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Abstract The examination of the recurrence sequences associated with combinato-
rial constructions has been very extensive in the last decades. One of themost famous
recurrence sequences is the Fibonacci sequence. We give two digraph constructions
defined on the hyperbolic and on the Euclidean square mosaics, respectively, and we
introduce two zig-zag type walks associating to the Fibonacci and its generalized
sequences. Then we determine the recurrence relations and we give some examples.
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1 Introduction

The investigation of the generalizations of Pascal’s arithmetic triangle has an exten-
sive literature. One generalization is the hyperbolic Pascal triangle defined on a reg-
ular squared grid given by Schläfli’s symbol {4, q}, q ≥ 5. Belbachir, Németh, and
Szalay [1] described some interesting properties. One is that the Fibonacci sequence
appears in this structure along a suitable zig-zag walk, considering the directed graph
form of the hyperbolic Pascal triangle. Németh and Szalay [2] examined other types
of zig-zagwalks and presentedmore recurrence sequences assigned to the hyperbolic
Pascal triangle.

The present paper summarizes the studies of diagonal and zig-zag paths on a
particular k + 1 wide, infinite part of the usual Euclidean square lattice as well.
Along these paths Németh, and Szalay [3] determined linear recurrence sequences
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considering a special type of generalized Fibonacci sequences and that are mostly
defined in the On-Line Encyclopedia of Integer Sequences (OEIS, [4]). Moreover,
we show a new occurrence of the Fibonacci sequence associated with the coefficient
of these recurrence sequences.

2 Recurrence Sequences Associated to the Walks on the
Hyperbolic Pascal Triangle

In the hyperbolic plane, there are infinite types of square regular mosaics, they are
denoted by Schläfli’s symbol {4, q}, where q satisfy q > 4. The parameter q means
that in one node of the mosaic exactly q regular square meet. Each square regular
mosaic induces a hyperbolic Pascal triangle HPT based on the mosaic {4, q}, and
they can be figured as a digraph, where the vertices and the edges are the vertices
and the edges of a well-defined part of the lattice {4, q}, respectively, further each
vertex possesses the value which gives the number of different shortest paths from
the base vertex. Fig. 1 illustrates the hyperbolic Pascal triangleHPT {4,5}. The values
of the most left and most right nodes are 1’s and the values inside the triangle are the
sums of incoming values (for more details, see Fig. 1 and [1]). In the sequel, we fix
the type of HPT given by mosaic {4, 5}.

Examining the triangle HPT {4,5} thoroughly in Fig. 1 and starting a walk from
the root vertex, continuing with one-step left and one-step right, then again one-step
left, one-step right, and so on—shortly L , R, L , R, L , . . . (follow the red edges), we
find that the values of nodes along this zig-zag walk are the terms of the Fibonacci
sequence (defined by F0 = 0, F1 = 1 and Fn = Fn−1 + Fn−2). Considering a similar

Fig. 1 Fibonacci and Pell sequences in the hyperbolic Pascal triangle {4, 5}
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Table 1 Location of the sequences

fn = α fn−1 + fn−2 fn = α fn−1 − fn−2

Condition α ≥ 1 α ≥ 2

Distance of fn and fn−1 α α − 1

Pattern of steps LRα−1, and RLα−1,
alternately

LRα−2

zig-zag walk, first we step left and right, second right and left, and so on—shortly
LR, RL , LR, RL , . . . (blue walk), the Pell sequence (defined by P0 = 0, P1 = 1
and Pn = 2Pn−1 + Pn−2 for n ≥ 2) appears.

It is easy to show (see [2]) that each pair i < j ∈ Z
+ can be found next to each

other inHPT {4,5}.

Theorem 1 ([1, 2]) Assume α ∈ Z
+, f0 < f1 ∈ Z

+, and f0 (in the second case
f1 − f0) is the left neighbor of f1. Then binary recurrence sequences

fn = α fn−1 ± fn−2, (n ≥ 2)

appear in the triangle HPT {4,5} along zig-zag walks.

Table 1 shows the information about the location of the terms of the sequences. Here,
for example, LRα−1 means that going down from a given element having type red
circle, via elements type red circle, first turn left, and then (α − 1)-times right. For
illustration, see Fig. 2, when the pattern of steps in the zig-zag walk is LRR (or
LLR).

3 Recurrence Sequences Associated to the Walks on an
Euclidean Square Grid

Consider the Euclidean square lattice and take k consecutive pieces of squares. This
is the 0th layer of the k–zig-zag shape. The upper corners are the 1st, 2nd, . . ., kth
and (k + 1)st vertices according to Fig. 3. Extend this by an extra 0th vertex, which
is the base vertex. We color it yellow in the figures, and we join it to the 1st vertex by
an extra edge. We denote the vertices of the 0th line by small boxes in Fig. 3. Now
move the 0the layer to reach the right-down position in the square lattice to obtain the
1st layer, and repeat this procedure with the latest layer infinitely many times. Thus,
we define the square k–zig-zag shape or graph, where k ≥ 1 is the size of the array.
Finally, we label the vertices such that a label gives the number of different shortest
paths from the base vertex. Figure4 illustrates the first few layers of the square
4–zig-zag digraph, the vertices are denoted by shaded boxes with their label values
and the directed edges are the black arrows. Let ai, j denote the label of the vertex
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Fig. 2 Appearance of fn = 4 fn−1 − fn−2, f0 = 1, f1 = 2 in HPT {4,5}

Fig. 3 Zig-zag shape

located in i th row and j th position (0 ≤ j ≤ k + 1, 0 ≤ i). Clearly, the fundamental
rule of the construction is given by

ai, j =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, if i = 0;
ai−1,1, if j = 0, 1 ≤ i;
ai, j−1 + ai−1, j+1, if 1 ≤ j ≤ k, 1 ≤ i;
ai,k, if j = k + 1, 1 ≤ i.

(1)
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Fig. 4 Square 4–zig-zag digraph (k = 4)

For fixed k ≥ 1 and given 0 ≤ j ≤ k + 1, let A(k)
j be the sequence defined by

A(k)
j = (ai, j )∞i=0. The sequence A(k)

j is the j th right-down diagonal sequence of the

square k–zig-zag shape. In Fig. 4, the blue arrows represent the sequence A(4)
1 . We

found A(k)
0 = (1, A(k)

1 ) and A(k)
k = A(k)

k+1. These sequences are associated with the
zig-zag walks with patterns RL , RL , RL , . . ..

Let Z (k)
j , j ∈ {0, 1, . . . , k} be the j th zig-zag sequence of the square k–zig-zag

shape, where Z (k)
j is the merged sequence of A(k)

j and A(k)
j+1. (In Fig. 4, the red arrows

represent the zig-zag sequence Z (4)
3 ). More precisely, Z (k)

j = (zi, j )∞i=0, where

zi, j =
{
a�, j , if i = 2�;
a�, j+1, if i = 2� + 1.

(2)

Since Z (k)
0 and Z (k)

k are the ‘double’ of A(k)
0 and A(k)

k , respectively, usuallywe examine
sequences for j ∈ {1, 2, . . . , k − 1}. The Z (k)

j sequences are associated with the zig-
zag walks with patterns R, L , R, L , R, L , . . ..

We find that any item an, j , (n ≥ 1) is the sum of the certain items of (n − 1)st row.
More precisely, if 0 < j < k + 1, then we obtain the system of recurrence relations

an, j = an−1, j+1 + an, j−1 = an−1, j+1 + an−1, j + an, j−2 = · · · =
j+1∑

�=1

an−1,�. (3)
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Let pk(x) be the characteristic polynomials of kth recurrence of system (3), then
the following theorem holds.

Theorem 2 ([3], Theorem 4) The characteristic polynomials pk(x) can be given by

pk(x) = x� k
2�

� k
2	+1
∑

i=0

(−1)i
(
k + 2 − i

i

)

x� k
2	+1−i , k ≥ 0. (4)

Now we record the two theorems of zig-zag sequences. The first one is the corol-
lary of Theorem 2 and the second is a simple corollary of the first one.

Theorem 3 Given k ≥ 1. Then all the right-down diagonal sequences A(k)
j for

j ∈ {0, 1, . . . , k, k + 1} have the same (
⌊
k
2

⌋ + 1)-th order homogeneous linear
recurrence relation

an, j =
� k

2	∑

i=0

(−1)i
(
k + 1 − i

i + 1

)

an−1−i, j , n ≥
⌊
k

2

⌋

+ 1. (5)

Theorem 4 Fixing k ≥ 1, the zig-zag sequences Z (k)
j for j ∈ {0, 1, . . . , k} satisfy a

(2
⌊
k
2

⌋+2)-th order homogeneous linear recurrence relation given by

zn, j =
� k

2	∑

i=0

(−1)i
(
k + 1 − i

i + 1

)

zn−1−2i, j , n ≥ 2

⌊
k

2

⌋

+2.

Fig. 5 illustrates the 3-zig-zag graph and the zig-zagwalkwhen appeared sequence
is the Fibonacci sequence.

Expressing the item an, j from Eq. (5) we obtain the result of Theorem 3. For
example, the first few recurrence relations are

k = 0 : an, j = an−1, j ,

k = 1 : an, j = 2an−1, j ,

k = 2 : an, j = 3an−1, j − an−2, j ,

k = 3 : an, j = 4an−1, j − 3an−2, j ,

k = 4 : an, j = 5an−1, j − 6an−2, j + an3, j ,

k = 5 : an, j = 6an−1, j − 10an−2, j + 4an−3, j ,

k = 6 : an, j = 7an−1, j − 15an−2, j + 10an−3, j − an−4, j ,

k = 7 : an, j = 8an−1, j − 21an−2, j + 20an−3, j − 5an−4, j ,

k = 8 : an, j = 9an−1, j − 28an−2, j + 35an−3, j − 15an−4, j + an−5, j ,

k = 9 : an, j = 10an−1, j − 36an−2, j + 56an−3, j − 35an−4, j + 6an−5, j ,

k = 10 : an, j = 11an−1, j − 45an−2, j + 84an−3, j − 70an−4, j + 21an−5, j − an−6, j .
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Fig. 5 Fibonacci sequence associated to zig-zag walk in 3-zig-zag graph

We consider the sum of the absolute values of the coefficients of these recurrence
sequences (the left-hand side as well), andwe gain the first few items of the Fibonacci
sequence. Generally, using the well-known properties of Pascal’s triangle that the
rising-up diagonal sum sequence of Pascal’s triangle is the Fibonacci sequence, so

� u
2 	∑

v=0

(
u − v

v

)

= Fu+1,

and from Eq. (5) when u = k + 2 and v = i + 1 we obtain

� k
2	∑

i=0

(
k + 1 − i

i + 1

)

= Fk+3 − 1.

Fig. 6 illustrates this coefficient sequence.
Moreover, considering the polynomials pk(x) of Eq. (4) we find that for non-

negative integer x = m the sequence of polynomials pk(x) becomes integer recur-
rence sequence with recurrence

pk(m) = mpk−1(m) − pk−2(m), k ≥ 1,

where the initial values are p−1(m) = 1 and p0(m) = m. For the first few m the
sequences appear yet in OEIS (see Table 2).
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Fig. 6 Fibonacci sequence
in Pascal’s triangle

Table 2 Sequences in OEIS
x 0 1 2 3 4 5 6 7 8 9 10

pk (x) A154955 A128834 A090132 A057682 A001792 A039717 A140766 — A164591 — A176174
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