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Abstract The objective of this article is to define new efficient iterative methods
for finding zeros of nonlinear functions. This procedure is based on Homeier [12]
and Newton [12, 20, 27] methods. The proposed methods require only three function
evaluations per iteration (only two function evaluations and one first derivative evalu-
ation). The error equations are given theoretically to prove that the suggestedmethods
have third-order convergence.Moreover, the Efficiency Index [20] is 1.4422. Numer-
ical comparisons to demonstrate the exceptional convergence speed of the proposed
methods using several types of functions and different initial guesses are included.
A comparison with other well-known iterative methods is made. It is observed that
our proposed methods are very competitive with the third-order methods.

Keywords Nonlinear functions · Newton methods · Nonlinear equations ·
Derivative-free methods · Simple roots

1 Introduction

Finding zeros of nonlinear functions by using iterative methods is one of the impor-
tant problems which have interesting applications in different branches of science,
in particular, physics and engineering [20, 22, 27], such as fluid dynamics, nuclear
systems, and dynamic economic systems. Also, in mathematics, we do need itera-
tive methods to find rapid solutions for special integrals and differential equations.
Recently, there are many numerical iterative methods have been developed to solve
these problems, see [1, 5, 6, 14, 16, 19, 27, 30]. These methods have been suggested
and analyzed by using a variant of different techniques such as Taylor series. We
first looked for the best approximation of which is used in many iterative methods.
We obtained this approximation by combining two well-known methods, Potra–
Ptak [23] and Weerakon methods [28]. Then, we used Homeier method [12] and the
approximation to introduce the first method, which we called the Variant of Homeier
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Method 1 (VHM1). Finally, we used predictor–corrector technique to improve the
first method (VHM1) and we called it Variant of Homeier Method 2 (VHM2). We
showed that the new iterative methods are of third order of convergence, Efficiency
Index [20] E.I. = 1.4422 and very robust and competitive with other third-order
iterative methods.

2 The Established Methods

For the purpose of comparison, three 2-step third-order methods and two 1-step
third-order methods are considered. Since these methods are well established, we
state the essential formulas used to calculate the simple zero of nonlinear functions
and thus compare the effectiveness of the proposed 2-step third-order methods.

Newton Method [3, 4, 9, 20, 22, 24, 27, 29].
One well-known 1-step iterative zero-finding method,

xn+1 = xn − f (xn)

f ′(xn)
, n = 0, 1, 2, . . . (1)

Halley Method [7, 8, 10, 11, 15, 24]:

xn+1 = xn − 2 f (xn) f ′(xn)
2 f ′2(xn) − f (xn) f ′′(xn)

, n = 0, 1, 2, . . . (2)

which is widely known Halley’s method. It is a cubically converging (p = 3) zero-
finding 1-step algorithm. It requires three function evaluations (r = 3) and its E.I. =
1.4422.

Householder method [13, 24]:

xn+1 = xn − f (xn)

f ′(xn)

{
1 + f (xn) f ′′(xn)

2 f ′2(xn)

}
, n = 0, 1, 2, . . . (3)

Householder’s method is also cubically converging (p = 3) 1-step zero-finding
algorithm. It requires three function evaluations (r = 3) and it’s E.I. = 1.4422.

Weerakoon and Fernando Method [21, 28]:

xn+1 = xn − 2 f (xn)

f ′(xn) + f ′(yn)
, n = 0, 1, 2, . . . where, (4)

yn = xn − f (xn)

f ′(xn)

Obviously, this is an implicit scheme, which requires having the derivative of the
function at the (n + 1)th iterative step to calculate the (n + 1)th iterate itself. They
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overcome this difficulty by making use of Newton’s iterative step to compute the
(n + 1)th iterate on the right-hand side.

This scheme has also been derived by Ozban by using the arithmetic mean of
f ′(xn) and f ′(yn) instead of f ′(xn) inNewton’smethod (1), i.e., ( f ′(xn)+ f ′(yn))/2.
Weerakoon and Fernando method is also a cubically converging (p = 3) 2-step

zero-finding algorithm. It requires three function evaluations (r = 3) and it’s E .I. =
1.4422.

Homeier Method [12, 21]:

xn+1 = xn −
(

f (xn)

2

){
1

f ′(xn)
+ 1

f ′(yn)

}
, n = 0, 1, 2, . . . (5)

where yn = xn − f (xn)
f ′(xn) .

Homeier’s method is also cubically converging (p = 3) 2-step zero-finding
algorithm. It requires three function evaluations (r = 3) and its E.I. = 1.4422.

Potra-Ptak Method [23, 25]:

xn+1 = xn − f (xn) + f (yn)

f ′(xn)
, (6)

where

yn = xn − f (xn)

f ′(xn)

Potr-Ptak’s method is also a cubically converging (p = 3) 2-step zero-finding
algorithm. It requires three function evaluations; two function evaluations and one
first derivative (r = 3) and its E.I. = 1.4422.

2.1 Construction of the New Methods

In this section, firstwedefine a new third-ordermethod for finding zeros of a nonlinear
function. We do that by combining two well-known methods to obtain a new one.
In fact, the new iterative method will be an improvement of the classical Homeier
method and this will be our first algorithm.

Secondly, we will improve our first algorithm by assuming a three-step iterative
method per full cycle. In order to do that, we perform a Newton iteration at the new
third step. We use a third variable Zn for the third step, which we will approximate
lately.

First, we equate (combine) the two methods (4) and (6) to obtain f ′(yn)

2 f (xn)

f ′(xn) + f ′(yn)
≈ f (xn) + f (yn)

f ′(xn)
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2 f (xn) f
′(xn) ≈ [ f (xn) + f (yn)]

{
f ′(xn) + f ′(yn)

}

2 f (xn) f
′(xn) ≈ [ f (xn) + f (yn)] f

′(xn) + [ f (xn) + f (yn)] f
′(yn)

2 f (xn) f ′(xn) − [ f (xn) + f (yn)] f ′(xn)
[ f (xn) + f (yn)]

≈ f ′(yn)

f ′(yn) ≈ f (xn) − f (yn)

f (xn) + f (yn)
f ′(xn) (7)

Now substituting (7) in (5) in order to get the first algorithm

xn+1 = xn − f (xn)

2
∗

{
1

f ′(xn)
+ 1

f (xn)− f (yn)
f (xn)+ f (yn)

f ′(xn)

}

So, we get the first Algorithm (1) which we will call it a Variant of Homeier
Method 1 (VHM1).

For a given x◦ , compute the approximate solution xn by iterative scheme.

yn = xn − f (xn)

f ′(xn)
, f ′(xn) �= 0

xn+1 = xn − f 2(xn)

[ f (xn) − f (yn)] f ′(xn)
, for n = 0, 1, 2, . . . (8)

Now, we need to drive the next algorithm, which will be an improvement of the
first algorithm. The main goal is to make the new scheme optimal. We perform a
Newton iteration at the new third step which comes next:

yn = xn − f (xn)

f ′(xn)
(9)

zn = xn − f 2(xn)

[ f (xn) − f (yn)] f ′(xn)
(10)

xn+1 = zn − f (zn)

f ′(zn)
. (11)

Now, we try to simplify our new scheme to reach the convergence rate three
with three function evaluations per full cycle; two function evaluations and one
first derivative evaluation. Obviously, f (zn) and f ′(zn) should be approximated. We
replace f ′(zn) by f ′(xn) and write the Taylor expansion of f (zn) about xn [25].
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f (zn) = f (xn) + f ′(xn)(zn − xn) + 1

2! f
′′(xn)(zn − xn)

2 (12)

Now, f ′′(xn) should be approximated as well. Once again we write the Taylor
expansion of f (yn) about xn as follows:

f (yn) = f (xn) + f ′(xn)(yn − xn) + 1

2! f
′′(xn)(yn − xn)

2 (13)

From (13) and (9), we obtain f ′′(xn) as follows:

f ′′(xn) = 2 f (yn)
[
f ′(xn)

]2
[ f (xn)]

2 (14)

Now substituting (14) and (10) in (12), we obtain f(zn) as follows:

f (zn) = f (xn) f 2(yn)

[ f (xn) − f (yn)]
2 . (15)

Now, we substitute (10) and (15) in (11), also f ′(xn) instead of f ′(zn):

xn+1 = zn − f (zn)

f ′(zn)

Xn+1 =
{
Xn − f 2(xn)

[ f (xn) − f (yn)] f ′(xn)

}
−

f (xn) f 2(yn)
[ f (xn)− f (yn)]

2

f ′(xn)

After doing some simplifying work, we get a new algorithm.
Algorithm (1): we will call it the Variant Homeier Method 2 (VHM2).
For a given x0, compute the approximate solution xn+1 by an iterative scheme

yn = xn − f (xn)

f ′(xn)
, f ′(xn) �= 0.

xn+1 = xn −
{
1 + f (xn) f (yn)

[ f (xn) − f (yn)]
2

}
∗ f (xn)

f ′(xn)
, for n = 0, 1, 2, . . . (16)

As we can see, both algorithms require only two function evaluations and only
one first derivative evaluation per each cycle. When we compare both algorithms and
Homeier method, clearly, there is big difference, which is Homeier method requires
one function evaluation and two first derivative evaluations.
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2.2 Convergence Criteria of the New Methods

Now, we compute the orders of convergences and corresponding error equations of
the proposed methods Algorithms (8) and (16).

Theorem 2.1 Let ∝ ε I be a simple zero of sufficiently differentiable function f: I
⊆ R → R for an open interval I. If x0 is sufficiently close to ∝, then the iterative
method defined by Algorithm (1) is of order three and satisfies the error equation:

en+1 = (2c22 + 2c3)e
3
n + o(e4n),

where
Ck = f (k)(α)

k! f ′(α)
, k = 2, 3, . . . and en = xn − α.

Proof Let ∝ be a simple zero of f, f ′(α) �= 0. Using Taylor’s series expansion

around ∝ in the nth iterate results in

f (xn) = f ′(α)en + 1

2! f
′′(α)e2n + 1

3! f
′′′(α)e3n + O(e4n)

f (xn) = f ′(α)
[
en + c2e

2
n + c3e

3
n + O(e4n)

]
(17)

f ′(xn) = f ′(α)
[
1 + 2c2en + 3c3e

2
n + O(e3n)

]
(18)

From (17) and (18), we have

f (xn)

f ′(xn)
= en − c2e

2
n + (2c22 − 2c3)e

3
n + O(e3n) (19)

But yn = xn − f (xn)
f ′(xn) , en = xn − α. Using (19), we get

yn = xn − {
en − c2e

2
n + (2c22 − 2c3)e

3
n + O(e3n)

}

yn = α + c2e
2
n + (2c3 − 2c22)e

3
n + O(e3n)

(yn − α) = c2e
2
n + (2c3 − 2c22)e

3
n + O(e3n) (20)

Now by Taylor expansion once again f (yn) about ∝ and using (20):

f (yn) = f (α) + f ′(α)(yn − α) + f ′′(α)

2! (yn − α)2 but f (α) = 0,

f (yn) = f ′(α)
[
(yn − α) + f ′′(α)

2! f ′(α)
(yn − α)2

]
and f ′′(α)

2! f ′(α)
= C2

f (yn) = f ′(α)
[
c2e

2
n + (2c3 − 2c22)e

3
n + O(e4n)

]
(21)
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f 2(xn) = f ′2(α)
[
e2n + 2c2e

3
n + c3e

3
n + O(e4n)

]
(22)

From (17) and (21), we get
f (xn) − f (yn) = f ′(α)

[
en + (2c22 − c3)e3n

]
and by using (18), we obtain

f ′(xn)( f (xn) − f (yn)) = f ′2(α)
[
en + 2c2e

2
n + (2c22 + 2c3)e

3
n + O(e4n)

]
(23)

Now by (22) and (23), we get

f 2(xn)

f ′(xn)( f (xn) − f (yn))
= en − (2c22 + 2c3)e

3
n + O(e4n) (24)

Putting (24) in the Algorithm (1), Eq. (8), we get
xn+1 = xn − {

en − (2c22 + 2c3)e3n + O(e4n)
}
, where en = xn − α

xn+1 = α + (2c22 + 2c3)e
3
n + O(e4n) (25)

Now, en+1 = xn+1 − α, by substituting (25), we get.

en+1 = (2c22 + 2c3)e3n + O(e4n) and the proof is completed.

Theorem 2.2 Let ∝ ∈ I be a simple zero of sufficiently differentiable function f: I
⊆ R → R for an open interval I. If × 0 is sufficiently close to ∝, then the iterative
method defined by (8) is of order three and satisfies the error equation:

en+1 = (2c3 − c22)e
3
n + o(e4n),

Proof Let ∝ be a simple zero of f, f ′(α) �= 0, once again, we can follow the same
procedure provided in Theorem 2.1.

Using (17) and (21), we get

f (xn) f (yn) = f ′2(α)
[
c2e

3
n

]
(26)

f (xn) − f (yn) = f ′(α)
[
en + (2c22 − c3)e

3
n

]

[ f (xn) − f (yn)]
2 = f ′2(α)

[
e2n

]
(27)

And then dividing (26) by (27), we get

f (xn) f (yn)

[ f (xn) − f (yn)]
2 = c2en (28)

By using (19) and (28), we obtain:
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{
1 + f (xn) f (yn)

[ f (xn) − f (yn)]
2

}
∗ f (xn)

f ′(xn)
= en + (c22 − 2c3)e

3
n (29)

Now, substituting (29) in Algorithm (1.2), we get

xn+1 =xn −
{
1 + f (xn) f (yn)

[ f (xn) − f (yn)]
2

}
∗ f (xn)

f ′(xn)
= xn − {

en + (c22 − 2c3)e
3
n

}
, and by en = xn − α,we get :

= α + (2c3 − c22)e
3
n + O(e4n)

Now using the previous result in en+1 = xn+1 − α

en+1 = {
α + (2c3 − c22)e

3
n + O(e4n)

} − α = (2c3 − c22)e
3
n + O(e4n),

the proof is done.

2.3 More Suggestions

In this section, we present new modifications of important methods for solving
nonlinear equations of type f (x) = 0 using the substitution of the formula (7)
f ′(yn) = f (xn)− f (yn)

f (xn)+ f (yn)
f ′(xn) in well-known methods.

As we will see, this is so helpful that it reduces the number of required derivative
evaluations in iteration schemes.Wewill introduce only two suggestions as examples
and we will show their rate of convergences.

Example 1 Consider Noor and Gupta’s fourth-order method [17, 18].

yn = xn − f (xn)
f ′(xn) ,

xn+1 = yn − f (yn)

f ′(yn)
− 1

2

(
f (yn)

f ′(yn)

)2

∗ f ′(yn)
f (xn)

∗ f ′(yn) − f ′(xn)
f ′(yn)

(30)

By substituting (7) in (30), we get

xn+1 = yn − f (xn) + f (yn)

f (xn) − f (yn)
∗ f (yn)

f ′(xn)

(
1 − f (yn)

f (xn)
∗ f (yn)

f (xn) − f (yn)

)
(31)

or in another form:

xn+1 = yn − f 3(xn) − 2 f (xn) f 2(yn) − f 3(yn)

[ f (xn) − f (yn)]
2 ∗ f (yn)

f (xn) f ′(xn)

Theorem 2.3 Let ∝ ε I be a simple zero of sufficiently differentiable function.
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f: I ⊆ R → R for an open interval I. If × 0 is sufficiently close to ∝, then the
iterative method introduced in (31) is of order four and satisfies the error equation:

en+1 = (5c32 − c2c3)e
4
n + o(e5n),

Notes:

1. The suggested method requires only two function evaluations and one derivative
evaluation (r = 3).

2. Rate of convergence P = 4.

3. Efficiency Index E.I. = p
1/r = 4

1/3 = 1.5874.

Example 2 Consider Jarratt’s fourth-order method [2].

yn = xn − 2 f (xn)
3 f ′(xn) ,

xn+1 = xn − 3 f ′(yn)+ f ′(xn)
6 f ′(yn)−2 f ′(xn) ∗ f (xn)

f ′(xn)

By substituting the previous formula (16), we get

xn+1 = xn − 2 f (xn) − f (yn)

2 f (xn) − 4 f (yn)
∗ f (xn)

f ′(xn)
, (32)

where

yn = xn − f (xn)

f ′(xn)

with error equation

en+1 = −c2
2

e2n + (c22 − c3)e
3
n + o(e4n).

Theorem 2.4 Let ∝ ∈ I be a simple zero of sufficiently differentiable function f: I
⊆ R → R for an open interval I. If × 0 is sufficiently close to ∝, then the iterative
method introduced in (32) is of order two and satisfies the error equation:

en+1 = −c2
2

e2n + (c22 − c3)e
3
n + o(e4n),

3 Numerical Examples

In this section, first we present the results of numerical calculations on different
functions and initial guesses to demonstrate the efficiency of the suggested methods,
VariantHomeierMethod1 (VHM1) and its improvement (VHM2).Also,we compare
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Table 1 Different test
functions and their
approximate zeros (∝)

Functions Approximate roots (∝)

F1(x) = x ex^2 – sin2x + 3cosx + 5 −1.20764782713919

F2(x) = sin2x – x2 + 1 1.404491648215341

F3(x) = ex – 5x2 + 7x – 3 0.300026392366926

F4(x) = Ln(x2 + x + 2) – x + 1 4.152590736757158

F5(x) = x10 − 2x3 − x + 1 0.591448093340752

F6(x) = sin(1 + x) − x + 2 2.070766727142040

F7(x) = tan(
√
x2 + 1) − 7x + 1 0.410901501707263)

F8(x) = Ln(cosx + 1)+
√
1 − 2x +

3x
−0.706338530699419

F9(x) = ( x2 − 10x)3 −100,000 −3.450792172105985

F10(x) = √
x − Ln(x) + sinx − x 1.747991025989651

these methods with famous methods, such as Halley’s, Weerakoon and Potra–Ptak
methods. All computations are carried out with 15 decimal places (See Table 1)
approximate zeros α found up to 15th decimal place).

All programs and computations were completed using MATLAB, 2009a. Table 2
displays the number of iterations (IT) and the computational order of convergences
(COC). Table 3 displays the number of function evaluations (r), convergence order
(P), efficiency index (E.I.), the sumof iterations, and averageCOC’s for eachmethod.
When we reached the sought zero α after only three iterations, we used the second
formula to compute the COC of the iterative method. Furthermore, we assumed COC
is zero when the iterative method diverged. Table 4 displays the number of function
evaluations and derivative evaluations required for each method.

4 Conclusion

We have developed two of 2-step iterative methods for finding zeros of nonlinear
functions, (VHM1) and (VHM2). The main goal is to find and improve iterative
schemes which requires less derivative evaluations of the function, whereas more
derivative evaluations in a method cost need more time and effort from an industry
point of view. So, both new methods require only two function evaluations and one
first derivative evaluation. On the contrary, known methods as Halley and House-
holder require one function evaluation, one first derivative and one second derivative
evaluation whereas Weerakoon and Homeier methods require one function evalua-
tion and two first derivative evaluations (See Table 4). Furthermore, we have proved
theoretically that both new methods are of order three. It can be observed that the
numerical experiment is displayed in Tables 2, 3, and 4.

In addition, based on numerical experiments, the proposed methods are also
compared with the previous well-known iterative methods of the same order of
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Table 3 Summary of the comparison of variant methods

VHM1 VHM2 HAL
MD

HOS
MD

WRK
MD

POT
MD

HOM
MD

Number of func
Eval.‘s required (r)

3 3 3 3 3 3 3

Convergence order (p)
(theoretically)

3 3 3 3 3 3 3

Efficiency Index

E.I. = p
1/r

1.4422 1.4422 1.4422 1.4422 1.4422 1.4422 1.4422

Sum of iterations needed 87 76 83 90 85 108 82

Average COC 3.02 3.90 3.00 2.96 3.00 3.00 3.09

Number of
(div)’s

0 0 1 1 0 0 0

Table 4 Type of functions required for each method

VHM1 VHM2 HAL
MD

HOS
MD

WRK
MD

POT
MD

HOM
MD

Number of function
Eval.‘s required (r)

3 3 3 3 3 3 3

Number of function Eval.‘s. f(x) 2 2 1 1 1 2 1

Number of 1st derivative Eval.‘s. f ‘(x) 1 1 1 1 2 1 2

Number of 2nd derivative Eval.‘s. f “ (x) 0 0 1 1 0 0 0

convergence. The performance of the proposed methods can be seen in Tables 2, 3,
and 4.

Moreover, it can easily be seen that both new methods are more efficient, robust,
and faster convergence than the other methods with respect to the required number
of derivative evaluations for each method, IT’s and COC results.

Numerical experiments show that the order of convergence of both methods is at
least three.

Conflict of Interest Statement: The authors declare no conflict of interest regarding this
publication.
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