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Generalized Neighborhood Systems )
Approach for Information Retrieval oo
Systems

A. S. Salama and Radwan Abu Gdairi

Abstract We proposed in this paper a new decision information retrieval model
using rough sets that are generated by general binary relations. This model depends on
generalized rough sets to deal with the relevance among users’ queries and documents
of the information retrieval systems. The research problem of this paper is how we
close the interesting categories to the relevant terms of the interested categories. In
the classical information retrieval approach, there are only two cases namely relevant
documents and irrelevant documents. In the traditional rough set theory, document
stream is separated to some regions—positive, boundary, and the negative region.
In this paper, we used generalized membership relations to more classifications on
information retrieval documents that enable to divide the document stream into 16
different regions.

Keywords Information retrieval - Neighborhood systems - Rough sets *
Document classification -+ Memberships relations

MSC 54A05 - 54B05 - 54D35 - 03B70

1 Introduction

Information retrieval problem happens after the board information does not exist. In
this paper, we are trading with classifying the most revealing portion of data on a
group of documents with the intention of obtaining the greatest outcome on a latter
uncertain bunching phase [1-4]. The aim is to find comparisons between the docu-
ments and a position board, and to find relations related to a non-literal nose. We
suggest putting on the famous entropy system and then displaying the latter dissimilar
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actions to the correct selection of the notice data [5, 6]. This process carries the main
quantity of information inside the minimum quantity of data. Spread over an exact
collection process for a collection of words springs additional information to distin-
guish and distinct the forms afterward using the entropy allowance. This revenues
significant outcome on the dispensation time and the right uncertain gathering of the
documents group [7-20].

Information retrieval (IR) applications can barely be assessed based on the
definitive test-gathering pattern; consequently, there is a need for new estimation
approaches. The evaluation process of IR includes user modeling, criteria, measures,
methodology, and new trends in IR evaluation [21, 22, 24].

There are many different definitions of IR measures, but some of them are in a
very special way, essentially the definition of a new metric must consist of some
basic stages:

e Beginning from the selected norm, suppose a fixed user attitude (e.g., interception
after a confirmed number of relevant documents).

e Define the objective (e.g., the least number of documents visible is the better).

e Know the basic metric that conforms to the preferences (e.g., accuracy).

e Moreover, one can suppose a collection of users and count a metric mean of these
metric values of this collection (e.g., for middle accuracy, it is presumed that at
every relevant document, the same number of users discontinue).

e Finally, for bringing the same result for a set of queries or meetings, a gathering
technique has to be picked (e.g., mathematical average).

2 Rough Set Theory

In this section, we give some facts about Pawlak rough sets that are needed in
this paper. In addition, we introduce the generalized neighborhood systems and we
generate some approximations that are used in information retrieval applications.

Pawlak in [23] defined the approximation space App = (U, R), where U is a
non-empty finite set and R is an equivalence binary relation on U. The lower and
upper approximations of a subset A C U are defined respectively as follows:

R(A) ={x €U |lxlz € A},

R(A)={x e Ul[x]g N A # 7).

The subsets [x]z form a partition of the universe U for all x € U. The elements
surely belong to A are called the positive region of A and are denoted by POS(A) =
R(A). The elements surely not belong to A are called the negative region of A and
are denoted by NEG(A) = U — R(A). The elements that possibly belong to A are
called the boundary region and are denoted by B(A) = R(A) — R(A).
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The accuracy measure of a subset A € U in the approximation space App =
(U, R) is the division of the number of elements in the positive region of A by the
number of elements in the upper approximation of A. Then the accuracy measure by
symbols is given as follows:

ar(A) = "Tg(SA()Al)‘, where |R(A)| # 0, |A| s the cardinality of A.

Another accuracy measure of approximations in Pawlak approximation spaces is
defined for any subset A C U as follows:

|B(A)|
-

pr(A) =1—

In this definition, it is obvious that 0 < pgr(A) < 1. Moreover, if pg(A) = 1 then
A is called R-definable (or R-exact) set. Otherwise, it is called R-rough.

We believe that the second definition of accuracy is accurate than Pawlak definition
since the second considers the negative region and Pawlak used the positive region.
For representative, consider the following example.

Example 2.1 Let U={d1,d2,d3,d4,d5} be the universe of discourse and
R ={(d1,d1), (d1,d4), (d2,d2), (d2,d3), (d3, d2), (d3,d3), (d4,d1), (d4,d4),
(d5, d5)} is an equivalence relation on U . The equivalence classes of R are given by:
[d1]g = [d4]g = {d]1, d4}, [d2]g = [d3]r = {d2,d3} and [d5]r = {d5}. Hence,
the partition induced by R is U/R = {{d1, d4}, {d2, d3}, {d5}}. Let A = {d2, d4}
be any subset of U. Thus R(A) = @ and R(A) = {d1,d2,d3, d4}. So we have
ag(A) = 0 and pgr(A) = 1/5. Obviously, pr(A) is accurate than ag(A) since
the element of the set N(A) = {d5} is surely does not belong to A according to
R. Further, let B = {d1,d5}. So R(B) = {d5} and f(B) = {d1, d4, d5}. Hence
ar(B) = 1/3 and pgr(B) = 3/5. Clearly, pgr(B) is accurate than o g (B) since the
elements of the set N(B) = {d2, d3} are surely do not belong to B with respect
to R. Also, the element of R(B) = {d5} is surely belongs to B according to R.
Consequently, we can decide with full certainty that d5 € B and d2,d3 ¢ B.
Accordingly, the accuracy should be equal to 3/5.

Membership functions are another approach to approximate concepts in rough
set theory. For any subset A C U, for all x € U, Pawlak defined the membership

function puf (x) : U — [0, 1] as follows:

uRx) = % where |[x]g| # 0, |[x]g] is the cardinality of [x]g.

New rough membership functions are defined when the general binary relations
are used instead of equivalence relations in approximations as follows:

For any subset A C U, and for all x € U, we define the general membership
function & (x) : U — [0, 1] as follows:

puRx) = ‘)“S?Rf?‘ or uf(x) = 'ﬁim', where xR = {y e U | xRy} and Rx =
{y € UlyRx}.
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3 Generalized Rough Set Theory

Now we can generalize the equivalence relation to be non-equivalence by dropping
one of the three conditions on it (reflexively, symmetry, and transitivity). Suppose
that U is a non-empty finite set and let R be an arbitrary binary relation on U, then
the pair GApp = (U, R) is called a generalized approximation space.

For any generalized approximation space GApp = (U, R) the right neighbor-
hood and the left neighborhood of an element x € U are defined as follows:

N.(x)={yeU | xRy}, Ni(x) ={y € U|yRx}.

The class of all right neighborhoods of x € U is called the right neighborhood
system and is denoted by N S, (x) = {N,(x) : x € U}. Also, the class of all left neigh-
borhoods of x € U is called the left neighborhood system and is denoted by N S; (x) =
{N;(x) : x € U}. The union of the right and left neighborhoods of x € U is called
mixed neighborhood system and is given by N §,,(x) = {N,(x) UN;(x) : x € U}.
The mixed neighborhood of an element x € U is denoted by N, (x) such that
Ny (x) € NS, (x).

Example 3.1 Let U = {d1,d2,d3,d4, d>5} be the universe of discourse and let
R ={(1,dl), (d1,d2), (d2,d3), (d2,d5), (d4, d3), (d4, d4), (d5, d2), (d5, d4),
(d5,d5)} be any binary general relation defined on U. Then we have
N,(dl) = {d1,d2}, N.(d2) = {d3,d5}, N,(d3) = @, N,(d4) = {d3,d4},
N.(d5) = {d2,d4,d5}, NS,(dl) = {{d1,d2}}, NS,(d2) = {{d3,d5}},
NS, (d3) = {#}, NS, (d4) = {{d3, d4}}, and NS, (d5) = {{d2, d4, d5}}. Also we
have N;(d1) = {d1}, N;(d2) = {d1, d5}, N;(d3) = {d2,d4}, N;,(d4) = {d4, d5},
N;(d5) = {d2,d5}, NS;(dl) = {{d1}}, NS;(d2) = {{d1,d5}},NS;(d3) =
{{d2,d4}},NS;(d4) = {{d4,d5}}, and NS;(d5) = {{d2,d5}}. Then the
mixed neighborhood systems are given by NS, (dl) = {{d1,d2},{d1}},
NS, (d2) = {{d3, d5}, {d1, d5}}, NS, (d3) = {0, {d2, d4}},

NS, (d4) = {{d3, d4}, {d4, d5}}, and N S,,(d5) = {{d2, d4, d5}, {d2, d5}}.
More generalizations can be made using the right and the left neighborhoods of
an element x € U as follows:

N,- Neighborhood of x € U is defined by N, (x) = Nyen, () Nr (¥).
M- Neighborhood of x € U is defined by M;(x) = Nyen, () Ni1(3)-
N,;- Neighborhood of x € U is defined by N,;(x) = N,(x) N N;(x).
U,;- Neighborhood of x € U is defined by U,;(x) = N, (x) U N;(x).
N1y~ Neighborhood of x € U is defined by Ny, (x) = N, (x) NN (x).
Uy~ Neighborhood of x € U is defined by Uy, (x) = N, (x) U N;(x).

4 Generalized Neighborhood Systems

We develop a new series of definitions of the lower and upper approximation approx-
imations according to the general neighborhood systems. These new definitions are
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based on right, left, and mixed neighborhood systems. In addition, we give suitable
definitions of the accuracy measures of the given approximations.

For any subset A C U, in the generalized approximation space, GApp = (U, R)

we have.

Right lower approximation of A is defined by

R (A)=U{ N:(X)|N:(x) €A, VxeU}.

Right upper approximation of A is defined by
Re(A)=U{N;(x)IN;(x)NA # &, ¥x € U}.

Left lower approximation of A is defined by
Ry(A)=U{ Ni(x)INi(x)SA, ¥xeU}.

Left upper approximation of A is defined by
Ri(A)=U{ N;(x)|N;(x)NA#£S, Vx € U}.

Mixed lower approximation of A is defined by
Ry(A) =U{ Np(x)|Nn(x) € A, Vx € U}
Mixed upper approximation of A is defined by
Rm(A) = U{ Np(x) [INn(x) NA #0, V xeU}.
N,— lower approximation of A is defined by
Rer(A) = U0, (0)| N, (1) € A, Vx € UL

N, — upper approximation of A is defined by
Rar(A) = U{N,(x)| N, (x)NA #0, Vx e U
M;— lower approximation of A is defined by
Rey(A) = UiNy(x)| Ny (x) S A, ¥ x € UL,

M;— upper approximation of A is defined by
Rai(A) = U{n(x)|[ Ny (x) NA # 0, Vx e Ul
N,;— lower approximation of A is defined by
Rea(A) = U[N(0)| Ny (x) S A, ¥ x € UL,
N,;— upper approximation of A is defined by

R (A) = U{N,1(x)|N(x) N A # @, Vx € U}..
N1y— lower approximation of A is defined by
Ry (A) = U{Npy (x)| Ny (x) S A, Vx € U}
N1y— upper approximation of A is defined by
Ry (A) = UfNgn ()] Ny (x) NA #6, ¥V x e UL
U(-1y— lower approximation of A is defined by
R (A) = U{Upy ()| Uy (x) S A, Vx e U}
U1y— upper approximation of A is defined

Ru (A) = UfUgn (0| Uppy (1) NA #0,V x € U}

For any subset A C U, in the generalized approximation space, GApp = (U, R)

we define the boundary, positive and negative regions of the subset A as follows:

The boundary, positive and negative regions of a subset A using right neigh-
borhood are defined respectively by B(A) = R:(A) — R.(A), POS,(A) =
R.(A), NEGH(A) = U — R(A).
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The boundary, positive and negative regions of a subset A using left neigh-
borhood are defined respectively by Bj(A) = R (A) — Ry(A), POSi(A) =
Ry(A),NEGI(A) = U — Ry(A).

The boundary, positive and negative regions of a subset A using mixed neigh-
borhood are defined respectively by B, (A) = Rum(A) — R (A), POS,(A) =
Rpn(A), NEG(A) = U — R (A).

The boundary, positive and negative regions of a subset A using N,—neighbor-
hood are defined respectively by Bn (A) = ﬁm, (A) — R (A), POSAH, (A) =
R, (A), NEGp, (A) = U — R, (A).

The boundary, positive and negative regions of a subset A using N;—neighborhood
are defined respectively by Bn,(A) = ﬁm, (A) — R, (A), POSn (A) = Em (A),
NEGn, (A) = U — Rn,(A).

The boundary, positive and negative regions of a subset A using N,;- neighborhood
are defined respectively by Bn, (A) = ﬁm (A)—R,(A),POSH,(A) = R, (A),
NEGn,(A) =U —Rn,(A).

The boundary, positive and negative regions of a subset A using U,;- neighborhood
are defined respectively by By, (A) = ﬁurl (A)—R,,(A),POS,,(A) =R, (A),
NEGy,(A) =U — Ry, (A).

The boundary, positive and negative regions of a subset A using N,- neighbor-
hood are defined respectively by B, (A) = Rn oy (A _Eﬂm) (A),POSn,, (A) =
Ro,, (A). NEGq,, (A) = U — Ry, (A).

The boundary, positive and negative regions of a subset A using U,;- neighbor-
hood are defined respectively by By, (A) = Ry oy (A) _EUM) (A),POSy,,, (A) =
Ry,,(A), NEGy,, (A) =U — Ry, (A).

For any subset A C U, in the generalized approximation space, GApp = (U, R)

the accuracy measures are defined as follows:

or(A) =1— |B:(A)]

[U]
oi(A) =1 — B,
—_ [Bin (A)
om(A) =1— |‘T,|
_ Br, (A)
Gﬁ,-(A) =1- | 0] | )
_ Bp, (A)
o (A) =1 - |IIT|’|
_ Br,, (A)
on,(A)=1- W,
By, (A)
GUrl(A) =1- ‘ ‘{JI 7‘
Bn,,) (A)
Ony (A) =1- ‘ 0] ‘,
By, (A)
OUy A)=1- o

In all the above measures we have that: 0 < oy(A) < 1, for V €

{r. L m, 0, 0y, Ny Upr, Nty Ugy }. Moreover, if oy (A) = 1 then A is the exact
set otherwise, it is called rough.
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The following results are related to the 16 lower and upper approximations above.

Theorem 4.1 For any subset A C U, in the generalized approximation space,
GApp = (U, R) we have.

) Rn(A) =R(A) UR(A),
(i) Rm(A) = Ri(A) NRI(A),
(i) Bm(A) = B(A) N Bi(A).

Proof Suppose an element X € (Er(A) UR, (A)) thenx € R.(A) vV xe R;(A).

Then, N;(x) € A Vv Ni(X) € A then 3 N,,(x), such that N,,(x) C A, then
x € R, (A). then we have R (A) = R,.(A) U R (A) . On the other hand, let
X € Rm(A) , then there are two cases:

First case: x € A yields x € ﬁr(A) AN XE€E ﬁl (A) ,hence x € (ﬁr(A) N ﬁl (A)).

Second case: x € U — A. Then x € Rm(A) s then V Ni (x), Nim(x) N A # . Hence,
(NN NA£EDHDA(NIXNA #£P), thenx € R,(A) A x € Ri(A) . Then we
have, x € (R:(A) NR;(A)) . Suppose that x € (R;(A) NR;(A)) , then we have.

I-x € A yieldtox € Rn(A). _

2-x € U — A. Then x € (R:(A)NRi(A)) , then (N;(x) NA #£ @) A
(Ni(x) VA # @), then ¥ Niy(x), Np(p) NA # @, hence x € Rn(A) . Hence,
Rum(A) = R:(A) NRy(A) . Finally, let x € Ry (A), hence x € (Rm(A) — R, (A)) .
thenx € Rpn(A) A x ¢ R, (A) . Since Rm(A) C R (A) NRi(A) and R, (A) 2
R.(A) UR,(A) . Then we have x € (Ri(A) NRi(A)) Ax ¢ (R.(A) UR,(A))

= (x e Re(A) A x € RI(A)) A (x ¢ R(A) A x & Ry(A))

= (xeR(A) A xER(A))A(xeRIA) A x¢&Ri(A)

= x € (Ri(A) — R, (A)) Ax € (Ri(A) — Ry(A))

= x € R(A) A x € Ri(A) = x € (Re(A) NRi(A)).

Therefore, R (A) € R:.(A) NRi(A).

Proposition 4.1 For any two subsets A, B C U, in the generalized approximation
space, GApp = (U, R) and for V € {r, Lm, Ny, O, Ny Upgy Ny, U(,,)}, we have

() Rg(A) C A.
(2) Ry(U)=U.

() Ry® =0.

(4) ACB= Ry(A) C Ry(B).
(5) Ry(ANB) C Ry(A) NRy(B).
(6) Ry(AUB) D Ry(A)URy(B).
(1) Ry(A) =U—Ry(U-A).
(8) ACRy(A).

9 Re(U)=U.

(10) Ry()=10. _

(1) ACB=Ry(A) C Ry(B).
(12) Ry(ANB) € Ry(A) NRy(B).
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(13) Rv(AUB) 2 Ry(A) URv(B).
(14) Ry(A) =U~Ry(U - A).
(15) Ry(A) S Rv(A).

Proof The proof of (1), (2), (3), (6), (7) and (8) follows directly from definitions.
(4) Let A € B and x € Ry(A) , then 3Ny (x) such that Ny(x) € A. So
x € Ry(A) € A € B . Thus we have x € B and there exist Ny (x) such that
Ny(x) € A € B. Hence x € Ry(B) and so Ry(A) € R,,(B) . Therefore, A C
B = Ry(A) € Ry(B).
(11)Let AC Bandx € ﬁv(A) , then we have.

(1) xeA =xeACB=eBCRyB)=xecRyB)

(2) xeU — A.Thenx € Ry(A) = ¥ Ny(x), Ny(x) N A # {J and since A C B
thus we have V Ny (x), Ny (x) N B # ¢ and hence we have

() xeB—A=xeB=xecRyB).

(b) xeU—B.SoV Ny(x), Ny(x) B # @ = x € Ry(B). Hence, by (1) and
(2), we have A C B = Ry (A) C Ry (B).

(5)Letx € Ry(ANB) = x € (ANB), 3 Ny(x), Ny(x) S (ANB) = x €A,
3 Ny(x),Ny(x) CA A xeB, 3 Ny(x), Ny(x) SB = xeRy(A)Ax €
Ry(B) = x € Ry(A) NRy(B).

(6) (ANB) € A= Rv(ANB) C Ry(A) and (ANB) € B = Ry(ANB) C
Rv(B).SoRv(ANB) C Ry(A) N Ry(B).

(12) A € (AUB)= Ry(A) € Ry(AUB)and B € (AUB) = Ry(B) C
Ry (AUB) . Hence Ry(AUB) D Ry(A) U Ry (B).

(13) Let x ¢ Ry(AUB), thenx ¢ (AUB) and x € (A UB)® 3Ny (x), Ny(p) N
(AUB) = #. So

X € (AB ﬂBC>, 3 Ny(x), (Ny(x)NA)U(Ny(x)NA)=¢.Thus.

xeU—AINy(x), N() NA=9% A xeBE, INy(x), NNx)NB=0.

= x ¢ Ry(A) A x ¢ Ry(B) = x ¢ (Rv(A)URy(B)). Hence, we have
Ry(AUB) D Ryv(A) URy(B).

(7) Let x € Ry(A) <=x € A INyXx), Nyx) € A < x €
C _
(AC) . 3 Ny, Ny) N A8 = ¢ — x ¢ RV<AG) — x €

(U=Ry(U = 4)). Hence Ry (A) = (Ry (A“))E
— C
(14) Putting U — A for A in (7) we have Ry (A) = (Ev (AB)) .

(15) Obviously, by (1) and (7) we get Ry (A) C Ry (A) .
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Remark 4.1 Forany twosubsets A, B C U, in the generalized approximation space,
GApp = (U,R) and for V € {r, L m, Ny, N, Ny Upr, Ny U<,.l)} the following
properties are not necessarily true:

)
2)
3)
“4)
&)
(6)
(7
®)
9
(10)

Ry(A) = Ry(Ry(A)).

Ry(A) = Ry (Ry(A)).

A C Ry(Ry(A)).

Ry(A) € Ry (Ev (A))'
Ry(ANB) = Rg(A) NRy(B).
Rv(A) = Ry(Rv(A)).

Ry(A) = Ry (Rv(A)).

A D Ry (Ry(A)).

Rv(A) 2 Ry(Rv(A)).
Rv(AUB) = Ry(A) U Ry (B).

The following example illustrates the meaning of Remark 1 for V. = m.

Example 4.1 by recalling Example 2, we have.

(D
2)
3)
4)
(&)

(6)

)

®)

(©))

(10)

For the subset A = {d2, d5},thus R, (A) = {d5}and R, (R,,A) = . Clearly,
Ru(A) # R (R (A)).

For the subset A = {d1,d3}, then R, (A) = {dl,d3} and Rin(R,,(A)) =
{d1,d2,d3, d4} . So, Ry (A) # Rin(R,(A)).

For the subset A = {d4,d5}, therefore, Rm(A) = {d2,d4,d5} and
Rn(Rm(A)) = {d5} . Obviously, AZR, (Rm(A)).

For the subset A = {d1, d2, d4}, then R,,(A) = {dl, d4} and R, (R,,(A)) =
{d1} . Thus, R, (A)ZR,, (Ryn(A)).

For the subset A = {d3, d4, d5}, and B = {dl, d2, d3, d4}. Then R, (A) =
{d3,d4,d5} , R, (B) = {dl,d2,d3,d4} and R, (A) N R, (B) = {d3, d4} .
But R, (ANB) = R,{d3, d4} = {d3} . Therefore, R,,(ANB) # R, (A)N
R (B). . o

For the subset A = {d1, d4} then R,(A) = {d1, d2, d4} and Rm(Rm(A)) =
{d1,d2, d3, dS5} . Thus, Rn(A) # Rn(Rm(A)).

For the subset A = {d2, d5} then Ryn(A) = {d2, d4, d5} and R, (Rm(A)) =
{d5} . S0, Rin(A) # R,,(Rm(A)).

For the subset A = ({d3,d4,d5} then R (A) = {d3,d4,d5} and
Rm(Ry(A) = {d2,d3, d4, d5} . Clearly, APR (R, (A)).

For the subset A = {d1, d5} then R, (A) = {d1, d4, d5} and Ry (Rim(A)) =
{d1,d2, d4,d5} . Thus, Rim(A) 2R (Rm(A)).

For the subset A = {d1, d4} and B = {d2, d3}. Then ﬁm(A) = {d1, d2, d4}
Rm(B) = {d2, d3, d4} and Ry (A)UR,(B) = {a, b, ¢, d} . But Ry(A UB) =
Rmfa, b, c,d} = U. Therefore, Ryn(A UB) # Rin(A) U R (B).
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For any subset A C U, in the generalized approximation space, GApp = (U, R)
and for V € {r, L m, O, O, Ny Upr, Ny U(rl>}’ the general membership function
is defined as the following way:

e x is V— surely belongs to A, written xey A if and only if x € Ry (A) .
e xis V— possibly belongs to A, written xEy A if and only if x € Ry (A) .

According to this definition of general membership function, we can deduce that.

o IfxeyA, thenx € A,
e Ifx € A, then xévA.

Using general membership function definition we can redefine the lower and upper
approximations for any V € {r, L, m, Ny, O, Oy Upgy Ny, U(,;)} as follows:

Ry(A) = {x e U :xegA}, Rv(A) = {x € U : xEvA}.

Theorem 4.2 For any subset A C U, in the generalized approximation space,
GApp = (U, R), the following properties of the membership function hold:

XEn, A= xEA = xE A,
XEn, A= xEA = x€ A,
X€y,A = x€,A = x€n A,
X€y,A = x€A = x€n A,
XE€n A= XxEnA=XE, A,
XEn,,. A= EnA = xgy A

PN R P

X€U<,,>A = XEnA = xEmeA,
)Cguqu = XEQ[A = X€ﬁ<'_I>A.
Proof

1. Since xgmA = x € Eﬂrl (A) ,thenx € R, (A),hence xeg, A. Also, x€, A, then
x € R(A)=x eR, (A, thenxg, A.

By the same manner the rest of the theorem.

S Construction of Information Retrieval System

The basic objective of developing an information retrieval system is to reduce the
stress of a user for obtaining needed information. This stress can be spoken as the time
a user applies in the entire stepladders primarily to interpret an article covering the
needed information. The achievement of an information system is actually particular,
based upon what information is desirable and the readiness of a user to accept results.

In the information retrieval system, the expression “is relevant to” is used to appear
the results containing the query of the user. In fact, the expression of "is relevant to"
is not a binary relation but it is a continuous function. From a system point of view,
the information must be suitable for the criteria of the seeking query.

Information retrieval is classically two basic stages are as follows:
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e In the first, we identify the possibly relevant documents.
e Second, we ranked the initiated documents.

Each information retrieval system has a numerous mechanisms as follows:

Indexing: A pre-process called indexing is required for documents from a corpus
to match a given query. To make searching more effective, a retrieval system stores
documents in a mental representation.

The greatest general data construction working by information retrieval systems
is called the inverted file (IF). Every entrance in the inverted file covers information
about only one term in the document group.

The indexing procedure includes numerous steps, which are defined as follows:

Coding: In this stage, documents text is analyzed and index words named codes are
produced. Furthermore, at this phase, all characters controlled in the signs are often
lower-cased and all punctuations are detached.

CLINNTS % G ’9

Removal of stop words: There are several common terms (e.g., “the”, “an”, “on”,
“of”, ... and so on) that seem in almost all documents of a corpus. Removing the stop
words lets also decrease of the size of the produced document index. We eliminate
only non-relational stop words to achieve relation comprehensive searching.

Stemming: It would be useful for retrieval if documents comprising alternatives of
the query stretch were contained in an applicable document. Plurals, gerund forms,
and past tense suffixes are instances of syntactical differences that avert a faultless
competition between a query tenure and an individual document tenure.

Index Data Structure: The most generally used data structure is the overturned
index, which is a word-oriented instrument. Overall, the reversed index construction
covers two mechanisms: language and situation list. The terminology is a set of all
dissimilar terms removed from the corpus by the overhead steps.

Query Parser: It achieves codes, stemming, and stop words elimination processes on
the query so that it would be informal to achieve corresponding on indexed documents
for these query footings.

Matching: Several information retrieval models, such as the Boolean model,
vector space model, and probabilistic model, can approximate the significance of
a document to a given enquiry.

Ranking: Completely the retrieved documents are ranked rendering to their
implication groove using the produced educated ranking meaning.

User Interface: Interface achieves communication with the user by the attrac-
tive query as effort and showing documents rendering to their relevance notch as
production (Fig. 1).
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Inverted index

Tagged data Where is Tanta
Tanta: D1,D4,D6,D7.... University?
D1: <DOC> <DOCNO> University: D1, D2, D7,
1</DOCNO> <TEXT> :> """" Transformed Query
tanta university
...</TEXT>....

Where is
Tanta
University?

ﬂTextua] data

Accuracy (D1, Query)= 0.25
Accuracy (D2, Query)= 0.20
Accuracy (D3, Query)= 0.48
Accuracy (D4, Query)= 0.32

D1: welcome in Tanta

D2: Tanta El-Gesh
Street , University of

Tanta ....
AAAAAAA Accuracy measure 6]
AAAAAAAAAAAAAAAAAA .

Document D3
Document D33
Document D48
Document D704

List of ranked documents

Tanta
University
in Egypt

Fig. 1 Construction of information retrieval system

6 Query Expansion Techniques for Information Retrieval

In this section, we used the queries as keywords for searching in the corpus of
documents. We need first to illustrate some basic definitions of the term frequency
(tf) and the inverse document frequency (idf).

Tf-idf stances for term frequency-inverse document frequency and the tf-idf weight
is a heaviness frequently used in information retrieval and text removal. This weight
is a mathematical amount used to assess how significant a word is to a document in
an assortment or quantity. The rank surges proportionately to the number of times
a word seems in the document but is offset by the incidence of the word in the
corpus. Search engines often use differences of the tf-idf weighting structure as a
vital implement in counting and positioning a document’s significance agreed in a
user query.

Some of the humblest position purposes are computed by adding the tf-idf for each
query period; many more classy position functions are alternatives to this modest
model.

Tf-idf can be positively used for stop words sifting in numerous subject fields
with text summarization and organization.

Naturally, the tf-idf mass is collected by binary relationships: the first calculates
the regularized Term Frequency (TF) (the amount of iterations of a word that appears
in a text) that is divided by the entire number of words in that text. The second part
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is the Inverse Document Frequency (IDF), which is intended as the logarithm of the
number of documents in the quantity separated by the number of documents where
the exact term seems.

For instance, suppose that a document containing 1000 words where the
word “university” appears 30 times. The term frequency (i.e., tf) for “university” is
then (30/1000) = 0.03. Currently, suppose that we have 1,000,000 documents, and
the word “university” seems in 10 thousands of these. Then, the inverse document
frequency (i.e., idf) is considered as log(1,000,000 / 10,000) = 2. Therefore, the
Tf-idf weight is the multiply of these numbers: 0.03 * 2 = 0.06.

7 Conclusion

In this paper, we proved that the approximations based on mixed neighborhood
systems are accurate than the approximations based on either right neighborhood
systems or left neighborhood systems. Furthermore, we believe that our definition
of the accuracy measure is accurate than Pawlak’s definition since our definition
considers the negative region and Pawlak’s definition does not consider it.
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Applying “Emad-Sara” Transform m
on Partial Differential Equations i

Emad A. Kuffi®, Elaf Sabah Abbas @, and Sara Falih Maktoof

Abstract This work demonstrates the “Emad-Sara (ES)” integral transform, where
its basic properties and its capability to find a particular solution for partial differential
equations have been presented and proven via the solution of multiple fundamental
physical partial differential equations.

Keywords Emad-Sara (ES) transform - First-order differential equations -
Second-order differential equations + Five fundamental mathematical physics
equations + Wave - Heat - Laplace’s - Telegraph - Klein-Gordan

1 Introduction

Partial differential equations (PDE) represent a special case of ordinary differential
equations, with multiple partial derivatives of unknown variables. PDE degree is
identified by the highest derivative that appears in the equation. Applying a mathe-
matical method that could solve PDE concludes a function converts to identity when
substituted into the equation. PDEs have been used in various scientific fields, which
yield from their ability to express physical problems in a mathematical formula that
can be manipulated and solved via some mathematical method [1-3].

The significance of PDEs necessitated using the most effective mathematical
methods for their solution [4-7]. Integral transforms’ ability to transform problems
from one domain to another to simplify their solution has positioned them as a
priority in the domain of PDE solution. Mathematicians have proposed numerous
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integral transforms to solve PDEs; each proposed transform has particular cases
where it shines [8—13]. The substantial field of partial differential equations, on the
other hand, has not yet benefited from the revolutionary Emad-Sara (ES) integral
transform.

The ES integral transform is used in this work to solve first- and second-
order differential equations, as well as several practical applications of differential
equations, which are regarded basic in the mathematical physical area.

2 Fundamental Properties of Emad-Sara Transform

The Emad-Sara (ES) transform is defined for a function f(¢) as [14]:

1 oo
ES[f(O]=T(a) = ;/f(t)f‘”dt, (D
0

2.1 Emad-Sara Transform Existence [14]

ES transform is considered to exist for sufficiently large v, providing the integral:
17 r
—2/f(t)e‘”dt= lim /f(t)e‘”dt.
v p—00
=0 =0

Criteria for Convergence (I)

ES transform for the function f(¢) exist, if it has exponential order and f g | f(®)|dt
exist for any p > 0.
Since the convergence is needed to be shown only for suffi-

ciently large v, then it is going to be assumed that v > candv >
[ n [

1 [ 1
—2/ |[f@e™"|dt = > f|f(t)e*”|dt+f’f(t)e*”’|dt ,
v-Jo v

0. -0 "

oo

/ oy / N F(0)ldt
L O

n

IA
ol

1
For: [0 < —e M < 1]
v2
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n 00
1
=% /|f(l)|df +/67WM6”dt , (exponential order).
L0 n
1 [ pn ele—wr |
== lfOldt + M )
Vel Jo c—v|,
Forv > ¢
17 r» elc—vn
=— | f(®)ldt + M )
v LJo V—c

The first integral exists by assumption, and the second term is finite v > c.

o0
The integral vi? [ f(#)e™""dt, converges absolutely and ES{ f (¢)} exists.
0

Criteria for Convergence (II)
To satisfy criterion (I), ES{f(¢)} exists if:

e f(t)is of exponential order and on the closed interval [0, p].
e f(t) is bounded, piecewise, continuous and has a finite number of discontinuous
requirements implying that |, b0| f@®lde.

where F(v) - 0asv — oo.

Assuming f(¢) satisfy criterion (I), which implies F'(v) = ES{f(¢)} will exist if
v > m for some m.

IFW| = |5 fe™dt] < [ f@e ™ |dt = Gy — o0, He™ —
0 fort>0.

2.2 Emad-Sara Transform Uniqueness [14]

Suppose that the functions f and g are exponential type b, piecewise and continuous
on the interval [0, co0). If ES{f ()} = ES{g(t)} when s > b, then f(t) = g(¢) for
all r greater than or equal to zero.

2.3 Derivation of the Emad-Sara Transform of Derivatives

[14]

Integration by parts is used to obtain the ES integral transform for partial derivatives,
as follows:

af ~10f _, _nlaf
ES[E(X,I)} :{0756 dt = lim [ — e *dt

p—o0y a? Ot
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. I _ L I _
= lim {[—26 Mf(x,t)i| 4+ — [ f(x, e ""dt}
o 0 a0

p—>00
=aT(x, o) — f(x;O).
o
i) 1
ES| =, )| =aT(x,a0) — — f(x,0). 2)
ot a?
Assuming the function f is a continuous and of exponential order, then
ES|: fi| /6’0—67“[ f x,t)dt = —/ e ™ f(x, tdt,
ax
Using the Leibnitz rule:
af]_ 9
ES[a} = ax[T(x,o«e)],
Es[i} — Lo )
ox | T axt
It is also possible to find:
3 f d?
ES[W] T2 TGl “4)
To find ES[8 L(x, t)]
Let "f = g, then, by using Eq. (2):
52
|: f(x t)] = ES|:a—g(x, t)] =aES[gx,1)] — ng(x, 0).
ot o
52
[ f(x t)] — 2T (x, a)———f( 0) — f();’o). (5)

In the same way, it is possible to extend this result to the nth partial derivative

using mathematical induction.
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3 Solving Some Partial Differential Equations Using ES
Transform

The solutions to some first and second-order differential equations, as well as the
five fundamental mathematical physics equations: wave, heat, Laplace’s, telegraph,
and Klein-Gordan, are demonstrated in this section.

Problem 1

Consider the first-order initial value problem (IVP):
U, =2u, +u,

6
with u(x, 0) = 6e=3* } ©

And u is bounded for x, > 0.
Solution:

Let T be the Emad-Sara (ES) transform of u.
Taking ES transform to Eq. (6), gives.
‘% — 20T (x,a) + %u(x, 0) = T (x, o), this equation is a linear first-order

ordinary differential equation.

dT (x, )

Qo+ DT (ra) = 2o
e o X,0) = o2 e 7,

The integral factor is P = e~/ @etDdx — o=t
Therefore, T (x, &) = %f P.Qdx,

Then, T (x, ) =e(2"‘+”"/e‘(2“+”x (—_122>e_3xdx
o

T(x,0) = QatDx -__122 / 6—2(a+2)xdxj|
L o
T(x, o) = eZoetDx _—128*2(06+2)x LC
’ | a2(—2a — 4)
i 6
T , — Qa+lx| ¥ —2(a+2)x c
(e =¢ Lo +202° +
6
T(x, ) = ————e 3 4 Ceathx,

aZ(a +2)

Since T is bounded, then C should be equal to zero.
Taking inverse ES transform gives.

T(x,t) =6e e = T(x, 1) = 6e" ¥+,
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Problem 2

Consider the Laplace equation:

Upy Uy =0,u(x,0) =0
113 ( ) } (7)

u;(x,0) =cos(x), x,t >0

Solution:

Let T (o) be the ES transform of u.
Taking ES transform to Eq. (7), gives.

1 du u(x,0)
T (x,0)— =
a? 3t x. 0)

_ cos(x)

1
—T"(x,0) +T(x,0) = —;
o o

T"(x,0) +o*T(x,a) — 0,

The concluded equation is a second-order nonhomogeneous ordinary differential
equation that has a particular solution in the following form:

T ) a% cos(x) % cos(x)
X,0) = = s
Ipr+1 L-D+1
L
=« cosx) = cos(x). ®)

l—é _az(az—l)

2
where, D? = 4L
X

Applying the inverse ES transform to Eq. (8) produces the solution to Eq. (7) in
the form:

u(x,t) = sinh(t) cos(x).

1 t —t l t l —t
u(x,t) = 5(6 —e )cos(x) = Ee cos(x) — Ee cos(x).

Problem 3

Consider the wave equation:

Uy — duy =0, u(x,0) = sin(wx) } ©)

u;(x,0)=0,x,t >0
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Solution:

Applying the ES transform to Eq. (9) and using the conditions provided, obtains

1 ,0
T"(x,a) — 4|:062T(x, o) — —u(x, 0) — M} =0,
o o
1 T//( ) T( )_ —Sin(ﬂx)
42 * o X o) = o3 )
S 1 .
—5 sin(wx) =5 sin(x)
T(x,a) = — = — 5 ,
wD =1 p(=m) =1
Ty = 2D _ e
X, 0) = =— sin(mx),
ZTJTZZ _ 372 4 402
T(x,a)= sin(rx).

@[ +(3)]

Applying the inverse ES transform produce the particular solution of Eq. (9) in
the form:

ulx,t) = cos(%t) sin(rx).
Problem 4

Consider the homogeneous heat equation:

w _ u — sin(Z
4o = axz*;(tx;oz)_ sin(Zx) } (10)

Solution:

Applying ES transform on Eq. (10), gives

,0
T”(x, o) — 4|:aT(x, o) — u(x2 ):| =0,
o
—4sin(Zx
T"(x,a) —4aT (x,0) = — 2(2 )’
o
Now,
—4sin(%x) ZAin(Zx
Tr,0) = g = 2D,
2
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—sin(Zx) 16 Nz 1 1 m
T =g =a2(nz+16a)s‘“(?)=a—z<r()2>s‘“(EX)-

Y

Applying the inverse ES transform to Eq. (11) produces the solution to Eq. (10)
in the form:

2T
u(x,t) = eT’.mn(Ex).

Problem 5
Consider the linear telegraph equation:
Uxx = Uy +2u; +u

Subject to the inetial conditions (12)
u(x,0) =e*, u;(x,0) = —2¢*

Solution:

Applying the ES transform to Eq. (12), obtains the following:

T"(x,0) — T (x,0) + Su;(x,0) + 2u(x,0) — 2oT(x, @) + Zu(x,0) —
T(x,a) =0,

Providing the initial conditions to the concluded equation gives

X X

1
T"(x, ) —a*T(x, ) + —2(—26") + < _ 2T (x, o) +
o o

5 —T(x,a) =0,
o
X

:>T”(x,ot)—(a2+2a+1)T(x,a)= ¢ ,
o

1 —e*

= — T'x,0) - Tx,0) = ————,
a2 +2a+1 x, ) (x, @) a(a2+2a+1)
= ———T"(r,0) — T(x,0) = ————,
(+1) a(a+1)
_ a(;il)z
= T(X,Ol) = ﬁ,
(a+1)?
T(x, ) - (13)
X, o) = —————.
a?(a +2)

Applying the inverse ES transform to Eq. (13) produces the solution to Eq. (12)
in the form:

ulx,t) =e e =,
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Problem 6
Consider the second-order linear homogeneous Klein-Gordan equation:
Uy = Uyy + U, +2u, —00 <x <00,t >0

Subject to the inetial conditions
ulx,0 =e*, u(x,0)=0

Solution:

Using ES transform on Eq. (14), gives

’ 1 u(x,0)
o Tx,a) — —zu,(x, 0)— ———
o

X

o’T(x, ) — ¢ T"(x,a) — T'(x,a) — 2T (x, o) =0,
a

X

T"(x ) + T'(x, @) — (2 — 2)T(x, @) = ; ,

_ex

T (x, o) + T'(x,a) = T(x,0) =

1 1
@) @)

—e

1 1
@y @yl !

X

T(x,a)= ,

—e
a[l +1—(a?—2)]
_ex

Tero) = a(2 —a2+2) - a(—az +4)’

Tx,a) =

’

_ex

S Tx,a) =

afe? —2)’

23

(14)

T'(x,0) = T'(x,a) = 2T (x, ) =0,

15)

Applying the inverse ES to Eq. (15) gives the solution to Eq. (14) in the form:

u(x, o) = cosh(2t)e*.

1 1 1
u(x’ Ol) — E[le + e—2t]ex — 5e2t+x + Ee—2t+x‘
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Conclusion

The novel integral Sara-Emad (ES) integral transform has been applied to solve
partial differential equations. The proofs that accompanied applying the SE transform
to partial differential equations and the solution of a practical example solidify the
SE integral transform’s ability to efficiently handle and provide the solution to the
PDEs, making it a strong competitor to other integral transforms in solving partial
differential equations.
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Abstract Let p (z) = 7" + a, 2" ' + ap_27" 2 + - - - + apz + o be amonic poly-
nomial of degree n > 7 with complex coefficients o, a,—1, . . . .1, where o # O.
This paper investigates and estimates the upper bounds for the moduli of the zeros of
p depending on the spectral norms, spectral radii, and the fifth power of the Frobe-
nius companion. These upper bounds allow us to locate all the zeros of p in smaller
annuli in the complex plane.
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1 Introduction

Locating the zeros of polynomials is essential in many fields of study, including signal
processing, control theory, communication theory, coding theory, and cryptography.
Beginning with Cauchy, this classic problem drew a large number of mathematicians
across time. Recently, several famous classical upper bounds for the moduli of the
zeros of the monic complex polynomials have been established using the Frobenius
companion matrix, which is a key connection between matrix theory and polyno-
mial geometry. These bounds include Cauchy’s bound [2], Carmichael and Mason’s
bound, Montel’s bound [2] and Fujii and Kubo’s bound [3]. In this paper, we will
give a new estimate for the zeros of polynomials using the spectral norm and the
spectral radius for the fifth power of the Frobenius companion matrix.

A. Al-Swaftah - A. Burqan (<)
Department of Mathematics, Zarqa University, Zarqa, Jordan
e-mail: aliaaburqan@zu.edu.jo

M. Khandagqji
Department of Mathematics, Applied Science Private University, Amman, Jordan

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023 25
D. Zeidan et al. (eds.), Mathematics and Computation, Springer Proceedings
in Mathematics & Statistics 418, https://doi.org/10.1007/978-981-99-0447-1_3


http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-0447-1_3&domain=pdf
mailto:aliaaburqan@zu.edu.jo
https://doi.org/10.1007/978-981-99-0447-1_3

26 A. Al-Swaftah et al.

Let M,, (C) stands for the algebra of all n x n complex matrices. For A € M,, (C),
the eigenvalues of A are denoted by A; (A), fori = 1,2, ..., n, arranged in such a
way that

At (D= A (A = - = A (A)].

The singular values of A, (the eigenvalues of |A| = (A*A)%) are denoted by s; (A),
(1 <i < n), where they are arranged in such a way that

51(A) = 52(A) = -+ =5, (A).

Recall that si2 (A) =X (A*A) = \j (AAY), for j =1,2,...,nand 51 (A) = ||All,
where || A|| represent the spectral norm of A. For A € M,, (C), if A is the eigenvalue
of A and r (A) represents the spectral radius of A, then for any matrix norm |||-||],
we have

Al < r (A) < 1Al

Let p(z) = 2" + au2" ' + 22" > 4+ -+ - + a2z + a; be a monic polynomial
of degree n > 7 with complex coefficients «,,, o1, ....c;, where o # 0. The
following matrix

—OQy —Qp_1 - —OQp —(
1 0 0 0
C = 0 1 0 0
0 0 1 0

nxn

is called the Frobenius companion matrix for p. Itis well known that the characteristic
polynomial of C is p itself, and so the eigenvalues of C are the zeros of p, see [4].
Using the fact that the eigenvalues of C are the roots of p (z) =0, then for any
matrix norm |||-|||, |z| < |||C|||, where z is the zero of the monic polynomial p. Many
mathematicians in the area have used Frobenius companion matrix C to derive bounds
for the moduli of the zeros of the polynomial p; we list some of them below. Let z be
any zero of p, then we note that some bounds are obtained by the classical approach.
Cauchy [2], proved that

lz| <1+ max{laal, laal, ..., |a.l},
Montal [2], proved that
Izl < 1+ [ag| + lag| + ... + |anl,

Cramichael and Mason [2], proved that

lzl < (L+ il + ool + ...+ aal?)?
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Others have provided bounds for zeros of polynomials based on matrix inequalities
using the Frobenius companion matrix, such as
Fujii and Kubi [3], proved that

[SE

™ 1 " 2
IZIECOS<n+l)+§ | + ;M! :

Linden [7], proved that

|, | n—1 = 2 |an|2
lz| < > + " n—1+ Zl|aj|— 5 ,
J=

Kittaneh [5], proved that

n—1
jaal + 14 | (anl = D244 | Y[ |-

j=1

lz] <

N =

Based on certain estimates for spectral norms and spectral radii of the square of
the Frobenius companion matrices Kittaneh and Shebrawi, [6] obtained new bounds
for the zeros of p as follows:

=

lzl < {1+ Z|aj|2+|bj|2 , where b; = aj,a; — 1.
Jj=1
Also
%
1
2l < (5 <|bn|+ﬁ+\/<|bn|—ﬁ)2+4v 1+|an|2>) ,
where 1
n—1 2
2
v={> Il
j=1
and

n—1 n—1

1+Z|Otj|2+ 1+Z’Oéj|2—4(|0t1|2+|042|2)
j=1

j=1

N =
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They also obtained new bounds based on the spectral norms and the spectral radii

of the cube of the Frobenius companion matrix.

Recently, Al Sawaftah and Burqan [1] have given another bound for the zeros of
polynomials depending on the spectral norm of fourth of the Frobenius companion
matrix. In this paper we will present more accurate bounds depending on the spectral
norm and the spectral radii of C3. In this paper let N = C?. Thus,

[ ec €5 €]
dy  dn—y ds ds d
Cn Cn—1 Co Cs C1
by by b bs by
N=| @ —Qp-1 " —Q —Q5 - =] ,
1 0 0 O 0
0 1 0 O 0
00 10 0
where
bj =00; —Qj_1,Cj = —Oénbj +Oé,,_1aj —Qj_2,
d.,' = —QuCj — Oén_1bj +apo0; — a3,
ej = —aud; — ay_oCj — 0y2bj + 30 — g,

forj=1,2,...,n.

2 Main Results

In this section, we obtain bounds for the spectral norm and the spectral radius of the
matrix N, which we use it to estimate the zeros of polynomials.

Theorem 1 Letz beazeroof p (z) = 2" + oz ' + anZ" 2 + - - + a0z + ay,

with degree n > 7, then

2l < [ 14X ey + 16 + e * + |d; P + |es

j=1

L
10
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Proof Consider the following matrices

€n €p—1 * " €2 € 0 0O ---00
0O 0 ---00 dndn—l"'dZdl
G,=|0 000 Gy=|0 0 00
|0 O 00],., | 0 0 00],.,
[0 0 ---0 0]
[0 0 ---0 07 0 0 ---00
0 0 ---00 0 0 -0 0
G3= Cp Cp—1 *++ C2 (1 ’G4: bn bn—l" b2 bl ,
: 0 0 --00
[0 0 00], . D
Lo 0 ---00/4
[ 0 0 0 0 ]
0 0 0 0
0 0 0 0
Gs=| 0 0 -0 0
—Qp —OQy_q - —Qp —(
| 0 o -0 0 ],.,

and the block matrix Gg = [ 0 01| , where I,_s is the identity of order

-5 0 nx

6

n —5. Then Y G; = N with GG, =0,1<I,m <6, [#m. Thus by the tri-
=1

angle inequality, and using the fact that || A > = |A*A||, for any matrix A € M,, (C),

we get

6

> GG

=1

INIP = [N*N| =

HG G| —chzn2

M: ||Mm

1(|ej| 1+ s+ 15+ oy ) + 1

~.
Il
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Since n
1G> = max {A: A e 0 (G1G1)} = Jey |7
j=1
Also
1G2IP = D1 [F NG P = ey P0Gl = by 1Gs I = 3 fay [
j=1 j=1 j=1 j=l
|G3Gol = 1.
Therefore,

1

n 2

[e?] = 1w < (1 3 Jes Pl P e P [y P+ w) .
j=1

1
Using the fact that |z] < | C? |, we get

€1

n 10
2 2 2 2 2
|z|§(1+2|€j| +[dj |7+ [es] " + b5 +|°“j\) :

j=1
|

Let us recall some important Lemmas which are essential to establish our next
results in this paper. These Lemmas can be found in [4].

Lemma2 [fA = |:CCZ Z:| then the spectral radius of A,

r(A):%<a+d+\/(a—d)2+4bc>.

Ay A
Az Ax
Al 1AL
| A21]l [ A2zl

Lemma 3 Let A € M, (C) be partitioned as A = |: i| where A;;j is ann; x

n; matrix for i, j = 1,2 with ny +ny = n. If/i=|: :| thenr (A) <

r () and 4] < | 4

Lemmad4 Let A =

1

i Zi| then the spectral norm of A is

1

1 2
Al = (5 (lal* + 16 + lc|* + 1d/? +7)) ,
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where 7 = \/(Ial2 + el = |b)* — |d|2)2 + 4 |a5+ CE|2.

Lemma 5 Let

—

=

SO —= OO OO

withn > 7, then

1Bl =

n—4 5
where p =3 |o;|".
Jj=1

The following partition matrix is needed to obtain the next result. For the matrix

€n €n—1
dn dnfl
Cn Cpn—1
bn bn—l
N = —Qy —Qp—1
1 0
0 1
L 0 0
e . N11 N12
artition the matrix as N =
P |:N21 Ny

Ll —Qpp  —g — Q5 - —
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
1 0 O
0 I 0

L

[=NeoNeBoNeoNe

nxn

€6 (]

ds ds

C6 Cs

be bs
_aﬁ _as DEEY

0 O

0 o0

1 0

i|, where

€l
d
Cl
by
—ay
0
0

5
Ttpt [A+m? =4 o]’ ],
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_en €n—1 €2 €3
N dn dnfl dn72 dn73
= Cn Cp—1 Cp—2 Cp—3 ’
_bn bn—l bn—Z bn—3 4x4
[ena - eges e
Ny — dp—yg -+ dgds - d
12 - Cn_4 PRI C6 CS ... Cl ’
_b”74 o be bs -+ by 4x(n—4)
__an —Qp—1 —Qp2 —04,1,3_
1 0 0 0
0 1 0 0
0 0 1 0
Na=1] o 0 0 1 ’
0 0 0 0
L 0 0 0 0  (n—4)x4

[ ——s —ays - —ap —as —ay —az —an —ay |
0 0 0 0 0 0 0 O
0 0O ---0 0 0 0 0 O
0 0O ---0 0 0 0 0 O
Np=| O 0 -0 0 0 0 0 O
1 0 0 0 0 0 0 O
0 1 0 0 0 0 0 O
L0 0 -1 0 0 0 0 0 J ,

Now, as a result, we get the following:

Theorem 6 Let z be a zero of p (z) = 2" 4+ "' 4+ ap2z" 2 + - + 2z + oy,
with degree n > 7, then

1

5
lz] < |:||N11|| + [Nl +\/(||N11|| — IN2al)* + 4 N2 ||N21||i| .

N1t Nip
Ny Ny

[Nl I N2l
r (V) 5"([”1\721” ||N22||D'

Proof Since N is partitioned as N = [ :|, applying Lemma 3, we have
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To find || Ny, we partition Ni; as Ny = [

_ | én €n—1 _ | én—2 €én-3 _ | €n Cn—1
S“ o [dn dn—l] ’ S12 a |:dn—2 dn—3:| ’ S21 - |:bn bn—1:|
and
_ | €n—2 Cn-3
S22 - |:bn—2 bn—3i| '

Now, find the spectral norm for each S§;;, i, j = 1, 2, by using Lemma 4 as follows:

1 n
a=|Sull = 3 Z |ej|2+|dj|2

j=n—1
1

2
’

v len? + 1 — lenr P — 1dur ) + 4|eazr + dnﬁf))

1 n
g=usul={35{ X lef +af’
j=n-3

—_ 2
v (lenaP + ldu ol — len s — 1du3P) + 4 |en 2575 + dn_zdn_3!2)) :

n

1
3 3o el +[pa,

Jj=n—1

v =18l =

2
’

(el + 5P = leurs P = 1byi P) + 4 |esir + bnmyz))

and

1 n—2
b=1s2l= 5| X lesf + 1o,

j=n-3

=

-V (enoaP + 1uoaP — lenos = 1buosP) + 4 |esneis + bn_sz)) ,
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Also, by Lemma 3, we have

Nl < H[

Again using Lemma 3 to get

1 2
Nyl < (5 <a2 + 3+ + 2+ \/(a2 + 32— 2 —52)’ +4|aﬁ+’y§|2)>

1Sl 1Szl
152111 118221l

II-

Se)l

A. Al-Swaftah et al.

1

Now, [|Nyall = (r (N12N5,))?, where

To find || N12 |,

NipNy, =

4 n—4 n—4 o n—4
Yleil” Xejdi Yeci Xejb;
j=1 j=I j=1 j=I
n—4 - n—4 2 n—4 - n—4
Y die; Y |di|” X dje; Y- db;
j=1 j=1 j=1 j=1
n—4 o n—4 _ n—4 2 n—4
chej chdj Z|Cj| chbj
j=1 j=1 j=I j=1
n—4 - n—4 _ n—4 - n—4 2
bje; Y bid; Y bjc; X |b;
_]:1 j=1 j=l1 j=1 i
[ Wi Wiy
we partition N, N7, as W W ], where
[ n—4 ] n—4 n—4 T
Z }e/| Z e] 2 eic; Y ejb;
W — j:1 .i=1
n— 4 ’ 12= ] n—4 o n—4 ’
Zd ¢; _Z \d; | Zldjcj zld,b,
j= j= i
[ n—4 n—4 5 n—4 T
Z cjej Z CJ > ‘Cj’ > cib;
i j=1 j=I
» W = n—4 n—4 2
Z bjej Z bd; bic; 3 |bj
| j=1 j=1 j=1 i=1

Using Lemma 4 to get the spectral norm for each W;;, i, j = 1, 2 as follows:

Wil =

n—4

n—4

12

j=1

lej |

Ze,

2

4
Z %
Jj=1

2

1
2

++a+b
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ol—

2 2 2 2
1 n—4 n—4 o n—4 n—4 o
Wizl = | 5 [ [Does@| +(D2oeibs| +D_dics| +[D_dibs| +ve+d
Jj=1 j=1 j=1 j=1
1
1 n—4 2 n—4 o 2 n—4 2 n—4 o 2 2
[Warill = 3 cheij + chdj + ijfj + ijd] +Ve+ f ,
j=1 j=1 j=1 j=1
1
1 n—4 2 n—4 5 2 n—4 2 n—4 2 2
IWall = | 5 |2 lesl) + {20 1il7| + 2obs@] + [ Doesbi| +Ve+h
j=1 j=1 j=1 j=1
where
2 2 2y 2
n—4 n—4 n—4 n—4
2 — 2
a= Z’ej| + Zdjej - ejdj| — Z\M )
j=1 j=1 j=1 j=1
2
n—4 n—4 n—4 n—4
=4 ? d; die; d;
b= le;] ejdj | + j€i 4" || -
j=1 j=1 j=1 =1
2 2 2 2y 2
n—4 n—4 n—4 n—4
c=\1DeT| + 1 DodiE| — 2o ebi| —|D_dibi| |
j=1 j=1 j=1 j=1
2
n—4 n—4 n—4 n—4
d=4[|) e ejbj | + djcj djbj ||
j=1 j=1 j=1 j=1
2 2 2 2\ 2
n—4 n—4 n—4 n—4
e= > cigi| + D big;| —|> cidi| —|D_bsd; ;
j=1 j=1 j=1 =1
2
n—4 n—4 n—4 n—4
f=42 e cjdj | + bjd; dibj ||
j=1 j=1 j=1 j=1
2 2 2 2\ 2
n—4 n—4 n—4 n—4
2 — -— 2
8= lei|°| +{Q_bici| — (D eibi| — |2 bil
j=1 j=1 j=1 j=1
2
n—4 n—4 n—4 n—4
2 - — —
h=4 |Cj| Cjbj + bjCj bjCj .
j=1 j=1 j=1 j=1
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By Lemmas 2 and 3, we have

ot =i’ = ([ )

1
1 2
= <§ <|Iw11I| + llwill +\/(||w11|| — lwnl)? + 4wl ||w21||)) -

Now,

1Nl = ol + lan 1 P+ lan ol + lan s + 1,

and Lemma 5 yields

1

1 2
Nl = (5 (1 + A+ 2 =4 (ja1 P + laal? + lasl? + laal? + |a5|2))> ,

n—4
where =y |ozj|2 .Thus,
j=1

IN1 ] N2l
rNy=r <|:||N21|| ||N22||D

<||N11|| + Nl IV = N2l + 4 [Nl ||N21||) .

1
2

Since |z] < r (C) = (r (CS))é =(r (N))%, we have

1 5
lz] < (E (||N11|| + I N2 |l +\/(||N11|| — IN2al)* + 4 N2 I|N21II>> .

This completes the proof. ]
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Applications on Formable Transform )
in Solving Integral Equations L

Rania Saadeh, Bayan Ghazal, and Gharib Gharib

Abstract Mathematics is a powerful tool for global understanding and communi-
cation that organizes our lives and encourages the ability to solve problems. One of
the most important aspects of mathematics is differential and integral equations, the
real power of equations is that they provide a very precise way to describe various
features of the world. In this article, we introduce an effective method to solve inte-
gral equations and integro-differential equations. We use the new transform called the
formable integral transform for solving the Volterra integral equations of the second
kind and integro-differential equations. To show the simplicity and applicability of
the method, we introduce some examples and apply the transform to get the exact
solutions.

Keywords Integral equations * Integro-differential equations + Formable transform

AMS Subject Classification: 45D05 - 45E10

1 Introduction

Mathematics is one of the most important fields in our lives. Mathematics and its
applications promote innovation in order to reach solutions, and mathematical skills
are also included in many jobs and fields, as they contribute to solving most physical,
engineering, technological, and other problems [1].

Integral transforms are valuable because they are able to simplify differential,
integral, and partial equations subject to certain boundary conditions, where the
equation is converted by the transform, it gives an algebraic equation that can be
easily solved.
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The integral transform of the function g(x) where x € (—00, c0) can be obtained
by computing the improper integral

oo

£lg()](s) = /q(s,X)g(X)dx, (1)

—00

where g (s, x) is called the kernel of the integral transform and s is the variable of the
transform which might be real or complex number and independent of the variable
x. The theory of integral transforms goes back to the work of P.S. Laplace in 1780
[2, 3] and Fourier in 1822.

Also, with what we have mentioned about the importance of integral transform,
so many researchers have contributed to the existence of new integral transforms,
such as the z-transform [4], Mellin integral transform [5], Laplace Carson transform
[6], Hankel?s transform [7], Sumudu integral transform [8], ARA transform [9], and
recently, in 2021, formable transform was introduced [10].

When scientists began studying natural phenomena, whether physical, chemical,
biological, or engineering [11719], the integral equations had an important role in
explaining these phenomena and finding different solutions to them.

The integral equation for the function g(x) and the kernel of integral equation
q(x,t) is defined by

X

p(x)y(x) = g(x) + ?»/q(x, Dy(n)dt @)

a

while y(x) is an unknown function that will be determined, ? is a non-zero, real or
complex, parameter. The function ¢(x) determines the kind of integral equation.

As there are several types of integral equations, including Volterra integral
equations and integro-differential equations [20].

2 Basic Definitions

In this section, we introduce some basic definitions that are essential to our research.

Definition 1 The second kind of Volterra integral equation of the function g(x) is
defined by [21, 227]:

X

yx) =gx) +l/61(x,t)y(t)dt 3)

a

where the kernel of the integral equation is g (x, 7).
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Definition 2 Integro-differential equations of first order is defined by

Y'(0) +y() +/g(f, y()dt = f(x,y(x)), y(xo)=yo, X=0 (4

X0

where f(x, y(x)) and g(¢, y(¢)) are given, such that f(x, y(x)) and g(¢, y(¢)) are
generally nonlinear in y(x) which is the variable of the integro-differential boundary
value problems that need to be determined.

Definition 3 The convolution of the functions f(x) and g(x), which denoted by
(f * g)(x) is defined by the relation

(f *&)(x) = /f(t)g(x —1dt. (&)
0

Definition 4 A unit step function or Heaviside step function is a piecewise function
defined as follows:

1, x>0

. 6
0,x<0 ©)

u(x) = {

Definition 5 A function g(x) is called a function of exponential order, a if there
exist constants a, M and b > 0 such that |g(x)| < Me** for all x > b.

3 Formable Integral Transform (FIT)

Through section three, we present the definition of the FT and some properties that
are needed in our work. To see more about the Formable transform, see Ref. [10].

Definition 1 Assume that the function g(x) is a piecewise continuous function of
exponential order defined over the set

W= {g(x) 23N, 1,10 > 0, |g(x)| < Nexp(m) if x € (—=1)" x [0, oo)},

then, the Formable integral transform of a as the following form:

o0

Rlg(x)] = B(s,u) =s / exp(—sx)g(ux)dx, (7)
0

which is equivalent to
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[e¢]

RIg(x)] = 5 / exp(%”)g(x)dx. )

0
s . A —85X
Rlg(x)] = " Tlirrolo exp - gx)dx, s>0,u>0,
0

where s&u are the Formable transform?s variables, ¢ is a real number and the
integral is taken along the line x = 7.

Definition 2 The inverse Formable transform of a function g(x) is given by

R_l[B(s,u)]:g(x):% / lexp(ﬂ)B(s,u)ars. 9)
Tl S u

c—ioo
Properties of Formable Transform

We present some important properties and theorems of FT that this paper is based
on

Property 1
(Linearity property)

Let ogi(x) and Bg»(x) be two functions in which the Formable transform exists
for them, where o and g are non-zero arbitrary constants, then

Rlagi(x) + Bg2(x)] = aR[g1(x)] + BR[g2(x)]. (10)

Property 2
(Shifting in s-domain)

If the function g(x) in which the Formable transform exists is multiplied with
shift function x” then

" [ R
R[x"g()] = (—u)”s—[M} (an

as" K

Property 3
(FT of the Derivatives)
Let g (x) be the nth derivative of the function g(x) such that g™ (x) € W, then

n n— n—k
R[gm)(x)]zz_ng(s,u)—z 1(5) 2®(0) (12)

k=0
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Property 4
(FT of the Convolution)

If F(s,u) and G(s, u) are the Formable transforms of the functions f(x) and
g(x) respectively, then

RLf(x) *g(x)] = %F(S,M)G(S,u) (12)

Property 5
(FT of Derivatives)

If the function g (x) is the n-th derivative of the function g(x) where g™ (x) €
W, then

W] = 5 NN
Rls" 0] =2 Bew =Y (=) 0 (13)
Property 6
The FT of the unit step function u(x) is given by
Rlu(x)] =1 (14)
Proof 00
s —5X s . [—u —sx\1*
Rlu(x)] = —/exp(—)dx = — lim [— exp(—)} =1.
u u ua—oo| § u 0
0

4 Main Results

In this section, we introduce two important theorems for solving integral equations
of both types, Volterra integral equation and integro-differential equation using the
Formable transform.

Theorem 1 Let g(x) be a continues function defined on the interval [a, b] and
consider the Volterra integral equation of the second kind.

X

yx) =gx) +?»/k(x, ny(ndt. 15)

a

Assume that the kernel k(x, ¢) is a difference kernel, that is, it has the property
k(s,t) = q(x —1t), k(x,t) depends on the difference x-t. Then, Eq. (15) can be
written as
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X

y(x) =gx) +/\/q(x — y(t)dt,

a

and has the solution

y(x)=R1|: sG(s,u) ]

s —AuQ(s, u)

where

Q(s,u) =R[g)],  G(s,u) = R[g(x)].

Proof Running the FT to Eq. (16), we get after using Property 4.

X

RIy(x)] = R[g(0)] + AR / ke, D)y (0

a

Au
Y(s,u)=G(s,u) + — 0@, )Y (s, u),
S

where Y (s, u) = R[y(x)].
Solving Eq. (17) for Y (s, u), we have

sG(s,u)

rem = oew’

AuQ(s,u) #s

R. Saadeh et al.

(16)

a7

(18)

The solution y(x) is obtained by applying the inverse Formable transform to

Eq. (18), to get

y(x):R_l|: s G(s, u) i|.

s —AuQ(s, u)

19)

Theorem 2 Consider the integro-differential equation of the first order.

X

1
Ly'(x)+ Py(x)+ E/y(f)df = E(x),
0

with the initial condition,

y(0) =a,

then, the solution of Eq. (20) and the initial condition (21) is given by

(20)

21
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@ Lo, [4L — P2c PJ/C . [ 4L — P2
X)=| et Cos X |— sSin — X
Y L 4CL? LJ4L — P2C 4CL?
E) aP 4 geit 4L — P?%c 22)
* - — wrcos| ) ————
S e Voace

while L, P, and C are constant with C # 0.

Proof Firstly, we apply the Formable transform on both sides of Eq. (20) and use
Property 4, we have

X

1
R[L Y (x)]+ R[P y(x)] + cR fy(r)dt = R[E(x)],
0

L(fY(s, u) — fy(O)) CPYG )+ Y (s ) = EGs ), (23)
u u Cs

where Y (s, u) = R[y(x)] and E(s, u) = R[E(x)].

Substituting the initial condition (21) and simplifying Eq. (23), we get
s u s
Y(s,u)[L——i—P—}——] — E(s.u) +aL>. (24)
u Cs u

Solving Eq. (24) for Y (s, u), gives
E(s,u) +aL?
Li+ P+ &

1

T E(s, u)su + as?

Y(s,u) =

P\ L AL=PC o
(S+2L”) + o

%(E(s u) — —) as(s + iu)
) e (s 4+ )+
:Z(E(s 0 — aP) z(s—}—%u)—%zzsu 4 as(s2+ ﬁu) :
‘ 2/ (s 4 qpu) RS (s o+ fpu)” + M

v e aP (s+ 2L ) P su
(s,u) = 5 (Syu)*T (5+ u)2+4L*P§Cu2 T 12 (5+£L[)2+4L7P§Cu2
4CL 4cL

(25)

Now, applying the inverse FT to both sides of Eq. (25), then running the convolution
property on Eq. (13), we get the result
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@ Lo, [4L — P2c pPJC . /4L — P2
= | = COS — sin Eee——
y L¢ acrLr L4L — P2C acLr
E) aP 4 geit [4L — P%c n
* - — 2wt cos| y/ ——5—
X ) ae 4CL2 X

It is also worth mentioning that Eq. (20), which is an integro-differential equation,
is an application to one of the most important physical phenomena, which is circuit
analysis. According to Kirchhoff’s second law, the net voltage drop across a closed
loop is equal to the voltage E (x),where y(x) is a current function of time, L is the
inductance, P is the resistance and C is the capacitance.

5 Applications and Examples
In this section, we introduce some examples of a set of integral equations and integro-
differential equations and apply the proposed FT to get their solutions.

Example 1 Consider the Volterra integral equation.

X

yx)=1+ f y(t)dt (26)

0

Solution

As a first step, we apply the FT to Eq. (26), to get
u
Y(s,u) =14+ =Y (s, u) 27
S

Simplifying Eq. (27), we get

s
Y(s,u) =

(28)

s—u
Finally, we apply the inverse FT on Eq. (28), to get the
y(x) =e' (29)

Example 2 Consider the Volterra integral equation.



Applications on Formable Transform in Solving Integral Equations 47

X

yx)=1- /(x —0)y@)dt (30)

0

Solution

Applying the FT to Eq. (30), we have

uu
Y(is,uy=1——=Y(s,u)
ss

2

—1-Z ¥ (31)
s
Simplifying Eq. (31), we get
52
Y(s,u)= —— 32
(1) = 50— (32)

Now, taking the inverse FT on both sides of Eq. (32), we get the solution
y(x) = cosx (33)

Example 3 Consider the Volterra integral equation.

X

y(x) =sinx +cosx + 2[ sin(x — 1) y(t)dt (34)
0

Solution

We apply the FT on Eq. (34), to get

Yow= Y (s, )
S, u) = — S, U
s24u?  s24u? s s2 4 u?
L L (35)
= S, U
S2+M2 S2+M2 S2+M2
Simplifying Eq. (35), we get
su + 52
Y(s,u) = 3

- (36)
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Now, applying the inverse FT on Eq. (36), we have the solution
yx) =e'

Example 4 Consider the Volterra integral equation.

)C3 r
Y =" - / (x = D)y(0)d1
0

Solution

We apply the FT on Eq. (38), to get

u uu
Y(s,u) = =5 - ——Y(s,u)
s s
ER
= P S—ZY(S, u)
Simplifying Eq. (39), we get
Y(s. 1) u su
S, U)=— — ——
s s24u?

Now, applying the inverse FT on Eq. (40), we have the solution
y(x) =x —sinx

Example 5 Consider the integro-differential equation.

X

y/+2y+5/y(t)dt = u(x)
0

with the initial conditions,
y©0)=0

Solution

We apply the FT on Eq. (42), and we get

iY(s, u) — iy(O) +2Y (s, u) + SEY(S, u) =1.
u u s

R. Saadeh et al.
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(38)

(39)

(40)

(41)

(42)

(43)

(44)
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Now, substituting the initial conditions (43) in Eq. (44),

§Y(s, W)+ 2Y (s, u) + sgm, W =1 (45)

Simplifying Eq. (45), we get

2su

Y(su)=——"
(s, u) R

(46)

Now, we take the inverse FT on both sides of Eq. (46), and we get the solution
|
y(x) = Ee *sin 2x 47)

Example 6 Consider the integro-differential equation.

X
y +3y+2 / y(t)dt = 2e™ > (48)
0

with the initial conditions,

y(0)=0 (49)

Solution

Appling the formable transform to both sides of Eq. (48), we have

S¥ (s u) — Zy0) +3Y (s, u) + 22V (5, u) = 2——. (50)
u u s s+ 3u
Now, substituting the initial conditions (49) in Eq. (50),
s u s
—Y(s,u)+3Y(s,u)+2-Y(s,u) =2 . oy
u s s+ 3u
Simplifying Eq. (51), we get
2 3 2 2
[—S s cu :|Y(s,u):2 : (52)
su s+ 3u

Solving Eq. (52) for Y (s, u) gives
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Y (s, 1) = 25%u
5= (s +u)(s +2u)(s + 3u)
—s 45 —3s5

= + +
(s4+u) (+2u) (s+3u)
Now, applying the inverse FT on Eq. (53), we get the solution
y(x) = —e " +4e —3eH

Example 7 Consider the integro-differential equation.

X

y - % / (x — )’ y()dt = —x

0

with the initial conditions,
y(0) =1

Solution

We apply the FT on Eq. (55), and we have
2
s s uu u
=Y(s,u) = =y(0) — == Y(s,u) =——.
u u ss s
Now, we substitute the initial conditions (56) in Eq. (57),

s s 3 u
-Y(s,u)— — — —3Y(s, u) =——.
u u s s

Simplifying Eq. (58), we get

st —ut §2 —u?
3 Y(s,u) = .

s-u Su

Solving Eq. (59) for Y (s, u) gives

s
Y(s,u) =

R. Saadeh et al.

(53)

(54)

(55)

(56)

(57)

(58)

(59)

(60)
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Now, we take the inverse FT on Eq. (60), and we get the solution

y(x) = cosx (61)

6 Conclusion

In this paper, we presented two basic theorems concerning the formable transform
to solve the Volterra integral equations and the integro-differential equations with
special kernels. We use the proposed integral transform to present the exact solutions
of the target integral equations. Seven interesting examples were introduced and
solved by the formable transform. As a future work, we attend to solve linear and
nonlinear fractional differential equations by the formable transform.
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on Chaotic Maps and Factoring Problems | @i

Nedal Tahat, Obaida M. Al-hazaimeh, and Safaa Shatnawi

Abstract Users of public key cryptography systems reveal their public keys, but they
keep their private keys private. A public key directory is where all of your public
keys are kept. Public key cryptosystems place a high value on preventing their keys
from being forgery or otherwise tampered with. A key authentication mechanism is
therefore required to confirm that an intrusion has not happened. A key authentication
technique is developed in this study by solving numerous issues, including chaotic
maps and factoring. When compared to schemes based on a single problem, the
proposed scheme has been mathematically demonstrated to be safer. An alternative
to conventional key authentication systems, the proposed scheme can help to design a
cryptography system that addresses a variety of issues. In contrast, the newly created
authentication technique involves only minimal and low-complexity computations,
making it incredibly efficient.

Keywords Key authentication + Chaotic maps + Factoring - Cryptanalysis *
Attacks

1 Introduction

In public key cryptosystems, the most important issue is to safeguard public keys
from being hacked by adversaries. On a specific problem, such as discrete loga-
rithm, a number of authentication systems have been proposed in the past. Using
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discrete logarithms, Horng and Yang [1] came up with a new approach for public
key cryptosystems in 1996. Although this approach is comparable to the standard
certificate-based scheme, it does not require any authority to authenticate keys, unlike
most others. Using the password guessing attack, Zhan et al. [2] demonstrated in 1999
that Horng-approach Yang’s is not secure.

Many academics, such as [3-9], presented an improved key authentication system
based on a similar problem to improve security. However, due to current technological
advancements, intruders may be able to simply solve the authentication technique
based on a single problem. As a result, this research is being carried out in order to
design a key authentication technique based on multiple problems. A new secure key
authentication technique based on discrete logarithm and factoring issues has been
suggested recently [10]. However, their scheme is somewhat time-consuming. As
early as 1989, an algorithmic design for image encryption based on a chaotic map
was introduced [5, 11]. There has been an increase in work on this subject recently,
as a few methods have been given in the research art [5, 12—17]. In comparison to
public cryptosystems that use modular exponential computing or scalar multiplica-
tion on elliptic curves, chaotic map-based systems require the least computational
complexity. Using a combination of chaotic maps and factorization problems, we
present a novel approach to secure key authentication that improves security and
reduces the number of operations required for both user registration and key authen-
tication. Using chaotic maps and factoring to authenticate keys has not yet been
proposed to our knowledge.

Here are the rest of the sections of the paper’s structure: Sect. 2 has a few intro-
ductions. Section 3 explains a new key authentication method. In Sect. 4, we describe
the security and performance of our proposed key authentication method, followed
by numerical simulation in Sect. 5. Section 6 concluded this research work.

2 Preliminaries

In this section, we will briefly review the fundamental concept of the Chebyshev
chaotic map [12, 17-21].

2.1 Chebyshev Chaotic Map

Authentication of the Chebyshev chaotic maps is provided [22-24]. The structure of
the Chebyshev polynomials is reviewed in Fig. 1 [25].

To make it clear, consider the following example: A variable called x has an interval
[—1, 1], and # is an integer number. The Chebyshev polynomial 7, (x) : [—1, 1] —
[—1, 1] is defined as T,,(x) = cos(n cos™! (x)), and the Chebyshev polynomial map
T,(x) : v — v of degree n is defined by
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Ts(x) Ts(x) Ts(x)
1 Ti(x)
0.5
-1 -0.5 0.5 1 *
-0.5
=1
Ts(x)

Fig. 1 Chebyshev polynomials structure

Ty(x) =2xT,—1(x) = Th2(x); n=2 ey
where Ty(x) = 1, T1(x) = x. Some Chebyshev polynomials are T»(x) = 2x> — 1,
T3(x) = 4x® —3x, Tu(x) = 8x* —8x2+1 and T5(x) = 16x> —20x>+ 5x. The semi-

group feature of Chebyshev polynomials is one of the most important properties of
Chebyshev polynomials which is given by

T.(Ts(x)) = T,5(x) (2)

This property has the direct consequence of ensuring that Chebyshev polynomials
commute when used in the composition.

T(Ty(x)) = T, (T (x))

Specifically, Zhang [15] shows that the semi-group property applies to Chebyshev
polynomials defined on the interval (—oo, 00), which has the effect of increasing the
security of Chebyshev polynomials. It is possible to express the enhanced Chebyshev
polynomials by

T(x) = 2xT,—1 (x) — T,—2(x)) (mod p) 3)
where n > 2, x € (—00, 00), and the large prime number is p, we obtain that

Trs(x) = T.(Ts (x)) = T (T, (x))

Theorem 1 ([12]) Let f(M) = t2 —2Mt + 1 and «, B be two roots of Jf(M). If
M = %(ot + B), in this case, the number of possible solutions is met by.
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(M+m)“ + (M_m)”
2

T.(M) = (mod p) €]

Theorem 2 ([12]) If a and b are two positive integers and a > b, then we obtain
that

2T,(M). Ty(M) = Typp (M) + Ty—p (M) )]
Theorem 3 ([12]) If a = b+ c and p is a prime (i.e., large number), we obtain that
[T.(M)) + [T, (M) + [T.(M) = 2T, (M) Ty (M)T.(M) + 1(mod p) ~ (6)

Lemma1 ([12]) Let the elements of a finite field are g and 4, i.e.,if g+g~' = h+h~!
theng =horg=nh"".

Lemma 2 ([12]) For any g € GF(p) and y = g' for some integer ¢, we can find
an integer M € G F(p) and then construct a chaotic maps sequence {7,(M)}, in
polynomial time such that.

1 —1
§(y+y ) =Ti(M) € T,(M) )

Lemma 3 ([12]) Let p,n, and « are the same as earlier; and G is the group
formed by the combination of these three. To obtain the value of v such that
a = T2gnoan (a)mod p, where a is given and a € G, one must solve both the
chaotic maps problem in G and the factorization of n.

Theorem4 The discrete logarithm problem over G F (p) can be solved in polynomial
time if a method AL can be used to solve the chaotic mapping problem over G F (p).

2.2 Computational Problem

To demonstrate the security of our proposed cryptosystem, we give the following
important mathematical features of Chebyshev chaotic maps:

(a) Semi-group property: Given x € [—1, 1],

T, (T;(x)) = cos(rcos™ (scos™' (x))) = cos (rscos™ (x))
— TS,(x) = Ts(Tr(x))

(b) Chaotic maps problem: If two items x and y are given, the discrete logarithm
problem’s task is to find integers s, such that T, (x) = y.



A New Authentication Scheme Based on Chaotic Maps and Factoring ... 57

Table 1 Initialization settings

Notations/parameters description

P.q and p Three large strong primes, n = pq

B A primitive element, in {1, 2, ... p — 1} and satisfying " = 1 mod p
g(a) = T,(B)mod p | As a public function, the chaotic map function of g is used

K pup Public key

Kpriv Private key

(c) If three elements x, 7, (x), and T;(x), are given, Computing elements T}, (x).
is the goal of the Diffie-Hellman problem.

Table 1 lists certain initialization settings (i.e., notations, and parameters) that are
used in the developed approach.

3 Key Authentication Scheme

Phase one of the proposed system is user registration, and phase two is key authen-
tication. It’s safe to assume that Abu will log into the system manually. After that, a
server will house all of Abu’s publicly available data as the third level of authority.
According to this plan, the server, the third authority, can be trusted. Once she has
verified the public key of her recipient, Mimi can send her message to Abu. Because
of this, Mimi as a sender will execute key authentication computations in order to
overcome this issue. The proposed scheme of key authentication is as follows.

3.1 User Registration Phase

The phase of user registration involves the following steps:
e For each of the three numbers, pick a huge prime number p and two separate

prime integers p and q.
e Compute Egs. 8 and 9, respectively.

n = pgwhere n/(p—1), (8)
pn)=({E-D@-1 9

e Choose randomly any integer, e where gcd(¢(n), e) = 1
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e Find d, where

ed = Imodp(n) (10)

e Randomly choose any integer, x where x € {1,2,..., p — 1}
e Compute the following equations:

g(x) = T, (B)mod p (11)
K priv = (xg(x) + d)modn (12)
Kpub = Tkﬁyi\,(modn) (lg)mOdP (13)

¢ Choose randomly any integer, r where r € Z7 and a password, pwd where
pwd € Z% , then calculate the following:

g(de) = pwd(ﬂ)mOdp (14)
Y =T,(f)mod p (15)
V= g(de + r) = T(pwd+r)(ﬁ)m0dp (16)

e The encrypted password is g(pwd). The user will send g(pwd),Y and V to a
server secretly.

e According to Eq. 17, a server will determine whether or not the user is authentic.
The value of V will be stored in an encrypted password table if the equation is
correct. 1(Y) will be calculated by a server and stored in an encrypted password
database.

P + [T BT + YF = VY Tya(B) + 1) an

¢ Finally, compute the certificate (i.e., C) by the following equations, and then store
the obtained parameters (i.e., K ,,5, € and C) in the directory of the public key.
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W = (pwd +r + K,,;,)(mod n) (18)
C = T;(W)ymod p (19)

3.2 Key Authentication Phase

The process of authentication is used to build confidence between two or more
interactive entities. This phase involves the following steps:

e Mimi will receive the following information from Abu: X, Y, and Z. She will then
compute

m = T,(C) mod p (20)

e Inorder to make sure that Abu’s public key has not been tampered with, Mimi will
check to see whether the following equation is correct. A cryptosystem message
will be encrypted using the public key of Mimi, if it is valid.

[Tm(ﬂ)]2 + [V]2 + [Kpub]2 = (ZVKpubTm(,B) + 1)(m0d P) (21)

4 Security and Performance Analysis

Itisin this section that the verification, security analysis, and efficiency analysis of the
proposed key authentication technique are presented in the following sub-sections.

4.1 Security Analysis

The proposed method for discrete logarithm and chaotic maps (i.e., Chebyshev) is
evaluated based on its computational complexity. A thorough study of the proposed
scheme’s advantages over some cryptanalysis issues has also been carried out to
demonstrate its efficiency.
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Theorem 5 If the user registration step goes successfully, the key authentication
phase will go smoothly as well.

2

Tn®F + VE + [Kpis ] = [Tr @B + [Twasn BF +[Te2,, moan )] (mod p)
2

T BF + [Tipwasn B + [Tz, moan(®)] mod p)

2
Tr, oy B + [Towain B + [Txgm,umd,w(ﬂ)] (mod p)

=

=

=
2 2 2

= [TTed(modw(u))(W)(ﬁ)] + [T(pwd-%—r)(/g)] + [TK;”‘,(modn)(ﬂ)] (mod p)

2
= (TwBP + [Tipwarn B + [Te2 moan )] (mod p)

2 2
= |:T(pwd+r+l(2 )(,B)i| + [T(pderr) (ﬁ)]z + [Tkz . (mod n) (,B)] (mod p)

priv priv

= 2T(p"”d+r+K,2mr) (ﬁ)T(pderr) (ﬂ)TKIZ)/,“,(modn) (B) + 1(mod p)

=2Tw(B) V K pup + 1(mod p)

=277 ymod ginyy W) (B) V K pup + 1(mod p)
=2Tr1,ic)(B) V K pup + 1(mod p)
=2Tu(B)V Kpup + 1 (mod p)

Factoring attack: If the adversary (i.e., Adv) is able to solve the factoring problem,
then Eq. 12 provides the value of d. To obtain K ,,;,, Adv requires knowledge of
the value of x in advance. However, obtaining the value of x is difficult due to the
computational infeasibility of the discrete logarithm problem [1]. Moreover, Based
on Egs. 18 and 19, (pwd + r) must be known in advance in order to get the K, ;,
value. Because the chaotic map problem is difficult to solve, it is difficult to get
(pwd +r).

Chaotic maps attack: If Adv is able to solve a chaotic map, the value of x can be
found by referencing Eq. 11. Since d is known from Eq. 12, the value of K, can
also be determined. The factoring issues in Eq. 10 make it difficult to obtain d value.
K,zmv can be determined if Eq. 13 can be figured out. But, factoring problems are
notoriously difficult to solve, so this is impossible.

4.2 Performance Analysis

In comparison to other key authentication schemes, the computation of Chebyshev
polynomial problem allows for smaller faster computation, key sizes, and significant
savings in terms of memory, bandwidth, and energy. The ECC encryption algorithm
has a high computational complexity, but the chaotic maps algorithm avoids scalar
modular and multiplication exponentiation calculations, allowing for greater effi-
ciency than the ECC algorithm. To make it easier to calculate the cost of computation,
we use the following notations as listed in Table 2 [22, 24, 25].
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Table 2 Notations
Notation Description Value
Ty Hash function computation time Ty, ~ 0.0005s
Ten Extended chaotic function computation time Ten =~ 0.172s
Texp Exponentiation function computation time Texp =~ 5.37s
Tnul Multiplication function computation time T ~ 0.00207
Table 3 Comparative analysis of the proposed scheme and existing scheme
Phase Criterion State of the art | Time Total (s)
scheme complexity
(Total)
State of the art | User Time 6Texp + 2Tnu 8Texp + 42.972
scheme [10] registration complexity +Th 4 2Ty 3T mul
T, + 2T,
Key Time 2Texp + Tnut o+ 2dgr
authentication | complexity
Proposed User Time 6Ten + 2T T en + 4T | 1.567
scheme registration complexity | +7j + 2T, +5Tyre + Ty
Key Time 36Tch + 3Ty
authentication | complexity | 27, .,

It is shown in Table 3 that the proposed scheme has a lower time complexity than
that in [10]. The proposed scheme is more efficient than the one in [10]. While their
scheme requires 42.972 s to complete, ours only takes 1.567 s to complete.

S Numerical Simulation of the Proposed Scheme

5.1 User Registration Phase

e Abu choose randomly a large prime number, p = 1427 and two distinct prime
numbers, p = 23 and ¢ = 31. Compute n = 23 x 31 = 713 and ¢(n) = 660.
B = 12 with order 713such that 1273 = Imod 1427.
e Choose e = 113 such that ged(113, 660) = 1. Compute an integer d such that
ed = 1mod660. Then d = 257. Randomly choose any integer, x = 231 and then
calculate the following:

g(x) = Tr3;(12)mod 1427 = 100

K priv = (231(100) 4 257)mod 713 = 541
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Kpub = T5412(m0d713)(12)m0d 1427 = 1010

¢ Chooserandomly any integer,r = 173 wherer € Z7 and a password, pwd = 141
where pwd € Z;‘, , and we obtain that

g(pwd) = Ti41(12)mod 1427 = 395
Y = T173(12)mod 1427 = 598

V= g(de + l’) = T(]4]+173)(12)m0d 1427 = 1039

e To determine whether a user is authentic, the following equation must be checked
by the server:

WP+ [Tpna )] + VT =2V ¥ Ty (B) + 1 (mod p)

WP + [Tpwa(B)] + [V = (1039% 4 5982 4 395%)mod 1427 = 618
2VY Tpua(B) + 1 (mod p) = 2(1039)(395)(598) + 1(mod 1427 = 618)

e Compute the certificate (i.e., C) by the following equations, and then store the
obtained value in the directory of the public key.

W = (141 + 173 4 351)(mod 713) = 665
C = Td(W)modp = T257(665) =797

K,y = 1010, e = 113and C = 797

5.2 Key Authentication Phase

e Before making a calculation, Mimi will gather Abu’s data (i.e., K, e. and C)
and then calculate the following:
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m = Ti13(797)mod 1427 = 585

e Mimi will validate whether or not the following equation is true to ensure that
Abu’s public key has not been altered:

(LB + [V + [Kpus]” = 2V.K pup. T (B) + 1(mod p)
[T (BT + VI + [Kpus]” = 47% + 10397 4 1010>(mod 1427) = 1286
2V.K pup. T (B) + 1(mod p) = 2(1039)(1010)(47) + 1(mod 1427) = 1286

e Then we have

[T (B + [V + [Kpus ] = 2V.K pup- T (B) + 1(mod p)

e Finally, Mimi will encrypt the message before sending it to Abu using a
cryptosystem using the public key.

6 Conclusion

Using chaotic maps and factoring problems, this paper proposes a key authentication
scheme that is both secure and efficient. When compared to other key authentication
schemes, such as elliptic curves, ElGamal, and RSA, the scheme takes advantage of
the inherent advantages of chaotic map cryptosystems such as computationally less
intensive and smaller key size. Additionally, the comparison of efficiency has been
discussed. We conclude from the results that our scheme is superior to the Suparlan
et al. schemes. Although this scheme is said to be more secure, it is less efficient than
the existing single problem authentication scheme.
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A Pro Rata Definition m
of the Fractional-Order Derivative e

Ramzi B. Albadarneh, Ahmad M. Adawi, Sa’ud Al-Sa’di, Igbal M. Batiha,
and Shaher Momani

Abstract In this paper a novel definition of the fractional-order derivative operator
will be introduced. This operator will be called “pro rata” due to its ratio form as
well as its geometric behavior that it is proportional to the fractional-order value.
Some properties and theorems will be investigated. As an inverse of the fractional-
order derivative operator, the integral of fractional order will be introduced. Some
illustrative examples will be given.

Keywords Fractional derivative + Fractional integral

1 Introduction

Non-integer calculus is the calculus of differentiation and integration of arbitrary
orders (real or complex), called fractional-order derivatives and integrals, which
generalizes the concept of differentiation and fold integration of integer-order [19,
21]. The history of non-integer calculus set out approximately in the meanwhile when
the traditional calculus was recognized. It was early reported in a letter between the
mathematical geniuses Leibniz and L’Hopital in 1695, where the semiderivative’s
idea was proposed. From that time forward, a lot of well-known physicists and
mathematicians have mainly investigated fractional-order derivatives and integrals
in a purely mathematical context, without its real applications, the basic concepts
being connected with the names of Grunwald, Letnikov, Riemann, Abel, Liouville,
and many more. But over the past few decades, it was turned out that the non-integer
calculus has gained much attention as a result of its common appearance in different
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implementations in the scopes of engineering, electrical networks, fluid mechanics,
diffusive transport, control theory, optics and signal processing, etc. [1-5, 7, 8, 16,
26, 27]. It should be noted that in current literature the terms “derivative” is used for
positive orders and “integral” (for negative orders).

In the scope of mathematics, there exist several definitions of fractional-order
differentiation and integration in the literature presently, involving Caputo [9, 10],
Riemann-Liouville [11, 20], Criinwald-Letnikov [14], Riesz [24, 25], Weyl [6, 24,
25], Jumarie [15], Hadamard [24, 25]. The most famous definition that has been popu-
larized is due to Riemann and Liouville, which depends in its construction on the nth-
Cauchy’s integral formula that relies only on a straightforward integration. The def-
inition is obtained as follow: Leta, T, @ € R such thata < T, n = max{0, [a] + 1}
and f(¢) be an integrable function on (a, T'). For n > 0, if f(¢) is n-times differen-
tiable function on (a, T') except on a set of measure zero, then fort € (a, T)

RD“f()—

d"/ o
(

dx =
—a) dt t—x)* (t — x)a—ntl dtn

[RI;"“f(t)] (1)

where [ is the fractional integral operator of order o > 0. In particular, this operator
can be outlined as the convolution integral of the function t*~! and the function f
itself, i.e.,

1 t
Rya a—1
I°f(t)= — | t— d 2
O] F(a)/a( X)) f(x)dx )
where I"(-) is the gamma function, which is defined by
oo
I'(z) =/ e 't ldr, Re(z) > 0. (3)
0

In fact, formula (2) is a generalized formulation of the following Cauchy’s formula
for repeated integration of a continuous function f on R, if « € N and (n — 1)! is
replaced by its generalization I («), see [22]:

/‘ /f " F(s)dsedsy_y . dsyds) = 1)|/ s — 1y F(ydr,

4)

forneN,a,s eR, s > a.
On the other hand, if « = k with k € N, then we have n = k 4 1 and also we get

k+l f(t)
R Nk
Dt f(1) = m) i / f@)d . )

A useful alternative operator for the fractional-order Riemann-Liouville deriva-
tive operator was introduced originally by Caputo in 1967. This operator was then
approved by Mainardi and Caputo in 1971 to be called later on by the fractional-order
Caputo derivative operator. The definition of this operator can be defined as
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AL

C na _
Daf(t) - Trn—oa) J, t— x)e—n+l

dx, n—l<a<n (6)

Itis clear that the fractional-order Caputo derivative operator is more limiting than
the fractional-order Riemann-Liouville derivative operator. This is because it needs
the existence of the nth-derivative of the function under consideration. At the same
time, it is worth noting that the functions that not having the 1st-order derivative could
have, in view of Riemann-Liouville sense, derivatives of fractional-order values less
than one. In addition, it should be also noted that the fractional-order derivative of
an arbitrary function does not need to be a continuous function at the origin and it
does not need to be differentiable too.

However, the Caputo operator has confirmed its ability to greatly match with
observational data that is typically used to describe the performance of several engi-
neering and applied science problems. It is very important to point out that the
Riemann-Liouville definition has certain drawbacks and limitations, especially in
describing several real-life applications. This actually backs the fact that asserts
these applications need certain definitions of the fractional-order derivative that can
allow the usage of initial conditions that are physically interpretable. For instance,
the fractional-order Riemann-Liouville derivative operator of a constant function
does not equal zero. Besides, the fractional-order derivative of a given function will
have a singularity at the origin, whenever it is constant at the origin. In this regard,
it has been shown that the Caputo operator is highly advantageous for such tasks.
In particular, such operator has an ability of using the initial conditions reported for
the problems formulated by using certain differential equations of fractional order.
Moreover, the fractional-order derivative of a constant function is zero by using this
operator.

To this point, we have introduced two expressions of the fractional-order derivative
operators. Actually, the existence of several expressions of the identical notion raises
the query, are these definitions equivalent? The brief reply to this query in general
is no, although the differentiation and integration operators are interchanged in the
corresponding definitions of the Caputo fractional derivative and Riemann-Liouville
fractional derivative. More particularly, it can be noted that, with the help of using
Riemann-Liouville operator, the function at hand is first integrated n — «-times and
then differentiated n-times. On the other hand, with the help of using the Caputo
operator, the same function is first differentiated n-times and then integrated n — «-
times. In general, the two aforesaid definitions cannot be coincided. That is

Kp*f # D" f. (7

However, it was shown in [13] that the above two definitions can be coincided if and
only if the function f(x) together with its first n — 1-derivatives vanish at x = 0.
More precisely, fort > 0,n — 1 <« < n,and n € N, we have
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n—l k—a
‘DUfy= "D fw) -}

k=0

®)
Fhtl—a) 100). ®)

Proposition1 Letn — 1 <a <n,n €N, a € Rand f(t) be a function such that

€ D% f(t) exists. Then the following properties for the Caputo fractional derivatives
hold:

lim “D*f@) = f"), ©)
lim “DYf(t) = f" V@) — £ D(0). (10)
a—n—1*1

In the same regard, it should be mentioned here that there is another operator
for computing the fractional-order derivatives. This operator is called the Criinwald-
Letnikov operator. It can be obtained under the assumption that assumes the function
f (t) must be n-times continuously differentiable on [a, t]. However, the Criinwald-
Letnikov operator can be defined as follows:

n—1 (k) t (n)
DRI S AL R — 10w
= (—a+k+1) rm—a) J, t—x)*"+
(1)
Therefore, by considering a category of functions f(¢), possessing n-continuous
derivatives for ¢ > 0, as well as by means of carrying out some differentiations and
frequent integrations by parts, the Riemann-Liouville operator can be inferred by the
Criinwald-Letnikov operator.
It should be mentioned that all the definitions of fractional derivatives above
satisfy the linearity property, that is

D(uf (x) + Ag(x)) = uD® f (x) + AD*g(x). (12)

Recently in 2014 in [18], a novel straightforward fractional-order derivative def-
inition called the conformable fractional derivative was proposed. This definition
agrees with the traditional definitions of Riemann-Liouville and Caputo in dealing
with polynomials. In particular, if f : [0, o0) — R, then the conformable fractional
derivative of order « of the function f can be outlined as follows:

l—ay _
T,/ () = lim fl et ) ) =IO =0, @ 0.1).  (13)

If f is a-differentiable in some (0, a), a > 0, and 1iI(§l+ f@(t) exists, then the frac-
r—
tional derivative at 0 is defined by £ (0) = 1ir(1)1+ f@(t). The authors in [18] proved
t—

some properties for the above definition. For example, they proved that if f is differ-
entiable, then T,,(f)(¢) = '~ f’(¢). However, the zero-order derivative of a function
does not return the function, i.e., Tp f () # f(¢), see [17, 23]. Besides, the derivative
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reported in (13) does not verify the index law; T, Tg f () # Ty1p f (¢) for general o
and B, and it does not verify the generalized Leibniz rule. However, it verifies the
product rule,

To(f9) = fTa(9) + 9Ta(f). (14)

Furthermore, the definition given in (13) satisfies the interpolation property. In other
words, for 0 < a < 1, we have

lim T, f(¢) af lim T, f(¢) tdf (15)
im T, = -, im T, =tr—.
a—1- dt a0t dt
Forn —1 <o <n:
. d"f . d'f
o Tl 0 = G N TS O = 1

In addition, the author in [18] proved similar results to the classical Mean Value
Theorem and Rolle’s Theorem.

The organization of this article is arranged in the following manner: In the next
section, we propose a new definition of the derivative of order « where « € [0, 1],
and a general definition of derivatives of higher order, then we prove some important
properties. In Sect. 3, we introduce a generalized definition of the integral of order
a. We conclude the paper with some remarks in Sect. 4.

2 Fractional Derivative

In this section, we give our new definition of the derivative of order « of a continuous
function f at a point x and prove several results that are close to those found in
classical calculus.

Definition 1 Let f(x) be a continuous function on the interval (x — €, x + €) where
€ > 0. The derivative of order « € [0, 1] is defined by

D f(x) = c(ll‘"T{: _ }lllg%) af(x+h) + [(1h— a)h —alf(x)

a7)

If the derivative of f of order « exists, then we will say that f is a-differentiable.
Notice that if a function f(x) is differentiable on an interval [a, b] then the derivative
D f is defined. This leads to the following theorem.

Theorem 1 Let f(x) be a continuous function on the interval [a, b]. If0 <« <1
and x € [a, b, then D* f(x) exists if and only if f'(x) exists. Consequently,

Dfx)=(1—-a)f(x)+af'(x), O0<a <. (18)
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Proof Letx € [a, b]. First assume that D f (x) exists, hence the limit in (17) exists,

and

o %@)w + 0 -a)f(x) =D"f(x) (19)
hence,

fim JETD SO e =l e, (20)

h—0 h o o

This implies that
—1 1
£ = an(x) + =D f(x) @)

exist. Conversely, assume that

Ja+h—-fx

flx) = }LI_I)I}) Y (22)
exists, then
lim fOx+h)— fx) +(1—a)f(x) = lim af(x+h)+[(1 —a)h — o] f(x)
h—0 h h—0 h
(23)
exists.

It follows that, if a function f is «-differentiable, o € (0, 1] at x, € (a, b), then
f is continuous at x,,.

Example 1 Using formula (18) we can compute the derivative of order « of some
functions, for example:

. Let f(x) = c, the constant function. Then D*(f) = (1 — a)c.
Let f(x) = Ax + B. Then D*(f) = (1 — a)(Ax + B) + ¢ A.
Let f(x) = x”. Then D*(f) = (1 — a)x? + apxP~L.

Let f(x) = e*. Then D*(f) = e*.

B =

For higher order derivatives case we can generalize the definition to the following:

Definition 2 Let n be a positive integer and « € [n,n + 1]. If f(x) isan n + 1
differentiable on [a, b], then

Dozf — }111_133)% ((I’l +1—a) (f(n—l)(x +h) — f(n—l)(x))
+—n) (f"0+h) = "W).

(24)

Similar argument used in Theorem 1 shows that
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dotf dnf dnJrlf
= 1— - .
dx® (n + ®) dx" +@—n) dxnt!

D*f = (25)
We notice from Definition2 of the fractional derivative of order « that when the
parameter « varies from the integer n to the integer n + 1 then the fractional derivative
of order o varies continuously from the n’h derivative to the (n)" derivative with

dnf dn-Hf
lim D*f = and Iim D%f = —>
ozlnfr f dx" i a—>ln+l’ f dxntl
and hence p
lim D* f = f.
a—n dx"

This desired property is not confirmed in many other definitions of the fractional
derivative. For the illustration of this property see Fig. 1.

It can be shown that in the case of « is an integer, this definition reduces to the
standard definition of the n'-derivative of f(x). This shows that our definition of
the derivative of order « is a generalization of the integer-order derivative. Now we
are going to obtain some general properties of our new definition of the derivative of
order «. First, the linearity of the differential operator D® is ensured by the following
theorem:

Theorem 2 Let n be a non-negative integer and o € [n,n + 1]. If f(x) and g(x)
are two functions such that both D f and D* g exists. Then the derivative of order
o is a linear operator, i.e.,

D* (A f(x) + ng(x)) = AD® f(x) + uD*g(x), (26)
for any constants X, .

Proof The proof follows directly from Eq.(25) and the linearity of the limit.

This definition of the derivatives of order « carries with it some important prop-
erties, that will show importance when solving equations involving integrals and
derivatives of general order.

Proposition 2 (The Product Rule of Fractional Derivative)

1. If0 <« <1, and f, g are two differentiable functions, then

D(fg) =a(fg + flg)+A—a)fg. (27)

2. Let n be a non-negative integer. If n <o <n+ 1, and f, g are two (n + 1)-
differentiable functions, then
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n+1 n
DU(fg)=(@—n) Y (D'f) (D" g)+ m+ 1) Y (D'f) (D" *g).
k=0 k=0

(28)

Proposition 3 (The Iterated Fractional Derivative) Let n be a non-negative integer,
and n < a < n+ 1. We denote the 2"-iterated fractional derivative D* D* f by
(D)2 f. Then

(Dot)Zf — (a _ n)Zf(2n+2) + z(a _ l’l)(n + 1— a)f(2n+l) + (}’l + 1— a)Zf(Zn).
(29)
In general, for a positive integer k, we write (D*)K f = D*D® ... D® f, k times, then
the kth-iterated derivative of f is given by

k
(D' f =3, <'J‘> (@ =) (41— o)~ fOD, (30)
j=0

The following theorem shows that the derivative of order « defined in (24) is com-
mutative.

Theorem 3 Let n, m be two non-negative integers, and f be an (n + m + 2) differ-
entiable function on (a,b). If« € [n,n + 1] and B € [m, m + 1], then

DD f(x) = DPD% f(x), Vx € (a,b). (31)
Proof To begin with, let x € (a, b), if we apply (25) twice we get

D (DF f(x)) = D*((B —m) f"V(x) + (m + 1= B) f™V)
= (@ =m)(B —m) [ (x)
+a—n)m+1—pg)f " (x)
+n+1—-a)B — m)f(n+m+1)(x)
o+ 1 —a)m+ 1= p)fO ().

Similarly,

DF (D £(x)) = DP (@ — ) f™V(x) + (n + 1 — ) fO)
=B —-—m)(a— n)f(n+m+2)(x)
+(B—m)(n+1—a)f" D (x)
+m+1—pB)(a—n) ()
+m+1—Bm+1—a)f"™(x).

Hence, D“Dﬁf(x) = DﬂD“f(x), for any x € (a, b).
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We noticed that the definition (18) is equivalent to the classical definition of the first
derivative of a function f. This suggests that there are corresponding results similar
to the classical Rolle’s theorem and the Mean Value theorem for the derivative of
order « definition, as we prove in the next theorems.

Theorem 4 (Rolle’s Theorem for Derivative of Order «) Let f : [a,b] — R be a
continuous function on [a, b] and «-differentiable on (a, b) for some o € [0, 1]. If
f(a) = f(b), then there exists ¢ € (a, b) such that

D*f(c) = —a)f(o). (32)

Proof Since f is «a-differentiable for o € [0, 1] then f is differentiable on (a, b).
Hence, by the classical Rolle’s theorem, there exists ¢ € (a, b) such that f'(c) = 0.
Consequently, by Eq. (18),

Dfe)=af'@O+U-a)fl)=1-a)f(c), O0<a<l (33)
completing the proof.

The following result is a direct consequence of the ordinary mean value theorem.

Theorem 5 (Mean Value Theorem for Derivative of order «) Let f : [a,b] — R

be a continuous function on [a, b] and differentiable on (a, b). Then there exists
c € (a, b) such that

+(1—-a)f(), O<a<l. (34)

D*f(c) =« (M)
b—a

Proof The asserted conclusion follows directly by applying Eq. (18).

The following theorem is a general version of Rolle’s theorem for the derivative of
order o.

Theorem 6 (Generalized Rolle’s Theorem for Derivative) Let f : [a, b] — R be a
continuous function on [a, b] and n times differentiable on (a, b). If f(x) = 0 at the
n + 1 distinct points {x;}}_, suchthata < xo < x; < -+ < X, < b, then there exists
¢ € (xo, X,), and hence in (a, b), such that

Df(c)=(n—a)f" (), (35)

forany o € [n — 1, n].

Proof Since f is n-times differentiable on (a, b) then by the ordinary generalized
Rolle’s theorem [12, p. 549], there exists ¢ € (a, b) with f®(c) =0.Ifn — 1 <
a < n, then by (25) we have
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Dfc)=(—n+DfPC)+mn—-a)f" V), n—1l<a<n (36)

simple computations leads to (35).

Proposition 4 [f f is n-differentiable at a point x = c, for some positive integer n,
and

f@=f©=f'tc)=-=f"0), (37)

then D* f(c) = f(c) for any @ € [0, n].

Proposition 5 [f f is differentiable on [a, b], and f(x) € [c,d], f'(x) € [c, d], for
all x € [a, b), then D f(x) € [c,d] forall x € [a, b] and o € [0, 1].

The following propositions give some geometric representations of the derivative
of order o defined in the Definition 1.

Proposition 6 Let f be differentiable on [a, b].

(a) If f(x) < f'(x) for all x € [a, b), then f(x) < D*f(x) < f'(x) for all x €
la, b], x € [0, 1],

(b) If f'(x) < f(x) for all x € [a, D], then f'(x) < D*f(x) < f(x) for all x €
[a, b], @ € [0, 1].

‘We note that proposition 6 stated that the graph of D* f(¢) for 0 < o < 1 always
lies between the functions f (z) and f’(¢), for example, the fractional derivative using
our definition for f(¢) = % sin(¢?) for different values of « is shown in Fig. 1.

Proposition 7 If f is twice differentiable on [a, b] and f and f' are increasing
(decreasing) on [a, b], then the graph of D* f is increasing (decreasing) on [a, b],
forall o € [0, 1].

N
=0
\?\ \a: 0

-1.0+-

Fig. 1 The graph of D% f(¢) where f(t) = % sin(r2) for @ = 0,0.2,0.5,0.7, and 1
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Proposition 8 If f is 3"-differentiable on [a,b] and f and f' are concave up
(concave down) on [a, b], then the graph of D® f is concave up (concave down) on
[a, b, for all @ € (0, 1).

Proposition 9 Fora € [0, 1],

(1—-a) (Area between f(x) and D“f(x)) = a(area between f'(x) and Daf(x)).
(33)

Proof The area between f(x) and D® f(x) over an interval / is given by

/IID"‘f(x)—f(X)Idx:/II((l—a)f(X)+af’(x))—f(X)|dx=a/1 1) — f/ldx. (39)

Similar computations gives that the area between f’(x) and D“ f(x) over the
interval 7 is (1 — &) f | f(x) — f'(x)| dx, the conclusion follows immediately.
1

Recall that a continuously differentiable function is monotone in some interval
[a, b] if and only if its first derivative does not change its sign there. We now state
general results involving derivatives of order o holds, the proofs are based on the
standard definition of limits and the fact that f'(x) = lin1l D* f (x).

1

Proposition 10 Let f € C'[a, b].

1. If there exists o, € [0, 1) such that D* f(x) > O for all x € [a, b] and every
o € (g, 1), then f is increasing on [a, b]. ,

2. If there exists a, € [0, 1) such that D* f(x) < O for all x € [a, b] and every
o € (o, 1), then f is decreasing on [a, b].

Proposition 11 Letr f € C'[a, b].

1. If f is increasing on [a, b] then for x € [a, b] there exists a, € (0, 1) such that
D* f(x) > 0forall @ € (ay, 1).

2. If f is decreasing on [a, b] then for x € [a, b] there exists o, € (0, 1) such that
D*f(x) <0forallx € (o, 1).

Proposition 12 Ifforall x € [a, b], D* f(x) = 0and D* f (x) = 0 for somea, B €
[0, 1] with a # B, then f(x) = 0 forall x € [a, b].

Proposition 13 Ifa € (0, 1) then the Laplace transform of f(x) is given by

LD f}=L{d-a) f +af} (40)
= (a(s — D+ DF(s) — f(0), (41)

where F(s) is the Laplace transform of f, and for a € (n,n + 1), the Laplace
transform of f (x) is given by
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k=0

n—1
LD fYl=m+1—0a) (s"F(s) - Zs"*k f<’<>(0)>

k=0

+(a — n) (s"“F(s) - Zs"“*k f<’<>(0)> .

3 Integral of Order «

Now we introduce a generalized definition of the integral of order « as follows:

Definition 3 Let f(¢) be a function defined on [a, x]. If 0 < o < 1, then the integral
of order « of f is defined by

1 [~ 1—
) =~ / exp[(T“) (r—x)] F@ydr. 42)

a

Observe that the integral of a continuous function f is an anti-derivative of f. We
prove this property in the next theorem.

Theorem 7 Let f be a continuous function such that I f (x) exists o € (0, 1]. Then
DI f(x) = f(x), x>a.

Proof Since f is continuous, then I f is differentiable, hence, By (18) we have

D*(I7f)=u«

d(I*
([;f) AU f) = f), 43)

d

solving we get

I°f = é/exp[(%) (t—x):| F@)dt + cexp [(1;a)x:|, (44)

where c is an arbitrary constant. Setting the constant ¢ to be zero we get (42), with

D% f(x) = f(x).

Definition 3 can be generalized for the integral of higher order as follows:

Definition 4 Let f(¢) be a function defined on [a, x]. If n < @ < n + 1, then the
integral of order « of f is defined by

fe) = — /x(x _ sl /Sexp [(m) G —s)i| f(0)dt ds.
n—Dla—n) J, a o —n
(45)
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Similar argument used in the proof of Theorem (7) can be used to show that the defi-
nition above satisfies the property D*I f (x) = f(x) forall x > a.Indeed, consider

d"i(1e f) d"(I3 f)
(oc—n)w—i—(n—l-l—o{)W:f(x), (46)
equivalently,
d (d"(;[) a"(3 f) _

Solving, we get

aagf) _ 1 /"exp[<m>(t_x)]f(t)d,ﬂexp(mx),
dx" oa—nJg, o—n o—n
(48)

where c is an arbitrary constant. Integrating the last expression n-times, and setting
the arbitrary constants to be zero, we obtain (45).

Theorem 8 Let f be a-function for a € (0, 1). Then for all x > a we have

-1
17 (D f(x)) = f(x) — f(a) exp [(QT) (x — a)] .

Note that Theorems 7 and 8 show that the derivative of order « and the integral of
order « of a function f on [a, b] are inverse of each other provided that f(a) = 0.

4 Illustrative Examples

Example 2 D%(e*) = ¢* for any o > 0. This desired property cannot be satisfied
with other definitions.

Example 3 Consider the following initial value problem: D'/2y = 1, y(0) = 1.
This equation can be reduced to: Z—)yc + y =2, y(0) = 1, which has the solution:
y=2—e¢e".

Example 4 Consider the following differential equation: D¥?y — D'/2y = 0.

This equation can be reduced to: % — y = 0. The initial value problem has the

general solution: y = cje* + ce™™ .
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Conclusion

In this work, a novel definition of the fractional-order derivative operator has been
presented. It has been found that the proposed definition is an extension of the
classical operator. The following properties have been inferred:

1.

T N NN

. limg_,, DY f = 4

For n is a non-negative integer and n < o < n + 1 we have:
an dn+]
DUf = (n+1—a)Gh + (@—n) gk

- dX"
Sum rule.

Product rules.

. Commutative rule.

It is clear that solving fractional differential equations with the pro rata definition

is easier than solving such equations with some other definitions. The computing of
Laplace transforms and other transforms is also easier than computing them with
some other definitions. The fractional-order integral operator has been also defined.
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Investigating Multicollinearity in Factors )
Affecting Number of Born Children L
in Iraq

Salisu Ibrahim®, Mowafaq Muhammed Al-Kassab®),
and Muhammed Qasim Al-Awjar

Abstract The occurrence of multiple multicollinearities in many multiple regression
models leads to significant problems that can affect the results of the entire multiple
regression model, and among the problems is the low accuracy of the estimated
coefficients, which reduces the statistical power of the model. The effect of sensitivity
on the estimated coefficients is due to a small swing in the model. This paper discusses
the two basic approaches to defining a multilinear relationship. The first approach
is the correlation coefficient (CC) and the second is the variance inflation factor
(VIF). Hill regression, principal component regression, intention root regression,
and weighted regression are advanced regression models to investigate the existence
of multiple multicollinearities, and these results will process, reduce and stabilize
the multiple multicollinearities between independent variables, and help predict the
best-fit model. Finally, we came up with the best suitable model.

Keywords Multiple regression + Multicollinearity - Correlation coefficient *
Variance inflation factor Smoking mother

1 Introduction

Multicollinearity occurs when explanatory variables in a regression model are corre-
lated. This correlation is a problem because independent variables should be inde-
pendent. If the degree of correlation between variables is high enough, it can cause
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problems when you fit the model and interpret the results [1]. A key goal of regres-
sion analysis is to isolate the relationship between each independent variable and
the dependent variable [2]. Multicollinearity makes it hard to interpret your coeffi-
cients, and it reduces the power of your model to identify independent variables that
are statistically significant. These are serious problems. However, the good news is
that you don’t always have to find a way to fix multicollinearity [3]. Several studies
examined and discussed the problems of multicollinearity for the regression model
and also emphasized that the major problem related to multicollinearity comprises
uneven and biased standard errors and impractical explanations of the results [4-6].

In this paper, we considered the correlation coefficient (CC) and the variance
inflation factor (VIF) approaches for identifying the multicollinearity among the
independent variables, in the year 2015. Multiple regression is considered for the
prediction of the best models. Based on the results, we discovered that there is multi-
collinearity among the factors, these necessitate the use of CC and the VIF approaches
to tackle, reduce, and fixed the multicollinearity among the independent variables.
Lastly, we came up with the best-fitted model. This paper is scheduled as: Sect. 2
provides the methods for investigating multicollinearity. The results and diagnosed
multicollinearity are presented in Sects. 3 and 4, respectively. The conclusion follows
in Sect. 5.

2 Materials and Methods for Investigating
Multicollinearity

In this section, we present the materials and methods used for investigating the multi-
collinearity within the independent variables. The dataset was selected at random
from 100 women’s records, moreover, the dataset used in this study is collected from
the Babil Governorate health center [7]. The independent variables (IVs) are husband
age, mother weight, the mother age, years of marriage, smoking mother, number of
dead children, the mother age when married, number of sports hours per week, the
mother with the thyroid gland, the mother sleeping hours per week, the mother taking
medicine, breastfeeding duration per month, and mother job, while the dependent
variable (DV) is the number of born children. Other factors like financial assistance,
chronic illness (breast cancer), stress due to job, illegal drug, and house activities
can be among the leading risk factors affecting the number of born children. These
factors lead to serious health conditions that make one vulnerable to Covid 19, see
[8]. When it comes to the application perspective, the authors in [8—10] make use of
commutativity to study the relation and the sensitivity between systems, the idea can
be extended to investigate the commutativity and sensitivity between the indepen-
dent variables, The main aim of this research is to investigate multicollinearity using
some techniques such as i) correlation coefficient and ii) variance inflation factor.
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2.1 Correlation Coefficient

Pearson’s correlation coefficient (also called Pearson’s R) is a relationship coefficient
regularly utilized in direct relapse. The formula of the Pearson correlation coefficient
is given as
L& -D0i—Y)
NI VN

(D

where n is a sample size, r is the correlation coefficient, y; and x; are dependent and
independent variables indexed in i, respectively. If the correlation coefficient value
is higher with the pairwise variables, it indicates the possibility of collinearity. In
general, if the absolute value of the Pearson correlation coefficient is close to 0.8,
collinearity is likely to exist [11].

2.2 Variance Inflation Factor (VIF)

Variance Inflation Factor (VIF) is a simple way to detect multicollinearity in
a regression model, it is used to determine the correlation between independent
variables. The VIF measures how much the variance is inflated. VIF is calculated as

1 1
VIF; = = . 2
! 1— Rlz]. Tolerance &

Please observe that the higher the tolerance, the lower the VIF, and the limited
possibility for multicollinearity among the variables. The VIF with the value of 1
clearly shows that there is no correlation between the independent variables. But
if the VIF has a value within 1 < VIF < 5, it suggests that there is a moderate
correlation between the variables, with VIF between 5 < VIF < 10, it indicates
multicollinearity that needs corrective action, and VIF > 10 are indications of severe
correlation between the variables, with critical levels of the multicollinearity [12].

2.3 Multiple Linear Regression

The multiple linear regression model is given as

13

> Bo+ B +ei. 3)

j=1
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where By, f; are the unknown constants, x; are the IVs, y is the DV and ¢; is the error
term that has a normal distribution with mean o and variance o2. The mother age
(x1), the mother age when married (x,), mother weight (x3), smoking mother (xy),
husband age (xs), years of marriage (x¢), number of dead children (x7), number of
sports hours per week (xg), the mother with the thyroid gland (x9), mother sleeping
hours per week (x19), the mother taking marriage (x;1), breastfeeding duration per
week (x12), and mother job (x13) are the IVs and also the number of born child (y) is
the DV.

3 Results

The author in [13] discusses some primary techniques for detecting multicollinearity
using the questionnaire survey data on customer satisfaction. In this section, we
statistically detect the multicollinearity among the independent variables using the
correlation coefficient method in Eq. (1), VIF in Eq. (2), and lastly with the help of
multiple linear regression in Eq. (3).

3.1 Investigating Multicollinearity Using Pairwise Scatterplot

The scatterplot is one of the methods used for detecting multicollinearity by observing
the relationship between the variables. The dots depicted in Fig. 1 represent the values
of two variables.

Matrix Plot of C1, C2, C3, C4, C5, C6, C7, C8, C9, C10, C11, C12, C13, C14
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Fig. 1 Scatterplot of pairwise variables
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3.2 Investigating Multicollinearity Using Pearson’s
Correlations

Pearson’s correlations are a very important method used to investigate collinearity
between the independent variables. Table 2 shows the relationships in terms of
collinearity between the independent variables. The results obtained from the overall
correlation detected the collinearity between the variables, the most highly correlated
variables are (x}), (x3), (x5), and (xg). The mother age (x;) versus mother weight (x3)
has [r = 0.638, c.f = (0.505, 0.741), p < 0.05], the mother age (x;) versus husband
age (xs) has no logical relation, the mother age (x;) versus years of marriage (x¢) has
[r=0.932, c.f = (0.9, 0.954), p < 0.05], the mother weight (x3) versus husband age
(x5) has no logical relation, the mother weight (x3) versus years of marriage (x¢) has
[r =0.597, c.f = (0.451, 0.7101), p < 0.05], and husband age (x5) versus years of
marriage (xg) has [r = 0.850, c.f = (0.784, 0.897), p < 0.05]. The Pearson correla-
tion coefficient is close to 0.8, this shows the existence of collinearity between the
variables (Table 1).
The model is given as

y=—1.0340.294x; — 0.338x, — 0.0614x3 — 1.04x4 — 0.0310x5 4 1.38x7
- 00904X3 + 2.19X9 + 0.165)(10 — 1.75x11 + 0.246X12 + 0.521X13

The overall significance of the model is given in Table 3.

Table 1 Descriptive statistics

Variable N Mean SE Mean Median Mode
y 100 3.570 0.299 2.000 1
X1 100 31.030 0.838 30.000 22
X2 100 18.640 0.321 18.500 19
X3 100 68.520 0.894 67.000 67
X4 100 0.3800 0.0488 0.0000 0
X5 100 34.170 0.829 33.500 42
X6 100 12.390 0.883 9.500 3
X7 100 0.3400 0.0655 0.0000 0
X3 100 3.850 0.291 3.000 2
X9 100 0.0900 0.0288 0.0000 0
X10 100 8.0900 0.0740 8.0000 8
X11 100 0.3000 0.0461 0.0000 0
X12 100 23.210 0.276 24.000 24
X13 100 1.1700 0.0428 1.0000 1
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Table 3 Analysis of variance

Model DF Adj SS Adj MS F-value P-value
Regression 12 697.9 58.154 27.40 0.000
Residual error 87 184.656 2.122

Total 99 882.5

3.3 Investigating Multicollinearity Using Variance Inflation
Factor (VIF)

The variance inflation factor (VIF) identifies the correlation between independent
variables and the strength of that correlation. The regression analysis illustrated in
Table 4 detected multicollinearity by identifying variables with p-value > 0.05 and
VIF > 5. These results show that the mother age (x;), the mother age when married
(x2), mother weight (x3), smoking mother (x4), years of marriage (xg), number of
dead children (x7), the mother with the thyroid gland (x9), mother sleeping hours per
week (x10), and mother job (x;3) are statistically significant while husband age (xs),
number of sports hours per week (x3), the mother taking marriage (x;), breastfeeding
duration per week (x;,) are not statistically significant. Moreover, the model indicates
that the mother age (x;) and husband age (xs) has the highest VIFs of 10.8 and 11.7,

respectively. This indicates serious multicollinearity that requires removal.
The R-square is 79%.

Table 4 Regression analysis

Predictor Coef SE Coef T-value P-value VIF
Constant —1.030 2.658 —0.39 0.699

B 0.29400 0.05732 5.13 0.000 10.8
B> -0 0.05007 —6.76 0.000 1.2
B3 —0.06140 0.02669 —2.30 0.024 2.7
B4 —1.0369 0.4119 —2.52 0.014 1.9
Bs —0.03101 0.06052 —0.51 0.610 11.7
B+ 1.3775 0.2919 4.72 0.000 1.7
Bg —0.09044 0.05865 —1.54 0.127 14
Bo 2.1872 0.5818 3.76 0.000 1.3
Bio 0.1649 0.2215 0.74 0.459 1.3
B —1.7490 0.4640 —-3.77 0.000 2.1
B2 0.24604 0.05639 4.36 0.000 1.1
B3 0.5215 0.4549 1.15 0.255 1.8
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Table 5 Analysis of variance table and overall significant of the model

Model DF Adj SS Adj MS F-Value P-Value
Regression 11 697.296 63.391 30.12 0.000
Residual Error 88 185.214 2.105

Total 99 882.510

4 Diagnosed Multicollinearity

There are several methods to remove multicollinearity, the authors in [14, 15] studied
the application of latent roots regression to multicollinear data, but in this research, we
will consider i) removal of variables with high VIF and ii) removing non-significant
variables.

4.1 Diagnosed Multicollinearity by Removing High VIF

In our model, the mother age (x;) and husband age (xs) has the highest VIFs of 10.8
and 11.7 respectively. The correlation between the mother age (x;) and husband age
(x5) is significant with r = 0.918, see Table 2. So instead of removal both of them,
we keep the mother age (x;) with a VIF of 10.8 and remove the husband age (xs)
with VIF 11.7, we obtained a new model in Table 6. We can see that all the VIFs are
down to satisfactory values with (VIFs < 5). The model is given as

y=—0.86+0.2678x; — 0.3415x, — 0.0648x3 — 0.974x4 4+ 1.379x;
— 0.085xg + 2.186x9 + 0.157x19 — 1.745x1; + 0.2477x12 + 0.394x13

The overall significance of the model is given in Table 5.
The R-square is 79%.

4.2 Diagnosed Multicollinearity by Removing
Non-significant Variables

Removing the husband age (xs) with VIF 11.7 is not enough to predict the best model,
since we still have some variables such as the number of sports hours per week (xg),
mother sleeping hours per week (xo), and mother job (x;3) that are not statistically
significant in Table 7. This necessitates the removal of this variable. We can see
that after removing the non-significant variables, the p-values of all the variables are
down to satisfactory values with (p < 0.05) in Table 8. The model is given as
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Table 6 Regression analysis
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Term Coef SE Coef T-value P-value VIF
Constant —0.86 2.63 —0.33 0.745
B 0.2678 0.0259 10.34 0.000 222
By —0.3415 0.0495 —6.90 0.000 1.19
Bs —0.0648 0.0257 —2.52 0.014 2.49
Ba —0.974 0.391 —2.49 0.015 1.72
B 1.379 0.291 4.74 0.000 1.70
Bs —0.0850 0.0574 —1.48 0.143 1.31
Bo 2.186 0.579 3.77 0.000 1.31
Bio 0.157 0.220 0.71 0.478 1.25
B —1.745 0.462 —3.78 0.000 2.13
Bir 0.2477 0.0561 4.42 0.000 1.12
B3 0.394 0.379 1.04 0.302 1.24
y =0.89 4 0.2746x; — 0.3407x, — 0.0690x3 — 0.950x4
+ 1.382x; + 1.985x — 1.661x;; + 0.2349x;,
The overall significance of the model is given in Table 7.
The R-square is 78%.
Table 7 Analysis of variance
Source DF Adj SS Adj MS F-value P-value
Regression 8 689.73 86.216 40.70 0.000
Residual error 91 192.78 2.118
