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Abstract In this article, we discuss the validity of the discrete maximum principle
for the spectral method called Bernstein-Dual-Petrov-Galerkin method [4] in case
of a uniformly elliptic second-order linear partial differential equation (PDE) in
divergence form and corresponding Dirichlet boundary values problems on simply
connected domains, which have no holes and are therefore diffeomorphic to a cube.
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1 Introduction

Consider Poisson’s equation for homogeneous Dirichlet boundary conditions

−�u = f in �, u = 0 on ∂� (1)

on a bounded domain� ⊂ R
N with boundary ∂� piecewise sufficiently smooth. By

the weak maximum principle, f ≥ 0 implies u ≥ 0 in � for the solution u of (1).
[1] proved an analogous discrete maximum principle (DMP) for a finite difference
(FD) discretization of (1), and [2] presented a DMP suitable for both finite element
(FE) and FD discretizations by providing a practically convenient set of sufficient
conditions on matrix blocks implying validity of a DMP. While these conditions
imply for a piecewise linear triangular FE discretization of (1) that the inverse of
the stiffness matrix is positive under the interior edge condition (the sum of the two
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angles opposite to every interior edge is ≤ π), the DMP may fail for certain meshes
[3].

In this article, we discuss the validity of the discrete maximum principle for the
spectral method called Bernstein-Dual-Petrov-Galerkin method [4] in case of a uni-
formly elliptic second-order linear partial differential equation (PDE) in divergence
form and corresponding Dirichlet boundary values problems on simply connected
domains � ⊂ R

N , which have no holes and are therefore diffeomorphic to a cube.
This numerical method combines two advantages, the exponential fast convergence
of a spectral method in the interior of � for analytic data, and the good approxima-
tion properties of Bernstein polynomials [5]. Particularly, the latter will allow us to
certify the positivity of numerical solutions. ForHelmholtz equation subject to homo-
geneous Neumann boundary conditions and Bernstein Bubnov-Galerkinmethod, see
[6].

1.1 Outline

InSect. 2,weprovide basic information about linear elliptic PDEs in divergence form;
about positivity, the maximum principle and the comparison principle for classical
and weak solutions; about Bernstein polynomials and the induced dual polynomials
resp. themodal basis functions; and about different certificates of non-negativity resp.
positivity. In Sect. 3, the Bernstein dual Petrov–Galerkin method is formulated for
general linear elliptic PDEs in divergence form on a domain diffeomorphic to a cube.
In the main Sect. 4 of this paper, we discuss algebraic and functional discrete max-
imum principles for this method as well as Bernstein certificates of non-negativity
resp. positivity for the approximate solution in a way, which easily generalizes to
dual Petrov–Galerkin methods with arbitrary non-negative basis functions. Hereby,
we provide numerical examples and a summary that concludes the article.

2 Preliminaries

2.1 Linear Elliptic PDEs

A linear second order differential operator L = ∑
i j ai j∂xi ∂x j + ∑

i bi∂xi + c with
possibly spatially varying measurable coefficients ai j (w.l.o.g. symmetric), bi , c on
a bounded domain � ⊂ R

N is said to be strictly elliptic if there exists a constant
λ > 0, such that

∑

i j

ai j (x)ξiξ j ≥ λ|ξ|2 for every ξ ∈ R
N and a.e. x ∈ � . (2)
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In this article, we consider linear second-order differential operators

Lu := div(a∇u) − cu (3)

in divergence form, and require uniform ellipticity in the sense that the coefficients
a ∈ L∞(�,Sym(n × n)), c ∈ L∞(�,R) are at least bounded and the symmetric
matrices a = (ai j ) are positive definite with smallest eigenvalue bounded away from
zero on � by a constant λ > 0. Note that (3) can be rewritten under the additional
assumption a ∈ C1(�,Sym(n × n)) in the above general form, and uniform elliptic-
ity for bounded coefficients just means validity of (2). The corresponding Dirichlet
boundary value problem reads as

−Lu = − div(a∇u) + cu = f in �, u = g on ∂�, (4)

where we assume that the right-hand side (r.h.s., or inhomogeneity) satisfies at least
f ∈ (H 1

0 (�))∗ and the boundary data satisfies g ∈ H 1/2(∂�). In the case c ≥ 0, the
bilinear form

B(u, v) :=
∫

�

(a∇u) · ∇v + cuv dx (5)

induced by −L on the Sobolev space H 1
0 (�) is coercive in the sense that B(u, u) ≥

λ‖∇u‖22 and bounded due to |B(u, v)| ≤ (‖a‖∞ + C2‖c‖∞)‖∇u‖2‖∇v‖2 with the
constantC in Sobolev’s inequality ‖u‖2 ≤ C‖∇u‖2 for u ∈ H 1

0 (�). Hence, by Lax–
Milgram, (4) has a unique solution u ∈ H 1(�) satisfying the Dirichlet boundary
condition in the sense that u − g ∈ H 1

0 (�) for an extension of g from trace space
H 1/2(∂�) to H 1(�).

2.2 Positivity, Maximum and Comparison Principle

Definition 1 We say for a linear operator L on a space of functions on � that

– weak positivity holds if the validity of −Lu ≥ 0 in � and u ≥ 0 on ∂� implies
the non-negativity u ≥ 0 in � (resp. we say that strong positivity holds, if either
u ≡ 0 or u > 0 in � is implied),

– the weak maximum principle holds if the validity of Lu ≥ 0 in � implies that a
non-negative maximum is attained by u on the boundary ∂� (resp. we say that the
strong maximum principle holds, if either u is constant equal to its maximum or a
non-negative maximum is attained by u only on the boundary ∂� and not inside
�), or equivalently the weak minimum principle holds if the validity of −Lu ≥ 0
in � implies that a non-positive minimum is attained by u on the boundary ∂�

(resp. we say that the strong minimum principle holds, if either u is constant equal
to its minimum or a non-positive minimum is attained by u only on the boundary
∂� and not inside �),
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– the weak comparison principle holds if the validity of−Lui = fi in�, ui = gi on
∂�, i = 1, 2, implies for data f1 ≥ f2, g1 ≥ g2, that u1 ≥ u2 holds in � (resp. the
strong comparison principle holds, if either u1 ≡ u2 or u1 > u2 in � is implied).

To obtain the equivalence of minimum principle and maximum principle claimed
in this definition, just substitute −u for u. Note that Definition 1 is not fully precise,
because no function space for u is provided. If u ∈ C2(�) ∩ C(�) is assumed, then
Definition 1 is called positivity, maximum principle or comparison principle for
classical solutions. Positivity, maximum principle or comparison principle for weak
solutions u ∈ H 1(�) requires a more precise definition indicated at the end of this
subsection.

Theweakminimumprinciple (and thus also theweakmaximumprinciple) implies
weak positivity (for classical solutions): If −Lu ≥ 0 in � and u ≥ 0 on ∂�, then
u cannot be negative in �, because by the weak minimum principle, a non-positive
minimum would be attained on ∂� in contradiction to u ≥ 0 on ∂�, and hence
u ≥ 0 in �. Similarly, the strong minimum (or maximum) principle implies strong
positivity.

Denote by u = u+ − u− the decomposition of a function u into its positive part
u+ := max(u, 0) ≥ 0, and its negative part u− := max(−u, 0) ≥ 0. For the conve-
nience of the reader, we provide here proof of two well-known facts.

Lemma 1 Every uniformly elliptic linear second-order differential operator L in
divergence form (3) with c ≥ 0 satisfies weak positivity (of weak solutions).

Proof Assume that −Lu = f ≥ 0 in � and u ≥ 0 on ∂�. Test −Lu = f by u−
(note that u ≥ 0 on ∂� implies u− = 0 on ∂�, thus u− can act as a test function)
and use c ≥ 0 to obtain λ‖u−‖2L2 ≤ ∫

�
(a∇u−) · ∇u− + c |u−|2 dx = − ∫

�
(a∇u) ·

∇u− dx − ∫
�
c uu− dx = 〈Lu, u−〉 = −〈 f, u−〉 ≤ 0 (because f, u− ≥ 0), i.e. u− ≡

0 and thus u = u+ ≥ 0 in �.

Remark 1 Weak positivity still holds for slightly negative c, as long as c is larger
than the negative −λ1 of the smallest Dirichlet eigenvalue λ1 of −L .

Lemma 2 For the differential operator L given by (3) with c ≥ 0, weak positivity
implies the weak maximum principle (for classical solutions).

Proof Let L satisfy weak positivity, and let u be such that Lu ≥ 0 and the maximum
M of u on ∂� is non-negative, i.e. M ≥ 0. Then −L(M − u) ≥ Lu ≥ 0 in � (as
c ≥ 0) and M − u ≥ 0 on ∂�. Thus, by weak positivity of L we have M − u ≥ 0
in � and hence u ≤ M in �, i.e. a non-negative maximum of u is attained on the
boundary ∂�.
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Similarly, for L given by (3) with c ≥ 0, strong positivity implies the strong max-
imum principle (for classical solutions), and the weak (strong) comparison principle
is equivalent to weak (strong) positivity, just put u := u1 − u2.

Yet, to show the strong maximum principle (or strong positivity) for weak solu-
tions is more demanding. In its precise form, inequalities f ≥ 0 for functionals
f ∈ (H 1

0 (�))∗ have to be interpreted in the functional sense that 〈 f, v〉 ≥ 0 for every
v ∈ H 1

0 (�) with v ≥ 0 a.e. in �, and maximum / minimum have to be replaced by
essential supremum/infimum. The strong maximum principle then states for a uni-
formly elliptic linear second order differential operator L in divergence form (3) with
c ≥ 0 (or even c > −λ1) that Lu ≥ 0 and supB u = sup� u ≥ 0 for some closed ball
B with positive radius in � imply u ≡ sup� u a.e. constant in �. For a proof of
this strong maximum principle for weak solutions, the weak Harnack inequality can
be applied to show that if supB u = sup� u =: M ≥ 0 for some closed ball B with
positive radius r in�, then u ≡ M is constant on an even larger ball in�with radius
greater than r , and a covering argument then allows to conclude u ≡ M a.e. in �,
see, e.g. [7, Theorem 8.19].

2.3 Bernstein Polynomials and Their Duals

As we aim to discuss in this article the Bernstein dual Petrov–Galerkin method for
the approximation of a solution of (4), we need to discuss Bernstein polynomials and
their dual polynomials over the N -dimensional unit cube (0, 1)N . To formulate the
Bernstein expansion of a real polynomial N -variate function,we use component-wise
comparisons and arithmetic operations on multiindices i = (i1, . . . , in) ∈ N

N
0 . For

x ∈ R
N and a multiindex i ∈ N

N
0 , its monomial is xi := xi11 . . . xiNN . Using compact

notation D = (D1, . . . , DN ) ∈ N
N
0 , we put

∑D
i=0 := ∑D1

i1=0 . . .
∑DN

iN=0 and
(D
i

) :=
∏N

μ=1

(Dμ

iμ

)
. An N -variate polynomial function u is expressed in monomial form as

u(x) =
d∑

i=0

ai x
i , (6)

where d = (d1, . . . , dn), and can be represented in Bernstein form by

u(x) =
D∑

j=0

u(D)
j S(D)

j (x), x ∈ (0, 1)N . (7)

In (7), the j th Bernstein polynomial of degree D ≥ d is

S(D)
j (x) =

(
D

j

)

x j (1 − x)D− j , x ∈ (0, 1)N (8)
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and can be considered as tensor product of univariate Bernstein polynomials, i.e.
S(D)
j (x) = SD1

j1
(x1) · . . . · SDN

jN
(xN ). Moreover, the Bernstein coefficients u(D)

j of
degree D are given analytically in terms of the coefficients ai in (6) by the formula

u(D)
j =

j∑

i=0

( j
i

)

(D
i

)ai , 0 ≤ j ≤ D. (9)

Conversely, the following theorem from the literature provides a way of converting
a polynomial from the Bernstein form to the monomial form.

Theorem 1 ([8, Theorem 3.3]) Let u(x) be a polynomial in Bernstein form of any
degree D. Then its monomial form is

u(x) =
D∑

i=0

ai x
i ,

where

ai =
i∑

j=0

(−1)i− j

(
D

i

)(
i

j

)

u(D)
j , 0 ≤ i ≤ D.

We highlight two important properties of Bernstein polynomials, namely, the end-
point interpolation property

u(D)
j = u

(
j

D

)

,

for 0 ≤ j ≤ D with jk ∈ {0, Dk}, k = 1, . . . , N , and the enclosing property [9]

min
0≤ j≤D

u(D)
j ≤ u(x) ≤ max

0≤ j≤D
u(D)
j ,

for all x ∈ (0, 1)N . The parameters D = (D1, . . . , DN ) ∈ N
N
0 determine in themesh-

free Bernstein dual Petrov–Galerkin method the resolution of the approximation in
each coordinate direction, in analogy as the number of subdivisions of each interval
in (0, 1)N determines howfine a rectangularmesh is in a FEmethod. In the following,
for the convenience of the reader, we usually suppress the upper index containing
the fixed degree D and mention it only, where it is helpful for understanding.

The dual polynomials to (one-dimensional) Bernstein polynomials in L2(0, 1)
have been introduced by [10], who found a recurrence relation involving Legendre
polynomials.We denote by �̃

(D)
i the N -variate dual Bernstein polynomials of degree

D ∈ N
N
0 determined by biorthogonality

∫

(0,1)N
S(D)
j �̃

(D)
i d �x = δi j . (10)
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The coefficients ci j in the decomposition �̃i = ∑D
j=0 ci j S j are explicitly known

(in one dimension) due to [11], see also [4, (2.4), (2.5)]. Here, we focus on linear
combinations �i , 1 ≤ i ≤ D − 1, of the dual Bernstein polynomials called modal
basis functions, which vanish on the boundary of the unit cube (0, 1)N . In contrast
to [4, Proposition 1], we use an index shifted by one and a scaling so that relation [4,
(2.8)] becomes

�i (x) := ãi �̃i−1(x) + �̃i (x) + b̃i �̃i+1(x) (11)

for 1 ≤ i ≤ D − 1 with ãi = D−i+2
2(i+1) , b̃i = i+2

2(D−i+1) . Particularly, the space �
(D)
0 of

polynomial functions of maximal degree D ∈ N
N
0 in each coordinate vanishing on

the boundary of (0, 1)N is not only spanned by Sj , 1 ≤ j ≤ D − 1, but also by �i ,
1 ≤ i ≤ D − 1.

2.4 Certificates of Non-negativity Resp. Positivity

In a broad sense, every identity that gives immediate proof of non-negativity resp.
positivity for a (multivariate) real function u is considered to be a certificate of
non-negativity resp. positivity, and thus there are many different certificates of non-
negativity resp. positivity. For example, a sum of squares (SOS) certificate of non-
negativity for a real polynomial function u on R

N is a representation u = ∑m
k=1 p

2
k

of u by sums of squares of polynomials p1, . . . , pm on RN . However, not every real
polynomial function u ≥ 0 can be decomposed into a sum of squares of polynomials,
e.g. the Motzkin polynomial u(x, y) := x4y2 + x2y4 + 1 − 3x2y2 onR2. OnRN+ =
(0,∞)N , a certificate of positivity for a real polynomial function u of degree d ∈
N

N
0 in monomial form u(x) = ∑d

i=0 ai x
i is the validity of ai > 0 for all 0 ≤ i ≤

d. However, again not every real polynomial function u > 0 on R
N+ has positive

monomial coefficients.
In this article, we consider Bernstein certificates: As the Bernstein basis polyno-

mials S(D)
j in (8) are by construction non-negative on the closed unit cube [0, 1]N and

positive in its interior (0, 1)N , i.e. S(D)
j (x) > 0 for all x ∈ (0, 1)N and 0 ≤ j ≤ D,

where 0 denotes the multiindex with all components equal to zero, for a real poly-
nomial function u on R

N the validity of u(D)
j ≥ 0 for all 0 ≤ j ≤ D implies non-

negativity u ≥ 0 on [0, 1]N . Thus, the non-negativity of Bernstein coefficients is
a certificate of non-negativity on [0, 1]N . Further, if additionally u(D)

j > 0 for one

0 ≤ j ≤ D, then u > 0 on (0, 1)N , hence u(D)
j ≥ 0 for all 0 ≤ j ≤ D and u(D)

j �= 0 is
a certificate of positivity on (0, 1)N . However, again there exist positive polynomials
over a box which have non-positive Bernstein coefficients, as shown in the following
example.
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Example 1 Consider the polynomial u(x) = 7x2 − 3x + 5. It is immediate to check
that u is positive on [−1, 1], but the list of Bernstein coefficients (u(2)

j ) = (15,−2, 9)
has anegative value.However, the polynomialu has a certificate of positivity at degree
3 on [−1, 1], since (u(3)

j )) = (15, 3.6, 1.6, 9).

3 Bernstein Dual Petrov–Galerkin Method

In using the Bernstein dual Petrov–Galerkin method [4] for solving (4) on a
simply connected bounded domain � ⊂ R

N , the first step is to fix the degree
D = (D1, . . . , DN ) ∈ N

N
0 as a parameter which determines the resolution of the

approximation in each coordinate, and a diffeomorphism T : � → (0, 1)N which
extends continuously to a homeomorphism T : � → [0, 1]N . As basis functions,
then the transformed Bernstein polynomials S(D)

j (T (x)) are used (where in the fol-
lowing we usually suppress the upper index containing the fixed degree D), and
particularly we search for an approximation of the solution of the form

u(x) = g(x) +
D−1∑

j=1

u j S j (T (x)) . (12)

with an extension g of the boundary data to H 1(�). Note that the sum vanishes on
the boundary ∂� due to 1 ≤ j ≤ D − 1, where 1 denotes the multiindex with all
components equal to one. Putting the ansatz (12) into theweak formulation B(u, v) =
〈 f, v〉with the bilinear form B from (5) and using as test functions v the transformed
modal basis functions �i ◦ T vanishing on the boundary of the unit cube (0, 1)N ,
which are induced via (11) by the dual Bernstein polynomials �̃i , we obtain a linear
system

A�u = �b (13)

with stiffness matrix A = (∫
�
(a∇(Sj ◦ T )) · ∇(�i ◦ T ) + c(Sj ◦ T )(�i ◦ T ) d �x)

and r.h.s. �b = (〈 f, �i ◦ T 〉 − B(g, �i ◦ T )).

Example 2 If� := (x1, x1) × · · · × (x N , x N ) is a general openn-dimensional cube
with

xμ < xμ, μ = 1, . . . , N

identified by the usual affine linear transform T : � → (0, 1)N with the unit cube,
then the transformed j th Bernstein polynomial of degree D ∈ N

N
0 is

S(D)
j (T (x)) =

(
D

i

)

(x − x)i (x − x)D−iw(�)−D, (14)

where w(�) = (x1 − x1, . . . , x N − x N ) denotes the width of intervals.
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Due to the chain rule and transformation formula, system (13) is identical with
the system obtained from (4) on the unit cube (0, 1)N with coefficients replaced

by
(

1
| det DT | (DT )a(DT )∗

)
◦ T−1 resp.

(
1

| det DT |c
)

◦ T−1. Note that this transforma-

tion does not change the uniform ellipticity and boundedness of the coefficients.
Therefore, we can restrict our discussion to the case of the unit cube.

In the special case, where after the transformation the coefficients of (4) on the unit
cube (0, 1)N are given by constants a = I equal to the identity matrix I and c = 0,
and the boundary value g = 0 vanishes, we are in case of Poisson’s equation (1) on
the unit cube (0, 1)N subject to homogeneous Dirichlet boundary conditions. For this
case, in dimension N = 2 it can be seen from [4, 3.2.1] that the stiffness matrix A
in (13) can be written as tensor product A = A ⊗ B + B ⊗ A with sparse matrices

A =
(∫ 1

0 S′
j (x)�

′
i (x) dx

)
, B =

(∫ 1
0 Sj (x)�i (x) dx

)
, containing one-dimensional

integrals of univariate (dual)Bernstein polynomials and their first derivatives.Hereby,
sparsity follows from the validity of the three-term recurrence relation [12], [4, (2.3)],

S′
j (x) = (D − j + 1)Sj−1(x) − (D − 2 j)Sj (x) − ( j + 1)Sj+1(x) (15)

for the one-dimensional derivative of Bernstein polynomials.
Similarly, [4, Corollary 1] offers a five-term recurrence relation for the derivative

of one-dimensional dual Bernstein polynomials, and together with the three-term
recurrence relation for the derivative of one-dimensional Bernstein polynomials and
biorthogonality (10) sparsity of the one-dimensional matrices A, B and thus of the
stiffnessmatrixA = A ⊗ B + B ⊗ A follows.Yet, even in case ofPoisson’s equation
(1) on the unit cube (0, 1)N subject to homogeneous Dirichlet boundary conditions,
this stiffness matrix does not have a non-negative inverse.

Example 3 In the case N = 2, D = (6, 6), the one-dimensional matrices A, B ∈
R

5,5 are given by

A =

⎛

⎜
⎜
⎜
⎜
⎝

58 + 2
7 −10 − 2

7 −10 − 2
7 −1 − 5

7 0
−9 28.5 −1.5 −9 −1.5

−8.64 −1.44 21.76 −1.44 −8.64
−1.5 −9 −1.5 28.5 −9
0 −1 − 5

7 −10 − 2
7 −10 − 2

7 58 + 2
7

⎞

⎟
⎟
⎟
⎟
⎠

B =

⎛

⎜
⎜
⎜
⎜
⎝

1 1 0 0 0
5
8 1 5

8 0 0
0 1 1 1 0
0 0 7

4 1 1
4

0 0 0 4 1

⎞

⎟
⎟
⎟
⎟
⎠

(16)

Note that in contrast to [4] due to our scaling (11) here A has the symmetry a6−i,6− j =
ai, j for all i, j ∈ {1, 2, 3, 4, 5} and B has values 1 on the diagonal. Further, while A−1

is positive, the stiffness matrix A = A ⊗ B + B ⊗ A ∈ R
25,25 has negative entries.
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Remark 2 Moreover, in the general situation of an arbitrary domain and arbitrary
coefficients, the stiffness matrix A is neither sparse nor has a non-negative inverse
A−1.

While we will see in the next section that a non-negative inverse of the stiffness
matrixA is related to algebraic positivity, for the formulation of the algebraic discrete
maximum principle let us fix an approximation by Bernstein polynomials of the

right- hand side f (x) =
D∑

j=0
f j S j (T (x)) and of the (extended) boundary data g(x) =

∑

j=0,D
g j S j (T (x)), where j = 0, Dmeans that at least one index satisfies jk ∈ {0, Dk}

for k = 1, . . . , N , and let us extend the system (13) to

(
A A∂

0 I

) (�u
�g
)

=
(
M �f
�g

)

(17)

with A∂ = (∫
�
(a∇(Sj ◦ T )) · ∇(�i ◦ T ) + c (Sj ◦ T )(�i ◦ T ) d �x)1≤i≤D−1, j=0,D ,

and M := (∫
�
(Sj ◦ T )(�i ◦ T ) d �x)1≤i≤D−1, 0≤ j≤D . In contrast to (13), where the

right hand side f and the boundary data g are hidden within the vector �b =
(〈 f, �i ◦ T 〉 − B(g, �i ◦ T )), in (17) the dependence of the algebraic solution on
the coefficients of the data is made explicit.

Remark 3 Note that the discussion of a discrete maximum principle by [2] is based
on the extended linear system (17). Not only in case of FEM or the Bernstein dual
Petrov–Galerkin method, but in an arbitrary Galerkin method also, such an extension
can always be obtained by projecting boundary data on a finite dimensional space
spanned by boundary basis functions.

4 Discrete Maximum Principle and Positivity Certificates

Discrete positivity and the discrete maximum/minimum principle can be valid in two
different ways, algebraically or functionally. Let us begin our discussion by defining
algebraic discrete positivity and the algebraic discretemaximum/minimumprinciple.

Definition 2 We say that the extended linear system (17) satisfies

– algebraic weak discrete positivity, if data �f , �g ≥ 0 implies a solution �u ≥ 0 (resp.
algebraic strong discrete positivity, if either (�u, �g) = 0 or �u > 0 is implied),

– the algebraic weak discrete maximum principle, if data �f ≤ 0 implies that a non-
negative maximal component of (�u, �g) already occurs in �g (resp. the algebraic
strong discrete maximum principle, if it is implied that either all components of
(�u, �g) are identical or a non-negative maximal component of (�u, �g) occurs only
in �g),
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or equivalently the algebraic weak discrete minimum principle, i.e. data �f ≥ 0
implies that a non-positive minimal value of (�u, �g) already occurs in �g (resp. the
algebraic strong discrete minimum, if it is implied that either all components of
(�u, �g) are identical or a non-positive minimal component of (�u, �g) occurs only
in �g)
The following discrete analogue of Lemma 2 allows to restrict our attention to

algebraic discrete positivity.

Lemma 3 If the matrix in (17) has non-negative row sums and M ≥ 0, then alge-
braic weak (resp. strong) discrete positivity implies the algebraic weak (resp. strong)
discrete maximum principle.

Proof Let (17) satisfy algebraic weak positivity, let �f ≤ 0, and assume that the
maximal value M in a component of �g is non-negative. Then

A(M�1 − �u) + A∂(M�1 − �g) ≥ −A�u − A∂ �g = −M �f ≥ 0 (18)

due to non-negative row sums A�1 + A∂�1 ≥ 0 and non-negativityM ≥ 0, and M�1 −
�g ≥ 0. Thus, by algebraic weak positivity of (17) we have M�1 − �u ≥ 0 and hence
�u ≤ M�1, i.e. a non-negative maximal component of (�u, �g) already occurs in �g. In
case of algebraic strong positivity, we obtain in the last step of the former proof
either (M�1 − �u, M�1 − �g) = 0 or M�1 − �u > 0, i.e. either all components of (�u, �g)

are identical with M or �u < M�1 so that a non-negative maximal component of (�u, �g)

occurs only in �g.
The following Lemma allows to prove algebraic weak (resp. strong) positivity

and hence the algebraic weak (resp. strong) discrete maximum principle for several
Galerkin methods, e.g. piecewise linear FEM on simplices under the interior edge
condition.

Lemma 4 If the matrix in (17) has non-negative row sums, if A is a non-singular
M-matrix,A∂ ≤ 0 andM ≥ 0, then algebraic weak discrete positivity holds. If more-
over, at least one-row sum is positive,A is irreducible andM is surjective, then even
algebraic strong discrete positivity holds.

Proof By [13], A is a non-singular M-matrix iff A−1 exists and is non-negative.

Therefore, the matrix in (17) hat the inverse

(
A−1 −A−1A∂

0 I

)

, which is non-negative

due toA∂ ≤ 0.Moreover, under the additional assumptions,A is an irreducibly diag-
onally dominant real square matrix with strictly positive diagonal and non-positive
off-diagonal entries, and thus A−1 > 0 by [14].

If the stiffness matrix A of the linear system (13) does not have a non-negative
inverse A−1, then algebraic (weak) positivity is not valid. In fact, if A−1 has an
element a−1

i j < 0, then for �g := �0 the j th component of M �f ≥ 0 can be chosen so

large that �u = A−1M �f has a negative i th component. This is the case for Bernstein
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dual Petrov–Galerkin method by Example 3 and Remark 2. Yet, on the one hand, for
some data, it is still possible to obtain a Bernstein certificate of non-negativity (resp.
positivity) for the approximate solution.

Definition 3 For data �f and �g ≥ 0, we say that the extended linear system (17)
allows a Bernstein certificate of non-negativity for the approximate solution u given
by (12), if �u ≥ 0 holds (resp. a Bernstein certificate of positivity, if additionally �u �= 0
holds).

On the other hand, instead of algebraic weak discrete positivity �u ≥ 0 it may be
possible to conclude merely functional weak discrete positivity, where the weaker
conclusion u ≥ 0 for the approximate solution (12) with Bernstein coefficients �u is
drawn.

Definition 4 We say that the extended linear system (17) satisfies

– algebraic-functional weak discrete positivity, if data �f , �g ≥ 0 implies u ≥ 0 for
the approximate solution (12) (resp. algebraic-functional strong discrete positivity,
if either u = 0 or u > 0 is implied).

– functional-functional weak discrete positivity, if data f, g ≥ 0 implies u ≥ 0 for
the approximate solution (12) (resp. functional-functional strong discrete positiv-
ity, if either u = 0 or u > 0 is implied).

Note that in this double notation, the first point in Definition 2 would be algebraic-
algebraic discrete positivity (while for functional-algebraic weak discrete positivity
the weakest conditions f, g ≥ 0 would need to imply the strongest condition �u ≥ 0).
It is not astonishing that many spectral methods and particularly the Bernstein dual
Petrov–Galerkin method do not satisfy algebraic discrete positivity, because signs of
the coefficients 〈 f, �i ◦ T 〉 do not say much about non-negativity resp. positivity of
the function f , as the test functions�i itself are sign-changing. Therefore, functional
discrete positivity is more important, however, also more difficult to verify, because
the convex coneof non-negative functions is not finitely generated.Toclarify,whether
functional weak (resp. strong) positivity is valid, or for which data we can provide
a Bernstein certificate of non-negativity (resp. positivity), let us apply the general
theory of convex cones.

Definition 5 A subset K ⊂ X of a real vector space X is called

– a cone, if x ∈ K implies r x ∈ K for every r ≥ 0,
– convex, if x, y ∈ K imply λx + (1 − λ)y ∈ K for every λ ∈ [0, 1].

Thus, a convex cone K ⊂ X is a subset such that ax + by ∈ K for every linear
combination with non-negative coefficients a, b ≥ 0. If X is a Banach space, then a
convex cone K is called closed if it is closed w.r.t. norm topology. For example, {�u ∈
R

n | �u ≥ 0} is a closed convex cone in R
n , and the subset {u ∈ H 1(�) | u ≥ 0 a.e.}

is a closed convex cone in H 1(�).

Definition 6 The polar cone of a convex cone K ⊂ X in a real Banach space is the
subset Ko := { f ∈ X∗ | ∀x ∈ K : 〈 f, x〉 ≤ 0} of the dual space X∗.
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The polar of a convex cone is automatically closed in X∗, and for a closed convex
cone K ⊂ X in a reflexive Banach space X ∼= X∗∗ the bipolar theorem (Ko)o = K
holds. This fact allows the following characterization of data b such that the solution
u of Au = b lies in K .

Theorem 2 Let K ⊂ X be a closed convex cone in a reflexive Banach space X, and
let A : X → X∗ a bijective continuous linear map. Then the image A(K ) is a closed
convex cone in X∗, and with the polar cone P := (A(K ))o ⊂ X∗∗ = X of A(K ) the
following characterization holds:

The unique solution u ∈ X of Au = b satisfies u ∈ K iff b ∈ Po.

Proof Eventually, A(K ) is a convex cone, and by the open mapping / closed graph
theorem the image A(K ) is closed. By the bipolar theorem, b ∈ Po is equivalent
to b ∈ ((A(K ))o)o = A(K ), and thus Po � b = Au is equivalent to u ∈ K by the
uniqueness of solutions.

While the former using the bipolar theorem is more formal, the Theorem shows
that those data b, for which u ∈ K can be concluded, form a closed convex cone
(namely Po). As a consequence, the following results about positivity certificates
and functional discrete positivity are valid.

Corollary 1 Precisely for data �f and �g ≥ 0 satisfying A−1M �f − A−1A∂ �g ≥ 0
(resp. additionally a strict inequality > 0 in at least one component) a Bernstein
certificate of non-negativity (resp. positivity) for the approximate solution can be
provided.

Proof Let K := {
(�u

�g
)

| �u ≥ 0, �g ≥ 0}, then for �g ≥ 0 we have

(
M �f
�g

)

∈ Po =
(
A A∂

0 I

)

(K ) iff A−1M �f − A−1A∂ �g ≥ 0 (and if additionally a strict inequality > 0

holds in at least one component, then �u �= 0 and thus the approximate solution u is
positive).

Although this precise characterization involves the inverse, the inequalities in
Corollary 1 define a convex cone, which can be practically used to verify positivity
of an approximate solution without solving the linear system (17).

Example 4 In the special case of Poisson’s problem (1) on the unit cube (0, 1)N

with homogeneous Dirichlet boundary conditions, N = 2, D = (6, 6), and with
the matrices A, B ∈ R

5,5 provided in Example 3, the stiffness matrix is given by
A = A ⊗ B + B ⊗ A ∈ R

25,25. Its inverse (for better readability scaled and rounded)
100A−1 reads as
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and obviously is not non-negative. The mass matrixM ≥ 0 is given by the extension
of B ⊗ B to a (25 × 49)-matrix containing additionally the values of

∫ 1
0 Sj (x)�i (x)

dx for 1 ≤ i ≤ D − 1, j = 0, D, and again A−1M ∈ R
25×49 is not non-negative.

Thus, by Corollary 1 for Poisson’s problem (1) on the unit cube (0, 1)2 with boundary
data g = 0, a Bernstein certificate of non-negativity for the approximate solution u
can be provided for r.h.s. f with Bernstein coefficients �f in the cone C given by
inequalitiesA−1M �f ≥ 0. Due tomissing non-negativity ofA−1M, the cone { �f | �f ≥
0} is not a subset ofC , andwhile e.g.R25+24 � �f = (1, 0, . . . , 0)T /∈ C , theBernstein
coefficients R25+24 � �f = (1, . . . , 1, 0, . . . , 0)T satisfy A−1M �f ≥ 0 and thus lie in
C .Hence, �f = (1, . . . , 1, 0, . . . , 0)T (and �g = 0) allowaBernstein certificate of non-
negativity for the approximate solution u, precisely the (scaled)Bernstein coefficients
of u are given by

10�u = (0.41, 0.67, 0.76, 0.71, 0.57, 0.67, 1.15, 1.29, 1.23, 0.87, 0.76, 1.29, 1.45, 1.41, 1.04, 0.71, 1.23, 1.41, 1.32, 0.91, 0.57, 0.87, 1.04, 0.91, 0.97)T .

Of course, it would be nice to have more simple inequalities for f̂ (and ĝ ≥ 0)
or equivalently more simple closed convex cones, which guarantee a certificate of
non-negativity �u ≥ 0. Obtaining such simplification strongly depends on the chosen
method and will be a task for a forthcoming paper about the Bernstein dual Petrov–
Galerkin method.

Note that the cone K = {
(�u

�g
)

| �u ≥ 0, �g ≥ 0} = cone({�e j | 0 ≤ j ≤ D}) in the

former proof is finitely generated by the unit vectors. This is not the case in the next
Corollary characterizing functional weak positivity, what makes it more difficult to
apply the Corollary.

Corollary 2 Denote by K := {
(�u

�g
)

| ∀x ∈ � : ∑

j=0,D
g j S j (T (x)) +

D−1∑

j=1
u j S j (T (x))

≥ 0} the convex cone of Bernstein coefficients of non-negative Bernstein polyno-
mials of degree D, then algebraic-functional weak discrete positivity holds iff the
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matrix

(
A−1M −A−1A∂

0 I

)

maps the convex cone C1 := {
( �f

�g
)

| �f , �g ≥ 0} into K ,

and functional-functional weak discrete positivity holds iff the convex cone

C2 := {
( �f

�g
)

| ∀x ∈ � :
∑

j=0,D

g j S j (T (x)) ≥ 0,
D∑

j=0

f j S j (T (x)) ≥ 0}

is mapped into K .

Similarly, algebraic-functional or functional-functional strong discrete positivity
can be characterized, using cones K without zero K \ {0} or the pointed interior cone
o
K ∪ {0}. Hereby, in the infinite-dimensional case it is important to work in H 1(�)

or a stronger space, because else even the standard cone does not have a non-empty
interior.

Remark 4 While the convex cone {u ∈ L2(�) | u ≥ 0 a.e.} is closed in L2(�), it
has no interior points. In fact, a function u ∈ L2(�) satisfying u > 0 a.e. and u < M
a.e. on Bε0(x0) can be perturbed by subtracting M1Bε(x0) for sufficiently small ε <

ε0. The resulting function u − M1Bε(x0) is negative on Bε(x0), although the norm
‖M1Bε(x0)‖L2 = M Vol(Bε(x0)) is arbitrarily small as ε ↘ 0.

Let us conclude this section with a discussion of algebraic-functional weak dis-
crete positivity in our main example.

Example 5 In the special case of Poisson’s problem (1) on the unit cube (0, 1)N with
homogeneous Dirichlet boundary conditions, N = 2, D = (6, 6), already discussed

Fig. 1 The 25 approximate solutions of Poisson’s problem (1) on the unit cube (0, 1)2 obtained
by Bernstein dual Petrov–Galerkin method for D = (6, 6) and Bernstein polynomials f = Si ,
1 ≤ i ≤ D − 1, vanishing on ∂(0, 1)2 as r.h.s
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in Examples 3 and 4, Fig. 1 shows the 25 approximate solutions ui to those Bernstein
polynomials f = Si , 1 ≤ i ≤ D − 1 as r.h.s. which vanish on ∂(0, 1)N , i.e. those
corresponding to �g = 0 and unit vectors �f = �ei . As not all of these approximate
solutions are non-negative, the cone C1 from Corollary (2) is not mapped into K , i.e.
algebraic-functional weak discrete positivity (and thus also the stronger functional-
functional weak discrete positivity) does not hold for the Bernstein dual Petrov–
Galerkin method. However, as merely the functions u(1,2), u(2,1), u(1,3), u(3,1), u(1,4),
u(4,1), u(2,5), u(5,2) and u(3,3) become negative, we can guarantee non-negativity of
approximate solutions u to r.h.s. having Bernstein coefficients �f with vanishing
components at indices (1, 2), (2, 1), (1, 3), (3, 1), (1, 4), (4, 1), (2, 5), (5, 2), (3, 3),
even although the Bernstein coefficients �u given by the columns of the matrix A in
Example 4 are not non-negative for other indices, too.

5 Conclusion

In this article, we have completely characterized those data for which a Bernstein cer-
tificate of non-negativity (resp. positivity) can be given for the approximate solution
of an elliptic linear second-order PDEs in divergence formwhen usingBernstein dual
Petrov–Galerkin method. Further, we provided necessary and sufficient conditions
for the validity of algebraic-functional or functional-functional discrete positivity,
or equivalently for validity of the corresponding discrete maximum principles. Our
methods can be directly transferred to other spectral methods that use other non-
negative basis functions and their dual functions instead of Bernstein polynomials.
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