
Stable Second-Order Explicit
Runge-Kutta Finite Difference Time
Domain Formulations for Modeling
Graphene Nano-Material Structures

Omar Ramadan

Abstract In this paper, stable second-order Runge-Kutta finite difference time
domain (RK-FDTD) formulations are introduced for modeling graphene nano-
material structures. In this respect, a differencing scheme in which the electric field
and the associated current density are collocated in time and space is used for incor-
porating graphene’s dispersion into the FDTD algorithm. The stability of the for-
mulations is studied by using the root-locus method, and it is shown that the given
formulations maintain the conventional Courant-Friedrichs-Lewy (CFL) time-step
stability limit. The stability and the accuracy of the formulations are validated through
a numerical test that investigates the tunneling phenomena of electromagnetic wave
propagation through an infinite free-standing graphene layer.

Keywords Explicit finite difference time domain (FDTD) · Auxiliary differential
equation (ADE) · Root-locus stability analysis · Second-order Runge-Kutta (RK)
scheme · Graphene nano-material

1 Introduction

Graphene nano-material has attracted tremendous attention due to its exceptional
electrical, optical, and mechanical properties [1], and this increases the interest of
developing accurate and efficient numerical techniques for modeling graphene struc-
tures. In the last two decades, the finite difference time domain (FDTD) method [2],
which is known to be one of themost popular electromagnetic time domain numerical
techniques, has beenwidely used in graphene simulations [3–5]. In these approaches,
the auxiliary differential equation method is used for incorporating graphene’s dis-
persion into the FDTD algorithm.

In this paper, alternative formulations based on combining the second- order
Runge-Kutta scheme [6]with the FDTDalgorithmare introduced formodel graphene
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structures. In this respect, a differencing scheme in which the electric field and the
associated current density are collocated in time and space is used for incorporating
graphene’s dispersion into the FDTD algorithm. The stability of the formulations is
studied by using the root-locusmethod [7], and it is shown that the given formulations
maintain the conventional Courant-Friedrichs-Lewy (CFL) time-step stability limit.
The stability and accuracy of the formulations are validated through a numerical
test that investigates the tunneling phenomena of electromagnetic wave propagation
through an infinite free-standing graphene layer.

2 Formulations

At microwave and THz frequency regimes, the surface conductivity of graphene can
be written as [8]

σintra = σ0

jω + v
(1)

where v is the scattering rate, and σ0 = e2kBT
(

μc

kBT
+ 2 ln(e−μc/kBT + 1

)
/π�

2 is

the static conductivity, where −e is the electron charge, kB is Boltzmann’s constant,
T is the temperature, μc is the chemical potential, and � is the reduced Planck’s
constant. Considering a graphene layer of thickness Dg , and introducing the concept
of volumetric conductivity σv = σintra/Dg [9], the equations for the electric field
component Eη, (η = x , y, z), and the associated current density Jη can be written
as

ε0
∂Eη

∂t
= ∇ × H|η − 1

Dg
Jη (2)

∂ Jη

∂t
= σ0Eη − v Jη (3)

Letting the electric field and the associated current density be collocated in time and
space, (2) can be discretized as

ε0
δt

�t
Eη

∣∣n+ 1
2

rEx
= ∇̃ × H

∣∣n+ 1
2

ηrEη

− 1

Dg
μt Jη

∣∣n+ 1
2

rEx
(4)

where rEη is the spatial position of Eη, �t is the time step, �n = �n (n�t ) (� =
E , H , J ), δt is the centered temporal difference operator given by

δt u
q
α,β,γ = u

q+ 1
2

α,β,γ − u
q− 1

2
α,β,γ (5)
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where uqα,β,γ = u (q�t , α�x , β�x , γ�z), with q = {
n, n + 1

2

}
, α = {

i, i + 1
2

}
,

β = {
j, j + 1

2

}
, and γ = {

k, k + 1
2

}
, μt is the discrete averaging operator defined

as

μt u
q
α,β,γ = u

q+ 1
2

α,β,γ + u
q+ 1

2
α,β,γ

2
(6)

and, finally, ∇̃× is the discrete version of ∇× given by

∇̃× =
⎛
⎝
0 −δz δy
δz 0 −δx
−δy δx 0

⎞
⎠ (7)

where δη ,η ∈ {x, y, z}, is the centered spatial differenceoperator in theη-coordinate,
for instance, δx is defined at the (α, β, γ) grid position as

δxu
q
α,β,γ =

uq
α+ 1

2 ,β,γ
− uq

α− 1
2 ,β,γ

�x
(8)

with �x being the mesh size along the x-coordinate. Based on (4), the Eη electric
field component can be approximated at n + 1 time step as

En+1
ηrEη

= En
ηrEη

+ �t

ε0
∇̃ × H

∣∣n+ 1
2

ηrEη

− �t

2ε0Dg

(
J n+1
ηrEη

+ J n
ηrEη

)
(9)

By employing the general second-order RK [6] scheme to (3), J n+1
η can be approxi-

mated as ⎧⎨
⎩
K1 = �t f

(
n�t , J n

η

)
K2 = �t f

(
(n + λ1) �t , J n

η + λ2K1
)

J n+1
η = J n

η + a1K1 + a2K2

(10)

where f is obtained from the right-hand side of (3) as

f = σ0Eη − v Jη (11)

and ⎧⎨
⎩
a1 + a2 = 1
λ1a2 = 1

2
λ2a2 = 1

2

(12)

It is important to note that the approximation of (10) is of second-order accuracy, as
shown in the Appendix. Employing the midpoint integration rule [6], which is also
known as the modified Euler method, these constants can be obtained as
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a1 = 0, a2 = 1, andλ1 = λ2 = 1

2
(13)

Hence, J n+1
η can be re-arranged from (10) as

J n+1
η = J n

η + �t f

((
n + 1

2

)
�t , J

n
η + �t

2
f
(
n�t + J n

η

))
(14)

which can be written recursively at the rEη grid position as

J n+1
ηrEη

= b1 J
n
ηrEη

+ b2E
n
ηrEη

(15)

where b1 = 1 − ṽ + ṽ2

2 and b2 = σ0ṽ
(
1 − ṽ

2

)
with ṽ = v�t . For completeness, the

magnetic field component Hη is written in the FDTD form as [2]

H
n+ 1

2
ηrHη

= H
n− 1

2
ηrHη

− �t

μ0
∇̃ × E

∣∣n
ηrHη

(16)

In the following section, the stability analysis of the above formulations is investi-
gated by using the root-locus method [7].

3 Root-Locus Stability Analysis

Let the time-harmonic solution of the above field equations with the variables E , H ,
and J be given by

�n
α,β,γ = �0e

j(ωn�t−k̃xα�x−k̃yβ�y−k̃zγ�z) (17)

where j = √−1,�n
α,β,γ = �

(
n�t ,α�x , β�y, γ�z

)
,�0 is the complex amplitude

of the field �, and k̃η (η = x, y, z) is the wave number in the discrete mode along
the η-direction. Upon substituting (17) into (9), (14), and (16), the following system
can be obtained:

⎡
⎢⎢⎣

(Z − b1) I3 −b2I3 03
�t (Z+1)
2ε0Dg

I3 (Z − 1) I3
�tZ

1
2

ε0
C

03
�t
μ0
CT

(
Z 1

2 − Z− 1
2

)
I3

⎤
⎥⎥⎦

×
⎡
⎣

J0
E0

H0

⎤
⎦ = 0 (18)
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whereZ = e jω�t is the stability factor, 03 is a 3 × 3 null matrix, I3 is a 3 × 3 identity
matrix, and C contains the eigenvalues of the curl operator of Maxwell’s equations
given by

C =
⎛
⎝
0 δ̂z −δ̂y
−δ̂z 0 δ̂x
δ̂y −δ̂x 0

⎞
⎠ (19)

where δ̂η = j2 sin
(
kη�η/2

)
/�η . Equating the determinant of the coefficient matrix

of (18) to zero and taking sin
(̃
kη�η/2

) = 1, to account for theworst possible case, the
presented explicit RK-FDTD scheme will have the following stability polynomial:

(Z − 1

Z 1
2

)(Z − b1

Z 1
2

)2

[(Z − b1) (Z − 1)

+ b2�t

2ε0Dg
(Z + 1)

] (
SRK (Z)

)2 = 0 (20)

where SRK (Z) is given by

SRK (Z) = 4CN 2Z + (Z − 1)2

+ b2�t

2ε0Dg

(Z + 1) (Z − 1)

(Z − b1)
(21)

and CN is the Courant number defined as

CN = �t

�CFL
tmax

(22)

with�CFL
tmax

= 1/c0
√

�−2
x + �−2

y + �−2
z being the CFL time-step limit [2], and c0 =

1/
√

ε0μ0 being the speed of light in free space. Based on (20) and (21), a reduced
stability can be re-arranged from (21) as

1 + 4CN 2 Z
(Z − 1)2

1

ε̃RK
r (Z)

= 0 (23)

where ε̃RK
r (Z) is the numerical permittivity of the presented explicit RK-FDTD

scheme, which can be arranged as

ε̃RK
r (Z) = 1 + b2�t

2ε0Dg

(Z + 1)

(Z − 1) (Z − b1)
(24)

Based on the root-locus stability analysis [7], the maximum time step of the
presented RK-FDTD implementation

(
�RK

tmax

)
can be obtained from the fact that the

roots of (23)must lie inside or on the unit circle in theZ-plane, i.e., |Z| ≤ 1. To better
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Fig. 1 Root-locus of (23)
for the presented explicit
RK-FDTD implementation.
Graphene parameters are
taken as v = 2.0 THz,
μc = 1.0 eV, T = 300
Kelvin, and
d = � = c0/200 fmax, with
fmax = 10 THz

visualize this idea, consider a graphene layer with the following parameters: v = 2.0
THz, μc = 1.0 eV, T = 300 Kelvin, and let the graphene layer occupy one spatial
cell [10], i.e., Dg = �, where � = �x = �y = �z = c0/200 fmax with fmax = 10
THz. Figure1 shows the root-locus of (23), where the initial time step is taken to
satisfy �CFL

tmax
[11]. As can be seen from Fig. 1, the instability occurs at Z = −1.

Hence, by substituting Z = −1 into (23) together with (24) the following can be
obtained:

1 − CN 2 = 0 (25)

and this implies that CN is always unity for the presented RK-FDTD scheme and
independent from graphene parameters. Noting that CN = �t/�

CFL
tmax

, the time-step
constraint for the explicit RK-FDTD scheme

(
�RK

tmax

)
can be obtained from (25) as

�RK
tmax

= �CFL
tmax

(26)

Hence, the presented RK-FDTD scheme retains �CFL
t .

4 Numerical Stability and Accuracy Verification

In this section, the stability and accuracy of the presented explicit RK-FDTD scheme
are verified through a numerical test that investigates electromagnetic wave propa-
gation through an infinite free-standing graphene layer. For this purpose, an electro-
magnetic wave with Ez and Hy field components propagating in a one-dimensional
(1-D) domain along the x-direction is considered. The size of the simulation domain
is taken as 8000�x , where�x = c0/200 fmax and fmax = 10 THz. The convolutional
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perfectly matched layer (CPML) [12], with a thickness of 10 cells, is used to truncate
the computational domain. The graphene layer, with the same parameters used for
Fig. 1, occupies one spatial cell at grid point 4000. The simulation domain geometry
is shown in Fig. 2. The excitation is a Gaussian pulse with a time dependence of

g(t) = e−4π(t−td )
2/t2w (27)

where tw = 80�t and td = 6tw. The excitation source is located at point S, and the
observationpoint is located at pointO, as shown inFig. 2. The simulation is conducted
for the first 100 000 time steps. Figure3 shows the transmitted Ez field recorded at
the observation point O,

(
Etr
z (4020�x )

)
, computed by the presented explicit RK-

FDTD implementation with �t = �RK
tmax

= �CFL
tmax

. Clearly, Ez remains stable over
the complete simulation time and, therefore, the stability of the presented explicit
RK-FDTD implementation maintains the conventional time-step CFL constraint. It
must be noted that the simulation is also conducted with the presented explicit RK-
FDTD implementation for the first 1 × 106 time steps and no instability is observed.

Fig. 2 One-dimensional simulation domain geometry

Fig. 3 Transmitted electric
field at node 4020,
Etr
z (4020�x ) computed by

the presented explicit
RK-FDTD with
�t = �RK

tmax
= �CFL

tmax
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Fig. 4 Transmission
coefficient magnitude for a
graphene layer computed by
the presented explicit
RK-FDTD, and the
theoretical approaches

Finally, the accuracy of the presented explicit RK-FDTD implementations is stud-
ied. For this purpose, the transmission coefficient (T ) of the graphene layer is inves-
tigated and computed as

T (ω) = Etr
z (ω)

Einc
z (ω)

(28)

where Etr
z (ω) is the frequency domain of the transmitted field Etr

z , and Einc
z (ω) is

frequencydomainof the incident field Einc
z recorded at the observationpointO,which

is obtained in the second simulation by replacing the graphene layer with vacuum.
Figure4 shows themagnitude of the transmission coefficient for the presented explicit
RK-FDTD scheme with�t = �RK

tmax
= �CFL

tmax
. Figure4 shows also the magnitude of

the theoretical transmission coefficient (Tth) [8]. Clearly, both schemes give high
accuracy as the theoretical results.

5 Conclusions

In this paper, stable and accurate Runge-Kutta FDTD formulations are presented for
graphene simulations. It is shown that the presented formulations not only retain the
standard CFL time-step stability limit but also exhibit high accuracy as compared
with the theoretical results.
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6 Appendix: Runge-Kutta Local Truncation Error

Considering K2 = �t f
(
(n + λ1) �t , J n

η + λ2K1
)
given in (10), and applying the

multivariate Taylor series expansion, the following can be obtained:

K2 = �t
[
f
(
n�t + J n

η

) + λ1�t f
′
t

(
n�, J n

η

)

+ λ2K1 f
′
Jη

(
n�, J n

η

) + O
(
�2

t ,K2
1

)]
(29)

where f ′
t and f ′

Jη
denote the derivative of f with respect to time and Jη, respectively.

Noting that K1 = �t f
(
n�t + J n

η

) + O (�t ), and using (29), J n+1
η in (10) can be

arranged as

J n+1
η = J n

η + (a1 + a2)�t f
(
n�t + J n

η

) + a2�
2
t

× [
λ1 f

′
t

(
n�, J n

η

) + λ2 f
(
n�, J n

η

)
f ′
Jx

(
n�, J n

η

)]

+ O
(
�3

t

)
(30)

Recalling that J n+1
η can also be written by using the Taylor series expansion as

J n+1
η = J n

η + �t J
′
ηt

+ �2
t

2
J ′′
ηt t

+ O
(
�3

t

)
(31)

and noting that J ′
ηt

= f and J ′′
ηt t

= f ′
t + f ′

Jη
f , (31) can be arranged as

J n+1
η = J n

η + �t f
(
n�t + J n

η

) + �2
t

2

×
[
f ′
t

(
n�, J n

η

) + f
(
n�, J n

η

)
f ′
Jη

(
n�, J n

η

)]

+ O
(
�3

t

)
(32)

Comparing (30) with (32), it can be easily concluded that the explicit RK-FDTD
approximation of (10) is of second-order accuracy if

a1 + a2 = 1, andλ1a2 = λ2a2 = 1

2
(33)
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