Γ (−α + k + 1)
(t − a)−α+k + 1

Γ (n − α)

∫ t

a

f (n)(x)

(t − x)α−n+1
dx

(11)
Therefore, by considering a category of functions f (t), possessing n-continuous

derivatives for t ≥ 0, as well as by means of carrying out some differentiations and
frequent integrations by parts, the Riemann-Liouville operator can be inferred by the
Crünwald-Letnikov operator.

It should be mentioned that all the definitions of fractional derivatives above
satisfy the linearity property, that is

Dα(μ f (x) + λg(x)) = μDα f (x) + λDαg(x). (12)

Recently in 2014 in [18], a novel straightforward fractional-order derivative def-
inition called the conformable fractional derivative was proposed. This definition
agrees with the traditional definitions of Riemann-Liouville and Caputo in dealing
with polynomials. In particular, if f : [0,∞) → R, then the conformable fractional
derivative of order α of the function f can be outlined as follows:

Tα f (t) := lim
ε→0

f (t + εt1−α) − f (t)

ε
, for all t > 0, α ∈ (0, 1). (13)

If f is α-differentiable in some (0, a), a > 0, and lim
t→0+

f (α)(t) exists, then the frac-

tional derivative at 0 is defined by f (α)(0) = lim
t→0+

f (α)(t). The authors in [18] proved

some properties for the above definition. For example, they proved that if f is differ-
entiable, thenTα( f )(t) = t1−α f ′(t).However, the zero-order derivative of a function
does not return the function, i.e., T0 f (t) �= f (t), see [17, 23]. Besides, the derivative
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reported in (13) does not verify the index law; TαTβ f (t) �= Tα+β f (t) for general α
and β, and it does not verify the generalized Leibniz rule. However, it verifies the
product rule,

Tα( f g) = f Tα(g) + gTα( f ). (14)

Furthermore, the definition given in (13) satisfies the interpolation property. In other
words, for 0 < α < 1, we have

lim
α→1−

Tα f (t) = d f

dt
, lim

α→0+
Tα f (t) = t

d f

dt
. (15)

For n − 1 < α < n:

lim
α→n−

Tα f (t) = dn f

dtn
, lim

α→n−1+
Tα f (t) = t

dn f

dtn
, (16)

In addition, the author in [18] proved similar results to the classical Mean Value
Theorem and Rolle’s Theorem.

The organization of this article is arranged in the following manner: In the next
section, we propose a new definition of the derivative of order α where α ∈ [0, 1],
and a general definition of derivatives of higher order, then we prove some important
properties. In Sect. 3, we introduce a generalized definition of the integral of order
α. We conclude the paper with some remarks in Sect. 4.

2 Fractional Derivative

In this section, we give our new definition of the derivative of order α of a continuous
function f at a point x and prove several results that are close to those found in
classical calculus.

Definition 1 Let f (x) be a continuous function on the interval (x − ε, x + ε)where
ε > 0. The derivative of order α ∈ [0, 1] is defined by

Dα f (x) = dα f

dxα
= lim

h→0

α f (x + h) + [(1 − α)h − α] f (x)
h

(17)

If the derivative of f of order α exists, then we will say that f is α-differentiable.
Notice that if a function f (x) is differentiable on an interval [a, b] then the derivative
Dα f is defined. This leads to the following theorem.

Theorem 1 Let f (x) be a continuous function on the interval [a, b]. If 0 < α ≤ 1
and x ∈ [a, b], then Dα f (x) exists if and only if f ′(x) exists. Consequently,

Dα f (x) = (1 − α) f (x) + α f ′(x), 0 < α < 1. (18)
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Proof Let x ∈ [a, b]. First assume that Dα f (x) exists, hence the limit in (17) exists,
and

α lim
h→0

f (x + h) − f (x)

h
+ (1 − α) f (x) = Dα f (x) (19)

hence,

lim
h→0

f (x + h) − f (x)

h
= α − 1

α
f (x) + 1

α
Dα f (x). (20)

This implies that

f ′(x) = α − 1

α
f (x) + 1

α
Dα f (x) (21)

exist. Conversely, assume that

f ′(x) = lim
h→0

f (x + h) − f (x)

h
(22)

exists, then

lim
h→0

f (x + h) − f (x)

h
+ (1 − α) f (x) = lim

h→0

α f (x + h) + [(1 − α)h − α] f (x)
h

(23)
exists.

It follows that, if a function f is α-differentiable, α ∈ (0, 1] at xo ∈ (a, b), then
f is continuous at xo.

Example 1 Using formula (18) we can compute the derivative of order α of some
functions, for example:

1. Let f (x) = c, the constant function. Then Dα( f ) = (1 − α)c.
2. Let f (x) = Ax + B. Then Dα( f ) = (1 − α)(Ax + B) + αA.
3. Let f (x) = x p. Then Dα( f ) = (1 − α)x p + αpx p−1.
4. Let f (x) = ex . Then Dα( f ) = ex .

For higher order derivatives case we can generalize the definition to the following:

Definition 2 Let n be a positive integer and α ∈ [n, n + 1]. If f (x) is an n + 1
differentiable on [a, b], then

Dα f = lim
h→0

1

h

(
(n + 1 − α)

(
f (n−1)(x + h) − f (n−1)(x)

)

+ (α − n)
(
f (n)(x + h) − f (n)(x)

))
.

(24)

Similar argument used in Theorem1 shows that
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Dα f = dα f

dxα
= (n + 1 − α)

dn f

dxn
+ (α − n)

dn+1 f

dxn+1
. (25)

We notice from Definition2 of the fractional derivative of order α that when the
parameterα varies from the integer n to the integer n + 1 then the fractional derivative
of order α varies continuously from the nth derivative to the (n)th derivative with

lim
α→n+

Dα f = dn f

dxn
and lim

α→n+1−
Dα f = dn+1 f

dxn+1

and hence

lim
α→n

Dα f = dn f

dxn
.

This desired property is not confirmed in many other definitions of the fractional
derivative. For the illustration of this property see Fig. 1.

It can be shown that in the case of α is an integer, this definition reduces to the
standard definition of the nth-derivative of f (x). This shows that our definition of
the derivative of order α is a generalization of the integer-order derivative. Now we
are going to obtain some general properties of our new definition of the derivative of
order α. First, the linearity of the differential operator Dα is ensured by the following
theorem:

Theorem 2 Let n be a non-negative integer and α ∈ [n, n + 1]. If f (x) and g(x)
are two functions such that both Dα f and Dαg exists. Then the derivative of order
α is a linear operator, i.e.,

Dα (λ f (x) + μg(x)) = λDα f (x) + μDαg(x), (26)

for any constants λ, μ.

Proof The proof follows directly from Eq. (25) and the linearity of the limit.

This definition of the derivatives of order α carries with it some important prop-
erties, that will show importance when solving equations involving integrals and
derivatives of general order.

Proposition 2 (The Product Rule of Fractional Derivative)

1. If 0 ≤ α ≤ 1, and f, g are two differentiable functions, then

Dα( f g) = α
(
f g′ + f ′g

) + (1 − α) f g. (27)

2. Let n be a non-negative integer. If n ≤ α ≤ n + 1, and f, g are two (n + 1)-
differentiable functions, then
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Dα( f g) = (α − n)

n+1∑
k=0

(
Dk f

) (
Dn+1−kg

) + (n + 1 − α)

n∑
k=0

(
Dk f

) (
Dn−kg

)
.

(28)

Proposition 3 (The Iterated Fractional Derivative) Let n be a non-negative integer,
and n ≤ α ≤ n + 1. We denote the 2nd -iterated fractional derivative DαDα f by
(Dα)2 f . Then

(Dα)2 f = (α − n)2 f (2n+2) + 2(α − n)(n + 1 − α) f (2n+1) + (n + 1 − α)2 f (2n).

(29)
In general, for a positive integer k, we write (Dα)k f = DαDα . . . Dα f , k times, then
the kth-iterated derivative of f is given by

(Dα)k f =
k∑
j=0

(
k
j

)
(α − n) j (n + 1 − α)k− j f (kn+ j). (30)

The following theorem shows that the derivative of order α defined in (24) is com-
mutative.

Theorem 3 Let n,m be two non-negative integers, and f be an (n + m + 2) differ-
entiable function on (a, b). If α ∈ [n, n + 1] and β ∈ [m,m + 1], then

DαDβ f (x) = DβDα f (x), ∀x ∈ (a, b). (31)

Proof To begin with, let x ∈ (a, b), if we apply (25) twice we get

Dα
(
Dβ f (x)

) = Dα
(
(β − m) f (m+1)(x) + (m + 1 − β) f (m)(x)

)
= (α − n)(β − m) f (n+m+2)(x)

+(α − n)(m + 1 − β) f (n+m+1)(x)

+(n + 1 − α)(β − m) f (n+m+1)(x)

+(n + 1 − α)(m + 1 − β) f (n+m)(x).

Similarly,

Dβ (Dα f (x)) = Dβ
(
(α − n) f (n+1)(x) + (n + 1 − α) f (n)(x)

)
= (β − m)(α − n) f (n+m+2)(x)

+(β − m)(n + 1 − α) f (n+m+1)(x)

+(m + 1 − β)(α − n) f (n+m+1)(x)

+(m + 1 − β)(n + 1 − α) f (n+m)(x).

Hence, DαDβ f (x) = DβDα f (x), for any x ∈ (a, b).
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We noticed that the definition (18) is equivalent to the classical definition of the first
derivative of a function f . This suggests that there are corresponding results similar
to the classical Rolle’s theorem and the Mean Value theorem for the derivative of
order α definition, as we prove in the next theorems.

Theorem 4 (Rolle’s Theorem for Derivative of Order α) Let f : [a, b] → R be a
continuous function on [a, b] and α-differentiable on (a, b) for some α ∈ [0, 1]. If
f (a) = f (b), then there exists c ∈ (a, b) such that

Dα f (c) = (1 − α) f (c). (32)

Proof Since f is α-differentiable for α ∈ [0, 1] then f is differentiable on (a, b).
Hence, by the classical Rolle’s theorem, there exists c ∈ (a, b) such that f ′(c) = 0.
Consequently, by Eq. (18),

Dα f (c) = α f ′(c) + (1 − α) f (c) = (1 − α) f (c), 0 < α < 1 (33)

completing the proof.

The following result is a direct consequence of the ordinary mean value theorem.

Theorem 5 (Mean Value Theorem for Derivative of order α) Let f : [a, b] → R

be a continuous function on [a, b] and differentiable on (a, b). Then there exists
c ∈ (a, b) such that

Dα f (c) = α

(
f (b) − f (a)

b − a

)
+ (1 − α) f (c), 0 < α < 1. (34)

Proof The asserted conclusion follows directly by applying Eq. (18).

The following theorem is a general version of Rolle’s theorem for the derivative of
order α.

Theorem 6 (Generalized Rolle’s Theorem for Derivative) Let f : [a, b] → R be a
continuous function on [a, b] and n times differentiable on (a, b). If f (x) = 0 at the
n + 1 distinct points {xi }ni=0 such that a ≤ x0 < x1 < · · · < xn ≤ b, then there exists
c ∈ (x0, xn), and hence in (a, b), such that

Dα f (c) = (n − α) f (n−1)(c), (35)

for any α ∈ [n − 1, n].
Proof Since f is n-times differentiable on (a, b) then by the ordinary generalized
Rolle’s theorem [12, p. 549], there exists c ∈ (a, b) with f (n)(c) = 0. If n − 1 <

α < n, then by (25) we have
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Dα f (c) = (α − n + 1) f (n)(c) + (n − α) f (n−1)(c), n − 1 < α < n (36)

simple computations leads to (35).

Proposition 4 If f is n-differentiable at a point x = c, for some positive integer n,
and

f (c) = f ′(c) = f ′′(c) = · · · = f (n)(c), (37)

then Dα f (c) = f (c) for any α ∈ [0, n].
Proposition 5 If f is differentiable on [a, b], and f (x) ∈ [c, d], f ′(x) ∈ [c, d], for
all x ∈ [a, b], then Dα f (x) ∈ [c, d] for all x ∈ [a, b] and α ∈ [0, 1].

The following propositions give some geometric representations of the derivative
of order α defined in the Definition1.

Proposition 6 Let f be differentiable on [a, b].
(a) If f (x) ≤ f ′(x) for all x ∈ [a, b], then f (x) ≤ Dα f (x) ≤ f ′(x) for all x ∈

[a, b], α ∈ [0, 1],
(b) If f ′(x) ≤ f (x) for all x ∈ [a, b], then f ′(x) ≤ Dα f (x) ≤ f (x) for all x ∈

[a, b], α ∈ [0, 1].
We note that proposition 6 stated that the graph of Dα f (t) for 0 < α < 1 always

lies between the functions f (t) and f ′(t), for example, the fractional derivative using
our definition for f (t) = 1

2 sin(t
2) for different values of α is shown in Fig. 1.

Proposition 7 If f is twice differentiable on [a, b] and f and f ′ are increasing
(decreasing) on [a, b], then the graph of Dα f is increasing (decreasing) on [a, b],
for all α ∈ [0, 1].

Fig. 1 The graph of Dα f (t) where f (t) = 1
2 sin(t

2) for α = 0, 0.2, 0.5, 0.7, and 1
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Proposition 8 If f is 3rd -differentiable on [a, b] and f and f ′ are concave up
(concave down) on [a, b], then the graph of Dα f is concave up (concave down) on
[a, b], for all α ∈ (0, 1).

Proposition 9 For α ∈ [0, 1],

(1 − α)

(
Area between f (x) and Dα f (x)

)
= α

(
area between f ′(x) and Dα f (x)

)
.

(38)

Proof The area between f (x) and Dα f (x) over an interval I is given by

∫
I
|Dα f (x) − f (x)| dx =

∫
I
|((1 − α) f (x) + α f ′(x)) − f (x)| dx = α

∫
I
| f (x) − f ′(x)| dx . (39)

Similar computations gives that the area between f ′(x) and Dα f (x) over the
interval I is (1 − α)

∫
I

| f (x) − f ′(x)| dx , the conclusion follows immediately.

Recall that a continuously differentiable function is monotone in some interval
[a, b] if and only if its first derivative does not change its sign there. We now state
general results involving derivatives of order α holds, the proofs are based on the
standard definition of limits and the fact that f ′(x) = lim

α→1−
Dα f (x).

Proposition 10 Let f ∈ C1[a, b].
1. If there exists αo ∈ [0, 1) such that Dα f (x) > 0 for all x ∈ [a, b] and every

α ∈ (α0, 1), then f is increasing on [a, b]. ,
2. If there exists αo ∈ [0, 1) such that Dα f (x) < 0 for all x ∈ [a, b] and every

α ∈ (α0, 1), then f is decreasing on [a, b].
Proposition 11 Let f ∈ C1[a, b].
1. If f is increasing on [a, b] then for x ∈ [a, b] there exists αx ∈ (0, 1) such that

Dα f (x) ≥ 0 for all α ∈ (αx , 1).
2. If f is decreasing on [a, b] then for x ∈ [a, b] there exists αx ∈ (0, 1) such that

Dα f (x) ≤ 0 for all α ∈ (αx , 1).

Proposition 12 If for all x ∈ [a, b], Dα f (x) = 0 and Dβ f (x) = 0 for some α, β ∈
[0, 1] with α �= β, then f (x) = 0 for all x ∈ [a, b].
Proposition 13 If α ∈ (0, 1) then the Laplace transform of f (x) is given by

L{Dα f } = L{(1 − α) f + α f ′} (40)

= (α(s − 1) + 1)F(s) − f (0), (41)

where F(s) is the Laplace transform of f , and for α ∈ (n, n + 1), the Laplace
transform of f (x) is given by
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L{Dα f } = (n + 1 − α)

(
sn F(s) −

n−1∑
k=0

sn−k f (k)(0)

)

+(α − n)

(
sn+1F(s) −

n∑
k=0

sn+1−k f (k)(0)

)
.

3 Integral of Order α

Now we introduce a generalized definition of the integral of order α as follows:

Definition 3 Let f (t) be a function defined on [a, x]. If 0 < α ≤ 1, then the integral
of order α of f is defined by

I α
a f (x) = 1

α

∫ x

a
exp

[(
1 − α

α

)
(t − x)

]
f (t) dt. (42)

Observe that the integral of a continuous function f is an anti-derivative of f . We
prove this property in the next theorem.

Theorem 7 Let f be a continuous function such that I α
a f (x) exists α ∈ (0, 1]. Then

Dα I α
a f (x) = f (x), x ≥ a.

Proof Since f is continuous, then I α
a f is differentiable, hence, By (18) we have

Dα(I α
a f ) = α

d(I α
a f )

dx
+ (1 − α)(I α

a f ) = f (x), (43)

solving we get

I α
a f = 1

α

∫ x

a
exp

[(
1 − α

α

)
(t − x)

]
f (t) dt + c exp

[(
1 − α

α

)
x

]
, (44)

where c is an arbitrary constant. Setting the constant c to be zero we get (42), with
Dα I α f (x) = f (x).

Definition3 can be generalized for the integral of higher order as follows:

Definition 4 Let f (t) be a function defined on [a, x]. If n < α ≤ n + 1, then the
integral of order α of f is defined by

Iαa f (x) = 1

(n − 1)!(α − n)

∫ x

a
(x − s)n−1

∫ s

a
exp

[(
n + 1 − α

α − n

)
(t − s)

]
f (t) dt ds.

(45)
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Similar argument used in the proof of Theorem (7) can be used to show that the defi-
nition above satisfies the property Dα I α

a f (x) = f (x) for all x ≥ a. Indeed, consider

(α − n)
dn+1(I α

a f )

dxn+1
+ (n + 1 − α)

dn(I α
a f )

dxn
= f (x), (46)

equivalently,

(α − n)
d

dx

(
dn(I α

a f )

dxn

)
+ (n + 1 − α)

dn(I α
a f )

dxn
= f (x). (47)

Solving, we get

dn(Iαa f )

dxn
= 1

α − n

∫ x

a
exp

[(
n + 1 − α

α − n

)
(t − x)

]
f (t) dt + c exp

(
n + 1 − α

α − n
x

)
,

(48)

where c is an arbitrary constant. Integrating the last expression n-times, and setting
the arbitrary constants to be zero, we obtain (45).

Theorem 8 Let f be α-function for α ∈ (0, 1). Then for all x > a we have

I α
a (Dα f (x)) = f (x) − f (a) exp

[(
α − 1

α

)
(x − a)

]
.

Note that Theorems7 and 8 show that the derivative of order α and the integral of
order α of a function f on [a, b] are inverse of each other provided that f (a) = 0.

4 Illustrative Examples

Example 2 Dα(ex ) = ex for any α > 0. This desired property cannot be satisfied
with other definitions.

Example 3 Consider the following initial value problem: D1/2y = 1, y(0) = 1.
This equation can be reduced to: dy

dx + y = 2, y(0) = 1, which has the solution:
y = 2 − ex .

Example 4 Consider the following differential equation: D3/2y − D1/2y = 0.
This equation can be reduced to: d2 y

dx2 − y = 0. The initial value problem has the
general solution: y = c1ex + c2e−x .
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5 Conclusion

In this work, a novel definition of the fractional-order derivative operator has been
presented. It has been found that the proposed definition is an extension of the
classical operator. The following properties have been inferred:

1. For n is a non-negative integer and n < α < n + 1 we have:
Dα f = (n + 1 − α)

dn f
dxn + (α − n)

dn+1 f
dxn+1

2. limα→n Dα f = d f n

dxn

3. Sum rule.
4. Product rules.
5. Commutative rule.

It is clear that solving fractional differential equations with the pro rata definition
is easier than solving such equations with some other definitions. The computing of
Laplace transforms and other transforms is also easier than computing them with
some other definitions. The fractional-order integral operator has been also defined.
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