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Generalized Neighborhood Systems
Approach for Information Retrieval
Systems

A. S. Salama and Radwan Abu Gdairi

Abstract We proposed in this paper a new decision information retrieval model
using rough sets that are generated by general binary relations. Thismodel depends on
generalized rough sets to dealwith the relevance among users’ queries and documents
of the information retrieval systems. The research problem of this paper is how we
close the interesting categories to the relevant terms of the interested categories. In
the classical information retrieval approach, there are only two cases namely relevant
documents and irrelevant documents. In the traditional rough set theory, document
stream is separated to some regions—positive, boundary, and the negative region.
In this paper, we used generalized membership relations to more classifications on
information retrieval documents that enable to divide the document stream into 16
different regions.

Keywords Information retrieval · Neighborhood systems · Rough sets ·
Document classification · Memberships relations

MSC 54A05 · 54B05 · 54D35 · 03B70

1 Introduction

Information retrieval problem happens after the board information does not exist. In
this paper, we are trading with classifying the most revealing portion of data on a
group of documents with the intention of obtaining the greatest outcome on a latter
uncertain bunching phase [1–4]. The aim is to find comparisons between the docu-
ments and a position board, and to find relations related to a non-literal nose. We
suggest putting on the famous entropy system and then displaying the latter dissimilar
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actions to the correct selection of the notice data [5, 6]. This process carries the main
quantity of information inside the minimum quantity of data. Spread over an exact
collection process for a collection of words springs additional information to distin-
guish and distinct the forms afterward using the entropy allowance. This revenues
significant outcome on the dispensation time and the right uncertain gathering of the
documents group [7–20].

Information retrieval (IR) applications can barely be assessed based on the
definitive test-gathering pattern; consequently, there is a need for new estimation
approaches. The evaluation process of IR includes user modeling, criteria, measures,
methodology, and new trends in IR evaluation [21, 22, 24].

There are many different definitions of IR measures, but some of them are in a
very special way, essentially the definition of a new metric must consist of some
basic stages:

• Beginning from the selected norm, suppose a fixed user attitude (e.g., interception
after a confirmed number of relevant documents).

• Define the objective (e.g., the least number of documents visible is the better).
• Know the basic metric that conforms to the preferences (e.g., accuracy).
• Moreover, one can suppose a collection of users and count a metric mean of these

metric values of this collection (e.g., for middle accuracy, it is presumed that at
every relevant document, the same number of users discontinue).

• Finally, for bringing the same result for a set of queries or meetings, a gathering
technique has to be picked (e.g., mathematical average).

2 Rough Set Theory

In this section, we give some facts about Pawlak rough sets that are needed in
this paper. In addition, we introduce the generalized neighborhood systems and we
generate some approximations that are used in information retrieval applications.

Pawlak in [23] defined the approximation space App = (U, R), where U is a
non-empty finite set and R is an equivalence binary relation on U . The lower and
upper approximations of a subset A ⊆ U are defined respectively as follows:

R(A) = {x ∈ U |[x]R ⊆ A},

R(A) = {x ∈ U |[x]R ∩ A �= ∅}.

The subsets [x]R form a partition of the universe U for all x ∈ U . The elements
surely belong to A are called the positive region of A and are denoted by POS(A) =
R(A). The elements surely not belong to A are called the negative region of A and
are denoted by NEG(A) = U − R(A). The elements that possibly belong to A are
called the boundary region and are denoted by B(A) = R(A) − R(A).
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The accuracy measure of a subset A ⊆ U in the approximation space App =
(U, R) is the division of the number of elements in the positive region of A by the
number of elements in the upper approximation of A. Then the accuracy measure by
symbols is given as follows:

αR(A) = |POS(A)|
|R(A)| , where

∣
∣R(A)

∣
∣ �= 0, |A| is the cardinality of A.

Another accuracy measure of approximations in Pawlak approximation spaces is
defined for any subset A ⊆ U as follows:

ρR(A) = 1 − |B(A)|
|U | .

In this definition, it is obvious that 0 ≤ ρR(A) ≤ 1. Moreover, if ρR(A) = 1 then
A is called R-definable (or R-exact) set. Otherwise, it is called R-rough.

Webelieve that the seconddefinition of accuracy is accurate thanPawlak definition
since the second considers the negative region and Pawlak used the positive region.
For representative, consider the following example.

Example 2.1 Let U={d1, d2, d3, d4, d5} be the universe of discourse and
R = {(d1, d1), (d1, d4), (d2, d2), (d2, d3), (d3, d2), (d3, d3), (d4, d1), (d4, d4) ,
(d5, d5)} is an equivalence relation onU . The equivalence classes of R are given by:
[d1]R = [d4]R = {d1, d4}, [d2]R = [d3]R = {d2, d3} and [d5]R = {d5}. Hence,
the partition induced by R is U/R = {{d1, d4}, {d2, d3}, {d5}}. Let A = {d2, d4}
be any subset of U . Thus R(A) = ∅ and R(A) = {d1, d2, d3, d4}. So we have
αR(A) = 0 and ρR(A) = 1/5. Obviously, ρR(A) is accurate than αR(A) since
the element of the set N (A) = {d5} is surely does not belong to A according to
R. Further, let B = {d1, d5}. So R(B) = {d5} and R(B) = {d1, d4, d5}. Hence
αR(B) = 1/3 and ρR(B) = 3/5. Clearly, ρR(B) is accurate than αR(B) since the
elements of the set N (B) = {d2, d3} are surely do not belong to B with respect
to R. Also, the element of R(B) = {d5} is surely belongs to B according to R.
Consequently, we can decide with full certainty that d5 ∈ B and d2, d3 /∈ B.
Accordingly, the accuracy should be equal to 3/5.

Membership functions are another approach to approximate concepts in rough
set theory. For any subset A ⊆ U , for all x ∈ U , Pawlak defined the membership
function μR

A(x) : U → [0, 1] as follows:
μR

A(x) = |[x]R∩A|
|[x]R | , where |[x]R| �= 0, |[x]R| is the cardinality of [x]R .

New rough membership functions are defined when the general binary relations
are used instead of equivalence relations in approximations as follows:

For any subset A ⊆ U , and for all x ∈ U , we define the general membership
function μR

A(x) : U → [0, 1] as follows:
μR

A(x) = |x R∩A|
|[x]R | or μR

A(x) = |Rx∩A|
|[x]R | , where x R = {y ∈ U | x Ry} and Rx =

{y ∈ U |yRx}.
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3 Generalized Rough Set Theory

Now we can generalize the equivalence relation to be non-equivalence by dropping
one of the three conditions on it (reflexively, symmetry, and transitivity). Suppose
that U is a non-empty finite set and let R be an arbitrary binary relation on U , then
the pair GApp = (U,R) is called a generalized approximation space.

For any generalized approximation space GApp = (U,R) the right neighbor-
hood and the left neighborhood of an element x ∈ U are defined as follows:

Nr (x) = {y ∈ U | xRy}, Nl(x) = {y ∈ U |yRx}.
The class of all right neighborhoods of x ∈ U is called the right neighborhood

system and is denoted by NSr (x) = {Nr (x) : x ∈ U }. Also, the class of all left neigh-
borhoods of x ∈ U is called the left neighborhood systemand is denoted by NSl (x) =
{Nl(x) : x ∈ U }. The union of the right and left neighborhoods of x ∈ U is called
mixed neighborhood system and is given by NSm(x) = {Nr (x) ∪ Nl(x) : x ∈ U }.
The mixed neighborhood of an element x ∈ U is denoted by Nm(x) such that
Nm(x) ∈ NSm(x).

Example 3.1 Let U = {d1, d2, d3, d4, d5} be the universe of discourse and let
R = {(d1, d1), (d1, d2), (d2, d3), (d2, d5), (d4, d3), (d4, d4), (d5, d2), (d5, d4) ,
(d5, d5)} be any binary general relation defined on U . Then we have
Nr (d1) = {d1, d2}, Nr (d2) = {d3, d5}, Nr (d3) = ∅, Nr (d4) = {d3, d4},
Nr (d5) = {d2, d4, d5}, NSr (d1) = {{d1, d2}}, NSr (d2) = {{d3, d5}},
NSr (d3) = {∅}, NSr (d4) = {{d3, d4}}, and NSr (d5) = {{d2, d4, d5}}. Also we
have Nl(d1) = {d1}, Nl(d2) = {d1, d5}, Nl(d3) = {d2, d4}, Nl(d4) = {d4, d5},
Nl(d5) = {d2, d5}, NSl(d1) = {{d1}}, NSl(d2) = {{d1, d5}},NSl(d3) =
{{d2, d4}},NSl(d4) = {{d4, d5}}, and NSl(d5) = {{d2, d5}}. Then the
mixed neighborhood systems are given by NSm(d1) = {{d1, d2}, {d1}},
NSm(d2) = {{d3, d5}, {d1, d5}}, NSm(d3) = {∅, {d2, d4}},

NSm(d4) = {{d3, d4}, {d4, d5}}, and NSm(d5) = {{d2, d4, d5}, {d2, d5}}.
More generalizations can be made using the right and the left neighborhoods of

an element x ∈ U as follows:

• ∩r - Neighborhood of x ∈ U is defined by ∩r (x) = ∩x∈Nr (y)Nr (y).
• ∩l - Neighborhood of x ∈ U is defined by ∩l(x) = ∩x∈Nl (y)Nl(y).
• ∩rl- Neighborhood of x ∈ U is defined by ∩rl(x) = Nr (x) ∩ Nl(x).
• ∪rl- Neighborhood of x ∈ U is defined by ∪rl(x) = Nr (x) ∪ Nl(x).
• ∩〈rl〉- Neighborhood of x ∈ U is defined by ∩〈rl〉(x) = ∩r (x) ∩ ∩l(x).
• ∪〈rl〉- Neighborhood of x ∈ U is defined by ∪〈rl〉(x) = ∩r (x) ∪ ∩l(x).

4 Generalized Neighborhood Systems

We develop a new series of definitions of the lower and upper approximation approx-
imations according to the general neighborhood systems. These new definitions are
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based on right, left, and mixed neighborhood systems. In addition, we give suitable
definitions of the accuracy measures of the given approximations.

For any subset A ⊆ U, in the generalized approximation space, GApp = (U,R)

we have.

• Right lower approximation of A is defined by
Rr(A)=∪{ Nr(x)| Nr(x) ⊆ A ,∀x ∈ U}.

• Right upper approximation of A is defined by
Rr(A)=∪{Nr(x)|Nr(x)∩A �= ∅,∀x ∈ U}.

• Left lower approximation of A is defined by
Rl(A)=∪{ Nl(x)|Nl(x)⊆A,∀x∈U}.

• Left upper approximation of A is defined by
Rl(A)=∪{ Nl(x)|Nl(x)∩A �=∅,∀x ∈ U}.

• Mixed lower approximation of A is defined by
Rm(A) = ∪{ Nm(x)|Nm(x) ⊆ A,∀x ∈ U}.

• Mixed upper approximation of A is defined by
Rm(A) = ∪{ Nm(x) |Nm(x) ∩ A �= ∅, ∀ x ∈ U}.

• ∩r− lower approximation of A is defined by
R∩r(A) = ∪{∩r (x)| ∩r (x) ⊆ A, ∀ x ∈ U}.

• ∩r− upper approximation of A is defined by
R∩r(A) = ∪{∩r (x)| ∩r (x) ∩ A �= ∅, ∀ x ∈ U}.

• ∩l− lower approximation of A is defined by
R∩l(A) = ∪{∩l(x)| ∩l (x) ⊆ A, ∀ x ∈ U}.

• ∩l− upper approximation of A is defined by
R∩l(A) = ∪{∩l(x)| ∩l (x) ∩ A �= ∅, ∀ x ∈ U}.

• ∩rl− lower approximation of A is defined by
R∩rl(A) = ∪{∩rl(x)| ∩rl (x) ⊆ A, ∀ x ∈ U}.

• ∩rl− upper approximation of A is defined by
R∩rl(A) = ∪{∩rl(x)|∩rl(x) ∩ A �= ∅,∀x ∈ U}..

• ∩〈rl〉− lower approximation of A is defined by
R∩〈rl〉(A) = ∪{∩〈rl〉(x)| ∩〈rl〉 (x) ⊆ A, ∀ x ∈ U

}

.
• ∩〈rl〉− upper approximation of A is defined by

R∩〈rl〉(A) = ∪{∩〈rl〉(x)| ∩〈rl〉 (x) ∩ A �= ∅, ∀ x ∈ U
}

.
• ∪〈rl〉− lower approximation of A is defined by

R∪〈rl〉(A) = ∪{∪〈rl〉(x)| ∪〈rl〉 (x) ⊆ A, ∀ x ∈ U
}

.
• ∪〈rl〉− upper approximation of A is defined

R∪〈rl〉(A) = ∪{∪〈rl〉(x)| ∪〈rl〉 (x) ∩ A �= ∅,∀ x ∈ U
}

.

For any subset A ⊆ U, in the generalized approximation space, GApp = (U,R)

we define the boundary, positive and negative regions of the subset A as follows:

• The boundary, positive and negative regions of a subset A using right neigh-
borhood are defined respectively by Br(A) = Rr(A) − Rr(A), POSr(A) =
Rr(A),NEGr(A) = U − Rr(A).
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• The boundary, positive and negative regions of a subset A using left neigh-
borhood are defined respectively by Bl(A) = Rl(A) − Rl(A), POSl(A) =
Rl(A),NEGl(A) = U − Rl(A).

• The boundary, positive and negative regions of a subset A using mixed neigh-
borhood are defined respectively by Bm(A) = Rm(A) − Rm(A), POSm(A) =
Rm(A), NEGm(A) = U − Rm(A).

• The boundary, positive and negative regions of a subset A using ∩r—neighbor-
hood are defined respectively by B∩r (A) = R∩r (A) − R∩r

(A), POS∩r (A) =
R∩r

(A), NEG∩r (A) = U − R∩r (A).
• Theboundary, positive andnegative regions of a subsetAusing∩l—neighborhood

are defined respectively by B∩l (A) = R∩l (A) − R∩l
(A), POS∩l (A) = R∩l

(A),
NEG∩l (A) = U − R∩l (A).

• The boundary, positive and negative regions of a subsetA using∩rl - neighborhood
are defined respectively byB∩rl (A) = R∩rl (A)−R∩rl

(A), POS∩rl (A) = R∩rl
(A),

NEG∩rl (A) = U − R∩rl (A).
• The boundary, positive and negative regions of a subsetA using∪rl - neighborhood

are defined respectively byB∪rl (A) = R∪rl (A)−R∪rl
(A), POS∪rl (A) = R∪rl

(A),
NEG∪rl (A) = U − R∪rl (A).

• The boundary, positive and negative regions of a subset A using ∩〈rl〉- neighbor-
hood are defined respectively byB∩〈rl〉(A) = R∩〈rl〉(A)−R∩〈rl〉(A), POS∩〈rl〉(A) =
R∩〈rl〉(A), NEG∩〈rl〉(A) = U − R∩〈rl〉(A).

• The boundary, positive and negative regions of a subset A using ∪〈rl〉- neighbor-
hood are defined respectively byB∪〈rl〉(A) = R∪〈rl〉(A)−R∪〈rl〉(A), POS∪〈rl〉(A) =
R∪〈rl〉(A), NEG∪〈rl〉(A) = U − R∪〈rl〉(A).

For any subset A ⊆ U, in the generalized approximation space, GApp = (U,R)

the accuracy measures are defined as follows:

• σr(A) = 1 − |Br(A)|
|U| ,

• σl(A) = 1 − |Bl(A)|
|U| ,

• σm(A) = 1 − |Bm(A)|
|U| ,

• σ∩r (A) = 1 − |B∩r (A)|
|U| ,

• σ∩l (A) = 1 − |B∩l (A)|
|U| ,

• σ∩rl (A) = 1 − |B∩rl (A)|
|U| ,

• σ∪rl (A) = 1 − |B∪rl (A)|
|U| ,

• σ∩〈rl〉(A) = 1 −
∣
∣
∣B∩〈rl〉 (A)

∣
∣
∣

|U| ,

• σ∪〈rl〉(A) = 1 −
∣
∣
∣B∪〈rl〉 (A)

∣
∣
∣

|U| .

In all the above measures we have that: 0 ≤ σ∇(A) ≤ 1, for ∇ ∈
{

r, l,m,∩r ,∩l ,∩rl ,∪rl ,∩〈rl〉,∪〈rl〉
}

. Moreover, if σ∇(A) = 1 then A is the exact
set otherwise, it is called rough.
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The following results are related to the 16 lower and upper approximations above.

Theorem 4.1 For any subset A ⊆ U, in the generalized approximation space,
GApp = (U,R) we have.

(i) Rm(A) = Rr(A) ∪ Rl(A),
(ii) Rm(A) = Rr(A) ∩ Rl(A),
(iii) Bm(A) = Br(A) ∩ Bl(A).

Proof Suppose an element x ∈ (Rr(A) ∪ Rl(A)
)

then x ∈ Rr(A) ∨ x ∈ Rl(A) .
Then, Nr(x) ⊆ A ∨ Nl(x) ⊆ A then ∃ Nm(x), such that Nm(x) ⊆ A, then

x ∈ Rm(A). then we have Rm(A) = Rr(A) ∪ Rl(A) . On the other hand, let
x ∈ Rm(A) , then there are two cases:

First case: x ∈ A yields x ∈ Rr(A) ∧ x ∈ Rl(A) , hence x ∈ (Rr(A) ∩ Rl(A)
)

.

Second case: x ∈ U − A. Then x ∈ Rm(A) , then ∀ Nm(x), Nm(x)∩A �= ∅. Hence,
( Nr(x) ∩ A �= ∅) ∧ ( Nl(x) ∩ A �= ∅), then x ∈ Rr(A) ∧ x ∈ Rl(A) . Then we
have, x ∈ (Rr(A) ∩ Rl(A)

)

. Suppose that x ∈ (Rr(A) ∩ Rl(A)
)

, then we have.
1- x ∈ A yield to x ∈ Rm(A).
2- x ∈ U − A. Then x ∈ (Rr(A) ∩ Rl(A)

)

, then ( Nr(x) ∩ A �= ∅) ∧
( Nl(x) ∩ A �= ∅), then ∀ Nm(x), Nm(p) ∩ A �= ∅, hence x ∈ Rm(A) . Hence,
Rm(A) = Rr(A) ∩Rl(A) . Finally, let x ∈ Rm(A), hence x ∈ (Rm(A) − Rm(A)

)

,
then x ∈ Rm(A) ∧ x /∈ Rm(A) . Since Rm(A) ⊆ Rr(A) ∩ Rl(A) and Rm(A) ⊇
Rr(A) ∪ Rl(A) . Then we have x ∈ (Rr(A) ∩ Rl(A)

) ∧ x /∈ (Rr(A) ∪ R1(A)
)

⇒ (

x ∈ Rr(A) ∧ x ∈ Rl(A)
) ∧ (

x /∈ Rr(A) ∧ x /∈ Rl(A)
)

⇒ (

x ∈ Rr(A) ∧ x /∈ Rr(A)
) ∧ (

x ∈ Rl(A) ∧ x /∈ Rl(A)
)

⇒ x ∈ (Rr(A) − Rr(A)
) ∧ x ∈ (Rl(A) − Rl(A)

)

⇒ x ∈ Rr(A) ∧ x ∈ Rl(A) ⇒ x ∈ (Rr(A) ∩ Rl(A)).

Therefore, Rm(A) ⊆ Rr(A) ∩ Rl(A).

Proposition 4.1 For any two subsets A, B ⊆ U, in the generalized approximation
space, GApp = (U,R) and for ∇ ∈ {

r, l,m,∩r ,∩l ,∩rl ,∪rl ,∩〈rl〉,∪〈rl〉
}

, we have

(1) R∇(A) ⊆ A.
(2) R∇(U) = U.
(3) R∇(∅) = ∅.
(4) A ⊆ B ⇒ R∇(A) ⊆ R∇(B).
(5) R∇(A ∩ B) ⊆ R∇(A) ∩ R∇(B).
(6) R∇(A ∪ B) ⊇ R∇(A) ∪ R∇(B).
(7) R∇(A) = U − R∇(U − A).

(8) A ⊆ R∇(A).
(9) R∇(U) = U.
(10) R∇(∅) = ∅.
(11) A ⊆ B ⇒ R∇(A) ⊆ R∇(B).
(12) R∇(A ∩ B) ⊆ R∇(A) ∩ R∇(B).
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(13) R∇(A ∪ B) ⊇ R∇(A) ∪ R∇(B).
(14) R∇(A) = U − R∇(U − A).

(15) R∇(A) ⊆ R∇(A).

Proof The proof of (1), (2), (3), (6), (7) and (8) follows directly from definitions.
(4) Let A ⊆ B and x ∈ R∇(A) , then ∃ N∇(x) such that N∇(x) ⊆ A. So

x ∈ R∇(A) ⊆ A ⊆ B . Thus we have x ∈ B and there exist N∇(x) such that
N∇(x) ⊆ A ⊆ B. Hence x ∈ R∇(B) and so R∇(A) ⊆ Rm(B) . Therefore, A ⊆
B ⇒ R∇(A) ⊆ R∇(B).

(11) Let A ⊆ B and x ∈ R∇(A) , then we have.

(1) x ∈ A ⇒ x ∈ A ⊆ B ⇒∈ B ⊆ R∇(B) ⇒ x ∈ R∇(B)

(2) x ∈ U − A. Then x ∈ R∇(A) ⇒ ∀ N∇(x), N∇(x) ∩ A �= ∅ and since A ⊆ B
thus we have ∀ N∇(x), N∇(x) ∩ B �= ∅ and hence we have

(a) x ∈ B − A ⇒ x ∈ B ⇒ x ∈ R∇(B).
(b) x ∈ U − B. So ∀ N∇(x), N∇(x) ∩ B �= ∅ ⇒ x ∈ R∇(B). Hence, by (1) and

(2), we have A ⊆ B ⇒ R∇(A) ⊆ R∇ (B).

(5) Let x ∈ R∇(A ∩ B) ⇒ x ∈ (A ∩ B), ∃ N∇(x), N∇(x) ⊆ (A ∩ B) ⇒ x ∈ A,

∃ N∇(x),N∇(x) ⊆ A ∧ x ∈ B, ∃ N∇(x), N∇(x) ⊆ B ⇒ x ∈ R∇(A) ∧ x ∈
R∇(B) ⇒ x ∈ R∇(A) ∩ R∇(B).

(6) (A ∩ B) ⊆ A=⇒ R∇(A ∩ B) ⊆ R∇(A) and (A ∩ B) ⊆ B =⇒ R∇(A ∩ B) ⊆
R∇(B) . So R∇(A ∩ B) ⊆ R∇(A) ∩ R∇(B).

(12) A ⊆ (A ∪ B)=⇒ R∇(A) ⊆ R∇(A ∪ B) and B ⊆ (A ∪ B) =⇒ R∇(B) ⊆
R∇(A ∪ B) . Hence R∇(A ∪ B) ⊇ R∇(A) ∪ R∇(B).

(13) Let x /∈ R∇(A ∪ B) , then x /∈ (A ∪ B) and x ∈ (A ∪ B)� ,∃ N∇(x), N∇(p) ∩
(A ∪ B) = ∅. So
x ∈

(

A� ∩ B�
)

, ∃ N∇(x), (N∇(x) ∩ A) ∪ (N∇(x) ∩ A) = ∅ . Thus.

x ∈ U − A∃ N∇(x), N∇(x) ∩ A = ∅ ∧ x ∈ B�, ∃ N∇(x), N∇(x) ∩ B = ∅ .

⇒ x /∈ R∇(A) ∧ x /∈ R∇(B) ⇒ x /∈ (R∇(A) ∪ R∇(B)
)

. Hence, we have
R∇(A ∪ B) ⊇ R∇(A) ∪ R∇(B).

(7) Let x ∈ R∇(A) ⇐⇒x ∈ A, ∃ N∇(x), N∇(x) ⊆ A ⇐⇒ x ∈
(

A�
)�

, ∃ N∇(x), N∇(x) ∩ A� = ∅ ⇐⇒ x /∈ R∇
(

A�
)

⇐⇒ x ∈
(

U − R∇(U − A)
)

. Hence R∇(A) =
(

R∇
(

A�
))�

.

(14) Putting U − A for A in (7) we have R∇(A) =
(

R∇
(

A�
))�

.

(15) Obviously, by (1) and (7) we get R∇(A) ⊆ R∇(A) .
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Remark4.1 For any two subsets A, B ⊆ U, in the generalized approximation space,
GApp = (U,R) and for ∇ ∈ {

r, l,m,∩r ,∩l ,∩rl ,∪rl ,∩〈rl〉,∪〈rl〉
}

the following
properties are not necessarily true:

(1) R∇(A) = R∇
(R∇(A)

)

.
(2) R∇(A) = R∇

(R∇(A)
)

.
(3) A ⊆ R∇

(R∇(A)
)

.
(4) R∇(A) ⊆ R∇

(R∇(A)
)

.
(5) R∇(A ∩ B) = R∇(A) ∩ R∇(B).
(6) R∇(A) = R∇

(R∇(A)
)

.
(7) R∇(A) = R∇

(R∇(A)
)

.
(8) A ⊇ R∇

(R∇(A)
)

.
(9) R∇(A) ⊇ R∇

(R∇(A)
)

.
(10) R∇(A ∪ B) = R∇(A) ∪ R∇(B).

The following example illustrates the meaning of Remark 1 for ∇ = m.

Example 4.1 by recalling Example 2, we have.

(1) For the subsetA = {d2, d5}, thusRm(A) = {d5} andRm

(RmA
) = ∅ . Clearly,

Rm(A) �= Rm

(Rm(A)
)

.
(2) For the subset A = {d1, d3}, then Rm(A) = {d1, d3} and Rm

(Rm(A)
) =

{d1, d2, d3, d4} . So, Rm(A) �= Rm
(Rm(A)

)

.
(3) For the subset A = {d4, d5}, therefore, Rm(A) = {d2, d4, d5} and

Rm

(Rm(A)
) = {d5} . Obviously, A��Rm

(Rm(A)
)

.
(4) For the subset A = {d1, d2, d4}, then Rm(A) = {d1, d4} and Rm

(Rm(A)
) =

{d1} . Thus, Rm(A) ��Rm

(Rm(A)
)

.
(5) For the subset A = {d3, d4, d5}, and B = {d1, d2, d3, d4}. Then Rm(A) =

{d3, d4, d5} , Rm(B) = {d1, d2, d3, d4} and Rm(A) ∩ Rm(B) = {d3, d4} .
But Rm(A ∩ B) = Rm{d3, d4} = {d3} . Therefore, Rm(A ∩ B) �= Rm(A) ∩
Rm(B).

(6) For the subset A = {d1, d4} then Rm(A) = {d1, d2, d4} and Rm
(Rm(A)

) =
{d1, d2, d3, d5} . Thus, Rm(A) �= Rm

(Rm(A)
)

.
(7) For the subset A = {d2, d5} then Rm(A) = {d2, d4, d5} and Rm

(Rm(A)
) =

{d5} . So, Rm(A) �= Rm

(Rm(A)
)

.
(8) For the subset A = {d3, d4, d5} then Rm(A) = {d3, d4, d5} and

Rm
(Rm(A)

) = {d2, d3, d4, d5} . Clearly, A��Rm

(Rm(A)
)

.
(9) For the subset A = {d1, d5} then Rm(A) = {d1, d4, d5} and Rm

(Rm(A)
) =

{d1, d2, d4, d5} . Thus, Rm(A) ��Rm

(Rm(A)
)

.
(10) For the subset A = {d1, d4} and B = {d2, d3}. Then Rm(A) = {d1, d2, d4}

Rm(B) = {d2, d3, d4} andRm(A)∪Rm(B) = {a, b, c, d} . ButRm(A ∪ B) =
Rm{a, b, c, d} = U . Therefore, Rm(A ∪ B) �= Rm(A) ∪ Rm(B).
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For any subset A ⊆ U, in the generalized approximation space, GApp = (U,R)

and for ∇ ∈ {

r, l,m,∩r ,∩l ,∩rl ,∪rl ,∩〈rl〉,∪〈rl〉
}

, the general membership function
is defined as the following way:

• x is ∇− surely belongs to A, written x∈∇ A if and only if x ∈ R∇(A) .
• x is ∇− possibly belongs to A, written x∈∇ A if and only if x ∈ R∇(A) .

According to this definition of general membership function, we can deduce that.

• If x∈∇ A, then x ∈ A,
• If x ∈ A, then x∈∇ A.

Using generalmembership function definitionwe can redefine the lower and upper
approximations for any ∇ ∈ {

r, l,m,∩r ,∩l ,∩rl ,∪rl ,∩〈rl〉,∪〈rl〉
}

as follows:
R∇(A) = {

x ∈ U : x∈∇ A
}

,R∇(A) = {

x ∈ U : x∈∇ A
}

.

Theorem 4.2 For any subset A ⊆ U, in the generalized approximation space,
GApp = (U,R), the following properties of the membership function hold:

1. x∈∩rl
A ⇒ x∈r A ⇒ x∈∪rl

A,
2. x∈∩rl

A ⇒ x∈l A ⇒ x∈∪rl
A,

3. x∈∪rl A ⇒ x∈r A ⇒ x∈∩rl A,
4. x∈∪rl A ⇒ x∈l A ⇒ x∈∩rl A,
5. x∈∩<rl>

A ⇒ x∈∩r A ⇒ x∈∪<rl>
A,

6. x∈∩<rl>
A ⇒ ∈∩l A ⇒ x∈∪<rl>

A,
7. x∈∪<rl> A ⇒ x∈∩r A ⇒ x∈∩<rl> A,
8. x∈∪<rl> A ⇒ x∈∩l A ⇒ x∈∩<rl> A.

Proof

1. Since x∈∩rl
A ⇒ x ∈ R∩rl

(A) , then x ∈ Rr(A) , hence x∈r A. Also, x∈r A, then
x ∈ Rr(A) ⇒ x ∈ R∩rl

(A) , then x∈∪rl
A.

By the same manner the rest of the theorem.

5 Construction of Information Retrieval System

The basic objective of developing an information retrieval system is to reduce the
stress of a user for obtaining needed information. This stress can be spoken as the time
a user applies in the entire stepladders primarily to interpret an article covering the
needed information. The achievement of an information system is actually particular,
based upon what information is desirable and the readiness of a user to accept results.

In the information retrieval system, the expression “is relevant to” is used to appear
the results containing the query of the user. In fact, the expression of "is relevant to"
is not a binary relation but it is a continuous function. From a system point of view,
the information must be suitable for the criteria of the seeking query.

Information retrieval is classically two basic stages are as follows:
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• In the first, we identify the possibly relevant documents.
• Second, we ranked the initiated documents.

Each information retrieval system has a numerous mechanisms as follows:

Indexing: A pre-process called indexing is required for documents from a corpus
to match a given query. To make searching more effective, a retrieval system stores
documents in a mental representation.

The greatest general data construction working by information retrieval systems
is called the inverted file (IF). Every entrance in the inverted file covers information
about only one term in the document group.

The indexing procedure includes numerous steps, which are defined as follows:

Coding: In this stage, documents text is analyzed and index words named codes are
produced. Furthermore, at this phase, all characters controlled in the signs are often
lower-cased and all punctuations are detached.

Removal of stop words: There are several common terms (e.g., “the”, “an”, “on”,
“of”,… and so on) that seem in almost all documents of a corpus. Removing the stop
words lets also decrease of the size of the produced document index. We eliminate
only non-relational stop words to achieve relation comprehensive searching.

Stemming: It would be useful for retrieval if documents comprising alternatives of
the query stretch were contained in an applicable document. Plurals, gerund forms,
and past tense suffixes are instances of syntactical differences that avert a faultless
competition between a query tenure and an individual document tenure.

Index Data Structure: The most generally used data structure is the overturned
index, which is a word-oriented instrument. Overall, the reversed index construction
covers two mechanisms: language and situation list. The terminology is a set of all
dissimilar terms removed from the corpus by the overhead steps.

QueryParser: It achieves codes, stemming, and stopwords elimination processes on
the query so that itwould be informal to achieve corresponding on indexed documents
for these query footings.

Matching: Several information retrieval models, such as the Boolean model,
vector space model, and probabilistic model, can approximate the significance of
a document to a given enquiry.

Ranking: Completely the retrieved documents are ranked rendering to their
implication groove using the produced educated ranking meaning.

User Interface: Interface achieves communication with the user by the attrac-
tive query as effort and showing documents rendering to their relevance notch as
production (Fig. 1).
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Fig. 1 Construction of information retrieval system

6 Query Expansion Techniques for Information Retrieval

In this section, we used the queries as keywords for searching in the corpus of
documents. We need first to illustrate some basic definitions of the term frequency
(tf) and the inverse document frequency (idf).

Tf-idf stances for term frequency-inverse document frequency and the tf-idfweight
is a heaviness frequently used in information retrieval and text removal. This weight
is a mathematical amount used to assess how significant a word is to a document in
an assortment or quantity. The rank surges proportionately to the number of times
a word seems in the document but is offset by the incidence of the word in the
corpus. Search engines often use differences of the tf-idf weighting structure as a
vital implement in counting and positioning a document’s significance agreed in a
user query.

Some of the humblest position purposes are computed by adding the tf-idf for each
query period; many more classy position functions are alternatives to this modest
model.

Tf-idf can be positively used for stop words sifting in numerous subject fields
with text summarization and organization.

Naturally, the tf-idf mass is collected by binary relationships: the first calculates
the regularized Term Frequency (TF) (the amount of iterations of a word that appears
in a text) that is divided by the entire number of words in that text. The second part
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is the Inverse Document Frequency (IDF), which is intended as the logarithm of the
number of documents in the quantity separated by the number of documents where
the exact term seems.

For instance, suppose that a document containing 1000 words where the
word “university” appears 30 times. The term frequency (i.e., tf) for “university” is
then (30/1000) = 0.03. Currently, suppose that we have 1,000,000 documents, and
the word “university” seems in 10 thousands of these. Then, the inverse document
frequency (i.e., idf) is considered as log(1,000,000 / 10,000) = 2. Therefore, the
Tf-idf weight is the multiply of these numbers: 0.03 * 2 = 0.06.

7 Conclusion

In this paper, we proved that the approximations based on mixed neighborhood
systems are accurate than the approximations based on either right neighborhood
systems or left neighborhood systems. Furthermore, we believe that our definition
of the accuracy measure is accurate than Pawlak’s definition since our definition
considers the negative region and Pawlak’s definition does not consider it.
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Applying “Emad-Sara” Transform
on Partial Differential Equations

Emad A. Kuffi , Elaf Sabah Abbas , and Sara Falih Maktoof

Abstract This work demonstrates the “Emad-Sara (ES)” integral transform, where
its basic properties and its capability to find a particular solution for partial differential
equations have been presented and proven via the solution of multiple fundamental
physical partial differential equations.

Keywords Emad-Sara (ES) transform · First-order differential equations ·
Second-order differential equations · Five fundamental mathematical physics
equations · Wave · Heat · Laplace’s · Telegraph · Klein-Gordan

1 Introduction

Partial differential equations (PDE) represent a special case of ordinary differential
equations, with multiple partial derivatives of unknown variables. PDE degree is
identified by the highest derivative that appears in the equation. Applying a mathe-
matical method that could solve PDE concludes a function converts to identity when
substituted into the equation. PDEs have been used in various scientific fields, which
yield from their ability to express physical problems in a mathematical formula that
can be manipulated and solved via some mathematical method [1–3].

The significance of PDEs necessitated using the most effective mathematical
methods for their solution [4–7]. Integral transforms’ ability to transform problems
from one domain to another to simplify their solution has positioned them as a
priority in the domain of PDE solution. Mathematicians have proposed numerous
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integral transforms to solve PDEs; each proposed transform has particular cases
where it shines [8–13]. The substantial field of partial differential equations, on the
other hand, has not yet benefited from the revolutionary Emad-Sara (ES) integral
transform.

The ES integral transform is used in this work to solve first- and second-
order differential equations, as well as several practical applications of differential
equations, which are regarded basic in the mathematical physical area.

2 Fundamental Properties of Emad-Sara Transform

The Emad-Sara (ES) transform is defined for a function f (t) as [14]:

ES[ f (t)] = T (α) = 1

α2

∞∫

0

f (t)e−αt dt, (1)

2.1 Emad-Sara Transform Existence [14]

ES transform is considered to exist for sufficiently large v, providing the integral:

1

v2

∞∫

t=0

f (t)e−vt dt = lim
p→∞

p∫

t=0

f (t)e−vt dt.

Criteria for Convergence (I)

ES transform for the function f (t) exist, if it has exponential order and
∫ p
0 | f (t)|dt

exist for any p > 0.
Since the convergence is needed to be shown only for suffi-

ciently large v, then it is going to be assumed that v > candv >

0.

1

v2

∫ ∞

0

∣∣ f (t)e−vt
∣∣dt = 1

v2

⎡
⎣

n∫

0

∣∣ f (t)e−vt
∣∣dt +

∞∫

n

∣∣ f (t)e−vt
∣∣dt

⎤
⎦,

≤ 1

v2

⎡
⎣

n∫

0

| f (t)|dt +
∞∫

n

e−vt | f (t)|dt
⎤
⎦

For:
[
0 <

1

v2
e−vt ≤ 1

]



Applying “Emad-Sara” Transform on Partial ... 17

≤ 1

v2

⎡
⎣

n∫

0

| f (t)|dt +
∞∫

n

e−vt Mectdt

⎤
⎦, (exponential order).

= 1

v2

[∫ n

0
| f (t)|dt + M

[
e(c−v)t

c − v

∣∣∣∣
∞

n

]
.

For v > c

= 1

v2

[∫ n

0
| f (t)|dt + M

e(c−v)n

v − c

]
.

The first integral exists by assumption, and the second term is finite v > c.

The integral 1
v2

∞∫
0
f (t)e−vt dt , converges absolutely and ES{ f (t)} exists.

Criteria for Convergence (II)

To satisfy criterion (I), ES{ f (t)} exists if:
• f (t)is of exponential order and on the closed interval [0, p].
• f (t) is bounded, piecewise, continuous and has a finite number of discontinuous

requirements implying that
∫ 0
b | f (t)|dt .

where F(v) → 0 as v → ∞.
Assuming f (t) satisfy criterion (I), which implies F(v) = ES{ f (t)} will exist if

v ≥ m for some m.
|F(v)| = ∣∣ 1

v2
∫ ∞
0 f (t)e−vt dt

∣∣ ≤ ∫ ∞
0

∣∣ f (t)e−vt
∣∣dt = G(v)v → ∞, 1

v2 e
−vt →

0 f or t ≥ 0.

2.2 Emad-Sara Transform Uniqueness [14]

Suppose that the functions f and g are exponential type b, piecewise and continuous
on the interval [0,∞). If ES{ f (t)} = ES{g(t)} when s > b, then f (t) = g(t) for
all t greater than or equal to zero.

2.3 Derivation of the Emad-Sara Transform of Derivatives
[14]

Integration by parts is used to obtain the ES integral transform for partial derivatives,
as follows:

ES

[
∂ f

∂t
(x, t)

]
= ∞∫

0

1

α2

∂ f

∂t
e−αt dt = lim

p→∞
p∫
0

1

α2

∂ f

∂t
e−αt dt
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= lim
p→∞

{[
1

α2
e−αt f (x, t)

]p

0

+ 1

α

p∫
0
f (x, t)e−αt dt

}

= αT (x, α) − f (x, 0)

α2
.

ES

[
∂ f

∂t
(x, t)

]
= αT (x, α) − 1

α2
f (x, 0). (2)

Assuming the function f is a continuous and of exponential order, then:

ES

[
∂ f

∂x

]
=

∫
∞
0

1

α2
e−αt ∂ f

∂x
(x, t)dt = ∂

∂x

∞∫

0

1

α2
e−αt f (x, t)dt,

Using the Leibnitz rule:

ES

[
∂ f

∂x

]
= ∂

∂x
[T (x, α)],

ES

[
∂ f

∂x

]
= d

dx
[T (x, α)]. (3)

It is also possible to find:

ES

[
∂2 f

∂x2

]
= d2

dx2
[T (x, α)]. (4)

To find ES
[

∂2 f
∂t2 (x, t)

]

Let ∂ f
∂t = g, then, by using Eq. (2):

ES

[
∂2 f

∂t2
(x, t)

]
= ES

[
∂g

∂t
(x, t)

]
= αES[g(x, t)] − 1

α2
g(x, 0).

∴ ES

[
∂2 f

∂t2
(x, t)

]
= α2T (x, α) − 1

α2

∂ f

∂t
(x, 0) − f (x, 0)

α
. (5)

In the same way, it is possible to extend this result to the nth partial derivative
using mathematical induction.
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3 Solving Some Partial Differential Equations Using ES
Transform

The solutions to some first and second-order differential equations, as well as the
five fundamental mathematical physics equations: wave, heat, Laplace’s, telegraph,
and Klein-Gordan, are demonstrated in this section.

Problem 1

Consider the first-order initial value problem (IVP):

ux = 2ut + u,

with u(x, 0) = 6e−3x

}
(6)

And u is bounded for x, t > 0.

Solution:

Let T be the Emad-Sara (ES) transform of u.
Taking ES transform to Eq. (6), gives.
dT (x,α)

dx − 2αT (x, α) + 2
α2 u(x, 0) = T (x, α), this equation is a linear first-order

ordinary differential equation.

dT (x, α)

dx
− (2α + 1)T (x, α) = −12

α2
e−3x ,

The integral factor is P = e− ∫
(2α+1)dx = e−(2α+1)x ,

Therefore, T (x, α) = 1
P

∫
P.Qdx,

Then, T (x, α) = e(2α+1)x
∫

e−(2α+1)x

(−12

α2

)
e−3xdx

T (x, α) = e(2α+1)x

[−12

α2

∫
e−2(α+2)xdx

]

T (x, α) = e(2α+1)x

[ −12

α2(−2α − 4)
e−2(α+2)x + C

]

T (x, α) = e(2α+1)x

[
6

α3 + 2α2
e−2(α+2)x + C

]

∴ T (x, α) = 6

α2(α + 2)
e−3x + Ce(2α+1)x ,

Since T is bounded, then C should be equal to zero.
Taking inverse ES transform gives.

T (x, t) = 6e−3x · e−2t =⇒ T (x, t) = 6e−(3x+2t).
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Problem 2

Consider the Laplace equation:

uxx + utt = 0, u(x, 0) = 0
ut (x, 0) = cos(x), x, t > 0

}
(7)

Solution:

Let T (α) be the ES transform of u.
Taking ES transform to Eq. (7), gives.

T ′′(x, α) + α2T (x, α) − 1

α2

∂u

∂t
(x, 0) − u(x, 0)

α
= 0,

1

α2
T ′′(x, α) + T (x, α) = cos(x)

α4
.

The concluded equation is a second-order nonhomogeneous ordinary differential
equation that has a particular solution in the following form:

T (x, α) =
1
α4 cos(x)
1
α2 D2 + 1

=
1
α4 cos(x)
1
α2 (−1) + 1

,

=
1
α4 cos(x)

1 − 1
α2

= 1

α2
(
α2 − 1

) cos(x). (8)

where, D2 ≡ d2

dx2 .
Applying the inverse ES transform to Eq. (8) produces the solution to Eq. (7) in

the form:

u(x, t) = sinh(t) cos(x).

Or

u(x, t) = 1

2

(
et − e−t

)
cos(x) = 1

2
et cos(x) − 1

2
e−t cos(x).

Problem 3

Consider the wave equation:

uxx − 4utt = 0, u(x, 0) = sin(πx)
ut (x, 0) = 0, x, t > 0

}
(9)
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Solution:

Applying the ES transform to Eq. (9) and using the conditions provided, obtains

T ′′(x, α) − 4

[
α2T (x, α) − 1

α2
ut (x, 0) − u(x, 0)

α

]
= 0,

1

4α2
T ′′(x, α) − T (x, α) = − sin(πx)

α3
,

T (x, α) =
−1
α3 sin(πx)
1

4α2 D2 − 1
=

−1
α3 sin(πx)
1

4α2 (−π)2 − 1
,

T (x, α) =
−1
α3 sin(πx)

−π2

4α2 − 1
= 1

α3

4α2

π2 + 4α2
sin(πx),

T (x, α) = α

α2
[
α2 + (

π
2

)2] sin(πx).

Applying the inverse ES transform produce the particular solution of Eq. (9) in
the form:

u(x, t) = cos
(π

2
t
)
sin(πx).

Problem 4

Consider the homogeneous heat equation:

4 ∂u
∂t = ∂2u

∂x2 , u(x, 0) = sin
(

π
2 x

)
x, t > 0

}
(10)

Solution:

Applying ES transform on Eq. (10), gives

T ′′(x, α) − 4

[
αT (x, α) − u(x, 0)

α2

]
= 0,

T ′′(x, α) − 4αT (x, α) = −4sin
(

π
2 x

)
α2

,

Now,

T (x, α) =
−4sin( π

2 x)
α2

D2−4α =
−4
α2

sin( π
2 x)

−( π
2 )

2−4α
,
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T (x, α) =
−4
α2 sin

(
π
2 x

)
−π2−16α

4

= 16

α2
(
π2 + 16α

) sin(π

2
x
)

= 1

α2

(
1

α + (
π
4

)2
)
sin

(π

2
x
)
.

(11)

Applying the inverse ES transform to Eq. (11) produces the solution to Eq. (10)
in the form:

u(x, t) = e
−π2

16 t .sin
(π

2
x
)
.

Problem 5

Consider the linear telegraph equation:

uxx = utt + 2ut + u
Subject to the inetial conditions
u(x, 0) = ex , ut (x, 0) = −2ex

⎫⎬
⎭ (12)

Solution:

Applying the ES transform to Eq. (12), obtains the following:
T ′′(x, α) − α2T (x, α) + 1

α2 ut (x, 0) + 1
α
u(x, 0) − 2αT (x, α) + 2

α2 u(x, 0) −
T (x, α) = 0,

Providing the initial conditions to the concluded equation gives

T ′′(x, α) − α2T (x, α) + 1

α2

(−2ex
) + ex

α
− 2αT (x, α) + 2ex

α2
− T (x, α) = 0,

⇒ T ′′(x, α) − (
α2 + 2α + 1

)
T (x, α) = −ex

α
,

⇒ 1

α2 + 2α + 1
T ′′(x, α) − T (x, α) = −ex

α
(
α2 + 2α + 1

) ,

⇒ 1

(α + 1)2
T ′′(x, α) − T (x, α) = −ex

α(α + 1)2
,

⇒ T (x, α) =
−ex

α(α+1)2

1
(α+1)2

D2 − 1
,

T (x, α) = ex

α2(α + 2)
. (13)

Applying the inverse ES transform to Eq. (13) produces the solution to Eq. (12)
in the form:

u(x, t) = ex .e−2t = ex−2t .
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Problem 6

Consider the second-order linear homogeneous Klein-Gordan equation:

utt = uxx + ux + 2u,−∞ < x < ∞, t > 0
Subject to the inetial conditions

u(x, 0) = ex , ut (x, 0) = 0

⎫⎬
⎭ (14)

Solution:

Using ES transform on Eq. (14), gives

α2T (x, α) − 1

α2
ut (x, 0) − u(x, 0)

α
− T ′′(x, α) − T ′(x, α) − 2T (x, α) = 0,

α2T (x, α) − ex

α
− T ′′(x, α) − T ′(x, α) − 2T (x, α) = 0,

T ′′(x, α) + T ′(x, α) − (
v2 − 2

)
T (x, α) = −ex

α
,

1(
α2 − 2

)T ′′(x, α) + 1(
α2 − 2

)T ′(x, α) − T (x, α) = −ex

α
(
α2 − 2

) ,

T (x, α) =
−ex

α(α2−2)
1

(α2−2)
D2 + 1

(α2−2)
D − 1

,

T (x, α) = −ex

α
[
1 + 1 − (

α2 − 2
)] ,

T (x, α) = −ex

α
(
2 − α2 + 2

) = −ex

α
(−α2 + 4

) ,

∴ T (x, α) = αex

α2
(
α2 − 4

) . (15)

Applying the inverse ES to Eq. (15) gives the solution to Eq. (14) in the form:

u(x, α) = cosh(2t)ex .

Or

u(x, α) = 1

2

[
e2t + e−2t

]
ex = 1

2
e2t+x + 1

2
e−2t+x .
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4 Conclusion

The novel integral Sara-Emad (ES) integral transform has been applied to solve
partial differential equations. The proofs that accompanied applying the SE transform
to partial differential equations and the solution of a practical example solidify the
SE integral transform’s ability to efficiently handle and provide the solution to the
PDEs, making it a strong competitor to other integral transforms in solving partial
differential equations.

References

1. Le Dret, H., Lucquin, B.: Partial Differential Equations: Modeling, Analysis and Numerical
Approximation, 1st edn. Birkhäuser (2016)

2. Hillen,T., Leonard, I.E., vanRoessel,H.: PartialDifferential Equations:Theory andCompletely
Solved Problems, 1st edn. Wiley (2012)

3. Xie, W-C.: Differential Equations for Engineers. Cambridge University Press (2010)
4. Tatari, M., Dehghan, M.: A method for solving partial differential equations via radial basis

functions: application to the heat equation. Eng. Anal. Boundary Elem. 34(3), 206–212 (2010)
5. Bhatia, G.S., Arora, G.: Radial basis functionmethods for solving partial differential equations-

a review. Indian J. Sci. Technol. 9(45)
6. Abdel-Hassan, I.H.: Differential transformation technique for solving higher-order initial value

problem. Appl. Math. Comput. 154(2), 299–311 (2004)
7. Kilicman, A., Gadain, H.E.: A note on integral transforms and partial differential equations.

Malaysian J. Math. Sci. 4(1), 109–118 (2010)
8. Ahmed, S.A., Elzaki, T.M., Elbadri, M., Mohamed, M.Z.: Solution of partial differential equa-

tions by new double integral transform (Laplace - Sumudu transform). Ain Shams Eng. J.
(2021)

9. Atangana, A., Noutchie, S.C.O.: On Multi-Laplace Transform for Solving Nonlinear Partial
Differential Equations with Mixed Derivatives, Hindawi: Mathematical Problems in Engi-
neering (2014)

10. Zhou,Z.,Gao,X.:LaplaceTransformMethods for aFreeBoundaryProblemofTime-Fractional
PartialDifferential EquationSystem.DiscreteDynamics inNature andSociety,Hindawi (2017)

11. Poonia, S.: Solution of differential equation using by Sumudu transform. Int. J. Math. Comput.
Res. 2(1), 316–323 (2013)

12. Elzaki, T.M., Ezaki, S.M.: Application of new transform "Elzaki Transform" to partial
differential equations. Glob. J. Pure Appl. Math. 7(1), 65–70 (2011)

13. Gupta, A.R., Aggarwal, S., Agrawal, D.: Solution of linear partial integro-differential equations
using Kamal transform. Int. J. Latest Technol. Eng. Manage. Appl. Sci. 7(7), 88–91 (2018)

14. Maktoof, S.F., Kuffi, E., Abbas, E.S.: “Emad-Sara Transform” a new integral transform. J.
Interdiscip. Math. 24(3), 2021 (2021)



Estimations of the Bounds for the Zeros
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Abstract Let p (z) = zn + αnzn−1 + αn−2zn−2 + · · · + α2z + α1 be a monic poly-
nomial of degree n ≥ 7 with complex coefficients αn,αn−1, . . . .α1, where α1 �= 0.
This paper investigates and estimates the upper bounds for the moduli of the zeros of
p depending on the spectral norms, spectral radii, and the fifth power of the Frobe-
nius companion. These upper bounds allow us to locate all the zeros of p in smaller
annuli in the complex plane.

Keywords Bounds for the zeros of polynomials · Companion matrix · Spectral
radius
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1 Introduction

Locating the zeros of polynomials is essential inmanyfields of study, including signal
processing, control theory, communication theory, coding theory, and cryptography.
Beginning with Cauchy, this classic problem drew a large number of mathematicians
across time. Recently, several famous classical upper bounds for the moduli of the
zeros of the monic complex polynomials have been established using the Frobenius
companion matrix, which is a key connection between matrix theory and polyno-
mial geometry. These bounds include Cauchy’s bound [2], Carmichael and Mason’s
bound, Montel’s bound [2] and Fujii and Kubo’s bound [3]. In this paper, we will
give a new estimate for the zeros of polynomials using the spectral norm and the
spectral radius for the fifth power of the Frobenius companion matrix.
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Let Mn (C) stands for the algebra of all n × n complex matrices. For A ∈ Mn (C),
the eigenvalues of A are denoted by λi (A), for i = 1, 2, . . . , n, arranged in such a
way that

|λ1 (A)| ≥ |λ2 (A)| ≥ · · · ≥ |λn (A)| .

The singular values of A, (the eigenvalues of |A| = (A∗A)
1
2 ) are denoted by si (A),

(1 ≤ i ≤ n), where they are arranged in such a way that

s1 (A) ≥ s2 (A) ≥ · · · ≥ sn (A) .

Recall that s2i (A) = λ j (A∗A) = λ j (AA∗), for j = 1, 2, . . . , n and s1 (A) = ‖A‖,
where ‖A‖ represent the spectral norm of A. For A ∈ Mn (C), if λ is the eigenvalue
of A and r (A) represents the spectral radius of A, then for any matrix norm |‖·‖|,
we have

|λ| ≤ r (A) ≤ |‖A‖| .

Let p (z) = zn + αnzn−1 + αn−2zn−2 + · · · + α2z + α1 be a monic polynomial
of degree n ≥ 7 with complex coefficients αn,αn−1, . . . .α1, where α1 �= 0. The
following matrix

C =

⎡
⎢⎢⎢⎢⎢⎣

−αn −αn−1 · · · −α2 −α1

1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

⎤
⎥⎥⎥⎥⎥⎦

n×n

is called the Frobenius companionmatrix for p. It iswell known that the characteristic
polynomial of C is p itself, and so the eigenvalues of C are the zeros of p, see [4].
Using the fact that the eigenvalues of C are the roots of p (z) = 0, then for any
matrix norm |‖·‖|, |z| ≤ |‖C‖|, where z is the zero of the monic polynomial p. Many
mathematicians in the area have usedFrobenius companionmatrixC to derive bounds
for the moduli of the zeros of the polynomial p; we list some of them below. Let z be
any zero of p, then we note that some bounds are obtained by the classical approach.

Cauchy [2], proved that

|z| ≤ 1 + max {|α1| , |α1| , . . . , |αn|} ,

Montal [2], proved that

|z| ≤ 1 + |α1| + |α1| + . . . + |αn| ,

Cramichael and Mason [2], proved that

|z| ≤ (
1 + |α1|2 + |α2|2 + . . . + |αn|2

) 1
2 .
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Others have providedbounds for zeros of polynomials basedonmatrix inequalities
using the Frobenius companion matrix, such as

Fujii and Kubi [3], proved that

|z| ≤ cos

(
π

n + 1

)
+ 1

2

⎛
⎜⎝|αn| +

⎛
⎝

n∑
j=1

∣∣α j

∣∣2
⎞
⎠

1
2

⎞
⎟⎠ ,

Linden [7], proved that

|z| ≤ |αn|
2

+
⎛
⎝n − 1

n

⎛
⎝n − 1 +

∣∣∣∣∣∣
n∑
j=1

∣∣α j

∣∣2 − |αn|2
2

∣∣∣∣∣∣

⎞
⎠
⎞
⎠

1
2

,

Kittaneh [5], proved that

|z| ≤ 1

2

⎛
⎜⎝|αn| + 1 +

√√√√√(|αn| − 1)2 + 4

√√√√
n−1∑
j=1

∣∣α j

∣∣2
⎞
⎟⎠ .

Based on certain estimates for spectral norms and spectral radii of the square of
the Frobenius companion matrices Kittaneh and Shebrawi, [6] obtained new bounds
for the zeros of p as follows:

|z| ≤
⎛
⎝1 +

⎛
⎝

n∑
j=1

∣∣α j

∣∣2 + ∣∣b j

∣∣2
⎞
⎠
⎞
⎠

1
4

, where b j = αnα j − α j−1.

Also

|z| ≤
(
1

2

(
|bn| + β +

√
(|bn| − β)2 + 4γ

√
1 + |αn|2

)) 1
2

,

where

γ =
⎛
⎝

n−1∑
j=1

∣∣b j

∣∣2
⎞
⎠

1
2

and

β =

√√√√√1

2

⎛
⎝1 +

n−1∑
j=1

∣∣α j

∣∣2 +
√√√√1 +

n−1∑
j=1

∣∣α j

∣∣2 − 4
(|α1|2 + |α2|2

)
⎞
⎠.
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They also obtained new bounds based on the spectral norms and the spectral radii
of the cube of the Frobenius companion matrix.

Recently, Al Sawaftah and Burqan [1] have given another bound for the zeros of
polynomials depending on the spectral norm of fourth of the Frobenius companion
matrix. In this paper we will present more accurate bounds depending on the spectral
norm and the spectral radii of C5. In this paper let N = C5. Thus,

N =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

en en−1 · · · e6 e5 · · · e1
dn dn−1 · · · d6 d5 · · · d1
cn cn−1 · · · c6 c5 · · · c1
bn bn−1 · · · b6 b5 · · · b1

−αn −αn−1 · · · −α6 −α5 · · · −α1

1 0 · · · 0 0 · · · 0
0 1 · · · 0 0 · · · 0
...

...
. . .

...
...

...
...

0 0 · · · 1 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where

b j = αnα j − α j−1, c j = −αnb j + αn−1α j − α j−2,

d j = −αnc j − αn−1b j + αn−2α j − α j−3,

e j = −αnd j − αn−2c j − αn−2b j + αn−3α j − αn−4,

for j = 1, 2, . . . , n.

2 Main Results

In this section, we obtain bounds for the spectral norm and the spectral radius of the
matrix N , which we use it to estimate the zeros of polynomials.

Theorem 1 Let z be a zero of p (z) = zn + αnzn−1 + αn−2zn−2 + · · · + α2z + α1,
with degree n � 7, then

|z| ≤
⎛
⎝1 +

n∑
j=1

∣∣α j

∣∣2 + ∣∣b j

∣∣2 + ∣∣c j
∣∣2 + ∣∣d j

∣∣2 + ∣∣e j
∣∣2
⎞
⎠

1
10

.
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Proof Consider the following matrices

G1 =

⎡
⎢⎢⎢⎢⎢⎣

en en−1 · · · e2 e1
0 0 · · · 0 0
0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 0

⎤
⎥⎥⎥⎥⎥⎦

n×n

, G2 =

⎡
⎢⎢⎢⎢⎢⎣

0 0 · · · 0 0
dn dn−1 · · · d2 d1
0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 0

⎤
⎥⎥⎥⎥⎥⎦

n×n

,

G3 =

⎡
⎢⎢⎢⎢⎢⎣

0 0 · · · 0 0
0 0 · · · 0 0
cn cn−1 · · · c2 c1
...

...
. . .

...
...

0 0 · · · 0 0

⎤
⎥⎥⎥⎥⎥⎦

n×n

, G4 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0 0
0 0 · · · 0 0
0 0 · · · 0 0
bn bn−1 · · · b2 b1
0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

n×n

,

G5 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0 0
0 0 · · · 0 0
0 0 · · · 0 0
0 0 · · · 0 0

−αn −αn−1 · · · −α2 −α1
...

...
. . .

...
...

0 0 · · · 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

n×n

and the block matrix G6 =
[

0 0
In−5 0

]

n×n

, where In−5 is the identity of order

n − 5. Then
6∑

l=1
Gl = N with G∗

l Gm = 0, 1 ≤ l,m ≤ 6, l �= m. Thus by the tri-

angle inequality, and using the fact that ‖A‖2 = ‖A∗A‖, for any matrix A ∈ Mn (C),
we get

‖N‖2 = ∥∥N ∗N
∥∥ =

∥∥∥∥∥
6∑

l=1

G∗
l Gl

∥∥∥∥∥

≤
6∑

l=1

∥∥G∗
l Gl

∥∥ =
6∑

l=1

‖Gl‖2

=
n∑
j=1

(∣∣e j
∣∣2 + ∣∣d j

∣∣2 + ∣∣c j
∣∣2 + ∣∣b j

∣∣2 + ∣∣α j

∣∣2) + 1.
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Since

‖G1‖2 = max
{
λ : λ ∈ σ

(
G∗

1G1
)} =

n∑
j=1

∣∣e j
∣∣2 ,

Also

‖G2‖2 =
n∑
j=1

∣∣d j

∣∣2 , ‖G3‖2 =
n∑
j=1

∣∣c j
∣∣2 , ‖G4‖2 =

n∑
j=1

∣∣b j

∣∣2 , ‖G5‖2 =
n∑
j=1

∣∣α j

∣∣2

∥∥G∗
6G6

∥∥ = 1.

Therefore,

∥∥∥C5
∥∥∥ = ‖N‖ ≤

⎛
⎝1 +

n∑
j=1

∣∣e j
∣∣2 + ∣∣d j

∣∣2 + ∣∣c j
∣∣2 + ∣∣b j

∣∣2 + ∣∣α j
∣∣2
⎞
⎠

1
2

.

Using the fact that |z| ≤ ∥∥C5
∥∥ 1

5 , we get

|z| ≤
⎛
⎝1 +

n∑
j=1

∣∣e j
∣∣2 + ∣∣d j

∣∣2 + ∣∣c j
∣∣2 + ∣∣b j

∣∣2 + ∣∣α j
∣∣2
⎞
⎠

1
10

.

�

Let us recall some important Lemmas which are essential to establish our next
results in this paper. These Lemmas can be found in [4].

Lemma 2 If A =
[
a b
c d

]
, then the spectral radius of A,

r (A) = 1

2

(
a + d +

√
(a − d)2 + 4bc

)
.

Lemma 3 Let A ∈ Mn (C) be partitioned as A =
[
A11 A12

A21 A22

]
, where Ai j is an ni ×

n j matrix for i, j = 1, 2 with n1 + n2 = n. If Ã =
[ ‖A11‖ ‖A12‖

‖A21‖ ‖A22‖
]
, then r (A) ≤

r
(
Ã
)
and ‖A‖ ≤

∥∥∥ Ã
∥∥∥.

Lemma 4 Let A =
[
a b
c d

]
, then the spectral norm of A is

‖A‖ =
(
1

2

(|a|2 + |b|2 + |c|2 + |d|2 + γ
)) 1

2

,



Estimations of the Bounds for the Zeros of Polynomials Using Matrices 31

where γ =
√(|a|2 + |c|2 − |b|2 − |d|2)2 + 4

∣∣ab + cd
∣∣2.

Lemma 5 Let

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−αn−1 −αn−2 · · · −α6 −α5 · · · −α1

0 0 · · · 0 0 · · · 0
0 0 · · · 0 0 · · · 0
0 0 · · · 0 0 · · · 0
0 0 · · · 0 0 · · · 0
1 0 · · · 0 0 · · · 0
0 1 · · · 0 0 · · · 0
...

...
. . .

...
... · · · ...

0 0 · · · 1 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

n×n

,

with n ≥ 7, then

‖B‖ = 1

2

⎛
⎝1 + μ +

√√√√(1 + μ)2 − 4
5∑
j=1

∣∣α j

∣∣2
⎞
⎠ ,

where μ =
n−4∑
j=1

∣∣α j

∣∣2.

The following partition matrix is needed to obtain the next result. For the matrix

N =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

en en−1 · · · e6 e5 · · · e1
dn dn−1 · · · d6 d5 · · · d1
cn cn−1 · · · c6 c5 · · · c1
bn bn−1 · · · b6 b5 · · · b1

−αn −αn−1 · · · −α6 −α5 · · · −α1

1 0 · · · 0 0 · · · 0
0 1 · · · 0 0 · · · 0
...

...
. . .

...
...

...
...

0 0 · · · 1 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

partition the matrix as N =
[
N11 N12

N21 N22

]
, where
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N11 =

⎡
⎢⎢⎣
en en−1 en−2 en−3

dn dn−1 dn−2 dn−3

cn cn−1 cn−2 cn−3

bn bn−1 bn−2 bn−3

⎤
⎥⎥⎦

4×4

,

N12 =

⎡
⎢⎢⎣
en−4 · · · e6 e5 · · · e1
dn−4 · · · d6 d5 · · · d1
cn−4 · · · c6 c5 · · · c1
bn−4 · · · b6 b5 · · · b1

⎤
⎥⎥⎦

4×(n−4)

,

N21 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−αn −αn−1 −αn−2 −αn−3

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0
...

...
...

...

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(n−4)×4

,

N22 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−αn−4 −αn−5 · · · −α6 −α5 −α4 −α3 −α2 −α1

0 0 · · · 0 0 0 0 0 0
0 0 · · · 0 0 0 0 0 0
0 0 · · · 0 0 0 0 0 0
0 0 · · · 0 0 0 0 0 0
1 0 · · · 0 0 0 0 0 0
0 1 · · · 0 0 0 0 0 0
...

...
. . .

...
...

...
...

...
...

0 0 · · · 1 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(n−4)×(n−4)

.

Now, as a result, we get the following:

Theorem 6 Let z be a zero of p (z) = zn + αnzn−1 + αn−2zn−2 + · · · + α2z + α1,
with degree n � 7, then

|z| ≤
[
‖N11‖ + ‖N22‖ +

√
(‖N11‖ − ‖N22‖)2 + 4 ‖N12‖ ‖N21‖

] 1
5

.

Proof Since N is partitioned as N =

[
N11 N12

N21 N22

]
, applying Lemma 3, we have

r (N ) ≤ r

([ ‖N11‖ ‖N12‖
‖N21‖ ‖N22‖

])
.
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To find ‖N11‖, we partition N11 as N11 =
[
S11 S12
S21 S22

]
, where

S11 =
[
en en−1

dn dn−1

]
, S12 =

[
en−2 en−3

dn−2 dn−3

]
, S21 =

[
cn cn−1

bn bn−1

]

and

S22 =
[
cn−2 cn−3

bn−2 bn−3

]
.

Now, find the spectral norm for each Si j , i, j = 1, 2, by using Lemma 4 as follows:

α = ‖S11‖ =
⎛
⎝1

2

⎛
⎝

n∑
j=n−1

∣∣e j
∣∣2 + ∣∣d j

∣∣2

+
√(|en|2 + |dn|2 − |en−1|2 − |dn−1|2

)2 + 4
∣∣enen−1 + dndn−1

∣∣2
)) 1

2

,

β = ‖S12‖ =
⎛
⎝1

2

⎛
⎝

n∑
j=n−3

∣∣e j
∣∣2 + ∣∣d j

∣∣2

+
√(|en−2|2 + |dn−2|2 − |en−3|2 − |dn−3|2

)2 + 4
∣∣en−2en−3 + dn−2dn−3

∣∣2
)) 1

2

,

γ = ‖S21‖ =
⎛
⎝1

2

⎛
⎝

n∑
j=n−1

∣∣c j
∣∣2 + ∣∣bd j

∣∣2

+
√(|cn|2 + |bn|2 − |cn−1|2 − |bn−1|2

)2 + 4
∣∣cncn−1 + bnbn−1

∣∣2
)) 1

2

,

and

δ = ‖S22‖ =
⎛
⎝1

2

⎛
⎝

n−2∑
j=n−3

∣∣c j
∣∣2 + ∣∣b j

∣∣2

+
√(|cn−2|2 + |bn−2|2 − |cn−3|2 − |bn−3|2

)2 + 4
∣∣cn−2cn−3 + bn−2bn−3

∣∣2
)) 1

2

,
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Also, by Lemma 3, we have

‖N11‖ ≤
∥∥∥∥
[ ‖S11‖ ‖S12‖

‖S21‖ ‖S22‖
]∥∥∥∥ =

∥∥∥∥
[

α β
γ δ

]∥∥∥∥ .

Again using Lemma 3 to get

‖N11‖ ≤
(
1

2

(
α2 + β2 + γ2 + δ2 +

√(
α2 + β2 − γ2 − δ2

)2 + 4 |αβ + γδ|2
)) 1

2

.

Now, ‖N12‖ = (
r
(
N12N ∗

12

)) 1
2 , where

N12N
∗
12 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

n−4∑
j=1

∣∣e j
∣∣2 n−4∑

j=1
e jd j

n−4∑
j=1

e j c j
n−4∑
j=1

e jb j

n−4∑
j=1

d j e j
n−4∑
j=1

∣∣d j

∣∣2 n−4∑
j=1

d j c j
n−4∑
j=1

d jb j

n−4∑
j=1

c j e j
n−4∑
j=1

c jd j

n−4∑
j=1

∣∣c j
∣∣2 n−4∑

j=1
c jb j

n−4∑
j=1

b j e j
n−4∑
j=1

b jd j

n−4∑
j=1

b j c j
n−4∑
j=1

∣∣b j

∣∣2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

To find ‖N12‖, we partition N12N ∗
12 as

[
W11 W12

W21 W22

]
, where

W11 =

⎡
⎢⎢⎢⎣

n−4∑
j=1

∣∣e j
∣∣2 n−4∑

j=1
e jd j

n−4∑
j=1

d j e j
n−4∑
j=1

∣∣d j

∣∣2

⎤
⎥⎥⎥⎦ , W12 =

⎡
⎢⎢⎢⎣

n−4∑
j=1

e j c j
n−4∑
j=1

e jb j

n−4∑
j=1

d j c j
n−4∑
j=1

d jb j

⎤
⎥⎥⎥⎦ , .

W21 =

⎡
⎢⎢⎢⎣

n−4∑
j=1

c j e j
n−4∑
j=1

c jd j

n−4∑
j=1

b j e j
n−4∑
j=1

b jd j

⎤
⎥⎥⎥⎦ , W22 =

⎡
⎢⎢⎢⎣

n−4∑
j=1

∣∣c j
∣∣2 n−4∑

j=1
c jb j

n−4∑
j=1

b j c j
n−4∑
j=1

∣∣b j

∣∣2

⎤
⎥⎥⎥⎦ .

Using Lemma 4 to get the spectral norm for each Wi j , i, j = 1, 2 as follows:

‖W11‖ =
⎛
⎜⎝1

2

⎛
⎜⎝
∣∣∣∣∣∣
n−4∑
j=1

∣∣e j
∣∣2
∣∣∣∣∣∣

2

+
∣∣∣∣∣∣
n−4∑
j=1

∣∣d j
∣∣2
∣∣∣∣∣∣

2

+
∣∣∣∣∣∣
n−4∑
j=1

e j d j

∣∣∣∣∣∣

2

+
∣∣∣∣∣∣
n−4∑
j=1

d j e j

∣∣∣∣∣∣

2

+ √
a + b

⎞
⎟⎠

⎞
⎟⎠

1
2

,
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‖W12‖ =
⎛
⎜⎝1

2

⎛
⎜⎝
∣∣∣∣∣∣
n−4∑
j=1

e j c j

∣∣∣∣∣∣

2

+
∣∣∣∣∣∣
n−4∑
j=1

e j b j

∣∣∣∣∣∣

2

+
∣∣∣∣∣∣
n−4∑
j=1

d j c j

∣∣∣∣∣∣

2

+
∣∣∣∣∣∣
n−4∑
j=1

d j b j

∣∣∣∣∣∣

2

+ √
c + d

⎞
⎟⎠

⎞
⎟⎠

1
2

,

‖W21‖ =
⎛
⎜⎝1

2

⎛
⎜⎝
∣∣∣∣∣∣
n−4∑
j=1

c j e j

∣∣∣∣∣∣

2

+
∣∣∣∣∣∣
n−4∑
j=1

c j d j

∣∣∣∣∣∣

2

+
∣∣∣∣∣∣
n−4∑
j=1

b j e j

∣∣∣∣∣∣

2

+
∣∣∣∣∣∣
n−4∑
j=1

b j d j

∣∣∣∣∣∣

2

+ √
e + f

⎞
⎟⎠

⎞
⎟⎠

1
2

,

‖W22‖ =
⎛
⎜⎝1

2

⎛
⎜⎝
∣∣∣∣∣∣
n−4∑
j=1

∣∣c j
∣∣2
∣∣∣∣∣∣

2

+
∣∣∣∣∣∣
n−4∑
j=1

∣∣b j
∣∣2
∣∣∣∣∣∣

2

+
∣∣∣∣∣∣
n−4∑
j=1

b j c j

∣∣∣∣∣∣

2

+
∣∣∣∣∣∣
n−4∑
j=1

c j b j

∣∣∣∣∣∣

2

+ √
g + h

⎞
⎟⎠

⎞
⎟⎠

1
2

,

where

a =
⎛
⎝
∣∣∣∣∣∣
n−4∑
j=1

∣∣e j
∣∣2
∣∣∣∣∣∣

2

+
∣∣∣∣∣∣
n−4∑
j=1

d j e j

∣∣∣∣∣∣

2

−
∣∣∣∣∣∣
n−4∑
j=1

e jd j

∣∣∣∣∣∣

2

−
∣∣∣∣∣∣
n−4∑
j=1

∣∣d j

∣∣2
∣∣∣∣∣∣

2⎞
⎠

2

,

b = 4

∣∣∣∣∣∣

⎛
⎝

n−4∑
j=1

∣∣e j
∣∣2
⎞
⎠
⎛
⎝

n−4∑
j=1

e jd j

⎞
⎠ +

⎛
⎝

n−4∑
j=1

d j e j

⎞
⎠
⎛
⎝

n−4∑
j=1

∣∣d j

∣∣2
⎞
⎠
∣∣∣∣∣∣

2

,

c =
⎛
⎝
∣∣∣∣∣∣
n−4∑
j=1

e j c j

∣∣∣∣∣∣

2

+
∣∣∣∣∣∣
n−4∑
j=1

d j c j

∣∣∣∣∣∣

2

−
∣∣∣∣∣∣
n−4∑
j=1

e jb j

∣∣∣∣∣∣

2

−
∣∣∣∣∣∣
n−4∑
j=1

d jb j

∣∣∣∣∣∣

2⎞
⎠

2

,

d = 4

∣∣∣∣∣∣

⎛
⎝

n−4∑
j=1

e j c j

⎞
⎠
⎛
⎝

n−4∑
j=1

e jb j

⎞
⎠ +

⎛
⎝

n−4∑
j=1

d j c j

⎞
⎠
⎛
⎝

n−4∑
j=1

d jb j

⎞
⎠
∣∣∣∣∣∣

2

,

e =
⎛
⎝
∣∣∣∣∣∣
n−4∑
j=1

c j e j

∣∣∣∣∣∣

2

+
∣∣∣∣∣∣
n−4∑
j=1

b j e j

∣∣∣∣∣∣

2

−
∣∣∣∣∣∣
n−4∑
j=1

c jd j

∣∣∣∣∣∣

2

−
∣∣∣∣∣∣
n−4∑
j=1

b jd j

∣∣∣∣∣∣

2⎞
⎠

2

,

f = 4

∣∣∣∣∣∣

⎛
⎝

n−4∑
j=1

c j e j

⎞
⎠
⎛
⎝

n−4∑
j=1

c jd j

⎞
⎠ +

⎛
⎝

n−4∑
j=1

b jd j

⎞
⎠
⎛
⎝

n−4∑
j=1

d jb j

⎞
⎠
∣∣∣∣∣∣

2

,

g =
⎛
⎝
∣∣∣∣∣∣
n−4∑
j=1

∣∣c j
∣∣2
∣∣∣∣∣∣

2

+
∣∣∣∣∣∣
n−4∑
j=1

b j c j

∣∣∣∣∣∣

2

−
∣∣∣∣∣∣
n−4∑
j=1

c jb j

∣∣∣∣∣∣

2

−
∣∣∣∣∣∣
n−4∑
j=1

∣∣b j

∣∣2
∣∣∣∣∣∣

2⎞
⎠

2

h = 4

∣∣∣∣∣∣

⎛
⎝

n−4∑
j=1

∣∣c j
∣∣2
⎞
⎠
⎛
⎝

n−4∑
j=1

c jb j

⎞
⎠ +

⎛
⎝

n−4∑
j=1

b j c j

⎞
⎠
⎛
⎝

n−4∑
j=1

b j c j

⎞
⎠
∣∣∣∣∣∣

2

.



36 A. Al-Swaftah et al.

By Lemmas 2 and 3, we have

‖N12‖ = (
r
(
N12N

∗
12

)) 1
2 ≤

(
r

([ ‖w11‖ ‖w12‖
‖w21‖ ‖w22‖

])) 1
2

=
(
1

2

(
‖w11‖ + ‖w11‖ +

√
(‖w11‖ − ‖w22‖)2 + 4 ‖w12‖ ‖w21‖

)) 1
2

.

Now,

‖N21‖ =
√

|αn|2 + |αn−1|2 + |αn−2|2 + |αn−3|2 + 1,

and Lemma 5 yields

‖N22‖ =
(
1

2

(
1 + μ +

√
(1 + μ)2 − 4

(|α1|2 + |α2|2 + |α3|2 + |α4|2 + |α5|2
))) 1

2
,

where μ =
n−4∑
j=1

∣∣α j

∣∣2 .Thus,

r (N ) ≤ r

([ ‖N11‖ ‖N12‖
‖N21‖ ‖N22‖

])

= 1

2

(
‖N11‖ + ‖N22‖ +

√
(‖N11‖ − ‖N22‖)2 + 4 ‖N12‖ ‖N21‖

)
.

Since |z| ≤ r (C) = (
r
(
C5

)) 1
5 = (r (N ))

1
5 , we have

|z| ≤
(
1

2

(
‖N11‖ + ‖N22‖ +

√
(‖N11‖ − ‖N22‖)2 + 4 ‖N12‖ ‖N21‖

)) 1
5

.

This completes the proof. �
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Applications on Formable Transform
in Solving Integral Equations

Rania Saadeh, Bayan Ghazal, and Gharib Gharib

Abstract Mathematics is a powerful tool for global understanding and communi-
cation that organizes our lives and encourages the ability to solve problems. One of
the most important aspects of mathematics is differential and integral equations, the
real power of equations is that they provide a very precise way to describe various
features of the world. In this article, we introduce an effective method to solve inte-
gral equations and integro-differential equations.We use the new transform called the
formable integral transform for solving the Volterra integral equations of the second
kind and integro-differential equations. To show the simplicity and applicability of
the method, we introduce some examples and apply the transform to get the exact
solutions.

Keywords Integral equations · Integro-differential equations · Formable transform

AMS Subject Classification: 45D05 · 45E10

1 Introduction

Mathematics is one of the most important fields in our lives. Mathematics and its
applications promote innovation in order to reach solutions, and mathematical skills
are also included in many jobs and fields, as they contribute to solving most physical,
engineering, technological, and other problems [1].

Integral transforms are valuable because they are able to simplify differential,
integral, and partial equations subject to certain boundary conditions, where the
equation is converted by the transform, it gives an algebraic equation that can be
easily solved.
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The integral transform of the function g(x) where x ∈ (−∞,∞) can be obtained
by computing the improper integral

£[g(x)](s) =
∞∫

−∞
q(s, x)g(x)dx, (1)

where q(s, x) is called the kernel of the integral transform and s is the variable of the
transform which might be real or complex number and independent of the variable
x . The theory of integral transforms goes back to the work of P.S. Laplace in 1780
[2, 3] and Fourier in 1822.

Also, with what we have mentioned about the importance of integral transform,
so many researchers have contributed to the existence of new integral transforms,
such as the z-transform [4], Mellin integral transform [5], Laplace Carson transform
[6], Hankel?s transform [7], Sumudu integral transform [8], ARA transform [9], and
recently, in 2021, formable transform was introduced [10].

When scientists began studying natural phenomena, whether physical, chemical,
biological, or engineering [11?19], the integral equations had an important role in
explaining these phenomena and finding different solutions to them.

The integral equation for the function g(x) and the kernel of integral equation
q(x, t) is defined by

ϕ(x)y(x) = g(x) + λ

x∫

a

q(x, t)y(t)dt (2)

while y(x) is an unknown function that will be determined, ? is a non-zero, real or
complex, parameter. The function ϕ(x) determines the kind of integral equation.

As there are several types of integral equations, including Volterra integral
equations and integro-differential equations [20].

2 Basic Definitions

In this section, we introduce some basic definitions that are essential to our research.

Definition 1 The second kind of Volterra integral equation of the function g(x) is
defined by [21, 22?]:

y(x) = g(x) + λ

x∫

a

q(x, t)y(t)dt (3)

where the kernel of the integral equation is q(x, t).
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Definition 2 Integro-differential equations of first order is defined by

y′(x) + y(x) +
x∫

x0

g(t, y(t))dt = f (x, y(x)), y(x0) = y0, x0 ≥ 0 (4)

where f (x, y(x)) and g(t, y(t)) are given, such that f (x, y(x)) and g(t, y(t)) are
generally nonlinear in y(x)which is the variable of the integro-differential boundary
value problems that need to be determined.

Definition 3 The convolution of the functions f (x) and g(x), which denoted by
( f ∗ g)(x) is defined by the relation

( f ∗ g)(x) =
x∫

0

f (t)g(x − t)dt. (5)

Definition 4 A unit step function or Heaviside step function is a piecewise function
defined as follows:

u(x) =
{
1, x > 0
0, x ≤ 0

. (6)

Definition 5 A function g(x) is called a function of exponential order, a if there
exist constants a, M and b > 0 such that |g(x)| ≤ Meax for all x > b.

3 Formable Integral Transform (FIT)

Through section three, we present the definition of the FT and some properties that
are needed in our work. To see more about the Formable transform, see Ref. [10].

Definition 1 Assume that the function g(x) is a piecewise continuous function of
exponential order defined over the set

W =
{
g(x) : ∃N , τ1, τ2 > 0, |g(x)| < N exp

( |x |
τi

)
, if x ∈ (−1)i × [0,∞)

}
,

then, the Formable integral transform of a as the following form:

R[g(x)] = B(s, u) = s

∞∫

0

exp(−sx)g(ux)dx, (7)

which is equivalent to
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R[g(x)] = s

u

∞∫

0

exp

(−sx

u

)
g(x)dx . (8)

R[g(x)] = s

u
lim

τ→∞

τ∫

0

exp

(−sx

u

)
g(x)dx, s > 0, u > 0,

where s&u are the Formable transform?s variables, t is a real number and the
integral is taken along the line x = τ .

Definition 2 The inverse Formable transform of a function g(x) is given by

R−1[B(s, u)] = g(x) = 1

2π i

c+i∞∫

c−i∞

1

s
exp

( sx
u

)
B(s, u)ds. (9)

Properties of Formable Transform

We present some important properties and theorems of FT that this paper is based
on

Property 1
(Linearity property)

Let αg1(x) and βg2(x) be two functions in which the Formable transform exists
for them, where α and β are non-zero arbitrary constants, then

R[αg1(x) + βg2(x)] = αR[g1(x)] + βR[g2(x)]. (10)

Property 2
(Shifting in s-domain)

If the function g(x) in which the Formable transform exists is multiplied with
shift function xn then

R
[
xng(x)

] = (−u)ns
∂n

∂sn

[
R[g(x)]

s

]
(11)

Property 3
(FT of the Derivatives)

Let g(n)(x) be the nth derivative of the function g(x) such that g(n)(x) ∈ W , then

R
[
g(n)(x)

] = sn

un
B(s, u) −

∑n−1

k=0

( s

u

)n−k
g(k)(0) (12)
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Property 4
(FT of the Convolution)

If F(s, u) and G(s, u) are the Formable transforms of the functions f (x) and
g(x) respectively, then

R[ f (x) ∗ g(x)] = u

s
F(s, u)G(s, u). (12)

Property 5
(FT of Derivatives)

If the function g(n)(x) is the n-th derivative of the function g(x) where g(n)(x) ∈
W , then

R
[
g(n)(x)

] = sn

un
B(s, u) −

∑n−1

k=0

( s

u

)n−k
g(k)(0) (13)

Property 6
The FT of the unit step function u(x) is given by

R[u(x)] = 1 (14)

Proof

R[u(x)] = s

u

∞∫

0

exp

(−sx

u

)
dx = s

u
lim

α→∞

[−u

s
exp

(−sx

u

)]α

0

= 1.

4 Main Results

In this section, we introduce two important theorems for solving integral equations
of both types, Volterra integral equation and integro-differential equation using the
Formable transform.

Theorem 1 Let g(x) be a continues function defined on the interval [a, b] and
consider the Volterra integral equation of the second kind.

y(x) = g(x) + λ

x∫

a

k(x, t)y(t)dt. (15)

Assume that the kernel k(x, t) is a difference kernel, that is, it has the property
k(s, t) = q(x − t), k(x, t) depends on the difference x-t. Then, Eq. (15) can be
written as
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y(x) = g(x) + λ

x∫

a

q(x − t)y(t)dt, (16)

and has the solution

y(x) = R−1

[
sG(s, u)

s − λuQ(s, u)

]
,

where

Q(s, u) = R[q(x)], G(s, u) = R[g(x)].

Proof Running the FT to Eq. (16), we get after using Property 4.

R[y(x)] = R[g(x)] + λR

⎡
⎣

x∫

a

k(x, t)y(t)dt

⎤
⎦

Y (s, u) = G(s, u) + λu

s
Q(s, u)Y (s, u), (17)

where Y (s, u) = R[y(x)].

Solving Eq. (17) for Y (s, u), we have

Y (s, u) = sG(s, u)

s − λuQ(s, u)
, λ uQ(s, u) 
= s (18)

The solution y(x) is obtained by applying the inverse Formable transform to
Eq. (18), to get

y(x) = R−1

[
s G(s, u)

s − λuQ(s, u)

]
� (19)

Theorem 2 Consider the integro-differential equation of the first order.

L y′(x) + P y(x) + 1

C

x∫

0

y(t)dt = E(x), (20)

with the initial condition,

y(0) = a, (21)

then, the solution of Eq. (20) and the initial condition (21) is given by
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y(x) =
[
1

L
e

−P
2L x

(
cos

(√
4L − P2c

4CL2
x

)
− P

√
C

L
√
4L − P2C

sin

(√
4L − P2c

4CL2
x

))

∗
(
E(x) − aP

2

)]
+ ae

−P
2L x cos

(√
4L − P2c

4CL2
x

)
(22)

while L , P, and C are constant with C 
= 0.

Proof Firstly, we apply the Formable transform on both sides of Eq. (20) and use
Property 4, we have

R
[
L y′(x)

] + R[P y(x)] + 1

C
R

⎡
⎣

x∫

0

y(t)dt

⎤
⎦ = R[E(x)],

L
( s

u
Y (s, u) − s

u
y(0)

)
+ PY (s, u) + 1

C

u

s
Y (s, u) = E(s, u), (23)

where Y (s, u) = R[y(x)] and E(s, u) = R[E(x)].

Substituting the initial condition (21) and simplifying Eq. (23), we get

Y (s, u)
[
L
s

u
+ P + u

Cs

]
= E(s, u) + aL

s

u
. (24)

Solving Eq. (24) for Y (s, u), gives

Y (s, u) = E(s, u) + aL s
u

L s
u + P + u

Cs

=
1
L E(s, u)su + as2(

s + P
2L u

)2 + 4L−P2C
4CL2 u2

=
su
L

(
E(s, u) − aP

2

)
(
s + P

2L u
)2 + 4L−P2C

4CL2 u2
+ as

(
s + P

2L u
)

(
s + P

2L u
)2 + 4L−P2C

4CL2 u2

= u

s

(
E(s, u) − aP

2

) s
L

(
s + P

2L u
) − P

2L2 su(
s + P

2L u
)2 + 4L−P2C

4CL2 u2
+ as

(
s + P

2L u
)

(
s + P

2L u
)2 + 4L−P2C

4CL2 u2

Y (s, u) = u

s

(
E(s, u) − aP

2

)⎛
⎜⎝

s
L

(
s + P

2L u
)

(
s + P

2L u
)2 + 4L−P2C

4CL2
u2

− P

2L2
su(

s + P
2L u

)2 + 4L−P2C
4CL2

u2

⎞
⎟⎠

+
as

(
s + P

2L u
)

(
s + P

2L u
)2 + 4L−P2C

4CL2
u2

(25)

Now, applying the inverse FT to both sides of Eq. (25), then running the convolution
property on Eq. (13), we get the result
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y(x) =
[
1

L
e

−P
2L x

(
cos

(√
4L − P2c

4CL2
x

)
− P

√
C

L
√
4L − P2C

sin

(√
4L − P2c

4CL2
x

))

∗
(
E(x) − aP

2

)]
+ ae

−P
2L x cos

(√
4L − P2c

4CL2
x

)
�

It is also worth mentioning that Eq. (20), which is an integro-differential equation,
is an application to one of the most important physical phenomena, which is circuit
analysis. According to Kirchhoff’s second law, the net voltage drop across a closed
loop is equal to the voltage E(x),where y(x) is a current function of time, L is the
inductance, P is the resistance and C is the capacitance.

5 Applications and Examples

In this section, we introduce some examples of a set of integral equations and integro-
differential equations and apply the proposed FT to get their solutions.

Example 1 Consider the Volterra integral equation.

y(x) = 1 +
x∫

0

y(t)dt (26)

Solution

As a first step, we apply the FT to Eq. (26), to get

Y (s, u) = 1 + u

s
Y (s, u) (27)

Simplifying Eq. (27), we get

Y (s, u) = s

s − u
(28)

Finally, we apply the inverse FT on Eq. (28), to get the

y(x) = ex (29)

Example 2 Consider the Volterra integral equation.
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y(x) = 1 −
x∫

0

(x − t)y(t)dt (30)

Solution

Applying the FT to Eq. (30), we have

Y (s, u) = 1 − u

s

u

s
Y (s, u)

= 1 − u2

s2
Y (s, u) (31)

Simplifying Eq. (31), we get

Y (s, u) = s2

s2 + u2
(32)

Now, taking the inverse FT on both sides of Eq. (32), we get the solution

y(x) = cos x (33)

Example 3 Consider the Volterra integral equation.

y(x) = sin x + cos x + 2

x∫

0

sin(x − t)y(t)dt (34)

Solution

We apply the FT on Eq. (34), to get

Y (s, u) = su

s2 + u2
+ s2

s2 + u2
+ 2

u

s

su

s2 + u2
Y (s, u)

= su

s2 + u2
+ s2

s2 + u2
+ 2

u2

s2 + u2
Y (s, u) (35)

Simplifying Eq. (35), we get

Y (s, u) = su + s2

s2 − u2

= s

s − u
(36)
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Now, applying the inverse FT on Eq. (36), we have the solution

y(x) = ex (37)

Example 4 Consider the Volterra integral equation.

y(x) = x3

6
−

x∫

0

(x − t)y(t)dt (38)

Solution

We apply the FT on Eq. (38), to get

Y (s, u) = u3

s3
− u

s

u

s
Y (s, u)

= u3

s3
− u2

s2
Y (s, u). (39)

Simplifying Eq. (39), we get

Y (s, u) = u

s
− su

s2 + u2
(40)

Now, applying the inverse FT on Eq. (40), we have the solution

y(x) = x − sin x (41)

Example 5 Consider the integro-differential equation.

y′ + 2y + 5

x∫

0

y(t)dt = u(x) (42)

with the initial conditions,

y(0) = 0 (43)

Solution

We apply the FT on Eq. (42), and we get

s

u
Y (s, u) − s

u
y(0) + 2Y (s, u) + 5

u

s
Y (s, u) = 1. (44)
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Now, substituting the initial conditions (43) in Eq. (44),

s

u
Y (s, u) + 2Y (s, u) + 5

u

s
Y (s, u) = 1 (45)

Simplifying Eq. (45), we get

Y (s, u) = 2su

(s + u)2 + 4u2
(46)

Now, we take the inverse FT on both sides of Eq. (46), and we get the solution

y(x) = 1

2
e−x sin 2x (47)

Example 6 Consider the integro-differential equation.

y′ + 3y + 2

x∫

0

y(t)dt = 2e−3x (48)

with the initial conditions,

y(0) = 0 (49)

Solution

Appling the formable transform to both sides of Eq. (48), we have

s

u
Y (s, u) − s

u
y(0) + 3Y (s, u) + 2

u

s
Y (s, u) = 2

s

s + 3u
. (50)

Now, substituting the initial conditions (49) in Eq. (50),

s

u
Y (s, u) + 3Y (s, u) + 2

u

s
Y (s, u) = 2

s

s + 3u
. (51)

Simplifying Eq. (51), we get

[
s2 + 3su + 2u2

su

]
Y (s, u) = 2

s

s + 3u
(52)

Solving Eq. (52) for Y (s, u) gives
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Y (s, u) = 2s2u

(s + u)(s + 2u)(s + 3u)

= −s

(s + u)
+ 4s

(s + 2u)
+ −3s

(s + 3u)
(53)

Now, applying the inverse FT on Eq. (53), we get the solution

y(x) = −e−x + 4e−2x − 3e−3x (54)

Example 7 Consider the integro-differential equation.

y′ − 1

2

x∫

0

(x − t)2y(t)dt = −x (55)

with the initial conditions,

y(0) = 1 (56)

Solution

We apply the FT on Eq. (55), and we have

s

u
Y (s, u) − s

u
y(0) − u

s

u2

s2
Y (s, u) = −u

s
. (57)

Now, we substitute the initial conditions (56) in Eq. (57),

s

u
Y (s, u) − s

u
− u3

s3
Y (s, u) = −u

s
. (58)

Simplifying Eq. (58), we get

[
s4 − u4

s3u

]
Y (s, u) = s2 − u2

su
. (59)

Solving Eq. (59) for Y (s, u) gives

Y (s, u) = s2
(
s2 − u2

)
s4 − u4

= s2

s2 + u2
(60)
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Now, we take the inverse FT on Eq. (60), and we get the solution

y(x) = cos x (61)

6 Conclusion

In this paper, we presented two basic theorems concerning the formable transform
to solve the Volterra integral equations and the integro-differential equations with
special kernels. We use the proposed integral transform to present the exact solutions
of the target integral equations. Seven interesting examples were introduced and
solved by the formable transform. As a future work, we attend to solve linear and
nonlinear fractional differential equations by the formable transform.
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A New Authentication Scheme Based
on Chaotic Maps and Factoring Problems

Nedal Tahat, Obaida M. Al-hazaimeh, and Safaa Shatnawi

Abstract Users of public key cryptography systems reveal their public keys, but they
keep their private keys private. A public key directory is where all of your public
keys are kept. Public key cryptosystems place a high value on preventing their keys
from being forgery or otherwise tampered with. A key authentication mechanism is
therefore required to confirm that an intrusion has not happened. A key authentication
technique is developed in this study by solving numerous issues, including chaotic
maps and factoring. When compared to schemes based on a single problem, the
proposed scheme has been mathematically demonstrated to be safer. An alternative
to conventional key authentication systems, the proposed scheme can help to design a
cryptography system that addresses a variety of issues. In contrast, the newly created
authentication technique involves only minimal and low-complexity computations,
making it incredibly efficient.

Keywords Key authentication · Chaotic maps · Factoring · Cryptanalysis ·
Attacks

1 Introduction

In public key cryptosystems, the most important issue is to safeguard public keys
from being hacked by adversaries. On a specific problem, such as discrete loga-
rithm, a number of authentication systems have been proposed in the past. Using
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discrete logarithms, Horng and Yang [1] came up with a new approach for public
key cryptosystems in 1996. Although this approach is comparable to the standard
certificate-based scheme, it does not require any authority to authenticate keys, unlike
most others. Using the password guessing attack, Zhan et al. [2] demonstrated in 1999
that Horng-approach Yang’s is not secure.

Many academics, such as [3–9], presented an improved key authentication system
based on a similar problem to improve security.However, due to current technological
advancements, intruders may be able to simply solve the authentication technique
based on a single problem. As a result, this research is being carried out in order to
design a key authentication technique based on multiple problems. A new secure key
authentication technique based on discrete logarithm and factoring issues has been
suggested recently [10]. However, their scheme is somewhat time-consuming. As
early as 1989, an algorithmic design for image encryption based on a chaotic map
was introduced [5, 11]. There has been an increase in work on this subject recently,
as a few methods have been given in the research art [5, 12–17]. In comparison to
public cryptosystems that use modular exponential computing or scalar multiplica-
tion on elliptic curves, chaotic map-based systems require the least computational
complexity. Using a combination of chaotic maps and factorization problems, we
present a novel approach to secure key authentication that improves security and
reduces the number of operations required for both user registration and key authen-
tication. Using chaotic maps and factoring to authenticate keys has not yet been
proposed to our knowledge.

Here are the rest of the sections of the paper’s structure: Sect. 2 has a few intro-
ductions. Section 3 explains a new key authenticationmethod. In Sect. 4, we describe
the security and performance of our proposed key authentication method, followed
by numerical simulation in Sect. 5. Section 6 concluded this research work.

2 Preliminaries

In this section, we will briefly review the fundamental concept of the Chebyshev
chaotic map [12, 17–21].

2.1 Chebyshev Chaotic Map

Authentication of the Chebyshev chaotic maps is provided [22–24]. The structure of
the Chebyshev polynomials is reviewed in Fig. 1 [25].

Tomake it clear, consider the following example:Avariable called x has an interval
[−1, 1], and n is an integer number. The Chebyshev polynomial Tn(x) : [−1, 1] →
[−1, 1] is defined as Tn(x) = cos

(
n cos−1(x)

)
, and the Chebyshev polynomial map

Tn(x) : ν → ν of degree n is defined by
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Fig. 1 Chebyshev polynomials structure

Tn(x) = 2xTn−1(x) − Tn−2(x) ; n ≥ 2 (1)

where T0(x) = 1, T1(x) = x . Some Chebyshev polynomials are T2(x) = 2x2 − 1,
T3(x) = 4x3−3x, T4(x) = 8x4−8x2+1 and T5(x) = 16x5−20x3+5x . The semi-
group feature of Chebyshev polynomials is one of the most important properties of
Chebyshev polynomials which is given by

Tr (Ts(x)) = Trs(x) (2)

This property has the direct consequence of ensuring that Chebyshev polynomials
commute when used in the composition.

Tr (Ts(x)) = Ts(Tr (x))

Specifically, Zhang [15] shows that the semi-group property applies to Chebyshev
polynomials defined on the interval (−∞,∞), which has the effect of increasing the
security of Chebyshev polynomials. It is possible to express the enhanced Chebyshev
polynomials by

Tn(x) = (2xTn−1(x) − Tn−2(x))(mod p) (3)

where n ≥ 2, x ∈ (−∞,∞), and the large prime number is p, we obtain that

Trs(x) = Tr (Ts(x)) = Ts(Tr (x))

Theorem 1 ([12]) Let f (M) = t2 − 2Mt + 1 and α, β be two roots of f (M). If
M = 1

2 (α + β), in this case, the number of possible solutions is met by.
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Ta(M) =
(
M + √

M2 − 1
)a +

(
M − √

M2 − 1
)a

2
(mod p) (4)

Theorem 2 ([12]) If a and b are two positive integers and a > b, then we obtain
that

2Ta(M).Tb(M) = Ta+b(M) + Ta−b(M) (5)

Theorem 3 ([12]) If a = b+ c and p is a prime (i.e., large number), we obtain that

[Ta(M)]2 + [Tb(M)]2 + [Tc(M)]2 = 2Ta(M)Tb(M)Tc(M) + 1(mod p) (6)

Lemma1 ([12]) Let the elements of a finite field are g and h, i.e., if g+g−1 = h+h−1

then g = h or g = h−1.

Lemma 2 ([12]) For any g ∈ GF(p) and y = gt for some integer t , we can find
an integer M ∈ GF(p) and then construct a chaotic maps sequence {Ta(M)}, in
polynomial time such that.

1

2

(
y + y−1

) = Tt (M) ∈ Ta(M) (7)

Lemma 3 ([12]) Let p, n, and α are the same as earlier; and G is the group
formed by the combination of these three. To obtain the value of v such that
a = Tv2(mod n)(α)mod p, where a is given and a ∈ G, one must solve both the
chaotic maps problem in G and the factorization of n.

Theorem4 Thediscrete logarithmproblemoverGF(p) canbe solved in polynomial
time if a method AL can be used to solve the chaotic mapping problem over GF(p).

2.2 Computational Problem

To demonstrate the security of our proposed cryptosystem, we give the following
important mathematical features of Chebyshev chaotic maps:

(a) Semi-group property: Given x ∈ [−1, 1],

Tr (Ts(x)) = cos
(
rcos−1(scos−1(x)

)) = cos
(
rscos−1(x)

)

= Tsr (x) = Ts(Tr (x))

(b) Chaotic maps problem: If two items x and y are given, the discrete logarithm
problem’s task is to find integers s, such that Ts(x) = y.
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Table 1 Initialization settings

Notations/parameters description

p, q and p Three large strong primes, n = pq

β A primitive element, in {1, 2, . . . p − 1} and satisfying βn ≡ 1mod p

g(α) = Tα(β)mod p As a public function, the chaotic map function of g is used

Kpub Public key

Kpriv Private key

(c) If three elements x , Tr (x), and Ts(x), are given, Computing elements Trs(x).
is the goal of the Diffie-Hellman problem.

Table 1 lists certain initialization settings (i.e., notations, and parameters) that are
used in the developed approach.

3 Key Authentication Scheme

Phase one of the proposed system is user registration, and phase two is key authen-
tication. It’s safe to assume that Abu will log into the system manually. After that, a
server will house all of Abu’s publicly available data as the third level of authority.
According to this plan, the server, the third authority, can be trusted. Once she has
verified the public key of her recipient, Mimi can send her message to Abu. Because
of this, Mimi as a sender will execute key authentication computations in order to
overcome this issue. The proposed scheme of key authentication is as follows.

3.1 User Registration Phase

The phase of user registration involves the following steps:

• For each of the three numbers, pick a huge prime number p and two separate
prime integers p and q.

• Compute Eqs. 8 and 9, respectively.

n = pq where n/(p − 1), (8)

ϕ(n) = (p − 1)(q − 1) (9)

• Choose randomly any integer, e where gcd(ϕ(n), e) = 1
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• Find d, where

ed ≡ 1modϕ(n) (10)

• Randomly choose any integer, x where x ∈ {1, 2, . . . , p − 1}
• Compute the following equations:

g(x) = Tx (β)mod p (11)

Kpriv = (xg(x) + d)mod n (12)

Kpub = TK 2
priv(mod n)(β)mod p (13)

• Choose randomly any integer, r where r ∈ Z∗
p and a password, pwd where

pwd ∈ Z∗
p , then calculate the following:

g(pwd) = Tpwd(β)mod p (14)

Y = Tr (β)mod p (15)

V = g(pwd + r) ≡ T(pwd+r)(β)mod p (16)

• The encrypted password is g(pwd). The user will send g(pwd),Y and V to a
server secretly.

• According to Eq. 17, a server will determine whether or not the user is authentic.
The value of V will be stored in an encrypted password table if the equation is
correct. h(Y ) will be calculated by a server and stored in an encrypted password
database.

[v]2 + [
Tpwd(β)

]2 + [Y ]2 = (
2VYTpwd(β) + 1

)
(17)

• Finally, compute the certificate (i.e.,C) by the following equations, and then store
the obtained parameters (i.e., Kpub, e and C) in the directory of the public key.
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W = (
pwd + r + K 2

priv

)
(mod n) (18)

C = Td(W )mod p (19)

3.2 Key Authentication Phase

The process of authentication is used to build confidence between two or more
interactive entities. This phase involves the following steps:

• Mimi will receive the following information from Abu: X, Y, and Z. She will then
compute

m = Te(C)mod p (20)

• In order to make sure that Abu’s public key has not been tampered with,Mimi will
check to see whether the following equation is correct. A cryptosystem message
will be encrypted using the public key of Mimi, if it is valid.

[Tm(β)]2 + [V ]2 + [
Kpub

]2 = (
2V .Kpub.Tm(β) + 1

)
(mod p) (21)

4 Security and Performance Analysis

It is in this section that the verification, security analysis, and efficiency analysis of the
proposed key authentication technique are presented in the following sub-sections.

4.1 Security Analysis

The proposed method for discrete logarithm and chaotic maps (i.e., Chebyshev) is
evaluated based on its computational complexity. A thorough study of the proposed
scheme’s advantages over some cryptanalysis issues has also been carried out to
demonstrate its efficiency.
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Theorem 5 If the user registration step goes successfully, the key authentication
phase will go smoothly as well.

[Tm (β)]2 + [V ]2 + [
Kpub

]2 = [
TTe(C)(β)

]2 + [
T(pwd+r)(β)

]2 +
[
TK 2

priv (mod n)(β)
]2

(mod p)

= [
TTe(C)(β)

]2 + [
T(pwd+r)(β)

]2 +
[
TK 2

priv (mod n)(β)
]2

(mod p)

= [
TTe(Td (W ))(β)

]2 + [
T(pwd+r)(β)

]2 +
[
TK 2

priv (mod n)(β)
]2

(mod p)

= [
TTed(mod ϕ(n))(W )(β)

]2 + [
T(pwd+r)(β)

]2 +
[
TK 2

priv (mod n)(β)
]2

(mod p)

= [TW (β)]2 + [
T(pwd+r)(β)

]2 +
[
TK 2

priv (mod n)(β)
]2

(mod p)

=
[
T(

pwd+r+K 2
priv

)(β)

]2
+ [

T(pwd+r)(β)
]2 +

[
TK 2

priv (mod n)(β)
]2

(mod p)

= 2T(
pwd+r+K 2

priv

)(β)T(pwd+r)(β)TK 2
priv (mod n)(β) + 1(mod p)

= 2TW (β)V Kpub + 1(mod p)

= 2TTed(mod ϕ(n))(W )(β)V Kpub + 1(mod p)

= 2TTe(C)(β)V Kpub + 1(mod p)

= 2Tm (β)V Kpub + 1 (mod p)

Factoring attack: If the adversary (i.e., Adv) is able to solve the factoring problem,
then Eq. 12 provides the value of d. To obtain Kpriv, Adv requires knowledge of
the value of x in advance. However, obtaining the value of x is difficult due to the
computational infeasibility of the discrete logarithm problem [1]. Moreover, Based
on Eqs. 18 and 19, (pwd + r) must be known in advance in order to get the Kpriv

value. Because the chaotic map problem is difficult to solve, it is difficult to get
(pwd + r).

Chaotic maps attack: If Adv is able to solve a chaotic map, the value of x can be
found by referencing Eq. 11. Since d is known from Eq. 12, the value of Kpriv can
also be determined. The factoring issues in Eq. 10 make it difficult to obtain d value.
K 2

priv can be determined if Eq. 13 can be figured out. But, factoring problems are
notoriously difficult to solve, so this is impossible.

4.2 Performance Analysis

In comparison to other key authentication schemes, the computation of Chebyshev
polynomial problem allows for smaller faster computation, key sizes, and significant
savings in terms of memory, bandwidth, and energy. The ECC encryption algorithm
has a high computational complexity, but the chaotic maps algorithm avoids scalar
modular and multiplication exponentiation calculations, allowing for greater effi-
ciency than the ECC algorithm. Tomake it easier to calculate the cost of computation,
we use the following notations as listed in Table 2 [22, 24, 25].
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Table 2 Notations

Notation Description Value

Th Hash function computation time Th ≈ 0.0005s

Tch Extended chaotic function computation time Tch ≈ 0.172s

Texp Exponentiation function computation time Texp ≈ 5.37s

Tmul Multiplication function computation time Tmul ≈ 0.00207

Table 3 Comparative analysis of the proposed scheme and existing scheme

Phase Criterion State of the art
scheme

Time
complexity
(Total)

Total (s)

State of the art
scheme [10]

User
registration

Time
complexity

6Texp + 2Tmul

+Th + 2Tqrt

8Texp +
3Tmul
+Th + 2Tqrt

42.972

Key
authentication

Time
complexity

2Texp + Tmul

Proposed
scheme

User
registration

Time
complexity

6Tch + 2Tmul
+Th + 2Tqrt

9Tch + 4Tmul

+5Tqrt + Th

1.567

Key
authentication

Time
complexity

36Tch + 3Tqrt
+2Tmul

It is shown in Table 3 that the proposed scheme has a lower time complexity than
that in [10]. The proposed scheme is more efficient than the one in [10]. While their
scheme requires 42.972 s to complete, ours only takes 1.567 s to complete.

5 Numerical Simulation of the Proposed Scheme

5.1 User Registration Phase

• Abu choose randomly a large prime number, p = 1427 and two distinct prime
numbers, p = 23 and q = 31. Compute n = 23 × 31 = 713 and ϕ(n) = 660.
β = 12 with order 713such that 12713 ≡ 1mod 1427.

• Choose e = 113 such that gcd(113, 660) = 1. Compute an integer d such that
ed ≡ 1mod660. Then d = 257. Randomly choose any integer, x = 231 and then
calculate the following:

g(x) = T231(12)mod 1427 = 100

Kpriv = (231(100) + 257)mod 713 = 541
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Kpub = T5412(mod 713)(12)mod 1427 = 1010

• Choose randomly any integer, r = 173where r ∈ Z∗
p and a password, pwd = 141

where pwd ∈ Z∗
p , and we obtain that

g(pwd) = T141(12)mod 1427 = 395

Y = T173(12)mod 1427 = 598

V = g(pwd + r) ≡ T(141+173)(12)mod 1427 = 1039

• To determine whether a user is authentic, the following equation must be checked
by the server:

[v]2 + [
Tpwd(β)

]2 + [Y ]2 = 2VYTpwd(β) + 1 (mod p)

[v]2 + [
Tpwd(β)

]2 + [Y ]2 = (
10392 + 5982 + 3952

)
mod 1427 = 618

2VYTpwd(β) + 1 (mod p) = 2(1039)(395)(598) + 1(mod 1427 = 618)

• Compute the certificate (i.e., C) by the following equations, and then store the
obtained value in the directory of the public key.

W = (141 + 173 + 351)(mod 713) = 665

C = Td(W )mod p = T257(665) = 797

Kpub = 1010, e = 113 andC = 797

5.2 Key Authentication Phase

• Before making a calculation, Mimi will gather Abu’s data (i.e., Kpub, e. and C)
and then calculate the following:
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m = T113(797)mod 1427 = 585

• Mimi will validate whether or not the following equation is true to ensure that
Abu’s public key has not been altered:

[Tm(β)]2 + [V ]2 + [
Kpub

]2 = 2V .Kpub.Tm(β) + 1(mod p)

[Tm(β)]2 + [V ]2 + [
Kpub

]2 = 472 + 10392 + 10102(mod 1427) = 1286

2V .Kpub.Tm(β) + 1(mod p) = 2(1039)(1010)(47) + 1(mod 1427) = 1286

• Then we have

[Tm(β)]2 + [V ]2 + [
Kpub

]2 = 2V .Kpub.Tm(β) + 1(mod p)

• Finally, Mimi will encrypt the message before sending it to Abu using a
cryptosystem using the public key.

6 Conclusion

Using chaotic maps and factoring problems, this paper proposes a key authentication
scheme that is both secure and efficient. When compared to other key authentication
schemes, such as elliptic curves, ElGamal, and RSA, the scheme takes advantage of
the inherent advantages of chaotic map cryptosystems such as computationally less
intensive and smaller key size. Additionally, the comparison of efficiency has been
discussed. We conclude from the results that our scheme is superior to the Suparlan
et al. schemes. Although this scheme is said to be more secure, it is less efficient than
the existing single problem authentication scheme.
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A Pro Rata Definition
of the Fractional-Order Derivative

Ramzi B. Albadarneh, Ahmad M. Adawi, Sa’ud Al-Sa’di, Iqbal M. Batiha,
and Shaher Momani

Abstract In this paper a novel definition of the fractional-order derivative operator
will be introduced. This operator will be called “pro rata” due to its ratio form as
well as its geometric behavior that it is proportional to the fractional-order value.
Some properties and theorems will be investigated. As an inverse of the fractional-
order derivative operator, the integral of fractional order will be introduced. Some
illustrative examples will be given.

Keywords Fractional derivative · Fractional integral

1 Introduction

Non-integer calculus is the calculus of differentiation and integration of arbitrary
orders (real or complex), called fractional-order derivatives and integrals, which
generalizes the concept of differentiation and fold integration of integer-order [19,
21]. The history of non-integer calculus set out approximately in themeanwhilewhen
the traditional calculus was recognized. It was early reported in a letter between the
mathematical geniuses Leibniz and L’Hôpital in 1695, where the semiderivative’s
idea was proposed. From that time forward, a lot of well-known physicists and
mathematicians have mainly investigated fractional-order derivatives and integrals
in a purely mathematical context, without its real applications, the basic concepts
being connected with the names of Grunwald, Letnikov, Riemann, Abel, Liouville,
and many more. But over the past few decades, it was turned out that the non-integer
calculus has gained much attention as a result of its common appearance in different
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implementations in the scopes of engineering, electrical networks, fluid mechanics,
diffusive transport, control theory, optics and signal processing, etc. [1–5, 7, 8, 16,
26, 27]. It should be noted that in current literature the terms “derivative” is used for
positive orders and “integral” (for negative orders).

In the scope of mathematics, there exist several definitions of fractional-order
differentiation and integration in the literature presently, involving Caputo [9, 10],
Riemann-Liouville [11, 20], Crünwald-Letnikov [14], Riesz [24, 25], Weyl [6, 24,
25], Jumarie [15],Hadamard [24, 25]. Themost famous definition that has beenpopu-
larized is due to Riemann and Liouville, which depends in its construction on the nth-
Cauchy’s integral formula that relies only on a straightforward integration. The def-
inition is obtained as follow: Let a, T, α ∈ R such that a < T , n = max{0, [α] + 1}
and f (t) be an integrable function on (a, T ). For n > 0, if f (t) is n-times differen-
tiable function on (a, T ) except on a set of measure zero, then for t ∈ (a, T )

RDα
a f (t) = 1

Γ (n − α)

dn

dtn

∫ t

a

f (x)

(t − x)α−n+1
dx = dn

dtn

[
R I n−α

a f (t)

]
(1)

where I α
a is the fractional integral operator of order α > 0. In particular, this operator

can be outlined as the convolution integral of the function tα−1 and the function f
itself, i.e.,

R I α
a f (t) = 1

Γ (α)

∫ t

a
(t − x)α−1 f (x) dx (2)

where Γ (·) is the gamma function, which is defined by

Γ (z) =
∫ ∞

0
e−t t z−1dt, Re(z) > 0. (3)

In fact, formula (2) is a generalized formulation of the followingCauchy’s formula
for repeated integration of a continuous function f on R, if α ∈ N and (n − 1)! is
replaced by its generalization Γ (α), see [22]:

∫ s

a

∫ s1

a

∫ s2

a
. . .

∫ sn−1

a
f (sn)dsndsn−1 . . . ds2ds1 = 1

(n − 1)!
∫ s

a
(s − t)n−1 f (t)dt,

(4)
for n ∈ N, a, s ∈ R, s > a.

On the other hand, if α = k with k ∈ N, then we have n = k + 1 and also we get

RDk
a f (t) = 1

Γ (1)

dk+1

dtk+1

∫ t

a
f (x) dx = dk f (t)

dtk
. (5)

A useful alternative operator for the fractional-order Riemann-Liouville deriva-
tive operator was introduced originally by Caputo in 1967. This operator was then
approved byMainardi and Caputo in 1971 to be called later on by the fractional-order
Caputo derivative operator. The definition of this operator can be defined as
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C Dα
a f (t) = 1

Γ (n − α)

∫ t

a

f (n)(x)

(t − x)α−n+1
dx, n − 1 < α < n (6)

It is clear that the fractional-order Caputo derivative operator is more limiting than
the fractional-order Riemann-Liouville derivative operator. This is because it needs
the existence of the nth-derivative of the function under consideration. At the same
time, it is worth noting that the functions that not having the 1st-order derivative could
have, in view of Riemann-Liouville sense, derivatives of fractional-order values less
than one. In addition, it should be also noted that the fractional-order derivative of
an arbitrary function does not need to be a continuous function at the origin and it
does not need to be differentiable too.

However, the Caputo operator has confirmed its ability to greatly match with
observational data that is typically used to describe the performance of several engi-
neering and applied science problems. It is very important to point out that the
Riemann-Liouville definition has certain drawbacks and limitations, especially in
describing several real-life applications. This actually backs the fact that asserts
these applications need certain definitions of the fractional-order derivative that can
allow the usage of initial conditions that are physically interpretable. For instance,
the fractional-order Riemann-Liouville derivative operator of a constant function
does not equal zero. Besides, the fractional-order derivative of a given function will
have a singularity at the origin, whenever it is constant at the origin. In this regard,
it has been shown that the Caputo operator is highly advantageous for such tasks.
In particular, such operator has an ability of using the initial conditions reported for
the problems formulated by using certain differential equations of fractional order.
Moreover, the fractional-order derivative of a constant function is zero by using this
operator.

To this point,we have introduced two expressions of the fractional-order derivative
operators. Actually, the existence of several expressions of the identical notion raises
the query, are these definitions equivalent? The brief reply to this query in general
is no, although the differentiation and integration operators are interchanged in the
corresponding definitions of the Caputo fractional derivative and Riemann-Liouville
fractional derivative. More particularly, it can be noted that, with the help of using
Riemann-Liouville operator, the function at hand is first integrated n − α-times and
then differentiated n-times. On the other hand, with the help of using the Caputo
operator, the same function is first differentiated n-times and then integrated n − α-
times. In general, the two aforesaid definitions cannot be coincided. That is

RDα f �= C Dα f. (7)

However, it was shown in [13] that the above two definitions can be coincided if and
only if the function f (x) together with its first n − 1-derivatives vanish at x = 0.
More precisely, for t > 0, n − 1 < α < n, and n ∈ N, we have
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C Dα f (t) = RDα f (t) −
n−1∑
k=0

t k−α

Γ (k + 1 − α)
f (k)(0). (8)

Proposition 1 Let n − 1 < α < n, n ∈ N, α ∈ R and f (t) be a function such that
C Dα f (t) exists. Then the following properties for the Caputo fractional derivatives
hold:

lim
α→n−

C Dα f (t) = f (n)(t), (9)

lim
α→n−1+

C Dα f (t) = f (n−1)(t) − f (n−1)(0). (10)

In the same regard, it should be mentioned here that there is another operator
for computing the fractional-order derivatives. This operator is called the Crünwald-
Letnikov operator. It can be obtained under the assumption that assumes the function
f (t) must be n-times continuously differentiable on [a, t]. However, the Crünwald-
Letnikov operator can be defined as follows:

GDα
a f (t) =

n−1∑
k=0

f (k)(a)

Γ (−α + k + 1)
(t − a)−α+k + 1

Γ (n − α)

∫ t

a

f (n)(x)

(t − x)α−n+1
dx

(11)
Therefore, by considering a category of functions f (t), possessing n-continuous

derivatives for t ≥ 0, as well as by means of carrying out some differentiations and
frequent integrations by parts, the Riemann-Liouville operator can be inferred by the
Crünwald-Letnikov operator.

It should be mentioned that all the definitions of fractional derivatives above
satisfy the linearity property, that is

Dα(μ f (x) + λg(x)) = μDα f (x) + λDαg(x). (12)

Recently in 2014 in [18], a novel straightforward fractional-order derivative def-
inition called the conformable fractional derivative was proposed. This definition
agrees with the traditional definitions of Riemann-Liouville and Caputo in dealing
with polynomials. In particular, if f : [0,∞) → R, then the conformable fractional
derivative of order α of the function f can be outlined as follows:

Tα f (t) := lim
ε→0

f (t + εt1−α) − f (t)

ε
, for all t > 0, α ∈ (0, 1). (13)

If f is α-differentiable in some (0, a), a > 0, and lim
t→0+

f (α)(t) exists, then the frac-

tional derivative at 0 is defined by f (α)(0) = lim
t→0+

f (α)(t). The authors in [18] proved

some properties for the above definition. For example, they proved that if f is differ-
entiable, thenTα( f )(t) = t1−α f ′(t).However, the zero-order derivative of a function
does not return the function, i.e., T0 f (t) �= f (t), see [17, 23]. Besides, the derivative
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reported in (13) does not verify the index law; TαTβ f (t) �= Tα+β f (t) for general α
and β, and it does not verify the generalized Leibniz rule. However, it verifies the
product rule,

Tα( f g) = f Tα(g) + gTα( f ). (14)

Furthermore, the definition given in (13) satisfies the interpolation property. In other
words, for 0 < α < 1, we have

lim
α→1−

Tα f (t) = d f

dt
, lim

α→0+
Tα f (t) = t

d f

dt
. (15)

For n − 1 < α < n:

lim
α→n−

Tα f (t) = dn f

dtn
, lim

α→n−1+
Tα f (t) = t

dn f

dtn
, (16)

In addition, the author in [18] proved similar results to the classical Mean Value
Theorem and Rolle’s Theorem.

The organization of this article is arranged in the following manner: In the next
section, we propose a new definition of the derivative of order α where α ∈ [0, 1],
and a general definition of derivatives of higher order, then we prove some important
properties. In Sect. 3, we introduce a generalized definition of the integral of order
α. We conclude the paper with some remarks in Sect. 4.

2 Fractional Derivative

In this section, we give our new definition of the derivative of order α of a continuous
function f at a point x and prove several results that are close to those found in
classical calculus.

Definition 1 Let f (x) be a continuous function on the interval (x − ε, x + ε)where
ε > 0. The derivative of order α ∈ [0, 1] is defined by

Dα f (x) = dα f

dxα
= lim

h→0

α f (x + h) + [(1 − α)h − α] f (x)
h

(17)

If the derivative of f of order α exists, then we will say that f is α-differentiable.
Notice that if a function f (x) is differentiable on an interval [a, b] then the derivative
Dα f is defined. This leads to the following theorem.

Theorem 1 Let f (x) be a continuous function on the interval [a, b]. If 0 < α ≤ 1
and x ∈ [a, b], then Dα f (x) exists if and only if f ′(x) exists. Consequently,

Dα f (x) = (1 − α) f (x) + α f ′(x), 0 < α < 1. (18)



70 R. B. Albadarneh et al.

Proof Let x ∈ [a, b]. First assume that Dα f (x) exists, hence the limit in (17) exists,
and

α lim
h→0

f (x + h) − f (x)

h
+ (1 − α) f (x) = Dα f (x) (19)

hence,

lim
h→0

f (x + h) − f (x)

h
= α − 1

α
f (x) + 1

α
Dα f (x). (20)

This implies that

f ′(x) = α − 1

α
f (x) + 1

α
Dα f (x) (21)

exist. Conversely, assume that

f ′(x) = lim
h→0

f (x + h) − f (x)

h
(22)

exists, then

lim
h→0

f (x + h) − f (x)

h
+ (1 − α) f (x) = lim

h→0

α f (x + h) + [(1 − α)h − α] f (x)
h

(23)
exists.

It follows that, if a function f is α-differentiable, α ∈ (0, 1] at xo ∈ (a, b), then
f is continuous at xo.

Example 1 Using formula (18) we can compute the derivative of order α of some
functions, for example:

1. Let f (x) = c, the constant function. Then Dα( f ) = (1 − α)c.
2. Let f (x) = Ax + B. Then Dα( f ) = (1 − α)(Ax + B) + αA.
3. Let f (x) = x p. Then Dα( f ) = (1 − α)x p + αpx p−1.
4. Let f (x) = ex . Then Dα( f ) = ex .

For higher order derivatives case we can generalize the definition to the following:

Definition 2 Let n be a positive integer and α ∈ [n, n + 1]. If f (x) is an n + 1
differentiable on [a, b], then

Dα f = lim
h→0

1

h

(
(n + 1 − α)

(
f (n−1)(x + h) − f (n−1)(x)

)

+ (α − n)
(
f (n)(x + h) − f (n)(x)

))
.

(24)

Similar argument used in Theorem1 shows that
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Dα f = dα f

dxα
= (n + 1 − α)

dn f

dxn
+ (α − n)

dn+1 f

dxn+1
. (25)

We notice from Definition2 of the fractional derivative of order α that when the
parameterα varies from the integer n to the integer n + 1 then the fractional derivative
of order α varies continuously from the nth derivative to the (n)th derivative with

lim
α→n+

Dα f = dn f

dxn
and lim

α→n+1−
Dα f = dn+1 f

dxn+1

and hence

lim
α→n

Dα f = dn f

dxn
.

This desired property is not confirmed in many other definitions of the fractional
derivative. For the illustration of this property see Fig. 1.

It can be shown that in the case of α is an integer, this definition reduces to the
standard definition of the nth-derivative of f (x). This shows that our definition of
the derivative of order α is a generalization of the integer-order derivative. Now we
are going to obtain some general properties of our new definition of the derivative of
order α. First, the linearity of the differential operator Dα is ensured by the following
theorem:

Theorem 2 Let n be a non-negative integer and α ∈ [n, n + 1]. If f (x) and g(x)
are two functions such that both Dα f and Dαg exists. Then the derivative of order
α is a linear operator, i.e.,

Dα (λ f (x) + μg(x)) = λDα f (x) + μDαg(x), (26)

for any constants λ, μ.

Proof The proof follows directly from Eq. (25) and the linearity of the limit.

This definition of the derivatives of order α carries with it some important prop-
erties, that will show importance when solving equations involving integrals and
derivatives of general order.

Proposition 2 (The Product Rule of Fractional Derivative)

1. If 0 ≤ α ≤ 1, and f, g are two differentiable functions, then

Dα( f g) = α
(
f g′ + f ′g

) + (1 − α) f g. (27)

2. Let n be a non-negative integer. If n ≤ α ≤ n + 1, and f, g are two (n + 1)-
differentiable functions, then
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Dα( f g) = (α − n)

n+1∑
k=0

(
Dk f

) (
Dn+1−kg

) + (n + 1 − α)

n∑
k=0

(
Dk f

) (
Dn−kg

)
.

(28)

Proposition 3 (The Iterated Fractional Derivative) Let n be a non-negative integer,
and n ≤ α ≤ n + 1. We denote the 2nd -iterated fractional derivative DαDα f by
(Dα)2 f . Then

(Dα)2 f = (α − n)2 f (2n+2) + 2(α − n)(n + 1 − α) f (2n+1) + (n + 1 − α)2 f (2n).

(29)
In general, for a positive integer k, we write (Dα)k f = DαDα . . . Dα f , k times, then
the kth-iterated derivative of f is given by

(Dα)k f =
k∑
j=0

(
k
j

)
(α − n) j (n + 1 − α)k− j f (kn+ j). (30)

The following theorem shows that the derivative of order α defined in (24) is com-
mutative.

Theorem 3 Let n,m be two non-negative integers, and f be an (n + m + 2) differ-
entiable function on (a, b). If α ∈ [n, n + 1] and β ∈ [m,m + 1], then

DαDβ f (x) = DβDα f (x), ∀x ∈ (a, b). (31)

Proof To begin with, let x ∈ (a, b), if we apply (25) twice we get

Dα
(
Dβ f (x)

) = Dα
(
(β − m) f (m+1)(x) + (m + 1 − β) f (m)(x)

)
= (α − n)(β − m) f (n+m+2)(x)

+(α − n)(m + 1 − β) f (n+m+1)(x)

+(n + 1 − α)(β − m) f (n+m+1)(x)

+(n + 1 − α)(m + 1 − β) f (n+m)(x).

Similarly,

Dβ (Dα f (x)) = Dβ
(
(α − n) f (n+1)(x) + (n + 1 − α) f (n)(x)

)
= (β − m)(α − n) f (n+m+2)(x)

+(β − m)(n + 1 − α) f (n+m+1)(x)

+(m + 1 − β)(α − n) f (n+m+1)(x)

+(m + 1 − β)(n + 1 − α) f (n+m)(x).

Hence, DαDβ f (x) = DβDα f (x), for any x ∈ (a, b).
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We noticed that the definition (18) is equivalent to the classical definition of the first
derivative of a function f . This suggests that there are corresponding results similar
to the classical Rolle’s theorem and the Mean Value theorem for the derivative of
order α definition, as we prove in the next theorems.

Theorem 4 (Rolle’s Theorem for Derivative of Order α) Let f : [a, b] → R be a
continuous function on [a, b] and α-differentiable on (a, b) for some α ∈ [0, 1]. If
f (a) = f (b), then there exists c ∈ (a, b) such that

Dα f (c) = (1 − α) f (c). (32)

Proof Since f is α-differentiable for α ∈ [0, 1] then f is differentiable on (a, b).
Hence, by the classical Rolle’s theorem, there exists c ∈ (a, b) such that f ′(c) = 0.
Consequently, by Eq. (18),

Dα f (c) = α f ′(c) + (1 − α) f (c) = (1 − α) f (c), 0 < α < 1 (33)

completing the proof.

The following result is a direct consequence of the ordinary mean value theorem.

Theorem 5 (Mean Value Theorem for Derivative of order α) Let f : [a, b] → R

be a continuous function on [a, b] and differentiable on (a, b). Then there exists
c ∈ (a, b) such that

Dα f (c) = α

(
f (b) − f (a)

b − a

)
+ (1 − α) f (c), 0 < α < 1. (34)

Proof The asserted conclusion follows directly by applying Eq. (18).

The following theorem is a general version of Rolle’s theorem for the derivative of
order α.

Theorem 6 (Generalized Rolle’s Theorem for Derivative) Let f : [a, b] → R be a
continuous function on [a, b] and n times differentiable on (a, b). If f (x) = 0 at the
n + 1 distinct points {xi }ni=0 such that a ≤ x0 < x1 < · · · < xn ≤ b, then there exists
c ∈ (x0, xn), and hence in (a, b), such that

Dα f (c) = (n − α) f (n−1)(c), (35)

for any α ∈ [n − 1, n].
Proof Since f is n-times differentiable on (a, b) then by the ordinary generalized
Rolle’s theorem [12, p. 549], there exists c ∈ (a, b) with f (n)(c) = 0. If n − 1 <

α < n, then by (25) we have
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Dα f (c) = (α − n + 1) f (n)(c) + (n − α) f (n−1)(c), n − 1 < α < n (36)

simple computations leads to (35).

Proposition 4 If f is n-differentiable at a point x = c, for some positive integer n,
and

f (c) = f ′(c) = f ′′(c) = · · · = f (n)(c), (37)

then Dα f (c) = f (c) for any α ∈ [0, n].
Proposition 5 If f is differentiable on [a, b], and f (x) ∈ [c, d], f ′(x) ∈ [c, d], for
all x ∈ [a, b], then Dα f (x) ∈ [c, d] for all x ∈ [a, b] and α ∈ [0, 1].

The following propositions give some geometric representations of the derivative
of order α defined in the Definition1.

Proposition 6 Let f be differentiable on [a, b].
(a) If f (x) ≤ f ′(x) for all x ∈ [a, b], then f (x) ≤ Dα f (x) ≤ f ′(x) for all x ∈

[a, b], α ∈ [0, 1],
(b) If f ′(x) ≤ f (x) for all x ∈ [a, b], then f ′(x) ≤ Dα f (x) ≤ f (x) for all x ∈

[a, b], α ∈ [0, 1].
We note that proposition 6 stated that the graph of Dα f (t) for 0 < α < 1 always

lies between the functions f (t) and f ′(t), for example, the fractional derivative using
our definition for f (t) = 1

2 sin(t
2) for different values of α is shown in Fig. 1.

Proposition 7 If f is twice differentiable on [a, b] and f and f ′ are increasing
(decreasing) on [a, b], then the graph of Dα f is increasing (decreasing) on [a, b],
for all α ∈ [0, 1].

Fig. 1 The graph of Dα f (t) where f (t) = 1
2 sin(t

2) for α = 0, 0.2, 0.5, 0.7, and 1
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Proposition 8 If f is 3rd -differentiable on [a, b] and f and f ′ are concave up
(concave down) on [a, b], then the graph of Dα f is concave up (concave down) on
[a, b], for all α ∈ (0, 1).

Proposition 9 For α ∈ [0, 1],

(1 − α)

(
Area between f (x) and Dα f (x)

)
= α

(
area between f ′(x) and Dα f (x)

)
.

(38)

Proof The area between f (x) and Dα f (x) over an interval I is given by

∫
I
|Dα f (x) − f (x)| dx =

∫
I
|((1 − α) f (x) + α f ′(x)) − f (x)| dx = α

∫
I
| f (x) − f ′(x)| dx . (39)

Similar computations gives that the area between f ′(x) and Dα f (x) over the
interval I is (1 − α)

∫
I

| f (x) − f ′(x)| dx , the conclusion follows immediately.

Recall that a continuously differentiable function is monotone in some interval
[a, b] if and only if its first derivative does not change its sign there. We now state
general results involving derivatives of order α holds, the proofs are based on the
standard definition of limits and the fact that f ′(x) = lim

α→1−
Dα f (x).

Proposition 10 Let f ∈ C1[a, b].
1. If there exists αo ∈ [0, 1) such that Dα f (x) > 0 for all x ∈ [a, b] and every

α ∈ (α0, 1), then f is increasing on [a, b]. ,
2. If there exists αo ∈ [0, 1) such that Dα f (x) < 0 for all x ∈ [a, b] and every

α ∈ (α0, 1), then f is decreasing on [a, b].
Proposition 11 Let f ∈ C1[a, b].
1. If f is increasing on [a, b] then for x ∈ [a, b] there exists αx ∈ (0, 1) such that

Dα f (x) ≥ 0 for all α ∈ (αx , 1).
2. If f is decreasing on [a, b] then for x ∈ [a, b] there exists αx ∈ (0, 1) such that

Dα f (x) ≤ 0 for all α ∈ (αx , 1).

Proposition 12 If for all x ∈ [a, b], Dα f (x) = 0 and Dβ f (x) = 0 for some α, β ∈
[0, 1] with α �= β, then f (x) = 0 for all x ∈ [a, b].
Proposition 13 If α ∈ (0, 1) then the Laplace transform of f (x) is given by

L{Dα f } = L{(1 − α) f + α f ′} (40)

= (α(s − 1) + 1)F(s) − f (0), (41)

where F(s) is the Laplace transform of f , and for α ∈ (n, n + 1), the Laplace
transform of f (x) is given by



76 R. B. Albadarneh et al.

L{Dα f } = (n + 1 − α)

(
sn F(s) −

n−1∑
k=0

sn−k f (k)(0)

)

+(α − n)

(
sn+1F(s) −

n∑
k=0

sn+1−k f (k)(0)

)
.

3 Integral of Order α

Now we introduce a generalized definition of the integral of order α as follows:

Definition 3 Let f (t) be a function defined on [a, x]. If 0 < α ≤ 1, then the integral
of order α of f is defined by

I α
a f (x) = 1

α

∫ x

a
exp

[(
1 − α

α

)
(t − x)

]
f (t) dt. (42)

Observe that the integral of a continuous function f is an anti-derivative of f . We
prove this property in the next theorem.

Theorem 7 Let f be a continuous function such that I α
a f (x) exists α ∈ (0, 1]. Then

Dα I α
a f (x) = f (x), x ≥ a.

Proof Since f is continuous, then I α
a f is differentiable, hence, By (18) we have

Dα(I α
a f ) = α

d(I α
a f )

dx
+ (1 − α)(I α

a f ) = f (x), (43)

solving we get

I α
a f = 1

α

∫ x

a
exp

[(
1 − α

α

)
(t − x)

]
f (t) dt + c exp

[(
1 − α

α

)
x

]
, (44)

where c is an arbitrary constant. Setting the constant c to be zero we get (42), with
Dα I α f (x) = f (x).

Definition3 can be generalized for the integral of higher order as follows:

Definition 4 Let f (t) be a function defined on [a, x]. If n < α ≤ n + 1, then the
integral of order α of f is defined by

Iαa f (x) = 1

(n − 1)!(α − n)

∫ x

a
(x − s)n−1

∫ s

a
exp

[(
n + 1 − α

α − n

)
(t − s)

]
f (t) dt ds.

(45)
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Similar argument used in the proof of Theorem (7) can be used to show that the defi-
nition above satisfies the property Dα I α

a f (x) = f (x) for all x ≥ a. Indeed, consider

(α − n)
dn+1(I α

a f )

dxn+1
+ (n + 1 − α)

dn(I α
a f )

dxn
= f (x), (46)

equivalently,

(α − n)
d

dx

(
dn(I α

a f )

dxn

)
+ (n + 1 − α)

dn(I α
a f )

dxn
= f (x). (47)

Solving, we get

dn(Iαa f )

dxn
= 1

α − n

∫ x

a
exp

[(
n + 1 − α

α − n

)
(t − x)

]
f (t) dt + c exp

(
n + 1 − α

α − n
x

)
,

(48)

where c is an arbitrary constant. Integrating the last expression n-times, and setting
the arbitrary constants to be zero, we obtain (45).

Theorem 8 Let f be α-function for α ∈ (0, 1). Then for all x > a we have

I α
a (Dα f (x)) = f (x) − f (a) exp

[(
α − 1

α

)
(x − a)

]
.

Note that Theorems7 and 8 show that the derivative of order α and the integral of
order α of a function f on [a, b] are inverse of each other provided that f (a) = 0.

4 Illustrative Examples

Example 2 Dα(ex ) = ex for any α > 0. This desired property cannot be satisfied
with other definitions.

Example 3 Consider the following initial value problem: D1/2y = 1, y(0) = 1.
This equation can be reduced to: dy

dx + y = 2, y(0) = 1, which has the solution:
y = 2 − ex .

Example 4 Consider the following differential equation: D3/2y − D1/2y = 0.
This equation can be reduced to: d2 y

dx2 − y = 0. The initial value problem has the
general solution: y = c1ex + c2e−x .
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5 Conclusion

In this work, a novel definition of the fractional-order derivative operator has been
presented. It has been found that the proposed definition is an extension of the
classical operator. The following properties have been inferred:

1. For n is a non-negative integer and n < α < n + 1 we have:
Dα f = (n + 1 − α)

dn f
dxn + (α − n)

dn+1 f
dxn+1

2. limα→n Dα f = d f n

dxn

3. Sum rule.
4. Product rules.
5. Commutative rule.

It is clear that solving fractional differential equations with the pro rata definition
is easier than solving such equations with some other definitions. The computing of
Laplace transforms and other transforms is also easier than computing them with
some other definitions. The fractional-order integral operator has been also defined.
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Investigating Multicollinearity in Factors
Affecting Number of Born Children
in Iraq

Salisu Ibrahim , Mowafaq Muhammed Al-Kassab ,
and Muhammed Qasim Al-Awjar

Abstract Theoccurrence ofmultiplemulticollinearities inmanymultiple regression
models leads to significant problems that can affect the results of the entire multiple
regression model, and among the problems is the low accuracy of the estimated
coefficients, which reduces the statistical power of themodel. The effect of sensitivity
on the estimated coefficients is due to a small swing in themodel. This paper discusses
the two basic approaches to defining a multilinear relationship. The first approach
is the correlation coefficient (CC) and the second is the variance inflation factor
(VIF). Hill regression, principal component regression, intention root regression,
and weighted regression are advanced regression models to investigate the existence
of multiple multicollinearities, and these results will process, reduce and stabilize
the multiple multicollinearities between independent variables, and help predict the
best-fit model. Finally, we came up with the best suitable model.

Keywords Multiple regression · Multicollinearity · Correlation coefficient ·
Variance inflation factor Smoking mother

1 Introduction

Multicollinearity occurs when explanatory variables in a regression model are corre-
lated. This correlation is a problem because independent variables should be inde-
pendent. If the degree of correlation between variables is high enough, it can cause
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problems when you fit the model and interpret the results [1]. A key goal of regres-
sion analysis is to isolate the relationship between each independent variable and
the dependent variable [2]. Multicollinearity makes it hard to interpret your coeffi-
cients, and it reduces the power of your model to identify independent variables that
are statistically significant. These are serious problems. However, the good news is
that you don’t always have to find a way to fix multicollinearity [3]. Several studies
examined and discussed the problems of multicollinearity for the regression model
and also emphasized that the major problem related to multicollinearity comprises
uneven and biased standard errors and impractical explanations of the results [4–6].

In this paper, we considered the correlation coefficient (CC) and the variance
inflation factor (VIF) approaches for identifying the multicollinearity among the
independent variables, in the year 2015. Multiple regression is considered for the
prediction of the best models. Based on the results, we discovered that there is multi-
collinearity among the factors, these necessitate the use ofCCand theVIF approaches
to tackle, reduce, and fixed the multicollinearity among the independent variables.
Lastly, we came up with the best-fitted model. This paper is scheduled as: Sect. 2
provides the methods for investigating multicollinearity. The results and diagnosed
multicollinearity are presented in Sects. 3 and 4, respectively. The conclusion follows
in Sect. 5.

2 Materials and Methods for Investigating
Multicollinearity

In this section, we present the materials andmethods used for investigating the multi-
collinearity within the independent variables. The dataset was selected at random
from 100 women’s records, moreover, the dataset used in this study is collected from
the Babil Governorate health center [7]. The independent variables (IVs) are husband
age, mother weight, the mother age, years of marriage, smoking mother, number of
dead children, the mother age when married, number of sports hours per week, the
mother with the thyroid gland, themother sleeping hours per week, themother taking
medicine, breastfeeding duration per month, and mother job, while the dependent
variable (DV) is the number of born children. Other factors like financial assistance,
chronic illness (breast cancer), stress due to job, illegal drug, and house activities
can be among the leading risk factors affecting the number of born children. These
factors lead to serious health conditions that make one vulnerable to Covid 19, see
[8]. When it comes to the application perspective, the authors in [8–10] make use of
commutativity to study the relation and the sensitivity between systems, the idea can
be extended to investigate the commutativity and sensitivity between the indepen-
dent variables, The main aim of this research is to investigate multicollinearity using
some techniques such as i) correlation coefficient and ii) variance inflation factor.
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2.1 Correlation Coefficient

Pearson’s correlation coefficient (also called Pearson’sR) is a relationship coefficient
regularly utilized in direct relapse. The formula of the Pearson correlation coefficient
is given as

r =
∑n

i=1(xi − x)(yi − y)
√∑n

i=1 (xi − x)2
∑n

i=1 (yi − y)2
, (1)

where n is a sample size, r is the correlation coefficient, yi and xi are dependent and
independent variables indexed in i, respectively. If the correlation coefficient value
is higher with the pairwise variables, it indicates the possibility of collinearity. In
general, if the absolute value of the Pearson correlation coefficient is close to 0.8,
collinearity is likely to exist [11].

2.2 Variance Inflation Factor (VIF)

Variance Inflation Factor (VIF) is a simple way to detect multicollinearity in
a regression model, it is used to determine the correlation between independent
variables. The VIF measures how much the variance is inflated. VIF is calculated as

V IFj = 1

1 − R2
ij

= 1

Tolerance
. (2)

Please observe that the higher the tolerance, the lower the VIF, and the limited
possibility for multicollinearity among the variables. The VIF with the value of 1
clearly shows that there is no correlation between the independent variables. But
if the VIF has a value within 1 < VIF < 5, it suggests that there is a moderate
correlation between the variables, with VIF between 5 ≤ VIF ≤ 10, it indicates
multicollinearity that needs corrective action, and VIF > 10 are indications of severe
correlation between the variables, with critical levels of the multicollinearity [12].

2.3 Multiple Linear Regression

The multiple linear regression model is given as

13∑

j=1

β0 + β jxij + ei. (3)
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where β0, βi are the unknown constants, xi are the IVs, y is the DV and ei is the error
term that has a normal distribution with mean o and variance σ 2. The mother age
(x1), the mother age when married (x2), mother weight (x3), smoking mother (x4),
husband age (x5), years of marriage (x6), number of dead children (x7), number of
sports hours per week (x8), the mother with the thyroid gland (x9), mother sleeping
hours per week (x10), the mother taking marriage (x11), breastfeeding duration per
week (x12), and mother job (x13) are the IVs and also the number of born child (y) is
the DV.

3 Results

The author in [13] discusses some primary techniques for detecting multicollinearity
using the questionnaire survey data on customer satisfaction. In this section, we
statistically detect the multicollinearity among the independent variables using the
correlation coefficient method in Eq. (1), VIF in Eq. (2), and lastly with the help of
multiple linear regression in Eq. (3).

3.1 Investigating Multicollinearity Using Pairwise Scatterplot

The scatterplot is one of themethods used for detectingmulticollinearity byobserving
the relationship between the variables.The dots depicted in Fig. 1 represent the values
of two variables.

Fig. 1 Scatterplot of pairwise variables
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3.2 Investigating Multicollinearity Using Pearson’s
Correlations

Pearson’s correlations are a very important method used to investigate collinearity
between the independent variables. Table 2 shows the relationships in terms of
collinearity between the independent variables. The results obtained from the overall
correlation detected the collinearity between the variables, themost highly correlated
variables are (x1), (x3), (x5), and (x6). The mother age (x1) versus mother weight (x3)
has [r = 0.638, c.f = (0.505, 0.741), p < 0.05], the mother age (x1) versus husband
age (x5) has no logical relation, the mother age (x1) versus years of marriage (x6) has
[r = 0.932, c.f = (0.9, 0.954), p < 0.05], the mother weight (x3) versus husband age
(x5) has no logical relation, the mother weight (x3) versus years of marriage (x6) has
[r = 0.597, c.f = (0.451, 0.7101), p < 0.05], and husband age (x5) versus years of
marriage (x6) has [r = 0.850, c.f = (0.784, 0.897), p < 0.05]. The Pearson correla-
tion coefficient is close to 0.8, this shows the existence of collinearity between the
variables (Table 1).

The model is given as

y = − 1.03 + 0.294x1 − 0.338x2 − 0.0614x3 − 1.04x4 − 0.0310x5 + 1.38x7
− 0.0904x8 + 2.19x9 + 0.165x10 − 1.75x11 + 0.246x12 + 0.521x13

The overall significance of the model is given in Table 3.

Table 1 Descriptive statistics

Variable N Mean SE Mean Median Mode

y 100 3.570 0.299 2.000 1

x1 100 31.030 0.838 30.000 22

x2 100 18.640 0.321 18.500 19

x3 100 68.520 0.894 67.000 67

x4 100 0.3800 0.0488 0.0000 0

x5 100 34.170 0.829 33.500 42

x6 100 12.390 0.883 9.500 3

x7 100 0.3400 0.0655 0.0000 0

x8 100 3.850 0.291 3.000 2

x9 100 0.0900 0.0288 0.0000 0

x10 100 8.0900 0.0740 8.0000 8

x11 100 0.3000 0.0461 0.0000 0

x12 100 23.210 0.276 24.000 24

x13 100 1.1700 0.0428 1.0000 1
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Table 3 Analysis of variance

Model DF Adj SS Adj MS F-value P-value

Regression 12 697.9 58.154 27.40 0.000

Residual error 87 184.656 2.122

Total 99 882.5

3.3 Investigating Multicollinearity Using Variance Inflation
Factor (VIF)

The variance inflation factor (VIF) identifies the correlation between independent
variables and the strength of that correlation. The regression analysis illustrated in
Table 4 detected multicollinearity by identifying variables with p-value > 0.05 and
VIF > 5. These results show that the mother age (x1), the mother age when married
(x2), mother weight (x3), smoking mother (x4), years of marriage (x6), number of
dead children (x7), the mother with the thyroid gland (x9), mother sleeping hours per
week (x10), and mother job (x13) are statistically significant while husband age (x5),
number of sports hours per week (x8), themother takingmarriage (x11), breastfeeding
duration perweek (x12) are not statistically significant.Moreover, themodel indicates
that the mother age (x1) and husband age (x5) has the highest VIFs of 10.8 and 11.7,
respectively. This indicates serious multicollinearity that requires removal.

The R-square is 79%.

Table 4 Regression analysis

Predictor Coef SE Coef T-value P-value VIF

Constant −1.030 2.658 −0.39 0.699

β1 0.29400 0.05732 5.13 0.000 10.8

β2 −0 0.05007 −6.76 0.000 1.2

β3 −0.06140 0.02669 −2.30 0.024 2.7

β4 −1.0369 0.4119 −2.52 0.014 1.9

β5 −0.03101 0.06052 −0.51 0.610 11.7

β7 1.3775 0.2919 4.72 0.000 1.7

β8 −0.09044 0.05865 −1.54 0.127 1.4

β9 2.1872 0.5818 3.76 0.000 1.3

β10 0.1649 0.2215 0.74 0.459 1.3

β11 −1.7490 0.4640 −3.77 0.000 2.1

β12 0.24604 0.05639 4.36 0.000 1.1

β13 0.5215 0.4549 1.15 0.255 1.8
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Table 5 Analysis of variance table and overall significant of the model

Model DF Adj SS Adj MS F-Value P-Value

Regression 11 697.296 63.391 30.12 0.000

Residual Error 88 185.214 2.105

Total 99 882.510

4 Diagnosed Multicollinearity

There are several methods to removemulticollinearity, the authors in [14, 15] studied
the application of latent roots regression tomulticollinear data, but in this research,we
will consider i) removal of variables with high VIF and ii) removing non-significant
variables.

4.1 Diagnosed Multicollinearity by Removing High VIF

In our model, the mother age (x1) and husband age (x5) has the highest VIFs of 10.8
and 11.7 respectively. The correlation between the mother age (x1) and husband age
(x5) is significant with r = 0.918, see Table 2. So instead of removal both of them,
we keep the mother age (x1) with a VIF of 10.8 and remove the husband age (x5)
with VIF 11.7, we obtained a new model in Table 6. We can see that all the VIFs are
down to satisfactory values with (VIFs < 5). The model is given as

y = − 0.86 + 0.2678x1 − 0.3415x2 − 0.0648x3 − 0.974x4 + 1.379x7
− 0.085x8 + 2.186x9 + 0.157x10 − 1.745x11 + 0.2477x12 + 0.394x13

The overall significance of the model is given in Table 5.
The R-square is 79%.

4.2 Diagnosed Multicollinearity by Removing
Non-significant Variables

Removing the husband age (x5) withVIF 11.7 is not enough to predict the bestmodel,
since we still have some variables such as the number of sports hours per week (x8),
mother sleeping hours per week (x10), and mother job (x13) that are not statistically
significant in Table 7. This necessitates the removal of this variable. We can see
that after removing the non-significant variables, the p-values of all the variables are
down to satisfactory values with (p < 0.05) in Table 8. The model is given as
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Table 6 Regression analysis

Term Coef SE Coef T-value P-value VIF

Constant −0.86 2.63 −0.33 0.745

β1 0.2678 0.0259 10.34 0.000 2.22

β2 −0.3415 0.0495 −6.90 0.000 1.19

β3 −0.0648 0.0257 −2.52 0.014 2.49

β4 −0.974 0.391 −2.49 0.015 1.72

β7 1.379 0.291 4.74 0.000 1.70

β8 −0.0850 0.0574 −1.48 0.143 1.31

β9 2.186 0.579 3.77 0.000 1.31

β10 0.157 0.220 0.71 0.478 1.25

β11 −1.745 0.462 −3.78 0.000 2.13

β12 0.2477 0.0561 4.42 0.000 1.12

β13 0.394 0.379 1.04 0.302 1.24

y =0.89 + 0.2746x1 − 0.3407x2 − 0.0690x3 − 0.950x4
+ 1.382x7 + 1.985x9 − 1.661x11 + 0.2349x12

The overall significance of the model is given in Table 7.
The R-square is 78%.

Table 7 Analysis of variance

Source DF Adj SS Adj MS F-value P-value

Regression 8 689.73 86.216 40.70 0.000

Residual error 91 192.78 2.118

Total 99 882.51

Table 8 Regression analysis

Term Coef SE Coef T-value Value VIF

Constant 0.89 2.10 0.42 0.673

β1 0.2746 0.0242 11.32 0.000 1.93

β2 −0.3407 0.0481 −7.08 0.000 1.12

β3 −0.0690 0.0242 −2.85 0.005 2.18

β4 −0.950 0.392 −2.42 0.017 1.71

β7 1.382 0.260 5.32 0.000 1.35

β9 1.985 0.566 3.50 0.001 1.24

β11 −1.661 0.457 −3.63 0.000 2.07

β12 0.2349 0.0545 4.31 0.000 1.06
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5 Conclusion

This paper investigates the multicollinearity relation among the independent vari-
ables, the mother age, the mother age when married, husband age, mother weight,
years of marriage, smoking mother, number of sports hours per week, number of
dead children, the mother with the thyroid gland, the mother sleeping hours per
week, the mother taking medicine, breastfeeding duration per month, and mother
job, the model obtained proves to be not significant since some variables have p
less than 0.05. These were a result of multicollinearity among the variables. The
two methods correlation coefficient and variance inflation factor proposed in this
work were used to detect the multicollinearity among the variables. Among several
methods to remove collinearity, we consider two methods; removing variables with
highVIF and removing variables that are not statistically significant (p<0.05). Lastly,
weobtained the best-fittedmodel that predicts the factors affecting the number of born
children in Iraq. Moreover, the ANOVA obtained from Table 7 shows that the model
is more fitted since we observed a monotone increment in the f-value, from 27.40 in
Table 3 to 40.70 in Table 7. Furthermore, more advanced research techniques such
as the ridge regression method, latent root regression, weighted regression method,
and principal components regression can be used to detect collinearity [16, 17]. The
results are validated with Minitab version 19.

Funding No funding.
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Hilbert–Schmidt Numerical Radius
Inequalities for Certain 2×2 Operator
Matrices

Tasnim Alkharabsheh, Khalid Shebrawi, and Mohammed Abu-Saleem

Abstract We prove several Hilbert–Schmidt numerical radius inequalities for cer-
tain 2×2 operator matrices. Among other inequalities, it is shown that if X,Y ∈ C2,
then

w2
(
T̃t

) ≤ 1√
2

(∥
∥∥|Y |t ∣∣X∗∣∣1−t

∥
∥∥
2
+

∥
∥∥|X |t ∣∣Y ∗∣∣1−t

∥
∥∥
2

)
for all t ∈ [0, 1],

where T =
[
0 X
Y 0

]
. Also, we introduce some applications of our inequalities.

Keywords Numerical radius · Hilbert–Schmidt numerical radius · Usual operator
norm · Hilbert–Schmidt norm · Operator matrix and inequality.

Mathematics Subject Classification. 15A18 · 15B48 · 15A60 · 47A12 · 47A30 ·
47A63 · 47B15.

1 Introduction

Let H be a complex Hilbert space with inner product 〈·, ·〉. Let B(H) be the space
of all bounded linear operators on H. For X ∈ B(H), let w(X), w2(X), ‖X‖ and
‖X‖2 denote the numerical radius, the Hilbert–Schmidt numerical radius, the usual
operator norm, and the Hilbert–Schmidt norm of X , respectively. Recall that the
Hilbert–Schmidt norm of X is defined by
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‖X‖2 = (
trX∗X

) 1
2 =

⎛

⎝
∞∑

j=1

s2j (X)

⎞

⎠

1/2

, (1)

where s1(X) ≥ s2(X) ≥ s3(X) ≥ · · · are the singular values of X . Note that X
belongs to the trace class C1 if tr |X| is finite, and X belongs to the Hilbert–Schmidt
class C2 if ‖X‖2 is finite. The Cauchy–Schwarz inequality (see, e.g., [4, p. 96]) says
that if X,Y ∈ C2, then XY ∈ C1, and

|trXY | ≤ ‖X‖2‖Y‖2. (2)

It is known that ‖X‖2 is unitarily invariant, in the sense that for X ∈ C2 and unitary
U, V ∈ B(H), we have

‖UXV‖2 = ‖X‖2, (3)

also, ‖X‖2 is self-adjoint, that is for every X ∈ B(H) we have

∥∥X∗∥∥
2 = ‖X‖2. (4)

It is also known that for X ∈ B(H),

w(X) = sup
θ∈R

∥∥Re
(
eiθ X

)∥∥ (5)

(see, e.g.,[7]).
Let N (.) be a norm on B(H). A generalization of the numerical radius has been

recently introduced in [1] by defining wN (X) = supθ∈R N
(
Re

(
eiθ X

))
for every

X ∈ B(H). Thus,wN (X) ≥ N (ReX) andwN (X) ≥ N (ImX). In particular, we have
w(X) ≥ ‖ReX‖ andw(X) ≥ ‖ImX‖. In fact,wN (X) and, in particular,w(X) define
norms on B(H).

An important property of wN (X) is that if N (.) is weakly unitarily invariant, then
so is wN (.), that is, for X,U ∈ B(H) such that U is unitary, we have

wN
(
UXU∗) = wN (X), (6)

and self-adjoint, that is, wN (X) = wN (X∗). Moreover, clearly if X ∈ B(H) is self-
adjoint, then w(X) = ‖X‖. The triangle inequality for wN (.) is given by

wN (X + Y ) ≤ wN (X) + wN (Y ), (7)

where X,Y ∈ B(H). The following formula forw2(X) is recently proved in [1], say
that if X ∈ C2, then

w2(X) =
√
1

2
‖X‖22 + 1

2

∣∣trX2
∣∣. (8)
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Also, for X ∈ C2, we have

1√
2
‖X‖2 ≤ w2(X) ≤ ‖X‖2. (9)

A special case of 8 can be found in [3], which says if X ∈ C2 and X2 = 0, then

w2(X) =
√
1

2
‖X‖22 + 1

2

∣∣tr X2
∣∣ = 1√

2
‖X‖2. (10)

For X ∈ B(H) with a polar decomposition X = U |X |, the generalized Aluthge
transform X̃ of X is given by

X̃t = |X |tU |X |1−t for all t ∈ [0, 1]. (11)

Here U is a partial isometry and |X | = (X∗X)
1
2 .

In Sect. 2 of this paper, we give several Hilbert–Schmidt numerical radius inequal-
ities, including lower and upper bounds for certain 2×2 operator matrices. In Sect. 3,
we give some applications of our results given in Sect. 2.

2 Inequalities for Certain 2×2 Operator Matrices

The aim of this section is to give bounds for the Hilbert–Schmidt numerical radius

for

[
X Y
−Y −X

]
and

[
X Y
Z W

]
.

A special assertion is given to the off-diagonal parts of 2×2 operator matrices.
First, we need the following lemma, which has been recently proved by Aldalabih
and Kittaneh [3].

Lemma 2.1 Let X,Y ∈ C2. Then

(a) w2

([
0 X

eiθY 0

])
= w2

([
0 X
Y 0

])
for every θ ∈ R.

(b) w2

([
0 X
Y 0

])
= w2

([
0 Y
X 0

])
.

(c) w2

([
0 Y
Y 0

])
= √

2w2(Y ).

(d) w2

([
X Y
Y X

])
≤

√
w2

2(X + Y ) + w2
2(X − Y ).

(e) w2

([
X 0
0 Y

])
≤

√
w2

2(X) + w2
2(Y ).

(f) w2

([
X Y
0 0

])
=

√
w2

2(X) + 1
2‖Y‖22.
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Lemma 2.2 Let X ∈ C2. Then

w2

([
X 0
0 −X

])
= √

2w2(X). (1)

Proof Using formula (8), we have

w2
2

([
X 0
0 −X

])
= 1

2

(∥∥∥
∥

[
X 0
0 −X

]∥∥∥
∥

2

2

+
∣∣∣
∣∣
tr

[
X 0
0 −X

]2
∣∣∣
∣∣

)

.

Since ∥
∥∥∥

[
X 0
0 −X

]∥
∥∥∥

2

2

= ‖X‖22 + ‖ − X‖22 = 2‖X‖22,

and ∣
∣∣∣∣
tr

[
X 0
0 −X

]2
∣
∣∣∣∣
= ∣∣trX2 + trX2

∣∣ = 2
∣∣trX2

∣∣ .

It follows that

w2
2

([
X 0
0 −X

])
= ‖X‖22 + ∣∣trX2

∣∣ = 2w2
2(X).

And so,

w2

([
X 0
0 −X

])
= √

2w2(X).

�

Theorem 2.3 Let X,Y ∈ C2. Then

√
2max (w2(X), w2(Y )) ≤ w2

([
X Y
−Y −X

])
≤ √

2 (w2(X) + w2(Y )) . (2)

Proof By Lemma 2.2, we have

w2

([
X Y
−Y −X

])
≥ w2

([
X 0
0 −X

])

= √
2w2(X). (3)

And by Lemma 2.1 (a,c), we have
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w2

([
X Y
−Y −X

])
≥ w2

([
0 Y

−Y 0

])

= w2

([
0 Y
Y 0

])

= √
2w2(Y ). (4)

From inequalities (3) and (4), we have

w2

([
X Y

−Y −X

])
≥ √

2max (w2(X), w2(Y )) . (5)

This proves the first inequality of the theorem. To prove the second inequality, by
using Inequality (7), Lemma 2.1 (a,c) and Lemma 2.2, we have

w2

([
X Y
−Y −X

])
≤ w2

([
X 0
0 −X

])
+ w2

([
0 Y

−Y 0

])

= w2

([
X 0
0 −X

])
+ w2

([
0 Y
Y 0

])

= √
2 (w2(X) + w2(Y )) . (6)

From inequalities (5) and (6), we have

√
2max (w2(X), w2(Y )) ≤ w2

([
X Y
−Y −X

])
≤ √

2 (w2(X) + w2(Y )) .

�

Remark 2.4 Let X ∈ C2. Then

∥∥∥
∥

[
0 X
X∗ 0

]∥∥∥
∥
2

= √
2‖X‖2. (7)

Indeed if T =
[

0 X
X∗ 0

]
, then T is self-adjoint and

‖T ‖22 =
∥∥
∥
∥

[
0 X
X∗ 0

]∥∥
∥
∥
2

2

= tr
(
T ∗T

)

= tr

([
XX∗ 0
0 X∗X

])

= tr
(
XX∗) + tr

(
X∗X

)

= 2 tr
(
X∗X

)
(since tr(AB) = tr(BA))

= 2‖X‖22.



98 T. Alkharabsheh et al.

Theorem 2.5 Let X ∈ C2. Then

w2

([
0 X
X∗ 0

])
= √

2‖X‖2. (8)

Proof Let T =
[

0 X
X∗ 0

]
. Then, by formula (8), we have

w2(T ) =
√
1

2
‖T ‖22 + 1

2

∣∣trT 2
∣∣.

Indeed, by remark 2.4, we have

‖T ‖22 =
∥
∥∥∥

[
0 X
X∗ 0

]∥
∥∥∥

2

2

= 2‖X‖22

and

∣∣trT 2
∣∣ =

∣∣∣∣∣
tr

[
0 X
X∗ 0

]2
∣∣∣∣∣

=
∣
∣∣∣tr

[
XX∗ 0
0 X∗X

]∣
∣∣∣

= ∣∣tr
(
XX∗) + tr

(
X∗X

)∣∣

= 2
∣∣tr

(
X∗X

)∣∣ ,

it follows that

w2(T ) =
√

‖X‖22 + |tr (X∗X)|
=

√
‖X‖22 + ∣∣‖X‖22

∣∣ (by (1))

=
√
2‖X‖22 (since‖ · ‖2 ≥ 0)

= √
2‖X‖2.

�

Lemma 2.6 Let X,Y ∈ C2. Then

w2

([
0 X
Y 0

])
= 1√

2
sup
θ∈R

∥
∥X + eiθY ∗∥∥

2 . (9)
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Proof

w2

([
0 X
Y 0

])
= sup

θ∈R

∥∥∥
∥Re

([
0 eiθ X

eiθY 0

])∥∥∥
∥
2

= 1

2
sup
θ∈R

∥∥∥∥

[
0 eiθ

(
X + e−2iθY ∗)

eiθ
(
Y + e−2iθ X∗) 0

]∥∥∥∥
2

= 1

2
sup
θ∈R

∥∥∥
∥

[
0 eiθ

(
X + e−2iθY ∗)

e−iθ
(
X + e−2iθY ∗)∗

0

]∥∥∥
∥
2

= 1√
2
sup
θ∈R

∥∥eiθ
(
X + e−2iθY ∗)∥∥

2 (by remark 2.4)

= 1√
2
sup
θ∈R

∥∥X + e−2iθY ∗∥∥
2 (since

∣∣eiθ
∣∣ = 1)

= 1√
2
sup
θ∈R

∥
∥X + eiθY ∗∥∥

2 .

�

To prove the next theorem, we need the following lemma which has been given
in [3].

Lemma 2.7 Let X,Y ∈ C2. Then

max (w2(X + Y ), w2(X − Y ))√
2

≤ w2

([
0 X
Y 0

])
≤ w2(X + Y ) + w2(X − Y )√

2
.

(10)

Theorem 2.8 Let A, B, X ∈ C2 such that A and B are self-adjoint. Then

‖X‖2 ≤ w2(X + A) + w2(X + i B). (11)

Proof It follows from Lemma 2.6 that

‖S + T ∗‖2√
2

≤ w2

([
0 S
T 0

])
,

and from Lemma 2.7

w2

([
0 S
T 0

])
≤ w2(S + T ) + w2(S − T )√

2
.

Therefore,

‖S + T ∗‖2√
2

≤ w2

([
0 S
T 0

])
≤ w2(S + T ) + w2(S − T )√

2
,
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and so ∥∥S + T ∗∥∥
2 ≤ w2(S + T ) + w2(S − T ). (12)

Now, letting

S = X + A + i B

2
and T = −A + i B

2
.

Then,

T ∗ = −A − i B

2
, S + T = X + i B, S + T ∗ = X and S − T = X + A. (13)

Substituting relation (13) in Inequality (12), we have

‖X‖2 ≤ w2(X + A) + w2(X + i B). (14)

Notice that if we let A = B = 0 in Inequality (14), then we have

‖X‖2 ≤ 2w2(X),

and so ‖X‖2
2

≤ w2(X).

�

Theorem 2.9 Let X,Y, Z ,W ∈ C2. Then

w2

([
X Y
Z W

])
≤

√

w2
2(X) + 1

2
‖Y‖22 +

√

w2
2(W ) + 1

2
‖Z‖22. (15)

Proof Let U =
[
0 I
I 0

]
be a unitary operator. Then by Inequality (7), we have

w2

([
X Y
Z W

])
≤ w2

([
X Y
0 0

])
+ w2

([
0 0
Z W

])

= w2

([
X Y
0 0

])
+ w2

(
U ∗

[
W Z
0 0

]
U

)

= w2

([
X Y
0 0

])
+ w2

([
W Z
0 0

])
(by Identity (6))

=
√

w2
2(X) + 1

2
‖Y‖22 +

√

w2
2(W ) + 1

2
‖Z‖22. (by Lemma 2.1 (f))

Hence,
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w2

([
X Y
Z W

])
≤

√

w2
2(X) + 1

2
‖Y‖22 +

√

w2
2(W ) + 1

2
‖Z‖22.

�
Now, we need the following lemma, which has been recently proved by Aldalabih

and Kittaneh [3].

Lemma 2.10 Let T ∈ C2 have the Cartesian decomposition T = X + iY . Then

w2(T )

2
≤ 1√

2
w2

([
0 X
Y 0

])
≤ w2(T ). (16)

Theorem 2.11 Let T ∈ C2 have the Cartesian decomposition T = X + iY . Then

w2(T ) ≤
√

w2
2(X) + w2

2(Y ) + ‖X‖2‖Y‖2. (17)

Proof Since X and Y are self-adjoint, then

‖T ‖22 = tr
(
T ∗T

)

= tr((X − iY )(X + iY ))

= tr
(
X2 + Y 2

)

= ‖X‖22 + ‖Y‖22.
Now, by formula (8), we have

w2
2(T ) = 1

2
‖T ‖22 + 1

2

∣
∣∣trT 2

∣
∣∣

= 1

2

(
‖X‖22 + ‖Y‖22

)
+ 1

2

∣∣
∣tr(X + iY )2

∣∣
∣

= 1

2

(
‖X‖22 + ‖Y‖22

)
+ 1

2

∣
∣∣tr

(
X2 − Y 2 + 2i XY

)∣
∣∣

≤ 1

2

(
‖X‖22 + ‖Y‖22

)
+ 1

2

∣∣
∣tr

(
X2

)∣∣
∣ + 1

2

∣∣
∣tr

(
Y 2

)∣∣
∣ + |tr(XY )| (by the Triangle inequality)

≤ 1

2

(
‖X‖22 +

∣∣∣tr
(
X2

)∣∣∣
)

+ 1

2

(
‖Y‖22 +

∣∣∣tr
(
Y 2

)∣∣∣
)

+ ‖X‖2‖Y‖2 (by the inequality (2))

= w2
2(X) + w2

2(Y ) + ‖X‖2‖Y‖2. (by the formula (8))

Therefore,

w2(T ) ≤
√

w2
2(X) + w2

2(Y ) + ‖X‖2‖Y‖2.

�
Corollary 2.12 Let T ∈ C2 have the Cartesian decomposition T = X + iY . Then

1√
2
w2

([
0 X
Y 0

])
≤

√
w2

2(X) + w2
2(Y ) + ‖X‖2‖Y‖2. (18)
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Proof By Lemma 2.10, we have

1√
2
w2

([
0 X
Y 0

])
≤ w2(T )

≤
√

w2
2(X) + w2

2(Y ) + ‖X‖2‖Y‖2. (by Theorem 2.11)

�

Theorem 2.13 Let X,Y ∈ C2. Then

w2
(
T̃t

) ≤ 1√
2

(∥∥∥|Y |t ∣∣X∗∣∣1−t
∥∥∥
2
+

∥∥∥|X |t ∣∣Y ∗∣∣1−t
∥∥∥
2

)
(19)

for all t ∈ [0, 1], where T =
[
0 X
Y 0

]
.

Proof Let X = U |X | and Y = V |Y | be the polar decomposition of the operators X

and Y , and let T =
[
0 X
Y 0

]
. Then

[
0 X
Y 0

]
=

[
0 U
V 0

] [ |Y | 0
0 |X |

]

is the polar decomposition of T . Then by (11), we have

T̃ = |T |t
[
0 U
V 0

]
|T |1−t

=
[ |Y |t 0

0 |X |t
] [

0 U
V 0

] [ |Y |1−t 0
0 |X |1−t

]

=
[

0 |Y |tU |X |1−t

|X |t V |Y |1−t 0

]
,

where |X | = (X∗X)
1
2 and |Y | = (Y ∗Y )

1
2 .

Now, by Inequality (7), we have

w2
(
T̃t

) = w2

([
0 |Y |tU |X |1−t

|X |t V |Y |1−t 0

])

≤ w2

([
0 |Y |tU |X |1−t

0 0

])
+ w2

([
0 0

|X |t V |Y |1−t 0

])

= 1√
2

(∥∥
∥|Y |tU |X |1−t

∥∥
∥
2

+
∥∥
∥|X |t V |Y |1−t

∥∥
∥
2

)
. (by Identity (10)

Since ∣∣X∗∣∣2 = XX∗ = U |X |2U ∗
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and
|X |2 = U ∗ ∣∣X∗∣∣2U,

then

|X |1−t = U ∗ ∣∣X∗∣∣1−t
U.

Therefore

∥
∥|Y |tU |X |1−t

∥
∥
2 =

∥
∥∥|Y |tUU ∗ ∣

∣X∗∣∣1−t
U

∥
∥∥
2

=
∥
∥∥|Y |t ∣∣X∗∣∣1−t

∥
∥∥
2
. (by the identity (3))

Similarly,

∥∥|X |t V |Y |1−t
∥∥
2 =

∥∥∥|X |t V V ∗ ∣∣Y ∗∣∣1−t
V

∥∥∥
2

=
∥∥∥|X |t ∣∣Y ∗∣∣1−t

∥∥∥
2
.

Thus,

w2
(
T̃t

) ≤ 1√
2

(∥∥∥|Y |t ∣∣X∗∣∣1−t
∥∥∥
2
+

∥∥∥|X |t ∣∣Y ∗∣∣1−t
∥∥∥
2

)
.

�

Corollary 2.14 Let X,Y ∈ C2. Then

w2
(
T̃t

) ≤ w2

(
|Y |t ∣∣X∗∣∣1−t

)
+ w2

(
|X |t ∣∣Y ∗∣∣1−t

)
. (20)

Proof By Theorem 2.13, we have

w2
(
T̃t

) ≤ 1√
2

(∥∥
∥|Y |t ∣∣X∗∣∣1−t

∥∥
∥
2
+

∥∥
∥|X |t ∣∣Y ∗∣∣1−t

∥∥
∥
2

)

≤ w2

(
|Y |t ∣∣X∗∣∣1−t

)
+ w2

(
|X |t ∣∣Y ∗∣∣1−t

)
. (by Inequality (9))

�

3 Applications

In this section, we present some applications of some of our results given in Sect. 2.
First, we need the observation that for any two real numbers a and b, we have
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a + b

2
= max(a, b) − |a − b|

2
. (1)

Theorem 3.1 Let X,Y ∈ C2. Then

w2

([
0 X
Y 0

])
+ |w2(X + Y ) − w2(X − Y )|√

2
≤ √

2 (‖X‖2 + ‖Y‖2) . (2)

In particular,
|w2(ReX) − w2(ImX)| ≤ ‖X‖2. (3)

Proof By Lemma 2.7 and Identity (1), we have

w2

([
0 X
Y 0

])
≤ w2(X + Y ) + w2(X − Y )√

2

=
√
2 (w2(X + Y ) + w2(X − Y ))

2

= √
2max (w2(X + Y ), w2(X − Y )) −

√
2 |w2(X + Y ) − w2(X − Y )|

2

= √
2max (w2(X + Y ), w2(X − Y )) − |w2(X + Y ) − w2(X − Y )|√

2

≤ 2w2

([
0 X
Y 0

])
− |w2(X + Y ) − w2(X − Y )|√

2
(by Lemma 2.7)

≤ 2

(
w2

([
0 X
0 0

])
+ w2

([
0 0
Y 0

]))
− |w2(X + Y ) − w2(X − Y )|√

2

= 2

(‖X‖2√
2

+ ‖Y‖2√
2

)
− |w2(X + Y ) − w2(X − Y )|√

2
(by Identity (10))

= √
2 (‖X‖2 + ‖Y‖2) − |w2(X + Y ) − w2(X − Y )|√

2
.

Hence,

w2

([
0 X
Y 0

])
+ |w2(X + Y ) − w2(X − Y )|√

2
≤ √

2 (‖X‖2 + ‖Y‖2) .

To prove Inequality (3), let Y = X∗ in Inequality (2) to get

w2

([
0 X
X∗ 0

])
≤ √

2
(‖X‖2 + ∥∥X∗∥∥

2

) −
∣∣w2

(
X + X∗) − w2

(
X − X∗)∣∣

√
2

√
2‖X‖2 ≤ √

2
(‖X‖2 + ∥∥X∗∥∥

2

) −
∣∣w2

(
X + X∗) − w2

(
X − X∗)∣∣

√
2

(by Theorem 2.5)

√
2‖X‖2 ≤ 2

√
2‖X‖2 − √

2 |w2(ReX) − w2(ImX)| (by the identity (4))

‖X‖2 ≤ 2‖X‖2 − |w2(ReX) − w2(ImX)| .
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Hence,
|w2(ReX) − w2(ImX)| ≤ ‖X‖2.

�

Theorem 3.2 Let X,Y ∈ C2. Then

w2

([
0 X
Y 0

])
+ (‖X‖2 + ‖Y‖2) +

∣∣∣
√
2w2(X + Y ) − (‖X‖2 + ‖Y‖2)

∣∣∣

2

+
∣∣∣
√
2w2(X − Y ) − (‖X‖2 + ‖Y‖2)

∣∣∣

2
≤ 2

√
2 (w2(X) + w2(Y )) . (4)

In particular,

(2 + √
2)‖X‖2 ≤ 4

√
2w2(X) −

∣
∣∣
√
2w2(ReX) − ‖X‖2

∣
∣∣ −

∣
∣∣
√
2w2(ImX) − ‖X‖2

∣
∣∣ .
(5)

Proof By Lemma 2.7, we have

w2

([
0 X
Y 0

])
+ (‖X‖2 + ‖Y‖2)

≤ w2(X + Y ) + w2(X − Y )√
2

+ (‖X‖2 + ‖Y‖2)

=
√
2w2(X + Y ) + √

2w2(X − Y )

2
+ (‖X‖2 + ‖Y‖2)

=
√
2w2(X + Y ) + (‖X‖2 + ‖Y‖2)

2
+

√
2w2(X − Y ) + (‖X‖2 + ‖Y‖2)

2

= max
(√

2w2(X + Y ), (‖X‖2 + ‖Y‖2)
)

−
∣∣∣
√
2w2(X + Y ) − (‖X‖2 + ‖Y‖2)

∣∣∣

2

+ max
(√

2w2(X − Y ), (‖X‖2 + ‖Y‖2)
)

−
∣∣∣
√
2w2(X − Y ) − (‖X‖2 + ‖Y‖2)

∣∣∣

2
(by Identity (1))

≤ max
(√

2 (w2(X) + w2(Y )) , (‖X‖2 + ‖Y‖2)
)

−
∣∣∣
√
2w2(X + Y ) − (‖X‖2 + ‖Y‖2)

∣∣∣

2

+ max
(√

2 (w2(X) + w2(Y )) , (‖X‖2 + ‖Y‖2)
)

−
∣∣∣
√
2w2(X − Y ) − (‖X‖2 + ‖Y‖2)

∣∣∣

2
(by Inequality (7))

= 2max
(√

2 (w2(X) + w2(Y )) , (‖X‖2 + ‖Y‖2)
)

−
∣
∣∣
√
2w2(X + Y ) − (‖X‖2 + ‖Y‖2)

∣
∣∣

2

−
∣
∣∣
√
2w2(X − Y ) − (‖X‖2 + ‖Y‖2)

∣
∣∣

2

= 2
√
2 (w2(X) + w2(Y )) −

∣∣
∣
√
2w2(X + Y ) − (‖X‖2 + ‖Y‖2)

∣∣
∣

2

−
∣∣∣
√
2w2(X − Y ) − (‖X‖2 + ‖Y‖2)

∣∣∣

2
, (by Inequality (9))
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and so

w2

([
0 X
Y 0

])
+ (‖X‖2 + ‖Y‖2) +

∣∣
∣
√
2w2(X + Y ) − (‖X‖2 + ‖Y‖2)

∣∣
∣

2

+
∣∣
∣
√
2w2(X − Y ) − (‖X‖2 + ‖Y‖2)

∣∣
∣

2
≤ 2

√
2 (w2(X) + w2(Y )) .

To prove Inequality (5), letting Y = X∗ in Inequality (4) to get

w2

([
0 X
X∗ 0

])
+ (‖X‖2 + ∥∥X∗∥∥

2

)

≤ 2
√
2

(
w2(X) + w2

(
X∗)) −

∣∣
∣
√
2w2 (X + X∗) − (‖X‖2 + ‖X∗‖2)

∣∣
∣

2

−
∣
∣∣
√
2w2 (X − X∗) − (‖X‖2 + ‖X∗‖2)

∣
∣∣

2
.

Then, by Theorem 2.5 and Identity (4), we have

(2 + √
2)‖X‖2 ≤ 4

√
2w2(X) −

∣
∣
∣
√
2w2(2ReX) − 2‖X‖2

∣
∣
∣

2
−

∣
∣
∣
√
2w2(2ImX) − 2‖X‖2

∣
∣
∣

2

(2 + √
2)‖X‖2 ≤ 4

√
2w2(X) −

∣
∣
∣
√
2w2(ReX) − ‖X‖2

∣
∣
∣ −

∣
∣
∣
√
2w2(ImX) − ‖X‖2

∣
∣
∣ .

�
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Runge–Kutta Schemes for Nonlinear
Stiff Initial-Value Problems
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and Salisu Ibrahim

Abstract The main goal of this paper is the use of the implicit–explicit Runge–
Kutta method for finding the numerical approximate solutions for chemical reaction
problems that contain stiff and no stiff terms. The stiff part is treated by an implicit
scheme, while the second part is treated by an explicit scheme. This combination
results in an efficient numerical scheme that is able to solve stiff problems quickly and
accurately. An important factor in our proposed method is to reduce the number of
iterations, which, consequently, leads to a reduction in the computational cost of the
scheme. Additionally, this method is a significant step forward in the field of solving
stiff problems. The accuracy of the suggested scheme is computed through pointwise
error. It offers a robust and efficient numerical approach that is able to achieve high
levels of accuracy. Numerical experiments show that there is good agreement and
accuracy between the original solution and reduction problems.
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1 Introduction

Numerous areas of chemical reactions, ecological interactions, biological processes,
enzymatic reaction models, and cell signalling pathway models can be modelled as a
system of stiff ordinary differential equations. The key idea of stiff problems is to give
a great role in understanding and identifying these effects on the model dynamics.
Because of their difficulties, most of these problems do not have exact analytic
solutions. Furthermore, these problems have very different time scales occurring
simultaneously. Therefore, many research have attracted much interest in this field
and many numerical schemes have been proposed over the years, such as the Euler
method, Runge–kutta method, multistep methods [1–4], Finite difference method
[5–7], Finite element methods [8–11], linear regression analysis [12].

Themost popularmethods for solving stiff problems are theRunge–Kuttamethod.
The disadvantages of these methods are that they do not work well for stiff differen-
tial equations in spite of providing a good understanding of the model’s dynamical
behaviour. The aim of this work is to propose a method that will tackle the difficulties
that appear during the modelling process, most especially the transformation models
of miRNA to stiff nonlinear equations with an implicit method. This method is called
Implicit–Explicit (IMEX) schemes [13–18]. Consider the numerical method of the
following system of stiff ordinary differential equation:

du
∂t

= F(t, u(t)) + G(t, u(t)), (1)

A key idea for the proposed method is to split the right-hand side of (1) into stiff F
(t,u(t)) and nonstiff G(t,u(t)). . Note that an explicit Runge–Kutta (ERK) method
is used to solve the nonstiff part F and a diagonally implicit Runge–Kutta (DIRK)
method is employed to solve the stiff part G. The popular family of IMEX schemes
for DIRK and ERK terms takes the following form [10, 11]:
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(Ex) and (Im) are denoted to the explicit and implicit compo-
nents. The Implicit–Explicit scheme, defined by its Butcher coefficients
(A[Ex], A[Im], b[Ex], b[Im], c[Ex], c[Im]) is given by

un+1 = un + �t
s∑

i=1

(
b[Im]
i k[Im]

i + b[Ex]i k[Ex]i

)
, (2)

where k[Im]
i and k[Ex]i are the discrete counterparts of the stiff and nonstiff operators

respectively in (2), Fs and Fns,

k[Im]
i = F(ti + ci�t, ui (t)), k

[Ex]
i = G(ti + ci�t, ui (t)),

and the stage values are defined as

ui = un + νt
s∑

j=1

(
ai j k

[Im]
i + âi j k

[Ex]
i

)
. (3)

Applying DIRK schemes for the implicit part, the above expression gives

ui = un + �t
i−1∑

j=1

(
ai j k

[Im]
i + a

∧

i j k
[Ex]
i

)
+ �taii k

[Im]
i . (4)

To deal with the linearly implicit cases, we use

(I − �taii K )ui = un + �t
i−1∑

j=1

(
ai j k

[Im]
i + a

∧

i j k
[Ex]
i

)
. (5)
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The rest of this work is structured as follows. In Sect. 2, the model problem is
introduced with the reduction method. In Sect. 3, Implicit–Explicit Runge–Kutta
methods are presented. Numerical experiments are shown with different types of
examples in Sect. 4. Finally, conclusions are given in Sect. 5.

2 Model Equations of miRNA

The skin, muscles, and bones you see are built inside the cells. All these cells involve
billions of proteins. Certainly, proteins are a crucial molecular segment for every
living organism on this planet [19].MicroRNAs (miRNAs) involve 20–22 nucleotide
RNAs that accentuate the process of eukaryotic messenger RNAs and also have an
essential role in phylogeny, carcinogenesis, stress responses, and virus infection [20].
The miRNAs are single-stranded RNA fragments of around 21–23 nucleotides in the
length,which accentuate the organization and classification of genes and translational
qualifications [21]. miRNAs function, at any rate in part, to prevent the formation of
proteins by messenger RNAs and contribute to the progress mRNA deacetylation,
decamping, and 5’ to 3’ reduce of the mRNA body [22]. They were first described
in 1993 [23], the RISC effector complex and elaborate microRNAs are associated,
which incorporates as a key part Argonaut protein? MicroRNAs character quality
representation by conducting the RISC complex near particular target mRNAs. Till
present, there is an enormous controversy in deciding the precise composition of
this restraint [24]. See Fig. 1. through explanation explaining the process of protein
translation is given for the mathematical modelling of miRNA.We simply examined
the previous analysis of the translation of miRNA protein given in [25]. Then, we use
conservation laws for model reduction and the system is reduced to three equations
from seven equations; model reduction is an important way to be dimensionless and
it is applied in many previously published papers [26–29].

A nonlinear variant for the translationmodel was introduced to express the impact
of mRNA interference with translation initiation factors. The recycling for initiation
factors (eI F4F) and ribosomal subunits (60 S and 40 S) is precisely taken into study.
The model involves six chemical reactions of the 60 S, 40 S, F ,eI F4F , R, and A
varieties including four chemical reactions, all supposedly irreversible; see Fig. 2.
The model reaction will be given as:

1 eI F4F + 40S → F , , construction for the initiation complex (rate k1).
2 F → A, assembly of some developed and cap-independent initiation treads, such

as investigating the UTR to start codon A (rate k2).
3 A → R, , assembly of protein translation and ribosomes (rate k3).
4 80S → 60S + 40S, , recycling regarding the ribosomal subunits (rate k4).

By employing stoichiometric vectors, mass action law, and reaction rates, we
describe the model equations moreover the model is represented by the next system
of nonlinear ordinary differential equations:
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Fig. 1 The protein translation manner with microRNA tools

Fig. 2 Nonlinear protein’s model pathways

d[40S](t)

dt
= k4[R] − k1[eI F4F][40S],

d[eI F4F](t)

dt
= k2[F] − k1[eI F4F][40S],

d[F](t)

dt
= −k2[F] + k1[eI F4F][40S],
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d[A](t)

dt
= −k3[60S][A] + k2[F], (6)

d[60S](t)

dt
= k4[R] − k3[60S][A],

d[R](t)

dt
= −k4[R] + k3[60S][A],

Psynth(t) = k3[A](t).

The system (6) involves three independent of the conservations laws

[R] + [40S] + [F] + [A] = [40S]0,

[eI F4F] + [F] = [eI F4F]0, (7)

[R] + [60S] = [60S]0,

where [eI F4F]0, [60S]0, and [40S]0 are total quantities of prepared initiation factor
and big and small ribosomal subunits, respectively. By applying the conservation
laws (7), the latter variables are eliminated [17]

[eI F4F] = −[F] + [eI F4F]0,

[60S] = −[R] + [60S]0, (8)

[A] = −[R] + [40S]0 − [F] − [40S].

Then, system (6) will have the form

d[40S](t)

dt
= k4[R] − k1[eI f 4F]0[40S] + k1[F][40S],

d[F](t)

dt
= −k1[F][40S] + k1[eI F4F][40S] − k2[F], (9)

d[R](t)

dt
= k3[R][40S] + k3[eI F4F]0[40S] + k3[R][F] − k3[60S]0[40S] + k3([R])

2

−k3[60S]0[F] − (k4 + [40S]0 + k3[40S]0)[R].

There are some assumptions on the initial variable states and model parameters



Model Reduction and Implicit–Explicit Runge–Kutta Schemes … 113

k4 � k1, k2, k3,

k3 � k1, k2,

[eI F4F]0 � [40S]0, (10)

[eI F4F]0 < [60S]0 < [40S]0.

For more details about the mRNA model and assumptions, see [28–30]. Depending
on the assumptions in Eq. (10) and introducing new variables

x1 = [40S]

[40S]0
, x2 = F

[eI F4F]0
, x3 = R

[eI F4F]0
.

The system (9) takes the form

dx1
dt

= α1x1(x2 − 1) + α2x3

dx2
dt

= α3x1(1 − x2) − α4x2 (11)

dx3
dt

= α5(1 − x1) − α6x2 + α7x1x3 + α8x2x3 + x23 − α9x3,

where α1 = k1[eI F4F]0, α2 = k4
[eI F4F]0
[40S]0

, α3 = k1[40S]0, α4 = k2, α5 =
k3[40S]0[60S]0

[eI F4F]0
, α6 = k3[60S]0,

α7 = k3[40S]0, α8 = k3[eI F4F]0, α9 = k3[60S]0 + [40S]0 + k4.

3 The Proposed Method

This section aims to use the high-order IMEX-RK scheme presented in Sect. 1 for
solving the model equations of miRNA presented in Sect. 2. To do this, recalling
(11), and for brevity, this can be written as

FIm(t, x(t)) =
⎡

⎣
−α1x1 + α2x3
α3x1 − α4x2

α5 − α5x1 − α6x2 − α9x3

⎤

⎦,

FEx(t, x(t)) =
⎡

⎣
α1x1x2

−α3x1x2
α7x1x3 + α8x2x3 + α8x2

⎤

⎦.
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Go back to (11), and substituting the above equations in (11), leads to

du
dt

= FIm(t, u(t)) + FEx(t, u(t)), (12)

where u(t) = [x1(t)x2(t)x3(t)]
T.

A key idea for the proposed method is to split the right-hand side of (12) into stiff
FIm(t,u(t)) and nonstiff (FEx(t,u(t))). Note that an explicit Runge–Kutta (ERK)
method is used to solve the no stiff part (FEx) and a diagonally implicit Runge–Kutta
(DIRK) method is employed to solve the stiff part (FIm).

and
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4 Numerical Experiments

The goal of this section is to illustrate the performance of a presentedmethod through
an implementation based on Matlab programming. IMEX-RK (4, 5, 5) and classical
Runge–Kutta method ERK4 are used for solving (6) and (12), where the number 4
is the order of the scheme, 5 is the number of stages; implicit and explicit schemes.
Some examples are utilized in this paper. We measure the error between exact and
approximation by

Labc = |y(ti ) − yi |

a. Example 1

The protein translation pathwayswithmicroRNAmodel defined in (6), with[40S]0 =
100,[60S]0 = 25, [eI F4F]0 = 6, [40S](0) = [40S]0, F(0) = 0 andR(0) = 0.
Also,h = 0.01,k1 = 0.04, k2 = 0.05, k3 = 1, k4 = 0.0001, and the initial conditions
for system (12) become x1(0) = 1, x2(0) = 0 andx3(0) = 0. Runge–Kutta method
of order 4 (ERK4) is used as the exact solution of (12) with the stepsize h = 0.001

There are some effective results based on the approximate solutions, especially
for more understanding of the global dynamics. From Fig. 3, the reduced models
are very close to the original model. Figure 4 shows us the protein from the initial
point till about 85 min is stable ßnd then the height rate of protein is produced until
370 min, then it remains stable, because of the homeostasis mechanism.
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Fig. 3 Example 1. Numerical solutions by using IMEX-RK (4,5,5) method for original (6) and
reduced (12) problems

b. Example 2 [28]. Consider the chemical reaction problem

A+ B → 2A, A + B → A+C, A+C → 2C, A → C . The numerical values of the
rate constants are k1 = 0.01, k2 = 0.001, k3 = 0.001, k4 = 0.1. The mathematical
model of the above chemical reaction can be transferred by a set of three ODEs as

⎛

⎝
y

′
1(t)
y

′
2(t)
y

′
3(t)

⎞

⎠ =
⎛

⎝
k1y1(t)y2(t) − k3y1(t)y3(t) − k4y1(t)

(−k1 + k2y2(t))y1(t)y3(t)
k2k1y1(t)y2(t) + k3y1(t)y3(t) + k4y1(t)

⎞

⎠.

Runge–Kutta method of order 4 (ERK4) is used as the exact solution of (12) with
the stepsize h = 0.00001.

Tables 2 and 3 show the good accuracy of the IMEX−RK method using step size
h = 1, h = 0.001, which are better than the classical Rung–Kutta, in which case
h = 0.0001, h = 0.000001. This leads to the number of iterations IMEX much less
than for the number of iterations ERK , and consequently leading to a reduction in
the computational cost of the scheme IMEX.

c. Example 3 [29]. Consider the initial value problem

dy1
dt

= −1.001y1 + 0.999y2 + 2y1y2,

dy2
dt

= 0.999y1−−1.001y2 + y21 + y22 ,

y(0) = 0, y(0) = −1.

This problem can be written as stiff and no stiff terms as
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Fig. 4 Example 1. Numerical solutions by using IMEX-RK (4,5,5) method for original (6) problem

d y
dt

= FIm(t, y(t)) + FEx (t, y(t)),

y(t) = (y1(t), y2(t))
T , FIm =

(−1.001 0.999
0.999 −1.001

)
y, FEx =

(
2y1y2
y21 + y22

)
.

The exact solution is

y1(t) = 1000

2001e2000t − 1
− 1

3e2t − 1
,
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Table 1 Example 1. Comparing errors between original (6) and reduction problems (12) by using
IMEX-RK (4,5,5)
∣∣x1Original − x1Reduced

∣∣ ∣∣x2Original−−x2Reduced
∣∣ ∣∣x3Original − x3Reduced

∣∣

9.8091 ×10−8 1.6583 × 10−6 6.1240 × 10−6

8.1589 ×10−8 1.3857 × 10−6 7.9795 × 10−10

6.5194 ×10−8 1.1154 × 10−6 6.4068 × 10−8

4.8905 ×10−8 8.4774 × 10−7 1.2703 × 10−7

3.2773 ×10−8 5.8377 × 10−7 1.9478 × 10−7

1.6982 ×10−8 3.2723 × 10−7 2.6707 × 10−7

2.8490 ×10−9 9.8524 × 10−8 3.4094 × 10−7

Table 2 Example 2. Comparing results by using IMEX-RK (4,5,5) and (ERK4) methods

ERK4 IMEX-RK (4,5,5)

h = 0.0001 h = 1

y1 y2 y3 y1 y2 y3

1 1 0 1 1 0

0.3319 0.9834 0.6078 0.3324 0.9833 0.6073

0.1099 0.9705 0.8102 0.1103 0.9705 0.8099

0.0364 0.9655 0.8773 0.0365 0.9654 0.8771

0.0120 0.9637 0.8995 0.0121 0.9636 0.8995

0.0039 0.9631 0.9069 0.0040 0.9630 0.9069

0.0013 0.9629 0.9093 0.0013 0.9628 0.9093

Table 3 Example 3. Comparing results by using IMEX-RK (4,5,5) and ERK4 methods with the
measure of errors

ERK4 IMEX-RK (4,5,5) Labs
(
yi

) = ∣∣ yi Ap proximate − yi Exact

∣∣

h = 0.000001 h = 0.001 ERK4 IMEX-RK(4,5,5)

y1 y2 y1 y2 Labs(y1) Labs(y2) Labs(y1) Labs(y2)

0 −1 0 −1 0 0 0 0

−0.0472 −0.0472 −0.0472 −0.0472 3.38e-14 3.38e-14 6.32e-8 6.32e-8

−0.0061 −0.0061 −0.00614 −0.0061 6.05e-15 6.05e-15 1.42e-8 1.42e-8

−0.0008 −0.0008 −0.00082 −0.0008 1.03e-15 1.03e-15 2.73e-9 2.73e-9

−0.0001 −0.0001 −0.00011 −0.0001 1.69e-16 1.69e-16 4.82e-10 4.82e-10

−0.0000 −0.0000 −0.00001 −0.0000 2.70e- 17 2.70e-17 8.03e-11 8.03e-11

y2(t) = − 1000

2001e2000t − 1
− 1

3e2t − 1
.
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Fig. 5 Example 2. Numerical solutions by using IMEX-RK (4,5,5) and (ERK4) methods

Fig. 6 Example 3. Numerical solutions by using IMEX-RK (4,5,5) and ERK4 methods

5 Conclusions

The miRNA protein translation nonlinear model has been studied, involving seven
species and four parameters. Formodelling the system, the classical chemical kinetics
under constant rates and the law of mass action are applied. To minimize the number
of model species and parameters, we have added some new variables. The main
goal of this paper is the use of implicit–explicit Runge–Kutta method for finding the
numerical approximate solutions for chemical reaction problems that contain stiff
and no stiff terms. The stiff part is treated by an implicit scheme, while the second
part is treated by an explicit scheme. An important factor in our proposed method
is to reduce the number of iterations and consequently leading to a reduction in the
computational cost of the scheme. To illustrate the performance of the presented
method, three examples are used. It is clearly confirmed that the proposed method
is much better than ERK in terms of computational cost and stability. In the future,
these numerical methods can be used in complex cell signalling pathways and high
dimensional nonlinear systems. This work can be extended to use finite element
and discontinuous Galerkin methods for estimating this type of problem in terms of
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L∞
(
L2

)
and L∞

(
H 1

)
[33–37]. Another interesting aspect of this work is the fact that

commutativity and stability can be applicable to such problems [38–45].
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Using Atomic Solution Method to Solve
the Fractional Equations

Gharib M. Gharib, Maha S. Alsauodi, Ahlam Guiatni,
Mohammad A. Al-Omari, and Abed Al-Rahman M. Malkawi

Abstract In this work, wewill use a newmethod termed atomic solution to solve the
fractional integral equation and ordinary and partial differential equations. When the
separation of variables does not work, the tensor product of Banach spaces is utilized.
Here, it is necessary to link the fractional derivatives according to the definitions
adopted by various scientists who set theories and their applications to serve this
method, using mathematical analysis in different spaces, referring to the concepts
of fractional transformations, such as Laplace and Sumudu, to eventually produce
accurate, effective, and predictable solutions that are applicable.

Keywords Atomic solution · Conformable derivative · Tensor product

1 Introduction

In [1], the definition conformable fractional derivative is defined

Tα( f )(t) = lim
ε→0

f (t + εt1−α) − f (t)

ε

where α ∈ (0, 1),

G. M. Gharib (B)
Department of Mathematics, Faculty of Science, Zarqa University, Zarqa, Jordan
e-mail: ggharib@zu.edu.jo

M. S. Alsauodi · M. A. Al-Omari
Khawarizmi University Technical College, Amman, Jordan

A. Guiatni
Department of Mathematics, Faculty ofExact Science and Informatics, The University of Jijel,
Jijel, Algeria
e-mail: ahlam.guiatni@univ-jijel.dz

A. A.-R. M. Malkawi
Department of Mathematics, Faculty of Science, The University of Jordan, Amman, Jordan

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
D. Zeidan et al. (eds.), Mathematics and Computation, Springer Proceedings
in Mathematics & Statistics 418, https://doi.org/10.1007/978-981-99-0447-1_10

123

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-0447-1_10&domain=pdf
mailto:ggharib@zu.edu.jo
mailto:ahlam.guiatni@univ-jijel.dz
https://doi.org/10.1007/978-981-99-0447-1_10


124 G. M. Gharib et al.

If f is α − differentiable on (0, k), k > 0, and lim
t→0+

Tα( f )(t) exists, then we define

Tα( f )(0) = lim
t→0

Tα( f )(t)

Properties:

1. Tα(a f + bg) = aT α( f ) + bTα(g), foralla, b ∈ R .
2. Tα(λ) = 0 , for constant, we have:
3. Tα( f g) = fT α(g) + gTα( f ) .

4. Tα

(
f
g

)
= gTα( f )− f Tα(g)

g2 , g(t) �= 0.

5. Tα( f )(t) = t1−α f /(t) .

Proof Let h= εt1−α in definition, then ε= htα−1 as ε→ 0, h → 0

Tα( f )(t) = lim
ε→0

f
(
t + εt1−α

) − f (t)

ε

= lim
h→0

f (t + h) − f (t)

htα−1

= t1−α lim
h→0

f (t + h) − f (t)

h
= t1−α f /(t).

The fractional derivatives:

(i) Tα(t p) = pt p−α

(ii) Tα

(
sin 1

α
tα

) = cos 1
α
tα.

(iii) Tα

(
cos 1

α
tα

) = −sin 1
α
tα .

(iv) Tα

(
e

1
α
tα
)

= e
1
α
tα .

If a function is differentiable, it must be α−conformable differentiable, but the
converse is not true, for example, take f (t) = 2

√
t . Then, T 1

2
( f )(0) = 1, but

T1( f )(0) does not exist.
The separation of variables and Fourier series are the most common methods for

solving partial differential equations [2]. But in many equations, the separation of
variables is not applicable. In this case, the theory of tensor product of Banach spaces
gives us some types of solutions called atomic solutions.

We recommend [1–9] for more information.
In this paper, we will solve some fractional partial differential equations named

atomic solution by using the tensor product of Banach spaces.

In this paper we Using Atomic Solution Method to Solve the Fractional Equations

Dα
x D

α
x u − C2Dβ

y D
β
y u = Dα

x D
β
y u (1)
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With the following conditions:

u(0, 0) = 1, Dα
x D

β
y u(0, 0) = 1

These conditions can be formulated in the form

P(0) = Q(0) = 1andPα(0) = Qα(0) = 1 (*)

This is a linear fractional partial differential equation. But the separation of
variables is very difficult to work. Hence, we go for an atomic solution.

Procedure

Let

u(x, y) = P(x)Q(y) = P ⊗ Q (2)

be an atomic solution of (1), where P(x) and Q(y) are not constants.
Now, substitute (2) in (1) to get

P2α(x)Q(y) − C2Q2β(y)P(x) = Pα(x)Qβ(y) (3)

Equation (3) has the tonsorial form

P2α ⊗ Q − C2Q2β ⊗ P = Pα ⊗ Qβ (4)

Since the sum of two atoms is an atom. we have two cases:

Case (i)

Q2β = Qβ = Q

Let us discuss the case

Q2β = Qβ

By using the property of Conformable fractional Laplace transform [10, 11]

Lβ

{
Q2β(y)

} = Lβ

{
Qβ(y)

}

s2Gβ(s) − sQ(0) − Qβ(0) = sGβ(s) − Q(0)

(s2−s)Gβ(s) − s − 1 = −1
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(s2−s)Gβ(s) = s

Gβ(s) = s

s2 − s
= 1

s − 1
(5)

Applying the inverse Conformable Laplace Transform to both sides of Eq. (5),
we obtained

Lβ
−1

{
Gβ(s)

} = Q(y) = e
yβ

β (6)

Similarly, Qβ = Q with conditions in (*) gives the same solution in (6).
In the same way, Q2β = Q gives the same solution in (6).
Now to find P(x), we go back to (3) and substitute (6) in (3), to get

P2α(x) − C2P(x)−Pα(x) = 0

By using the property of Conformable fractional Laplace transform [10, 11]

Lα

{
P2α(x)

} − C2Lα{P(x)} − Lα{Pα(x)} = 0

s2Fα(s) − sP(0) − Pα(0) − c2Fα(s) − sFα(s) + P(0) = 0

(s2 − s − c2)Fα(s) = −1 + 1 + s

So

Fα(s) = s

s2 − s − c2
= s

(s2 − s + 1
4 ) − 1

4 − c2
= s

(s − 1
2 )

2 − ( 14 + c2)

Lα
−1{Fα(s)} = Lα

−1

{
s

(s − 1
2 )

2 − ( 14 + c2)

}

We get

P(x) = e
1
2

xα

α cosh

√
1

4
+ c

2 xα

α

In this case, the atomic solution is

u(x, y) = P(x)Q(y) = (e
1
2

xα

α cosh

√
1

4
+ c

2 xα

α
)e

yβ

β
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This ends the discussion of case (i).

Case (ii):

P2α = P = Pα

Let us discuss the case

Pα = P

By using the property of Conformable fractional Laplace transform [10]

Lα{Pα(x)} = Lα{P(x)}

We get

P(x) = e
xα

α (7)

Similarly, P2α = Pα with conditions in (*) gives the same solution in (7).
In the same way, P2α = P gives the same solution in (7).
Now to find Q(y),
Now, we go back to (3) and we substitute (7) in (3) to get

e
xα

α Q(y) − c2Q2β(y)e
xα

α = e
xα

α Qβ(y)

e
xα

α [Q(y) − c2Q2β(y) − Qβ(y)] = 0

e
xα

α �= 0,→ Q(y) − c2Q2β(y) − Qβ(y) = 0

By using the property of Conformable fractional Laplace transform [8]

Lα{Q(y)} − c2Lα

{
Q2β(y)

} − Lα

{
Qβ(y)

} = 0

Gβ(s) − c2
[
s2Gβ(s) − sQ(0) − Qβ(0)

] − sGβ(s) + Q(0) = 0

Gβ(s) − c2s2Gβ(s) + sc2Q(0) + c2Q
β
(0) − sGβ(s) + Q(0) = 0

Gβ(s)
[
1 − c2s2 − s

] = −sc2 − c2 − 1

1 − c2s2 − s

Gβ(s) = sc2 + c2 + 1

c2s2 + s − 1
= sc2 + c2 + 1

c2[s2 + s
c2 ] − 1
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= sc2 + c2 + 1

c2[s2 + s
c2 + 1

4c4 ] − 1
4c4 − 1

= sc2 + c2 + 1

c2
[
s + 1

2c2
]2 − 1

4c4 − 1

= sc2 + c2 + 1

c2
[
s + 1

2c2
]2 − [

1 + 1
4c4

]

= sc2 + c2 + 1

c2[(s + 1
2c2

)2 − 1
c2

(
1 + 1

4c4
)]

= c2
[
s + 1 + 1

c2
]

c2[(s + 1
2c2

)2 − 1
c2

(
1 + 1

4c4
)]

= s + 1 + 1
c2(

s + 1
2c2

)2 − (
1
c2 + 1

4c4
)

Put

k2 = 1

c2
+ 1

4c4

We get

Gβ(s) = s + 1 + 1
c2

(s + 1
2c2

)
2 − k2

Gβ(s) = s

(s + 1
2c2

)
2 − k2

+ 1 + 1
c2

(s + 1
2c2

)
2 − k2

(8)

Applying the inverse Conformable Laplace Transform to both sides of Eq. (8),
we obtained

Lβ
−1

{
Gβ(s)

} = Q(y)

= Lβ
−1

{
s

(s + 1
2c2

)
2 − k2

}
+ Lβ

−1

{
1 + 1

c2

(s + 1
2c2

)
2 − k2

}

= e− 1
2c2

yβ

β cos
√
k2

yβ

β
+ 1 + 1

c2

k
e
− 1

2c2
yβ

β

sin
√
k2

yβ

β

= e− 1
2c2

yβ

β cosk
yβ

β
+ 1 + 1

c2

k
e
− 1

2c2
yβ

β

sink
yβ

β
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where

k = 1

c2
+ 1

4c4

So the general atomic solution is

u(x, y) = P(x)Q(y)= (e− 1
2c2

yβ

β cosk
yβ

β
+ 1 + 1

c2

k
e
− 1

2c2
yβ

β

sink
yβ

β
)e

xα

α

This ends the discussion of case (ii).
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Analysis in the Algebra A(E)

Sabra Ramadan

Abstract In this paper, we will define the linear and bilinear operations on the
algebra A(E) which is defined in (Ramadan in J Taibah Univ Sci 290–293, 2017,
[1]). Also, we shall define the generalized numbers according to the given space
A(E) to study the initial and boundary differential equations and other mathematical
models in this algebra.

Keywords Generalized functions · Locally convex algebra · Distribution ·
Algebra

1 Introduction

Following the general method of construction algebras of new distributions (gener-
alized functions) [2] and used in [3, 4], the algebra A(E) was defined in [1] as a
factor algebras A(E) = Gθ1(E)\Gθ2(E), where

Gθ1(E) = {( fk) ∈ G(E) : ∃m ∈ N,∀α ∈ I, ∃dα > 0, pα( fk) ≤ θ1∀k}

Gθ2(E) = {( fk) ∈ G(E) : ∀m ∈ N,∀α ∈ I, ∃dα > 0, pα( fk) ≤ θ2∀k}

where θi be a multivariable functions

θi : I × I × I × .. × I × N × N × ..... × N × R × R × ..... × R → R+ ∪ {0}

and G(E) be the set of all sequences in G, and E be separated by complete locally
convex algebra [5].

The topology on E defined by Pα (collection of semi norms), where α belongs to
the real algebra [interval I and satisfies the following conditions:
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For each α ∈ I , there exists β ∈ I and a constant Cα > 0 for which

pα ( f.g) ≤ Cα pβ ( f ) pβ( g ) ∀ f , g ∈ E

The importance of the algebra A(E) appears when we study a special case when
E = S(R) the space of rapid decay functions with the usual topology defined by the
family of semi norms

pn, l( f ) = sup
k ≤ n
m ≤ l

qk,m( f )

where
qk,m( f ) = sup

x∈R

∣
∣xk f (m)(x)

∣
∣,

Now define the algebra.
A(E) = Gθ1(S(R))\Gθ2(S(R)),

where

θ1(α, k, m ) = dαe
km, θ2(α, k, m ) = dαe

−km,

The embedding of the dual space S∗(R) which is called the space of tempered
generalized functions (or sometimes it is called the space of tempered distributions)
is defined in the following way:

Define the operator

B f : S∗(R) → A( S(R)),

where

B f : u ∈ S∗(R) → ( (2π)−1 ( fk . u ∗ gk ) + Gθ 2( S(R)) ∈ A( S(R))

where

fk = f
(
x
k

)

, f ∈ D(R), f (x) =
{

0 |x | > 2
1 |x | ≤ 1

,

and

gk = F ( fk ( x ) ) = k F( f ( k x) )

where F is the Fourier transform.

Theorem. 1.1

(i) B f is the injective linear operator,
(ii) If f ∈ S∗(R), then ((2π)−1( fk . f ∗ gk) ∈ G(S(R)),

(iii) If g ∈ S∗(R), then ((2π)−1( fk .g ∗ gk) ∈ Gθ1(S(R)),
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(iv) If |u1(x) − u2(x)| < ε for each ε > 0, and for each x ∈ R, then
∣
∣B f u1 − B f u2

∣
∣ < ε .

From this theorem, we conclude that

S(R) ⊂ S∗(R) ⊂ A(S(R))

This means that we can define the associative multiplication of distributions as an
element of algebra A(S(R)), for example, if δ(x) be the Dirac delta function, then

B f : δ ∈ S∗(R) → ((2π)−1( fk .δ ∗ gk ) + Gθ2 (S(R)) = (2π)−1 ∗ gk + Gθ2 (S(R)) ∈ A(S(R))

from which we can define the power of δ(x) ∈ S∗(R) by [see 1, 2].

δn(x) = [ (2π)−1 ∗ gk + Gθ 2 ( S(R) ]n = [ 1

(2π)n
∗ (gk (x))

n + Gθ 2 ( S(R) ]
∈ A( S(R)).

2 Generalized Numbers According to the Algebra A(E)

Let G(C) be the set of all complex sequences, that is, G(C) = {(zk) : zk ∈ C}, then
we define the following subsets:

GM(C) = {

(zk) : zk ∈ C : ∃m ∈ N , and ∃ c > 0 ∀ k |zk | < c emk
}

GN (C) = {

(zk) : zk ∈ C : ∀m ∈ N , ∀ k ∃ c > 0 |zk | < c e−mk
}

Now if z = (zk), w = (wk) are two elements of the set GM(C), and μ = (μk) be
an element of the set GN (C), then

|zw| = |wkzk | ≤ d e(m1+m2)k

for all k and for some m1,m2 from which we conclude that GM(C) is a sub algebra
of the algebra G(C).

Also, if we take

|zμ| = |μk zk | ≤ d e(m1−m)k

for all m and for some m1 which means that GN (C) be ideal in the space G(C)..
Now the set of generalized numbers we define as a factor algebra:

C
∗ = GM(C)/GN (C)
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Theorem 1.2 Let f = ( fk) ∈ Gθ1(S(R)) , and g = (gk) ∈ Gθ2(S(R)) , and z0 ∈ C,
then

1. f (z0) = ( fk(z0)) ∈ GM(C),

2. g(z0) = (gk(z0)) ∈ GN (C)

Proof The proof is trivial by using the properties of the spaces Gθ1(S(R)),
Gθ2(S(R)), GM(C), and GN (C).

The properties of the algebra A(E) and the definition of the generalized numbersC∗
give us the opportunity to study the differential equations with initial and boundary
conditions in the algebra A(S(R))..

Moreover, the generalized numbers help us to define extended linear functional
in our space (E), for example, the extended Lebesgue integral will be defined as we
shall show in the latest section of this paper.

3 Linear and Bilinear Operations on Algebra A(E)

Let T : E → E be a continuous linear operator, then for each u ∈ E , and for each
α ∈ A , there is a constant dα > 0 andβ ∈ A, such that

pα ( T (u) ) ≤ dα pβ ( u ) (3.1)

and if B : ExE → E be bilinear and continuous, then for each α ∈ A there is β ∈ A
and a constant Cα > 0 such that for each u, v ∈ E

pα (B ( u, v ) ) ≤ Cα pβ (u ) pβ (v ) (3.2)

Theorem 1.3 The following embeddings are true:

1. T ( G θ 1 (E) ) ⊂ G θ 1 (E) ,

2. T ( G θ 2 (E) ) ⊂ G θ 2 (E) ,

Moreover, the operator T does not depend on the representative.

Proof Let f = ( fk) ∈ Gθ1(S(R)), and ( fk
∗) be other representatives of f .

Consider

pα [ T ( fk) − T ( f ∗
k ) ] = pα [ T ( fk − f ∗

k ) ] ≤ Cα pβ ( fk − f ∗
k ) ≤

≤ Cαe
−mk ∀ m

that is
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T ( fk) − T ( f ∗
k ) ∈ G θ 2 (E)

Now consider pα[T ( fk)], and using (3.1), we conclude that

pα [ T ( fk) ] ≤ Cα pβ ( fk ) ≤ Cα e
mk

that is

T ( G θ 1 (E) ) ⊂ G θ 1 (E) .

Similarly if

g = ( gk ) ∈ G θ 2 (E),

then

T ( gk ) ∈ G θ 2 (E)

that is

T ( G θ 2 (E) ) ⊂ G θ 2 (E) .

Now we can define the extended linear operator

T : A(E) → A(E)

Similarly, we can use inequality (3.2) to prove that.

B( G θ 2 (E)xG θ 2 (E) ) ⊂ G θ 2 (E),

and similarly, we define the extended bilinear map

B : A(E)x A(E) → A(E)

4 Analysis in the Algebra A(E)

In this section, we will give definitions of extended Linear functionals, extended
Fourier transform, and extended differentiation as a special case of linear and bilinear
operations on the algebra A(S(R)).

Let f : S(R) → C be any linear functional defined on the space S(R), then by
previous results and definitions, we know that
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f (G θ1(S(R))) ⊂ GM(C),

And

f (G θ 2(S(R)) ) ⊂ G N (C)

So the extended linear functional

f : A ( S(R) ) → C∗

will be correct and it is defined by

f (u) = f (uk) + GN (C) ∈ C∗.

For example, the Lebesgue integral over the compact K is defined by

∫

K

: A(S(R)) → C∗,

where
∫

K

u =
∫

K

uk + GN (C) ∈ C∗.

Now since the differential operator D : S(R) → S(R) is linear, then we can
define the extended differential operator on the algebra A(S(R)) in the following
way:

D : A (S(R)) → A (S(R))

where

D(u) = D (uk) + Gθ2(S(R)) ∈ A (S(R)),

also, we define the extended Fourier transform by

F : A (S(R)) → A (S(R))

where

F(u) = F (uk) + Gθ2(S(R)) ∈ A (S(R)).

Now we can define the extended convolution on the algebra A(S(R)) by
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∗ : A (S(R))x A (S(R)) → A (S(R))

where

u ∗ v = (uk ∗ vk) + Gθ2 (S(R)) ∈ A (S(R)).

Remind that the associative multiplication is defined on the space A(S(R)) by

⊗ : A (S(R))x A (S(R)) → A (S(R))

u ⊗ v = (uk . vk) + Gθ2 (S(R)) ∈ A (S(R))

The following results show that the operations of differentiation D, Fourier

transformation F , convolution
−∗, and multiplication ⊗ preserved many important

properties:

Theorem 1.4 The operations of differentiation D, Fourier transformation F ,

convolution
−∗, and multiplication ⊗ satisfy the following properties:

(1) the Fourier transformation F : A(S(R)) → A(S(R)) is an isomorphism;
(2) F [ Dn

u] = (i x)n ( F(u) ) for each u ∈ A(S(R)) ;
(3) D

n [ F u] = F((i x)n u) for each u ∈ A(S(R)) ;
(4) F ( u ∗ v) = F ( u ) ⊗ F ( v ) for each u, v ∈ A(S(R)) ;
(5) F ( u ⊗ v ) = F ( u ) ∗ F( v) for each u, v ∈ A(S(R)) ;
Proof (1) It is known that [5] the usual Fourier transform F : S(R) → S(R) is an
isomorphism.

Now consider

F ( u + v) = F(uk + vk) + Gθ2 (S(R)) = F(uk) + F(vk) + Gθ2 (S(R))

= F ( u ) + F (v) ,

and

F ( α u ) = F(α uk) + Gθ2 (S(R)) = α F(uk) + Gθ2 (S(R)) = αF ( u ),

that is F is linear.
Now, let

F ( u ) = F ( v ) →

F(uk) = F(vk) ⇒ F(uk − vk) ∈ Gθ2 (S(R)) ⇒ u ≈ v,, which means that F
is injective.
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Finally, if

v ∈ A(S(R)) → v = (vk) + Gθ2 (S(R)),

then there is an element

u = F−1(vk) + Gθ2 (S(R))

such that
Fu = FF−1(vk) + Gθ2 (S(R)) = (vk) + Gθ2 (S(R)) = v,

that is the transform F is surjective.

(5) Consider.
F ( u ⊗ v ) = F(ukvk) + Gθ2 (S(R)) = F(uk) ∗ F(vk) + Gθ2 (S(R)) =

F ( u ) ∗ F( v) Similarly, we can prove properties (2–4).

5 Conclusion

The generalized numbers according to the given space A(E) have been defined. Also,
we have extended linear and bilinear operations on the algebra A(E). These results
will give us the opportunity to study the boundary differential equations and other
mathematical models in this algebra.
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Applications of Conformable Fractional
Weibull Distribution

Sondos Rasem, Amer Dabahneh, and Ma’mon Abu Hammad

Abstract The aim of this research is to generate probability density functions of
random variables of the Weibull distribution using fractional differential equations
(FDE). And the second aims to find some basic concepts such as cumulative distri-
bution, survival, and hazard functions. Expected values, r th moments, mean, vari-
ance, skewness, and kurtosis are all introduced as conformable fractional analogs. It
also presents conformable fractional analogs of various entropy measures, such as
Shannon, Renyi, and Tsallis entropy measures. Distributions have many applications
in probability and other applied sciences.

Keywords Probability distribution · Conformable fractional · Conformable
derivative · Entropy

1 Introduction

Fractional derivatives have shown to be extremely beneficial in a variety of fields.
Conformable fractional derivative is introduced by Khalil et al. in 2014 [1–4]. In
this work, we introduce a fractional distribution that can be employed in a variety of
probability and applied sciences applications [1, 5, 6].
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Definition 1.1 Let w : [0,∞) → R and t > 0, then, given w of order α, the
“conformable fractional derivative” is defined by [7]

Dα(w)(t) = lim
w→0

w
(
t + wt1−α

) − w(t)

w

For all t > 0, α ∈ (0, 1). If w is α− differentiable in some (0, a), a > 0, and
lim
t→0+

w(α)(t) exists, then specify w(α)(0) = lim
t→0+

w(α)(t)

The conformable fractional derivatives ofw of order α are denoted byw(α)(t) for
Dα(w)(t). Furthermore, we simply state w is α− differentiable if the conformable
fractional derivative of w of order α exists. It’s worth noting that Dα(t p) = pt p−α

[6].

Definition 1.2
∫ t
c(w)(x)dαx = ∫ t

c
w(x)
x1−α dx , where the integral is the standard integral

incorrect Riemann integral, and α ∈ (0, 1) [6].

All of the classical features of the ordinary first derivative are satisfied by the
conformable derivative. In addition, the following propositions are correct based on
this derivative:

(a) Dα(aw + bϕ) = aDα(w) + bDα(ϕ)

(b) Dα(t p) = pt p−α , for all p ∈ R.
(c) Dα(wϕ) = wDα(ϕ) + ϕDα(w)

(d) Dα

(
w
ϕ

)
= ϕDα(w)−wDα(ϕ)

ϕ2

2 Conformable Fractional Differential Equation

In this section, we introduce conformable Weibull distribution. Consider the
following conformable differential equation [8–10]:

xαDα y +
(
αβ

(
xα

θ

)β − (β − 1)
)
y = 0 Where 0 < α < 1,β, θ > 0, x > 0

If y has an ordinary derivative y‘ with respect to x, then the above equation is
equivalent to the ordinary differential equation.

xαx1−α y‘ +
(
αβ

(
xα

θ

)β − β − 1)
)
y = 0.

Thus

y‘

y
= β − 1

x
− αβ

θβ
xαβ−1.

Lny = (β − 1) ln x − αβ

θβ

xαβ

αβ
+ c.

y = Ax (β−1)e
−

(
xα

θ

)β

; where A = ec > 0
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Fig. 1 Pdf θ = 1.5; β = 2.2;

Set gα(x) = Ax (β−1)e
−

(
xα

θ

)β

. For gα(x) to be a conformable probability
distribution function (CFPDF) with support (0,∞), we need

∫ ∞
0 gα(x)dαx = 1

Thus.
A = αβ

�
(

α+β−1
αβ

)
θ(

β−1
α +1)

.

Hence

gα(x) = αβxβ−1e
−

(
xα

θ

)β

θ

(
β−1
α

+1
)

�
(

α+β−1
αβ

) (1)

Figure 2 There are no values in the α−weibull distribution that are less than zero.
The distribution becomes a Mesokurtosis distribution as the value rises [11, 12]

Consequently

lim
α→1−

gα(x) = βxβ−1e−( x
θ )

β

θβ
, β, θ > 0, x > 0

This is the PDF of a Weibull distribution that is denoted by Weibull(β, θ), so the
CPDF gα(x) is a generalization of the PDF of a Weibull distribution.

3 Applications to Conformable A−Weibull Distribution

In this section, we obtain the basic conformable fractional probabilistic properties
of this distribution [1].
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Fig. 2 CDF θ = 1.5; β = 2.2;

A. The conformable fractional cumulative distribution function (CFCDF)
αCDF.

When x ∼ αweibull(β, θ) so the CPDF is defined by

Gα(x) =
x∫

0

gα(t)dαt

To evaluate this integral, use the transformation w = (
xα

θ

)β
to get

Gα(x) = 1 −
�

(
α+β−1

αβ
,
(
xα

θ

)β
)

�
(

α+β−1
αβ

) . (2)

2 The conformable fractional quantiles

Quantiles are points in a distribution that correspond to the rank order of its values.
By sorting it, you can find any quantile for a sample. The median is the sorted

sample’s middle value (the middle quantile, 50th percentile). The minimum and
highest values are the limitations. Centiles or percentiles can be used to describe any
other points between these two.

3 The conformable fractional survival function (CFSF) (Sα)

Conformable fractional survival function of X is given by

Sα(X) = 1 − Gα(X)



Applications of Conformable Fractional Weibull Distribution 143

Table 1 Quantiles of the
distribution classified by q in
the rows and α in the
columns. The parameters of
the distribution are β =0.8 and
θ = 0.9

α q

0.25 0.5 0.75

0.1 0.001 0.001 0.003

0.2 0.001 0.001 0.016

0.3 0.001 0.001 0.047

0.4 0.001 0.002 0.111

0.5 0.001 0.006 0.227

0.6 0.001 0.027 0.435

0.7 0.001 0.111 0.817

0.8 0.001 0.473 1.589

0.9 0.002 2.645 3.58

Sα(X) = 1 −
�

(
α+β−1

αβ

)
− �

(
α+β−1

αβ
,
(
xα

θ

)β
)

�
(

α+β−1
αβ

) . (3)

4 Conformable fractional hazard function (CFHF)(Hα)

Conformable fractional hazard function of X is given by

Hα = Sα(X)

gα(x)
.

hα(X) = αβ
(
1
θ

) α+β−1
α xβ−1e

−
(

xα

θ

)β

�
(

α+β−1
αβ

)(
−�

(
α+β−1

αβ
,
(
xα

θ

)β
)) . (4)

5 Conformable Fractional expectation Eα

Definition D.1 Conformable fractional expectation Eα of a function v(x) is given
by Eαv(X) = ∫

v(x)gα(x)dαx

So.

EαX
r =

∞∫

−∞

αβxr+β−1e
−

(
xα

θ

)β

θ
β−1
α

+1�
(

α+β−1
αβ

)
x1−α

dx

=
(
1
θ

) r
α �

(
r+α+β−1

αβ

)

�
(

α+β−1
αβ

) .

The first four terms are given:
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EαX = μα =
(
1
θ

) 1
α �

(
α+β

αβ

)

�
(

α+β−1
αβ

) (5)

EαX
2 =

(
1
θ

) 2
α �

(
α+β+1

αβ

)

�
(

α+β−1
αβ

) (6)

EαX
3 =

(
1
θ

) 3
α �

(
α+β+2

αβ

)

�
(

α+β−1
αβ

) (7)

EαX
4 =

(
1
θ

) 4
α �

(
α+β+3

αβ

)

�
(

α+β−1
αβ

) (8)

6 The conformable fractional variance

Ma’mon and others defined the conformable variance [1].

ασ 2 = Eα

(
X2

) − (μα)2

So,

ασ 2 =

((
1
θ

)β
)− 2

αβ

(
�

(
α+β−1

αβ

)
�

(
α+β+1

αβ

)
− �

(
1
α

+ 1
β

)2
)

�
(

α+β−1
αβ

)2 (9)

7 The conformable fractional standard deviation

The standard deviation is calculated from the variance and is denoted by ασ

ασ =

√√√√√√√

((
1
θ

)β
)− 2

αβ

(
�

(
α+β−1

αβ

)
�

(
α+β+1

αβ

)
− �

(
1
α

+ 1
β

)2
)

�
(

α+β−1
αβ

)2 (10)

8 The conformable fractional Skewness is given by

αsk = Eα(X−μ)3

ασ 3 .
So,

by (5), (6), (7), and (9).
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αsk =

(
1
θ

) 6
α
θ

3
α �

(
α+β−1

αβ

)3[−(α + β)�
(
1
α + 1

β

)3 + 3αβ�
(
1
α + 1

β

)2
�

(
1
α + 1

β + 1
)]

(α + β)

(
−�

(
1
α + 1

β

)2 + �
(

α+β−1
αβ

)
�

(
α+β+1

αβ

))3

−
(
1
θ

) 6
α θ

3
α �

(
α+β−1

αβ

)3[
3(α + β)�

(
1
α

+ 1
β

)
�

(
α+β−1

αβ

)
�

(
α+β+1

αβ

)]

(α + β)

(
−�

(
1
α

+ 1
β

)2 + �
(

α+β−1
αβ

)
�

(
α+β+1

αβ

))3

+
(
1
θ

) 6
α θ

3
α �

(
α+β−1

αβ

)3
[
(α + β)�

(
α+β−1

αβ

)2
�

(
α+β+2

αβ

)]

(α + β)

(
−�

(
1
α

+ 1
β

)2 + �
(

α+β−1
αβ

)
�

(
α+β+1

αβ

))3

I. The conformable fractional kurtosis is given by

αku = Eα(X − μ)4

ασ 4

So,

by (5), (6), (7), and (9).

αku = ( 1
θ )

8
α θ

4
α �

(
α+β−1

αβ

)4
[
(α+β)�

(
1
α
+ 1

β

)4−4αβ�
(

1
α
+ 1

β

)3
�

(
1
α
+ 1

β
+1

)]

((α+β)

(
−�

(
1
α
+ 1

β

)2+�
(

α+β−1
αβ

)
�

(
α+β+1

αβ

))4 .

+ ( 1
θ )

8
α θ

4
α �

(
α+β−1

αβ

)4
[
6(α+β)�

(
1
α
+ 1

β

)2
�

(
α+β−1

αβ

)
�

(
α+β+1

αβ

)]

((α+β)

(
−�

(
1
α
+ 1

β

)2+�
(

α+β−1
αβ

)
�

(
α+β+1

αβ

))4 .

− ( 1
θ )

8
α θ

4
α �

(
α+β−1

αβ

)4
[
4(α+β)�

(
1
α
+ 1

β

)
�

(
α+β−1

αβ

)2
�

(
α+β+2

αβ

)]

((α+β)

(
−�

(
1
α
+ 1

β

)2+�
(

α+β−1
αβ

)
�

(
α+β+1

αβ

))4 .

+
(
1
θ

) 8
α θ

4
α �

(
α+β−1

αβ

)4
[
(α + β)�

(+α+β−1
αβ

)3
�

(
α+β+3

αβ

)]

((α + β)

(
−�

(
1
α

+ 1
β

)2 + �
(

α+β−1
αβ

)
�

(
α+β+1

αβ

))4

10 Conformable Entropy Measures

F.1. Shannon Conformable Fractional Entropy

Definition F.1 Conformable fractional Shannon entropy [13, 14] of a random
variable x whose gα(x) is defined SHα(x) = −Eαloggα(X)
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SHα(x) =
�

(
α+β+αβ−1

αβ

)

�
(

α+β−1
αβ

) − Log(α) − Log(β) + β + α − 1

α
Log(θ)

+Log

(
�

(
α + β − 1

αβ

))
− (α + β − 2)

α
�

(
α + β − 1

αβ

)

where �(z) the digamma function.

F.2. Tsallis Conformable Fractional entropy.

Definition F.2 Conformable fractional Tsallis entropy of a random variable x whose
gα(x) is defined SHT,ξ (x) = 1

1−ξ
log(Eα(gα(X))ξ−1 − 1)

SHT,α,ξ =
αξ−1βξ−1θ

1−ξ

α ξ
− (α+β−2)ξ+1

αβ �
(

α+β−1
αβ

)−ξ

�
(

(α+β−2)ξ+1
αβ

)
− 1

1 − ξ
.

Hence,lim
ξ→1

SHT,α,ξ = SHα(x). So the limit of conformable fractional Tsallis entropy

is equal to the conformable fractional Shannon entropy.

F.3. Conformable Fractional Renyi entropy.

Definition F.3 Conformable fractional Renyi entropy of a random variable x whose
gα(x) is defined SH R,α,ξ = 1

1−ξ
log(Eα(gα(X))ξ−1)

SHR,α,ξ = 1

αβ(−1 + ξ)
⎛

⎜
⎝

βξLog(θ) + Log(ξ) − 2ξLog(ξ) + αξLog(ξ)

+βξLog(ξ) + αβξLog
(
�

(
α+β−1

αβ

))
− αβLog

(
�

(
1+(α+β−2)ξ

αβ

))

−αβ(−1 + ξ)Log(α) − αβ(−1 + ξ)Log(β) − βLog(θ)

⎞

⎟
⎠.

Hence,lim
ξ→1

SHR,α,ξ = SHα(x). So the limit of conformable fractional Renyi entropy

is equal to the conformable fractional Shannon entropy.
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Stable Second-Order Explicit
Runge-Kutta Finite Difference Time
Domain Formulations for Modeling
Graphene Nano-Material Structures

Omar Ramadan

Abstract In this paper, stable second-order Runge-Kutta finite difference time
domain (RK-FDTD) formulations are introduced for modeling graphene nano-
material structures. In this respect, a differencing scheme in which the electric field
and the associated current density are collocated in time and space is used for incor-
porating graphene’s dispersion into the FDTD algorithm. The stability of the for-
mulations is studied by using the root-locus method, and it is shown that the given
formulations maintain the conventional Courant-Friedrichs-Lewy (CFL) time-step
stability limit. The stability and the accuracy of the formulations are validated through
a numerical test that investigates the tunneling phenomena of electromagnetic wave
propagation through an infinite free-standing graphene layer.

Keywords Explicit finite difference time domain (FDTD) · Auxiliary differential
equation (ADE) · Root-locus stability analysis · Second-order Runge-Kutta (RK)
scheme · Graphene nano-material

1 Introduction

Graphene nano-material has attracted tremendous attention due to its exceptional
electrical, optical, and mechanical properties [1], and this increases the interest of
developing accurate and efficient numerical techniques for modeling graphene struc-
tures. In the last two decades, the finite difference time domain (FDTD) method [2],
which is known to be one of themost popular electromagnetic time domain numerical
techniques, has beenwidely used in graphene simulations [3–5]. In these approaches,
the auxiliary differential equation method is used for incorporating graphene’s dis-
persion into the FDTD algorithm.

In this paper, alternative formulations based on combining the second- order
Runge-Kutta scheme [6]with the FDTDalgorithmare introduced formodel graphene
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structures. In this respect, a differencing scheme in which the electric field and the
associated current density are collocated in time and space is used for incorporating
graphene’s dispersion into the FDTD algorithm. The stability of the formulations is
studied by using the root-locusmethod [7], and it is shown that the given formulations
maintain the conventional Courant-Friedrichs-Lewy (CFL) time-step stability limit.
The stability and accuracy of the formulations are validated through a numerical
test that investigates the tunneling phenomena of electromagnetic wave propagation
through an infinite free-standing graphene layer.

2 Formulations

At microwave and THz frequency regimes, the surface conductivity of graphene can
be written as [8]

σintra = σ0

jω + v
(1)

where v is the scattering rate, and σ0 = e2kBT
(

μc

kBT
+ 2 ln(e−μc/kBT + 1

)
/π�

2 is

the static conductivity, where −e is the electron charge, kB is Boltzmann’s constant,
T is the temperature, μc is the chemical potential, and � is the reduced Planck’s
constant. Considering a graphene layer of thickness Dg , and introducing the concept
of volumetric conductivity σv = σintra/Dg [9], the equations for the electric field
component Eη, (η = x , y, z), and the associated current density Jη can be written
as

ε0
∂Eη

∂t
= ∇ × H|η − 1

Dg
Jη (2)

∂ Jη

∂t
= σ0Eη − v Jη (3)

Letting the electric field and the associated current density be collocated in time and
space, (2) can be discretized as

ε0
δt

�t
Eη

∣∣n+ 1
2

rEx
= ∇̃ × H

∣∣n+ 1
2

ηrEη

− 1

Dg
μt Jη

∣∣n+ 1
2

rEx
(4)

where rEη is the spatial position of Eη, �t is the time step, �n = �n (n�t ) (� =
E , H , J ), δt is the centered temporal difference operator given by

δt u
q
α,β,γ = u

q+ 1
2

α,β,γ − u
q− 1

2
α,β,γ (5)
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where uqα,β,γ = u (q�t , α�x , β�x , γ�z), with q = {
n, n + 1

2

}
, α = {

i, i + 1
2

}
,

β = {
j, j + 1

2

}
, and γ = {

k, k + 1
2

}
, μt is the discrete averaging operator defined

as

μt u
q
α,β,γ = u

q+ 1
2

α,β,γ + u
q+ 1

2
α,β,γ

2
(6)

and, finally, ∇̃× is the discrete version of ∇× given by

∇̃× =
⎛
⎝
0 −δz δy
δz 0 −δx
−δy δx 0

⎞
⎠ (7)

where δη ,η ∈ {x, y, z}, is the centered spatial differenceoperator in theη-coordinate,
for instance, δx is defined at the (α, β, γ) grid position as

δxu
q
α,β,γ =

uq
α+ 1

2 ,β,γ
− uq

α− 1
2 ,β,γ

�x
(8)

with �x being the mesh size along the x-coordinate. Based on (4), the Eη electric
field component can be approximated at n + 1 time step as

En+1
ηrEη

= En
ηrEη

+ �t

ε0
∇̃ × H

∣∣n+ 1
2

ηrEη

− �t

2ε0Dg

(
J n+1
ηrEη

+ J n
ηrEη

)
(9)

By employing the general second-order RK [6] scheme to (3), J n+1
η can be approxi-

mated as ⎧⎨
⎩
K1 = �t f

(
n�t , J n

η

)
K2 = �t f

(
(n + λ1) �t , J n

η + λ2K1
)

J n+1
η = J n

η + a1K1 + a2K2

(10)

where f is obtained from the right-hand side of (3) as

f = σ0Eη − v Jη (11)

and ⎧⎨
⎩
a1 + a2 = 1
λ1a2 = 1

2
λ2a2 = 1

2

(12)

It is important to note that the approximation of (10) is of second-order accuracy, as
shown in the Appendix. Employing the midpoint integration rule [6], which is also
known as the modified Euler method, these constants can be obtained as
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a1 = 0, a2 = 1, andλ1 = λ2 = 1

2
(13)

Hence, J n+1
η can be re-arranged from (10) as

J n+1
η = J n

η + �t f

((
n + 1

2

)
�t , J

n
η + �t

2
f
(
n�t + J n

η

))
(14)

which can be written recursively at the rEη grid position as

J n+1
ηrEη

= b1 J
n
ηrEη

+ b2E
n
ηrEη

(15)

where b1 = 1 − ṽ + ṽ2

2 and b2 = σ0ṽ
(
1 − ṽ

2

)
with ṽ = v�t . For completeness, the

magnetic field component Hη is written in the FDTD form as [2]

H
n+ 1

2
ηrHη

= H
n− 1

2
ηrHη

− �t

μ0
∇̃ × E

∣∣n
ηrHη

(16)

In the following section, the stability analysis of the above formulations is investi-
gated by using the root-locus method [7].

3 Root-Locus Stability Analysis

Let the time-harmonic solution of the above field equations with the variables E , H ,
and J be given by

�n
α,β,γ = �0e

j(ωn�t−k̃xα�x−k̃yβ�y−k̃zγ�z) (17)

where j = √−1,�n
α,β,γ = �

(
n�t ,α�x , β�y, γ�z

)
,�0 is the complex amplitude

of the field �, and k̃η (η = x, y, z) is the wave number in the discrete mode along
the η-direction. Upon substituting (17) into (9), (14), and (16), the following system
can be obtained:

⎡
⎢⎢⎣

(Z − b1) I3 −b2I3 03
�t (Z+1)
2ε0Dg

I3 (Z − 1) I3
�tZ

1
2

ε0
C

03
�t
μ0
CT

(
Z 1

2 − Z− 1
2

)
I3

⎤
⎥⎥⎦

×
⎡
⎣

J0
E0

H0

⎤
⎦ = 0 (18)
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whereZ = e jω�t is the stability factor, 03 is a 3 × 3 null matrix, I3 is a 3 × 3 identity
matrix, and C contains the eigenvalues of the curl operator of Maxwell’s equations
given by

C =
⎛
⎝
0 δ̂z −δ̂y
−δ̂z 0 δ̂x
δ̂y −δ̂x 0

⎞
⎠ (19)

where δ̂η = j2 sin
(
kη�η/2

)
/�η . Equating the determinant of the coefficient matrix

of (18) to zero and taking sin
(̃
kη�η/2

) = 1, to account for theworst possible case, the
presented explicit RK-FDTD scheme will have the following stability polynomial:

(Z − 1

Z 1
2

)(Z − b1

Z 1
2

)2

[(Z − b1) (Z − 1)

+ b2�t

2ε0Dg
(Z + 1)

] (
SRK (Z)

)2 = 0 (20)

where SRK (Z) is given by

SRK (Z) = 4CN 2Z + (Z − 1)2

+ b2�t

2ε0Dg

(Z + 1) (Z − 1)

(Z − b1)
(21)

and CN is the Courant number defined as

CN = �t

�CFL
tmax

(22)

with�CFL
tmax

= 1/c0
√

�−2
x + �−2

y + �−2
z being the CFL time-step limit [2], and c0 =

1/
√

ε0μ0 being the speed of light in free space. Based on (20) and (21), a reduced
stability can be re-arranged from (21) as

1 + 4CN 2 Z
(Z − 1)2

1

ε̃RK
r (Z)

= 0 (23)

where ε̃RK
r (Z) is the numerical permittivity of the presented explicit RK-FDTD

scheme, which can be arranged as

ε̃RK
r (Z) = 1 + b2�t

2ε0Dg

(Z + 1)

(Z − 1) (Z − b1)
(24)

Based on the root-locus stability analysis [7], the maximum time step of the
presented RK-FDTD implementation

(
�RK

tmax

)
can be obtained from the fact that the

roots of (23)must lie inside or on the unit circle in theZ-plane, i.e., |Z| ≤ 1. To better
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Fig. 1 Root-locus of (23)
for the presented explicit
RK-FDTD implementation.
Graphene parameters are
taken as v = 2.0 THz,
μc = 1.0 eV, T = 300
Kelvin, and
d = � = c0/200 fmax, with
fmax = 10 THz

visualize this idea, consider a graphene layer with the following parameters: v = 2.0
THz, μc = 1.0 eV, T = 300 Kelvin, and let the graphene layer occupy one spatial
cell [10], i.e., Dg = �, where � = �x = �y = �z = c0/200 fmax with fmax = 10
THz. Figure1 shows the root-locus of (23), where the initial time step is taken to
satisfy �CFL

tmax
[11]. As can be seen from Fig. 1, the instability occurs at Z = −1.

Hence, by substituting Z = −1 into (23) together with (24) the following can be
obtained:

1 − CN 2 = 0 (25)

and this implies that CN is always unity for the presented RK-FDTD scheme and
independent from graphene parameters. Noting that CN = �t/�

CFL
tmax

, the time-step
constraint for the explicit RK-FDTD scheme

(
�RK

tmax

)
can be obtained from (25) as

�RK
tmax

= �CFL
tmax

(26)

Hence, the presented RK-FDTD scheme retains �CFL
t .

4 Numerical Stability and Accuracy Verification

In this section, the stability and accuracy of the presented explicit RK-FDTD scheme
are verified through a numerical test that investigates electromagnetic wave propa-
gation through an infinite free-standing graphene layer. For this purpose, an electro-
magnetic wave with Ez and Hy field components propagating in a one-dimensional
(1-D) domain along the x-direction is considered. The size of the simulation domain
is taken as 8000�x , where�x = c0/200 fmax and fmax = 10 THz. The convolutional
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perfectly matched layer (CPML) [12], with a thickness of 10 cells, is used to truncate
the computational domain. The graphene layer, with the same parameters used for
Fig. 1, occupies one spatial cell at grid point 4000. The simulation domain geometry
is shown in Fig. 2. The excitation is a Gaussian pulse with a time dependence of

g(t) = e−4π(t−td )
2/t2w (27)

where tw = 80�t and td = 6tw. The excitation source is located at point S, and the
observationpoint is located at pointO, as shown inFig. 2. The simulation is conducted
for the first 100 000 time steps. Figure3 shows the transmitted Ez field recorded at
the observation point O,

(
Etr
z (4020�x )

)
, computed by the presented explicit RK-

FDTD implementation with �t = �RK
tmax

= �CFL
tmax

. Clearly, Ez remains stable over
the complete simulation time and, therefore, the stability of the presented explicit
RK-FDTD implementation maintains the conventional time-step CFL constraint. It
must be noted that the simulation is also conducted with the presented explicit RK-
FDTD implementation for the first 1 × 106 time steps and no instability is observed.

Fig. 2 One-dimensional simulation domain geometry

Fig. 3 Transmitted electric
field at node 4020,
Etr
z (4020�x ) computed by

the presented explicit
RK-FDTD with
�t = �RK

tmax
= �CFL

tmax
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Fig. 4 Transmission
coefficient magnitude for a
graphene layer computed by
the presented explicit
RK-FDTD, and the
theoretical approaches

Finally, the accuracy of the presented explicit RK-FDTD implementations is stud-
ied. For this purpose, the transmission coefficient (T ) of the graphene layer is inves-
tigated and computed as

T (ω) = Etr
z (ω)

Einc
z (ω)

(28)

where Etr
z (ω) is the frequency domain of the transmitted field Etr

z , and Einc
z (ω) is

frequencydomainof the incident field Einc
z recorded at the observationpointO,which

is obtained in the second simulation by replacing the graphene layer with vacuum.
Figure4 shows themagnitude of the transmission coefficient for the presented explicit
RK-FDTD scheme with�t = �RK

tmax
= �CFL

tmax
. Figure4 shows also the magnitude of

the theoretical transmission coefficient (Tth) [8]. Clearly, both schemes give high
accuracy as the theoretical results.

5 Conclusions

In this paper, stable and accurate Runge-Kutta FDTD formulations are presented for
graphene simulations. It is shown that the presented formulations not only retain the
standard CFL time-step stability limit but also exhibit high accuracy as compared
with the theoretical results.
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6 Appendix: Runge-Kutta Local Truncation Error

Considering K2 = �t f
(
(n + λ1) �t , J n

η + λ2K1
)
given in (10), and applying the

multivariate Taylor series expansion, the following can be obtained:

K2 = �t
[
f
(
n�t + J n

η

) + λ1�t f
′
t

(
n�, J n

η

)

+ λ2K1 f
′
Jη

(
n�, J n

η

) + O
(
�2

t ,K2
1

)]
(29)

where f ′
t and f ′

Jη
denote the derivative of f with respect to time and Jη, respectively.

Noting that K1 = �t f
(
n�t + J n

η

) + O (�t ), and using (29), J n+1
η in (10) can be

arranged as

J n+1
η = J n

η + (a1 + a2)�t f
(
n�t + J n

η

) + a2�
2
t

× [
λ1 f

′
t

(
n�, J n

η

) + λ2 f
(
n�, J n

η

)
f ′
Jx

(
n�, J n

η

)]

+ O
(
�3

t

)
(30)

Recalling that J n+1
η can also be written by using the Taylor series expansion as

J n+1
η = J n

η + �t J
′
ηt

+ �2
t

2
J ′′
ηt t

+ O
(
�3

t

)
(31)

and noting that J ′
ηt

= f and J ′′
ηt t

= f ′
t + f ′

Jη
f , (31) can be arranged as

J n+1
η = J n

η + �t f
(
n�t + J n

η

) + �2
t

2

×
[
f ′
t

(
n�, J n

η

) + f
(
n�, J n

η

)
f ′
Jη

(
n�, J n

η

)]

+ O
(
�3

t

)
(32)

Comparing (30) with (32), it can be easily concluded that the explicit RK-FDTD
approximation of (10) is of second-order accuracy if

a1 + a2 = 1, andλ1a2 = λ2a2 = 1

2
(33)
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Hydrodynamic Analysis and CFD
Modeling of PAWEC Interacted
with Regular Waves Using CFX

Ali Shehab , Ahmed M. R. El-Baz, and Abdalla Mostafa Elmarhomy

Abstract The multiplicity of renewable energy sources represents the biggest chal-
lenge for environmental scientists and engineers. This research presents a math-
ematical model and a numerical study using the high-performance ANSYS-CFX
software to analyze the dynamic behavior of the point absorberwave energy converter
(PAWEC). Two different models were constructed to predict the hydrodynamic
response of the wave energy converter in both free and forced oscillations under
the action of incident regular waves and external mechanical damping. The differ-
ential equations are solved analytically using RKFOM. CFX multiphase model is
constructed to solve the 3D Unsteady Reynolds Averaged Navier–Stokes Equa-
tion (URANS) using the two-way Fluid–Structure Interaction (FSI) technique. The
regular waves were generated in a numerical wave tank, by using a flap-type wave-
maker. Mesh densities and solver settings were performed. The numerical results in
both models, CFD and RKFOM, are validated against published experimental and
numerical data under the same conditions, and the numerical results agreed with
both published data. Two additional designs for the body bottom, conical and spher-
ical shapes, were analyzed based on the presented numerical method. The damping
coefficient and added mass are obtained for each design in the case of heave motion
only.

Keywords CFD · CFX · FSI · Renewable energy · Wave energy · Wave
generation · Wave Energy Converter (WEC) · Numerical Wave Tank (NWT)
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1 Introduction

The numerical simulation of multiphase applications, coupled with the interaction
between the fluids and movable structure, requires a high-performance CFD code.
Many CFD platforms are followed for this purpose, especially in ocean engineering.
ANSYS-AQWA software is a simple CFD platform accompanied by offshore hydro-
dynamics in open water which provides an integrated facility for developing primary
hydrodynamic parameters required to undertake complexmotions and response anal-
ysis [1]. OpenFOAM is an open-source CFD software that provides a wide range
of features to solve both fluid flows and solid mechanics, it is a C++ toolbox for
the development of customized numerical solvers which gave a higher mixing level
compared to other software, but it needs a professional programmer [2]. ANSYS-
CFX is a high-performance CFD software distinguished for exceptional accuracy
and high convergence speed, especially in multiphase applications [3]. CFX can be
used to generate a single run to create full operating maps with a simple integration
process. UsingANSYS-CFX in the simulation of numericalwave tanks (NWTs)with
the corresponding wave energy converters (WECs) provides a broad visualization of
both fluid characteristics as well as the hydrodynamic of floating bodies [4].

The numerical simulation of wave energy converters (WECs) is the focus of
researchers’ efforts in the last decades. The main challenge facing each researcher
is to develop the device’s efficiency to produce energy and reduce the cost of power
[5]. Most of the previous work uses the numerical simulation by ANSYS-AQWA
and OpenFOAM; the experimental setup in this field requires special equipment and
a great effort, whether in the preparation of movement receptors or the difficulty
of extracting results. Jin, Siya [6] construct a 1/50 scale PAWEC in a wave tank to
validate the CFD model generated to study the effect of the floating body geometry
and the power take-off (PTO) damping on the wave energy absorption. The math-
ematical model of PAWEC behaviors was performed using two different models,
the first is the non-linear state-space model (NSSM) considering a quadratic viscous
term, second is the linear state-spacemodel (LSSM). Three different geometrieswere
investigated in this paper using ANSYS/AQWA software: a flat-bottom cylinder, a
hemispherical bottom cylinder, and conical bottom with right streamline angle. The
experimental data was compared with the two mathematical models and validated
with CFD model using ANSYS-AQWA. Jin, Siya concluded that the flat-bottom
cylinder has more damping coefficient, and therefore, more added mass than the
other designs by 60%.Moreover, the best design is the conical bottom cylinder, which
produced max stroke length 100%more than other designs. The selected design was
subjected to PTO damping, and therefore, the optimal power is increased by 70% in
both regular and irregular waves. Josh et al. [7] used OpenFOAM to investigate the
implementation of NWT containing a rigid body solution. The capabilities of NWT
were outlined in the case of fluid–structure interaction between cylindrical floating
bodies and incident irregular waves generated using the JONSWAP spectrum. Fifty
frequencies were used, which were regularly distributed between 0 and 0.5 Hz with
10 s period and different phases. The body motion was analyzed using two ways,
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one way is the prescribed way to define the hydrodynamic forces concerning the
displacement and time, and another way is the numerical simulation to predict the
dynamic response of the body against contribution waves and PTO applied force.
Shadman et al. [8] used ANSYS-AQWA software to analyze the hydraulic diffrac-
tion of cylindrical PAWEC to optimize the geometry based on the maximization of
absorbed power and absorption bandwidth in case of natural conditions nearshore
region of the Rio de Janeiro coast. The technique of joint probability distribution
and resultant wave spectrum was used to perform the optimization method. The two
primary advantages of this optimization method are the reduced computational time
and the possibility of performingparametric analyses for theWECgeometry. Sjökvist
et al. [9] analyzed the hydrodynamic parameters of cylindrical PAWEC using a CFD
model built-in Multiphysics simulation software COMSOL and a numerical linear
model computed byWAMIT. The linearmodel of the interaction between the incident
waves and a floating structure is solved for the excitation forces, radiation damping,
and added mass using green’s theorem by integrating the diffraction and radiation
velocity potentials in closed surfaces extracted from a 3D panel program WAMIT.
The numerical results are validated against an experimental work, the hydrodynamic
parameters computed with the COMSOLmodel show good agreement with the ones
computed using WAMIT. Ghasemi et al. [10] presented a numerical computational
method to solve the 2DNavier–Stokes equations governing the behavior of flow field
interacted with two types ofWEC, cylindrical and rectangular cross-sectional shape.
The fluid–structure interaction parameters were determined using the VOF method;
NWT technique was used to generate the waves by using both Flape-type and piston-
type wavemakers. The numerical model was obtained by several degrees of freedom
in both floating bodies, heave motion for the cylindrical body against incident waves,
and a free-fall test, free rotational pitch motion for the rectangular shape. This paper
presented the change in floating system efficiency with respect to the coefficient of
damping, the maximum efficiency obtained at single degree of freedom wih value
0.5. Büchner et al. [11] constructed a 3D numerical model using ANSYS-fluent to
predict the dynamic response of a single degree of freedom floating cylinder against
a regular wave. The horizontal and vertical forces on the float due to drag and inertia
loads were presented in case of different values of wave amplitudes and frequencies.
The effect of irregular wave on the float dynamics was recommended in the future
work.

Devolder et al. [12] construct an experimental measurement to validate the CFD
results for an array of up to nine semi-circular WECs under the effect of regular
waves. The frictional forces and heave motion are presented in both experimental
and numerical studies. Rijnsdorp et al. [13] presents a numerical simulation for the
interaction between the incident waves and a fully submerged wave energy converter
using the non-hydrostatic framework on large scales. This research demonstrates
both linear and non-linear waves with a cylinder shape of WEC connected by a
mooring line. The results of the linear waves were validated with an analytical solu-
tion in both diffraction, radiation, and dynamic response. Jin et al. [14] investigate
the non-linear viscosity effect of a wave energy converter prototype with a scall 1/50
by studying the hydrodynamics loads. The point absorber WEC in this paper was
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designed with only heave motion in the experimental part. The mathematical model
of PAWEC behaviors was performed using two different models, the first is the non-
linear state-space model (NSSM) considering a quadratic viscous term, the second is
the linear state-space model (LSSM). The experimental data were compared with the
two mathematical models and validated with the CFDmodel using ANSYS-AQWA.
the main objective of this paper is to achieve the optimal power of the device and
to maximize the conversion efficiency by indicating the performance of the device
at the resonance case. Zhu and Lim [15] constructed a flume experiment for design
optimization of a cylindrical wave energy converterwhich leads to reducing the unde-
sirable motions due to the surrounding environment. A heave plate is recommended
to be mounted with the floating body to reduce these motions. Several experimental
tests are performed with different heave plates at various gaps in the body. The
response amplitude operator RAO for the cylinder with a heave plate was 40% less
than that without plates. Weller et al. [16] set up experimental measurements for
the 2D motion of WEC under the action of regular and irregular extreme waves.
The translation motion, in both directions, and rotation motion (heave, surge, and
pitch) were presented using an optical encoder and the analysis of video footage.
The relation between the body and the wave is linear in low frequencies, however,
in extreme sea-state conditions, the heave motion and wave breaking are presented
to predict the hydrodynamic response of WECs in high frequency.

Our need for validated numerical analysis is increasing in the field of wave energy,
especially with the presence of published experimental results and with the diffi-
culty of implementing those experiments. Some of these numerical studies will be
mentioned in this section, which will contribute to providing the best in this research.
The construction of an NWT capable of creating a variety of waves and being able to
study the behavior of the buoy under the influence of those waves is the main objec-
tive of this research. Shehab et al. [17] constructed an NWT that can simulate both
regular and irregular waves in form of wave spectra. Flap-type wavemaker technique
was applied for this purpose using CFX software. The generated regular wave was
validated against the wavemaker theory WMT, while the irregular wave was vali-
dated against experimental data with real sea conditions in the frequency domain.
Very useful parameters were discussed in this research that will greatly contribute
to the present work. Finnegan and Goggins [18] used CFX to investigate the effect
of using a flap-type wave maker to generate regular waves in both deep and shallow
water depths. This method is limited to a low normalized wavenumber. The change
of hinge location reduced these limitations.

After the previous work, the modeling of the NWTs using CFX is more effective
due to the wide range of parameters provided by CFX which leads to a good under-
standing of the PAWEC hydrodynamics, CFX is a good choice for executing a CFD-
based NWT. The main objective of this research is to understand the hydrodynamics
of fluid–structure interaction between a partially submerged free-floating body with
an incident regular and irregular generated waves inside NWT through a commercial
CFD software CFX, which is rarely used in this field. The followed method used
in this research has been presented in a detailed manner in addition to studying the
extent of its usability compared to the rest of the methods presented above in the
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literature. The numerical results are validated against previous experimental data in
the same conditions and body geometry.

2 Methodology and Problem Setup

Most of the previous research constructs an NWT using simple computational
methods that provide a limited range of parameters as mentioned in the literature.
Using CFX to construct an NWT requires more effort and additional techniques than
other CFD simulation methods, the formation of NWT using CFX is like creating a
miniaturemodel of an integrated lab that gives all the useful results for understanding
the factors affecting both the fluid and the moving body. The numerical model in this
study consists of two phases for the fluid, air, and water, in addition to a solid phase
for the floating body. The differential equations governing the fluid flow inside NWT
are presented and solved for both velocity and momentum with a proper boundary
condition describing the layers of the tank, an additional equation is applied for the
solution of Volume Fraction VF of the fluids to determine the vertical position of the
free surface at any time. Newton’s second low was applied for the solution of solid
phase model under the effect of diffraction, radiation, and excitation forces in heave
motion only. Two different approaches are used for the solution of the mathematical
model, first by using ANSYS-CFX (release 14.5) approach, the second method is
to transform the FSI system to a simple harmonic motion followed by a numerical
technique to solve the differential equations called RKFOM. A great effort was made
to construct the combination between NWT and movable body using CFX. The two
approaches are validated, in the case of free-fall test of the float in the still water, with
published experimental work carried out in similar conditions by Guo et al. [19]. The
validated model is then used to investigate the damping coefficient and added mass
term for several designs of the float operating surface, conical and spherical profiles
with the same mass are tested in the free-fall conditions to study the effect of bottom
design onmotion behavior. The designwith the best results was tested against regular
and irregular waves generated by a Flap-type wavemaker located at the inlet of the
tank, the recommendations mentioned in the research submitted by Shehab et al. [17]
regarding the wave generation in NWT were taken into consideration.

3 Mathematical Model

The fluid model in CFX consists of two phases separated by a free surface, the flow
of water is considered incompressible in the transient scheme. The 3D form of both
continuity andmomentum differential equations are solved for velocity and pressure,
respectively. The governing equations are defined as [20]. Continuity equation



164 A. Shehab et al.

∇.−→v = 0,−→v = ẋ i
∧

+ ẏ j
∧

+ żk
∧
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where −→v is the velocity vector, and ẋ, ẏ, ż represent the velocity components along
the coordinate axes. Momentum equation
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τ
)
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where P is the static pressure, ρ is the fluid density,−→τ is the stress tensor, the reference
of the coordinate system is located at the centerline of the buoy coincidence with the
still water level at the equilibrium position of the buoy. The finite Volume Method
FVM is used to solve the previous governing equations in CFX [3]. The simulation
of the water-free surface, with respect to time, requires two additional differential
equations for the solution of the volume fraction VF for both water qw and air qa . The
total summation of volume fractions is equal to 1. The instantaneous position of the
free surface is estimated using the minimum value of |qw − qa| across the domain.
The governing equations for this method, Volume of Fraction VOF, are derived by
Liang et al. [21] and defined in the following equations.
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The solid model in CFX is investigated using rigid body dynamics. The float is
a cylindrical shape with a curved bottom (S) (see Fig. 1). The mass of the buoy is
equal to the displaced fluid in the equilibrium position (at �z = 0). A single degree
of freedom model is used in only heave motion, therefore, the terms of the rotational
moment of inertia are eliminated from the differential equations. The differential
equations, governing the dynamics of the float, are derived using Newton’s second
law (5), and the total forces (gravitational, hydrodynamics, and mechanical) are
analyzed in Eq. (6). Sjökvist et al. [9]

∑ ⇀

F = d

dt

(
m ∗ ⇀

v
)
, (5)

⇀

Fg + ⇀

Fe(t) + ⇀

F pto(ż) + ⇀

Fh(z, s) + ⇀

Fs(ż) + ⇀

Fa(z̈) = m
⇀̇
v , (6)

F⇀
g = −mgk

∧

: Gravitational force, constant and directed along negative Z-
Direction. F⇀

e(t) = Ce∗δ(t)k
∧

: The excitation force is due to the interaction between
the buoy and the externally generated waves. Ce is the coefficient of the radiation
response, δ(t) is the surface elevation function. F⇀

pto(ż) = −Cpto ∗ ż(t)k
∧

: The
mechanical loads of the power take-off mechanism due to friction and damping of
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Fig. 1 The floating body at
displacement Z above the
water-free surface

the mechanical elements. Cpto is the damping coefficient of the PTO mechanism,
ż(t) is the vertical component of the velocity as a function of time. F⇀

h(z, s) =
ρg[Ac(H0 − Z(t)) + V (S)]k

∧

: The hydrostatic forces due to buoyancy, variable force
depending on the position of the float Z(t), and the bottom surface profile of the
buoy (S) which is exposed to the fluid. H0 is the submerged depth of the float in
the equilibrium position, Ac is the cross-sectional area of the cylinder, V (S) is the
volume of the curved portion below the buoy. F⇀

s(ż) = μAs
(

∂ v⇀

∂r

) = −μAs

�r (Ż)k
∧

:
the shear stress forces acting on the longitudinal surface of the float due to fluid
viscosity and friction. ∂ v⇀

∂r is the flow velocity gradient, μ is the dynamic viscosity
of the fluid, As is the longitudinal surface area normal to the vertical axis,�r denotes
the radial distance from the body surface to the nearest zero shear stress location.

F⇀
a(z̈) = −maz̈k

∧

: the equivalent added mass term due to the fluid dissipation
around the float as a result of fluid linear inertia. ma is the added mass. Ghasemi
et al. [10].

The numerical model of the float dynamics with a single degree of freedom can
be simplified to a spring-damping model with a general Eq. (7) only in heave motion
along the vertical axis as

(M)Z̈(t) + (Cd)Ż(t) + (K )Z(t) = Fext (t), (7)

where M denotes the equivalent mass of the system [kg], defined as M = m + ma ,
Cd represents the equivalent damping coefficient [kg/s], defined asCd = Cpto+ μAs

�r ,
K denotes the spring constant of the system [kg/s2], defined as K = ρgAc, Fext (t)
denotes the total external forces of the incident-generated wave excitation [N].

3.1 CFD Model and Boundary Conditions

Two different NWTs are constructed for both the free-fall test model and the inter-
action between the float and excited wave. Davidson et al. [22] recommended using



166 A. Shehab et al.

a circular NWT for the free-fall test model when using OpenFOAM. The main idea
of the free-fall test is to adjust the float at a certain vertical displacement (�z) above
its equilibrium position, this action gives the device initial potential energy which
leads to a restoring motion when leaving it free to move, then the float is dropped
from rest to move with the gravitational force in the downward direction, the speed
increases in the first stage of the movement as the forces of gravity overcome the rest
of the total hydrodynamic forces acting on the float, the device starts to approach its
equilibrium position, the potential energy of the device is converted to kinetic energy
which causes increase in its velocity, the float begins to slow down till it comes to
rest again in the lowest position as the hydrostatic forces overcome the float weight.
The energy was dissipated due to the surrounding fluid damping effects. Accord-
ingly, the device continues to oscillate, up by the buoyancy effects and down by the
body weight, around its equilibrium position, the amplitude will be reduced by time
depending on the amount of dissipating energy in each stroke and the damping coef-
ficient arising from the shear stresses of the surrounding fluid and the PTO resistance.
Finally, the device comes to rest in the equilibrium position. The free-fall test was
performed experimentally by Guo et al. [19] in a wide-range tank to absorb the wave
at tank walls. Jin et al. [6], Zhu and Lim [15], Angense [23], and Devolder et al. [24]
used a rectangular NWT generated by other CFD approaches. A rectangular NWT
is used in this research for both the cases as shown in Fig. 2; The free-fall test model
is subjected to a simple boundary condition. A symmetric plane was used parallel to
XZ coordinate plane, tank wall and seabed were treated as fixed walls with no-slip
conditions, the free surface was set as interface subjected to a dynamic mesh related
to the change in fluid volume of fractionmethod, the buoywas defined as a rigid body
subjected only to hydrostatic forces in this model without other external effects, the
buoy diameter is D with submerged height Ho. The numerical beach is not activated
in this model because the wave generated by the free movement of the buoy is rather
small compared to the generated wave by the Flap in the second model.

A second model with the sane NWT used for FSI, with incident-generated wave
using Flap-type wavemaker, and numerical beach NB is used, as shown (see Fig. 2).
The boundary conditions for the three phases are set as followed; inlet plane is a
flapper subjected to a rotational motion about fixed hinge located below the free
surface by distance ho, the position of the movable plane is defined in Eqs. (8), and
(9), Eldeen et al. [17]. The top plane is divided into two regions, the first region in

Fig. 2 Rectangular NWT for the free test model
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the wave generation region is considered as a wall with a dynamic mesh technique
to adjust the motion of the inlet plane, and the second region is considered as a fixed
wall with zero-gauge pressure. The outlet plane is defined as the opening domain
with a pressure gradient from the seabed to the top plane. The seabed is divided
into three sections; the first section inside the wave generation region is defined as
a movable surface in XY plane subjected to dynamic mesh technique, the second
section inside the wave propagation region is considered as a fixed wall with no-slip
conditions, the third section is the numerical beach NB designed with a 1:5 sloped
surface to reduce the wave reflections from outlet plane [17]. An asymmetric plane is
used to reduce the time of calculations. Lal’s et al. [25] recommendations for using a
Flap-type wavemaker are taken into consideration. The technical information based
on wave simulation and wave absorption in NWT using CFX is explained in detail
by the author in a related paper [17].

X = Smax ∗ Z + ho
ha + ho

, (8)

Smax = A f sin(ωt), (9)

where Smax is the flap position at the upper plane of the model, A f is the maximum
stroke length in the top plane, the air height is ha , ho is the fixed hinge depth. The x
position of the inlet plane (Flapper) is varying from one point to another depending
on the z position and flow time.

3.2 Grid Independence Test

ANSYS designmodeler is used to discretize the model into a finite tetrahedron shape
compatible with the dynamic mesh in 3D modeling. To detect the small change in
buoy position and free surface of the fluid, 15 inflation layers with a total thickness of
0.2 m were used around the water-free surface and the buoy surface. The minimum
element size is tested to check the independence of the mesh, seven cases were
generated for this purpose. The float is displaced 5 cm above the equilibrium position
before it falls from rest, the time step size in this test is selected with a small value of
0.001 s to produce a high sensitivity for buoy oscillations [22]; the float is of 1 m in
diameter, 0.5 m immersed in height, and 392.7 kg in total mass (MO-1). The external
force on the buoy was eliminated, and the PTO damping coefficient is set to zero in
this test. Figure 3 shows the change of the vertical displacement of the buoy against
time, in the first 10 s of motion, in each case. The damping coefficient is plotted in
each case to monitor the independence of cell size use; Fig. 4.

The zones near the floating body and the free water surface have meshed with
fine cells, and the size of elements increased away from the floating body and near
the tank walls, top, and bottom planes, this procedure is followed to reduce the
total number of elements and therefore reduce the time of calculation. The accepted
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Fig. 3 The normalized vertical displacement of the float at �z = 0.05 cm and time step size �t =
0.001 s (MO-1)

Fig. 4 Damping coefficient variation in each case for grid independence test (MO-1)

minimum element size near the movable surfaces, free water surface, and float, is
0.05 m which is equivalent to 1/20 of the float diameter with a total number of
elements is 2 M, average skewness is 0.2, the mesh quality was tested to be larger
than 0.75 around the contact surfaces. Figure 5 shows the grid distribution around
the float.

3.3 Time Step Size Test

Determining the appropriate time step size value for all the different modeling
processes contributes greatly to obtaining more accurate results, as it is a very influ-
ential factor in the time of calculations. The values for time step size vary from one
simulator system to another, Davidson et al. [22] developed a new methodology to
study the hydrodynamic models in the simulation of WECs. The results of this new
methodology were validated using boundary-element methods (BEMs) in the linear
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Fig. 5 3D Mesh for the
model

case only (heave motion). The recommended value of time step size by Josh in 2015
is 0.001 s when using OpenFOAM software, this time step is selected to produce a
maximum courant number of 0.3 which keeps an acceptable accuracy with a high-
speed calculation [22]. A numerical case study in similar conditions was constructed
using CFX software to detect the difference in numerical methods to predict the
small oscillations of the floating body. A cylindrical buoy with a total height of 1 m
(0.5 m immersed height) and a diameter of 1 m was used in a free-fall case (MO-2).
The initial displacement in this test is 10 cm above the free surface, the total time is
12 s. The transient scheme used in this model is 2nd order backward Euler, and the
solution method is second-order for both continuity and momentum equations. The
PTO damping is eliminated in this test, five cases were generated with different time
step sizes starting with 0.01 s which produces the minimum damping coefficient, a
small deviation in dynamic response between the last two cases 0.002 s and 0.001 s.
Figure 6 shows the normalized vertical displacement of the float in free-fall test by
CFX compared with the published data by OpenFOAM.

The damping coefficient in each case and the independence of time step size
are presented in Table 1. The recommended time step size in wave modeling using
numerical wave tanks is T/60 according to [17]. In this research, the time step size is
recommended to be T/925 in the numerical modeling of wave structure interaction
compared with T/1840 as recommended in OpenFOAM.

4 Validation of the Numerical Results

The previous study shows that there is a noticeable difference in the results of
both numerical methods, the numerical results in this research are validated against
published experimental data by Guo et al. [19] in the same conditions to check the
ability of the mathematical model to predict the hydrodynamics and the applied
forces of the float. The cylinder used in this test is 0.3 m in diameter, 0.56 m in total
height, and the mass is 19.79 kg typically as used in the experiments (MO-3). The
numerical results in both models CFX and RKFOM are compared with the experi-
mental results in the free-fall test with an initial displacement of 3 cm; Fig. 7. The
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Fig. 6 The dynamic response of the float at different time step sizes by CFX compared with
published data (�z = 10 cm -MO-2)

Table 1 Independence of time step size using CFX in free-fall test

Model Case Normalized
Timestep

Periodic time T
[s]

Damping
coefficient Cd
[N.s/m]

Error

CFX-Cylinder
Free Fall test
Mass = 392 kg
�z = 10 cm
(MO-2)

�t = 0.01 s T/188 1.88 78.4 25%

�t = 0.005 s T/370 1.85 98 14.8%

�t = 0.003 s T/615 1.85 112.5 4.8%

�t = 0.002 s T/925 1.85 117.9 0.93%

�t = 0.001 s T/1840 1.84 119 –

damping effects of the power take-off mechanism were added to the CFD model by
applying variable vertical force on the solid body as a function of its velocity and
opposite to the direction of motion, the PTO damping coefficient used is 20 kgs^-1
typically as experiments. The governing differential Eq. (7) is solved by MATLAB
software using the numerical method RKFOM, the external force term is ignored
in this experiment, and the added mass coefficient term could be neglected in case
of lower diameter and small displacements compared to the immersed height of the
float (�z*D/ho ≤ 0.05) [15], the term V(s) is zero because the cylinder bottom is
flat. Figure 7 shows the agreement of numerical results compared to the published
experimental data at time step sizes 0.002 s.
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Fig. 7 Normalized vertical displacement for the validation of the numerical results against
experimental data (MO-3)

5 Hydrodynamic Analysis

The presented numerical method in this research represents an effective tool that
contributes to understanding the factors affecting the dynamic response of the float.
A hydrodynamic analysis for both models is performed to understand the effect
of each parameter on the dynamic behavior of the floating body. The CFD model,
using CFX in the validated case with PTO damping coefficient 20 kgs^-1 and initial
displacement 3 cm, and the analytical one using numerical model RKFOM in the
same conditions were used to analyze the motion characteristics. Figure 8 shows
the time domain comparison of both models to predict the motion kinematics, the
extreme lowest position of the float is obtained at the point of maximum positive
acceleration and zero velocity at 0.62 s.

The hydrodynamic forces are shown in Fig. 9with other effects in the time domain
for each model. The hydrostatic force at the lowest position is maximum, while the
viscous and PTO damping is minimum, this leads to maximizing the total forces on
the float and increasing its momentum to begin moving up. The highest position is
coincidental with the minimum value of the acceleration and zero velocity, this is
understood by monitoring the reduction in hydrostatic forces at the same instant at
1.24 s. The vertical acceleration in RKFOM is slightly declining from its value in
the CFX model, and this is due to the elimination of the added mass coefficient [26].
The equilibrium position is reached after 5 s. The perturbed waves around the float
in the CFD model are presented in Fig. 10, at the lowest position after 0.62 s and the
highest position after 1.24 s.

The CFX approach provides a wide range of useful variables in this study, the
pressure distribution on the floating body is variable based on the float position,
Fig. 11 shows the change of this distribution in two cases.
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Fig. 8 Time-domain comparison for the kinematic variables of CFD and numerical model at (�z
= 3 cm–MO-3)

The presented numerical method is used to investigate the added mass term in
another case study with different parameters, in which the effect of the added mass
coefficient cannot be neglected. A free-fall case is applied on a buoy with a 1 m
diameter and 0.5 m immersed height, the total mass of the buoy is 392.7 kg (MO-
4). The float was initially located at 5 cm above SWL, this value is rather large
compared to the float diameter and immersed height (�z*D/ho ≥ 0.05). The CFX
model is initially generated with the same boundary conditions as the free-fall test,
the numerical model is used to investigate the hydrodynamic forces and the corre-
sponding value of the damping coefficient and added mass, and the PTO damping
coefficient is eliminated in this test to visualize the float dynamics for more time and
obtain more accurate results. The time domain of the rigid body kinematics through
12 s is presented in Fig. 12. The agreement between the two models is observed in
the first 4 s of motion (2 cycles), and the disparity between the two models begins
in the oscillation frequency, despite the convergence in the damping coefficient at
Cd = 154N.s/m as a result of viscous damping and the absence of a mechanical
PTO system. The float reaches its maximum velocity at the equilibrium position, at
this instant, the acceleration is zero.
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Fig. 9 Time-domain comparison for the hydrodynamic forces in CFD and numerical model at (�z
= 3 cm–MO-3)

Fig. 10 3D view of the perturbed waves around the float a lowest position at t = 0.62 s, b highest
position at t = 1.24 s–(MO-3)
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Fig. 11 The pressure distribution on the float surface a lowest position at t = 0.62 s, b highest
position at t = 1.24 s–(MO-3)

Fig. 12 Time-domain comparison for the kinematic variables of CFD and numerical model at (�z
= 5 cm–MO-4)
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The calculation of added mass can be approximated both experimentally and
numerically, Zhu and Lim [15] used a separated heave plate added to a circular
cylindrical float to calculate the addedmass coefficient experimentally. In the present
research, the added mass coefficientma is calculated using the CFD-CFXmodel and
numerically by RKFOM; Fig. 13 shows the hydrodynamic forces for model MO-4.
The added mass term is investigated first in the CFX model in two different ways,
first method is to integrate the value of shear stresses on the float surface to get the
average viscous damping force F⇀

s(ż), the calculated pressure variation on the float
bottom determined the hydrostatic forces with respect to time F⇀

h(z, s), then the
added mass term can be integrated by Eq. 6, F⇀

pto(ż) the PTO damping term and
F⇀

e(t) are zero, ˙v⇀ is the calculated vertical acceleration.
The second method is to estimate the valuema to match the radiation and diffrac-

tion forces on the float as the sum of gravitational force F⇀
g and hydrostatic force

F⇀
s(ż), the calculated value of the added mass coefficient isma = 244kg, the added

mass term is investigated using F⇀
a(z̈) = maz̈. The results of the two methods are

presented in Fig. 13. The differential equations were solved numerically (RKFOM)
to validate the CFD results, the analytical solution is shown in Fig. 13, and the

Fig. 13 Time-domain comparison for the hydrodynamic forces in CFD and numerical model at
(�z = 5 cm–MO-4)
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simplified spring-damper system (Eq. 7) is solved based on the present boundary
conditions, the effective mass M = 636.7 kg, damping coefficient Cd = 154N.s/m,
the spring constant K = 7697N/m, the excitation force is zero. The time step size
is 0.002 s, and boundary conditions żo = 0, żo = 0.05m.

6 Fluid–Structure Interaction

The numerical method in this research provides an effective tool that can be applied
to understand the dynamic characteristics in different conditions under the influence
of both regular and irregular waves. A case study including regular wave generation
is considered to validate the presented numerical model, and to check its ability
in different cases. The CFX model is subjected to the second type of boundary
conditions presented in the fourth section of this research, NB with a 1/5 sloped
surface is activated to reduce wave reflections, and the inlet plane is a movable
surface that rotates about a fixed hinge placed at ho = 1.5m below SWL, the model
height is ha = 1.5m for air region, and 3 m for water. Equations (8) and (9) define
the flap position based on the time and vertical position z. The maximum stroke
length is 0.15 m to produce a regular wave with amplitude (H= 0.11 m) as discussed
in the author’s last paper [17]. The wavelength in this experiment is 3 m, and the
fluid model is considered a shallow water condition. A floating body with a mass
of 392.7 kg (MO-5) is placed in an equilibrium position (żo = 0,�z = 0) so that
the center of mass of the float is coincide with SWL (Z = 0). Figure 14 presents a
comparison between CFX results and the RKFOM model, the total time is 13.5 s
with 0.002 s time step size, the recommendations of grid generation being taken into
consideration, the solid body is free to slide only in heavemotion, no PTO damping is
used, an excitation force is added to detect the change in wave amplitude, this force is
equivalent to a water column with height equal to the wave amplitude A f = 0.11m.
The generated wave by CFX is compared with the theoretical WMT in Fig. 14, the
analytical model RKFOM succeeded to predict the vertical position of the float for
the first 6 s. The velocity and acceleration in the z-direction are presented for both
models.

The establishment of the CFX model with a 3D domain and three phases requires
great effort and more time, and accordingly, we obtain a comprehensive vision for
all phases at any time. Three-dimensional views are presented for the interaction
between the generated wave and the float, Fig. 15, at different instants. In the first
lower position of the float (t= 3 s), at which the velocity is zero, perturbed waves are
observed around the floating body; Fig. 17. The numerical beach reduces the wave
reflections from the outlet plane as shown, after 12.5 s the float reaches its highest
position, 3D snapshots are presented showing the change in float position depending
on the incident wave interaction. Figure 17 shows the pressure distribution inside the
NWT at 13.5 s, the pressure is increasing from the top according to the water column
height (Fig. 17).
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Fig. 14 Time-domain comparison for the kinematic variables of CFD and numerical model at
(Regular wave–MO-5)

7 Bottom Shape Optimization

Two additional models were generated in this section with different designs, the
flat- bottom shape of the cylindrical float is replaced by another conical shape and
spherical shape as shown in Fig. 18. The two models have the same total mass m
= 392.7 kg as the cylindrical float in the model (MO-4). The conical bottom shape
model (CB: MO-6) has a diameter of 1 m, the height of the conical head is 0.5 m
(90° taper angle, 45° base angle), and the immersed cylinder part height is 0.333 m
to keep the same mass as the model (MO-4). The spherical bottom shape model (SB:
MO-7) has a diameter of 1 m, the height of the hemispherical head is 0.5 m, and
the immersed cylinder part height is 0.167 m to keep the same mass as the model
(MO-4). Determining the optimal design required a full vision of the kinematics of
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Fig. 15 3D snapshot for the generated regular wave against the float (MO–5) at a t = 3 s, b lowest
position at t = 6.4 s, c highest position at t = 12.5 s

Fig. 16 3D snapshot for the perturbed wave around the float (MO–5) at a t= 3 s, b lowest position
at t = 6.4 s, c highest position at t = 12.5 s
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Fig. 17 Pressure gradient inside NWT at t = 13.5 s (MO–5)

Fig. 18 The three models of floating body PAWEC with different bottom shapes: a Flat FB, b
Conical CB, and c Spherical SB

each design. Figure 19 shows the comparison between the modified designs and the
original cylindrical design in the time domain kinematics: position, velocity, and
acceleration. It is shown that the modified designs started with better performance
than the original cylindrical design in the first 6 s, after that time, a dispersion occurred
in the SB design due to the increase in the damping coefficient leading to a slowdown
of the float. The conical design produces a dynamic response similar to the original
design, more results are required to get a clearer vision of the behavior of each design.

The first tough positions of the three designs occur simultaneously after 0.9 s, and
the peak position after 1.74 s is investigated for each design. The vertical displace-
ment between the two positions is defined as �S. Table 2 shows the hydrodynamic
specifications for each design. The volume of the curved portion below the float V (S)

is a useful input source in the analytical solution, the second column represents the
area of the contact surface with the fluid at the equilibrium position. The damping
coefficient and spring constant in each case were investigated in each model from
CFX data. The conical design has the highest surface area connected to the fluid;
this explains the relative improvement in the conical design. The maximum displace-
ment during the first 2 s is presented in the fourth column in Table 2, a slight relative
advantage of the hemispherical design. After the first 6 s, the conical and cylindrical
designs have the same response. The damping coefficient in both designs is rather
similar to 154 and 156 kg/s, and it is 180 kg/s for the hemispherical design. The
spring constant depends on the periodic time of the oscillation and total mass of
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Fig. 19 Time-domain comparison for the kinematic variables in the free-fall test for the two
modified models compared with model MO-4 (�z = 5 cm–�t = 0.002 s)

the system, which tends to increase in the spring constant for the modified designs
because of the apparent lack of periodic time.

Table 2 Hydrodynamic specification of each model in the free-fall test (z = 0.05 m)

Model code Surface area
[m2]

V(S) [m3] �S max.
disp. [m]
before 2 s

�S max.
disp. [m]
after 6 s

Damping
Coefficient
[kg/s]

Spring
constant
[N/m]

FB (MO-4) 1.5708 0 0.0876 0.0439 154 7697

CB (MO-6) 2.1562 0.1309 0.0898 0.0429 156 8906

SB (MO-7) 2.0945 0.2618 0.09 0.0399 180 9194
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8 Conclusion

The numerical method in this research provides an effective tool that can be applied
to understand the dynamic characteristics of a floating body in different conditions.
Two models were investigated for this purpose, the CFD model using the CFX
approach, and the numerical model solved analytically. The 3D form of the differ-
ential equations governing the dynamic behavior of the rigid body was analyzed
and solved by both methods. The differential equations were simplified to a spring-
damper system and solved numerically by RKFOM. The incompressible form of
(URANS) is presented for the solution of the fluid model (air and water) in addition
to two differential equations for the solution of VF by using the VOF method. The
minimum cell sizewas tested for the grid independence; 0.05m is recommended near
the float and water surface, and the time step size independence test was performed
for the minimum value equivalent to T/925 for the periodic time before the stability
of the solution. Two case studies were generated for the validation of the numerical
model. The numerical results agreed with the published experimental data in both
models used. A hydrodynamic analysis was performed for each model to explain the
effect of different forces on the solid body. The developed method in this research
provided an effective tool to define the added mass coefficient in three ways, the
dependency of the float dynamics was displayed in only heave motion. The devel-
oped model is used to investigate the hydrodynamics of the float under the action of
the incident regular wave by using a flap-type wavemaker. Two additional models
were generated: conical and hemispherical bottom shapes for the float. Valuable
results are presented for design improvement, the conical design has a better perfor-
mance based on the damping coefficient and hydrodynamic loads. The proposed
numerical and analytical methods proved efficient and accurate in the results, and
a practical study was presented to improve the performance of PAWEC. This paper
introduced a numerical method to predict the hydrodynamic effects in minor wave
amplitudes and body displacement, it is recommended in future work to evaluate the
model under significant displacement in the same conditions.
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Using Ridge Regression to Estimate
Factors Affecting the Number of Births.
A Comparative Study

Mowafaq Muhammed Al-Kassab and Salisu Ibrahim

Abstract Ridge regression method is a biased regression analysis method that is
used when the data suffer from multicollinearity problem between its explanatory
variables, as the use of the least-squares method in analyzing such data will lead to
incorrect estimates of the parameters of the regression coefficients and thus lead to
incorrect predictions. For this reason, many methods for obtaining the ridge param-
eters in ridge regression were used previously in dealing with the problem of multi-
collinearity data, to overcome this problem, we used our formula in previous research
named, the performance of the new ridge regression parameter and we applied it to a
real data concerning factors affecting the number of births on a group of women who
visited the health centers in Babel Governorate, as it was found that these data suffer
from collinearity (multicollinearity problem). A comparison was made between this
method and the other methods used previously, and results showed the effectiveness
of this method as it gave better results than the methods used previously.

Keywords Multiple regression · Collinearity · Biased ridge regression · Unbiased
ridge regression · La Soo regression

1 Introduction

Many researchers in the field of regression analysis have usedmanymethods to solve
the problem of multicollinearity, whereas regression analysis using the least-squares
method does not succeed in finding correct results when performing a regression
analysis of a data set that contains a multiplicity of the linear relationship between
its explanatory variables. Among the methods that have been used in this field are
the usual ridge regression method, which is one of the biased methods, as well as
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the unbiased ridge regression method, and the Lasso method, in addition to other
methods suggested by many researchers: [1–27], among others. And recently, the
authors in [27–29] presented a new method for the ridge regression suggesting that
the ridge parameter k in the matrix XT X has three cases, the first (constant), the
second (vector), and the third (matrix). We applied this method to data presented
from a previous study [30] in addition to a comparison with other methods. These
lead to the application of serious health conditions that make one vulnerable to Covid
19, see [31].

In this paper, we considered the new ridge regression to estimate factors affecting
the number of births of a group of women who visited the health centers in
Babel Governorate. As it was found that these data suffer from collinearity (multi-
collinearity problem). A comparison was made between this method and the other
methods used previously, and results showed the effectiveness of this method as it
gave better results than the methods used previously. This paper is scheduled as:
Sect. 2 provides the multicollinearity and regression analysis. The biased estimation
methods and their applications are presented in Sects. 3 and 4, respectively. The
conclusion follows in Sect. 5.

2 Multicollinearity and Regression Analysis

The problem of multicollinearity in the explanatory variables is one of the most
important problems that researchers face when they apply regression analysis to a
set of data for the purpose of building a good model that has the best characteristics
such as estimating the parameters of regression, prediction, etc., as it appears among
a number of explanatory variables. Linear relationships affect reaching incorrect
results, and therefore it was necessary for researchers to find other ways to solve
this problem, and among these methods is the ridge regression method developed
by authors in [32]. The aim of this research is to reach the best regression analysis
by detecting the problem of collinearity, estimating the best values of the regression
function parameters, and arriving at the best regression model that leads to the best
predictions.

2.1 Multicollinearity Problem

As we explained previously, what is the problem of multicollinearity, we are now
exploring this problem as there are several ways to detect it, [33], the Conditional
Index, Variance Inflation Factor (VIF) [34], in addition to other more methods to
detect this problem. We will use the VIF method in our study, where it is used
as a criterion to detect multicollinearity and determine the explanatory variable
responsible for it.
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The Variance Inflation Factors used by [35], are mathematically expressed in a
mathematical form as follows:

V I F j = 1

1 − R2
i j

= 1

Tolerance
, j = 123, . . . , p, (1)

where p represents the number of explanatory variables, and Rj
2 is the coefficient of

determination of the regression model of the independent variable xj over the rest of
the explanatory variables, and 0 ≤ R2

j ≤ 1.
Authors in [34] suggested that if: VIF j ≥ 4, that means there may be a collinearity

problem between the explanatory variables, and we notice through our studies that
this number may change according to the type of data. In some types of economic
data, multicollinearity appears when VIF j ≥ 2.

2.2 Methods of Dealing with the Problem of Multicollinearity

Many methods are presented in order to solve the problem of multicollinearity, and
there are several methods to remove multicollinearity, and the authors in [27, 28]
studied the application of latent roots regression to multicollinear data. The most
important methods are:

1. Adding new data (increasing the sample size) to the original data, increasing the
number of observations reducing the standard error, and reducing the effect of
multicollinearity on the estimation of the parameters.

2. Excluding one of the variables that have a high correlation, and a problem arises
if the excluded variable is important in explaining the change in the dependent
variable, which leads in some cases to a process of bias in the estimates [36].

3. Using biased estimation methods such as Latent Roots Regression, Principal
Components Regression, and Ridge Regression.

3 Biased Estimation Methods

When it comes to the application perspective, the authors in [37–41] make use of
commutativity to study the relation and the sensitivity between systems, the idea can
be extended to investigate the commutativity and sensitivity between the independent
variables.
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3.1 Latent Roots Regression

This method was proposed and developed by authors in [42] and others, and it
includes the use of Eigenvalues and Eigenvectors in estimating the parameters of the
regression model [43].

3.2 Principal Components Regression

It is proposed by authors in [44, 45] in 1957, and this method aims to convert
correlated variables into non-correlated variables.

3.3 Ridge Regression

It was proposed by authors in [32] in (1970), and it involves adding a constant
to the diagonal elements of the matrix X’ X before taking the inverse of it. The
ridge regression method is one of the most popular methods so the ridge regression
coefficients will be:

β
∧

R = (X
′
X + k IP)

−1
X

′
Y, (2)

where k is known as the ridge parameter, this method provides a mean squares
error less than the mean squares error obtained from the least-squares method. Many
researchers have proposed new proposals and methods.

3.4 Lasso Regression Method

This method was proposed in 1982 in the geophysical literature, and then it was
rediscovered and formulated independently by authors in [46] in (1996). The idea
of this method is to minimize the total sum of squares of the random errors for the
highest limit of the sum of the absolute values of the coefficients of the regression
model so that it should be less than a fixed value, and this is a constraint (which is
the upper limit). The method is based on solving the following equation:

min

{
1

N

N∑

i=1

(
yi − β0 − xTi β

)2
}

Subject to
p∑

i=1

∣
∣β j

∣
∣ ≤ t, (3)

where t: represents the parameter that specifies the constraint amount and X is the
matrix of the explanatory variables.
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3.5 Bayesian Ridge Regression Models

In this method, the parameters of the regression model are estimated in the same way
as the biased ridge regression with a difference, where the author entered the prior
Information in the biased regression formula, so that the formula for the Bayesian
ridge regression is [47] as follows:

β
∧

R = (X
′
X + k IP)

−1
(X

′
Y + k J ), (4)

where, J: represents the initial information vector.

3.6 Al-Kassab and Al-Awjar Method

This is a newmethod suggested by authors in [48], and it depends on the Eigenvalues
and the Eigenvectors of the matrix X’X for finding the ridge parameter k when it is
constant or matrix. For the case k constant, the vector of the estimated regression
coefficients are:

β
∧∗
R = (XT X + k

∧

R IP)
−1

XTY, (5)

where

k
∧

R = 1
∑p

i=1 λ2
i

[λT XT Y − λT
(
XT X)λ

]
.

And λ is the vector of the Eigenvalues, For the Case k (K ∗) is a diagonal matrix
whose elements are either the diagonal elements or the vector–matrix of the matrix
XT X, the estimated regression coefficient

β
∧∗
R = (XT X + K ∗)−1

XTY. (6)

Based on the mean squares error criterion and on comparing this method with
many other methods that were used by several researchers [49] as well as through
simulation technique using the Monte Carlo method [50] the researchers concluded
that this method for the case K ∗ diagonal matrix is the best.

4 Application

This study included data fromBabil Governorate Health Department records of visits
by women to health centers, as well as from the statistical forms for mother and
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child care in the Public Health Department of Primary Health Care, where a simple
random sample consisting of 100 women was taken to study the factors affecting
the number of children born, where this was considered as the response variable
(dependent Y), while the other explanatory (independent) variables are: the woman’s
age (X1), the age at marriage (X2), the woman’s educational attainment (X3), the
husband’s academic achievement (X4), the woman’s weight (X5). Women’s use of
contraceptives (X6), smoking women (X7), the husband’s age (X8), the husband’s
occupation (X9), the period ofmarriage (X10), the number of childrenwho died (X11),
the number of hours of sports practice (X12), injury with thyroid diseases (X13), the
number of hours a woman sleeps per day (X14), taking medicines by the woman
(X15), the duration of breastfeeding (X16), and the profession of the mother (X17).

Table 1 illustrates the descriptive analysis of all variables used in this study. It can
be seen that most variables provide similar results of measures of central tendency
(mean and median values). It can be said that there is no peculiar observation that
might affect these measures. This result is supported by the standard error of the
mean. The presence of multicollinearity is investigated using correlation and it is
presented in Table 2. *Means that there is a high correlation (dependency) between
these pair of variables. This collinearity between the explanatory variables makes
the least-squares method of estimation give unreal estimates. Thus, the parameter
estimationmethods that encounter themulticollinearity problemneed to be employed
to achieve the aim of the study.

Table 1 shows the descriptive analysis of the study data

Variable N Mean Median S.E. of the mean

X1 100 31.030 30.000 0.838

X2 100 18.640 18.500 0.321

X3 100 4.440 4.000 0.206

X4 100 5.080 5.000 0.170

X5 100 68.520 67.000 0.894

X6 100 1.1200 1.0000 0.0327

X7 100 1.3800 1.0000 0.0488

X8 100 34.170 33.500 0.829

X9 100 1.4900 1.0000 0.0594

X10 100 12.390 9.500 0.883

X11 100 0.3400 0.0000 0.0655

X12 100 3.850 3.000 0.291

X13 100 1.1300 1.0000 0.0338

X14 100 8.0900 8.0000 0.0740

X15 100 1.7000 2.0000 0.0461

X16 100 23.210 24.000 0.276

X17 100 1.1700 1.0000 0.0428
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Table 2 shows the correlation coefficients matrix between the explanatory variables of the study
data

X1 X2 X3 X4 X5 X6 X7 X8

X2 0.047

0.640

X3 −0.383 0.329

0.000a 0.001a

X4 −0.271 0.250 0.706

0.006a 0.012a 0.000a

X5 0.638 0.024 −0.112 −0.003

0.000a 0.814 0.268 0.978

X6 −0.060 −0.161 0.026 −0.163 0.207

0.551 0.110 0.799 0.105 0.039a

X7 0.084 0.211 0.033 0.182 0.174 0.345

0.408 0.035a 0.745 0.069 0.083 0.000a

X8 0.918 0.060 −0.226 −0.184 0.671 −0.064 −0.016

0.000a 0.556 0.024a 0.067 0.000a 0.530 0.873

X9 −0.094 0.189 0.267 0.421 0.035 −0.098 −0.022 −0.001

0.351 0.060 0.007a 0.000a 0.728 0.333 0.831 0.995

X10 0.932 −0.319 −0.483 −0.348 0.597 0.001 0.003 0.850

0.000a 0.001a 0.000a 0.000a 0.000a 0.991 0.978 0.000a

X11 0.451 0.083 −0.037 0.039 0.354 −0.004 0.129 0.384

0.000a 0.413 0.714 0.701 0.000a 0.970 0.201 0.000a

X12 −0.198 0.130 −0.002 0.168 −0.008 −0.045 −0.052 −0.199

0.049a 0.196 0.981 0.095 0.935 0.659 0.608 0.048a

X13 −0.033 0.155 −0.010 −0.177 0.208 0.498 0.432 −0.058

0.741 0.123 0.918 0.079 0.038a 0.000a 0.000a 0.563

X14 0.083 0.133 −0.271 −0.159 −0.128 −0.338 −0.040 0.067

0.414 0.188 0.006a 0.115 0.205 0.001a 0.695 0.510

X15 −0.317 −0.074 0.087 −0.047 −0.499 −0.497 −0.566 −0.291

0.001a 0.466 0.388 0.646 0.000a 0.000a 0.000a 0.003a

X16 −0.047 0.090 0.042 0.009 −0.114 −0.320 0.030 −0.081

0.642 0.375 0.677 0.927 0.261 0.001a 0.766 0.425

X17 −0.066 0.052 0.510 0.426 0.156 0.214 0.026 0.166

0.513 0.605 0.000a 0.000a 0.120 0.032a 0.796 0.100

X9 X10 X11 X12 X13 X14 X15 X16

X10 −0.158

0.117

(continued)
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Table 2 (continued)

X1 X2 X3 X4 X5 X6 X7 X8

X11 −0.147 0.398

0.145 0.000a

X12 0.084 −0.235 −0.360

0.407 0.019a 0.000a

X13 −0.019 −0.088 0.072 0.041

0.854 0.383 0.476 0.689

X14 −0.055 0.030 −0.231 0.161 −0.128

0.584 0.766 0.021a 0.109 0.204

X15 −0.048 −0.274 −0.328 0.102 −0.331 0.139

0.636 0.006a 0.001a 0.314 0.001a 0.167

X16 0.128 −0.077 −0.118 0.207 −0.062 0.204 −0.037

0.206 0.445 0.241 0.039a 0.539 0.042a 0.712

X17 0.344 −0.082 −0.208 0.094 −0.085 −0.049 −0.149 −0.005

0.000a 0.418 0.037a 0.354 0.403 0.629 0.140 0.962

aMeans that there is a high correlation (collinearity) between the explanatory variables, P-Value <
0.05

We see from Table 3, according to the mean squares criterion, that Al-kassab
and Al-Awjar method for the case k vector is the best and the predicted regression
model is:

y = 1.3689 x1 − 0.4294 x2 − 0.164 x5 − 0.2208 x7 − 0.1283 x9 − 0.2715 x10
+ 0.264 x11 + 0.3177 x13 + 0.1635 x15 + 0.14301 x16 + 0.29326 x17

5 Conclusion

This paper investigates the estimated factors affecting the number of births using
ridge regression. Many methods for obtaining the ridge parameters in ridge regres-
sion were used previously in dealing with the problem of multicollinearity data.
In this work, we consider the new ridge regression parameter and apply it to real
data concerning factors that affect the number of births of a group of women who
visited the health centers in Babel Governorate. This was because these data suffer
from collinearity (multicollinearity problem). A comparison was made between this
method and the other methods used previously, and the results showed the effec-
tiveness of this method as it gave better results than the methods used previously.
Furthermore, more advanced research techniques can be used to detect collinearity
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Table 3 Shows the estimated values of the regression coefficients and the mean square errors for
the five methods

Method of
estimation

Ridge
unbiased

Ridge
biased K
= 0.09

Lasso O.L.S Al-kassab and Al-Awjar for k

Constant Vector Matrix

X1 −0.2456a −0.1978a −0.247a 0.914 0.1918a 1.3689a 0.1671

X2 −0.0854a −0.084a −0.088a −0.333 −0.146 −0.4294a −0.03276

X3 −0.135a 0.105a −0.139a −0.0855 −0.058 −0.06543 −0.09519

X4 0.015 −0.033 0 −0.032 −0.065 −0.04432 −0.43353

X5 −0.0751a −0.061a −0.077a −0.167a −0.043 −0.164a 1.95601

X6 −2.719a −2.575a −2.729a −0.312a −0.162a −0.33748 −0.42727

X7 0.0034 1.1114a 0 −0.19a −0.104a −0.2208a 0.01158

X8 −0.1134a −0.081a 0.121a −0.258 0.1151a −0.45899 −1.29585

X9 −0.0559 −0.727 0 −0.128 −0.079a −0.1283a −0.09989

X10 −0.1823a 0.2065a −0.187a -a 0.2353a −0.2715a 0.31395

X11 0.9935a 1.2415a 0.939* 0.279* 0.1884a 0.264a 0.25106

X12 0.0336 −0.079 0 −0.0915 −0.078a −0.0976 −0.46485

X13 −2.089a −2.574a −2.083* 0.306* 0.0873a 0.3177a −0.10916

X14 −0.194a −0.179a −0.189* −0.0475 −0.012 −0.04971 0.11606

X15 −1.2245* 1.1746a −1.222* 0.185* 0.1295a 0.1635a 0.73307

X16 0.0008 0.1687a 0 0.157* 0.12a 0.14301a 0.26925

X17 0.0001 1.6545a 0 0.251* 0.0247 0.29326a 0.32144

MSE 1.7424 1.8088 1.5923 0.2063 0.0029 0.0022 0.00223

R2 0.838 0.852 0.82 0.82707 0.82706 0.81743 0.8091

aMeans that these regression coefficients are significant from zero, P-Value < 0.05.

[51, 52]. The data can be found in [53]. The results are validated withMinitab version
19.
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Discrete Maximum Principle and
Positivity Certificates for the Bernstein
Dual Petrov–Galerkin Method

Tareq Hamadneh, Jochen Merker, and Gregor Schuldt

Abstract In this article, we discuss the validity of the discrete maximum principle
for the spectral method called Bernstein-Dual-Petrov-Galerkin method [4] in case
of a uniformly elliptic second-order linear partial differential equation (PDE) in
divergence form and corresponding Dirichlet boundary values problems on simply
connected domains, which have no holes and are therefore diffeomorphic to a cube.

Keywords Discrete maximum principle · Positivity certificates · Bernstein dual
Petrov–Galerkin method · Numerical analysis

1 Introduction

Consider Poisson’s equation for homogeneous Dirichlet boundary conditions

−�u = f in �, u = 0 on ∂� (1)

on a bounded domain� ⊂ R
N with boundary ∂� piecewise sufficiently smooth. By

the weak maximum principle, f ≥ 0 implies u ≥ 0 in � for the solution u of (1).
[1] proved an analogous discrete maximum principle (DMP) for a finite difference
(FD) discretization of (1), and [2] presented a DMP suitable for both finite element
(FE) and FD discretizations by providing a practically convenient set of sufficient
conditions on matrix blocks implying validity of a DMP. While these conditions
imply for a piecewise linear triangular FE discretization of (1) that the inverse of
the stiffness matrix is positive under the interior edge condition (the sum of the two
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angles opposite to every interior edge is ≤ π), the DMP may fail for certain meshes
[3].

In this article, we discuss the validity of the discrete maximum principle for the
spectral method called Bernstein-Dual-Petrov-Galerkin method [4] in case of a uni-
formly elliptic second-order linear partial differential equation (PDE) in divergence
form and corresponding Dirichlet boundary values problems on simply connected
domains � ⊂ R

N , which have no holes and are therefore diffeomorphic to a cube.
This numerical method combines two advantages, the exponential fast convergence
of a spectral method in the interior of � for analytic data, and the good approxima-
tion properties of Bernstein polynomials [5]. Particularly, the latter will allow us to
certify the positivity of numerical solutions. ForHelmholtz equation subject to homo-
geneous Neumann boundary conditions and Bernstein Bubnov-Galerkinmethod, see
[6].

1.1 Outline

InSect. 2,weprovide basic information about linear elliptic PDEs in divergence form;
about positivity, the maximum principle and the comparison principle for classical
and weak solutions; about Bernstein polynomials and the induced dual polynomials
resp. themodal basis functions; and about different certificates of non-negativity resp.
positivity. In Sect. 3, the Bernstein dual Petrov–Galerkin method is formulated for
general linear elliptic PDEs in divergence form on a domain diffeomorphic to a cube.
In the main Sect. 4 of this paper, we discuss algebraic and functional discrete max-
imum principles for this method as well as Bernstein certificates of non-negativity
resp. positivity for the approximate solution in a way, which easily generalizes to
dual Petrov–Galerkin methods with arbitrary non-negative basis functions. Hereby,
we provide numerical examples and a summary that concludes the article.

2 Preliminaries

2.1 Linear Elliptic PDEs

A linear second order differential operator L = ∑
i j ai j∂xi ∂x j + ∑

i bi∂xi + c with
possibly spatially varying measurable coefficients ai j (w.l.o.g. symmetric), bi , c on
a bounded domain � ⊂ R

N is said to be strictly elliptic if there exists a constant
λ > 0, such that

∑

i j

ai j (x)ξiξ j ≥ λ|ξ|2 for every ξ ∈ R
N and a.e. x ∈ � . (2)
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In this article, we consider linear second-order differential operators

Lu := div(a∇u) − cu (3)

in divergence form, and require uniform ellipticity in the sense that the coefficients
a ∈ L∞(�,Sym(n × n)), c ∈ L∞(�,R) are at least bounded and the symmetric
matrices a = (ai j ) are positive definite with smallest eigenvalue bounded away from
zero on � by a constant λ > 0. Note that (3) can be rewritten under the additional
assumption a ∈ C1(�,Sym(n × n)) in the above general form, and uniform elliptic-
ity for bounded coefficients just means validity of (2). The corresponding Dirichlet
boundary value problem reads as

−Lu = − div(a∇u) + cu = f in �, u = g on ∂�, (4)

where we assume that the right-hand side (r.h.s., or inhomogeneity) satisfies at least
f ∈ (H 1

0 (�))∗ and the boundary data satisfies g ∈ H 1/2(∂�). In the case c ≥ 0, the
bilinear form

B(u, v) :=
∫

�

(a∇u) · ∇v + cuv dx (5)

induced by −L on the Sobolev space H 1
0 (�) is coercive in the sense that B(u, u) ≥

λ‖∇u‖22 and bounded due to |B(u, v)| ≤ (‖a‖∞ + C2‖c‖∞)‖∇u‖2‖∇v‖2 with the
constantC in Sobolev’s inequality ‖u‖2 ≤ C‖∇u‖2 for u ∈ H 1

0 (�). Hence, by Lax–
Milgram, (4) has a unique solution u ∈ H 1(�) satisfying the Dirichlet boundary
condition in the sense that u − g ∈ H 1

0 (�) for an extension of g from trace space
H 1/2(∂�) to H 1(�).

2.2 Positivity, Maximum and Comparison Principle

Definition 1 We say for a linear operator L on a space of functions on � that

– weak positivity holds if the validity of −Lu ≥ 0 in � and u ≥ 0 on ∂� implies
the non-negativity u ≥ 0 in � (resp. we say that strong positivity holds, if either
u ≡ 0 or u > 0 in � is implied),

– the weak maximum principle holds if the validity of Lu ≥ 0 in � implies that a
non-negative maximum is attained by u on the boundary ∂� (resp. we say that the
strong maximum principle holds, if either u is constant equal to its maximum or a
non-negative maximum is attained by u only on the boundary ∂� and not inside
�), or equivalently the weak minimum principle holds if the validity of −Lu ≥ 0
in � implies that a non-positive minimum is attained by u on the boundary ∂�

(resp. we say that the strong minimum principle holds, if either u is constant equal
to its minimum or a non-positive minimum is attained by u only on the boundary
∂� and not inside �),
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– the weak comparison principle holds if the validity of−Lui = fi in�, ui = gi on
∂�, i = 1, 2, implies for data f1 ≥ f2, g1 ≥ g2, that u1 ≥ u2 holds in � (resp. the
strong comparison principle holds, if either u1 ≡ u2 or u1 > u2 in � is implied).

To obtain the equivalence of minimum principle and maximum principle claimed
in this definition, just substitute −u for u. Note that Definition 1 is not fully precise,
because no function space for u is provided. If u ∈ C2(�) ∩ C(�) is assumed, then
Definition 1 is called positivity, maximum principle or comparison principle for
classical solutions. Positivity, maximum principle or comparison principle for weak
solutions u ∈ H 1(�) requires a more precise definition indicated at the end of this
subsection.

Theweakminimumprinciple (and thus also theweakmaximumprinciple) implies
weak positivity (for classical solutions): If −Lu ≥ 0 in � and u ≥ 0 on ∂�, then
u cannot be negative in �, because by the weak minimum principle, a non-positive
minimum would be attained on ∂� in contradiction to u ≥ 0 on ∂�, and hence
u ≥ 0 in �. Similarly, the strong minimum (or maximum) principle implies strong
positivity.

Denote by u = u+ − u− the decomposition of a function u into its positive part
u+ := max(u, 0) ≥ 0, and its negative part u− := max(−u, 0) ≥ 0. For the conve-
nience of the reader, we provide here proof of two well-known facts.

Lemma 1 Every uniformly elliptic linear second-order differential operator L in
divergence form (3) with c ≥ 0 satisfies weak positivity (of weak solutions).

Proof Assume that −Lu = f ≥ 0 in � and u ≥ 0 on ∂�. Test −Lu = f by u−
(note that u ≥ 0 on ∂� implies u− = 0 on ∂�, thus u− can act as a test function)
and use c ≥ 0 to obtain λ‖u−‖2L2 ≤ ∫

�
(a∇u−) · ∇u− + c |u−|2 dx = − ∫

�
(a∇u) ·

∇u− dx − ∫
�
c uu− dx = 〈Lu, u−〉 = −〈 f, u−〉 ≤ 0 (because f, u− ≥ 0), i.e. u− ≡

0 and thus u = u+ ≥ 0 in �.

Remark 1 Weak positivity still holds for slightly negative c, as long as c is larger
than the negative −λ1 of the smallest Dirichlet eigenvalue λ1 of −L .

Lemma 2 For the differential operator L given by (3) with c ≥ 0, weak positivity
implies the weak maximum principle (for classical solutions).

Proof Let L satisfy weak positivity, and let u be such that Lu ≥ 0 and the maximum
M of u on ∂� is non-negative, i.e. M ≥ 0. Then −L(M − u) ≥ Lu ≥ 0 in � (as
c ≥ 0) and M − u ≥ 0 on ∂�. Thus, by weak positivity of L we have M − u ≥ 0
in � and hence u ≤ M in �, i.e. a non-negative maximum of u is attained on the
boundary ∂�.
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Similarly, for L given by (3) with c ≥ 0, strong positivity implies the strong max-
imum principle (for classical solutions), and the weak (strong) comparison principle
is equivalent to weak (strong) positivity, just put u := u1 − u2.

Yet, to show the strong maximum principle (or strong positivity) for weak solu-
tions is more demanding. In its precise form, inequalities f ≥ 0 for functionals
f ∈ (H 1

0 (�))∗ have to be interpreted in the functional sense that 〈 f, v〉 ≥ 0 for every
v ∈ H 1

0 (�) with v ≥ 0 a.e. in �, and maximum / minimum have to be replaced by
essential supremum/infimum. The strong maximum principle then states for a uni-
formly elliptic linear second order differential operator L in divergence form (3) with
c ≥ 0 (or even c > −λ1) that Lu ≥ 0 and supB u = sup� u ≥ 0 for some closed ball
B with positive radius in � imply u ≡ sup� u a.e. constant in �. For a proof of
this strong maximum principle for weak solutions, the weak Harnack inequality can
be applied to show that if supB u = sup� u =: M ≥ 0 for some closed ball B with
positive radius r in�, then u ≡ M is constant on an even larger ball in�with radius
greater than r , and a covering argument then allows to conclude u ≡ M a.e. in �,
see, e.g. [7, Theorem 8.19].

2.3 Bernstein Polynomials and Their Duals

As we aim to discuss in this article the Bernstein dual Petrov–Galerkin method for
the approximation of a solution of (4), we need to discuss Bernstein polynomials and
their dual polynomials over the N -dimensional unit cube (0, 1)N . To formulate the
Bernstein expansion of a real polynomial N -variate function,we use component-wise
comparisons and arithmetic operations on multiindices i = (i1, . . . , in) ∈ N

N
0 . For

x ∈ R
N and a multiindex i ∈ N

N
0 , its monomial is xi := xi11 . . . xiNN . Using compact

notation D = (D1, . . . , DN ) ∈ N
N
0 , we put

∑D
i=0 := ∑D1

i1=0 . . .
∑DN

iN=0 and
(D
i

) :=
∏N

μ=1

(Dμ

iμ

)
. An N -variate polynomial function u is expressed in monomial form as

u(x) =
d∑

i=0

ai x
i , (6)

where d = (d1, . . . , dn), and can be represented in Bernstein form by

u(x) =
D∑

j=0

u(D)
j S(D)

j (x), x ∈ (0, 1)N . (7)

In (7), the j th Bernstein polynomial of degree D ≥ d is

S(D)
j (x) =

(
D

j

)

x j (1 − x)D− j , x ∈ (0, 1)N (8)
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and can be considered as tensor product of univariate Bernstein polynomials, i.e.
S(D)
j (x) = SD1

j1
(x1) · . . . · SDN

jN
(xN ). Moreover, the Bernstein coefficients u(D)

j of
degree D are given analytically in terms of the coefficients ai in (6) by the formula

u(D)
j =

j∑

i=0

( j
i

)

(D
i

)ai , 0 ≤ j ≤ D. (9)

Conversely, the following theorem from the literature provides a way of converting
a polynomial from the Bernstein form to the monomial form.

Theorem 1 ([8, Theorem 3.3]) Let u(x) be a polynomial in Bernstein form of any
degree D. Then its monomial form is

u(x) =
D∑

i=0

ai x
i ,

where

ai =
i∑

j=0

(−1)i− j

(
D

i

)(
i

j

)

u(D)
j , 0 ≤ i ≤ D.

We highlight two important properties of Bernstein polynomials, namely, the end-
point interpolation property

u(D)
j = u

(
j

D

)

,

for 0 ≤ j ≤ D with jk ∈ {0, Dk}, k = 1, . . . , N , and the enclosing property [9]

min
0≤ j≤D

u(D)
j ≤ u(x) ≤ max

0≤ j≤D
u(D)
j ,

for all x ∈ (0, 1)N . The parameters D = (D1, . . . , DN ) ∈ N
N
0 determine in themesh-

free Bernstein dual Petrov–Galerkin method the resolution of the approximation in
each coordinate direction, in analogy as the number of subdivisions of each interval
in (0, 1)N determines howfine a rectangularmesh is in a FEmethod. In the following,
for the convenience of the reader, we usually suppress the upper index containing
the fixed degree D and mention it only, where it is helpful for understanding.

The dual polynomials to (one-dimensional) Bernstein polynomials in L2(0, 1)
have been introduced by [10], who found a recurrence relation involving Legendre
polynomials.We denote by �̃

(D)
i the N -variate dual Bernstein polynomials of degree

D ∈ N
N
0 determined by biorthogonality

∫

(0,1)N
S(D)
j �̃

(D)
i d �x = δi j . (10)
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The coefficients ci j in the decomposition �̃i = ∑D
j=0 ci j S j are explicitly known

(in one dimension) due to [11], see also [4, (2.4), (2.5)]. Here, we focus on linear
combinations �i , 1 ≤ i ≤ D − 1, of the dual Bernstein polynomials called modal
basis functions, which vanish on the boundary of the unit cube (0, 1)N . In contrast
to [4, Proposition 1], we use an index shifted by one and a scaling so that relation [4,
(2.8)] becomes

�i (x) := ãi �̃i−1(x) + �̃i (x) + b̃i �̃i+1(x) (11)

for 1 ≤ i ≤ D − 1 with ãi = D−i+2
2(i+1) , b̃i = i+2

2(D−i+1) . Particularly, the space �
(D)
0 of

polynomial functions of maximal degree D ∈ N
N
0 in each coordinate vanishing on

the boundary of (0, 1)N is not only spanned by Sj , 1 ≤ j ≤ D − 1, but also by �i ,
1 ≤ i ≤ D − 1.

2.4 Certificates of Non-negativity Resp. Positivity

In a broad sense, every identity that gives immediate proof of non-negativity resp.
positivity for a (multivariate) real function u is considered to be a certificate of
non-negativity resp. positivity, and thus there are many different certificates of non-
negativity resp. positivity. For example, a sum of squares (SOS) certificate of non-
negativity for a real polynomial function u on R

N is a representation u = ∑m
k=1 p

2
k

of u by sums of squares of polynomials p1, . . . , pm on RN . However, not every real
polynomial function u ≥ 0 can be decomposed into a sum of squares of polynomials,
e.g. the Motzkin polynomial u(x, y) := x4y2 + x2y4 + 1 − 3x2y2 onR2. OnRN+ =
(0,∞)N , a certificate of positivity for a real polynomial function u of degree d ∈
N

N
0 in monomial form u(x) = ∑d

i=0 ai x
i is the validity of ai > 0 for all 0 ≤ i ≤

d. However, again not every real polynomial function u > 0 on R
N+ has positive

monomial coefficients.
In this article, we consider Bernstein certificates: As the Bernstein basis polyno-

mials S(D)
j in (8) are by construction non-negative on the closed unit cube [0, 1]N and

positive in its interior (0, 1)N , i.e. S(D)
j (x) > 0 for all x ∈ (0, 1)N and 0 ≤ j ≤ D,

where 0 denotes the multiindex with all components equal to zero, for a real poly-
nomial function u on R

N the validity of u(D)
j ≥ 0 for all 0 ≤ j ≤ D implies non-

negativity u ≥ 0 on [0, 1]N . Thus, the non-negativity of Bernstein coefficients is
a certificate of non-negativity on [0, 1]N . Further, if additionally u(D)

j > 0 for one

0 ≤ j ≤ D, then u > 0 on (0, 1)N , hence u(D)
j ≥ 0 for all 0 ≤ j ≤ D and u(D)

j �= 0 is
a certificate of positivity on (0, 1)N . However, again there exist positive polynomials
over a box which have non-positive Bernstein coefficients, as shown in the following
example.
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Example 1 Consider the polynomial u(x) = 7x2 − 3x + 5. It is immediate to check
that u is positive on [−1, 1], but the list of Bernstein coefficients (u(2)

j ) = (15,−2, 9)
has anegative value.However, the polynomialu has a certificate of positivity at degree
3 on [−1, 1], since (u(3)

j )) = (15, 3.6, 1.6, 9).

3 Bernstein Dual Petrov–Galerkin Method

In using the Bernstein dual Petrov–Galerkin method [4] for solving (4) on a
simply connected bounded domain � ⊂ R

N , the first step is to fix the degree
D = (D1, . . . , DN ) ∈ N

N
0 as a parameter which determines the resolution of the

approximation in each coordinate, and a diffeomorphism T : � → (0, 1)N which
extends continuously to a homeomorphism T : � → [0, 1]N . As basis functions,
then the transformed Bernstein polynomials S(D)

j (T (x)) are used (where in the fol-
lowing we usually suppress the upper index containing the fixed degree D), and
particularly we search for an approximation of the solution of the form

u(x) = g(x) +
D−1∑

j=1

u j S j (T (x)) . (12)

with an extension g of the boundary data to H 1(�). Note that the sum vanishes on
the boundary ∂� due to 1 ≤ j ≤ D − 1, where 1 denotes the multiindex with all
components equal to one. Putting the ansatz (12) into theweak formulation B(u, v) =
〈 f, v〉with the bilinear form B from (5) and using as test functions v the transformed
modal basis functions �i ◦ T vanishing on the boundary of the unit cube (0, 1)N ,
which are induced via (11) by the dual Bernstein polynomials �̃i , we obtain a linear
system

A�u = �b (13)

with stiffness matrix A = (∫
�
(a∇(Sj ◦ T )) · ∇(�i ◦ T ) + c(Sj ◦ T )(�i ◦ T ) d �x)

and r.h.s. �b = (〈 f, �i ◦ T 〉 − B(g, �i ◦ T )).

Example 2 If� := (x1, x1) × · · · × (x N , x N ) is a general openn-dimensional cube
with

xμ < xμ, μ = 1, . . . , N

identified by the usual affine linear transform T : � → (0, 1)N with the unit cube,
then the transformed j th Bernstein polynomial of degree D ∈ N

N
0 is

S(D)
j (T (x)) =

(
D

i

)

(x − x)i (x − x)D−iw(�)−D, (14)

where w(�) = (x1 − x1, . . . , x N − x N ) denotes the width of intervals.
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Due to the chain rule and transformation formula, system (13) is identical with
the system obtained from (4) on the unit cube (0, 1)N with coefficients replaced

by
(

1
| det DT | (DT )a(DT )∗

)
◦ T−1 resp.

(
1

| det DT |c
)

◦ T−1. Note that this transforma-

tion does not change the uniform ellipticity and boundedness of the coefficients.
Therefore, we can restrict our discussion to the case of the unit cube.

In the special case, where after the transformation the coefficients of (4) on the unit
cube (0, 1)N are given by constants a = I equal to the identity matrix I and c = 0,
and the boundary value g = 0 vanishes, we are in case of Poisson’s equation (1) on
the unit cube (0, 1)N subject to homogeneous Dirichlet boundary conditions. For this
case, in dimension N = 2 it can be seen from [4, 3.2.1] that the stiffness matrix A
in (13) can be written as tensor product A = A ⊗ B + B ⊗ A with sparse matrices

A =
(∫ 1

0 S′
j (x)�

′
i (x) dx

)
, B =

(∫ 1
0 Sj (x)�i (x) dx

)
, containing one-dimensional

integrals of univariate (dual)Bernstein polynomials and their first derivatives.Hereby,
sparsity follows from the validity of the three-term recurrence relation [12], [4, (2.3)],

S′
j (x) = (D − j + 1)Sj−1(x) − (D − 2 j)Sj (x) − ( j + 1)Sj+1(x) (15)

for the one-dimensional derivative of Bernstein polynomials.
Similarly, [4, Corollary 1] offers a five-term recurrence relation for the derivative

of one-dimensional dual Bernstein polynomials, and together with the three-term
recurrence relation for the derivative of one-dimensional Bernstein polynomials and
biorthogonality (10) sparsity of the one-dimensional matrices A, B and thus of the
stiffnessmatrixA = A ⊗ B + B ⊗ A follows.Yet, even in case ofPoisson’s equation
(1) on the unit cube (0, 1)N subject to homogeneous Dirichlet boundary conditions,
this stiffness matrix does not have a non-negative inverse.

Example 3 In the case N = 2, D = (6, 6), the one-dimensional matrices A, B ∈
R

5,5 are given by

A =

⎛

⎜
⎜
⎜
⎜
⎝

58 + 2
7 −10 − 2

7 −10 − 2
7 −1 − 5

7 0
−9 28.5 −1.5 −9 −1.5

−8.64 −1.44 21.76 −1.44 −8.64
−1.5 −9 −1.5 28.5 −9
0 −1 − 5

7 −10 − 2
7 −10 − 2

7 58 + 2
7

⎞

⎟
⎟
⎟
⎟
⎠

B =

⎛

⎜
⎜
⎜
⎜
⎝

1 1 0 0 0
5
8 1 5

8 0 0
0 1 1 1 0
0 0 7

4 1 1
4

0 0 0 4 1

⎞

⎟
⎟
⎟
⎟
⎠

(16)

Note that in contrast to [4] due to our scaling (11) here A has the symmetry a6−i,6− j =
ai, j for all i, j ∈ {1, 2, 3, 4, 5} and B has values 1 on the diagonal. Further, while A−1

is positive, the stiffness matrix A = A ⊗ B + B ⊗ A ∈ R
25,25 has negative entries.
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Remark 2 Moreover, in the general situation of an arbitrary domain and arbitrary
coefficients, the stiffness matrix A is neither sparse nor has a non-negative inverse
A−1.

While we will see in the next section that a non-negative inverse of the stiffness
matrixA is related to algebraic positivity, for the formulation of the algebraic discrete
maximum principle let us fix an approximation by Bernstein polynomials of the

right- hand side f (x) =
D∑

j=0
f j S j (T (x)) and of the (extended) boundary data g(x) =

∑

j=0,D
g j S j (T (x)), where j = 0, Dmeans that at least one index satisfies jk ∈ {0, Dk}

for k = 1, . . . , N , and let us extend the system (13) to

(
A A∂

0 I

) (�u
�g
)

=
(
M �f
�g

)

(17)

with A∂ = (∫
�
(a∇(Sj ◦ T )) · ∇(�i ◦ T ) + c (Sj ◦ T )(�i ◦ T ) d �x)1≤i≤D−1, j=0,D ,

and M := (∫
�
(Sj ◦ T )(�i ◦ T ) d �x)1≤i≤D−1, 0≤ j≤D . In contrast to (13), where the

right hand side f and the boundary data g are hidden within the vector �b =
(〈 f, �i ◦ T 〉 − B(g, �i ◦ T )), in (17) the dependence of the algebraic solution on
the coefficients of the data is made explicit.

Remark 3 Note that the discussion of a discrete maximum principle by [2] is based
on the extended linear system (17). Not only in case of FEM or the Bernstein dual
Petrov–Galerkin method, but in an arbitrary Galerkin method also, such an extension
can always be obtained by projecting boundary data on a finite dimensional space
spanned by boundary basis functions.

4 Discrete Maximum Principle and Positivity Certificates

Discrete positivity and the discrete maximum/minimum principle can be valid in two
different ways, algebraically or functionally. Let us begin our discussion by defining
algebraic discrete positivity and the algebraic discretemaximum/minimumprinciple.

Definition 2 We say that the extended linear system (17) satisfies

– algebraic weak discrete positivity, if data �f , �g ≥ 0 implies a solution �u ≥ 0 (resp.
algebraic strong discrete positivity, if either (�u, �g) = 0 or �u > 0 is implied),

– the algebraic weak discrete maximum principle, if data �f ≤ 0 implies that a non-
negative maximal component of (�u, �g) already occurs in �g (resp. the algebraic
strong discrete maximum principle, if it is implied that either all components of
(�u, �g) are identical or a non-negative maximal component of (�u, �g) occurs only
in �g),
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or equivalently the algebraic weak discrete minimum principle, i.e. data �f ≥ 0
implies that a non-positive minimal value of (�u, �g) already occurs in �g (resp. the
algebraic strong discrete minimum, if it is implied that either all components of
(�u, �g) are identical or a non-positive minimal component of (�u, �g) occurs only
in �g)
The following discrete analogue of Lemma 2 allows to restrict our attention to

algebraic discrete positivity.

Lemma 3 If the matrix in (17) has non-negative row sums and M ≥ 0, then alge-
braic weak (resp. strong) discrete positivity implies the algebraic weak (resp. strong)
discrete maximum principle.

Proof Let (17) satisfy algebraic weak positivity, let �f ≤ 0, and assume that the
maximal value M in a component of �g is non-negative. Then

A(M�1 − �u) + A∂(M�1 − �g) ≥ −A�u − A∂ �g = −M �f ≥ 0 (18)

due to non-negative row sums A�1 + A∂�1 ≥ 0 and non-negativityM ≥ 0, and M�1 −
�g ≥ 0. Thus, by algebraic weak positivity of (17) we have M�1 − �u ≥ 0 and hence
�u ≤ M�1, i.e. a non-negative maximal component of (�u, �g) already occurs in �g. In
case of algebraic strong positivity, we obtain in the last step of the former proof
either (M�1 − �u, M�1 − �g) = 0 or M�1 − �u > 0, i.e. either all components of (�u, �g)

are identical with M or �u < M�1 so that a non-negative maximal component of (�u, �g)

occurs only in �g.
The following Lemma allows to prove algebraic weak (resp. strong) positivity

and hence the algebraic weak (resp. strong) discrete maximum principle for several
Galerkin methods, e.g. piecewise linear FEM on simplices under the interior edge
condition.

Lemma 4 If the matrix in (17) has non-negative row sums, if A is a non-singular
M-matrix,A∂ ≤ 0 andM ≥ 0, then algebraic weak discrete positivity holds. If more-
over, at least one-row sum is positive,A is irreducible andM is surjective, then even
algebraic strong discrete positivity holds.

Proof By [13], A is a non-singular M-matrix iff A−1 exists and is non-negative.

Therefore, the matrix in (17) hat the inverse

(
A−1 −A−1A∂

0 I

)

, which is non-negative

due toA∂ ≤ 0.Moreover, under the additional assumptions,A is an irreducibly diag-
onally dominant real square matrix with strictly positive diagonal and non-positive
off-diagonal entries, and thus A−1 > 0 by [14].

If the stiffness matrix A of the linear system (13) does not have a non-negative
inverse A−1, then algebraic (weak) positivity is not valid. In fact, if A−1 has an
element a−1

i j < 0, then for �g := �0 the j th component of M �f ≥ 0 can be chosen so

large that �u = A−1M �f has a negative i th component. This is the case for Bernstein
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dual Petrov–Galerkin method by Example 3 and Remark 2. Yet, on the one hand, for
some data, it is still possible to obtain a Bernstein certificate of non-negativity (resp.
positivity) for the approximate solution.

Definition 3 For data �f and �g ≥ 0, we say that the extended linear system (17)
allows a Bernstein certificate of non-negativity for the approximate solution u given
by (12), if �u ≥ 0 holds (resp. a Bernstein certificate of positivity, if additionally �u �= 0
holds).

On the other hand, instead of algebraic weak discrete positivity �u ≥ 0 it may be
possible to conclude merely functional weak discrete positivity, where the weaker
conclusion u ≥ 0 for the approximate solution (12) with Bernstein coefficients �u is
drawn.

Definition 4 We say that the extended linear system (17) satisfies

– algebraic-functional weak discrete positivity, if data �f , �g ≥ 0 implies u ≥ 0 for
the approximate solution (12) (resp. algebraic-functional strong discrete positivity,
if either u = 0 or u > 0 is implied).

– functional-functional weak discrete positivity, if data f, g ≥ 0 implies u ≥ 0 for
the approximate solution (12) (resp. functional-functional strong discrete positiv-
ity, if either u = 0 or u > 0 is implied).

Note that in this double notation, the first point in Definition 2 would be algebraic-
algebraic discrete positivity (while for functional-algebraic weak discrete positivity
the weakest conditions f, g ≥ 0 would need to imply the strongest condition �u ≥ 0).
It is not astonishing that many spectral methods and particularly the Bernstein dual
Petrov–Galerkin method do not satisfy algebraic discrete positivity, because signs of
the coefficients 〈 f, �i ◦ T 〉 do not say much about non-negativity resp. positivity of
the function f , as the test functions�i itself are sign-changing. Therefore, functional
discrete positivity is more important, however, also more difficult to verify, because
the convex coneof non-negative functions is not finitely generated.Toclarify,whether
functional weak (resp. strong) positivity is valid, or for which data we can provide
a Bernstein certificate of non-negativity (resp. positivity), let us apply the general
theory of convex cones.

Definition 5 A subset K ⊂ X of a real vector space X is called

– a cone, if x ∈ K implies r x ∈ K for every r ≥ 0,
– convex, if x, y ∈ K imply λx + (1 − λ)y ∈ K for every λ ∈ [0, 1].

Thus, a convex cone K ⊂ X is a subset such that ax + by ∈ K for every linear
combination with non-negative coefficients a, b ≥ 0. If X is a Banach space, then a
convex cone K is called closed if it is closed w.r.t. norm topology. For example, {�u ∈
R

n | �u ≥ 0} is a closed convex cone in R
n , and the subset {u ∈ H 1(�) | u ≥ 0 a.e.}

is a closed convex cone in H 1(�).

Definition 6 The polar cone of a convex cone K ⊂ X in a real Banach space is the
subset Ko := { f ∈ X∗ | ∀x ∈ K : 〈 f, x〉 ≤ 0} of the dual space X∗.
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The polar of a convex cone is automatically closed in X∗, and for a closed convex
cone K ⊂ X in a reflexive Banach space X ∼= X∗∗ the bipolar theorem (Ko)o = K
holds. This fact allows the following characterization of data b such that the solution
u of Au = b lies in K .

Theorem 2 Let K ⊂ X be a closed convex cone in a reflexive Banach space X, and
let A : X → X∗ a bijective continuous linear map. Then the image A(K ) is a closed
convex cone in X∗, and with the polar cone P := (A(K ))o ⊂ X∗∗ = X of A(K ) the
following characterization holds:

The unique solution u ∈ X of Au = b satisfies u ∈ K iff b ∈ Po.

Proof Eventually, A(K ) is a convex cone, and by the open mapping / closed graph
theorem the image A(K ) is closed. By the bipolar theorem, b ∈ Po is equivalent
to b ∈ ((A(K ))o)o = A(K ), and thus Po � b = Au is equivalent to u ∈ K by the
uniqueness of solutions.

While the former using the bipolar theorem is more formal, the Theorem shows
that those data b, for which u ∈ K can be concluded, form a closed convex cone
(namely Po). As a consequence, the following results about positivity certificates
and functional discrete positivity are valid.

Corollary 1 Precisely for data �f and �g ≥ 0 satisfying A−1M �f − A−1A∂ �g ≥ 0
(resp. additionally a strict inequality > 0 in at least one component) a Bernstein
certificate of non-negativity (resp. positivity) for the approximate solution can be
provided.

Proof Let K := {
(�u

�g
)

| �u ≥ 0, �g ≥ 0}, then for �g ≥ 0 we have

(
M �f
�g

)

∈ Po =
(
A A∂

0 I

)

(K ) iff A−1M �f − A−1A∂ �g ≥ 0 (and if additionally a strict inequality > 0

holds in at least one component, then �u �= 0 and thus the approximate solution u is
positive).

Although this precise characterization involves the inverse, the inequalities in
Corollary 1 define a convex cone, which can be practically used to verify positivity
of an approximate solution without solving the linear system (17).

Example 4 In the special case of Poisson’s problem (1) on the unit cube (0, 1)N

with homogeneous Dirichlet boundary conditions, N = 2, D = (6, 6), and with
the matrices A, B ∈ R

5,5 provided in Example 3, the stiffness matrix is given by
A = A ⊗ B + B ⊗ A ∈ R

25,25. Its inverse (for better readability scaled and rounded)
100A−1 reads as
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⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0.9 −0.2 −0.5 0.5 −0.1 −0.2 0.2 −0 −0.2 0.1 −0.5 −0 1.1 −0.5 0 0.5 −0.2 −0.5 0.4 −0 −0.1 0.1 0 −0 −0

−0.1 0.5 1 −0.8 0.2 0.2 −0 −0.7 0.7 −0.1 −0 0.8 −0.8 0.5 −0.1 −0.1 −0.1 0.4 −0.3 0.1 0.1 −0.1 0.1 −0 0

−0.4 1.5 −1.3 1.1 −0.1 −0.2 −1 2 −0.9 0.1 1.2 −1.2 1 −0.6 0.2 −0.6 0.6 −0.3 0.3 −0.1 0 0.2 −0.2 0.1 −0.0

1.6 −3.6 2.9 −0.5 0.2 −1.3 2.9 −2 0.6 −0.1 −0.7 1.9 −2.2 1.2 −0.1 0.7 −1.4 1.3 −0.4 0 −0 0 0.2 −0.1 0.0

−5.5 10.1 −6.9 1.3 0.4 6.9 −7.9 2.3 0.1 −0 −1.8 −4.8 8.4 −2.7 0.1 −0.4 4.6 −5 1 0.2 0 −0.4 0.3 0.2 −0.1

−0.1 0.2 −0 −0.1 0.1 0.5 −0 0.8 −0.1 −0.1 1 −0.7 −0.8 0.4 0.1 −0.8 0.7 0.5 −0.3 −0 0.2 −0.1 −0.1 0.1 0.0

0.1 −0 −0.4 0.4 −0 −0 1.7 0.2 −0.2 0.1 −0.4 0.2 −0.6 0.4 0 0.4 −0.2 0.4 −0.1 −0 −0 0.1 0 −0 0.0

−0.1 −0.5 1.2 −0.5 0.1 1 0.3 −0.2 0.5 0.1 −1.2 −0.8 2.4 −0.9 −0 0.7 0.5 −1.2 0.5 0.1 −0.1 0 0.1 0 −0.0

−0.8 1.7 −1.1 0.4 −0 0.9 −1.7 0.6 1.1 0.2 0 0.8 −0.8 0.4 −0.2 −0.4 0.3 0.3 −0.2 0.2 0.1 −0.2 0.2 0 −0.0

4.2 −4.8 1.3 0.2 −0 −8.1 5 2.7 −1.6 0.6 6.1 0.9 −6.1 0.6 0.6 −1.8 −2.9 4.3 0.1 −0.4 0.1 0.9 −1 0.1 0.1

−0.4 −0.2 1.2 −0.6 0 1.5 −1 −1.2 0.6 0.2 −1.3 2 0.9 −0.3 −0.2 1.1 −0.9 −0.6 0.3 0.1 −0.1 0.1 0.2 −0.1 −0.0

−0.1 1 −1.2 0.7 −0.1 −0.5 0.3 −0.8 0.5 0 1.2 −0.2 2.4 −1.2 0.1 −0.5 0.5 −0.9 0.5 0 0.1 0.1 −0 0.1 −0.0

1.2 −1.7 1.6 −1 0.3 −1.7 −1.2 3.5 −1.3 −0 1.6 3.5 −5.4 2.9 −0 −1 −1.3 2.9 −1.1 0 0.3 −0 −0 0 0.1

−0.9 2.5 −3 1.6 −0.2 0 1.1 −1.2 0.6 −0.3 0.7 −3.8 4.5 −1.3 0.8 0 1.1 −1.4 0.8 −0.3 −0.1 0.2 −0.2 0.2 0.0

−1 −5.7 9.2 −3.4 0.2 8.7 1.4 −8.8 0.8 0.8 −12 3 4.8 2.2 −0.9 5.3 0.9 −4.7 −0.4 0.7 −0.6 −1 1.6 −0.3 −0.0

1.6 −1.3 −0.7 0.7 −0.1 −3.7 2.9 1.9 −1.4 0 2.9 −2 −2.2 1.3 0.2 −0.5 0.6 1.2 −0.4 −0.1 0.2 −0.1 −0.1 0 0.0

−0.8 0.9 0 −0.4 0.1 1.7 −1.7 0.8 0.3 −0.2 −1.1 0.6 −0.8 0.3 0.2 0.4 1.1 0.4 −0.2 0 −0 0.2 −0.2 0.2 −0.0

−0.9 0 0.7 0 −0.1 2.5 1.1 −3.8 1.1 0.2 −3 −1.2 4.5 −1.4 −0.2 1.6 0.6 −1.3 0.8 0.2 −0.2 −0.3 0.7 −0.3 0.0

1.8 −2.8 1.3 0.2 −0.1 −2.8 3.7 −0.9 −0.8 0.5 1.3 −0.9 −0.1 0.4 −0.4 0.2 −0.8 0.4 0.7 0.3 −0.1 0.5 −0.4 0.3 −0.0

−3.3 12 −9 −0.3 1 −0.6 −20 20.2 0.4 −2.2 9.4 10.2 −18.8 1.6 1.6 −7.9 −0 7.4 −1.4 0 1.6 −0.7 −0.6 0 0.2

−5.5 6.9 −1.8 −0.4 0 10.1 −7.9 −4.8 4.6 −0.4 −6.9 2.3 8.4 −5 0.3 1.3 0.1 −2.7 1 0.2 0.4 −0 0.1 0.2 −0.1

4.2 −8.1 6.1 −1.8 0.1 −4.8 5 0.9 −2.9 0.9 1.3 2.7 −6.1 4.3 −1 0.2 −1.6 0.6 0.1 0.1 −0 0.6 0.6 −0.4 0.1

−1 8.7 −12 5.3 −0.6 −5.7 1.4 3 0.9 −1 9.2 −8.8 4.8 −4.7 1.6 −3.3 0.8 2.2 −0.4 −0.3 0.2 0.8 −0.9 0.7 −0.0

−3.3 −0.6 9.4 −7.9 1.6 12 −19.9 10.2 −0 −0.7 −9 20.2 −18.8 7.4 −0.6 −0.3 0.4 1.6 −1.4 0 1 −2.2 1.6 0 0.2

13.1 −22.7 −0.8 16.6 −5.2 −22.7 79.8 −60.8 −0.5 5.9 −0.8 −60.8 75.6 −17.9 −1.9 16.6 −0.5 −17.9 6.5 0.1 −5.2 5.9 −1.9 0.1 0.3

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

and obviously is not non-negative. The mass matrixM ≥ 0 is given by the extension
of B ⊗ B to a (25 × 49)-matrix containing additionally the values of

∫ 1
0 Sj (x)�i (x)

dx for 1 ≤ i ≤ D − 1, j = 0, D, and again A−1M ∈ R
25×49 is not non-negative.

Thus, by Corollary 1 for Poisson’s problem (1) on the unit cube (0, 1)2 with boundary
data g = 0, a Bernstein certificate of non-negativity for the approximate solution u
can be provided for r.h.s. f with Bernstein coefficients �f in the cone C given by
inequalitiesA−1M �f ≥ 0. Due tomissing non-negativity ofA−1M, the cone { �f | �f ≥
0} is not a subset ofC , andwhile e.g.R25+24 � �f = (1, 0, . . . , 0)T /∈ C , theBernstein
coefficients R25+24 � �f = (1, . . . , 1, 0, . . . , 0)T satisfy A−1M �f ≥ 0 and thus lie in
C .Hence, �f = (1, . . . , 1, 0, . . . , 0)T (and �g = 0) allowaBernstein certificate of non-
negativity for the approximate solution u, precisely the (scaled)Bernstein coefficients
of u are given by

10�u = (0.41, 0.67, 0.76, 0.71, 0.57, 0.67, 1.15, 1.29, 1.23, 0.87, 0.76, 1.29, 1.45, 1.41, 1.04, 0.71, 1.23, 1.41, 1.32, 0.91, 0.57, 0.87, 1.04, 0.91, 0.97)T .

Of course, it would be nice to have more simple inequalities for f̂ (and ĝ ≥ 0)
or equivalently more simple closed convex cones, which guarantee a certificate of
non-negativity �u ≥ 0. Obtaining such simplification strongly depends on the chosen
method and will be a task for a forthcoming paper about the Bernstein dual Petrov–
Galerkin method.

Note that the cone K = {
(�u

�g
)

| �u ≥ 0, �g ≥ 0} = cone({�e j | 0 ≤ j ≤ D}) in the

former proof is finitely generated by the unit vectors. This is not the case in the next
Corollary characterizing functional weak positivity, what makes it more difficult to
apply the Corollary.

Corollary 2 Denote by K := {
(�u

�g
)

| ∀x ∈ � : ∑

j=0,D
g j S j (T (x)) +

D−1∑

j=1
u j S j (T (x))

≥ 0} the convex cone of Bernstein coefficients of non-negative Bernstein polyno-
mials of degree D, then algebraic-functional weak discrete positivity holds iff the
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matrix

(
A−1M −A−1A∂

0 I

)

maps the convex cone C1 := {
( �f

�g
)

| �f , �g ≥ 0} into K ,

and functional-functional weak discrete positivity holds iff the convex cone

C2 := {
( �f

�g
)

| ∀x ∈ � :
∑

j=0,D

g j S j (T (x)) ≥ 0,
D∑

j=0

f j S j (T (x)) ≥ 0}

is mapped into K .

Similarly, algebraic-functional or functional-functional strong discrete positivity
can be characterized, using cones K without zero K \ {0} or the pointed interior cone
o
K ∪ {0}. Hereby, in the infinite-dimensional case it is important to work in H 1(�)

or a stronger space, because else even the standard cone does not have a non-empty
interior.

Remark 4 While the convex cone {u ∈ L2(�) | u ≥ 0 a.e.} is closed in L2(�), it
has no interior points. In fact, a function u ∈ L2(�) satisfying u > 0 a.e. and u < M
a.e. on Bε0(x0) can be perturbed by subtracting M1Bε(x0) for sufficiently small ε <

ε0. The resulting function u − M1Bε(x0) is negative on Bε(x0), although the norm
‖M1Bε(x0)‖L2 = M Vol(Bε(x0)) is arbitrarily small as ε ↘ 0.

Let us conclude this section with a discussion of algebraic-functional weak dis-
crete positivity in our main example.

Example 5 In the special case of Poisson’s problem (1) on the unit cube (0, 1)N with
homogeneous Dirichlet boundary conditions, N = 2, D = (6, 6), already discussed

Fig. 1 The 25 approximate solutions of Poisson’s problem (1) on the unit cube (0, 1)2 obtained
by Bernstein dual Petrov–Galerkin method for D = (6, 6) and Bernstein polynomials f = Si ,
1 ≤ i ≤ D − 1, vanishing on ∂(0, 1)2 as r.h.s
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in Examples 3 and 4, Fig. 1 shows the 25 approximate solutions ui to those Bernstein
polynomials f = Si , 1 ≤ i ≤ D − 1 as r.h.s. which vanish on ∂(0, 1)N , i.e. those
corresponding to �g = 0 and unit vectors �f = �ei . As not all of these approximate
solutions are non-negative, the cone C1 from Corollary (2) is not mapped into K , i.e.
algebraic-functional weak discrete positivity (and thus also the stronger functional-
functional weak discrete positivity) does not hold for the Bernstein dual Petrov–
Galerkin method. However, as merely the functions u(1,2), u(2,1), u(1,3), u(3,1), u(1,4),
u(4,1), u(2,5), u(5,2) and u(3,3) become negative, we can guarantee non-negativity of
approximate solutions u to r.h.s. having Bernstein coefficients �f with vanishing
components at indices (1, 2), (2, 1), (1, 3), (3, 1), (1, 4), (4, 1), (2, 5), (5, 2), (3, 3),
even although the Bernstein coefficients �u given by the columns of the matrix A in
Example 4 are not non-negative for other indices, too.

5 Conclusion

In this article, we have completely characterized those data for which a Bernstein cer-
tificate of non-negativity (resp. positivity) can be given for the approximate solution
of an elliptic linear second-order PDEs in divergence formwhen usingBernstein dual
Petrov–Galerkin method. Further, we provided necessary and sufficient conditions
for the validity of algebraic-functional or functional-functional discrete positivity,
or equivalently for validity of the corresponding discrete maximum principles. Our
methods can be directly transferred to other spectral methods that use other non-
negative basis functions and their dual functions instead of Bernstein polynomials.
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On the Dynamic Geometry of Kasner
Triangles with Complex Parameter

Dorin Andrica and Ovidiu Bagdasar

Abstract Weexplore thedynamics of the sequenceofKasner triangles (An BnCn)n≥0

when α is a complex number, and we find the values α for which the iterations are
convergent. We also investigate the parameter values for which the resulting patterns
are periodic or divergent. The results further extend previous research concerning
Kasner triangles with a fixed real parameter, where it was found that iterations were
convergent if and only if 0 < α < 1, that is the triangles in the sequence are nested.

Keywords Kasner triangles · Dynamical systems · Convergence · Orbits ·
Characteristic polynomial · Nested triangles

1 Introduction

For a real number α and an initial triangle A0B0C0, one can construct the triangle
A1B1C1 such that A1, B1 and C1 divide the segments [B0C0], [C0A0] and [A0B0],
respectively, in the ratio 1 − α : α. Continuing this process one obtains a sequence
of triangles AnBnCn , n ≥ 0 whose terms are called Kasner triangles (after E. Kasner
(1878–1955)), or nested triangles in other references.

Related examples of iterative processes inspired by simple geometrical config-
urations are reviewed in the expository article [5]: the dynamic geometry gener-
ated by the incircle and the circumcircle of a triangle, the pedal triangle [14], the
orthic triangle, and the incentral triangle. Other such recursive systems describing
dynamic geometries are considered by S. Abbot [1], G. Z. Chang and P. J. Davis [7],
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R. J. Clarke [8], J. Ding, L. R. Hitt and X-M. Zhang [9], L. R. Hitt and X-M. Zhang
[12], or D. Ismailescu and J. Jacobs [13].

A natural problem is to determine all real numbers α for which the sequence
(AnBnCn)n≥0 is convergent. In the paper [4], we proved that the sequence is con-
vergent if and only if α ∈ (0, 1), also providing the order of convergence. To this
end we used the complex coordinates of the vertices An(an), Bn(bn), Cn(cn), n ≥ 0,
which can be defined recursively for n ≥ 0 as:

⎧
⎪⎨

⎪⎩

an+1 = αbn + (1 − α)cn
bn+1 = αcn + (1 − α)an
cn+1 = αan + (1 − α)bn.

(1)

The main purpose of this paper is to investigate the geometry of the sequence
(AnBnCn)n≥0 when α is a complex number, and to find the values α for which the
resulting sequence of Kasner triangles is convergent (Theorem1). Clearly, when α

is complex, the triangles AnBnCn may not always be nested.
The following result is useful in what follows.

Lemma 1 (Propositions 2 and 3, [2]) Consider the distinct points A, B, C in the
complex plane, with coordinates a, b, c. ABC is a positively oriented equilateral
triangle if and only if

a + bω + cω2 = 0,

where ω = e
2π
3 i . Furthermore, the triangle ABC is equilateral and negatively ori-

ented if and only if
a + bω2 + cω = 0.

Proof By 1 + ω + ω2 = 0, the first relation yields

a + bω + cω2 = (b − a)ω + (c − a)ω2 = 0,

which can be written as

(c − a) = −(b − a)ω2 = (b − a)e
4π i
3 e−π i = (b − a)e

π i
3 .

This is equivalent toC being obtained from B by a rotation about A through an angle
of π

3 , i.e., the triangle ABC is equilateral and positively oriented.

In the other case one obtains similarly that

0 = a + bω2 + cω = (b − a)ω2 + (c − a)ω = 0,

from where we deduce that

(c − a) = −(b − a)ω = (b − a)e
2π i
3 e−π i = (b − a)e

−π i
3 .
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This is equivalent toC being obtained from B by a rotation about A through an angle
of −π

3 , i.e., the triangle ABC is equilateral and negatively oriented. �

Using the factorization

a2 + b2 + c2 − ab − bc − ca = (
a + bω + cω2

) (
a + bω2 + cω

)
,

we obtain the following consequence.

Corollary 1 The triangle ABC is equilateral if and only if

a2 + b2 + c2 − ab − bc − ca = 0.

2 Kasner Triangles with a Complex Parameter

The system (1) can be written in matrix form as

Xn+1 =
⎛

⎝
an+1

bn+1

cn+1

⎞

⎠ =
⎛

⎝
0 α 1 − α

1 − α 0 α

α 1 − α 0

⎞

⎠

⎛

⎝
an
bn
cn

⎞

⎠ = T Xn, (2)

where Xn = (an, bn, cn)T , n ≥ 0. In this notation one can write

Xn = T nX0. (3)

The matrix T has the characteristic polynomial

pT (u) = (u − 1)
(
u2 + u + 3α2 − 3α + 1

)
,

whose roots are u0 = 1 and denoting ω = exp
(
2π i
3

)
we have

u1 = −1

2
−

√
3

2
i + α

√
3i = ω2 + α

√
3i, (4)

u2 = −1

2
+

√
3

2
i − α

√
3i = ω − α

√
3i. (5)

If follows that

T = F−1

⎛

⎝
1 0 0
0 u1 0
0 0 u2

⎞

⎠ F,
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where the matrices F and F−1 are given by

F =
⎛

⎝
1 1 1
1 ω2 ω

1 ω ω2

⎞

⎠ , F−1 = 1

3
F = 1

3

⎛

⎝
1 1 1
1 ω ω2

1 ω2 ω

⎞

⎠ . (6)

For every positive integer n we have the following relations

T n = F−1

⎛

⎝
1 0 0
0 un1 0
0 0 un2

⎞

⎠ F (7)

= 1

3

⎛

⎝
1 1 1
1 ω ω2

1 ω2 ω

⎞

⎠

⎛

⎝
1 0 0
0 un1 0
0 0 un2

⎞

⎠

⎛

⎝
1 1 1
1 ω2 ω

1 ω ω2

⎞

⎠ (8)

= 1

3

⎛

⎝
1 + un1 + un2 1 + ω2un1 + ωun2 1 + ωun1 + ω2un2

1 + ωun1 + ω2un2 1 + un1 + un2 1 + ω2un1 + ωun2
1 + ω2un1 + ωun2 1 + ωun1 + ω2un2 1 + un1 + un2

⎞

⎠ . (9)

Finally, this is multiplied by (a0, b0, c0)T to give

Xn = T n

⎛

⎝
a0
b0
c0

⎞

⎠ = 1

3

⎛

⎝
S + (

a0 + ω2b0 + ωc0
)
un1 + (

a0 + ωb0 + ω2c0
)
un2

S + (
a0ω + b0 + c0ω2

)
un1 + (

a0ω2 + b0 + c0ω
)
un2

S + (
a0ω2 + b0ω + c0

)
un1 + (

a0ω + b0ω2 + c0
)
un2

⎞

⎠ ,

(10)

where we denote S = a0 + b0 + c0 = 3g0 (constant).
The latest relation can be written explicitly as

an = a0 + b0 + c0
3

+ a0 + b0ω2 + c0ω

3
un1 + a0 + b0ω + c0ω2

3
un2

bn = a0 + b0 + c0
3

+ a0ω + b0 + c0ω2

3
un1 + a0ω2 + b0 + c0ω

3
un2

cn = a0 + b0 + c0
3

+ a0ω2 + b0ω + c0
3

un1 + a0ω + b0ω2 + c0
3

un2. (11)

ByCorollary 1, if a20 + b20 + c20 − a0b0 − b0c0 − c0a0 �= 0 (i.e., the initial triangle
is not equilateral), then none of the coefficients of un1 or u

n
2 vanishes.



On the Dynamic Geometry of Kasner Triangles with Complex Parameter 217

3 Dynamical Properties

We now discuss orbits obtained for various values of α. By (4) and (5) we get

u1 = √
3i

[

α −
(
1

2
−

√
3

6
i

)]

, (12)

u2 = −√
3i

[

α −
(
1

2
+

√
3

6
i

)]

, (13)

which can also be written as

u1 = r1e
2π iθ1 = √

3i (α − z1) = √
3 (α − z1) e

2π i
4 ,

u2 = r2e
2π iθ2 = −√

3i (α − z2) = √
3 (α − z2) e

6π i
4 , (14)

where r1, r2, θ1, θ2 are real numbers, where we denote

z1 = 1

2
−

√
3

6
i, z2 = 1

2
+

√
3

6
i. (15)

The following sets also play an important role

D1 =
{

z ∈ C : |z − z1| <

√
3

3

}

, D2 =
{

z ∈ C : |z − z2| <

√
3

3

}

C1 =
{

z ∈ C : |z − z1| =
√
3

3

}

, C2 =
{

z ∈ C : |z − z2| =
√
3

3

}

.

Notice that z2 − z1 =
√
3
3 i , while z1 ∈ C2 and z2 ∈ C1. The circles C1, C2, the discs

D1, D2 and the points z1, z2 are depicted in Fig. 1. By (14) we get

1. If α ∈ D1 ∩ D2, then 0 < r1, r2 < 1;
2. If α is in the interior of the complement of D1 ∩ D2, then max{r1, r2} > 1;
3. If α ∈ C1 or α ∈ C2 then r1 = 1 or r2 = 1, respectively, with C1 ∩ C2 = {0, 1};
4. If α = z1, then r1 = 0 and r2 = 1;
5. If α = z2, then r1 = 1 and r2 = 0.

The boundary of the shaded region in Fig. 1 consists of two arcs

U1 = C1 ∩ D2, U2 = C2 ∩ D1,

which can be parametrized as
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Fig. 1 Circles C1 and C2
determining the possible
configurations

α(t) =
{
z1 +

√
3
3 (cos t + i sin t) , t ∈ [

π
6 , 5π

6

]

z2 +
√
3
3 (cos t + i sin t) , t ∈ [

7π
6 , 11π

6

]
.

(16)

To describe the orbits of the sequences (an)n≥0, (bn)n≥0 and (cn)n≥0, one needs
to understand the behaviour of (zn)n≥0, where z ∈ C (see, for example, Lemma 2.1
in [6], or Lemma 5.2 in [3]). These configurations are depicted in Fig. 2.

Lemma 2 Let z = re2π iθ , where r ≥ 0, θ ∈ R. The orbit of (zn)n≥0 is
(a) a spiral convergent to 0 for r < 1;
(b) a divergent spiral for r > 1;
(c) a regular k-gon if z is a primitive kth root of unity, k ≥ 3;
(d) a dense subset of the unit circle if r = 1 and θ ∈ R \ Q.
When θ = j/k ∈ Q is irreducible, then the terms of the spirals obtained in (a)

and (b) align along k rays.

To prove part (d) we have zn = e2π i nθ = e2π i (nθ+m) for n ≥ 0 and m integers.
By Kronecker’s Lemma [11, Theorem 442], the set {nθ + m : m, n ∈ Z, n ≥ 0} is
dense in R, hence zn is dense within the unit circle.

As linear combinations of (un1)n≥0 and (un2)n≥0, given by the explicit formula (11)
in the complex plane, and we have the following possibilities, assuming that the
initial triangle is not equilateral.

Lemma 3 The patterns produced by formula (11) are summarized below:

1. Convergent if 0 < r1, r2 < 1;
2. Divergent if max{r1, r2} > 1;
3. Periodic if r1 = r2 = 1 (when α = 0 or α = 1), or when min{r1, r2} = 0 and

max{r1, r2} = 1 (when α = z1 or α = z2);
4. There are two distinct patterns when 0 < min{r1, r2} < max{r1, r2} = 1. Denot-

ing θ = θ1 if r1 = 1 or θ = θ2 if r2 = 1, then the orbit
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Fig. 2 The terms zn , n = 0, . . . , 70 obtained for a r = 0.98 and x = √
3/10; b r = 1.01 and

x = 1/10; c r = 1 and x = 1/10; d r = 1 and x = √
2/35. Arrows indicate the direction of the

orbit, and the dotted line represents the unit circle. The point z = r exp(2π i x) is shown as a square

(a) has k convergent subsequences if θ = j
k is an irreducible fraction;

(b) is dense within a circle when θ is irrational.

The details of geometric patterns obtained in each case are presented below.

3.1 Convergent Orbits

If 0 < r1, r2 < 1, then by (14) un1 and u
n
2 are convergent andα ∈ D1 ∩ D2. Therefore,

by (11) the sequences (an)n≥0, (bn)n≥0 and (cn)n≥0 converge to g0.

Theorem 1 1 ◦ The sequence of triangles (AnBnCn)n≥0 is convergent if and only
if α ∈ D1 ∩ D2.
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Fig. 3 Convergent orbits (right) obtained for α = 0.25 (left)

2 ◦ When the sequence (AnBnCn)n≥0 is convergent, its limit is the degenerated
triangle at G0, the centroid of the initial triangle A0B0C0.

Proof The intersection D1 ∩ D2 represents the shaded area in Fig. 1. Clearly,
α ∈ D1 ∩ D2 is equivalent to r1 < 1 and r2 < 1. The relation (11) shows that the
sequences (an)n≥0, (bn)n≥0 and (cn)n≥0 are convergent if and only if (un1)n≥0 and
(un2)n≥0 are convergent, which happens when un1 → 0 and un2 → 0.

2◦. Adding the equation in the system (1) one obtains that for every integer n ≥ 0
we have an + bn + cn = a0 + b0 + c0 = 3g0, where g0 is the complex coordinate
of the centroid G0 of the initial triangle A0B0C0. Assume that an → a∗, bn → b∗,
cn → c∗. From the system (1) we obtain

⎧
⎪⎨

⎪⎩

a∗ = αb∗ + (1 − α)c∗

b∗ = αc∗ + (1 − α)a∗

c∗ = αa∗ + (1 − α)b∗.
(17)

Using c∗ = αa∗ + (1 − α)b∗ in the first relation we get a∗ = αb∗ + α(1 − α)a∗ +
(1 − α)2b∗, hence (α2 − α + 1)a∗ = (α2 − α + 1)b∗. However, if α2 − α + 1 = 0
we have α3 = −1, hence |α| = 1, which is not possible for α ∈ D1 ∩ D2. From
here we deduce that a∗ = b∗. From the first equation of the system (17) we get
(1 − α)a∗ = (1 − α)c∗, hence a∗ = c∗, since α �= 1.

Therefore, from an + bn + cn = 3g0 it follows that a∗ = b∗ = c∗ = g0. �

For 0 < α < 1 one has α ∈ D1 ∩ D2, and moreover, in this case the vertices
An+1, Bn+1,Cn+1 are interior points of the segments [Bn,Cn], [An,Cn] and [An, Bn],
respectively. Such an example is depicted in Fig. 3.

On the other hand, when the parameter α ∈ D1 ∩ D2 is not real, the orbit is
convergent, but the points are not aligned any more, as illustrated in Fig. 4.
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Fig. 4 Convergent orbits (right) obtained for α = 1
2 +

√
3

12 i (left)

Fig. 5 Divergent orbits (right) obtained for α = z1 +
√
3
3 (cos 3 + i sin 3) (left)

3.2 Divergent Orbits

If max{r1, r2} > 1, then α ∈ int (D1 ∩ D2)
c by (14) either un1 or un2 are divergent.

Therefore, by (11) the sequences (an)n≥0, (bn)n≥0 and (cn)n≥0 are divergent (as long
as the corresponding coefficient is not vanishing, which is the case when the starting
triangle a0, b0, c0 are not the coordinates of an equilateral triangle.

Figure5 depicts a divergent iteration.

3.3 Periodic Orbits

If r1 = r2 = 1, then |α − z1| = |α − z2| =
√
3
3 , hence α ∈ C1 ∩ C2 = {0, 1}.

Case 1. α = 0. From the system (1), for all n ≥ 0 one obtains
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an+3 = cn+2 = bn+1 = an.

Similarly, bn+3 = bn and cn+3 = cn , and the periodic sequences are given by

⎧
⎪⎨

⎪⎩

an : a0, c0, b0, a0, c0, b0, a0, . . .

bn : b0, a0, c0, b0, a0, c0, b0, . . .

cn : c0, b0, a0, c0, b0, a0, c0, . . . .

(18)

Case 2. α = 1. From the system (1), for all n ≥ 0 one obtains

an+3 = cn+2 = bn+1 = an.

In the same way, bn+3 = bn and cn+3 = cn , and explicitly we can write

⎧
⎪⎨

⎪⎩

an : a0, b0, c0, a0, b0, c0, a0, . . .

bn : b0, c0, a0, b0, c0, a0, b0, . . .

cn : c0, a0, b0, c0, a0, b0, c0, . . . .

(19)

Other stable orbits are obtained for r1 = 0 (α = z1), or r2 = 0 (α = z2).
Case 3. α = z1. By (14), here we have u1 = 0 and u2 = −√

3i(z1 − z2) = √
3i ·√

3
3 i = −1, hence by (11) we get

an = a0 + b0 + c0
3

+ a0 + b0ω + c0ω2

3
(−1)n

bn = a0 + b0 + c0
3

+ a0ω2 + b0 + c0ω

3
(−1)n

cn = a0 + b0 + c0
3

+ a0ω + b0ω2 + c0
3

(−1)n, (20)

which is clearly periodic with period 2, i.e., an+2 = an , bn+2 = bn and cn+2 = cn .
For all k ≥ 1, one obtains the following explicit formulae:

a2k−1 = 1 − ω

3
b0 + 1 − ω2

3
c0, a2k = 2

3
a0 + 1 + ω

3
b0 + 1 + ω2

3
c0

b2k−1 = 1 − ω2

3
a0 + 1 − ω

3
c0, b2k = 1 + ω2

3
a0 + 2

3
b0 + 1 + ω

3
c0

c2k−1 = 1 − ω

3
a0 + 1 − ω2

3
b0, c2k = 1 + ω

3
a0 + 1 + ω2

3
b0 + 2

3
c0. (21)

These configurations are depicted in Fig. 6(left).
Case 4.α = z2. By (14)we have u1 = √

3i(z2 − z1) = √
3i ·

√
3
3 i = −1 and u2 = 0,

hence by (11) it follows that
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Fig. 6 Periodic orbits obtained for: α = z1 = 1
2 −

√
3
6 i (left) and α = z2 = 1

2 +
√
3
6 i (right)

an = a0 + b0 + c0
3

+ a0 + b0ω2 + c0ω

3
(−1)n

bn = a0 + b0 + c0
3

+ a0ω + b0 + c0ω2

3
(−1)n

cn = a0 + b0 + c0
3

+ a0ω2 + b0ω + c0
3

(−1)n, (22)

which is periodic with period 2 for n ≥ 1, i.e., an+2 = an , bn+2 = bn and cn+2 = cn .
The orbit obtained for α = z2 is shown in Fig. 6(right). For k ≥ 1 we get

a2k−1 = 1 − ω2

3
b0 + 1 − ω

3
c0, a2k = 2

3
a0 + 1 + ω2

3
b0 + 1 + ω

3
c0

b2k−1 = 1 − ω

3
a0 + 1 − ω2

3
c0, b2k = 1 + ω

3
a0 + 2

3
b0 + 1 + ω2

3
c0

c2k−1 = 1 − ω2

3
a0 + 1 − ω

3
b0, c2k = 1 + ω2

3
a0 + 1 + ω

3
b0 + 2

3
c0. (23)

3.4 Orbits with Convergent Subsequences

If 0 < min{r1, r2} < max{r1, r2} = 1 then one either has α ∈ C1 ∩ D2 for r1 = 1, or
α ∈ C2 ∩ D1 for r2 = 1. The orbit has a finite number of limit points if the complex
argument θ of u1 if r1 = 1, or the argument of u2 if r2 = 1 is rational. First, assume
that r1 = max{r1, r2} = 1, i.e., α is on the upper arc C1 ∩ D2.

As α ∈ C1, there is t1 ∈ [
π
6 , 5π

6

]
with α = z1 +

√
3
3 e2π i t , so by (14) we get
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Fig. 7 Orbits for θ1 = p/k = 3/5 where α = z1 +
√
3
3 e

2π i
(
1
4 + 3

5

)

(left)

u1 = e2π iθ1 = √
3i (α − z1) = e2π i(t−

1
4 ).

When θ1 = p
k is an irreducible fraction, the orbit has a finite number of convergent

subsequences. Therefore, we have the following result (Fig. 7).

Theorem 2 If for the integers 0 < p < k we have θ1 = p
k ∈ [

5π
12 , 13π

12

]
is an irre-

ducible fraction, then u1 = e2π i
p
k and by formula (11) the sequences (an)n≥0, (bn)n≥0

and (cn)n≥0 have k subsequences convergent to the vertices of three regular k-gons
centred in g0. Explicitly, for each j = 0, . . . , k − 1 one has

lim
n→∞ ank+ j = g0 + a0 + b0ω2 + c0ω

3
u j
1

lim
n→∞ bnk+ j = g0 + a0ω + b0 + c0ω2

3
u j
1

lim
n→∞ cnk+ j = g0 + a0ω2 + b0ω + c0

3
u j
1. (24)

Proof By (11), one can write an = g0 + Aun1 + Bun2, where A = a+bω2+cω
3 and B =

a+bω+cω2

3 . Since un2 → 0, the long term behaviour of sequence (an)n≥0 is that of
sequence (g0 + Aun1)n≥0, which is a regular polygon centred in g0 having radius |A|.
This behaviour is illustrated in Fig. 8. �

The sequences (an)n≥0, (bn)n≥0 and (cn)n≥0 are plotted in Fig. 8.
Similarly, if r2 = max{r1, r2} = 1, so α is on the arc C2 ∩ D1 defined by (16).

Therefore, there is t ∈ [
7π
6 , 11π

6

]
with α = z2 +

√
3
3 e2π i t , and we get

u2 = e2π iθ2 = −√
3i (α − z2) = e2π i(t−

3
4 ).

When θ2 is rational, the orbit has a finite number of convergent subsequences.
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Fig. 8 Orbits obtained for θ1 = p/k = 3/5. a (an)n≥0; b (bn)n≥0; c (cn)n≥0

3.5 Dense Orbits

As in the previous section, when 0 < min{r1, r2} < max{r1, r2} = 1 but with θ1
irrational, the orbits of (an)n≥0, (bn)n≥0 and (cn)n≥0 are dense within circles. First,
assume that r1 = max{r1, r2} = 1, i.e., α is on the upper arc C1 ∩ D2.

The following result follows by Lemma 2 (d).

Theorem 3 If θ1 ∈ [
5π
12 , 13π

12

]
is irrational, then the sequences (an)n≥0, (bn)n≥0 and

(cn)n≥0 are each dense within a circle centred at g0.

Proof By (11), one can write an = g0 + Aun1 + Bun2, where A = a0+b0ω2+c0ω
3 and

B = a0+b0ω+c0ω2

3 . Since un2 → 0, one can deduce that

lim
n→∞ |an − g0| = lim

n→∞ |bn − g0| = lim
n→∞ |cn − g0| = |A| , (25)

where we used a0ω2 + b0ω + c0 = ω(a0ω + b0 + c0ω2) = ω2(a0 + b0ω2 + c0ω).
Furthermore, the complex arguments of the sequences (an)n≥0, (bn)n≥0 and (cn)n≥0

are dense in [0, 2π ], therefore their orbits are dense within the (same) circle centred
in g0 and having radius |A|. �

Figure9 illustrates the sides of the triangles obtained for n = 10 iterations respec-
tively, when α ∈ C1 ∩ D2.

On the other hand, Fig. 10 depicts all the vertices of the original triangle together
in part (a), but also the individual sequences (an)n≥0, (bn)n≥0 and (cn)n≥0, taken
separately.

A similar behaviour is encountered for r2 = max{r1, r2} = 1, so when α is on the
arcC2 ∩ D1 defined by (16). Therefore, there is t ∈ [

7π
6 , 11π

6

]
withα = z2 +

√
3
3 e2π i t ,

and we get

u2 = e2π iθ2 = −√
3i (α − z2) = e2π i(t−

3
4 ).

When θ2 is irrational, the orbit is again dense, as seen in Fig. 11.
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Fig. 9 Orbits obtained for n = 10 iterations (right), for the parameter value α = 1
2 −

√
3
6 i +√

3
3 (cos 1 + i sin 1) (left figure)

Fig. 10 Orbits given for θ1 =
√
3
4 . a Sequences (an)n≥0, (bn)n≥0 and (cn)n≥0; b (an)n≥0;

c (bn)n≥0; d (cn)n≥0
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Fig. 11 Dense orbits obtained after n = 10 iterations (right), generated for α = z2 +√
3
3 (cos 4 + i sin 4) (left), when u2 = e2π iθ2 , with θ2 = 4

2π + 3
4

Fig. 12 Orbits given by θ2 = 4
2π + 3

4 . a Sequences (an)n≥0, (bn)n≥0 and (cn)n≥0; b (an)n≥0;
c (bn)n≥0; d (cn)n≥0

Figure12 depicts all the vertices of the original triangle together in part (a), but also
the individual sequences (an)n≥0, (bn)n≥0 and (cn)n≥0, taken separately are illustrated
at the points (b), (c) and (d).
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4 Conclusions

In this paper we have investigated the behaviour of Kasner triangles with a com-
plex parameter, identifying the values for which the generated patterns are periodic,
convergent, or divergent. Some of these iterative processes can be extended for an
arbitrary m-polygon to obtain classical Kasner polygons, Kasner polygons with a
fixed weight, Kasner polygons with m fixed weights, Kasner polygons with a fixed
sequence of weights, as discussed in the papers by S. Donisi, H.Martini, G. Vincenzi,
G. Vitale [10] or O. Roeschel [15], and the references therein.
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Application of Conformable Fractional
Nakagami Distribution

Dana Amr and Ma’mon Abu Hammad

Abstract The paper introduces conformable fractional analogs of some basic
concepts related to probability distributions of random variables, namely density,
cumulative distribution, survival, and hazard functions. Moreover, it introduces
conformable fractional analogs to expected values, rthmoments, rth centralmoments,
mean, variance, skewness, and kurtosis. In addition, it introduces conformable frac-
tional analogs to some entropy measures, namely, Shannon, Renyi, and Tsallis
entropy. All these concepts had been applied to the conformable fractional Nakagami
probability distribution (Abu Hammad et al (2020) J Math Comput Sci 1239–1250;
Gaeddert and Annamalai (2005) IEEE 9:22–24).

Keywords Conformable · Conformable entropy · Distributions

1 Introduction

The Nakagami distribution is flexible and provides a fit for failure in data sets.
Nakagami appeared in (1960) Distribution for Radio-Signal Fading Modeling.
Several parametric models are used in the analysis of age data and issues related
to the Failure process[2, 5, 6].

Ultrasound modeling has applications in medical imaging studies especially in
Photographing different forms of tumors, including breast tumors. It is also useful
for modeling high-frequency seismogram envelopes. Reliability engineering makes
extensive use of the Nakagami distribution [9, 10, 14].

The first to use this distribution was Hoffmann in modeling the attenuation of
radio signals Crossing multiple paths. Lin and Yang research and derive a statistical
model for the chromatic spatial distribution of images. By comprehensive evaluation
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of large image databases. Shanker, Tsui, and others used Nakagami Distribution
for modeling ultrasound data in medical imaging studies. Use Kim and Latch man
Nakagami distribution in their multimedia analysis. It was obtained by Azzam Zakka
and Ahmed Saeed Akhtar Bayes estimator for Nakagami distribution [10, 14].

In 2014 Khalil et al. [10] created a new definition of fractional derivative.
This research proposal investigates conformable fractional analogs of some basic

concepts related to the probability distribution of random variables, namely density,
cumulative distribution, survival, and hazard functions. Moreover, it introduces
conformable fractional analogs to expected values, rth moments, mean, variance,
skewness, and kurtosis. In addition, it introduces conformable fractional analogs to
some entropy measures such as Shannon, Renyi, and Tsallis measures.

After using theNakagami probability distribution equation thatwas solved byAbu
Hammad et al. [4, 8] using the new definition of Khalil and finding a new probability
distribution, we will find all the properties of this distribution and generalize them
to Nakagami’s special case.

2 Application on Conformable is α–Nakagami Distribution

Abu Hammad et al. [4, 13], solved the conformable Nakagami differential equation.
They obtained that

f (x) = Ax2β−1e
( −βx2α

(θα)

)
.

2.1 The Conformable Fractional Probability Density
Function is (CFPDF)

Now to get the conformable fractional probability density function Is (CFPDF) of a
random variable X. It’s conformable integral on the interval (0,∞) [1, 3, 7, 11, 12]∫ ∞

0 fα(x)dαx = 1. To evaluate this integral use the substitution z = βx2α

(θα)
to get

fα(x) = 2αβ
2β+α−1

2α

(θα)
2β+α−1

2α �
(
2β+α−1

2α

) x2β−1e− βx2α

θα (1)
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Fig. 1 The (CFPDF) graph when X: NAK (3,2.3)

2.2 The Conformable Fractional Cumulative Distribution
Function (CFCDF)

The CFCDF of X is

Fα(x) = ∫ x
0 fα(y)dαy

Thus,

Fig. 2 The (CFCDF) graph of Nakagami distribution
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Fα(x) = 1 −
ψ

(−1+2β+α

2α ,
βx2α

θα

)

Γ
(−1+2β+α

2α

) , 2β + α > 1 (2)

where ψ is polygama function.

Fα(0) = 0 and lim
x→∞Fα(x) = 1,

2.3 The Conformable Fractional Survival Function (CFSF)
Sα

Is defined as
Sα (x) = 1 − Fα (x). Using Eq. (2).
Hence,

Sα(x) =
ψ

(−1+2β+α

2α ,
βx2α

θα

)

Γ
(−1+2β+α

2α

) (3)

2.4 The Conformable Fractional Hazard Function
(CFHF) hα

Is defined as Hα(x) = fα(x)
Sα(x) . Using Eqs. (1) and (3).

Hence,

hα(x) = 2(θα)−
−1+2β+α

2α β
−1+2β+α

2α α

ψ
(−1+2β+α

2α ,
βx2α

θα

) e− βx2α

θα x−1+2β

2.5 The rth Non-central α–Moment (Eα(Xr))

Eα

(
Xr

) =
∫

∞
0 xr fα(x)dαx

Let y = βx2α

θα
. We get.
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Eα

(
Xr

) =
θα

r
2α β− r

2α Γ
(
2β+r+α−1

2α

)

Γ
(
2β+α−1

2α

)

Remark 1

(1) When r = 1. We get

Eα(X) =
(

θα
β

)− −1+2β+α

2α
(

β

θα

)− 1
2 − β

α

Γ
(
1
2 + β

α

)

Γ
(
2β+α−1

2α

) (4)

(2) When r = 2. We get

EαX
2 = ( θα

β
)

1
α �(

1+2β+α

2α )

�(
−1+2β+α

2α )
(5)

(3) The conformable fractional variance (σ 2
α ).

σ 2
α = EαX

2 − (EαX)2

By using Eqs. (4) and (5).
Then,

σ 2
α =

θα
1
α β−1/α

(
−Γ

(
1
2 + β

α

)2 + Γ
(
2β+α−1

2α

)
Γ

(
2β+α+1

2α

))

Γ
(
2β+α−1

2α

)2

(4) The Conformable Standard Deviation (σα).

Is defined by

σα =
√

σ 2
α

σα =
θα

1
2 /αβ− 1

2 /α

√
−Γ

(
1
2 + β

α

)2 + Γ
(
2β+α−1

2α

)
Γ

(
2β+α+1

2α

)

Γ (
2β+α−1

2α )

(5) When r = 3. We get
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EαX
3 = ( θα

β
)
3
2 /α

�(
2+2β+α

2α )

�(
−1+2β+α

2α )
(6)

The Conformable Skewness (αskw) defined by

αskw = Eα(X − μ)3

(σα
2)

3
2

By Eqs. (4), (5) and (6). We get the α skw is

αskw =

2Γ

(
1

2
+ β

α

)3

− 3Γ

(
1

2
+ β

α

)
Γ

(
2β + α − 1

2α

)
Γ

(
1 + 2β + α

2α

)

+ Γ

(
2β + α − 1

2α

)2

Γ

(
2 + 2β + α

2α

)

(
−Γ

(
1
2 + β

α

)2 + Γ
(
2β+α−1

2α

)
Γ

(
1+2β+α

2α

))3/2

(6) When r = 4. We get

EαX
4 = ( θα

β
)
2/α

�(
3+2β+α

2α )

�(
−1+2β+α

2α )

The Conformable Kurtosis (αkur) defined by

αkur = Eα(x − μ)4

σ 4
α

(7)

By Eqs. (4), (5), (6), and (7). We get the αkur is

αkur =
−3Γ

(
1
2 + β

α

)4 + 6Γ
(
1
2 + β

α

)2
Γ

(−1+2β+α

2α

)
Γ

(
1+2β+α

2α

)

(
Γ

(
1
2 + β

α

)2 − Γ
(−1+2β+α

2α

)
Γ

(
1+2β+α

2α

))2

+
−4Γ

(
1
2 + β

α

)
Γ

(
2β+α−1

2α

)2
Γ

(
2+2β+α

2α

)
+ Γ

(
2β+α−1

2α

)3
Γ

(
3+2β+α

2α

)

(
Γ

(
1
2 + β

α

)2 − Γ
(−1+2β+α

2α

)
Γ

(
1+2β+α

2α

))2 .
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2.6 Conformable Fractional Shannon Entropy αH

Defined by

αH = − ∞∫
0
fα(x)(log fα(x))dαx

αH = 1

2αΓ
(
2β+α−1

2α

) θα
1+ 1−2β−3α

2α β
−1+2β+α

2α

(
β

θα

)− −1+2β+α
2α

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

2αΓ

(
2β + 3α − 1

2α

)
− Γ

(
2β + α − 1

2α

)

⎛
⎜⎜⎝

(1 − 2β) log

(
β

θα

)
+ α

(
log(4) + 2 log(α) − 2 log

(
Γ

(
2β + α − 1

2α

)))

+(−1 + 2β)ψ

(
2β + α − 1

2α

)

⎞
⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

2.7 Conformable Fractional Tsallis Entropy αHT,c

Defined by
αHT,c = 1

1−c (log(
∫ ∞
0 α f c−1(x)dx) − 1)

Then,

αHT,c = 2−2cθ
1
2 − c

2 β
1
2 (−1+c)

α
1
2 (−1+c)c− α−c+2βc

2α �
( −1+2β+α

2α

)−c
�

(
α−c+2βc

2α

)

2(−1+c) .
The lim

c→1
αHT,c = αH . Hence,

lim
c→1

αHT,c = 1

2α
(−1 + 2β + α − αLog(4) + αLog(θ) − αLog(β))

+ 1

2α

⎛
⎜⎜⎝

−αLog(α) + 2αLog

(
�

(−1 + 2β + α

2α

))

+(1 − 2β)ψ

(−1 + 2β + α

2α

)

⎞
⎟⎟⎠,

which is the αH .
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Table 1 Appendix (1): The percentiles of the distribution are: β = 1 and = θ

α 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

P

0.1 0.013 0.063 0.12 0.172 0.22 0.262 0.301 0.336 0.369

0.2 0.04 0.144 0.238 0.314 0.377 0.43 0.475 0.515 0.549

0.3 0.086 0.25 0.374 0.465 0.534 0.59 0.635 0.673 0.705

0.4 0.16 0.39 0.535 0.632 0.701 0.754 0.794 0.827 0.854

0.5 0.281 0.577 0.733 0.826 0.888 0.931 0.962 0.986 1.005

0.6 0.484 0.838 0.987 1.062 1.105 1.132 1.149 1.16 1.168

0.7 0.848 1.226 1.332 1.366 1.375 1.374 1.368 1.361 1.353

0.8 1.592 1.868 1.849 1.795 1.741 1.693 1.651 1.614 1.582

0.9 3.651 3.222 2.816 2.54 2.345 2.199 2.086 1.996 1.921

2.8 Conformable Fractional Renyi Entropy αHR,c

Defined by
αHR,c = 1

1−c (log
∫ ∞
0 f c−1(x)dx).

Then,

αHR,c = 1

2α(−1 + c)

⎛
⎜⎜⎜⎝

α(−1 + c)Log(θ) + (α − αc)Log(4β) + αLog(α)

−αcLog(α) + αLog(c) − cLog(c) + 2βcLog(c)

+2αcLog

(
�

(−1 + 2β + α

2α

))
− 2αLog

(
�

(
α − β + 2βc

2α

))

⎞
⎟⎟⎟⎠.

The lim
c→1

αHR,c = αH . Hence,

lim
c→1

αHR,c =

−1 + 2β + α − αLog(4) + αLog(θ) − αLog(β) − αLog(α)

+2αLog

(
�

(−1 + 2β + α

2α

))
+ (1 − 2β)ψ

(−1 + 2β + α

2α

)

2α
,

which is the αH
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Table 2 Appendix (2): The percentiles of the distribution are: β = 0.9 and θ = 0.9

α 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

p

0.1 0.001 0.011 0.036 0.069 0.105 0.142 0.179 0.214 0.247

0.2 0.002 0.027 0.077 0.135 0.193 0.247 0.296 0.341 0.382

0.3 0.004 0.05 0.128 0.208 0.283 0.349 0.407 0.457 0.502

0.4 0.007 0.081 0.19 0.293 0.382 0.456 0.519 0.572 0.617

0.5 0.013 0.125 0.269 0.393 0.493 0.574 0.639 0.692 0.736

0.6 0.024 0.189 0.372 0.517 0.626 0.709 0.774 0.824 0.864

0.7 0.043 0.287 0.516 0.679 0.793 0.874 0.933 0.977 1.011

0.8 0.086 0.454 0.736 0.912 1.022 1.092 1.14 1.172 1.194

0.9 0.214 0.82 1.158 1.323 1.403 1.443 1.46 1.465 1.464
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Self-Consistent Single-Particle Spectra
with Delta Excitations

Mohammed Hassen Eid Abu-Sei’leek

Abstract Single-particle energies of spherical double magic rich-neutron 208Pb
nucleus are investigated by using a realistic effective baryon-baryon Hamiltonian.
The results showed that the computed spectrum followed the expected arrangement
of the shell model in the dominant nucleon orbitals. In this spectrum, visible gaps
between the shells are clearly shown. By compressed nucleus, the arrangement of
single-particle orbitals and their gaps ismaintained.When the nucleus is compressed,
the general trend of single-particle energies shifts to higher energies. When the
orbitals approach the surface, their curvature rises more andmore. For�0 orbitals, in
some root mean square radii (rrms), some orbitals close together but do not intersect.
There is no clear evidence for the gaps in the nuclear shells. However, a gap of about
251.2 MeV was observed between the last dominant neutron orbital and the first
predominant �0 orbitals, in this work. This is attributed to the difference in the rest
mass of baryons that are neutron (ns and �0) particles.

Keywords Nuclear structure · Single-particle energy · Compressed finite nuclei ·
�-resonance · Shell model · Heavy spherical doubly magic 208Pb nucleus

PACS 21.10.Dr · 21.10.Pc · 21.60.Cs · 27.80.+w

1 Introduction

The nuclear shell model, developed by Mayer and Jensen in 1952, is now a very
successful and highly developed microscopic theory for the structure of finite nuclei
[1]. It would be hoped to reproduce a basic systematic feature of the set of atomic
nuclei: the “magic numbers”. Empirically, it is found that there are large deviations
from the smooth Bethe-Weizäcker formula for nuclear binding energies near certain
“magic” values of N and Z [2]. The nuclei that have the same values of Z, N =
2, 8, 20, 28, 50, 82, 126, 184, and 258 have an excess of binding energy [3]. The
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Woods-Saxon potential [4] with a spin-orbital force is the mean field which is the
basis for the nuclear shell model. In addition, one can add residual interactions and
correlations to produce more of the details of the structure of nuclei.

Studies of the compression of stable nuclei found on Earth have already taught
scientists a great deal of invaluable information about the mechanical properties of
the dense matter of which they are formed: nuclear matter. For several decades,
physicists have been able to compress these stable nuclei through collisions with
light nuclei. Until now, however, it has been impossible to compress unstable nuclei,
since they are found in the form of beams produced by an accelerator [5].

In the dense phase of relativistic heavy ion collisions, 30% of the baryon pop-
ulation is presented as delta-resonances [6–9]. It leads to a great interest in the
investigation of delta matter formation at the deep interior of compact stars [10].

The primary purpose of this paper is to investigate the self-consistent spectra of a
single particle of 208Pbwith delta excitations. The detailed calculations demonstrated
the effective Hamiltonian [11–14], Hef f , and the calculation procedures [15–17].
Based on these presented studies, the two body matrix elements in the N-N sector are
scaled to the optimum value of �ω′, the oscillator energy for the 208Pb nucleus in the
9 nuclear shells with the 10 � orbitals [15–24]. Using the modification parameters,
λ1, λ2, and �ω′, it is possible to obtain such a fit to the balance of the binding energy
and rrms radius [25]. In this study, the modification parameters, λ1, λ2, and �ω′ are
0.997, 1.001, and 7.345, respectively.

This paper is written as follows: Sect. 2 includes results and discussions. Section3
specifies the conclusion and outlook.

2 Results and Discussion

In our previous studies, the nuclei 40Ca, 90Zr , 100Sn, 132Sn, and 208Pbwere concen-
trated to define methods and demonstrate sensitivity for choosing a nuclear model
space size ?, [11–24]. One major conclusion from these investigations was that the
zero temperature compressibility was decreased between 20% and 40% when the �

degree of freedom was activated.
Now, properties of heavier nucleus 208Pb are examined in the largest of the N-

� model space. A section of results for 208Pb concentrates on the self-consistent
behavior of single-particle spectra for nucleons and�s in the lowest state as a function
of the compression on the nucleus.

Figure1 displays the 37 consistent self-occupied orbitals of zero-charge baryon.
These 37 orbitals are occupied by 258 baryons which are mixtures of the neutron
and the�0. Recall that this single-particle spectrum is generated from the underlying
microscopic Hamiltonian [26]. Furthermore, the gaps in the conventional shell are
clearly visible. When 208Pb is also compressed, the arrangement of single-particle
levels and the shell gaps are conserved. The orbitals closest to zero single-particle
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Fig. 1 Lowest 37 constrained sphericalHartree-Fock single-particle orbitals for 208Pb as a function
of the root mean square (rms) radius. These orbitals absorb 258 charge-zero baryons in the system

energy are themost compression-sensitive. Thismeans that the surface of the nucleus
is more responsive to the compression load than the inner region of the nucleus.

Ten self-consistent zero-charge levels of a single particle that are dominant �0

characters are shown in Fig. 2 versus the rms radius. As for the occupied orbitals,
the expected trend toward higher energy is indicated by the compressed system. It
is interesting to note that the ranking of the level, which progresses from lowest
to highest, is 0s3/2, 0p3/2, 0p1/2, 0d5/2, 0d3/2, 0d1/2, 1s3/2, 0 f7/2, 0 f5/2, and 0 f3/2.
Although some orbitals come close to each other in some rms radii, they do not
intersect. There is no clear evidence of the nuclear shell gaps in Fig. 2.

Figure3 sees the three uninhabited orbitals of zero charge (the lower curves in
the figure) and the 10 orbitals, which are �0 (overriding the upper curves in the
figure). A gap of about 251.2 MeV is observed between the last dominant orbital
of neutrons and the first predominantly �0 orbitals due to the difference in the rest
mass of baryons (neutrons and �0s). These results show the gap between nucleons
and delta levels.

Finally, the behavior of the positively charged baryon orbitals is not shown sepa-
rately here because it exhibits properties similar to those of the chargeless baryons.

Perhaps the most prominent feature of these 208Pb results, in contradiction to all
our previous results, is the large presence of �s in the ground state of equilibrium.
This strongly stimulates more efforts to move forward with larger model spaces and
heavier nuclei.
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Fig. 2 The 10 self-consistent zero-charge levels of single-particle orbitals for the 208Pb nucleus
which are dominant �0 in character versus the rms radius

Fig. 3 Orbitals of single-particle energy as a function of rrms for the zero-charge unoccupied
orbitals (low curves) and the 10 orbitals, which are dominant �0 for the 208Pb nucleus
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3 Conclusion and Outlook

By using an effective baryon-baryon realist Hamiltonian, self-consistent single-
particle spectra with delta excitations of the spherical nucleus 208Pb have been inves-
tigated in a bound Hartree-Fock approximation. In this approach, the nuclear shell
model is derived with single-particle energy levels occupied by baryons, which are a
mixture of nucleons and �s. As shown in 208Pb, the results compare favorably with
those of the success phenomena of the shell model. In the near future, we are excited
to extend this study to finite temperature, into larger nuclear model space sizes and
into heavier nuclei.

Remember that the spectrum of a single particle is constructed entirely from the
basic microscopic Hamiltonian. Thus, it is a remarkable result of these calculations
that the computed spectrum follows the expected order of shell model phenomena in
the orbits of dominant nucleons, and the spectrum gaps appear clearly between the
shells. When the nucleus is compressed, the arrangement of single-particle orbitals
and gaps is maintained. It should also be noted that orbitals closer to a single-particle
zero energy are more compression-sensitive; this means that there is more compres-
sion response from inside the nucleus. The general trend for exhibited single-particle
energies is to shift to higher energies when the nucleus is compressed.

The behavior of single-particle energy orbitals matches well with the orbital
arrangement of the nuclear standard shell model. The gap between the shells is very
clear. The splitting of the orbitals in each shell is an indication that the L-S coupling
is sufficiently strong in Reid soft core potential, i.e., L-S coupling becomes stronger
when the static load on the nucleus is increased. When the nucleus is compressed,
the cleavage of the orbitals becomes more pronounced, especially in delta orbitals.
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of Scientific Research at Zarqa University/Jordan.
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Fractional-Order SEIR Covid-19 Model:
Discretization and Stability Analysis

Iqbal M. Batiha, Noureddine Djenina, Adel Ouannas,
and Taki-Eddine Oussaeif

Abstract From the perspective of the fact that confirms all statistics on epidemics
can be classified as discrete, we aim in this paper to provide a new discrete-time
version of a recent SEIRmathematical model. In other words, a new nabla fractional-
order discrete-time system associated with the SEIR model is investigated in terms
of its stability analysis including its positively invariant region, fixed points, and
basic reproductive number. Several numerical simulations are illustrated to verify
our findings.

Keywords Discrete fractional calculus · Fractional-order discrete-time system ·
Positively invariant region · Fixed points · Basic reproductive number

1 Introduction

Epidemics have been a source of danger to humanity since ancient times, and they
still pose a great threat to life, and also cause great disruptions from an economic
point of view and cause many problems. Therefore, understanding the behavior of
epidemics is deemed a very important issue to try to control. It is common knowledge
that the mathematical modeling can provide us with great efficiency and reliability
for understanding the behavior of diseases and epidemics. More recently, several
models have been studied in this field trying to understand the behavior of Covid-19
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Table 1 Initial values of the SEIR model

Variable Description

S Susceptible compartment

E Exposed compartment

I Infected compartment

R Recovered compartment

μ′ Corona death rate

d ′
0 Natural death

β′ Reducing infection rate

b′ Recruitment rate

a′
1 Contact rate

γ′ The saturation constant

a′
2 Interaction of infected and exposed

w′ Recovery rate

τ ′ Individuals goes to Exposed class

diseases and other diseases, see [5–11]. In light of this fact, we intend to be interest
with a recent Covid-19 model presented in [12] that can be described as follow:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dS(t)
dt = b′ − a′

1S(t)I (t)
1+γ′ I (t) − (d ′

0 + τ ′)S(t),
dE(t)
dt = τ ′S(t) − d ′

0E(t) − a′
2β

′E(t)I (t),
d I (t)
dt = a′

2β
′E(t)I (t) + a′

1S(t)I (t)
1+γ′ I (t) − (d ′

0 + μ′ + w′)I (t),
dR(t)
dt = w′ I (t) − d ′

0R(t),

(1)

subject to the following initial conditions:

S(0), E(0), I (0), R(0) ≥ 0. (3)

where t ∈ R
+, and where the parameters as well as the states of the above system

are described in Table1.
Adding up the equations in system (1) yields the following assertion:

N = S + E + I + R.

In fact, due to the statistics associated with this epidemic being discrete, then the
system that we aim to propose it will be proper to be modeled in its discrete-time
case. In light of this view, we will use the following approximation:

dX (t)

dt
� X (t) − X (t − h)

h
. (4)
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This would make system (1) to be expressed as follows:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

S(t)−S(t−h)

h = b′ − a′
1S(t)I (t)
1+γ′ I (t) − (d ′

0 + τ ′)S(t),
E(t)−E(t−h)

h = τ ′S(t) − d ′
0E(t) − a′

2β
′E(t)I (t),

I (t)−I (t−h)

h = a′
2β

′E(t)I (t) + a′
1S(t)I (t)
1+γ′ I (t) − (d ′

0 + μ′ + w′)I (t),
R(t)−R(t−h)

h = w′ I (t) − d ′
0R(t).

t ∈ R
+.

Bymultiplying both sides of the above systemby h, using the notations X (t) = X (n)

as well as X (t − h) = X (n − 1), where n ∈ N, X (t) = (S (t) , E(t), I (t) , R (t)),
and then by setting:

μ = hμ′; d0 = hd ′
0; β = hβ′;

b = hb′; a1 = ha′
1; γ = γ′

a2 = ha′
2; w = hw′; τ = hτ ′,

then we will gain the following system:

⎧
⎪⎪⎨

⎪⎪⎩

∇S(n) = b − a1S(n)I (n)

1+γ I (n)
− (d0 + τ )S(n),

∇E (n) = τ S(n) − d0E(n) − a2βE(n)I (n),

∇ I (n) = a2βE(n)I (n) + a1S(n)I (n)

1+γ I (n)
− (d0 + μ + w)I (n),

∇R (n) = w I (n) − d0R(n).

n ∈ N, (5)

where ∇ is the backward difference operator (i.e., ∇X (n) = X (n) − X (n − 1)).
In more recent time, several modeling chemical and physical phenomena have

broadly been carried out using the theory of fractional-order discrete-time systems,
see [1, 2]. To obtain a full overview of the topic handled here, the reader may
refer to [13] to get many definitions of the fractional-order discrete-time operators,
while the reader may refer to [14] to get a sufficient knowledge about the stability
analysis of the delta commensurate fractional-order operators. In the same regard, the
incommensurate fractional-order case was addressed in [3, 4], whereas the stability
analysis of the nabla operator was just studied in [15] in its commensurate fractional-
order case.

2 Preliminaries

In order to propose a new discrete-time version of the SEIRmodel given in the system
(5), this section introduces briefly some basic definitions and preliminaries associated
with discrete fractional calculus. In all of the definitions below, the function f is
defined on Na = {a, a + 1, a + 2, . . .}, for a ∈ R.

Definition 1 ([13]) For a function f : Na → R, the nabla fractional sum of order
α > 0 is defined by
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∇−α
a f (t) := 1

�(α)

t∑

s=a+1

(t − s + 1)α−1 f (s), for t ∈ Na, (10)

where �(·) is the Euler’s gamma function and tα = �(t+α)

�(t) .

Definition 2 ([13]) The nabla Riemann-Liouville fractional-order difference oper-
ator of order 0 < α ≤ 1 is defined by

∇α
a f (t) := (∇ ∇−(1−α)

a f
)
(t) = 1

�(1 − α)
∇

t∑

s=a+1

(t − s + 1)−α f (s), for t ∈ Na+1,

(11)
where a is the starting point and ∇ f (t) = f (t) − f (t − 1).

Definition 3 ([13]) Assume that 0 < α ≤ 1, a ∈ R, and f is defined on Na . Then
the nabla Caputo fractional-order difference operator of order α is defined by

C∇α
a f (t) := (∇−(1−α)

a ∇ f
)
(t) = 1

�(1 − α)

t∑

s=a+1

(t − s + 1)−α (∇ f ) (s), (12)

where a is the starting point and t ∈ Na+1.

In view of the previous arguments, we intend to propose what we are interested
in this paper; the fractional-order discrete-time system associated with system (5).
In particular, we propose the following system:

⎧
⎪⎪⎨

⎪⎪⎩

C∇α
a S(t) = b − a1S(t)I (t)

1+γ I (t) − (d0 + τ )S(t),
C∇α

a E (t) = τ S(t) − d0E(t) − a2βE(t)I (t),
C∇α

a I (t) = a2βE(t)I (t) + a1S(t)I (t)
1+γ I (t) − (d0 + μ + w)I (t),

C∇α
a R (t) = w I (t) − d0R(t).

t ∈ N1. (13)

Clearly, the above system is more general than the system (5), and all the stability
results that we will obtain soon remain true for system (5) when α = 1. As a matter
of fact, we can see that the last equation of system (13) can be abandoned, and so we
aim to take care of the following system:

⎧
⎪⎨

⎪⎩

C∇α
a S(t) = b − a1S(t)I (t)

1+γ I (t) − (d0 + τ )S(t),
C∇α

a E (t) = τ S(t) − d0E(t) − a2βE(t)I (t),
C∇α

a I (t) = a2βE(t)I (t) + a1S(t)I (t)
1+γ I (t) − (d0 + μ + w)I (t),

t ∈ N1. (14)
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3 Stability Analysis

In this part, we will investigate the stability analysis of a fractional-order discrete-
time system (14) in light of its positively invariant region, fixed points, and the basic
reproductive number.

3.1 Positively Invariant Region

In order to address the invariant region of the fractional-order discrete-time system
(13), we state and prove the next theoretical result.

Theorem 1 The set:

� =
{

(S, E, I, R) ∈ R
4
+ and S + E + I + R ≤ b

d0

}

, (6)

of system (14) is invariant region, where

R
4
+ = {

(x1, x2, x3, x4) ∈ R
4 and xi ≥ 0 for i = 1, 2, 3, 4

}
.

Proof Without loss of generality, we assume that α = 1 in system (13). This means
that system (13) and system (5) are equivalent. Now, to prove the positivity of the
solution of the system (5), we assume by contrary the opposite. In particular, we
assume that the first component of S is negative at n0 ∈ N. This would imply

S (n0) − S (n0 − 1) = b − a1S(n0)I (n0)

1 + γ I (n0)
− (d0 + τ )S(n0) ≥ 0,

or
S (n0) ≥ S (n0 − 1) ≥ 0,

which is a contradiction. Therefore, we have S (n) ≥ 0, for n > n0. In a similar
manner, we can prove the following assertions:

E (n) ≥ 0, I (n) ≥ 0, R (n) ≥ 0.

Consequently, by adding the equations of system (5) to each other, we get

∇N (n) = b − d0N (n) − μI (n).

Due to the class I is positive, we obtain

∇N (n) ≤ b − d0N (n),
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where
N (0) = S(0) + E(0) + I (0) + R(0).

Applying comparison theorem yields to the following inequality:

N (n) ≤ b + N (n − 1)

1 + d0
.

Let N (0) ≤ b
d0
, and suppose that N (n − 1) ≤ b

d0
for some natural number n, then

we get

N (n) ≤ b + N (n − 1)

1 + d0
≤ b + b

d0

1 + d0
= b

d0
.

By induction, we can find that the solution of system (5) exists when:

0 ≤ N (n) ≤ b

d0
,

for all n. Hence, this solution belongs to the following invariant region:

� =
{

(S, E, I, R) ∈ R
4
+ and S + E + I + R ≤ b

d0

}

.

3.2 Fixed Points and Basic Reproduction Number

In order to compute the basic reproduction number, which is deemed one of the most
important epidemical concepts, it is necessary to study the dynamics of the proposed
system in terms of its fixed points. Such points can be found by solving the following
system of equations:

⎧
⎪⎪⎨

⎪⎪⎩

b − a1S∗ I ∗
1+γ I ∗ − (d0 + τ )S∗ = 0,

τ S∗ − d0E∗ − a2βE∗ I ∗ = 0,
a2βE∗ I ∗ + a1S∗ I ∗

1+γ I ∗ − (d0 + μ + w)I ∗ = 0,
w I ∗ − d0R∗ = 0.

(7)

As a matter of fact, there are two kinds of fixed points; the first one is called the
disease-free fixed pointwhich can be yielded by considering I ∗ = 0,whereas the sec-
ond one is called the endemic fixed point which can be obtained by considering I ∗ 
=
0. In view of this point, the previous equations can yield ε0 =

(
b

τ+d0
, τb
d0(τ+d0)

, 0, 0
)

as a disease-free fixed point. On the other hand, if one supposes that I ∗ 
= 0, then
we get
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S∗ = b(1+γ I ∗)
d0+τ+a1 I ∗ ,

E∗ = τb(1+γ I ∗)
(d0+τ+a1 I ∗)(a2β I ∗−d0)

,

R∗ = w
d0
I ∗.

(8)

This means that the endemic fixed point is ε∗ = (S∗, E∗, I ∗, R∗). It was reported in
Ref. [12] that the basic reproductive number R0 has the form:

R0 = b(a1d0 + a2βτ )

d0 (d0 + τ ) (d0 + μ + w)
. (9)

In fact, the basic reproduction number has increasingly been a principal quantity
used for determining the force of required interferences for controlling the epidemics.
It is common knowledge that if R0 < 1, then there is an absence of epidemics in
natural populations. On the contrary, if R0 > 1, then the disease will increasingly
spread in the susceptible population. From this point of view together with the next
result, we can then give some other theoretical results connected with the stability
analysis of the system (14).

Theorem 2 ([15]) If all eigenvalues of the jacobian matrix J at the fixed point x∗
of system (14) are located in the set

{
z ∈ C : |arg z| > απ

2 or |z| >
(
2 cos arg z

α

)α}
,

then system (14) has a unique solution for all initial vectors close enough to x∗ and
moreover x∗ is asymptotically stable.

Theorem 3 Suppose that R0 < 1. Then the disease-free fixed point ε0 of system (14)
is locally asymptotically stable.

Proof To prove this result, we find the Jacobian matrix at ε0 as follows:

J0 =
⎛

⎝

−(τ + d0) 0 a1b
τ+d0

τ −d0
a2βτb

d0(τ+d0)
0 0 R0 − 1

⎞

⎠ .

The characteristic polynomial of J0 can be then given by

λ3 + Aλ2 + Bλ + C = 0, (15)

where
A = d0(τ + d0) + (μ + d0 + w)(1 − R0) > 0

B = d0(τ + d0) (1 + (μ + d0 + w)(1 − R0)) > 0
C = d0(τ + d0)(μ + d0 + w)(1 − R0) > 0.

Consequently, we have

AB − C = d0(τ + d0)
(
(μ + d0 + w)2 + d0(τ + d0) ((μ + d0 + w) + 1)

)
(1 − R0).
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Then by Routh-Hurtwriz criteria the roots of polynomial (15) have a negative real
part if R0 < 1. This shows, according to Theorem 2, that system (14) is locally
asymptotically stable at ε0.

Theorem 4 Under the condition R0 > 1, system (14) is locally asymptotically stable
at ε∗.

Proof The jacobian matrix of system (14) at the endemic fixed point ε∗ can be given
as

J∗ =
⎛

⎜
⎝

−(τ + d0) − a1 I ∗
1+γ I ∗ 0 − a1S∗

(1+γ I ∗)2

τ −d0 − a2β I ∗ −a2βE∗
a1 I ∗
1+γ I ∗ a2β I ∗ a1S∗

(1+γ I ∗)2 + a2βE∗ − (μ + d0 + w)

⎞

⎟
⎠ .

According to [12], all eigenvalues of J∗ have negative real parts when R0 > 1, Thus,
according to Theorem2, system (14) is asymptotically stable at ε∗.

4 Numerical Simulations

In this section, we will provide several graphical simulations to explain the results
obtained in the previous section. Therefore, we choose a divided population (in
millions) as follows [16]:

S (0) = 219.87904,
E (0) = 0,

I (0) = 0.521211,
R (0) = 0.486225.

(16)

In the same regard, we take the parameters of system (14) as follows:

μ = 1. 9 × 10−5; d0 = 1. 9 × 10−5; β = 9 × 10−6;
b = 3 × 10−4; a1 = 10−5; γ = 9. 860 1 × 10−6;
a2 = 2 × 10−5; w = 5. 8 × 10−6; τ = 7. 28 × 10−5.

(17)

To apply Theorem3, one must first calculate R0, which would be as follows:

R0 = b(a1d0 + a2βτ )

d0 (d0 + τ ) (d0 + μ + w)
,

or

R0 = 0.0003(0.00001 × 0.000019 + 0.00002 × 0.000009 × 0.0000728)

0.000019 × (0.000019 + 0.0000728) (0.000019 + 0.000019 + 0.0000058)
.

This implies that R0 = 0.74616 < 1. Therefore, according toTheorem3, the disease-
free fixed point ε0 of system (14) is locally asymptotically stable. However, Figs. 1,
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Fig. 1 Numerical simulation when a1 = 10−5 (R0 < 1) and α = 0.5

Fig. 2 Numerical simulation when a1 = 10−5 (R0 < 1) and α = 0.7

2 and 3 illustrate the dynamics of system (14) in the case of R0 < 1. It can be seen
from these graphs that a slight change in the fractional-order values allows one to
control the curvature of the system’s curves.

In the same context, if one takes the value a1 = 0.00003,we get R0 = 2.2384 > 1.
Then the endemic fixed point ε∗ of system (14) is locally asymptotically stable. Thus,
it is expected that the Covid-19 diseases will be increased over time, see Figs. 4, 5,
and 6.
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Fig. 3 Numerical simulation when a1 = 10−5 (R0 < 1) and α = 0.9

Fig. 4 Numerical simulation when a1 = 3 × 10−5 (R0 > 1) and α = 0.5

5 Conclusions

In this work, we have provided a new discrete-time version of a recent SEIR math-
ematical model. This model has been investigated in terms of its stability analysis
including its positively invariant region, fixed points, and the basic reproductive
number.
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Fig. 5 Numerical simulation when a1 = 3 × 10−5 (R0 > 1) and α = 0.7

Fig. 6 Numerical simulation when a1 = 3 × 10−5 (R0 > 1) and α = 0.9
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A q-Starlike Class of Harmonic
Meromorphic Functions Defined by
q-Derivative Operator

Abdullah Alsoboh and Maslina Darus

Abstract In this present work, we introduces a subclass of harmonic meromorphic
functions associated with q-calculus operator.With that, we study various interesting
properties of this class, like, the coefficients bounds, distortion theorems, extreme
points, convolution, convex combinations. Further, q-integral operator is also defined
and we show that the new class aforementioned is closed under this q-derivative
operator.

Keywords Harmonic function · Meromorphic function · q-Starlike function ·
q-Calculus · q-Integral operator

1 Introduction and Preliminaries

Quantum calculus (or q-calculus) has attracted the interest of many researchers due
to its several applications in different branches of mathematics and physics, espe-
cially geometric function theory. The structure of q-calculus enhances the method
of conventional complements for various modules of orthogonal polynomials and
functions. One of the most useful and well-designed tools for analysing the charac-
teristics of special functions in mathematical analysis and mathematical physics is
the connection between equilibriums of differential formulae (equations, operators,
and inequalities) and their solutions. The q-calculus was initiated by Euler and Jacobi
in 18th century. The application of q-calculus was initiated and developed in a sys-
tematic way by [17, 18]. Aral and Gupta [10, 11] proposed q-analogue of Baskakov
and Durrmeyer operator depends on quantum calculus. Some other applications of
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q-operator are studied by Aral et. al [12] and Elhaddad et. al [15]. The harmonic
type of q-analogues calculus are found in ([1–3, 13, 23]). Many different problems
related to q-calculus can be seen recently in [21] and ([4–8]). In the future, we believe
that deriving operators upon q-analogues in the classes of harmonic functions will
gain significant importance.

Now, we present some definitions and concepts of q-calculus used throughout
this paper by assuming that q satisfies the condition q ∈ (0, 1), (see for more details
[16]).

Definition 1 Let s ∈ N and q ∈ (0, 1). The q-number, denoted by [s]q , is defined
by

[s]q = 1 − qs

1 − q
.

When s ∈ N, we obtain [s]q = 1 + q + · · · + qs−1, and when q → 1−, then
[s]q = s.

Definition 2 The q-derivative (or q-difference operator) of a function f , defined on

∂q f (z) =
⎧
⎨

⎩

f (z)− f (qz)
z−qz z ∈ C\{0}

1 z = 0,

We note that lim
q→1−

∂q f (z) = f
′
(z) if f is differentiable at z ∈ C.

Jackson [17] also introduced the q-integral of any function f by

∫ z

0
f (t)dqt = (1 − q)z

∞∑

n=0

qn f (qnz) (1)

provided that the series on right-hand side converges. For z ∈ Δ∗ = Δ \ {0}, letMH
be the class of functions:

f (z) = h(z) + g(z) = 1

z
+

∞∑

s=1

asz
s +

∞∑

s=1

bszs, (2)

which are harmonic in the punctured unit disc Δ∗, where h(z) and g(z) are analytic
in Δ∗ and Δ, respectively, and h(z) has a simple pole at the origin with residue 1,
this class was investigated studied by Jahangiri and Silverman [20] and then studied
by [2, 9, 14].
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We now define the class MHq consisting of q-harmonic meromorphic functions
in Δ∗.

Definition 3 Aharmonic function f = h + g defined by (2) is said to be q-harmonic
meromorphic, locally univalent and sense-preserving in Δ∗ denoted byMHq , if and
only if ∣

∣
∣
∣
∂qg(z)

∂qh(z)

∣
∣
∣
∣ < 1, (q ∈ (0, 1), z ∈ Δ∗). (3)

Note that for lim
q→1−

MHq = MH, the harmonicmeromorphicwas studiedby Jahangiri

and Silverman [20] and Jahangiri [19].

Let κ ≥ 0, 0 < q < 1 and f ∈ MHq , we now define the operator Dκ
q f (z) :

MHq → MHq as
Dκ

q f (z) = Dκ
q h(z) + (−1)κDκ

q g(z), (4)

where

Dκ
q h(z) = qz∂q(D

κ−1
q h(z)) = (−1)κ

z
+

∞∑

s=1

qκ [s]κqas zs,

Dκ
q g(z) = qz∂q(D

κ−1
q g(z)) =

∞∑

s=1

qκ [s]κqbs zs .

Using the operator Dκ
q , we define a generalised harmonic meromorphically starlike

functions in Δ∗, with the definition below.

Definition 4 For 0 < q < 1 and 0 ≤ α < 1, MH∗
q
(α, κ) denotes the class of har-

monic meromorphic functions f as in (2) if it satisfies the condition

	e

{

−qz∂q(Dκ
q h(z)) − qz∂q(Dκ

q g(z))

Dκ
q h(z) + Dκ

q g(z)

}

> α, (z ∈ Δ∗). (5)

When κ = 0, then MH∗
q
(α, κ) is reduced to MH∗

q
(α) introduced by Aldweby and

Darus [2], and limq→1− MH∗
q
(0, 0) is the harmonic starlike class introduced by

Jahangiri and Silverman [20].
Also,MH∗

q
(α, κ) ⊂ MH∗

q
(α, κ) consists ofmeromorphically harmonic functions

of the form fκ(z) = hκ + gκ such that hκ and gκ are of the form

hκ(z) = (−1)κ

z
+

∞∑

s=1

|as |zs, gκ(z) = (−1)κ
∞∑

s=1

|bs |zs, z ∈ Δ∗. (6)
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2 Coefficient Condition

In our first theorem, we determine the sufficient coefficient bounds for the functions
f in the class MH∗

q
(α, κ).

Theorem 1 For 0 ≤ α < 1 and f = h + g defined by (2) which satisfies the
condition

∞∑

s=1

qκ [s]κq
(
(q[s]q + α)|as | + (q[s]q − α)|bs |

)
≤ 1 − α, (7)

where κ ∈ {0, 1, 2, . . . } and q ∈ (0, 1). Then

(a) f is harmonic univalent and sense-preserving in Δ∗.
(b) f ∈ MH∗

q
(α, κ).

�
Proof Consider f = h + g as in (2), satisfying the inequality (7). For 0 < |z1| ≤
|z2| < 1, we have

| f (z1) − f (z2)| ≥ |z1 − z2|
|z1z2|

(

1 − |z2|2
∞∑

s=1

(|as | + |bs |) |z1s − z2
s |

|z1 − z2|

)

≥ |z1 − z2|
|z1z2|

(
1 − |z2|2

∞∑

s=1

(|as | + |bs |)
∣
∣
∣zs−1
1 + · · · + zs−1

2

∣
∣
∣

)

≥ |z1 − z2|
|z1z2|

(

1 − |z2|2
∞∑

s=1

(|as | + |bs |)qκ [s]κq
)

> |z1 − z2|
(

1 −
∞∑

s=1

{
qκ [s]κq ([s]q + α)

1 − α
|as | + ([s]q − α)qκ [s]κq

1 − α
|bs |

})

.

By condition (7) the last expression is non-negative. Therefore, f is univalent in Δ∗.
To prove that f is sense-preserving, it is enough to show that |∂qh(z)| > |∂qg(z)|, as
follows.

∣
∣
∣q∂qh(z)

∣
∣
∣ =

∣
∣
∣
∣
∣

−1

z2
+

∞∑

s=1

asq[s]q zs−1

∣
∣
∣
∣
∣
≥

∣
∣
∣
∣
−1

z2

∣
∣
∣
∣ −

∞∑

s=1

|as |q[s]q |z|s−1

≥ 1

r2
−

∞∑

s=1

|as |q[s]qrs−1 ≥ 1 −
∞∑

s=1

q[s]q |as | ≥ 1 −
∞∑

s=1

|as |
(
q[s]q + α

1 − α

)

≥
∞∑

s=1

(
q[s]q − α

1 − α

)

|bs | >

∞∑

s=1

|bs |q[s]qrs−1 > |q∂qg(z)|.

In order to prove that f ∈ MH∗
q
(α, κ), it suffices to show that
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	e

{

−qz∂q(Dκ
q h(z)) − qz∂q(Dκ

q g(z))

Dκ
q h(z) + Dκ

q g(z)
− α

}

> 0, (z ∈ Δ∗).

Since, 	e(ρ(z)) > 0 if and only if
∣
∣
∣
ρ(z)−1
ρ(z)+1

∣
∣
∣ < 1 for an analytic function ρ(z) =

1 + d1z + d2z2 + . . . . Let

Γ (z) = −qz∂q(D
κ
q h(z)) + qz∂q(Dκ

q g(z)) − αDκ
q h(z) − αDκ

q g(z), (8)

and
Λ(z) = Dκ

q h(z) + Dκ
q g(z). (9)

Then, we have to show that

ℵ(z) = |Γ (z) + Λ(z)| − |Γ (z) − Λ(z)| > 0 (10)

Now, by substituting (4) in the left-hand side of the inequality (10) yields

ℵ(z) ≥ 2 − 2α

r
− 2

∞∑

s=1

(qκ+1[s]κ+1
q + αqκ [s]κq )|as |rs − 2

∞∑

s=1

(qκ+1[s]κ+1
q − αqκ [s]κq )|bs |rs

≥ 2

(

(1 − α) −
∞∑

s=1

qκ [s]κq (q[s]q + α)|as | −
∞∑

s=1

qκ [s]κq (q[s]q − α)|bs |
)

≥ 2(1 − α)

(

1 −
∞∑

s=1

qκ [s]κq (q[s]q + α)

1 − α
|as | −

∞∑

s=1

qκ [s]κq (q[s]q − α)

1 − α
|bs |

)

.

This expression is positive by condition (7), which completes the proof.
In the following theorem, it is shown that the condition (7) is also necessary for

f ∈ MH∗
q
(α, κ). �

Theorem 2 For fκ = hκ + gκ ∈ MHq
of the form (6), then fκ ∈ MH∗

q
(α, κ) if and

only if the inequality

∞∑

s=1

qκ [s]κq
(
(q[s]q + α)|as | + (q[s]q − α)|bs |

)
≤ 1 − α, (0 ≤ α < 1), (11)

is satisfied. �
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Proof In view of Theorem 1, it suffices to show that the “if” part holds true. Suppose
that fκ ∈ MH∗

q
(α, κ), then

	e

{

−qz∂q (Dκ
q hκ (z)) − (−1)κqz∂q (Dκ

q gκ (z)) + αDκ
q hκ (z) + (−1)κα(Dκ

q gκ (z))

Dκ
q hκ (z) + (−1)κ Dκ

q gκ (z)

}

> 0

= 	e

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1−α
z −

∞∑
s=1

qκ [s]κq |as |([s]q + α)zs −
∞∑
s=1

qκ [s]κq |bs |([s]q − α)zs

1
z +

∞∑
s=1

qκ [s]κq |as |zs −
∞∑
s=1

qκ [s]κq |bs |zs

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

> 0.

(12)
The expression (12) must hold for all z ∈ Δ∗. Upon choosing the value of z on the
positive real axis, where 0 < z = r < 1, we have

1 − α − ∑∞
s=1 q

κ [s]κq |as |([s]q + α)r s+1 − ∑∞
s=1 q

κ [s]κq |bs |([s]q − α)r s+1

1 + ∑∞
s=1 q

κ [s]κq |as |r s+1 − ∑∞
s=1 q

κ [s]κq |bs |r s+1
> α.

(13)
If the condition (11) does not hold, then the numerator of (13) is negative for r → 1−.
Hence, there exists z0 = r0 in the interval (0, 1) for which the left-hand side of the
inequality (13) is negative. This contradicts condition (11), which completes the
proof.

�

Corollary 1 For n = 0, Theorems 1 and 2 yields the results obtained by the Aldweby
and Darus [2] (Theorems 1 and 2). �

3 Distortion Bounds and Extreme Points

A growth property for the classMH∗
q
(α, κ) are obtained in the following theorem:

Theorem 3 Let fκ(z) = hκ(z) + gκ(z) be defined by (6) in the class MH∗
q
(α, κ),

then we have for |z| = r < 1

1

r
− (1 − α)r2

q[2]κq(q[2]q − α)
≤ | fκ(z)| ≤ 1

r
+ (1 − α)r2

q[2]κq(q[2]q − α)
.

�

Proof Taking the absolute value for fκ(z) given by (6), we have
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| fκ (z)| =
∣
∣
∣
∣
∣

(−1)κ

z
+

∞∑

s=1

as z
s + (−1)κ

∞∑

s=1

bs zs

∣
∣
∣
∣
∣

≤ 1

r
+

∞∑

s=1

(|as | + |bκ |)rs

≤ 1

r
+

∞∑

s=1

(|as | + |bκ |)r

≤ 1

r
+ 1 − α

q[2]κq (q[2]q − α)

∞∑

s=1

(qκ [s]κq (q[s]q + α)

1 − α
|as | + qκ [s]κq (q[s]q − α)

1 − α
|bκ |

)
r

≤ 1

r
+ (1 − α)r

q[2]κq (q[2]q − α)
.

For the left-hand side of the inequality, we have

| fκ (z)| ≥ 1

r
−

∞∑

s=1

(|as | + |bκ |)rs

≥ 1

r
−

∞∑

s=1

(|as | + |bκ |)r

≥ 1

r
− 1 − α

q[2]κq (q[2]q − α)

∞∑

s=1

(qκ [s]κq (q[s]q + α)

1 − α
|as | + qκ [s]κq (q[s]q − α)

1 − α
|bκ |

)
r

≥ 1

r
− (1 − α)r

q[2]κq (q[2]q − α)
.

This proves the required result. �

Corollary 2 If fκ ∈ MH∗
q
(α, κ), then

f (Δ∗) ⊆
{

ω : |ω| <
q[2]κq(q[2]q − α) − (1 − α)r

q[2]κq(q[2]q − α)r

}

.

�

Next, we determine the extreme points of the closed convex halls of MH∗
q
(α, κ),

denoted by clcoMH∗
q
(α, κ).

Theorem 4 Let fκ = hκ + gκ of the form (6), then f ∈ clcoMH∗
q
(α, κ) if and only

if fκ,s(z) can be expressed as

fκ(z) =
∞∑

s=1


shκ,s(z) + Ψsgκ,s(z),
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where

hκ,0(z) = (−1)κ

z
, hκ,s(z) = (−1)κ

z
+ 1 − α

qκ [s]κq (q[s]q + α)
zs , s = 1, 2, . . . ,

gκ,0(z) = (−1)κ

z
, gκ,s(z) = (−1)κ

z
+ (−1)κ

1 − α

qκ [s]κq (q[s]q − α)
zs , s = 1, 2, . . . ,

where 
s ≥ 0, Ψs ≥ 0 and
∞∑

s=0
(
s + Ψs) = 1. The extreme points of MH∗

q
(α, κ) are

{hκ,s} and {gκ,s}. �

Proof For f (z) =
∞∑

s=0
(
shκ,s + Ψsgκ,s) where

∞∑

s=0
(
s + Ψs) = 1, we have

fκ (z) = 
0h0,s + Ψ0g0,s +
∞∑

s=1

(
shκ,s + Ψsgκ,s)

=
∞∑

s=0

(−1)κ (
s + Ψs)

z
+

∞∑

s=1


s

(
1 − α

qκ [s]κq ([s]q + α)

)

zs + (−1)κ
∞∑

s=1

Ψs

(
1 − α

qκ [s]κq ([s]q − α)

)

zs

= (−1)κ

z
+

∞∑

s=1

(
1 − α

qκ [s]κq ([s]q + α)

)


s z
s + (−1)κ

∞∑

s=1

(
1 − α

qκ [s]κq ([s]q − α)

)

Ψs z
s .

This belongs toMH∗
q
(α, κ) because

∞∑

s=1

(qκ [s]κq ([s]q + α))

(
1 − α

qκ [s]κq ([s]q + α)

)


s + (qκ [s]κq ([s]q − α))

(
1 − α

qκ [s]κq ([s]q − α)

)

Ψs

=
∞∑

s=1

(1 − α)
s + (1 − α)Ψs = (1 − α)

∞∑

s=1


s + Ψs = (1 − α)(1 − 
0 − Ψ0) ≤ 1 − α.

Conversely, suppose that f ∈ clcoMH∗
q
(α, κ). For s = 1, 2, 3, . . . , set


s = qκ [s]κq([s]q + α)

1 − α
|as |, 0 ≤ 
s ≤ 1

Ψs = qκ [s]κq([s]q − α)

1 − α
|bs |, 0 ≤ Ψs ≤ 1


0 + Ψ0 = 1 −
∞∑

s=1


s −
∞∑

s=1

Ψs .

Therefore, fκ can be written as
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fκ (z) = (−1)κ

z
+

∞∑

s=1

|as |zs + (−1)κ
∞∑

s=1

|bs |zs

= (−1)κ

z
+

∞∑

s=1

(
1 − α

qκ [s]κq ([s]q + α)

)


s z
s + (−1)κ

∞∑

s=1

(
1 − α

qκ [s]κq ([s]q − α)

)

Ψs z
s

= 
0 + Ψ0

z
+

∞∑

s=1

(

hκ,s(z) − (−1)κ

z

)


s +
∞∑

s=1

(

gκ,s(z) − (−1)κ

z

)

Ψs

=
∞∑

s=0

(
shκ,s + Ψsgκ,s), as required.

�

4 Convex Combination and Convolution

Next, we show that the class MH∗
q
(α, κ) is closed under convolution and convex

combination.

Theorem 5 For 0 ≤ δ ≤ α < 1, let fκ(z) ∈ MH∗
q
(α, κ) and βκ(z) ∈ MH∗

q
(δ, n),

then ( fκ ∗ βκ)(z) ∈ MH∗
q
(α, κ) ⊆ MH∗

q
(δ, κ). �

Proof The convolution of fκ(z) and βκ(z) is given by

( fκ ∗ βκ)(z) = (−1)κ

z
+

∞∑

s=1

|as ||cs |zs + (−1)κ
∞∑

s=1

|bs ||ds |zs .

We want to show that the coefficients of fκ ∗ βκ satisfy condition (11). For βκ(z) ∈
MH∗

q
(δ, κ), we note that |cs | ≤ 1 and |ds | ≤ 1,

∞∑

s=1

qκ [s]κq(q[s]q + δ)

1 − δ
|as ||cs | +

∞∑

s=1

qκ [s]κq(q[s]q − δ)

1 − δ
|bs ||ds |

≤
∞∑

s=1

qκ [s]κq(q[s]q + δ)

1 − δ
|as | +

∞∑

s=1

qκ [s]κq(q[s]q − δ)

1 − δ
|bs |

≤
∞∑

s=1

qκ [s]κq(q[s]q + α)

1 − α
|as | +

∞∑

s=1

qκ [s]κq(q[s]q − α)

1 − α
|bs | ≤ 1,

since fκ(z) ∈ MH∗
q
(α, κ) and 0 ≤ δ ≤ α < 1. Therefore, ( f ∗ β)(z) ∈ MH∗

q
(α, κ)

⊆ MH∗
q
(δ, κ). �
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Theorem 6 Let fm,κ defined as

fm,κ = (−1)κ

z
+

∞∑

s=1

|as,m |zs + (−1)κ
∞∑

s=1

|bs,m |zs

be in class MH∗
q
(α, κ) for every m = 1, 2, . . . , l, then the function

m(z) =
l∑

m=1

cm fm,κ (z), (0 ≤ cm ≤ 1), (14)

are also in the class MH∗
q
(α, κ) , where

l∑

m=1
cm = 1. �

Proof According to the definition of m(z) given by (14), we can write

m(z) = (−1)κ

z
+

∞∑

s=1

(
l∑

m=1

cm |as,m |
)

zs + (−1)κ
∞∑

s=1

(
l∑

m=1

cm |bs,m |
)

zs .

Furthermore, for every m = 1, 2, . . . , l, we have fm,κ ∈ MH∗
q
(α, κ). Then, by (??),

we have

∞∑

s=1

qκ [s]κq([s]q + α)

{
l∑

m=1

cs |as,m |
}

+
∞∑

s=1

qκ [s]κq([s]q − α)

{
l∑

m=1

cm |bs,m |
}

=
l∑

m=1

cs

( ∞∑

s=1

qκ [s]κq([s]q + α)|as,m | +
∞∑

s=1

qκ [s]κq([s]q − α)|bs,m |
)

≤
l∑

m=1

cm(1 − α) ≤ 1 − α.

Therefore, m(z) ∈ MH∗
q
(α, κ). �

Corollary 3 The class MH∗
q
(α, κ) is closed under convex combination. �

5 Generalised q-Integral Operator

In the following definition, we define q-integral operator on a function fκ defined
by (6). We also prove that this operator belongs toMH∗

q
(α, κ).

Definition 5 Let fκ = hκ + gκ be defined by (6). Then, the q-integral operator Fκ,q :
MH∗

q
(α, κ) −→ MH∗

q
(α, κ) is defined by the relation
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Fκ,q(z) = [ς ]q
zς+1

z∫

0

τςhκ(τ )∂qτ + [ς ]q
zς+1

z∫

0

τςgκ(τ )∂qτ , (ς > 0, z ∈ Δ∗).

(15)

Theorem 7 Let fκ be defined by (6) and belongs to the class MH∗
q
(α, κ), then

Fκ,q(z) defined by (15) also belongs toMH∗
q
(α, κ). �

Proof From Definition 5, we conclude that

Fκ,q (z) = [c]q
zς+1

z∫

0

{

(−1)κ τς−1 +
∞∑

s=1

|as |τς+s

}

∂qτ + (−1)κ
z∫

0

{ ∞∑

s=1

|bs |τς+s

}

∂qτ

= [ς ]q
zς+1

{

(−1)κ (1 − q)z
∞∑

m=0

(zqm )ς−1qm +
∞∑

s=1

|as |
(

(1 − q)z
∞∑

m=0

(zqm )ς+sqm
)

+(−1)κ
∞∑

s=1

|bs |
(

(1 − q)z
∞∑

m=0

(zqm )c+sqm

)⎫
⎬

⎭

= [ς ]q (1 − q)

zς+1

{

(−1)κ
( ∞∑

m=0

qmς

)

zς +
∞∑

s=1

|as |zς+s+1

( ∞∑

m=0

qm(ς+s+1)

)

+(−1)κ
∞∑

s=1

|bs |zς+s+1

( ∞∑

m=0

qm(ς+s+1)

)⎫
⎬

⎭

= (−1)κ

z
+

∞∑

s=1

[ς ]q
[s + ς + 1]q |as |zs + (−1)n

∞∑

s=1

[ς ]q
[s + ς + 1]q |bs |zs .

Wewant to show that the coefficients of Fκ,q(z) satisfy the condition (11). Therefore,
we have

∞∑

s=1

qκ [s]κq
(

(q[s]q + α)

( [c]q
[s + c + 1]q |as |

)

+ (q[s]q − α)

( [c]q
[s + c + 1]q |bs |

))

≤
∞∑

s=1

qκ [s]κq
(
(q[s]q + α)|as | + (q[s]q − α)|bs |

)
≤ 1 − α.

Hence, Fκ,q(z) ∈ MH∗
q
(α, κ). �

6 Concluding Remarks and Observations

We introduced and studied systematically a new subclass of the family of harmonic
meromorphic q-starlike functions associated with the q-calculus. This has led us
to a study of the coefficient estimates, distortion theorems, extreme points, convo-
lution, and convex combinations. Further, we defined the q-integral operator and
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showed that the new class aforementioned is closed under this q-derivative operator
for this harmonic meromorphic function class. Deriving new classes of the family
of harmonic meromorphic functions using post-quantum calculus and q-fractional
derivative and the integral operator will be important in the future, we believe.
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Theoretical Study of Explosion
Phenomena for a Semi-parabolic
Problem

Jamal Oudetallah, Zainouba Chebana, Taki-Eddine Oussaeif, Adel Ouannas,
and Iqbal M. Batiha

Abstract This paper aims to present the explosion phenomena for a special
semi-parabolic problem with a classical Neumann condition where we are inter-
ested in the finite time to blow up by using the energy method. A new theoretical
result is provided with its proof.

Keywords Parabolic equation · Nonlinear equations · Finite-time blow-up of
solution

1 Introduction

The topic of nonlinear partial differential equations can exhibit a number of nonlin-
ear properties that are often related to several important features of real-world phe-
nomena. These equations have become the most active area of many mathematical
research in the last century and the current era. This is actually due to the success-
ful methods of analysis that can enable mathematicians to provide a lot of rigorous
answers to different important questions like existence and uniqueness, stability and
also other domains [1–3, 6, 9, 12–16].
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The blowing-up phenomenon is the most striking question in the recent research
world. In fact, this subject was started in a Russian school in the 40s and 50s. It
was raised in the context of Semenov’s chain reaction theory until the 60s of the
last century, mainly after general approaches to the blow-up problems that were
addressed by Fujita, Kaplan, Friedman and some others [17]. Motivated by these
research works, we are interested in this manuscript to answer one of the most
important questions when we granted that the explosion phenomenon occurs. We
will definitely move on to answering exactly the question when does the blow-up
occur? or what time does the explosion occur? Anyhow, the remaining of this paper
is organized as follows. In the next section, we will formulate the main problem
of this work, whereas Sect. 3 will exhibit the primary results associated with our
formulation, followed by the final section that will summarize the conclusions of the
paper.

2 Problem’s Formulation

In this section, we will let Q = {(x, t) ∈ [Ω] × [0, T ]}whereΩ is an open bounded
domain and T < ∞. To this aim, we intend to consider a certain class of semilinear
parabolic equations defined on a bounded domain. Such class of equations can be
outlined by the following nonlinear problem:

⎧
⎪⎪⎨

⎪⎪⎩

ut − (a(x, t)ux )x + bu = u3 ∀ (x, t) ∈ Q
u(x, 0) = ϕ (x) ∀x ∈ [0, 1]
ux (0, t) = 0 ∀t ∈ [0, T ]
ux (1, t) = 0 ∀t ∈ [0, T ]

. (P)

In other words, the parabolic equation regarding the above nonlinear problem can be
given as follows:

ut − (a(x, t)ux )x + bu = u3, (1)

subject to the following initial condition:

u(x, 0) = ϕ (x) , x ∈ [0, 1] , (2)

and to the following boundary conditions of the Neumann type:

ux (0, t) = ux (1, t) = 0, (3)

where a and ϕ are two known functions and b is a positive constant. It should be
noted that the function ϕ satisfies the following compatibility condition:

ϕx (1) = 0, ϕx (0) = 0. (4)
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3 The Main Results

From the perspective of several current literature, there aremore than sixmethods that
canbe considered to dealwith the blow-upphenomenon.Themost famousof themare
the concavity method, Kaplan’s first eigenvalue method, comparison method, upper-
lower method, energy method and others. Herein, for the purpose of analyzing the
blow-up phenomenon of the reaction-diffusion equation of problem (P), we choose
the energy method which is deemed one of the most important methods that can be
employed to address the finite-time blow-up of semilinear parabolic equations. In
order to accomplish this objective, a new theoretical result is provided next with its
proof.

Theorem 1 Under the condition at (x, t) < 0,∀ (x, t) ∈ Q. The solution to problem
(P) blows up in the finite-time T ∗ where

T ∗ = 1

Π(0)
,

with

Π(0) =
∫

Ω

u2(x, t)dx .

Proof To prove this result, we first multiply Eq. (1) by u and then integrate the result
over Ω to obtain the following assertion:

∫

Ω

ut (x, t) · u(x, t)dx −
∫

Ω

(a(x, t)ux )x · u(x, t)dx + b
∫

Ω

u(x, t) · u(x, t) =
∫

Ω

u4(x, t)dxdt.

By using integration by part and using Neumann conditions (3), we get

1

2

d

dt

∫

Ω

u2(x, t)dx +
∫

Ω

a(x, t)u2xdx + b
∫

Ω

u2(x, t)dx =
∫

Ω

u4(x, t)dx . (5)

In this regard and to continue this proof, we should find a formal expression for the
energy function E(·). In order to achieve this goal, we multiply the above equation
by ut , and then integrate the result over Ω to obtain

∫

Ω

u2t −
∫

Ω

(a(x, t)ux )xut + b
∫

Ω

uut =
∫

Ω

u3ut . (6)

It follows
∫

Ω

u2t −
∫

Ω

(a(x, t)ux )xut + b

2

d

dt

∫

Ω

u2 = 1

4

d

dt

∫

Ω

u4. (7)
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Again, using integration by part yields immediately the following equality:

∫

Ω

u2t − 1

2

∫

Ω

a(x, t)
d

dt
u2x + b

2

d

dt

∫

Ω

u2 = 1

4

d

dt

∫

Ω

u4. (8)

In order to simplify the last expression, we use the law of derivation to find two
functions as follows:

d

dt

(
a(x, t)u2x

) = a(x, t)
d

dt
u2x + at (x, t)u

2
x , (9)

under the condition at (x, t) < 0, ∀ (x, t) ∈ Q. Consequently, based on Eq. (9), we
can obtain

d

dt

(
a(x, t)u2x

) ≤ a(x, t)
d

dt
u2x . (10)

By combining (6) and (10), we get

∫

Ω

u2t + 1

2

d

dt

∫

Ω

(
a(x, t)u2x

) + b

2

d

dt

∫

Ω

u2 ≤ 1

4

d

dt

∫

Ω

u4. (11)

Multiplying (11) by 2 yields the following inequality:

d

dt

⎛

⎝

∫

Ω

(
a(x, t)u2x

) + b
∫

Ω

u2 − 1

4

d

dt

∫

Ω

u4

⎞

⎠ ≤ 0.

This observation seems to be known. Thus, the energy function can be given by

E(t) =
∫

Ω

a(x, t)u2xdx + b
∫

Ω

u2(x, t)dx − 1

2

∫

Ω

u4(x, t)dx,

where E is a decreasing function over [0, T ]. From this point of view, we can write
Eq. (5) by using the energy function E as follows:

1

2

d

dt

∫

Ω

u2(x, t)dx + E(t)=1

2

∫

Ω

u4(x, t)dx
1

2

d

dt

∫

Ω

u2(x, t)dx − 1

2

∫

Ω

u4(x, t)dx

= −E(t).
(12)

It is important to know that we have prepared our study on the basis of the assumption
that the initial value of energy is negative as we mentioned earlier, and therefore the
energy function is negative over time t . This would imply the following inequality:
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1

2

d

dt

∫

Ω

u2(x, t)dx − 1

2

∫

Ω

u4(x, t)dx ≥ 0.

In addition, based on the fact that asserts the problem at hand is already defined in a
bounded domain, then by using Holder inequality we can have

⎛

⎝

∫

Ω

u4(x, t)dx

⎞

⎠

1
2

>

∫

Ω

u2(x, t)dx,

or

d

dt

∫

Ω

u2(x, t)dx >

⎛

⎝

∫

Ω

u2(x, t)dx

⎞

⎠

2

.

By putting Π(t) = ∫

Ω

u2(x, t)dx , we can get

dΠ(t)

dt
> Π(t)2, (13)

i.e.,
dΠ(t)

(Π(t))2
> dt. (14)

After integrating the above inequality over [0, t], we can obtain

[

− 1

Π(t)
+ 1

Π(0)

]

> t, (15)

or
1

−t + 1
(Π(0))

< Π(t). (16)

As t −→ T ∗, we can obtain

T ∗ = 1

Π(0)
,

which confirms that the solution u of the problem at hand must blow up.
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4 Conclusion

In this work, we have analyzed a class of semilinear parabolic equations defined on
a bounded domain. In particular, we have selected a finite-time blow-up for a class
of solutions with a negative initial energy of the considered problem.
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Explicit Formulae of Linear Recurrences

László Szalay

Abstract One important and widely studied problem in the theory of linear recur-
rences is to find explicit formulae for the general term of the sequences. Having an
explicit formula facilitates the research of the properties of the sequence we inves-
tigate. The main tool is to apply the fundamental theorem of homogeneous linear
recurrences, but other approaches may work as well. In the present paper, we con-
centrate on a specific case when the characteristic polynomial of the sequence has a
double zero, and on a general formula.

Keywords Recurrence sequence · Explicit formula · Simple zero · Double zero

1 Introduction

Assume that the complex numbersG0,G1, . . . ,Gk−1 are the initial values of a homo-
geneous linear recurrence {G}∞n=0 of order k given by

Gn = A1Gn−1 + A2Gn−2 + · · · + AkGn−k, n ≥ k, (1)

where the coefficients A1, A2, . . . , Ak are also complex numbers.
The fundamental theorem of linear recurrences, roughly speaking says that there

exists a suitable positive integer s with the condition s ≤ k, and there exist com-
plex numbers α1, α2, . . . , αs and polynomials c1(x), c2(x), . . . , cs(x) with complex
coefficients such that

Gn =
s∑

i=1

ci (n)αn
i

holds for any non-negative integer n. (See, for instance, Theorem C.1 in [3].)
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In order to find the values αi we need to determine the zeros of the characteristic
polynomial

p(x) = xk − A1x
k−1 − · · · − Ak−1x − Ak

of the recurrence {G}∞n=0. Then the multiplicities of the zeros and the initial values
together fix the polynomials ci (x).

For example, if {G}∞n=0 is a binary recurrence (i.e. when k = 2),

p(x) = x2 − A1x − A2 = (x − α1)(x − α2),

(α1 and α2 are not necessarily distinct) then the general term is given as follows.

Theorem 1 The general term of a binary recurrence {G}∞n=0 satisfies

Gn =

⎧
⎪⎪⎨

⎪⎪⎩

(G1 − α2G0)α
n
1 − (G1 − α1G0)α

n
2

α1 − α2
, if α1 �= α2,

nαn−1
1 G1 − (n − 1)αn

1G0, if α1 = α2

. (2)

2 Explicit Formulae

Many specific cases, for example, the binary recurrences (see Theorem 1), or when
p(x) has only single zeros (Theorem 2) are widely studied.

In the main part of the section, as a new result, we describe the situation of one
double zero (Theorem 3), and we also deal with a general formula (Theorem 4).

2.1 Case of One Double Zero

This subsection assumes that G0 = · · · = Gk−2 = 0, Gk−1 = 1. The first statement
here (Theorem 2) is a known result, but it plays the role of a springboard for the
proof of Theorem 3 (the case of a double zero).

Theorem 2 Suppose that the characteristic polynomial p(x) has distinct roots
α1, α2, . . . , αk . Then

Gn =
k∑

j=1

αn
j

p′(α j )
, n ≥ 0. (3)

Theorem 3 If the characteristic polynomial p(x) has two equal roots α1 = α2, and
distinct roots αi �= α1 (i = 3, . . . , k), then
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Gn =
(
n − p̃′(α1)

p̃(α1)
α1

)
αn−1
1

p̃(α1)
+

k∑

j=3

αn
j

p′(α j )
, n ≥ 0, (4)

where p(x) = (x − α1)
2 · p̃(x).

Observe that both formulae (3) and (4) are harmonized with (2) if we assume
k = 2 in Theorems 2 and 3, and suppose G0 = 0, G1 = 1 in (2).

Proof We apply Theorem 2 with the limit α2 → α1. Split (3) into two parts as
follows. Let

Gn =
2∑

j=1

αn
j

p′(α j )

︸ ︷︷ ︸
G�

n

+
k∑

j=3

αn
j

p′(α j )
,

and consider G�
n as α2 → α1. First only the limit calculus is prepared. Let p̃(x) be

defined by p(x) = (x − α1)(x − α2) · p̃(x). For the derivative

p′(x) = (x − α2) p̃(x) + (x − α1) p̃(x) + (x − α1)(x − α2) p̃
′(x)

we see that

p′(α1) = (α1 − α2) p̃(α1), p′(α2) = (α2 − α1) p̃(α2).

Now

G�
n = αn

1

p′(α1)
+ αn

2

p′(α2)
= 1

(α1 − α2) p̃(α1)
αn
1 − 1

(α1 − α2) p̃(α2)
αn
2

= 1

p̃(α1)

⎡

⎢⎢⎢⎣

(
αn
1

α1 − α2
− αn

2

α1 − α2

)

︸ ︷︷ ︸
m1

−
(
p̃(α1)

p̃(α2)
− 1

)
αn
2

α1 − α2︸ ︷︷ ︸
m2

⎤

⎥⎥⎥⎦ .

Obviously,

m1 = αn
1 − αn

2

α1 − α2
=

n−1∑

j=0

α
n−1− j
1 α

j
2

tends to nαn−1
1 as α2 tends to α1. On the other hand,

lim
α2→α1

m2 = lim
α2→α1

p̃(α2) − p̃(α1)

α2 − α1
· αn

2

p̃(α2)
= p̃′(α1) · αn

1

p̃(α1)
.

Putting together what we have, we obtain (4).
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Example 1 Let G0 = G1 = 0, G2 = 1, and Gn = 5Gn−1 − 8Gn−2 + 4Gn−3. The
characteristic polynomial has the form

p(x) = x3 − 5x2 + 8x − 4 = (x − 2)2(x − 1).

Then p′(x) = 3x2 − 10x + 8, p′(1) = 1, p̃(x) = x − 1, p̃(2) = 1, p̃′(x) = 1. Thus

Gn = (n − 2)2n−1 + 1.

2.2 Arbitrary Initial Values but Single Zeros

Now we assume that the initial values G0,G1, . . . ,Gk−1 are fixed arbitrarily, the
recursive rule (1) holds, furthermore the characteristic polynomial p(x) has only
single zeros, like in Theorem 2. Supposing Ak �= 0 it ensures αi �= 0. During sur-
veying the antecedents of the theme it turned out that Wolfram [4] sketched the
method we use here.

The coefficients and zeros of p(x) satisfy

At = (−1)t+1
∑

αi1αi2 · · · αit , t = 1, 2, . . . , k.

Put
σ

(i)
0 = −1, i = 1, 2, . . . , k, (5)

and for each i ∈ {1, 2 . . . , k} define

σ
(i)
t = At + σ

(i)
t−1αi , t = 1, 2, . . . , k − 1. (6)

Note that if t = k − 1, then σ
(i)
k−1 = −Ak/αi . We also introduce the notation

g(α�
i ) = Gk−1 − σ

(i)
1 Gk−2 − · · · − σ

(i)
k−1G0 = −

k−1∑

t=0

σ
(i)
t Gk−1−t .

based on the initial values of the sequence and (6). The main result of this subsection
is

Theorem 4 The general term of the sequence {G}∞n=0 can be given by

Gn =
∑k

i=1 cig(α
�
i )α

n
i

Ak
∑k

i=1
ci
αi

, n ≥ 0, (7)
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where ck = −1, and for i = 1, 2, . . . k − 1 we have

ci = (−1)k−1−i

(
αk

αi

)k−2
∏k−1

j=1, j �=i

(
1
αk

− 1
α j

)

∏i−1
j=1

(
1
αi

− 1
α j

)
· ∏k−1

j=i+1

(
1
α j

− 1
αi

) . (8)

Proof For any 1 ≤ i ≤ k a straightforward computation shows for n ≥ 0 that

Gn+k−1 − σ
(i)
1 Gn+k−2 − · · · − σ

(i)
k−1Gn (9)

= αn
i

(
Gk−1 − σ

(i)
1 Gk−2 − · · · − σ

(i)
k−1G0

)
= g(α�

i )α
n
i .

Let the matrixV consist of the column vectors vi = [1,−σ
(i)
1 , . . . ,−σ

(i)
k−2]	 ∈ C

k−1

for i = 1, 2, . . . , k − 1. Define vk analogously. We can see that

D = det(V) = (−1)k1
Ak−2
k

αk−2
k

· V
(

1

α1
,
1

α2
, . . . ,

1

αk−1

)
�= 0, (10)

where k1 = 
k/2�, and V( ) denotes the Vandermonde determinant. Hence the vec-
tors v1, v2, . . . , vk−1 form a basis in Ck−1. Consequently, there uniquely exist com-
plex numbers c1, c2, . . . , ck−1 such that

vk = c1v1 + c2v2 + · · · + ck−1vk−1.

The coordinates ci can be determined by the Cramer’s rule in the form

ci = Di

D
, i = 1, 2 . . . , k − 1, (11)

where Di turns up

Di = (−1)k1+k−1−i A
k−2
k

αk−2
i

· V
(

1

α1
, . . . ,

1

αi−1
,

1

αi+1
, . . . ,

1

αk−1
,
1

αk

)
. (12)

Thus (8) follows from (10), (12), and (11), but we must explain the role of ci in (7).
In order to do that multiply (9) by ci for i = 1, 2, . . . , k − 1, and subtract the linear
combination from the case i = k of (9). This manipulation results

(
−σ

(k)
k−1 +

k−1∑

i=1

ciσ
(i)
k−1

)
Gn = g(α�

k)α
n
k −

k−1∑

i=1

cig(α
�
i )α

n
i .

Since σ
(i)
k−1 = −Ak/αi , we obtain
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Ak

(
1

αk
−

k−1∑

i=1

ci
αi

)
Gn = g(α�

k)α
n
k −

k−1∑

i=1

cig(α
�
i )α

n
i .

Then eliminate Gn from the equality above, and after some simplifications, it leads
to (7). The proof is complete.

Example 2 Let k = 3, Gn = A1Gn−1 + A2Gn−2 + A3Gn−3. Assume that G0,G1

and G2 are arbitrary. Put

p(x) = x3 − A1x
2 − A2x − A3 = (x − α1)(x − α2)(x − α3),

where the linear forms are distinct. Thus

A1 = α1 + α2 + α3, A2 = −(α1α2 + α1α3 + α2α3), A3 = α1α2α3.

By (5) and (6), we have

σ
(1)
0 = −1 σ

(2)
0 = −1 σ

(3)
0 = −1,

σ
(1)
1 = α2 + α3 σ

(2)
1 = α1 + α3 σ

(3)
1 = α1 + α2,

σ
(1)
2 = −α2α3 σ

(2)
2 = −α1α3 σ

(3)
2 = −α1α2.

For i = 1, 2, 3, we see that

Gn+2 − σ
(i)
1 Gn+1 − σ

(i)
2 Gn = αn

i (G2 − σ
(i)
1 G1 − σ

(i)
2 G0) = αn

i g(α
�
i )

follows. Then

D = (−1)
A3

α3
· V

(
1

α1
,
1

α2

)
= α2 − α1.

Similarly, we can determine D1 = α2 − α3, and D2 = α3 − α1, and then sub-
sequently c1 and c2. Hence

(−σ
(3)
2 + c1σ

(1)
2 + c2σ

(2)
2 )Gn = g(α�

3)α
n
3 − c1g(α

�
1)α

n
1 − c2g(α

�
2)α

n
2 ,

and then Gn is expressible. Scrutiny reveals that, using the equivalent form

g(α�
i ) = G2 + (αi − A1)G1 + A3

αi
G0

we finally obtain

Gn = (α3 − α2)g(α
�
1)α

n
1 − (α3 − α1)g(α

�
2)α

n
2 + (α2 − α1)g(α

�
3)α

n
3

(α2 − α1)(α3 − α1)(α3 − α2)
.
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Note that this formula, assuming G0 = G1 = 0 and G2 = 1 leads to

Gn = αn
1

(α1 − α2)(α1 − α3)
+ αn

2

(α2 − α1)(α2 − α3)
+ αn

3

(α3 − α1)(α3 − α2)
,

which is equivalent to the corresponding result in [2] for the Tribonacci sequence.

3 Outline

There are other types of formulae derived not from the fundamental theorem of linear
recurrences but from other suitable, often combinatorial properties. For example,
it is known that the terms of the Fibonacci sequence (given by F0 = 0, F1 = 1,
Fn = Fn−1 + Fn−2 for n ≥ 2) satisfy

Fn+1 =

n/2�∑

j=0

(
n − j

j

)
.

Recently, Açikel et al. [1] found a new identity for the terms of the so-called k-
generalized Lucas numbers {L(k)

n }n≥0. This sequence starts with the positive inte-
ger initial values L(k)

0 = k, L(k)
1 = 1, L(k)

2 = 3, . . ., L(k)
k−1 = 2k−1 − 1, and each

term afterward is the sum of the k consecutive preceding elements. Let n ∈ N and
r = 
n/(k + 1)�.
Theorem 5 ([1]) Using the notation above, we have

L(k)
n = −1 +

r∑

j=0

(−1) j
((

n − k j

j

)
+ k

(
n − k j − 1

j − 1

))
2n−(k+1) j .

Note that the explicit formula

L(k)
n = αn

1 + αn
2 + · · · + αn

k

based on the fundamental theorem provides also the terms L(k)
n , where α1, α2, . . . , αk

are the roots, all are simple, of the characteristic polynomial

pk(x) = xk − xk−1 − · · · − x − 1

of the sequence.
This area is fast developing and very challenging because it has had a lot of

applications, for instance, in the theory of Diophantine equations.



284 L. Szalay

Acknowledgements The research was supported in part by National Research, Development and
Innovation Office Grant 2019-2.1.11-TÉT-2020-00165, by Hungarian National Foundation for Sci-
entific Research Grant No. 128088, and No. 130909, and by the Slovak Scientific Grant Agency
VEGA 1/0776/21.

References

1. Açikel, A., Irmak, N., Szalay, L.: The k-generalized lucas numbers close to a power of 2. Math.
Slovaca.

2. Spickerman, W.R.: Binet’s formula for thew tribonacci sequence. Fibonacci Q. 20, 118–120
(1982)

3. Shorey, T., Tijdeman, R.: Exponential Diophantine Equations (Cambridge Tracts in
Mathematics). Cambridge University Press, Cambridge (1986). https://doi.org/10.1017/
CBO9780511566042

4. Wolfram, D.A.: Solving generalized fibonacci recurrences. Fibonacci Q. 36, 129–145 (1998)

https://doi.org/10.1017/CBO9780511566042
https://doi.org/10.1017/CBO9780511566042


The Influence of S-quasinormal
Subgroups on the Structure of Finite
Groups

Jehad Al Jaraden and Rashad Abu Sallik

Abstract A subgroup H of a group G is called S-quasinormal in G if it permutes
with every Sylow subgroup of G. The purpose of this paper is to study the structure
of a finite group under the assumption that some subgroups are S-quasinormal in G
and Give some examples of groups with these conditions.

Keywords Finite group · S-quasinormal subgroup · Sylow subgroup

1 Introduction

All groups considered in this paper will be finite. Two subgroups H and K of a group
G are said to permute if HK=KH.A subgroup of a group G is said to be quasinormal
in a group G if it is permuted with all subgroups of the group G, this concept was
introduced by Øystein Ore [1], and he proved that such a subgroup is subnormal in a
finite group. A subgroup of a group G is said to be S-quasinormal in G if it permutes
with every Sylow subgroup of G. This concept was introduced by Kegel [2]. Several
authors have investigated the structure of a finite group when some subgroups of the
prime power order of the group are well-situated in the group. Buckley [3] proved
that if all minimal subgroups of an odd order group are normal, then the group is
supersolvable. It turns out that the group which has many S-quasinormal subgroups
have well-described structure.
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2 Preliminaries

Definition 2.1 (Ore 1937) A subgroup A of group G is called quasinormal or
permutable in G if it permutes with all subgroups of G.

Example 2.2 In symmetric group S3, the alternating subgroup A3 is a quasinormal
subgroup. Since A3 is permuted with all subgroups of S3.

Example 2.3 In quaternion group Q8, the subgroups
{±1,±i}, {±1,± j} and {±1,±k}, are normal subgroups in Q8, and therefore
it is quasinormal subgroup in Q8.

Remark 2.4 ([5]) Every normal subgroup is quasinormal, the converse is not true.

Example 2.5 let G = {
a, b|a8 = b2 = 1, b−1ab = a5

}
, then.

G = {1, a, a2, a3, a4, a5, a6, a7, b, ab, a2b, a3b, a4b, a5b, a6b, a7b}, and the
subgroups of G is

K1 = {1}, K2 =< b >= {1, b}, K3 =< a >= {
1, a, a2, a3, a4, a5, a6, a7

}

K4 =< a6 >=< a−2 >= {
1, a2, a4, a6

}
, K5 =< a4 >= {

1, a4
}

K6 = {
1, a4b

}
, K7 = {

1, b, a4b, a4
}
,

K8 = {1, a2, , a4, a6, , ba, ba3, ba5, ba7},

K9 = {
1, a2b, a4b, a6b

}
, K10 = {

1, a2, a4, a6, b, a2b, a4b, a6b
}
, K 11 = G

Now K2 =< b >= {1, b} is not normal in G, since.
aK2 = {a, ab}, K2a = {a, ba} = {

a, a5b
}
aK2 �= K2a and K2 � G

but K2 is quasinormal in G, as K2K1 = K2K1, K2K6 = K6K2, Since K 2 ⊂ K6

K2K7 = K7K2, Since K 2 ⊂ K7, K2K10 = K10K2, SinceK 2 ⊂ K10,

K2K11 = K11K2, Since K 2 ⊂ K11

K2K3 = K3K2 = {b, ab, a2b, a3b, a4b, a5b, a6b, a7b}

K2K4 = K4K2 = {b, a2b, a4b, a6b}

K2K5 = K5K2 = {b, a4b}
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K2K8 = K8K2 = {b, a2b, a4b, a6b, a, a3, a5, a7}

K2K9 = K9K2 = {b, a2, a4, a6}

Lemma 2.6 ([4]) If H is a subgroup of G, then the following conditions are
equivalent:

(i) H is quasinormal in G.

(ii) For every g ∈ Gandh ∈ H, there exist r ∈ Zandh′ ∈ HSuchthatgh = grh′.

Definition 2.7 ([2]) A subgroup H of a group G is called S-quasinormal in G if HP
= PH, for every Sylow subgroup P of G.

Example 2.8 Let G = S3, S3| = 6 = 3 · 2,

Then ∃ a Sylow 3-subgroups of order 3 is A3 = {ρ0, ρ1, ρ2}, and Sylow
2-subgroups of order 2, are H1 = {ρ0, μ1}, H2 = {ρ0, μ2}, H3 = {ρ0, μ3}, A3 it
permutes with each Sylow subgroup of S3, since: A3Hi = Hi A3 = S3, where i =
1, 2 3.

Then A3 is the S-quasinormal of a group S3.

Example 2.9 Let G = A4, |A4| = 12 = 3 · 22,

then ∃ a Sylow 3-subgroup of order 3 are.

H1 = {ρ0, δ3, μ2}, H2 = {ρ0, δ4, μ3}, H3 = {ρ0, μ4, δ2}, H4 = {ρ0, μ1, δ1},

and then ∃ a 2-Sylow subgroup of order 4 is H5 = {
ρ0,ρ1,ρ2, ρ3

}

H5 it permutes with each Sylow subgroup of A4, since: now,
H5Hi = Hi H5 ={

ρ0,ρ1,ρ2, ρ3, μ1,μ2, μ3, μ4, δ1, δ2, δ3, δ4
} = A4, where i = 1,

2, 3, 4
Then H5 is S-quasinormal group in A4.

Lemma 2.10 Let G be a group and H a normal subgroup in G. Then G/H has prime
order if and only if H is maximal.

Proof Assume that H is maximal and suppose that the order of G/H is not prime,
that is, there exists a proper, nontrivial normal subgroup K of G/H. Let π: G → G/H
be the projection g→ gH. Then sinceπ is surjective, π−1(K) is a normal subgroup of
G containing H. Since K is nontrivial, it contains a non-identity element kH where k
∈H. Then k ∈ π−1(K) but k ∈H, so H is a proper subset of π−1(K). This contradicts
the fact that H is maximal, so we conclude that the order of G/H is prime.

Now suppose that G/H has prime order. Suppose that H is not maximal, that is,
there is a proper normal subgroup N with H ⊂ N. Then π(N) is a proper normal
subgroup of G/H, which contradicts G/H has prime order. Thus, H is maxima.
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3 Results

We prove the following main result:

Theorem 3.1 Let H be a S-quasinormal subgroup of a group G such that [G : H ]
is a prime number, then H is a normal subgroup of G.

Proof Let H s-quasinormal subgroup of a group G such that [G : H ] is a prime
number. Then for every Sylow subgroup P of a group G HP = PH.

Suppose H � G, then H1 = g−1Hg �= H, f or some g ∈ G, let K =
HH1 = H1H , since [G : H ] is a prime number, and H ⊂ K ⊂ G, soK = G
as H is the maximal subgroup of a group G by lemma 2.10. In particular,=
hh1, f or some h ∈ H, h1 ∈ H1. Hence g = hg−1h2g f or some h, h2 ∈ H , this
implies that g ∈ HsoH = H1, contradicting the assumption. This completes the
proof.

Example 3.2 In S3 group, the Alternating group A3 is S-quasinormal subgroup, as
A3 is permute with all Sylow subgroups in S3, and [S3 : A3] = 2 is a prime number,
then by Theorem 3.1 A3 is a normal subgroup of S3.

Theorem 3.3 A S-quasinormal subgroup H of G such that [G : H ] = 4 is a normal
subgroup of G.

Proof Suppose this is false. Then there is a conjugate H′ = g−1 H g of H such that H′
�=H. Let K=H′H=H′H. Since H ⊂ K ⊂ G and [G : H ] = 4, it follows that K is
H or G or else [K : H ] = 2. 1f K = H, H ′ ⊆ K = H, so H ′ = H a contradiction.

If K=G, then, as in the proof of Theorem 3.1, H is normal in G. Thus, [K : H ] =
2 and H is normal in K, also [G : K ] = 2, and K is normal in G.

We conclude that there are exactly two conjugates of H, namely, H and H ′. Let
N = H ∩ H ′. By definition, N is the core of H in G and therefore is a normal
subgroup of G. Moreover,

[K : H ] = [
HH ′ : H ] = [

H ′ : N ] = [H : N ] = 2.

SinceN ⊂ H ⊂ G, [G : H ] = 4, [H : N ] = 2, and N is normal in G, the group
G /N has order 8, H /N is S-quasinormal in G /N and has index 4. We know that every
S-quasinormal subgroup G of order 8 is normal in G. Thus, H /N is normal in G/N,
so H is normal in G, contradicting the initial assumption. From this, it follows that
H is normal in G.

Example 3.4 In The Quaternion group Q8, Q8 is a unique 2-Sylow subgroup of
order 8 as|Q8| = 8 = 23. LetH = {+1,−1}, H is S-quasinormal group in Q8 as
HQ8 = Q8H and as[Q8 : H ] = 4, Then by Theorem 3.3 H is a normal subgroup
of Q8.
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Theorem 3.5 If H is a S-quasinormal subgroup of a group G and [G : H ] = 2rm,

where r= 1, 2, andm is an odd square-free number, thenH is a normal subgroup ofG.

Proof We will argue by induction onn = 2rm. If n = 1, the result is obvious
forn = 2r , where r = l, 2 it follows from Theorems 3.2. Consider any element g ∈
G. Since H is S-quasinormal in G, H〈g〉 is a subgroup of G and H is S-quasinormal
in H〈g〉 . If H〈g〉 �= G , then by induction hypothesis, H is normal in H〈g〉, so Hg
= gH. If H〈g〉 = G, then [H〈g〉, H ] = n. This implies that n is the least positive
integer k such that gk ∈ H. Let x = gp andy = gm , where p is prime (p �= 2) and
does not dividem1(m1 = n \ p). Then the least positive integer k such that xk ∈ H
is n/p = m1.

So [H〈x〉, H ] = m1. Similarly, [H〈y〉, H ] = p. Since H is S-quasinormal in
both H〈x〉 and H〈y〉, the inductive hypothesis shows that Hx = xH and Hy = yH .
The fact that (p,m1) =l implies that ∈ 〈x, y〉, hence, Hg = gH.

Example 3.6 Let G = S4, |S4| = 24 = 3 · 23, Then ∃ a unique Sylow 2-subgroups
of order 8, is H1 = {e, (12)(34), (13)(24), (14), (14)(23), (23), (1243), (1342)},

and ∃ a 4 Sylow 3-subgroups of order 3, are H2 = {e, (123), (132)},H3 =
{e, (124), (142)},H4 = {e, (134), (143)},

H5 = {e, (234), (243)}, now.
H6 = {e, (12)(34), (13)(24), (14)(23)} ≤ S4, then H6 it permutes with each

Sylow subgroup of S4, since:

H6H1 = H6H1, H6 ⊂ H1

H6H2 = H2H6 = {e, (123), (132), (12)(34), (134), (234),

(13)(24), (243), (124), (14)(23), (142), (143)}.

H6H3 = H3H6 = {e, (124), (142), (12)(34), (143), (243),

(13)(24), (132), (134), (14)(23), (234), (123)}.

H6H4 = H4H6 = {e, (134), (143), (12)(34), (142), (243),

(13)(24), (123), (132), (14)(23), (124), (234)}.

H6H5 = H5H6 = {e, (234), (243), (12)(34), (124), (123),

(13)(24), (143), (123), (14)(23), (134), (142)}.
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Then H6 is S-quasinormal group in S4, and[S4 : H6] = 6 = 21.3, so by
Theorem 3.5, H6 is a normal subgroup of S4.

Corollary 3.7 ([4]) A quasinormal subgroup H of a group G such that [G:H] is
prime is a normal subgroup of G.

Corollary 3.8 ([4]) If H is a quasinormal subgroup of a group G and [G:H]= n is a
square-free integer or twice a square-free integer, then H is a normal subgroup of G.
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Two-Sided Clifford Wavelet Function
in Cl( p, q)

Shabnam Jahan Ansari and V. R. Lakshmi Gorty

Abstract Two-sided Clifford wavelet function (CWF) is defined in Cl(p,q) with
orthonormal vector basis. The properties like left linearity, right linearity, shifting,
modulation dilations and power factor are established. The inversion formula for
CWF is also constructed using Fourier transform. Parseval and Plancherel identities
are also studied. The study is supported by certain examples related to Mathematical
Physics.

Keywords Clifford wavelet function · Inversion formula · Parseval’s theorem ·
Fourier transform

1 Introduction

In [1] author has given the development and construction of Geometric algebra. [15]
Geometric algebra is a finite-dimensional vector space over real scalar applications
in Physics and Engineering field. The author developed geometric calculus whose
fundamental theorem include the generalized Stokes theorem, Residue theorem, and
new integral theorems. Quaternion Fourier transform on quaternion field and gen-
eralization were introduced in [2]. In [11] author has inspired the straightforward
definition of a general geometric Fourier transform covering most versions in the
literature.

In [4] introduced basic concepts of the multivector function, vector differential,
and vector derivative in geometric algebra. Generalized real Fourier transform on
Clifford multivector-valued functions, differentiation properties, and Plancherel the-
oremwere proved. In [6] author has discussed the development of wavelet transform.
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In [7] Clifford algebra offers a geometric interpretation for square roots of −1 in the
form of blades that square to minus −1, which extends to a geometric interpre-
tation of quaternions as represented as bivectors of a unit cube. In [9] author has
described a non-commutative generalization of the complex Fourier-Mellin trans-
form to Clifford algebra valued signal functions over the domain Rp,q taking values
in Cl(p, q), p + q = 2.

In [8] author explains the orthogonal plane split with of quaternion based on the
arbitrary choice of one or two linearly independent pure unit quaternion f, g. Also,
author has generalized the quaternionic Fourier transform applied to the quaternion
field to determine by quaternion f, g and established inverse transformation.

In the present study, authors have developed a two-sided Clifford wavelet function
in Cl(p, q). The properties like the inversion formula, Parseval, and convolution
theorem are established. Applications in Mathematical Physics are demonstrated.

2 Fourier of CWF in Cl( p, q)

Consider a multivector-valued function f (x ) in Cl(p, q), i.e., f : Rn → Cl(p, q),

where x is a vector variable. f (x) can be decomposed as in [14, 16]:

f (x) =
∑

A

fA(x)eA = 〈 f (x)〉 + 〈 f (x)〉1 + +〈 f (x)〉2 + · · · + + 〈 f (x)〉n . (1)

x = x1e1 + x2e2 + · · · + xpep + xp+1ep+1 + xp+2ep+2 + · · · + xqeq . (2)

ω = ω1e1 + ω2e2 + · · · + ωpep + ωp+1ep+1 + ωp+2ep+2 + · · · + ωqeq . (3)

CWF with respect to mother Clifford wavelet ψ ∈ L2
(
R

n;Cl(p,q)

)
as analogous to

[5, 6, 16]:
Ua,Θ,b : L2

(
R

n;Cl(p,q)

)→ L2
(
G;Cl(p,q)

)
. (4)

ψ ( x) → Ua,Θ,b ψ ( x) = ψa,Θ,b ( x) . (5)

ψa,Θ,b ( x) = 1

an/2
ψ

(
r−1
θ

(
x − b
a

))
. (6)

The family of wavelets ψa,Θ,b are called daughter Clifford wavelets [3] with a ∈ R
+

as dilation parameter, b ∈ R
n as the translation vector parameter andΘ as the SO(n)

rotation parameter, where SIM(n) is denoted by Cl(p,q) a subgroup of the affine
group of motion on Rn associated with wavelets as follows:

G = R
+ × SO(n) ⊗ R

n = {(a, rθ(x),b) : a ∈ R
+, rθ(x) ∈ SO(n),b ∈ R

n
}

(7)

where SO(n) is a special orthogonal group of Rn .
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For establishing an inversion formula, Parseval and Plancherel identities, cer-
tain assumptions about the phase functions u(x,ω), v(x,ω) need to be made. One
possibility is to arbitrarily partition the scalar product

x ∗ ω̃ =
∑n

l=1
xlω

l
= u(x,ω) + v(x,ω)

with
u(x,ω) =

∑k

l=1
xlω

l
(8)

and
v(x,ω) =

∑n

l=k+1
xlω

l
. (9)

3 Main Results

Definition 1 Fourier of CWF with respect to two square roots of −1 are considered
as et , e∗

t ∈ Cl(p, q), of − 1, e2t = e∗
t
2 = −1, every multivector A ∈ Cl(p, q) can

be split into commuting and anti-commuting parts as in [10]

Lemma 1 Every multivector A ∈ Cl(p, q) with respect to the square root et , e∗
t ∈

Cl(p, q) of − 1, i.e., et−1 = −et , then the unique decomposition is as [13].

A+et = 1

2

(
A + e−1

t Aet
)
.

A−et = 1

2

(
A − e−1

t Aet
)
.

A = A+et + A−et .

A+et et = et A−et .

A−et et = −et A−et .

Definition 2 Fourier of CWF with respective to square root of −1.
Let et , e∗

t ∈ Cl(p, q), et 2 = e∗
t
2 = −1 be any square root of −1. By the

construction of the operators of CWF and ± split produces et , e∗
t from [2].

The general two-sided Fourier of CWF ψ ∈ L1 (Rp,q ,Cl(p, q)) analogous to [13]

Fet ,e∗
t {ψ} (ω) =

∫

Rp,q

e−et u(x,ω)ψ ( x) e−e∗
t v(x,ω)dnx (10)

where dnx = dx1 · · · dxn, x,ω ∈ R
p,q and u, v : Rp,q × R

p,q → R.

Remark 1 From [7], ψ = ψ− + ψ+ is obtained from the property of split linearity.
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4 Properties of Fourier of CWF

Proposition 1 (Left and right linearity) For ψ1,ψ2 ∈ L1 (Rp,q ,Cl(p, q)) and
constants α,β ∈ Cl (p, q), then

Fet ,e∗
t {αψ1 + βψ2} (w) = α+et F

et ,e∗
t {ψ1} (ω) + α−et F

−et ,e∗
t {ψ1} (ω) (11)

+ β+et F
et ,e∗

t {ψ2} (ω) + β−et F
−et ,e∗

t {ψ2} (ω)

and

Fet ,e∗
t {ψ1α + ψ2β} (w) = Fet ,e∗

t {ψ1} (ω)α+e∗
t
+ F−et ,e∗

t {ψ1} (ω) α−e∗
t

(12)

+ Fet ,e∗
t {ψ2} (ω)β+e∗

t
+ F−et ,e∗

t {ψ2} (ω)β−e∗
t
.

Proof Considering from remark (3.4) using split linearity, we get

α = α+et + α−et ; e−et uα = α+et e
et u + α−et e

−(−et )u . (13)

β = β+et + β−et ; e−et uβ = β+et e
−et u + β−et e

−(−et )u . (14)

Also
αe−e∗

t v = e−e∗
t vα+e∗

t
+ e−(−e∗

t )vα−e∗
t

(15)

βe−e∗
t v = e−e∗

t vβ+e∗
t
+ e−(−e∗

t )vβ−e∗
t
. (16)

Using (10) in left-hand-side of (11)

Fet ,e∗t {αψ1 + βψ2} (w)

=
∫

Rp,q

e−et u {αψ1 + βψ2} e−e∗t vdnx

=
∫

Rp,q

{
α+et e

−et uψ1 + α−et e
−(−et )uψ1 + β+et e

−et uψ2 + β− f e
−(−et )u ψ2

}
dnx

= α+ f F
et ,e∗t {ψ1} (ω) + α−et F

−et ,e∗t {ψ1} (ω) + β+et F
et ,e∗t {ψ2} (ω) + β−et F

−et ,e∗t {ψ2} (ω) .

Hence (11) proved.

Similarly right linearity (12) can be proved.

Proposition 2 (Shifting) For a x-shift function ψ0 ( x) = ψ (x − x0),
h ∈ L1 (Rp,q ;Cl (p, q)) , with constant x0 ∈ R

p,q , assuming linearity of
u (x,ω) , v (x,ω) of a vector space with argument x, we obtain

Fet ,e∗
t {ψ0} (ω) = e−et u(x0,ω)Fet ,e∗

t {ψ} (ω) e −e∗
t v(x0,ω) . (17)
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Proof On substituting ψ0 (x) = ψ (x − x0) from (10), we get

Fet ,e∗
t {ψ0} (ω)

=
∫

Rp,q

e−et u(x,ω) ψ (x − x0) e−e∗
t v(x,ω) dnx

=
∫

Rp,q

e−et u(y+x0,ω) ψ (y) e−e∗
t v(y+x0,ω) dny

=
∫

Rp,q

e−et u(x0,ω) e−et u(y,ω)ψ (y) e−e∗
t v(y,ω) e−e∗

t v(x0,ω)dny

= e−et u(x0,ω)

∫

Rp,q

e−et u(y,ω)ψ (y) e−e∗
t v(y,ω) dny e−e∗

t v(x0,ω).

Hence the proof (17).

Proposition 3 (Modulation) Assume that the functions u (x,ω) , v (x,ω) are
both linear in their frequency argument ω then, for
Fet ,e∗

t {ψm} (ω) = e−et u(x,ω0) Fet ,e∗
t ψ (x) e−e∗

t v(x,ω0) andconstantω0 ∈ Cl (p, q) then
the modulation formula is given by

Fet ,e∗
t {ψm} (ω) = Fet ,e∗

t ψ (ω + ω0) . (18)

Proof Assuming that the functions u (x,ω) and v (x,ω) are both linear in their
frequency argument ω. Using (10) in left-hand-side of (18)

Fet ,e∗
t {ψm} (ω)

=
∫

Rp,q

e−et u(x,ω) ψm (x) e−e∗
t v(x,ω) dnx

=
∫

Rp,q

e−et u(x,ω) e−et u(x,ω0)ψm (x) e−e∗
t v(x,ω0)e−e∗

t v(x,ω) dnx

=
∫

Rp,q

e−et u(x,ω+ω0) ψm (x) e−e∗
t v(x,ω+ω0) dnx

= Fet ,e∗
t ψ (ω + ω0) .

Hence (18) is proved.

Proposition 4 (Dilations) Assume that for constants α1...αn ∈ R
n \ {0} , and

x
′ =

n∑
k=1

αkxkek we have u
(
x

′
,ω
)
= u

(
x,ω

′)
, and v

(
x

′
,ω
)= v

(
x,ω

′)
with

ω
′ =

n∑
k=1

akωkek .
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For ψl (x) = ψ
(
x

′)
, h ∈ L1 (Rp,q;Cl (p, q)) and ωl =

n∑
k=1

1
ak

ωkek , then

Fet ,e∗
t {ψl} (ω) = 1

|α1...αn| F
et ,e∗

t {ψ} (ωl) . (19)

Proof Assume that for constants α1...αn ∈ R
n\ {0} and x

′ =
n∑

k=1
akxkek we have

u
(
x

′
,ω
)
= u
(
x,ω

′)
and v

(
x

′
,ω
)
= v
(
x,ω

′)
with ω

′ =
n∑

k=1
akωkek .

Using definition (10) in (19)

Fet ,e∗
t {ψd} (ω)

=
∫

Rp,q

e−et u(x,ω) ψd (x) e−e∗
t v(x,ω) dnx

=
∫

Rp,q

e−et u(x,ω) ψ
(
x

′)
e−e∗

t v(x,ω) dnx

= 1

|α1...αn|
∫

Rp,q

e−et u(x,ω) ψ
(
x

′)
e−e∗

t v(x,ω) dnx .

Hence proved.

Proposition 5 (Power factor) For et , e∗
t power factors in ψp,q (x) = et pψ (x) e∗

t
q ,

p, q ∈ Z and ψ ∈ L1 (Rp,q;Cl (p, q)) from [13], we obtain

F p,q
{
ψp,q (ω)

} = et
pF p,q {ψ} (ω) e∗

t
q
. (20)

Proof Using (10) in left-hand-site of (20)

Fet ,e∗
t
{
ψp,q

}
(ω)

=
∫

Rp,q

e−et u(x,ω)ψp,q (x) e−e∗
t v(x,ω) dnx

=
∫

Rp,q

e−et u(x,ω)et
p {ψ} (x) e∗

t
q e−e∗

t v(x,ω) dnx

= et
p
∫

Rp,q

e−et u(x,ω) {ψ} (x) e−e∗
t v(x,ω) dnx e∗

t
q

= et
pF p,q {ψ} (ω) e∗

t
q

where e−et u(x,ω)et p = et pe−et u(x,ω) and e∗
t
qe−e∗

t v(x,ω) = e−e∗
t v(x,ω)e∗

t
q .

Thus (20) is proved.
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5 Reconstruction for CWF

Theorem 1 Assuming u, v as in (8) and (9) for ψ ∈ L1 (Rp,q;Cl (p, q)) , then the
inversion formula is given as

ψ (x) = (Fet ,e∗
t
)−1 {

Fet ,e∗
t {ψ}} (x) = 1

(2π)n

∫

Rp,q

eet u(x,ω) Fet ,e∗
t ψ (ω) ee

∗
t v(x,ω) dnω .

(21)

Proof Applying (10) in right-hand-side of (21), we get

1

(2π)n

∫

Rp,q

∫

Rp,q

eet u(x,ω) e−et u(y,ω)ψ (y) e−e∗
t v(y,ω) ee

∗
t v(x,ω)dny dnω

= 1

(2π)n

∫

Rp,q

∫

Rp,q

eet u(x-y,ω)ψ (y) ee
∗
t v(x-y,ω)dnω dny

= 1

(2π)n

∫

Rp,q

∫

Rp,q

eet
∑k

l=1 (xl−yl)ωlψ (y) ee
∗
t

∑n
m=k+1 (xm−ym)ωm dnω dny

= 1

(2π)n

∫

Rp,q

∫

Rp,q

k∏

l=1

eet(xl−yl)ωlψ (y)
n∏

m=k+1

ee
∗
t (xm−ym)ωm dnω dny

= 1

(2π)n

∫

Rp,q

k∏

l=1

∂
(
xl − yl

)
ψ (y)

n∏

m=k+1

∂
(
xm − ym

)
dny (22)

where
1

2π

∫

R

eet(xl−yl)ωl dωl = ∂
(
xl − yl

)
, 1 ≤ l ≤ k

and
1

2π

∫

R

ee
∗
t (xm−ym)ωm dωm = ∂

(
xm − ym

)
, k + 1 ≤ m ≤ n

are used in (22). Hence the proof.

6 Plancherel and Parseval Identities of Fourier of CWF

Theorem 2 For the function ψ1,ψ2 ∈ L2 (Rp,q;Cl (p, q)) and assuming
ẽt = −et , ẽ∗

t = −e∗
t then, Plancherel identity is obtained from [13]
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〈ψ1,ψ2〉 = 1

(2π)n
〈
Fet ,e∗

t {ψ1} , Fet ,e∗
t {ψ2}

〉
. (23)

Hence Parseval identity is given by

‖ψ‖ = 1

(2π)n/2

∥∥Fet ,e∗
t {ψ}∥∥ . (24)

Proof On considering

〈
Fet ,e∗

t {ψ1} , Fet ,e∗
t {ψ2}

〉 =
〈
Fet ,e∗

t {ψ1} (ω)
[
Fet ,e∗

t {ψ2} (ω)
]˜〉

dnω

=
∫

Rp,q

∫

Rp,q

∫

Rp,q

〈
e−et u(x,ω) ψ1 (x) e−e∗

t v(x,ω)dnx
[
e−et u(y,ω) ψ2 (y) e−e∗

t v(y,ω)dny
]˜〉

dnω

=
∫

Rp,q

∫

Rp,q

∫

Rp,q

〈
e−et u(x,ω) ψ1 (x) e−e∗

t v(x,ω)e−ẽ∗
t v(y,ω)ψ̃2 (y) e−ẽt u(y,ω)dny

〉
dnxdnω

=
∫

Rp,q

∫

Rp,q

∫

Rp,q

〈
eet u(y,ω) e−et u(x,ω)ψ1 (x) e−e∗

t v(x,ω)ee
∗
t v(y,ω)ψ̃2 (y) dnω dny

〉
dnx

=
∫

Rp,q

∫

Rp,q

∫

Rp,q

〈
e−et u(x-y,ω)ψ1 (x) e−e∗

t v(x-y,ω)ψ̃2 (y) dnω dny
〉
dnx

= (2π)n
∫

Rp,q

∫

Rp,q

∫

Rp,q

〈
e−et

∑k
l=1 (xl−yl)ωl

(2π)k
ψ1 (x)

e−e∗
t
∑n

m=k+1 (xm−ym)ωm

(2π)n−k
ψ̃2 (y) dnω dny

〉
dnx

= (2π)n
∫

Rp,q

∫

Rp,q

〈
k∏

l=1

∂
(
xl − yl

)
ψ1 (x)

n∏

m=k+1

∂
(
xm − ym

)
ψ̃2 (y) dny

〉
dnx

= (2π)n
∫

Rp,q

〈
ψ1 (x) ψ̃2 (x)

〉
dnx

= (2π)n 〈 ψ1, ψ2〉 .

Parseval identity is obtained by considering ψ1 = ψ2 in (23) follows as

‖ψ‖ = 1

(2π)n/2

∥∥Fet ,e∗
t {ψ}∥∥ .

7 Examples

Example 1 Haar wavelet ψ is defined as:
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ψ (x) =

⎧
⎪⎨

⎪⎩

1; 0 ≤ x < 1/2

−1; 1/2 ≤ x < 1

0; otherwise.

Find the Fourier of Haar wavelet function in Cl(p, q).

Solution: Applying Fourier of Haar wavelet function in (10), we get

Fet ,e∗
t {ψ} (ω)

=
∫

Rn

e−et u(x,ω)ψ (x) e−ve∗
t (x,ω)dnx

=
b1+1/2∫

b1

e−et u(x,ω) e−ve∗
t (x,ω)dnx −

b1+1/2∫

b1

e−et u(x,ω) e−ve∗
t (x,ω)dnx + 0

=
∫ 1/2+b1

b1

e±in
∑n

l=1 xlωl dx 1 ...

∫ 1/2+bn

bn

e±in
∑n

l=1 xlωl dxn

−
{∫ 1+b1

1/2+b1

e±in
∑n

l=1 xlωl dx 1 ...

∫ 1+bn

1/2+bn

e±in
∑n

l=1 xlωl dxn

}

=
⎧
⎨

⎩

[
e±in

∑n
l=1 xlωl

(inω1...ωn)

]1/2+b1

b1

...

[
e±in

∑n
l=1 xlωl

(inω1...ωn)

]1/2+bn

bn

⎫
⎬

⎭

−
⎧
⎨

⎩

[
e±i1

∑n
l=1 xlωl

(inω1...ωn)

]1+b1

1/2+b1

...

[
e±in

∑n
l=1 xlωl

(inω1...ωn)

]1+bn

b1/2+bn

⎫
⎬

⎭ .

Example 2 Maxican hat wavelet:ψ (x) = (1 − x2
)
ex

2/2. Find the Fourier of Maxi-
can hat wavelet function in Cl(p, q).

Solution: Using Fourier of Maxican hat wavelet function in (10) gives

Fet ,e∗
t {ψ} (ω) =

∫

Rn

e−et u(x,ω)

[(
1 −

n∑

m=1

x2m

)
n∏

m=1

e−x2m/2

]
e−e∗

t v(x,ω)dnx

=
∫

Rn

e±(i1x1ω1+...in xnωn)

[(
1 −

n∑

m=1

x2m

)
n∏

m=1

e−x2m/2

]
dnx (25)
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considering m = 1 in (26) gives

e−x2/2+iωx iω + xe−x2/2+iωx − 1

2

{√
2ω2√π er fi

[√
2ω

2
+

√
2xi

2
e−ω2/2i

]}
.

Further m = 2 in (26) gives

−er fi

[
−√

2

(
ω2i2
2

− x2
2

)
i

] [
πer fi

{√
2

(
ω1i1
2

− x1
2

)
i

}
e
√
2

(
ω22 i

2
2

2 + ω21 i
2
1

2

)

+ω1i1
√
2πe

(
ω22 i

2
2

2 − x21
2 +x1ω1i1

)
i + √

2πe

(
ω22 i

2
2

2 − x21
2 ±x1ω1i1

)
i

+ω2i2π

2
er fi

{√
2

(
ω1i1
2

− x1
2

)
i

}
e
√
2

(
ω22 i

2
2

2 − ω21 i
2
1

2

)

+

ω1i1π

2
er fi

{√
2

(
ω1i1
2

− x1
2

)
i

}
e

{√
2

(
ω22 i

2
2

2 − ω21 i
2
1

2

)}]

+1

2

√
2π ω2i2er fi

{√
2

(
ω1i1
2

− x1
2

)
i

}
e

{
ω21 i

2
1

2 − x22
2 ±ω2i2x2

}
i

−1

2

√
2π x2er f

{√
2

(
ω1i1
2

− x1
2

)
i

}
e

{
ω21 i

2
1

2 − x22
2 ±ω2i2x2

}

.

Thus for all values of m the Fourier of Maxican hat wavelet in Cl(p, q) is obtained.

8 Application

Apply Fourier on CWF on partial differential equations in Clifford algebra. Consid-
ering an initial value problem analogous to [12], we get

∂ψ

∂t
− Δ2ψ = 0 on R

0,q × (0,∞) (26)

and ψ(x1, x) = f (x1, x) at t = 0 where R
0,q × (0,∞) is Clifford-Schwatz space

and Δ2 = ∂
∂2x1

+ ∂
∂2 x .

Applying the definition (10) to both sides and from [12], we obtain

Fet ,e∗
t

[
∂ψ

∂t

]
= e2t F

et ,e∗
t [ψ] + e2t F

et ,e∗
t [ψ] e∗2

t = −2Fet ,e∗
t [ψ] . (27)
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General solution of (27) is given by

Fet ,e∗
t

[
∂ψ

∂t

]
= −Ce−t

where C is Clifford constant.
Using initial conditions (27) becomes

Fet ,e∗
t

[
∂ψ

∂t

]
= −2Fet ,e∗

t [ f ] . (28)

Analogous to [12] and using (28) follows

1

4πt
Fet ,e∗

t
[
e−1/4t

] = e−t . (29)

Applying inversion formula to (29), finally ψ(x) is given as

ψ(x) = (Fet , e
∗
t )−1

[[
e−t
]
Fet ,e∗

t [ f ]
]
.

Hence

ψ(x) = 1

4πt
(Fet , e

∗
t )−1

[[
e−1/4t

]
Fet ,e∗

t [ f ]
]
.

9 Conclusion

Two-sided Clifford wavelet function (CWF) is defined in Cl(p,q) with orthonormal
vector basis. The properties like left linearity, right linearity, shifting, modulation
dilations, power factor, inversion formula, Parseval and Plancherel identities are
established. Examples are also illustrated in the present work.
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Generalizations of the Fibonacci
Sequence with Zig-Zag Walks

László Németh and László Szalay

Abstract The examination of the recurrence sequences associated with combinato-
rial constructions has been very extensive in the last decades. One of themost famous
recurrence sequences is the Fibonacci sequence. We give two digraph constructions
defined on the hyperbolic and on the Euclidean square mosaics, respectively, and we
introduce two zig-zag type walks associating to the Fibonacci and its generalized
sequences. Then we determine the recurrence relations and we give some examples.

Keywords Recurrence sequence · Hyperbolic Pascal triangle · Zig-zag square
graph · Zig-zag sequence · Generalized Fibonacci sequence

1 Introduction

The investigation of the generalizations of Pascal’s arithmetic triangle has an exten-
sive literature. One generalization is the hyperbolic Pascal triangle defined on a reg-
ular squared grid given by Schläfli’s symbol {4, q}, q ≥ 5. Belbachir, Németh, and
Szalay [1] described some interesting properties. One is that the Fibonacci sequence
appears in this structure along a suitable zig-zag walk, considering the directed graph
form of the hyperbolic Pascal triangle. Németh and Szalay [2] examined other types
of zig-zagwalks and presentedmore recurrence sequences assigned to the hyperbolic
Pascal triangle.

The present paper summarizes the studies of diagonal and zig-zag paths on a
particular k + 1 wide, infinite part of the usual Euclidean square lattice as well.
Along these paths Németh, and Szalay [3] determined linear recurrence sequences
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considering a special type of generalized Fibonacci sequences and that are mostly
defined in the On-Line Encyclopedia of Integer Sequences (OEIS, [4]). Moreover,
we show a new occurrence of the Fibonacci sequence associated with the coefficient
of these recurrence sequences.

2 Recurrence Sequences Associated to the Walks on the
Hyperbolic Pascal Triangle

In the hyperbolic plane, there are infinite types of square regular mosaics, they are
denoted by Schläfli’s symbol {4, q}, where q satisfy q > 4. The parameter q means
that in one node of the mosaic exactly q regular square meet. Each square regular
mosaic induces a hyperbolic Pascal triangle HPT based on the mosaic {4, q}, and
they can be figured as a digraph, where the vertices and the edges are the vertices
and the edges of a well-defined part of the lattice {4, q}, respectively, further each
vertex possesses the value which gives the number of different shortest paths from
the base vertex. Fig. 1 illustrates the hyperbolic Pascal triangleHPT {4,5}. The values
of the most left and most right nodes are 1’s and the values inside the triangle are the
sums of incoming values (for more details, see Fig. 1 and [1]). In the sequel, we fix
the type of HPT given by mosaic {4, 5}.

Examining the triangle HPT {4,5} thoroughly in Fig. 1 and starting a walk from
the root vertex, continuing with one-step left and one-step right, then again one-step
left, one-step right, and so on—shortly L , R, L , R, L , . . . (follow the red edges), we
find that the values of nodes along this zig-zag walk are the terms of the Fibonacci
sequence (defined by F0 = 0, F1 = 1 and Fn = Fn−1 + Fn−2). Considering a similar

Fig. 1 Fibonacci and Pell sequences in the hyperbolic Pascal triangle {4, 5}
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Table 1 Location of the sequences

fn = α fn−1 + fn−2 fn = α fn−1 − fn−2

Condition α ≥ 1 α ≥ 2

Distance of fn and fn−1 α α − 1

Pattern of steps LRα−1, and RLα−1,
alternately

LRα−2

zig-zag walk, first we step left and right, second right and left, and so on—shortly
LR, RL , LR, RL , . . . (blue walk), the Pell sequence (defined by P0 = 0, P1 = 1
and Pn = 2Pn−1 + Pn−2 for n ≥ 2) appears.

It is easy to show (see [2]) that each pair i < j ∈ Z
+ can be found next to each

other inHPT {4,5}.

Theorem 1 ([1, 2]) Assume α ∈ Z
+, f0 < f1 ∈ Z

+, and f0 (in the second case
f1 − f0) is the left neighbor of f1. Then binary recurrence sequences

fn = α fn−1 ± fn−2, (n ≥ 2)

appear in the triangle HPT {4,5} along zig-zag walks.

Table 1 shows the information about the location of the terms of the sequences. Here,
for example, LRα−1 means that going down from a given element having type red
circle, via elements type red circle, first turn left, and then (α − 1)-times right. For
illustration, see Fig. 2, when the pattern of steps in the zig-zag walk is LRR (or
LLR).

3 Recurrence Sequences Associated to the Walks on an
Euclidean Square Grid

Consider the Euclidean square lattice and take k consecutive pieces of squares. This
is the 0th layer of the k–zig-zag shape. The upper corners are the 1st, 2nd, . . ., kth
and (k + 1)st vertices according to Fig. 3. Extend this by an extra 0th vertex, which
is the base vertex. We color it yellow in the figures, and we join it to the 1st vertex by
an extra edge. We denote the vertices of the 0th line by small boxes in Fig. 3. Now
move the 0the layer to reach the right-down position in the square lattice to obtain the
1st layer, and repeat this procedure with the latest layer infinitely many times. Thus,
we define the square k–zig-zag shape or graph, where k ≥ 1 is the size of the array.
Finally, we label the vertices such that a label gives the number of different shortest
paths from the base vertex. Figure4 illustrates the first few layers of the square
4–zig-zag digraph, the vertices are denoted by shaded boxes with their label values
and the directed edges are the black arrows. Let ai, j denote the label of the vertex
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Fig. 2 Appearance of fn = 4 fn−1 − fn−2, f0 = 1, f1 = 2 in HPT {4,5}

Fig. 3 Zig-zag shape

located in i th row and j th position (0 ≤ j ≤ k + 1, 0 ≤ i). Clearly, the fundamental
rule of the construction is given by

ai, j =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, if i = 0;
ai−1,1, if j = 0, 1 ≤ i;
ai, j−1 + ai−1, j+1, if 1 ≤ j ≤ k, 1 ≤ i;
ai,k, if j = k + 1, 1 ≤ i.

(1)
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Fig. 4 Square 4–zig-zag digraph (k = 4)

For fixed k ≥ 1 and given 0 ≤ j ≤ k + 1, let A(k)
j be the sequence defined by

A(k)
j = (ai, j )∞i=0. The sequence A(k)

j is the j th right-down diagonal sequence of the

square k–zig-zag shape. In Fig. 4, the blue arrows represent the sequence A(4)
1 . We

found A(k)
0 = (1, A(k)

1 ) and A(k)
k = A(k)

k+1. These sequences are associated with the
zig-zag walks with patterns RL , RL , RL , . . ..

Let Z (k)
j , j ∈ {0, 1, . . . , k} be the j th zig-zag sequence of the square k–zig-zag

shape, where Z (k)
j is the merged sequence of A(k)

j and A(k)
j+1. (In Fig. 4, the red arrows

represent the zig-zag sequence Z (4)
3 ). More precisely, Z (k)

j = (zi, j )∞i=0, where

zi, j =
{
a�, j , if i = 2�;
a�, j+1, if i = 2� + 1.

(2)

Since Z (k)
0 and Z (k)

k are the ‘double’ of A(k)
0 and A(k)

k , respectively, usuallywe examine
sequences for j ∈ {1, 2, . . . , k − 1}. The Z (k)

j sequences are associated with the zig-
zag walks with patterns R, L , R, L , R, L , . . ..

We find that any item an, j , (n ≥ 1) is the sum of the certain items of (n − 1)st row.
More precisely, if 0 < j < k + 1, then we obtain the system of recurrence relations

an, j = an−1, j+1 + an, j−1 = an−1, j+1 + an−1, j + an, j−2 = · · · =
j+1∑

�=1

an−1,�. (3)
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Let pk(x) be the characteristic polynomials of kth recurrence of system (3), then
the following theorem holds.

Theorem 2 ([3], Theorem 4) The characteristic polynomials pk(x) can be given by

pk(x) = x� k
2�

� k
2	+1
∑

i=0

(−1)i
(
k + 2 − i

i

)

x� k
2	+1−i , k ≥ 0. (4)

Now we record the two theorems of zig-zag sequences. The first one is the corol-
lary of Theorem 2 and the second is a simple corollary of the first one.

Theorem 3 Given k ≥ 1. Then all the right-down diagonal sequences A(k)
j for

j ∈ {0, 1, . . . , k, k + 1} have the same (
⌊
k
2

⌋ + 1)-th order homogeneous linear
recurrence relation

an, j =
� k

2	∑

i=0

(−1)i
(
k + 1 − i

i + 1

)

an−1−i, j , n ≥
⌊
k

2

⌋

+ 1. (5)

Theorem 4 Fixing k ≥ 1, the zig-zag sequences Z (k)
j for j ∈ {0, 1, . . . , k} satisfy a

(2
⌊
k
2

⌋+2)-th order homogeneous linear recurrence relation given by

zn, j =
� k

2	∑

i=0

(−1)i
(
k + 1 − i

i + 1

)

zn−1−2i, j , n ≥ 2

⌊
k

2

⌋

+2.

Fig. 5 illustrates the 3-zig-zag graph and the zig-zagwalkwhen appeared sequence
is the Fibonacci sequence.

Expressing the item an, j from Eq. (5) we obtain the result of Theorem 3. For
example, the first few recurrence relations are

k = 0 : an, j = an−1, j ,

k = 1 : an, j = 2an−1, j ,

k = 2 : an, j = 3an−1, j − an−2, j ,

k = 3 : an, j = 4an−1, j − 3an−2, j ,

k = 4 : an, j = 5an−1, j − 6an−2, j + an3, j ,

k = 5 : an, j = 6an−1, j − 10an−2, j + 4an−3, j ,

k = 6 : an, j = 7an−1, j − 15an−2, j + 10an−3, j − an−4, j ,

k = 7 : an, j = 8an−1, j − 21an−2, j + 20an−3, j − 5an−4, j ,

k = 8 : an, j = 9an−1, j − 28an−2, j + 35an−3, j − 15an−4, j + an−5, j ,

k = 9 : an, j = 10an−1, j − 36an−2, j + 56an−3, j − 35an−4, j + 6an−5, j ,

k = 10 : an, j = 11an−1, j − 45an−2, j + 84an−3, j − 70an−4, j + 21an−5, j − an−6, j .
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Fig. 5 Fibonacci sequence associated to zig-zag walk in 3-zig-zag graph

We consider the sum of the absolute values of the coefficients of these recurrence
sequences (the left-hand side as well), andwe gain the first few items of the Fibonacci
sequence. Generally, using the well-known properties of Pascal’s triangle that the
rising-up diagonal sum sequence of Pascal’s triangle is the Fibonacci sequence, so

� u
2 	∑

v=0

(
u − v

v

)

= Fu+1,

and from Eq. (5) when u = k + 2 and v = i + 1 we obtain

� k
2	∑

i=0

(
k + 1 − i

i + 1

)

= Fk+3 − 1.

Fig. 6 illustrates this coefficient sequence.
Moreover, considering the polynomials pk(x) of Eq. (4) we find that for non-

negative integer x = m the sequence of polynomials pk(x) becomes integer recur-
rence sequence with recurrence

pk(m) = mpk−1(m) − pk−2(m), k ≥ 1,

where the initial values are p−1(m) = 1 and p0(m) = m. For the first few m the
sequences appear yet in OEIS (see Table 2).
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Fig. 6 Fibonacci sequence
in Pascal’s triangle

Table 2 Sequences in OEIS
x 0 1 2 3 4 5 6 7 8 9 10

pk (x) A154955 A128834 A090132 A057682 A001792 A039717 A140766 — A164591 — A176174

References

1. Belbachir, H., Németh, L., Szalay, l.: Hyperbolic Pascal triangles. Appl. Math. Comput. 273,
453–464 (2016). https://doi.org/10.1016/j.amc.2015.10.001

2. Németh, L., Szalay, L.: Recurrence sequences in the hyperbolic Pascal triangle corresponding
to the regular mosaic {4, 5}. Ann. Math. Inform. 46, 165–173 (2016)

3. Németh, L., Szalay, L.: Sequences involving square zig-zag shapes. J. Integer Seq. 24(5), Article
21.5.2 (2021)

4. Sloane, N.J.A., et al.: The on-line encyclopedia of integer sequences, (2021). https://oeis.org/

https://doi.org/10.1016/j.amc.2015.10.001
https://oeis.org/


Mathematics Learning Challenges
and Difficulties: A Students’ Perspective

David Wafula Waswa and Mowafaq Muhammed Al-kassab

Abstract Mathematics is considered one of the core subjects that all students should
learn to a certain level, and a lot of emphasize and importance is bestowed on it by
almost all governments. However, students consider it a challenging subject that
is difficult to understand. This research therefore seeks to establish what could be
the major causes of difficulty in learning mathematics by students in the region. A
questionnaire was distributed to 120 university students from five departments of the
faculty of Education, and data collected and analyzed using one-sample t-test, two-
samples t-test, and analysis of variance through theMinitab software. Results point to
threemajor groups of sources of difficulties encountered by students in learningmath-
ematics: learners’ innate cognitive abilities, mathematics problem-solving processes
and procedures, and external factors that include overcrowded classes, fear and
anxiety, weak foundation, and instructors and instructional materials. Recommenda-
tions particular to theKurdistan regionwere discussed and they include decongesting
classrooms, investing in instructors by offering incentives and providing professional
development opportunities, and adequately equipping students with the necessary
learning tools and materials.

Keywords Descriptive statistics · t-test · Analysis of variance · Learning
challenges · Mathematics competitiveness

1 Introduction

Mathematics has since been viewed as a “difficult” subject, and stereotypes charac-
terizing this label abound. Such stereotypes eventually lead to fear that develops into
mathematics phobia among students. The fear and/or phobia negatively impacts on
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the students’ learning ofmathematics leading to poor performance in the subject. The
various branches of mathematics present different and sometimes unique challenges
to students. In Algebra, for instance, students encounter challenges in converting
word problems into mathematical sentences represented by symbols [9], incorrectly
substituting and misunderstanding the signs [2] is another common difficulty for
students in tackling algebra. Kelanang and Zakaria [3] on the other hand, viewed
the origins of the problems that students encounter in learning geometry from 3
perspectives: cognitive and developmental theories, orientation, concept formation,
and operative comprehension. In calculus, a course that teachers agree by consensus
to be difficult for students [8], students experience challenges with the rate of change
concept [6]. In general, [7], generalized sources of difficulties in learning mathe-
matics are categorized in 5 ways; self-factors, teachers, parents, friends, and what
they termed as “other” factors. The “other” factors include issues like assessment
pressure and the general nature of mathematics. They conceded that other factors
like self-esteem, teachers’ behaviour, parental cognitive abilities [13], and friends,
greatly influence students’ disposition towards mathematics learning. Acharya [1]
while mostly concurring with the other researchers, he added 2 dimensions, students’
prior knowledge and lack of students’ labor as possible other sources of difficulty in
studying mathematics. Indeed, students find it difficult to understand higher math-
ematics concepts if their foundation in the subject was weak [4]. It’s not enough
to just recall previously studied concepts, students must be able to apply them in
higher-order mathematics and that is why prior knowledge is key to understanding
mathematics. By ‘students’ labor’, Acharya implied students’ commitment to the
subject. It is obvious mathematics students are required to put in extra hours of study
and be committed to “doing” mathematics as opposed to “reading” mathematics,
which many students do. But [10] summed the mathematics learning difficulties by
putting them in 4 categories: mathematical objects and thinking processes, mathe-
matics teaching processes, students’ cognitive processes, and lack of rational attitude
towards mathematics. In Kurdistan region of Iraq and in general the larger Iraq and
Arab countries, the difficulties talked above aremuchmore general. The general stan-
dards of education in the region are relatively low compared to many other places
in the world. There are various theories explaining these poor standards of educa-
tion, perennial unrest in the region and around it, and cultural beliefs that are rooted
in family values, such that families would easily sacrifice education on the altar of
marriage. For instance, it is common practice for students to repeat grade levels if
the teachers deem the performance of the student to be below par. Such practice only
serves to discourage students from pursuing learning because it demonstrates to the
students that they are not good enough. Mathematics is considered all over the world
as an important subject and is made compulsory in many countries for students up
to the high school level. Kurdistan region is not an exception to this world trend. It is
considered a core subject that all students must take in their early years through high
school. Given the importance associated with the subject, many parents, and indeed
students themselves also, struggle to continue with it despite the poor outcomes in
many instances. This research therefore seeks to establish what could be the major
causes of difficulty in learning mathematics by students in the region.
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2 Methodology and Research Design

This study is quantitative research with data collected through a questionnaire. The
study sample is from a private university in the Kurdistan region of Iraq. Respondents
were randomly sampled from the 5 departments in the faculty of education at the
university. The questionnaires were handed to respondents by selected responsible
students and taken back after they were filled out. Even with this careful handling of
the process, out of the 120 questionnaires distributed, 7were found to be defective and
therefore rejected. The remaining 113 were analyzed using the Minitab mathematics
software and the results are presented below.

3 Results

Study results from the 5 departments of the faculty of Education as analyzed by
the Minitab statistics data analysis software are presented below. First, descriptive
statistics for each department were analyzed, Table 1.

Table 1 Descriptive statistics analysis for each department

Departments Grade level n Mean Median SE Mean

ELT 1 8 57.13 56.00 3.57

2 11 52.73 46.00 5.57

3 16 53.13 54.00 4.15

4 12 69.42 66.00 7.01

Biology 1 7 56.71 57.00 5.51

2 7 65.43 61.00 3.77

3 5 68.20 69.00 3.12

4 13 58.69 55.00 4.95

Mathematics 1 4 63.50 65.50 3.80

2 3 66.67 66.00 1.20

3 4 63.50 63.00 3.38

4 2 100.00 100.00 1.00

Physics 1 3 53.67 46.00 7.67

2 3 52.30 62.00 10.70

3 3 59.33 60.00 3.48

4 5 62.20 74.00 9.61

Computer 1 4 59.75 61.00 3.57

2 3 55.30 65.00 11.70
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From Table 1, it can clearly be seen that the sampled students from each of the five
departments agree with the questionnaire, except for 4th grade mathematics students
whose mean was way above 72.

One-Sample t-Test Analysis

After the descriptive statistics, the researchers also carried out a one-sample t-test for
individual grade levels in each department. The t-test was based on the hypothesis
that the average for individual grade levels in each department is 72 against the
alternative hypothesis that the average is not equal to 72.

i.e. H0 : µ = 72

H1 : µ �= 72

the results are shown in Table 2.
Table 2 indicates that slightly more than half of the grade levels in the 5 depart-

ments had no statistically significant differences in the answering of the questionnaire
as can be seen from the P-Values that are greater than 0.05. Therefore, in each the
null hypotheses were rejected at the mean µ = 72. The exceptions are grade levels

Table 2 One-sample t-Test analysis for grade levels in each department

Department Grade level T-Value P-Value

ELT 1 −4.17a 0.004

2 −3.46a 0.006

3 −4.54a 0.000

4 −0.37 0.720

Biology 1 −2.78a 0.032

2 −1.74 0.132

3 −1.22 0.290

4 −2.69a 0.020

Mathematics 1 −2.24 0.111

2 −4.44a 0.047

3 −2.52 0.087

4 28.00a 0.023

Physics 1 −2.39 0.139

2 −1.84 0.207

3 −3.64 0.068

4 −1.02 0.365

Computer 1 −3.43a 0.041

2 −1.42 0.291

a Means significant at 5%
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Table 3 Analysis of variance within departments

Department F-value P-value

ELT 2.19 0.103

Biology 0.94 0.434

Mathematics 20.31a 0.000

Physics 0.28 0.842

aMeans highly significant at 5%

as can be seen in the table, including 4th grade ELT, 2nd and 3rd grade biology, 1st
and 3rd grade mathematics, all grade levels in Physics, and 2nd grade computer.

One-way analysis of variance (ANOVA) was performed for each department to
ascertain if there exist any differences in the grade levels within each department.
This analysis was performed on 4 departments since the 5th department, Computer
EducationDepartment, had only 2-grade levels at the time of this research. Therefore,
a Two-Sample t-Test was conducted instead.

Table 3 shows therewas a statistically significant difference among the grade levels
of mathematics department at P = 0.000. This significance is due to grade 4 which
has a mean of 100 (see Table 1). The rest of the departments showed no significant
differences among the grade levels. The two-sample t-test performed on the computer
education department also returned a no statistically significant difference verdict as
indicated in Table 4.

A separate descriptive statistics analysis for all departments was performed
followed by a One-Sample t-Test and an analysis of variance to check for differences
between and among the departments. The results are displayed below (Table 5).

It can be ascertained from the table that since all the means µ < 72, students
acting together as departments generally agreed or completely agreed with the ques-
tionnaires. On the other hand, the one-sample t-test shown in Table 6 indicates that

Table 4 Two-Sample t-Test for computer education department

Grade level Means T-value P-value

1 59.75 0.41 0.695

2 55.300

Table 5 Descriptive statistics analysis for departments

Department n Mean Median SE mean

ELT 47 57.87 54.00 2.81

Biology 32 61.22 60.50 2.56

Mathematics 13 69.85 66.00 4.00

Physics 14 57.64 61.00 4.19

Computer 7 57.86 62.00 4.91
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Table 6 One-sample t-Test for departments

Department n T-Value P-Value

ELT 47 −5.04a 0.000

Biology 32 −4.22a 0.000

Mathematics 13 −0.54 0.600

Physics 14 −3.42a 0.005

Computer 7 −2.88a 0.028

aMeans significant at 5%

Table 7 One-way analysis of variance for departments

Source of
variation

Degree of
freedom

Sum of squares Mean sum of
squares

F-value P-value

Between
departments

4 1627 407
280

1.45 0.221

Error 108 30,200

Total 112 31,828

all departments except the mathematics department reject the null hypothesis. The
one-sample t-test analysis for departments is shown in the table below.

The One-way analysis of variance for all departments is shown in the Table 7.
The one-way analysis of variance for the departments resulted in no rejection of

the null hypothesis indicating that there was no statistically significant difference
among the departments.

The last analysis performed was the descriptive analysis for each scale item on
the questionnaire, and the results are depicted in the table below.

The descriptive data in Table 8 can be analyzed in three broadways; there are items
associated with the students’ own inability to grasp the concepts. As can be seen from
the table, 71% of the respondents agree that mathematics is difficult to understand.
These agree with more than half, 56%, who accepted that they had difficulties in
interpretingmathematics questions. It’s obvious that if a student is not able to interpret
a question, then such a student will consider the question to be difficult because
interpreting is the very beginning of the problem-solving process. Clearly, it’s not the
mathematics vocabulary that makes it difficult to interpret, and therefore, understand
the question. This is evident in the table that more than half of the respondents
disagreed with the notion that mathematics vocabulary was difficult to read. This,
therefore, leaves us to conclude that it is themathematics content and or context that is
difficult for students to interpret andunderstand, indeed almost 70%of themexpressly
said that they are not able to understand the meanings of mathematical expressions.
To reinforce this, almost 60% of the respondents confirmed that they do not have
the requisite critical thinking abilities for mathematical problem-solving. Critical
thinking is necessary for students to recognize quantitative facts and relationships in
a mathematical problem in order to solve it, therefore it’s not surprising that more
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than 50% of the are not able to recognize these facts and relationships. Which is not
surprising that three quarters of them are not even able to relate lessons to previous
ones in order to make sense of the mathematical content. If students are not able to
relate two or three lessons, then it would be very difficult for them to relate concepts,
hence the difficulties in understanding the subject.

Besides the students’ own inability to grasp concepts, the scale items also brought
to the fore the difficulties students encounter in understanding the procedural aspect
of mathematical problem-solving. As clearly depicted in Table 8, almost 80% of the
respondents had difficulties understanding rules and/or methods of problem-solving
inmathematics, and almost the samenumber, 78%, had difficulties in choosing appro-
priate methods for solving mathematics problems. Indeed, it follows with certainty
that such students would find it almost impossible to follow the steps involved in
solving mathematical problems, as is seen in the table that about 72% were not able
to or find it difficult to do so, and almost 80% find it difficult to understand the rules
of mathematical order of operations. As a clear indication, data also shows that over
70% of the respondents confess that they get confused by too many mathematical
formulas. It is therefore clear that most students experience some form of difficulties
in understanding mathematical procedures and algorithms.

The last aspect of this descriptive data is the external interferences.Thedata reveals
other factors like technology, fear, attitude, teaching materials, and instructors. Table
8 shows that almost 80% of the respondents had a weak foundation in mathematics,
and this is clearly displayed by the 75% who accepted that they were unable to
continue with mathematics lessons, and the 70% who become uncomfortable or
shy away from asking questions in class. The weak foundation may be attributed to
the instructors or perhaps instructional materials like textbooks and classroom tech-
nology. For instance, 76% of the respondents agree that the textbooks used are not
appropriate, and 73% suggest overdependence on technology to solve mathematics
problems. This could also have been caused by overcrowded classrooms, 78%, or
negative attitude towards the subject as shown by 72% of the respondents. Teachers
take a fair share of the cake, 74% agree that teachers are not able to deliver the lesson
to students effectively, and 77% think that teachers are unable to use mathematical
language that students understand in formulating problems.

4 Discussion and Conclusion

It is evident that mathematics subject presents challenges to learners in various ways
and causes of which vary as well.
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Table 8 Descriptive statistics analysis for all items

Scale item Completely agree Agree Not sure Disagree Completely disagree

Mathematics is
difficult to understand

38 33 12 12 5

Difficult to
understand
rules/methods of
problem solving

21 38 18 14 7

Weak foundation in
mathematics

23 38 23 12 4

Difficult to interpret
mathematics
questions

20 36 22 18 4

Too many students in
a class affects
understanding

32 38 8 16 6

Difficult to read
mathematics
vocabulary

13 35 16 23 13

Difficult choosing
appropriate methods
for solving problems

27 28 23 19 3

Difficult to follow all
steps in solving a
mathematics problem

30 27 15 20 8

Difficult to
understand rules of
mathematical order
of operations

26 34 18 15 7

Dependency on
technology to solve
mathematical
problems

20 27 26 19 8

Lack of critical
thinking in solving
mathematical
problems

20 39 19 16 5

Inability to recognize
quantitative facts and
relationships in a
mathematical
problem

22 33 16 23 6

(continued)
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Table 8 (continued)

Scale item Completely agree Agree Not sure Disagree Completely disagree

Inability to
understand the
meanings of
mathematical
expressions

28 40 14 12 6

Fear of failing to
solve a mathematical
problem

29 23 27 14 7

The teacher is unable
to deliver the lesson
to the students
effectively

25 28 21 22 4

Negative attitude
towards mathematics

26 21 25 20 8

The teacher is unable
to use mathematical
language that the
students understand
in formulating
problems

22 31 23 17 7

Fear of failing to
solve a mathematical
problem

29 23 27 14 7

Students’ inability to
relate the lesson to
the previous one

19 34 22 22 3

Inability to continue
with the lesson

19 34 22 20 4

Feeling
uncomfortable when
solving a problem

27 24 16 16 15

Feeling shy to ask
questions in class

26 28 16 13 17

Repeated absences
that lead to lack of
understanding of the
subject

21 34 23 19 3

The course book is
not appropriate for
students

26 26 20 19 9

Confused by too
many mathematical
formulas

31 26 17 13 13
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4.1 External Factors

In this research, it was found that students in the Kurdistan region exhibited are
affected by external factors that affect their understanding of mathematics concepts.

Weak Foundation

It is evident in some of the results such as a weak foundation in mathematics from the
early years in school contributes immensely to the difficulties experienced in later
years. This result was also found by the rand group [11] which established that more
than two-thirds of Kurdish students have been retained at least one year by the time
they reach grade 9, and that in about two-thirds of urban schools, more than 50% of
students failed the school’s assessment in 2007–2008. This paints a grim situation
for educators, more specifically, mathematics educators in the region. One possible
explanation for this would be the unrest that has bedeviled the region. After the Iraq
war, which lasted for a long time and disrupted all aspects of human development
including education, the semi-autonomous Kurdistan region became relatively stable
in terms of peace, and this attracted rapid development in terms of education and
even physical infrastructure. That’s until the ISIS crises that brought uncertainty in
the region again. All these cause immense negative consequences on the education
sector in the region.

Overcrowded Classes

Overcrowded classes are another reason for poor performance in mathematics. This
result is also shared by [11] through the Rand organization found that school infras-
tructure in the Kurdistan region is not in tandemwith the growth pace. They affirmed
that all schools at all levels are overcrowded, in poor conditions such that they don’t
keep up with the rapid growth of student enrollment, leaving no room but double
shifts. The lack of sustainable peace in the larger Iraq and war in the neighboring
Syria saw an influx of people in the relatively peaceful Kurdistan region [12]. Indeed,
many expatriates especially dealing with peace in the larger Iraq and Syria set up
office in Erbil, Kurdistan. These large numbers of people exert pressure on the limited
resources in the region, and this includes education facilities.

Fear and Anxiety

Fear of and negative attitude towards mathematics creates anxiety in students
contributing heavily to lowering standards of mathematics. This research confirmed
[5] who found out that mathematics anxiety negatively affects many students’ under-
standing of mathematical concepts. In the Kurdistan region, this anxiety may be
attributed to stereotypes that the largerMiddle East is good inmathematics and there-
fore students in Kurdistan should automatically be good in the subject. This puts too
much pressure on the students which serve to inhibit creativity in the mathematics
classroom.
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Instructors and Instructional materials

The researchers also established that instructors and instructional materials are other
factors affecting students’ understanding of mathematics. In the Kurdistan region, as
was established by [11], there is an insufficient number of teachers, and the number
is not increasing at a matching pace with the rapidly increasing number of students.
This imbalance puts too much pressure on teachers and thereby impacting nega-
tively their delivery of lessons. Compounding the problem is the fact that the few
available teachers are ill-trained and ill-equipped to do their job, as concluded by
the Rand group. The lack of standard textual materials and classroom technology in
many schools exacerbates the problem for teachers, leading to poor performance by
students due to a lack of understanding of basic concepts.

4.2 Mathematical Procedures in Problem-Solving

This research established that many students experience difficulties in following
and/or understanding the procedures involved in mathematical problem-solving.

Understanding Rules

Many students seem to get confused with mathematics formulas. In the research,
participants acknowledged finding it difficult to follow the rules of mathematics
such as the order of operation, or even understanding formulas like the quadratic
formula. In this case, the possible logical explanation would be a poor foundation in
the subject as described above. It is also possible that poor instructions are given by
instructors who are not fully equipped or supported appropriately through training
and the provision of classroom materials like textbooks.

Choosing Appropriate Methods

This may come as a surprise to manymathematicians, but this research found out that
many students are at a loss as to what methods they should use for what problems.
Many of them acknowledged being confused by “too many” mathematical formulas.
This observation may be attributed to poor instructional strategies by teachers, lack
of interest in the subject by students, and the external factors discussed above.

4.3 The Learners Cognitive Abilities

In the research, most respondents acknowledged that they just cannot understand
mathematics, saying that they experience difficulties right from the problem inter-
preting stage. They reinforced this notion by confirming that they were unable to
recognize quantitative facts and relationships in a mathematical problem, and even
understand the meanings of mathematical expressions. Many agreed that they find
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it difficult to relate lessons and therefore could not see any flow in concepts. This
phenomenon may also be due to poor instructional strategies that lead to disinterest
among learners.

5 Recommendations

Based on this study, education stakeholders in the region need to incentivize the
teaching profession in order to attract more people. The classrooms need to be
decongested and be adequately provided for in terms of classroom materials such as
physical manipulatives, classroom technology, and textual materials. More profes-
sional development courses, seminars, and/orworkshops for instructors to better their
instructional strategies and keep up with the latest developments in the industry.
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Finding Solution to the Initial Value
Problem for ODEs First and Second
Order by One and the Same Method

V. R. Ibrahimov, G. Yu. Mehdiyeva, and M. N. Imanova

Abstract As is known by using a change of variables, the determination of the
solution of ODEs of the second order can be reduced to finding the solution of the
system of ODEs of the first order. Therefore, here we have considered a comparison
of the multistep methods with the multistep second derivative methods. For this aim
suggested here to use the advanced and hybrid methods, which are more exact than
the explicit and implicit methods. Some advantages of the proposed methods here
have and defined the maximum value of the degree to stable methods. Here for the
comparison of these methods with the known ones have defined the disadvantages
of the constructed methods and have given the way for the correction mentioned
disadvantages of these methods. Constructed, specific methods, which have been
applied to solve some simple problems. Note that thesemethods are not a special case
of the known methods. Therefore these methods are independent and they constitute
an independent class of methods. For the illustration of the benefits of this method,
we have considered the application of some of the suggested methods here to solve
some simple problems.
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1 Introduction

As is known the first direct numerical method for solving ODEs was constructed by
Euler. Euler noted that his method coincides with the first two terms of the Taylor
expansion. Therefore the error receiving on each point equal to O(h2). To obtain
reliable information about the solution of the investigated problem, Euler suggested
to use the calculation of the next terms in the Taylor expansion. By taking into account
of this, many scientists tried to construct a method with a second derivative (see for
example [1–3]). It is known that one of the popular methods for solving ODEs is the
multistep method with constant coefficients, which was fundamentally investigated
from the beginning of the 50-th years of the XX century (see for example [4, 5]).
This method in a general form can be represented as follows:

k∑

i=0

αi yn+1 = h
k∑

i=0

βi y
′
n+i (n = 0, 1, 2, ...), (1)

here the coefficients αi , βi (i = 0, 1, ..., k) are some real numbers and αk �= 0. If this
method is applied to solve the initial-value problem for ODEs, then receive (see for
example [6–14]):

k∑

i=0

αi yn+1 = h
k∑

i=0

βi fn+i (n = 0, 1, 2, ...), (2)

here fm = f (xm, ym) (m ≥ 0), (m ≥ 0), but the initial-value problem can be
presented in the following form:

y′ = f (x, y), y(x0) = y0, x0 ≤ x ≤ X. (3)

Suppose that the problem (3) has a unique solution, which is defined in some
segments. Let us denote the approximate value of the solution of the problem (3)
at the point xi by yi and corresponding exact value by the y(xi ). In addition, the
mesh-point is denoted in the form xi+1 = xi + h(i ≥ 0). And suppose that the
function of f (x, y) is defined in some domain in which it has the continuous partial
derivatives up to order p, inclusively. As was noted the above method (2) has been
investigated by many authors. And for the comparison of the numerical methods
primarily used the concepts of stability and the degree (order of accuracy) of the
comparison methods. The method (1) by some scientists are called as the finite-
difference method. Therefore the quantity of the k are called as the order of the
method (1), which takes as the given. By taking this into account, the scientists tried
to find some relation between of the order and the degree for the method (2). In 1955,
Bakhvalov (see [6]) has investigated method (2) in the case αk �= 0 and βi = 0 prove
that for the k ≤ 10 there are stable methods with the degree p ≤ k. Method (2)
fundamentally investigated by Dahlquist. Dahlquist proved that in the class of the
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methods (2), there are stable methods with the degree p ≤ 2[k/2] + 2 if αk �= 0
and βk �= 0, but with the degree p ≤ k for the case αk �= 0, βk = 0. And also
have proved that, there are stable methods with degree pmax for all the values of k.
Noted that here the conceptions degree and stability define as the following (see for
example [4–6]). Definition 1. The method of (2) is called as the stable, if the roots of
the polynomial ρ(λ) = αkλ

k + αk−1λ
k−1 + · · · + α1λ + α0 located in the unit circle

on the boundary of which there is not multiply root. Definition 2. The method (2) is
said to have degree p if the following asymptotic equality is holds:

k∑

i=0

(
αi y(x + ih) − hβi y

′(x + ih)
) = O(h)p+1, h → 0. (4)

It is known that one of the indicators of the effectiveness of the method is its
accuracy. Hence, it follows that the method with higher accuracy is effective.

2 Construction Multistep Second Derivative Methods

By taking into account that the stable methods of type (2) has the maximum degree
pmax = 2[k/2] + 2, we receive that for the construction of the effective methods
one can use the methods with higher degrees. For this aim, here proposed to use
the multistep second derivative methods with constant coefficients, which can be
presented as follows:

k∑

i=0

αi yn+i = h
s∑

i=0

βi y
′
n+i + h2

l∑

i=0

γi y
′′
n+i , (5)

here the coefficients αi , βi , γi (i = 0, 1, ..., k; j = 0, 1, ..., l) are some real numbers
andαk �= 0. In the case k = s = l from the formula (5) it follows the knownmultistep
second derivative methods with the constant coefficients (see for example [16–20]).

Let us note that Euler himself suggested using calculation of them involved in
the decomposition of Taylor starting with the third member (see [1, 2]). Notice that
in this case the amount of computation will increase. For example in the calculation
of the value y′′(x) the amount of the computation work will increase by almost two
times. Let us consider the following function:

y′′(x) = f ′
x + f ′

y · y′(by using problem (3), receive thaty′ = f (x, y).

It follows from here that calculation the value of the function y′′(s) will be more
difficult. Let us noted that method (5) successfully used in solving some applied
problems. As is known if method (5) stable and has degree of p, then the next one
takes place:
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p ≤ 2k + 2.

It is not difficult to show that by using the next method

k∑

i=0

αi yn+i = h
k∑

i=0

βi fn+i+υi (|υi | < 1; i = 0, 1, .., k), (6)

one can construct stable method with the degree of p = 2k + 2. In this case arises
some difficulties with the calculation of the values yn+i+νi . Note that the method of
(6) resembles the Gaussmethod. One of the popular method of type (6) can presented
as follows:

yn+1 = yn + h( fn+α + fn+1−α)/2, α = √
3/6, (7)

which has constructed for the k = 1 and that has degree pmax = 4. The method with
the degree pmax = 6 constructed for the k = 2 and presented as follows:

yn+2 = yn + h(5 fn+1+α + 8 fn+1 + 5 fn+1−α)/9, α = √
15/5. (8)

Note that methods (7) and (8) are stable. If in the method (5) to put k = s = l = 1,
then from themethod (5) can be received the followingmethod, which has the degree
p = 4:

yn+1 = yn + h( fn + fn+1)/2 + h2(gn − gn+1)/12, (9)

here g(x, y) = f ′
x (x, y) + f ′

y(x, y) f (x, y). By the comparison of the method (7) or
(8) with the method (9) receive that in using method (9) it is arises necessity to use
some methods for calculation of the predictor values ŷn+1 so as method (9) is the
implicit. For this aim one can be used some predictor method. It is known that as the
predictor method in usually used the explicit method. But in our case the maximum
degree for the stablemethods satisfies the condition p ≤ 2. Therefore arises necessity
to using any implicit method with the degree p = 3. Noted that in using method
of (7) arises necessity to calculate the values yn+α and yn+1−α . It is not difficult to
show that by using the value yn+α one can calculate the value yn+1−α . Notice, that in
application method of (9) arises some difficulties related with the calculation of the
function g(x, y). From here, we receive that method (7) has some advantages.

3 Construction Stable Methods with the Degree p = 3k+ 3

For the construction, more accurate methods let us to consider the following method:
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k∑

i=0

αi yn+i = h
k∑

i=0

βi fn+i + h
k∑

i=0

γi fn+i+υi (|υi | < 1; i = 0, 1, .., k). (10)

Here coefficients αi , βi , γi are some real numbers, αk �= 0. To the proposed
method of (10) can be considered as generalizations of the methods (2) and (6). As
was shown above, the method can be taken as the better if the method is stable and
has the maximum degree. It follows from here that for comparison of the multistep
methods it is necessary to define the maximum value for the degree of the method
(10). For this aim let us to consider the following Taylor series:

y( j)(x + ih) = y( j)(x) + ihy( j+1)(x) + (ih)2

2! y( j+2)(x) + · · ·

+ (ih)p

p! y( j+p)(x) + O(h)p+1, h → 0,

here j = 0, 1, 2 and y(0)(x) = y(x), y(1)(x) = y′(x),y(2)(x) = y′′(x).
Suppose that method has degree of p. In this case, the following is holds:

k∑

i=0

(
αi y(x + ih) − hβi y

′(x + ih) − hγi y
′(x + (i + νi )h)

) = O(h)p+1, h → 0.

(11)

If in this equality to put γi = 0(i = 0, 1, .., k), then from the asymptotic equality
of (11), it follows equality of (4). By using the above presented Teylor series in the
left hand side of the equality (11), receive:

k∑

i=0

(
αi y(x + ih) − hβi y

′(x + ih) − hγi y
′(x + (i + νi )h)

) =
k∑

i=0

αi y(x) + h
k∑

i=0

(iαi − βi − γi )y
′(x)+ · · ·

+h p
k∑

i=0

(
i p

p!αi − i p−1

(p − 1)!βi − l p−1
i

(p − 1)!γi
)
y(p)(x) + O(h)p+1,

li = i + νi , h → 0.

(12)

By taking asymptotic equality of (11) in the equality of (12), we receive that the
following is holds:
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k∑

i=0

αi y(x) + h
k∑

i=0

(iαi − βi − γi )y
′(x)+h2

k∑

i=0

(
i2

2!αi − iβi − liγi

)
+ · · ·

h p
k∑

i=0

(
i p

p!αi − i p−1

(p − 1)!βi − l p−1
i

(p − 1)!γi
)
y(p)(x) = 0.

(13)

As it is known the system of functions 1, x, x2, ..., x p and the system of functions
y(x), y′(x), ..., y(p)(x) y( j)(x) �≡ 0 for all the values of j (0 ≤ j ≤ p) are the
independent system. By using this, receive that the following must satisfy:

k∑

i=0

αi = 0;
k∑

i=0

iαi =
k∑

i=0

(βi + γi ); li = i + νi .

k∑

i=0

i2

2!αi =
k∑

i=0

(iβi + liγi ); ..;
k∑

i=0

i p

p!αi =
k∑

i=0

(
i p−1

(p − 1)!βi + l p−1
i

(p − 2)!γi
)

,

(14)

Thus, receive that if the method (10) has the degree p, then its coefficients will
satisfy the system (14). In addition, vice versa, for each solution of the system (14)
there is a corresponding method with a certain degree. Now let us consider the
definitions of some relationship between degree p and order k for the method of
(10). The number of equation in the system (14) is equal to p + 1 but the number
of unknowns is equal to 4k + 4. It is easy to show that this system has a solution
for the p ≤ 4k + 2. It is clear that not all methods with maximum accuracy will be
stable or convergent. This question has investigated in the work (see [13–28]) and
have proved that there are stable methods of type (10) with the degree p ≤ 3k + 3.
As is known the one-step methods are convergent, therefore they can be called as the
stable. As was shown above, the pmax = 4k + 2 for the method (10). It follows from
here, that pmax = 6 for the one-step methods. As is known pmax = 3k + 3 for the
stable methods of type (10). Noted that in the class methods of (6) there are stable
method with the degree pmax = 6, which can be receive from the method of (6) for
the case k = 2. Hence, we get that the maximum value of the degree for the stable
and instable methods of type (10) coincide for k = 1. By taking into account that the
system of (14) consists of nonlinear algebraic equations often for solving of which
are used the MathCard program. In the case of k = 2, have constructed method with
the degree p = 10. However, the results receiving in the application of that method
to solve model problem did not correspond to the theoretical. This is due to the
fact that the resulting solution of the system of algebraic equation with some error.
Therefore, here recommended using the inequality p ≤ 3k+3 in the construction of
stable methods of type (10). In the investigation method (10), one of the issue is to
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determine the necessary conditions for the convergence of multistep methods with
constant coefficients. For this aim let us to consider the following conditions.

A. The coefficient αi , βi , γi are some real numbers, αk �= 0.

B. Characteristic polynomials ρ(λ) ≡
k∑

i=0
αiλ

i ; σ(λ) ≡
k∑

i=0
βiλ

i ; γ (λ) ≡
k∑

i=0
γiλ

i+νi have no common factors other than constant.

C. σ(1) + γ (1) �= 0 and p ≥ 1 are satisfies.

The condition A is obvious. Therefore let us consider the condition of B. Suppose
the contrary and take φ(λ) as the common factor for the polynomials ρ(λ), σ (λ)

and γ (λ). By using the Ei y(x) = y(x + ih) shift operator method of (10) can be
presented as follows:

ρ(E)yn − hσ(E)y′
n − hγ (E)y′

n = 0. (15)

By taking into account, that φ(λ) is the common factor, then equality (15) can be
presented as follows:

φ(E)(ρ1(E)yn − hσ1(E)y′
n − hγ1(E)y′

n) = 0.

Given than φ(λ) �= const , from this equality get the following:

ρ1(E)yn − hσ1(E)y′
n − hγ1(E)y′

n = 0, (16)

here

ρ1(λ) = ρ(λ)/φ(λ), σ1(λ) = σ(λ)/φ(λ), γ1(λ) = γ (λ)/φ(λ).

By comparison of the equations of (15) and (16), receive that the Eqs. (15) and (16)
are equivalent. Noted that equation of (15) is the finite-difference equation with the
order of k1 < k. As it is known if are given k1 initial-values, then the finite-differential
equation of (16) will have a unique solution.

Those, receive that the finite-difference equation with the constant coefficients
have a unique solution if the number of initial data is less than the order of the
difference equation with constant coefficients. It follows from here that our assump-
tion does not hold. Therefore, the conditions B is satisfied. And now let us consider
the fulfilment of the condition C. For this aim let us equation of (15) to written as
following:

ρ(E)yn = hσ(E)y′
n + hγ (E)y′

n. (17)

By passing to limit for h → 0, receive that

ρ(1) = 0, (18)
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if x = x0 + nh is fixed point. This condition is called as the necessary condition
for the convergence of investigated method. By using condition of (18), the equation
can be presented as:

ρ1(E)(E − 1)yn − hσ(E)y′
n − hγ (E)y′

n = 0

or

ρ1(E)(y j+1 − y j ) − hσ(E)y′
j − hγ (E)y′

j = 0, (19)

here

ρ1(λ) = (ρ(λ) − ρ(1))/(λ − 1).

In the result of the equality, let us change the value of the variable j starting from
0 to n, after summing of the receiving of equalities get the following equality:

ρ ′(1)(y(x) − y0) = σ(1)

x∫

x0

y′(s)ds + γ (1)

x∫

x0

y′(s)ds,

here x = x0 + nh fixed point. This equality can be presented as the following form:

ρ ′(1)(y(x) − y0) = (σ (1) + γ (1))

x∫

x0

y′(s)ds.

By using y(x) − y(x0) =
x∫
x0

y′(s)ds equality, receive:

ρ ′(1) = σ(1) + γ (1). (20)

From here receive that if σ(1) + γ (1) = 0 then it follows that ρ(1) = ρ ′(1) = 0.
Consequently, λ = 1 is the double root. Now will show that in this case the multistep
method does not converge. For this, let us consider the following finite-difference
equation:

αk yn+k + αk−1yn+k−1 + · · · + α0yn = hc, (21)

which is nonhomogeneous finite-difference equation with the constant coefficients.
The general solution of the Eq. (21) can be presented as the follows:

ym = ym + y∗
m,



Finding Solution to the Initial Value Problem forODEs First and Second… 333

Here ym is the general solution of the homogeneous equation, but y∗m is one of
partial solution of nonhomogeneous equation, it is easy to prove that lim

h→0
y∗
m = 0.

And it is known that ym-can be presented as:

ym = c1λ
m
1 + c2mλm

1 + c3λ
m
2 + · · · + ckλ

m
k .

As follows from here that if h → 0, then m → ∞. Therefore if m → ∞, then
also ym → ∞ and in this case the method does not converge. By this way prove that
if ρ(1) = ρ ′(1) = 0, then method (10) does not converge. Consequently ρ ′(1) �= 0,
that’s why the condition C is satisfied.

And now let us consider construction some concrete methods.

4 Construction of Any Concrete Methods and Application
Some of Them to Solve Model Problem

For the construction of the methods of type (10) usually are used Taylor series. By
using Taylor series for finding the coefficients αi , βi , γi , νi (i = 0, 1, .., k), one can
used the nonlinear system of algebraic Eqs. (14).

If k = 1 then from the condition α1 + α0 = 0, receive that α1 = 1 and α0 = −1.
In this case, the system of (14) can be written as follows:

β1 + β0 + γ1 + γ0 = 1,

β1 + l j1γ1 + l j0γ0 = 1/( j + 1), li = i + νi (i = 0, 1). (22)

By solving this system of algebraic equations, one can constructed the numerical
methods with the different properties. For example, let us consider the case β1 =
β0 = 0. In this case, receive the method of (7).

And now let us consider to solving of the system (14) for the case k = 1. In this
case, the constructed method with the degree pmax = 6 can be presented as:

yn+1 = yn + h( fn + fn+1)/12 + 5h( fn+1/2−β + fn+1/2+β)/12, β = √
5/10.

(23)

By the comparison of the methods (7) and (23), we receive that each of them has
its advantages and disadvantages. For example, method (23) is implicit, but method
(7) is explicit.

Note that by using the solution of the nonlinear system (22) of algebraic equa-
tions can been constructed different methods with the different properties. For the
illustration of this, let us consider to following methods:

yn+1 = yn + h( fn + 3 fn+2/3)/4, (24)
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yn+1 = yn + h( fn+1 + 3 fn+1/3)/4. (25)

These methods have the order p = 3 and stable. Note that methods (7), (24)
and (25) are one step methods and method (7) is more exact than the methods (24)
and (25). Methods (24) and (25) has maximum order in the considering cases. The
maximum value of the degree for these methods equal to pmax = 3. As was noted
above there are many works dedicated to investigation multistep second deriva-
tive methods. Some of them dedicated to construction multistep second derivative
methods of hybrid types. For example, in the work [33], problem (3) has investigated
by the following method

k∑

i=0

αi yn+i =
l∑

j+1

h j
k∑

i=0

βi, j y
( j)
n+i + h

s∑

i=0

γi fn+νi , αk = 1. (26)

And have constructed some methods. Noted that methods (30) and (31)
(constructed in [33]) have the degree p = 8, but they are instable. Methods (19)
and (21) constructed in [33] are stable and have the degree p = 6 and p = 5 respec-
tively which correspond to the above received law. Noted that the method of (26) in
a more general form investigated by some authors (see for example [17]). Similar
methods were also investigated by different authors (see [18–21]). In this works were
used non-classical way for construction their methods. For example method, which
constructed in [21] by prof. T.E. Simos in some sense intersects with the Runge–
Kutta methods, so it is of some interest with the one step (Runge–Kutta) method. We
also have used similar schemes.

For the construction more exact methods, here is suggested to use linear
combination of some methods. For this aim let us consider the following equalities:

ŷ(xn+1) = y(xn) + h f (xn y(xn)) + h2y′(xn)/2! + O(h3),

y(xn+1) = y(xn) + h f (xn+1y(xn+1)) − h2y′′(xn)/2! + O(h3),

which received by using Euler’s methods (y(xn+1) = y(xn+1)). By using these and
similar methods proposed here to construct the bilateral methods, which satisfies the
following condition:

ŷn+1 ≤ y(xn+1) ≤ yn+1
(
if y′′(x) ≥ 0

)
.

As is known that the following scheme is usually has used for the constructing of
bilateral methods

y
n+1

≤ y(xn+1) ≤ yn+1. (27)

Here y
n+1

-lower value and yn+1 upper value.
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In the construction of bilateral methods this way is used in cases, when all coef-
ficients are positive. This condition holds for the hybrid methods, since in these
methods all coefficients are usually positive. To illustrate the received here theoretical
results, let us to consider the following example:

1. y′(x) = exp(λx) cos(x), y(0) = 0, 0 ≤ x ≤ 1, (28)

exact solution for this problem can be presented as the

y(x) = (λ cos(x) + sin(x)) exp(λx)/(λ2 + 1) − λ/(λ2 + 1).

2. y′(x) = λy(x), y(0) = 1, 0 ≤ x ≤ 1, with the exact solution:

y(x) = exp(λx). (29)

In solving this example, some approaches from the following works [28–39] were
used.

To solving problem (28) has applied method (23). Since the right hand side of the
differential equation independence from the function of y(x), so in finding the solu-
tion does not represent any difficulties. Dependences from the values of λ, the solu-
tion is other increasing or decreasing. Here, wanted to show that the result obtained
correspond to the properties of the solution of problem (28).

From the results tabulated in the Tables 1 and 2, receive that the method behaves
in a stable ratio of the error of obtaining when it is used, as well as in changes in
the λ-constant, thus receive that method of (8) can be take as the better. And now let
us apply method of (7) to solve problem (29), the results of which have tabulated in
Tables 3 and 4.

Table 1 Results receiving for h = 0.1 by the method (23)

x λ = 1 λ = −1 λ = 5 λ = −5

0.1 2.7E-14 2.5E-14 4.9E-10 3.8E-10

0.4 5.4E-13 3.2E-13 1.8E-9 9.9E-10

0.7 1.9E-12 7.9E-13 9.6E-9 1.1E-9

1.0 4.8E-12 1.13E-12 1.3E-7 1.2E-9

Table 2 Results receiving for h = 0.05 by the method (23)

x λ = 1 λ = −1 λ = 5 λ = −5

0.1 4.0E-16 3.6E-16 7.6E-12 5.9E-12

0.4 8.4E-15 5.0E-15 2.8E-11 1.5E-11

0.7 3.1E-14 1.2E-14 1.5E-10 1.8E-11

1.0 7.5E-14 2.0E-14 2.1E-9 1.9E-11



336 V. R. Ibrahimov et al.

Table 3 Results receiving by the method (7) for the h = 0.1

x λ = 1 λ = −1 λ = 5 λ = −5

0.1 4.2E-6 4.0E-6 2.8E-3 2.3E-3

0.4 2.2E-5 1.2E-5 5.1E-2 2.0E-3

0.6 4.2E-5 1.4E-5 2.1E-1 1.1E-3

0.8 6.8E-5 1.6E-5 7.6E-1 5.6E-4

1.0 1.0E-4 1.6E-5 2.5E-0 2.5E-4

Table 4 . results receiving by the method (7) for the h = 0.05.

x λ = 1 λ = −1 λ = 5 λ = −5

0.1 5.5E-7 4.9E-7 4.3E-4 2.4E-4

0.4 2.8E-6 1.4E-6 4.8E-3 2.1E-4

0.6 5.4E-6 1.7E-6 3.2E-2 1.1E-4

0.8 8.9E-6 1.9E-6 1.1E-1 5.8E-5

1.0 1.3E-5 1.9E-6 3.9E-1 2.6E-5

Method (7) gives the best results for the negative values of the parameter λ i.e.
λ < 0 and the small step-size h.

5 Conclusion

As is known there are basically two large classes of numerical methods for solving
initial value problem for the ODEs of first order, which usually called as the one
step and multistep methods. Each of these methods has its advantages. It is known
that the main advantage of these methods is high degree of accuracy. So, scientists
have studied the construction stable methods with the high order of accuracy. Here,
for this aim have proposed to use the intersection of those classes methods. And
also, have shown that for the construction of the stable methods one can use the
multistep multiderivative methods. By using above mentioned, here have compared
the above-mentioned class methods and have proved that methods constructed in
intersection of named class methods are better, which is confirmed in solving of
the numerical example. Noted that the construction of the symmetrical methods and
bilateral methods are the promising areas of Computational Mathematics. Hope that
these directions will find their followers.
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On Symmetric Matrices with One
Positive Eigenvalue and the Interval
Property of Some Matrix Classes

Doaa Al-Saafin

Abstract In this paper, totally nonnegative matrices, i.e., matrices having all their
minors nonnegative, and matrix intervals with respect to the usual entry-wise partial
order are considered. Let A ∈ R

3×3 be a symmetric totally nonnegative matrix. Suf-
ficient conditions for the matrix A to be infinitely divisible are presented. Also, it is
shown that conditionally positive (negative) and symmetric positive matrices with
one positive eigenvalue have the interval property.

Keywords Hadamard power · Hadamard inverse · Matrix interval · Infinitely
divisible matrix · Conditionally positive (negative) semidefinite matrix

1 Introduction

Let A = [ai j ] and B = [bi j ] be real n × n matrices. Their Hadamard product (also
called Schur product) A ◦ B is defined as the entry-wise product of A and B, i.e.,
A ◦ B = [ai j bi j ]. A matrix A = [ai j ] is Hadamard invertible if all its entries are
non-zero, and A◦−1 = [1/ai j ] is then called theHadamard inverse of A. A is termed
nonnegative (positive), denoted by A ≥ 0 (A > 0), if all its of A are nonnegative (pos-
itive). For A ≥ 0, the r-th Hadamard power of A is A◦r = [ari j ], r > 0. We define
the Hadamard exponential of A by e◦A = [eai j ] and if A is positive, the Hadamard
logarithm of A by log◦(A) = [log(ai j )]. Suppose that A is nonnegative and posi-
tive semidefinite. We say that A is infinitely divisible if the matrix A◦r is positive
semidefinite for every nonnegative r . A square matrix A of order n (≥ 2) is said to
be a PN-matrix if every principal minor of order k, 2 ≤ k ≤ n, is not zero and has
the sign of (−1). If A is a positive symmetric matrix and A has exactly one positive
eigenvalue, then we say that A is in the class A.

A matrix A ∈ R
n×m is called totally nonnegative (positive), abbreviated T N

(T P), if all its minors are nonnegative (positive) real numbers. For A ∈ R
n×m ,
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α ⊆ {1, 2, . . . , n}, the principal submatrix of A lying in rows and columns indexed
by α will be denoted by A[α].

Let e ∈ R
n be the vector of all ones. A real symmetric n × n matrix A is said to be

conditionally positive (negative) semidefinite if xT Ax ≥ 0 (≤ 0) for all x ∈ R
n such

that xT e = 0. If this inequality is strict then A is conditionally positive (negative)
definite.

Partition the matrix A ∈ R
n×n as

[ai j ] =
[
B x
yT ann

]
, (1)

where B ∈ R
(n−1)×(n−1) and x, y ∈ R

n−1.
If ann �= 0, we define the matrix Ã by

Ã :=
[
B − 1

ann
xyT x

yT ann

]
. (2)

Then the matrix Ã[1, . . . , n − 1] is called the Schur complement of ann in A.
Let Rn×n be endowed with the usual partial order ≤, i.e., A ≤ B, if 0 ≤ B − A,

for any A, B ∈ Rn×n . A matrix interval is denoted by boldface and is defined as

A := [A, A] = {A ∈ Rn×n | A ≤ A ≤ A},

where A ≤ A holds for the two bound matrices Ai j = (ai j )
n
i, j=1, Ai j = (ai j )ni, j=1.

By

Ac := 1

2
(A − A), A� := 1

2
(A + A).

Let V be a fixed set of vertex matrices. We say that a class S of matrices has the
interval property (with respect to V ), ifA ⊂ S whenever V (A) ⊂ S. For a collection
of various classes of matrices which enjoy the interval property see [6].

Let V1, V2 be the following sets of vertex matrices:

V1 = Ac − diag(z)A�diag(z), V2 = Ac + diag(z)A�diag(z),

where z ∈ {±1}n . Hence, the number of mutually different matrices in each set is at
most 2n−1.

In [4], Bialas andGarloff proved that the set of the positive (semi)definite matrices
has the interval property with respect to V1, see also [10]. In [6], we provide the
interval property for other classes of matrices.
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2 Background and Key Lemmata

We collect here some key facts needed for our main results. The following lemmata
are well known.

Lemma 1 (Schur Product Theorem): Suppose A and B are positive semidefinite
matrices of the same order. Then A ◦ B is also positive semidefinite. If A and B are
positive definite, then A ◦ B is positive definite too.

In passing, we note that the Hadamard product of two conditionally positive
semidefinite matrices need not be conditionally positive semidefinite. A counterex-

ample is provided by A =
[
0.1 1
1 2

]
and B =

[
4 3.5
3.5 3

]
. A ◦ B =

[
0.4 3.5
3.5 6

]
, which

is not conditionally positive semidefinite (take x = (1,−1)T ).

Lemma 2 ([7, p. 144]): The symmetric matrix A is conditionally positive semidef-
inite if and only if its Hadamard exponential e◦t A is positive semidefinite for all
t ≥ 0.

Lemma 3 ([8, Corollary 1.6]): Let A be Hadamard invertible. Then A is infinitely
divisible if and only if A is symmetric, positive, and log◦(A) is conditionally positive
semidefinite.

Lemma 4 ([2, Theorem 4.4.6]): A positive symmetric matrix A has one positive
eigenvalue if and only if, for each k × k principal submatrix B of A, (−1)k−1det
B ≥ 0.

Lemma 5 ([4, p. 40]): The set of the positive (semi)definite matrices has the interval
property with respect to V1.

3 Main Results

Partition thematrix A = [ai j ] ∈ R
n×n as in (1). It was shown in [5, Proposition 1.5.2])

that if ann �= 0 is T N , then the Schur complement of ann in A, see (2), is T N . In
the next proposition, we give a representation of the determinant of the Hadamard
inverse of the matrix A.

Proposition 1 Let A = [ai j ] ∈ R
n×n be Hadamard invertible and portioned as in

(1). Then the following equality holds for some t > 0:

det A◦−1 = t (−1)n−1 det ((A◦−1 ◦ Ã)[1, . . . , n − 1]).

Proof Let A = [ai j ] =
[
B x
yT ann

]
, where B ∈ R

(n−1)×(n−1), x, y ∈ R
n−1, and ai j �=

0, for all i, j = 1, . . . , n. Then
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det ( 1
ann

B◦−1 − (xyT )◦−1)

= det

⎛
⎜⎜⎜⎜⎜⎜⎝

1
anna11

− 1
a1nan1

1
anna12

− 1
a1nan2

· · · 1
anna1,n−1

− 1
a1nan,n−1

1
anna21

− 1
a2nan1

1
anna22

− 1
a2nan2

· · · 1
anna2,n−1

− 1
a2nan,n−1

...
...

. . .
...

1
annan−1,1

− 1
an−1,nan1

1
annan−1,2

− 1
an−1,nan2

· · · 1
annan−1,n−1

− 1
an−1,nan,n−1

⎞
⎟⎟⎟⎟⎟⎟⎠

= (−1)n−1 t ′ det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∣∣∣∣∣∣
a11 a1n
an1 ann

∣∣∣∣∣∣
a11ann

∣∣∣∣∣∣
a12 a1n
an2 ann

∣∣∣∣∣∣
a12ann

· · ·

∣∣∣∣∣∣
a1,n−1 a1n
an,n−1 ann

∣∣∣∣∣∣
a1,n−1ann∣∣∣∣∣∣

a21 a2n
an1 ann

∣∣∣∣∣∣
a12ann

∣∣∣∣∣∣
a22 a2n
an2 ann

∣∣∣∣∣∣
a22ann

· · ·

∣∣∣∣∣∣
a2,n−1 a2n
an,n−1 ann

∣∣∣∣∣∣
a2,n−1ann

...
...

. . .
...∣∣∣∣∣∣

an−1,1 an−1,n

an1 ann

∣∣∣∣∣∣
an−1,1ann

∣∣∣∣∣∣
an−1,2 an−1,n

an2 ann

∣∣∣∣∣∣
an−1,2ann

· · ·

∣∣∣∣∣∣
an−1,n−1 an−1,n

an,n−1 ann

∣∣∣∣∣∣
an−1,n−1ann

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (3)

for some t ′ > 0. Hence,

det (A) = (−1)n−1 t det ((A◦−1 ◦ Ã)[1, . . . , n − 1]),

where t = a1−n
nn t ′. �

In [3], Bhatia gave very simple proofs of the infinite divisibility of some interesting
T P matrices like the Cauchy and Pascalmatrices. In general, a symmetric T P matrix

need not be an infinitely divisible. For example, the matrix A =
⎛
⎝1.1 3 1

3 9.1 3.9
1 3.9 2.9

⎞
⎠ is

T P , while det A◦ 1
9 < 0. It was shown in [1, p. 471, proof of Lemma 6] that if A is in

class A, then its Hadamard inverse is infinitely divisible. The converse need not be

true, for example, theHadamard inverse of the infinitely divisiblematrix

⎛
⎝1 3 1
3 10 4
1 4 2.5

⎞
⎠

has two positive eigenvalues. In the next corollary, we give sufficient conditions for
symmetric T N matrices of maximum order 3 to be closed under Hadamard powers.

Corollary 1 Let A = [ai j ] ∈ R
n×n, n ≤ 3, be a positive symmetric T N matrix with

entries satisfying at least one of the following relations:

1. a11a22 = a212,
2. a12a33 = a13a23.

Then A◦−1 has exactly one positive eigenvalue.
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Proof Since the matrix A has positive entries and det (A◦−1[1, 2]) ≤ 0, by Lemma
4, the statement is true for n = 2, and in the case n = 3 we only have to show that
det (A◦−1) ≥ 0. Now, let n = 3. (i) Since A◦−1[1, 2] is positive semidefinite, then
Lemma 1 ensures that det ((A◦−1 ◦ Ã)[1, 2]) ≥ 0, and by Proposition 1 it follows
that det (A◦−1) ≥ 0.
(ii) By (1), we obtain

det (A◦−1) = m

∣∣∣∣a11 a13a31 a33

∣∣∣∣
∣∣∣∣a22 a23a32 a33

∣∣∣∣ ,
for some m > 0, whence,

det (A◦−1) ≥ 0.

�

The Pascalmatrix

⎛
⎝1 1 1
1 2 3
1 3 6

⎞
⎠ shows that the sufficient conditions in the previous corol-

lary are not necessary, see [3, p. 225] and [5, p. 13].

Theorem 1 Let A be in class A and let B be any principal submatrix of A, then B
belongs to class A too.

Proof Let r be any integer with 1 ≤ r ≤ n, and let B denote any r × r principal
submatrix of A. Let λ1 ≤ λ2 ≤ · · · ≤ λn , μ1 ≤ μ2 ≤ · · · ≤ μr be the eigenvalues of
A and B, respectively. By [9, Theorem4.3.15], for each integer k such that 1 ≤ k ≤ r ,
we have

λk ≤ μk ≤ λk+n−r .

So, when k = r − 1, μk ≤ λn−1 ≤ 0. Since B is positive, then B has one positive
eigenvalue. �

Remark 1 Theorem 1 provides a generalization for Lemma 4; a positive symmetric
matrix A has one positive eigenvalue if and only if, for each k × k principal submatrix
B of A, (−1)k−1det B ≥ 0.

Recall that the set of positive semidefinitematrices is subset of the set of conditionally
positive semidefinite matrices. In [4], Bialas and Garloff showed that the set of the
positive (semi)definite matrices has the interval property. The next theorem gives a
generalization of this result.

Theorem 2 ([6, I.P. 4.7]): The set of the conditionally positive (negative) semidefi-
nite matrices has the interval property with respect to V1(V2).

Proof Let A = [A, A] be a matrix interval and assume without loss of generality
that A and A are symmetric. Furthermore, assume that all vertex matrices in V1 are
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conditionally positive definite. Let A be a symmetric matrix with A ≤ A ≤ A. Then
it follows that

e◦t A ≤ e◦t A ≤ e◦t A,

for all t ≥ 0. By Lemma 2, e◦tC is positive semidefinite for allC ∈ V1. Since there is a
one-to-one correspondence between the vertexmatrices of A and those of [e◦t A, e◦t A],
it follows by Lemma 5 that e◦t A is positive semidefinite matrix and hence by Lemma
2, A is conditionally positive semidefinite. The statement for conditionally nega-
tive semidefinite matrices follows now by using [−A,−A] and the set V2 instead
of V1. �

Theorem 3 ([6, I.P. 4.8]): The set of the positive infinitely divisible matrices has the
interval property with respect to V1.

Proof LetA = [A, A] be amatrix interval and assumewithout loss of generality that
A, A are symmetric and A is positive. Furthermore, assume that all vertex matrices
in V1 are infinitely divisible. Assume that A is a symmetric matrix with A ≤ A ≤ A.
Then it follows that

log◦(A) ≤ log◦(A) ≤ log◦(A).

By Lemma 3, log◦(C) is conditionally positive semidefinite matrices for all C ∈ V1.
Thus, by Theorem 2, log◦(A) is conditionally positive semidefinite and hence by
Lemma 3, A is infinitely divisible. �
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Abstract The global stability of solutions for a discrete-time globally dispersed
reaction-diffusion SEI epidemic model with individual immigration is investigated
in this work. The global stability is addressed using the Lyapunov functional after
giving a discrete form of the reaction-diffusion SEI epidemic model. As in the con-
tinuous case, the unique steady-state is proven to be globally stable in the presence
of diffusion. To validate the findings of this study, some numerical simulations are
provided.
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1 Introduction

Epidemic infections are the most common cause of death in all living things. The
study of epidemiology has drawn the attention of a large number of researchers
with the goal of improving the treatment of these diseases via disease planning and
predictions, consequently lowering death rates. Infectious illness epidemics aremod-
eled using well-known reaction-diffusion systems. Many of these models are depen-
dent on the groups of individuals considered as well as the disease’s transmission
characteristics.

In this work, we intend to concern with an infectious illness like tuberculosis that
can be described with the help of formulating its states in view of a new version of
a discrete-time SEI model that takes into consideration three classes of individuals:
Susceptible (S), Exposed (E) and Infectious (I). In other words, the illness has an
exposed or latent phase.Because of this time of latency, somemigrantswill display no
symptoms and hence be unaware that they have been infected. In addition, contagious
individuals may also relocate from states to others. As a result, even if the disease
transmission is successfully prevented at the target place, new cases will join the
community, making the decimation of such disease impossible. The work in [3] gave
an excellent study of such a model in the situation of Ordinary Differential Equations
(ODEs) without spatial diffusion. For the purpose of predicting how the illness may
spread in light of integrating spatial diffusion, a new 3-component SEI model was
explored in [1].

In several mathematical literature, it has been declared that the discrete-timemod-
els defined by certain difference equations are deemedmore accurate than continuous
models in describing many phenomena (see [5–9]). In other words, the discrete-time
models can provide more effective computational numerical simulations than that
of the continuous models. As a result, it is appropriate to investigate the discrete-
time models that can be represented by certain difference equations. These models
have been extensively utilized within many research applications conducted on the
endurance, permanence, and global stability of various discrete-time nonlinear sys-
tems when the influence of spatial factors is ignored [10, 12–14].

To the best of our knowledge, there are little research papers on the global fea-
tures of the discrete-time models. The diffusion terms (discrete Laplace operators)
are not, nevertheless, included in any epidemical model. Actually, there have been
some works on the global stability of some discrete-time diffusion systems [15, 16].
In such works, the positivity, boundedness, and the global stability of the equilib-
ria were obtained, and the discretized models were deduced from the respective
continuous models by performing non-standard finite difference schemes, but the
Laplace operators have not been addressed in their contents. The diffusion gained
from discrete-time models would result in high rich complexity and very compli-
cated dynamical behaviors. This however can be confirmed by studying the stability
of these models using appropriate Lyapunov functions, which is deemed an essen-
tial topic that should be addressed. From this perspective, we intend to study the
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global asymptotic stability of the discrete-time SEI model based on employing the
continuous-time model investigated in [1].

The remainder of this paper is arranged as follows. In Sect. 2, some useful prelim-
inaries are provided. The discrete-time analog of the continuous reaction-diffusion
SEI model is developed in Sect. 3. In Sect. 4, we investigate the dynamical behavior
of the considered discrete-time system in terms of the global stability of its equilibria.
Section5 includes some numerical simulations that will verify all findings achieved
in this work.

2 Preliminarily

In order to develop the continuous reaction-diffusion SEI model reported in [1]
to be formulated to the discrete-time model, we will present some basic facts and
preliminaries associated with the forward difference operator.

Definition 1 ([17]) Let x : Na → R where Na = {a, a + 1, a + 2, ...} and a ∈ R.
The forward difference operator can be outlined as:

Δx(t) = x(t + 1) − x(t).

In this connection, we will consider here the following nonlinear integer-order dif-
ference system: {

Δx(n) = f (x(n)), n ∈ N

x(0) = x0, x0 ∈ R
n,

(1)

where x(n) ∈ R
n is the state-vector of the system and f : Rn → R

n is a continuous
differentiable function. Inwhat follows,we consider that f (0) = 0, and hence x∗ = 0
represents an equilibrium point of system (1).

Theorem 1 ([17]) If there exists a continuous function V : Rn → R
+ such that:

V (0) = 0 and V (x(n)) > 0, ∀x(n) = 0

ΔV (x(n)) = V (x(n + 1)) − V (x(n)) ≤ 0, ∀n ∈ N.

Then, the trivial solution of system (1) is stable. Moreover, if

ΔV (x(n)) = V (x(n + 1)) − V (x(n)) < 0, ∀n ∈ N,

then the trivial solution of the same system is asymptotically stable.
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3 Discrete-time SEI Reaction-Diffusion System

In this section, we aim to formulate the discrete-time model by considering the con-
tinuous reaction-diffusion SEI model reported in [1]. In particular, the SEI reaction-
diffusion epidemic model with the immigration of individuals was given in [1] by:

⎧⎪⎨
⎪⎩

∂t u = d1Δu + Λ1 − u f (w) − μ1u, in Ω x R
+

∂tv = d2Δv + Λ2 + u f (w) − (μ2 + β)v, in Ω x R
+

∂tw = d3Δw + Λ3 + βv − μ3w, in Ω x R
+,

(2)

subject to the initial conditions:

u(x, 0) = u0(x), v(x, 0) = v0(x), w(x, 0) = w0(x),

and to the following homogeneous Neumann boundary conditions:

∂u

∂ν
= ∂v

∂ν
= ∂w

∂ν
= 0, on ∂Ω x R

+,

where Ω is an open bounded subset of Rn with piecewise smooth boundary ∂Ω .
As a matter of fact, they can be classified any population into three major groups;

vulnerable (or suspectable), exposed, and infectious. The size of these classes are
represented by u, v, and w, respectively. The ratios of these classes occurs at the
rates of Λ1>0, Λ2 ≥ 0, and Λ3 ≥ 0, respectively. In this regard, we will allow for
a nonlinear response to the size of the infectious population in the incidence, and
therefore the incidence rate is u f (w) in which f denotes a twice differentiable
function fulfilled the following hypotheses:

f (w) ≥ 0, f ′(w) ≥ 0, f ′′(w) ≤ 0.

In model (2), the individuals in class v migrate to the class w at rate βv. At the
same time, the individuals leave the vulnerable, exposed, and infected classes with
per capita death rates of μ1, μ2 and μ3 respectively. In this connection, we suppose
that μ1, μ2, μ3 > 0, d1, d2 and d3 are the diffusion parameters. From this point of
view, we aim in this work to study the discrete version of model (2) which can be
expressed, without diffusion, as follows:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

du

dt
= Λ1 − u f (w) − μ1u

dv

dt
= Λ2 + u f (w) − (μ2 + β)v

dw

dt
= Λ3 + βv − μ3w.

(3)
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In what follows, we use the forward Euler discretization scheme according to the
following term:

du

dt

(
dw

dt
,
dw

dt

)
,

which can be represented by:

[u(t + h) − u(t)] ([v(t + h) − v(t)], [w(t + h) − w(t)]) ,

where h is the step size of the numerical method. With t = nh, u(t) = u(nh) and
h = 1, the Euler’s method yields the following system:

⎧⎪⎨
⎪⎩
u(n + 1) − u(n) = Λ1 − u(n) f (w(n)) − μ1u(n)

v(n + 1) − v(n) = Λ2 + u(n) f (w(n)) − (μ2 + β)v(n)

w(n + 1) − w(n) = Λ3 + βv(n) − μ3w(n).

(4)

Actually, system (4) is equivalent to the following form:

⎧⎪⎨
⎪⎩

Δu(n) = Λ1 − u(n) f (w(n)) − μ1u(n)

Δv(n) = Λ2 + u(n) f (w(n)) − (μ2 + β)v(n)

Δw(n) = Λ3 + βv(n) − μ3w(n).

(5)

Now, in order tomove on to the discrete-time version of themodel (3), the space factor
represented by diffusion can be taken into account in all fundamental aspects. This
would generate a one-dimensional discrete-time reaction-diffusionmodel, which can
be outlined as follows:⎧⎪⎨

⎪⎩
Δuni = d1∇2uni + Λ1 − uni f (w

n
i ) − μ1uni

Δvn
i = d2∇2vn

i + Λ2 + uni f (w(ni ) − (μ2 + β)vn
i

Δwn
i = d3∇2wn

i + Λ3 + βvn
i − μ3w

n
i , ∀i = {1, 2, ...,m},

(6)

where m, n are positive integers, d1, d2, d3 are diffusion parameters, and ∇2(·) are
defined as follows:

∇2uni = uni+1 − 2uni + uni−1

∇2vn
i = vn

i+1 − 2vn
i + vn

i−1

∇2wn
i = wn

i+1 − 2wn
i + wn

i−1.

In the same regard, the initial conditions u0i , v0
i , w0

i as well as the following periodic
boundary conditions are considered:
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⎧⎪⎨
⎪⎩
un0 = unm, un1 = unm+1

vn
0 = vn

m, vn
1 = vn

m+1

wn
0 = wn

m, wn
1 = wn

m+1.

(7)

As indicated in [1], there exists a unique equilibrium (u∗, v∗, w∗) of model (6).
This actually means that the exposed and infected classes do not both go to zero at
the same time. Anyhow, the equilibrium point of the system at hand can be outlined
algebraically to be as follows:

⎧⎪⎪⎨
⎪⎪⎩

Λ1 = u∗ f (w∗) + (μ1 + α)u∗

Λ2 = −u∗ f (w∗) + (μ2 + β)v∗

μ3 = Λ3 + βv∗

w∗ .

(8)

4 Global Stability

In this section, we intend to concernwith the global asymptotic stability of the unique
positive equilibrium (u∗, v∗, w∗). To this aim, we construct the required conditions
for the positive equilibrium to be globally asymptotically stable using the global
Lyapunov function.

Theorem 2 The equilibrium point (u∗, v∗, w∗) is globally asymptotically stable of
system (6).

Proof To prove this result, we use the same Lyapunov function that was previously
used in [1–3]. For this purpose, we consider the following function:

h(y) = y − 1 − ln y,

where h : R+∗ → R
+∗ . This function has a strict global minimum, i.e., h(1) = 0. Now,

consider the following non-negative function:

V n = V n
1 + V n

2 + V n
3 ,

where

V n
1 = u∗

m∑
i=1

h

(
uni
u∗

)
, V n

2 = v∗
m∑
i=1

h

(
vn
i

v∗

)
, V n

3 = Cw∗
m∑
i=1

h

(
wn

i

w∗

)
,

and

C = u∗ f (w∗)
βv∗ .
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To move forward in this proof, we will use the same proof’s procedure given in
[2, 4]. For this purpose, we first calculate V n

1 as follows:

ΔV n
1 = V n+1

1 − V n
1 =

m∑
i=1

(
un+1
i − un − u∗ ln

un+1
i

uni

)

=
m∑
i=1

(
un+1
i − un − u∗ u

n+1
i − uni

uni

)
+ o(1)

=
m∑
i=1

(un+1
i − un)

(
1 − u∗

u∗
i

)
+ o(1)

=
m∑
i=1

(
1 − u∗

uni

)
(d1∇2uni + Λ1 − uni f (w

n
i ) − μ1u

n
i − uni ) + o(1)

=
m∑
i=1

(
1 − u∗

uni

)
(Λ1 − uni f (w

n
i ) − μ1u

n
i − uni ) + d1

(
1 − u∗

uni

)
(uni+1 − 2uni + uni−1).

Using (8) yields:

ΔV n
1 =

m∑
i=1

μ1u
∗
(
1 − u∗

uni

) (
1 −

(
1 + 1

μ1

)
uni
u∗

)
+ u∗ f (w∗)

(
1 − u∗

uni

) (
1 − u f (w)

u∗ f (w∗)

)

− d1

m∑
i=1

u∗
(
uni+1

uni
+ uni−1

uni
− 2

)
,

or

ΔV n
1 =

m∑
i=1

−μ1u
∗(h

(
u∗

uni

)
+

(
1 + 1

μ1

)
h

(
uni
u∗

)
+ ln

(
1 + 1

μ1

)

+ u∗ f (w∗)
(

−h

(
u∗

uni

)
+ h

(
f (w)

f (w∗)

)
− h

(
u f (w)

u∗ f (w∗)

))

− d1u
∗
m−1∑
i=1

(√
uni+1

uni
−

√
uni−1

uni

)2

− d1u
∗
m−1∑
i=1

(√
unm
un1

−
√

un1
unm

)2

+ o(1).

Consequently, we have

ΔV n
2 =V n+1

2 − V n
2 =

m∑
i=1

(vn+1
i − vn)

(
1 − v∗

v∗
i

)
+ o(1)

=
m∑
i=1

(
1 − v∗

vn
i

)
(d2∇2vn

i + Λ2 + uni f (w
n
i ) − (μ2 + β)vn

i − vn
i ) + o(1),

i.e.,
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ΔV n
2 =

m∑
i=1

(
1 − v∗

vni

)(
d2∇2vni + Λ2 + uni f (w

n
i ) − vni

Λ2 + u∗ f (w∗)
v∗ − vni

)
+ o(1).

This implies;

ΔV n
2 =

m∑
i=1

Λ2v
∗
(
1 − v∗

vni

) (
1 −

(
1 + 1

Λ2

)
vni

v∗

)
+ u∗ f (w∗)

(
1 − v∗

vni

) (
u f (w)

u∗ f (w∗)
− vni

v∗

)

+
m∑
i=1

(
1 − v∗

vni

)
(d2∇2vni ) + o(1).

That is;

ΔV n
2 = −Λ2v

∗
(
h

(
v∗

vn
i

)
+

(
1 + 1

Λ2

)
h

(
vn
i

v∗

)
+ ln

(
1 + 1

Λ2

))

+ u∗ f (w∗)
(

−h(
v∗

vn
i

) + h(
uni f (w

n
i )

u∗ f (w∗)
) − h(

v∗uni f (w
n
i )

vn
i u

∗ f (w∗)
)

)

− d2v
∗
m−1∑
i=1

(√
vn
i+1

vn
i

−
√

vn
i−1

vn
i

)2

− d2v
∗
m−1∑
i=1

(√
vn
m

vn
1

−
√

vn
1

vn
m

)2

+ o(1).

In a similar manner, we can have

ΔV n
3 = V n+1

3 − V n
3 =

m∑
i=1

C(wn+1
i − wn)

(
1 − w∗

w∗
i

)
+ o(1)

=
m∑
i=1

C

(
1 − w∗

wn
i

)
(d3∇2wn

i + Λ3 + βvni − μ3w
n
i − wn

i ) + o(1)

=
m∑
i=1

C

(
1 − w∗

wn
i

) (
d3∇2wn

i + Λ3 + βvni − wn
i
Λ3 + βv∗

w∗ − wn
i

)
+ o(1)

=
m∑
i=1

CΛ3

(
1 − w∗

wn
i

) (
1 − (1 − 1

Λ3
)
wn
i

w∗

)
+ Cβv∗

(
1 − w∗

wn
i

) (
vni

v∗ − wn
i

w∗

)

+ C
m∑
i=1

(
1 − w∗

wn
i

)
(d3∇2wn

i ) + o(1)

= −CΛ3w
∗
(
h

(
w∗

wn
i

)
+

(
1 + 1

Λ3

)
h

(
wn
i

w∗

)
+ ln

(
1 + 1

Λ3

))

+ u∗ f (w∗)
(

−h
wn
i

w∗ ) + h

(
v∗

vni

)
− h

(
wnv∗

w∗vni

))
− d3w

∗
m−1∑
i=1

(√
wn
i+1

wn
i

−
√

wn
i−1

wn
i

)2

− d3w
∗
m−1∑
i=1

(√
wn
m

w0n1
−

√
wn
1

wn
m

)2

+ o(1).

Now, with the help of using the following proposition [3]:
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h

(
f (wn

i )

f (w∗)

)
≤ h

(
wn

i

w∗

)
,

we can conclude the following inequality:

ΔVn = ΔVn
1 + ΔVn

2 + ΔVn
3

≤
m∑
i=1

−μ1u
∗
(
h

(
u∗
uni

)
+

(
1 + 1

μ1

)
h

(
uni
u∗

)
+ ln

(
1 + 1

μ1

))

− Λ2v
∗
(
h

(
v∗
vni

)
+

(
1 + 1

Λ2

)
h

(
vni
v∗

)
+ ln

(
1 + 1

Λ2

))

− CΛ3w
∗
(
h

(
w∗
wn
i

)
+

(
1 + 1

Λ3

)
h

(
wn
i

w∗
)

+ ln

(
1 + 1

Λ3

))

− u∗ f (w∗)

(
h

(
u∗
uni

)
+ h

(
w∗
wn
i

)
+ h

(
v∗uni f (wn

i )

vni u
∗ f (w∗)

)
+ h

(
wnv∗
w∗vni

))

− Cd1u
∗
m−1∑
i=1

(√
uni+1

uni
−

√
uni−1

uni

)2

− Cd1u
∗
m−1∑
i=1

⎛
⎝

√
unm
un1

−
√

un1
unm

⎞
⎠
2

− Cd2v
∗
m−1∑
i=1

(√
vni+1

vni
−

√
vni−1

vni

)2

− Cd2v
∗
m−1∑
i=1

⎛
⎝

√
vnm
vn1

−
√

vn1
vnm

⎞
⎠
2

− Cd3w
∗
m−1∑
i=1

(√
wn
i+1

wn
i

−
√

wn
i−1

wn
i

)2

− Cd3w
∗
m−1∑
i=1

⎛
⎝

√
wn
m

w0n1
−

√
wn
1

wn
m

⎞
⎠
2

+ o(1).

This immediately implies ΔV n ≤ 0 which asserts that the equilibrium point
(u∗, v∗, w∗) is indeed globally asymptotically stable.

5 Numerical Simulations

In this part, we illustrate a numerical example that aims to show the feasibility of our
main results. In system (6), we take m = 2 and consider the following function:

f (wn
i ) = wn

i

1 + wn
i

.

Thus, we obtain the following discrete-time SEI reaction-diffusion model:
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Table 1 Initial data of system (9)

initial conditions value

un0 25

un1 25

vn0 15

vn1 15

wn
0 10

wn
1 10

Table 2 The parameters of system (9)

parameters value

Λ1 1.5

Λ2 1.2

Λ3 1.4

μ1 0.2

μ2 0.3

μ3 0.6

β 1.5

d1 1.4

d2 1.6

d3 1

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Δuni = d1∇2uni + Λ1 − uni
wn

i

1 + wn
i

− μ1uni

Δvn
i = d2∇2vn

i + Λ2 + uni
wn

i

1 + wn
i

− (μ2 + β)vn
i

Δwn
i = d3∇2wn

i + Λ3 + βvn
i − μ3w

n
i , fori = 1, 2,

(9)

subject to the following periodic boundary conditions:

⎧⎪⎨
⎪⎩
un0 = un2, un1 = un3
vn
0 = vn

2 , vn
1 = vn

3

wn
0 = wn

2 , wn
1 = wn

3 .

(10)

These conditions are reported in Table1, whereas the parameters of the above system
are listed in Table2.

After executing a proper MATLAB code, we generate Fig. 1 that illustrates the
solutions of the proposed system (9) in three-dimensional case with the

initial data set: (u0i , v
0
i , w

0
i ) = (50 + 0.05

(
sin

( x
5

))
, 15 + 0.05

(
(cos

(
(
x

5

))
,
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Fig. 1 Numerical solutions
of system (9)
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10 + 0.05
(
cos

( x
5

))
. Obviously, one can observe that the solution of such sys-

tem is globally asymptotically stable with respect to a fixed steady-state over a given
time. This actually reflects the validity of our findings.

6 Conclusion

In this work, the global asymptomatic stability of the unique positive equilibrium of
a discrete-time reaction-diffusion SEI model with periodic boundary conditions has
been investigated. After providing a new discrete-time version of the aimed model
based on the continuous-time reaction-diffusion SEI model, the positive equilib-
rium’s globally asymptotical stability has been demonstrated.
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Atomic Solution of Euler Equation

Iqbal Jebril, Ghada Eid, Ma’mon Abu Hammad, and Duha AbuJudeh

Abstract In this paper, we find certain solutions of fractional partial differential
questions. Tensor product of Banach space is used where separation of variables
does not work.

Keywords Atomic solution · Conformable derivative · Tensor product · First
section

1 Introduction

There are many definitions available in the literature of fractional derivatives. The
main ones are the Riemann Liouville definition and Caputo definition.

Definition 1.1 (Riemann–Liouville definition). For α ∈ [m − 1, m), the α−
derivative of f is defined by

Dα
c ( f )(w) = 1

�(m − α)

dm

dwm

∫ w

c

f (t)

(w − t)α−m+1 dt.

Definition 1.2 (Caputo Definition). For α ∈ [m − 1, m), the α− derivative of f is
defined by

Dα
c ( f )(w) = 1

�(m − α)

∫ w

c

f (m)(t)

(w − t)α−m+1 dt.

In 2014, [6] introduced a new definition of fractional derivative which is very
simple and natural as follows:
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Given a function f : [0,∞) → R, and w > 0, α ∈ (0, 1). Then for all

Dα( f )(w) = lim
ε→0

f
(
w + εw1−α

) − f (w)

ε
.

If the limit exists, then Dα is called the conformable fractional derivative of order
α. LetT α(x) stands for T α( f )(x).

Hence,

T α( f )(w) = lim
ε→0

f
(
w + εw1−α

) − f (w)

ε
.

If f is α-differentiable then define

f α(0) = lim
w→0

f α(w).

According to this definition, we have the following properties. Let α ∈ (0, 1],
then:

i. T α(1) = 0.
ii. T α(wp) = pwp−α, for all p ∈ R.

iii. T α(ecw) = cw1−αecw, c ∈ R.

iv. T α(sinbw) = bw1−αcosbw, b ∈ R.

v. T α(cosbw) = −bw1−α sin bw, b ∈ R.
vi. T α

(
1
α

wα
) = 1.

Further, many functions behave as in the usual derivative. Here are some formulas:

i. T α
(
sin 1

α
wα

) = cos 1
α

wα.

ii. T α
(
cos 1

α
wα

) = −sin 1
α

wα.

iii. Tα

(
e

1
α

wα
)

= e
1
α

wα

.

Many studies use conformable fractional derivative definition [1, 3–7] and
degenerate second-order identification problem in Banach Space [2].

2 Main Result

In this paper, we find certain solutions of fractional partial differential questions.
Tensor product of Banach space is used where separation of variables does not work.
We want to find an atomic solution of the fractional Euler equation.

D2α
w Dβ

r u + D2β
r Dα

wu = u(w, r). (1)

With conditions:
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u(0, r) = 1, uα(0, r) = 1.

u(w, 0) = 1, uβ(w, 0) = 1.

This is a linear partial differential equation but separation of variables doesn’t
work. But Theory of tensor product can be used here to get what is called atomic
solution.

A solution is called Atomic if it is of the form

u(w, r) = W (w)R(r) = W ⊗ R, (2)

where W (w) and R(r) are not constants. Now, substitute (2) in (1) to get

W 2α(w)⊗Rβ(r) + W α(w) ⊗ R2β(r) = W (w) ⊗ R(r). (3)

Equation (3) has the tonsorial form:

W 2α ⊗ Rβ + W α ⊗ R2β = W ⊗ R. (4)

Since, we have two cases to consider
Case (i)

W 2α = W α = W.

Case (ii)

Rβ = R2β = R.

Let us discuss case (i).W 2α = W α. This is a linear fractional differential equation.
Hence, we get

W (w) = a + be
wα

α .

Using the condition u(0, r) = 1 = uα(0, r), we get b = 1 and a = 0.
Thus,

W (w) = e
wα

α .

As for W 2α = W , it gives the same solution.
W (w) = e

wα

α ,
similarly, W α = W it gives

W (w) = e
wα

α .
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Thus, we get in all situations W (w) = e
wα

α . By Eq. (4)

W 2α ⊗ Rβ + W α ⊗ R2β = W ⊗ R

e
wα

α ⊗ Rβ + e
wα

α ⊗ R2β = e
wα

α ⊗ R

e
wα

α

(
Rβ + R2β − R

) = 0

(
Rβ + R2β − R

) = 0

λ = −1 + √
5

2
, λ1 = −1 − √

5

2
.

Then

R(r) = c1eλ rβ

β + c2eλ1
rβ

β ,

and
u(w, r) = W (w)R(r),
where c1 and c2 are determined by the initial condition.
Hence

u(w, r) =
(

e
wα

α

)(
e

λrβ

β

)
.

Case (ii)

Rβ = R2β = R.

Let us discuss case (ii).R2β = Rβ. This is a linear fractional differential equation.
Hence, we get

R(r) = a1 + b1e
rβ

β .

Using the condition u(0, r) = 1 = uα(0, r), we get b1 = 1 and a1 = 0.
Thus
R(r) = e

rβ

β .
As for R2β = R, it gives the same solution

R(r) = e
rβ

β ,

similarly, Rβ = R it gives
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R(r) = e
rβ

β .

Thus, we get in all situations R(r) = e
rβ

β by Eq. (4)

W 2α ⊗ Rβ + W α ⊗ R2β = W ⊗ R

e
rβ

β

(
W 2α + W α − W

) = 0

(
W 2α + W α − W

) = 0

γ = −1 + √
5

2
, γ1 = −1 − √

5

2
.

Similarly, one can find a solution of the form

u(w, r) = W (w)R(r).

Conclusion and Future Work

In this research, due to that fact that the method of separation of variables does not
sometimes work well in solving several nonlinear fractional partial equations, we
find that we should seek about an alternative approach that faces this problem. The
Euler equation is deemed as one of these equations. In this work, we have found
an atomic solution for Euler equation which has been formulated in view of the
conformable fractional derivative definition. This has been performed with the help
of using the tensor product technique in the Banach space with some of its properties.
In accordance with what we have applied here, we can implement our presented
scheme on other nonlinear fractional partial equations formulated in conformable
definition or even in other fractional derivative operators. This task has been left to
the nearest future for further consideration.
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Solving Non-linear Fractional Coupled
Burgers Equation by Sub-equation
Method

Worood A. AL-hakim, Maha S. Alsauodi, Gharib M. Gharib,
Fatima Alqasem, and May Abu Jalbosh

Abstract In this solution, the real results were reached in solving the nonlinear
fractional Coupled Burgers equation, which represents the solution with accuracy,
ease and smoothness, which distinguishes it from other solutions, and these results
were represented in a clear and expressive graphic for solving partial fractional
equations.

Keywords Sub-equation method · Fractional calculus · Coupled Burgers
equation · Nonlinear fractional equation · Fractinal equation

1 Introduction

This method is considered one of the most important and modern methods of finding
solutions to equilibrium, partial and fractional equations.

Where accurate solutions are obtained in most cases and logical solutions that
provide effectiveness for application. Tang, He,Wei, & Fan, Hon [1]. The main topic
of this thesis is Solving Non-Linear Fractional Boussinesq—Burgers Equation by
Use Sub—Equations Method.

Firstly this contains sections of Fractional Calculus. In the Journal of Computa-
tional and Applied Mathematics Abu Hammad and Khalil [2], Abu Hammad and
Khalil, Jumarie et al. [3]. Taking conformable fractional derivative and integral and
Laplace we take some theorem and property and examples and we take Zhang and
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Zhang [4] by using five steps, in equation, Successfully obtained. Traveling wave
solutions Wang [5], Zhou et al.

So we solve the Non—Linear Fractional fractional derivative Coupled Burgers
Equations by sub-equation method.

Equation byYan andZhang [6], Singh,Gupta: Exact solutions of a variantCoupled
Burgers. In [7] Zeidan et al. [8] and we find the exact solution in the equations by
examples.

2 Fractional Calculus

In this work we introduce the famous definition of fractional calculus such that
conformable Factional calculus is a field of applied mathematical science that deals
with derivatives and integrals of fraction and the idea of fractional derivatives was
raised in pints by Lhospital in (1695). Various definitions of fractional calculus
were introduced such as Cauchy, Riemann, liouville and cupito; and was recently
conformable by Khalil et al. [9].

Fractional calculus is an emerging and interesting branch of applied mathematics,
describing theory of derivatives and integrals of any real or complex arbitrary order
fractional differential equation (FDE), and has gained much attention due to the
fact that the response of the fractional order system ultimately converges with the
response of the integer order. Jumarie [10].

Definition 1 Gives a functional f : [0.∞)→ R Then the conformable fractional
derivative f of order α is defined by

f α = lim
ε→0

f
(
t + εt1−α

) − f (t)

ε

t > 0, α ∈ (0, 1]

Theorem 1 Let α ∈ (0, 1] and f be α− differentible at appoint t > 0, then:

Tα( f )(t) = t1−α f \(t)

Proof Let h = εt1−αin de f intion , then ε = htα−1 as ε → 0, h → 0.

Tα( f )(t) = lim
ε→0

f
(
t + εt1−α

) − f (t)

ε
= lim

h→0

f (t + h) − f (t)

htα−1

= t1−α lim
h→0

f (t + h) − (t)

h
= t1−α f \(t)

Corollary 1
Tα−1( f (t)) = tTα( f (t)),∀α − 1 > 0
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Theorem 2 Let α ∈ (0, 1] and f, g be α_di f f erentible at a point t > 0, then:

1. Tα(a f + bg) = aTα( f ) + bTα(g) ,∀a, b ∈ R
2. Tα(t p) = pt p−α, ∀p ∈ R:
3. Tα( f g) = f Tα(g) + gTα( f )
4. Tα(

f
g ) = gTα( f )− f Tα(g)

g2

5. Tα

(
1
f

)
= _Tα( f )

f 2

6. Tα(λ) = 0

3 Sub-Equation Method

In this section we introduce themain five steps of the fractional Sub-equationmethod
and consider some examples on the proposed method:

A new Numerical technique solves linear and Non-linear Fractional Differential
Equations of Order 0 < α < 1 indicating that Caputo’s definition is proposed. The
efficiencyof this techniquewill be demonstrated by solving several examples of linear
and non-linear differential equation. And non-linear fractional differential equation
by Tang et al. [11]. Crompton [12].

Exact solutions. These solitary wave solutions of the perturbation are Nonlinear
where an Equation with a power law nonlinearity model can display variety of
behaviors:

Step 1:

Suppose that nonlinear FDEs with independent variable (x1, x2, x3, . . . xn, t) And
dependent variable of u:

P(u, ut,, ux1, ux2, ux3, . . . , D
α
t u, Dα

x1u, Dα
x2u, Dα

x3u, . . .) = 0, 0 < a < 1 (1)

where Dα
t au and Dα

x1u,D
α
x2u, D

α
X3u, are Jumarie’s modified Riemann -Liouville

derivatives of u, = t, x1, x2, x3, …,xn is the unknown function.

Step 2:

Using the traveling wave transformation:

U(t, x1, x2, x3, . . . , xn) = u(ξ), ξ = ct + k1x1 + k2x2 + k3x3 + · · · + knxn + ξ0

knxn + ξo

(2)

where k1, k2, k3, . . . , kn are constants to be determined later, we can turn the FDE
(1) into this equation for u = u (ξ):

P
(
u, c u, Kiu

′ cαDα
ξ u, kα

ξ D
α
ξ , . . .) = 0, where i = 1, 2, 3, ... (3)
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Step 3:

Suppose that the solution of (2) can be done as follows:

u (ξ)

n∑

x=0

aiϕi (4)

where ai (i = 0, 1, 2, 3, … n) and ai �= 0, the positive integer n can be determined
by considering the homogeneous balance between the highest order derivatives and
nonlinear terms appearing ϕ = ϕ(ξ) satisfy the following Recite equation:

Dα
ξ = σ + φ2, 0 < a ≤ 1 (5)

where σ is a constant and the solutions of Eq. (2) are obtained by Zhang using the
generalized Exp-function method as follows (5).

4 Fractional Derivative Coupled Burgers Equations
by Sub-equation Method

Berger’s equation is used in various fields of phenomena and physical experiments
such as boundary layer behavior, weather problems, traffic flow and sound, and is
used to examine water waves and gas dynamics.

Therefore, the interest in this equationwas the focus of attention ofmany scientists
and researchers, and the work was done on analytical solutions and in several ways,
including Buckland and others.

Problem 1 Space-Time (1 + 1) fractional derivative Coupled Burgers Equations.

We consider Space-Time fractional coupled Burgers Equations:

{
Dα

t u − D2α
x u + 2uDα

xu + pDα
x(uv) = 0

Dα
t v − D2α

x v + 2vDα
xv + qDα

x(uv) = 0
, 0 < α ≤ 1 (6)

We make the traveling wave transformation u(x,t) = U(ξ), v(x, t) = V(ξ), and ξ

= xk + ct.
Equation (7) reduced to ODE:

{
CαDα

ξU − K2αD2α
ξ U + 2KαuDα

ξU + pKαDα
ξ(UV) = 0, 0 < α ≤ 1

CαDα
ξV − K2αD2α

ξ V + 2KαVDα
ξV + qKαDα

ξ(UV) = 0
(7)

We suppose that Eq. (7) has the following general solution:
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⎧
⎪⎪⎨

⎪⎪⎩

U(ξ) =
n∑

i=0
ai0i

V(ξ) =
m∑

j=0
bj0j

By balancing the highest order derivative term and nonlinear term in Eq. (7) D2α
ξ U,

UDα
ξU and VDα

ξV, D
2α
ξ V, we have n + 2 = n + n + 1 then n = 1, 2 + m = m + m

+ 1 then m = n = 1.
Then Eq. (7) has solution.

{
U(ξ) = a0 + a1ϕ
V(ξ) = b0 + b1ϕ

(8)

Substituting (8) along with (4) into (7) and setting the coefficient of ϕ(ξ)i (i = 0,
1, 2, 3) to zero, we can obtain a set of algebraic equation for c, k,b0, b1, a0anda1 as
follows:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

CαDα
ξ

{
a0+
+a1ϕ

}

− K2αD2α
ξ

{
a0+
+a1ϕ

}

+ 2Kα

{
a0+
+a1ϕ

}

Dα
ξ

{
a0+
+a1ϕ

}

+ pKαDα
ξ

({
a0+
+a1ϕ

}{
b0+
+b1ϕ

})

= 0

CαDα
ξ

{
b0+
+b1ϕ

}

− K2αD2α
ξ

{
b0+
+b1ϕ

}

+ 2Kα

{
b0+
+b1ϕ

}

Dα
ξ

{
b0+
+b1ϕ

}

+ qKαDα
ξ

({
b0+
+b1ϕ

}{
b0+
+b1ϕ

})

= 0

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Cαa1

{
σ+
+ϕ2

}

− 2K2αa1

{
σϕ+
+ϕ3

}

+ 2Kα

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

a1σa0+
+a1ϕ2a0+
+σa21ϕ+
+a21ϕ

3

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

+ pKα

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

b0σa1+
+a0b1σ+

+2σb1ϕa1+
+a0b1ϕ2+
+b0a1ϕ2+
+2b1a1ϕ3

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

= 0

Cαb1

{
σ+
+ϕ2

}

− 2K 2αb1

{
σϕ+
+ϕ3

}

+ 2Kα

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

b1σb0+
+b1ϕ

2b0+
+σb21ϕ+
+b21ϕ

3

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

+ qKα

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

b0σa1+
+a0b1σ+

+2σb1ϕa1+
+a0b1ϕ

2+
+b0a1ϕ

2+
+2b1a1ϕ3

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

= 0

From the first equation:

ϕ(ξ)0:cαa1σ + 2kαa1σa0 + pkαa0b1σ + pkαb0σa1 = 0

ϕ(ξ)1: − 2k2αa1σ + 2kασa21 + 2pσkαb1a1 = 0

ϕ(ξ)2:cαa1 + 2kαa1a0 + pkαa0b1 + pkαb0a1 = 0

ϕ(ξ)3: − 2k2αa1 + 2kαa21 + 2pkαb1a1 = 0
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From the second equation:

ϕ(ξ)0:cαb1σ + 2kαb1σb0 + qkαb0a1σ + qkαa0σb1 = 0

ϕ(ξ)1: − 2σk2αb1 + 2kαb21σ + 2kαqb1a1σ = 0

ϕ(ξ)2:cαb1 + 2kαb0b1 + qkαb1a0 + qkαb0a1 = 0

ϕ(ξ)3: − 2k2αb1 + kα2b∧
1 2 + 2kαqa1b1 = 0

By using Mathematica:

Solve
[
c
α ∗ a1 ∗ σ + 2 ∗ k

α ∗ a1 ∗ σ ∗ a0 + p ∗ kα ∗ a0 ∗ b1 ∗ σ + p ∗ k
α ∗ b0 ∗ σ ∗ a1 =

= 0 &&cα ∗ b1 ∗ σ + 2 ∗ kα ∗ b1 ∗ σ ∗ b0 + q ∗ kα ∗ b0 ∗ a1 ∗α +q ∗ k
α ∗ a0 ∗ σ ∗ b1 =

= 0 && − 2 ∗ k2α ∗ a1 ∗ σ + 2kα ∗ σ ∗ a21 + 2 ∗ p ∗ σ ∗ kα ∗ b1 ∗ a1 =
= 0 && − 2σ ∗ k2α ∗ b1 + 2kα ∗ b1 ∧ 2 ∗ σ + 2kα ∗ q ∗ b1 ∗ a1 ∗ σ =
= 0 &&cα ∗ a1 + 2 ∗ kα ∗ a1 ∗ a0 + p ∗ kα ∗ a0 ∗ b1 + p ∗ kα ∗ b0 ∗ a1 =
= 0 &&cα ∗ b1 + 2kα ∗ b0 ∗ b1 + q ∗ kα ∗ b1 ∗ a0 + q ∗ kα ∗ b0 ∗ a1 =
= 0 && − 2k2α ∗ a1 + 2 ∗ kα ∗ a1 ∧ 2 + 2 ∗ p ∗ kα ∗ b1 ∗ a1 =
= 0 && − 2k2α ∗ b1 + kv ∗ 2 ∗ b1 ∧ 2 + 2kα ∗ q ∗ a1 ∗ b1 == 0, {b1, σ, b0, a1, a0, b2}

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

{b1 → 0, a1 → 0},
{
b1 → kα, b0 → − 1

2
cαk−α, a1 → 0, a0 → 0

}
,

{
b1 → 0, b0 → 0, a1 → kα, a0 → − 1

2
cαk−α

}
,

{
b1 → kα(−1 + q)

−1 + pq
, b0 → − cαk−α(−1 + q)

2(−1 + pq)
, a1 → kα(−1 + p)

−1 + pq
, a0 → − cαk−α(−1 + p)

2(−1 + pq)

}

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

Case 1: {b1 → 0, a1 → 0} .
{
U1 = a0
V1 = b0

�

Case 2:
{
b1 → kα, b0 → − 1

2 c
αk−α, a1 → 0, a0 → 0

}
.

where σ < 0., ξ = xk + ct

{
U2 = 0

V2 = − 1
2 c

αk−α − kα
√−σ tanhα

(√−σξ
)

{
U3 = 0

V3 = − 1
2 c

αk−α − kα
√−σ cothα

(√−σξ
)

where σ > 0, ξ = x k + c t
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{
U4 = 0

V4 = − 1
2 c

αk−α + kα(
√

σ tanα

(√
σξ

)

{
U5 = 0

V5 = − 1
2 c

αk−α − kα
√

σ cotα
(√

σξ
)

where σ = 0, ξ = x k + c t, w is constant.

{
U6 = 0

V6 = − 1
2 c

αk−α − kα�(1+α)

ξα+w

�

Case 3:
{
b1 → 0, b0 → 0, a1 → kα, a0 → − 1

2 c
αk−α

}
.

where σ < 0, ξ = x k + c t

{
U7 = − 1

2 c
αk−α − kα

√−σ tanhα

(√−σ ξ
)

V7 = 0
{
U8 = − 1

2 c
αk−α − kα

√−σ cothα

(√−σ ξ
)

V8 = 0

where σ > 0, ξ = x k + c t

{
U9 = − 1

2 c
αk−α + kα(

√
σ tanα

(√
σ ξ

)

V9 = 0
{
U10 = − 1

2 c
αk−α − kα

√
σ cotα

(√
σ ξ

)

V10 = 0

where σ = 0, ξ = x k + c t, w is constant.

{
U11 = − 1

2 c
αk−α − kα �(1+α)

ξα+w

V11 = 0
�

Case 4:
{
b1 → kα(−1+q)

−1+pq , b0 → − cαk−α(−1+q)
2(−1+pq) , a1 → kα(−1+p)

−1+pq , a0 → − cαk−α(−1+p)
2(−1+pq)

}
.

Where σ < 0, ξ = x k + c t

{
U12 = − cαk−α(−1+p)

2(−1+pq) − kα(−1+p)
−1+pq (

√−σ tanhα

(√−σ ξ
)

V12 = − cαk−α(−1+q)
2(−1+pq) − kα(−1+q)

−1+pq

(√−σ tanhα

(√−σ ξ
))

{
U13 = − cαk−α(−1+p)

2(−1+pq) − kα(−1+p)
−1+pq (

√−σ cothα

(√−σ ξ
)

V13 = − cαk−α(−1+q)
2(−1+pq) − kα(−1+q)

(−1+pq) (
√−σ cothα

(√−σ ξ
)
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where σ > 0, ξ = x k + c t

{
U14 = − cαk−α(−1+p)

2(−1+pq) + kα(−1+p)
−1+pq (

√
σ tanα

(√
σ ξ

)
)

V14 = − cαk−α(−1+q)
2(−1+pq) + kα(−1+q)

−1+pq

(√
σ tanα

(√
σ ξ

))

{
U15 = − cαk−α(−1+p)

2(−1+pq) − kα(−1+p)
−1+pq (

√
σ cotα

(√
σ ξ

)
)

V15 = − cαk−α(−1+q)
2(−1+pq) − kα(−1+q)

(−1+pq)

(√
σ cotα

(√
σ ξ

))

where w = constant, σ = 0 and ξ = xk + ct

⎧
⎨

⎩

U16 = − cαk−α(−1+p)
2(−1+pq) − kα(−1+p)

−1+pq

(
�(1+α)

ξα+w

)

V16 = − cαk−α(−1+q)
2(−1+pq) − kα(−1+q)

(−1+pq)

(
�(1+α)

ξα+w

) �

4.4: Figures of Space-Time (1+1) fractional derivative Coupled Burgers Equations:

Case 2:

where σ < 0, Let α = c = k = 1, σ = −1, then,

where σ > 0, Let α = c = k = σ = 1, then:
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where σ = 0,Let α = c = k = 1,w = 0, then:

Case 3: Where σ < 0, Let α = c = k = 1, σ = −1,w = 0, then:

where σ > 0, Let α = c = k = σ = 1,w = 0, then:
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where σ = 0,Let α = c = k = 1,w = 0, then :

Case 4: Where σ < 0,Let α = c = k = 1, σ = −1, p = q = 0.5&& pq �= 1,
then:

where σ > 0, Letα = c = k = σ = 1,&&p q �= 1then :
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where σ = 0, Let α = c = k = 1,w = 0, p = q = 0.5,&& pq �= 1then :

5 Conclusions

In this work, we proposed generalizing the fractional sub- equation method to
construct exact solutions of space-time nonlinear fractional derivative systems:
coupled Burgers equations. As this method is based on the homogenous balancing
principle, it is also applied to other space-time nonlinear fractional derivative systems
where the homogeneous balancing principle is satisfied.
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Groups in Which the Commutator
Subgroup is Cyclic

Shameseddin Mahmoud Alshorm

Abstract So far, our attentionwas focused on finite groups inwhich the commutator
is in the center and it’s called by the class of CC-groups. Since the center of any group
is an abelian group, and the fundamental theorem of finitely generated abelian groups
asserts that every abelian group is isomorphic to the direct product of cyclic groups.
Then it is reasonable to consider those groups for which the derived subgroup is
cyclic. It should be remarked that several authors have investigated particular classes
of groups with similar restrictions. For instance, in [1] a bound is obtained for the
order of G/G ′ when G is a p − group, p �= 2, with a cyclic commutator subgroup.
In this paper, we prove that every finite group which has a cyclic commutator must be
supersolvable. Our result makes it possible to apply all properties of supersolvable
groups to the so-called Dc-groups.

Keywords Commutators · Cyclic · Supersolvable group

1 Introduction

In 2014, Marcel Herzog, Gil Kaplan, and Arieh Lev reached out to a finite group
G, they studied the connections between the sizes of its commutator subgroup G

′

and its center Z(G). For example, they proved that if G is a solvable group such
that �(G) = 1 and |G ′ | ≤ |G|1/3, then Z(G) �= 1. “In a group, the product of
two commutators need not be a commutator, consequently the commutator group
of a given group cannot be defined as the set of all commutators, but only as the
group generated by these. There seems to exist very little in the way of criteria
or investigations on the question when all elements of the commutator group are
commutators.” For more see [2–4].

This is what Oystein Ore says in 1951 in the introduction to his paper “Some
remarks on commutators.” Since Ore made his comments, numerous contributions
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have been made to this topic and they are widely scattered over the literature. Many
results have been rediscovered and republished. A case in point is Ore himself. The
main result of Oystein Ore is that the alternating group on n letters, n ≥ 5, consists
entirely of commutators see [5–7]. This was already proved by G. A. Miller in [8]
over half a century earlier. A well-known theorem, due to Olga Tausskij, asserts the
following: Let G be a non-abelian group of order 2n , such that |G/G ′| = 4. Then G
is dihedral, generalized quaternion, or semi-dihedral. Moreover, these groups have a
cyclic commutator subgroup see [9].

2 A Class of Dc-Group

In this section, we will study the finite groups in which every commutator subgroup
is cyclic. For more about the commutator properties see [10–12].

Definition 2.1 If G is finite group with cyclic commutator, then G is called DC −
group.

Dc = (G : G is f ini te and G
′
is cyclic)

Note that Dc − group is a not empty class of groups Dc �= ∅ as the following
example show.

Example 2.2 If G is the abelian group, then G
′ = 1 =< e > then G ′ is cyclic. G

is Dc − group, G ∈ Dc.

Remark 2.3 Every abelian group is Dc − group since the commutator for abelian
groups is cyclic,A ≤ Dc, the class of Dc − groups is larger than the class of abelian
groups.

Where: denotes the class of finite abelian groups.

Example 2.4 If G = D8 × D8 then G is supersolvable since D8 is supersolvable
group and supersolvability is closed undertaking finite direct product. This is an
example of supersolvable group which is not Dc − group, since the commutator
G ′ ∼= V4 and V4 is not cyclic.

Example 2.5 Let G = D2×4 = D8 then G is non-abelian group but the commutator
D′

8
∼= Z2 hence Z2 is cyclic then the commutator is cyclic. This is an example of

Dc − group which is not an abelian group.
Note that we can classify the class of Dc − group as this A ≤ Dc ≤ U.

Where U: denotes the class of finite supersolvable.

Lemma 2.6 If G is a Dc − group then every subgroup H from G is a Dc − group
(s − closed).
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Proof Lemma 2.6 Let H be subgroup H ≤ G where G ∈ Dc − group, then G ′ is
cyclic, hence H ′ ≤ G ′ and every subgroup of cyclic group is cyclic then H ′ is cyclic
then HisaDc − group.

Lemma 2.8 If G is a Dc − group and N is the normal subgroup of G, N�G then
the quotient group G

/
N is a Dc − group (q − closed).

Proof Lemma 2.8 N�G, G is a Dc − group and G ′ is cyclic.
(
G

/
N

)′ = G ′N
/
N ∼= G ′/G ′ ∩ N , quotient of cyclic group is cyclic.

ThenG
′/
G

′ ∩ N is cyclic that is implies the quotient groupG
/
N ∈ Dc−group.

Remark 2.10 If G1,G2 ∈ Dc − group then G1 ×G2 /∈ Dc − group, we can show
that by this counter example.

Example 2.11 Let G1 = D8 and G2 = D8 then G1 × G2 /∈ Dc − group since
(G1 × G2)

′ = Z2 × Z2
∼= V4 but V4 is not cyclic.

If we add this restriction that the order for G1andG2 must be relatively prime to
the previous example, then we have the next lemma.

Lemma 2.12 If G1,G2 ∈ Dc − group and the order for G1andG2 are relatively
primes, then G1×G2 ∈ Dc − group.

Proof Lemma 2.12 If G1,G2 ∈ Dc − group then G1
′,G2

′ are cyclic commutators,
then G ′

1 ×G ′
2 is cyclic since the direct products of two cyclic groups with relatively

prime is cyclic.

Theorem 2.14 Let G be a group. Then G
/
G ′ is abelian.

Lemma 2.15 Every abelian finite group is supersolvable group.

Lemma 2.16 Let G be a finite group with a normal subgroup N , if N is cyclic and
G

/
N is supersolvable then G is supersolvable.

Lemma 2.17 If G is a Dc − group then G is supersolvable.

Proof Lemma 2.17 Assume G ′ is cyclic then by Theorem 2.14 we have G
/
G ′ is

abelian and from Lemma 2.15 we get G
/
G ′ is supersolvable, since G ′ is cyclic and

G
/
G ′ is supersolvable then by Lemma 2.16 we have G is supersolvable.

Remark 2.19 If G is not supersolvable then G ′ cannot be generated by a single
element.

Example 2.20 Take the alternating group A4 with 4 elements, we know that A4

is not supersolvable. Therefore
∣∣A′

4

∣∣ ∈ {2, 3} since A′
4 � A4 we get

∣∣A′
4

∣∣ = 4 and
A′
4 ∈ syl2(A4).
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On Point Prediction of New Lifetimes
Under a Simple Step-Stress Model
for Censored Lomax Data

Mohammad A. Amleh

Abstract In this study, we consider a new predictor for future lifetimes of units with
Type-II censoring for a simple step-stress model. We assume that the lifetime data
of the units are distributed as Lomax distribution with constant shape parameters
and scale parameters depending on the stress level. It is also assumed that the stress
plan occurs based on a cumulative exposure model. In this context, the best unbiased
point predictor is addressed. A data analysis has been performed to compare such
new method with the previously obtained point predictors.

Keywords Accelerated life tests · Best unbiased predictor · Cumulative exposure
model · Lomax distribution · Maximum likelihood predictor · Step-stress tests

1 Introduction

Accelerated life tests (ALTs) are known in reliability analysis to be used as an evalu-
ation of the lifetime of highly reliable units in a reasonable testing time. In ALTs, the
product is tested at higher than usual levels of stress, such as high pressure, vibration,
voltage, or temperature to induce early failure times, leading to shorter lifetimes and
accelerated damage. Data obtained from such a test need to be analyzed and used to
predict new lifetimes based on the model that joins the lifetime distribution to the
degree of stress. A special kind of ALT is the step-stress test which allows the experi-
menter to increase the level of stress at pre-fixed times during the testing experiment.
In the basic form of step-stress test, n units are placed on the test at an initial stress
level s1. At the pre-specified time τ1 the stress level is raised to s2. Similarly, at the
pre-specified time τ2, the stress level is accelerated from s2 to s3, and so on. At the
final stage, the stress level is changed from sk−1 to sk at the pre-specified time τk−1.
The experiment stops if all the units tested on the experiment fail, or some termi-
nation conditions are used. If only two levels of stress are used, the test is called a
simple step-stress test. For more details on these tests, one may refer to Nelson [17]
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and Kundu and Ganguly [13]. In order to analyze the failure times under step-stress
tests, we need a model that gives the relationship between the distribution of the
lifetimes under various stress levels to the failure times under the step-stress setup.
The cumulative exposure model (CEM) is the most popular model in this context,
which was proposed by Nelson [16]. In this model, the main assumption is that the
remaining lifetime of the experiment units relies only on the cumulative exposure
these units have experienced, but without memory on how such exposure has been
accumulated. Several authors discussed the step-stress test under CEM and related
statistical inferences. Estimation of the parameters in a simple step-stress test under
CEM for exponential distribution is addressed by Xiong [19]. Balakrishnan et al. [4]
presented a simple step-stress model under Type-I censoring with lifetimes having
lognormal distribution. Kateri and Balakrishnan [12] discussed a simple step-stress
model with Type-II censoring scheme and Weibull distribution.

For Pareto distribution, Kamal et al. [10] considered the estimation of the param-
eters of Pareto distribution for a simple step-stress model with complete lifetimes.
Chandra andKhan [8] discussed the simple step-stress test and obtained estimators of
the parameters for Lomax distribution with a Type-I censoring scheme. Hassan et al.
[9] presented the simple step-stress model based on an adaptive Type-II progressive
hybrid censoring under Lomax distribution.

The prediction of new order statistics based on the data observed is a funda-
mental aspect of statistical analysis. It is commonly used in survival analysis and
medical studies. More details on point prediction and prediction intervals can be
found in Kaminsky and Rhodin [11]. For step-stress tests, Basak and Balakrishnan
[5, 6] addressed the problem of prediction of the failure times of units for a simple
step-stress test based on exponential distribution under progressive Type-I censoring
and Type-II censoring schemes, respectively. Amleh and Raqab [1, 2] presented
the prediction problem for step-stress test for Lomax lifetimes under CEM, and
for Weibull lifetimes under Khamis-Higgens model, respectively. Recently, Amleh
[3] proposed several prediction techniques for Rayleigh distribution under a simple
step-stress plan.

In this paper, the simple step-stress for the Lomax distribution according to CEM
is considered. It is assumed that failures occur based on the Type-II censoring setup.
Based on these assumptions, the aim of the paper is obtaining an explicit form of
the best unbiased point predictor and comparing this method with the previously
proposed point predictors.

The rest of the paper is designed as follows. The description of the CEM
under Lomax distribution and basic model assumptions are discussed in Sect. 2.
Point predictors including the best unbiased predictor are presented in Sect. 3. A
comparative study among the point predictors is conducted in Sect. 4.
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2 Model Description and Related Assumptions

In this section, we provide a brief description of the CEM under a simple step-stress
test with Lomax distribution and the related assumptions.

In step-stress tests, a CEM is based on assuming that the failure time distribution
of the units at stress level i is related to the failure time distribution of the units at the
stress level i +1. The test determines that the remaining lifetime of the experimental
units relies only on the cumulative exposure the units have seen, without memory of
how to accumulate this exposure.

Lomax distribution is a special case of Pareto distribution, it was suggested by
Lomax [15]. It is shifted from Pareto distribution which leads the support to begin
from zero. It is used widely in economics, engineering, and reliability analysis.

Its probability density function (pdf) is given by

f (t, α, β) = β

α

(
1 + t

α

)−β−1

, t > 0, β > 0, α > 0, (1)

with cumulative distribution function (cdf)

F(t, α, β) = 1 −
(
1 + t

α

)−β

, t > 0, β > 0, α > 0, (2)

here, β is the shape parameter, while α represents the scale parameter.
The Lomax distribution is featured that its hazard rate function is decreasing in t

and given by

h(t) = β

α + t
,

Accordingly, Lomax distribution is used to represent the lifetime of a decreasing
failure rate units. In fact, Bryson [7] argued that Lomax distribution is an alternative
to the exponential distribution when the data has heavy tailed distribution.

In the simple step-stress test under Type-II censoring setup, the test is terminated
as soon as the r th failure occurs. The experiment is performed as follows. Initially,
all n units are put on the lower stress S1 and continued until time τ. Then, the stress
is increased to higher level S2, and the test runs until a pre-determined r failure times
will be observed. Let n1 denote the random number of failure times before τ, and
n2 = r − n1, denote the number of failure times after τ. If n1 �= r, the stress level is
accelerated to the next step, and the test goes up to the point of r failures.
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According to the above situation, the ordered lifetimes that are observed, which
are denoted by the vector data t, have the following form

t1:n < . . . < tn1:n < τ ≤ tn1+1:n < . . . < tr:n. (3)

Here, t is the vector of the observed values of the random variable T =
(T1:n, . . . ,Tn1 ,Tn1+1:n, . . . ,Tr), which represents theType-II censored lifetimes. The
CEM for the simple step-stress plan is given by

F(t) =
{

F1(t), 0 ≤ t < τ

F2(t − τ + h), τ ≤ t < ∞,
(4)

here, h is a solution to the following equation

F1(τ) = F2(h).

By solving the above equation, we get h = α2
α1

τ. As a result of that, the Lomax
CEM is distributed as

F(t) =
⎧⎨
⎩

1 −
(
1 + t

α1

)−β

, 0 ≤ t < τ

1 −
(
1 + τ

α1
+ t−τ

α2

)−β

, τ ≤ t < ∞,
(5)

with the corresponding pdf

f (t) =
{

β

α1
(1 + t

α1
)
−β−1

, 0 ≤ t < τ
β

α2
(1 + τ

α1
+ t−τ

α2
)
−β−1

, τ ≤ t < ∞.
(6)

3 Point Prediction of New Order Statistics

Now, we discuss the problem of prediction of unobserved lifetimes based on some
observed lifetimes for the simple step-stress test under the LomaxCEM. The descrip-
tion of the problem is as follows. Let T1:n < T2:n < . . . < Tr :n be the observed sample,
and letTs:n, s = r + 1, . . . , n, be the unobserved new failure time based on the same
test. The point prediction concerns the prediction of the future lifetimesTs:n , given
the first r observations Ti :n ,0 < i ≤ r .

Based on the Markovian property of the order statistics with Type-II censoring,
the conditional density of Y = Ts:n given T = t = ( t1:n, . . . , tn1:n, tn1+1:n, . . . , tr :n)
is the same as the density of Y = Ts:n givenTr :n = tr :n . Therefore, the density of
Y given T = t is equivalent to the pdf of the (s − r)th order statistic is taken out
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of (n − r) units from the truncated distribution of densityϕ(y) = f (y)
1−F(tr :n) , y > tr :n ,

where F(y) is provided as in Eq. (5). Thus, we have

fTs:n |T (y|θ , data) = c × β

α2

(
1 + τ

α1
+ y − τ

α2

)−β(n−s+1)−1(
1 + τ

α1
+ tr :n − τ

α2

)β(n−r)

×
[(

1 + τ

α1
+ tr :n − τ

α2

)−β

−
(
1 + τ

α1
+ y − τ

α2

)−β
]s−r−1

, y > tr :n , (7)

where θ = (β, α1, α2), c = (n−r)!
(s−r−1)!(n−s)! .

Amleh and Raqab [1] proposed two point prediction predictors of future lifetimes
for Lomax CEM. Now, we give a brief description of such predictors. Further, we
present the best unbiased point predictor as an alternative.

3.1 Maximum Likelihood Predictor

The maximum likelihood predictor (MLP) was suggested by Kaminsky and Rhodin
[11]. This technique can be used as a prediction of future observations and also an
estimation of the unknownparameters in the test.We express the predictive likelihood
function (PLF) of Y = Ts:n as

L(β, α1, α2, y) =L ∝
n1∏
i=1

f1(ti :n)
r∏

i=n1+1

f2(ti :n)[F2(y) − F2(tr :n)]s−r−1 f2(y)

[1 − F2(y)]
n−s, 0 ≤ n1 ≤ r, r + 1 ≤ s ≤ n. (8)

The MLP and the predictive maximum likelihood estimators (PMLEs) of the
parameters β, α1 and α2 are obtained by maximizing the PLF based on the predictive
likelihood equations (PLEs) for β, α1, α2 and y. The obtained MLP of Y will be
denoted by Y

∧

M .

3.2 Conditional Median Predictor

The conditionalmedian predictor (CMP)was developed byRaqab andNagaraja [18].
A point predictor Y

∧

is said to be the CMP of Y , if it is the median of the conditional
density of Y given T = t , consequently

Pθ

(
Y ≤ Y

∧

|T = t
)

= Pθ

(
Y ≥ Y

∧

|T = t
)
.

Amleh and Raqab [2] obtained the CMP as
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Y
∧

CMP =
[
α2 + α2

α1
τ + (tr :n − τ)

]
[1 − MdB]

−1
β −α2 − α2

α1
τ + τ, (9)

where B represents a Beta(s − r, n − s + 1) distribution and MdB represents its
median. The CMP of Y is computed approximately by replacing β, α1 and α2 by
their corresponding MLEs.

3.3 Best Unbiased Predictor

A point predictor Y
∧

of Y = Ts:n is said to be a best unbiased predictor (BUP) of Y,
if we have

E
(
Y
∧

− Y
)

= 0,

and

Var
(
Y
∧

− Y
)

≤ Var
(
Ỹ − Y

)
, for any unbiased predictor Ỹ of Y.

Using the conditional density of Y given T = t, as in Eq. (7), the BUP of Y is
expressed as

Y
∧

BUP = E(Y|T) =
∞∫
tr:n

ygTs:n|T(y|θ, data)dy. (10)

which can be simplified as

Y
∧

BUP = Cβ

α2

(
1 + τ

α1
+ tr:n − τ

α2

)β(n−r)

×
∞∫
tr:n

y

(
1 + τ

α1
+ y − τ

α2

)−β(n−s+1)−1

((
1 + τ

α1
+ tr:n − τ

α2

)−β

−
(
1 + τ

α1
+ y − τ

α2

)−β
)s−r−1

dy (11)

Using the binomial expansion:

((
1 + τ

α1
+ tr:n − τ

α2

)−β

−
(
1 + τ

α1
+ y − τ

α2

)−β
)s−r−1

=
s−r−1∑
k=0

(
s − r − 1

k

)
(−1)k

(
1 + τ

α1
+ tr:n − τ

α2

)−β(s−r−k−1)(
1 + τ

α1
+ y − τ

α2

)−kβ
, (12)
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By substituting Eq. (12) in Eq. (11), we obtain

Y
∧

BUP =Cβ

α2

s−r−1∑
k=0

(
s − r − 1

k

)
(−1)k

(
1 + τ

α1
+ tr:n − τ

α2

)β(n−s−k−1)

×
∞∫
tr:n

y

(
1 + τ

α1
+ y − τ

α2

)−β(n−s+k+1)−1

dy (13)

Using integration by parts and doing some simplifications, the BUP can be
obtained precisely as

Y
∧

BUP =C
s−r−1∑
k=0

(
s − r − 1

k

)
(−1)k

⎛
⎝ tr:n
n − s + k + 1

−
α2

(
1 + τ

α1
+ tr:n−τ

α2

)
(n − s − k − 1)[1 − β(n − s − k − 1)]

⎞
⎠. (14)

The BUP of Y can be obtained by replacing β, α1andα2 by values of the MLEs.

4 Data Analysis

To compare the best unbiased predictor with the other point predictors, we perform a
real data analysis. The data is taken from Liu [14] and has been considered by Amleh
and Raqab [1]. The data refers to the failure times (in seconds) of nanocrystalline
embedded high-k device run under a specific experiment. 40 devices are tested in a
step-stress model with stress change time τ = 600 s. 38 lifetimes have been observed
before terminating the test. The data are given as follows:

The failure times of the 40 devices

Stress level Recorded data

1 8 38 72 97 122 140 163 170 188 198 223

256 257 265 448

2 608 611 614 615 616 620 623 623 624 624 631

636 646 654 660 673 675 680 684 692 693 730

745

To make the computations easier, the lifetimes will be divided by 100, and statis-
tical inference will not be affected. Amleh and Raqab [1] showed that Lomax CEM
as a suitable model for fitting this data. Moreover, the true CDF of the lifetimes and
the corresponding empirical CDF are plotted in Fig. 1.
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Fig. 1 The estimated CDF based on MLE (solid line) and the empirical CDF (dots)

Assume that the test will be terminated when the 30-th lifetime is observed. So, a
Type-II censored samplewill be observed,we have n = 40, r = 30. The problem is to
find the point predictors of the unobserved lifetimesY = Ts:n, s = 31, 32, 33, 34, 35.

The MLEs of the parameters β, α1andα2 were obtained to be β
∧

= 1.7517, α
∧

1 =
17.2768 and α

∧

2 = 0.7364, see Amleh and Raqab [1]. The computations of the point
predictors are reported in Table 1. It is noticed that the values of the point predictors
are close to the true values. Further, it can be observed that the BUP and the CMP
have a clear advantage if s is close to r , while the MLP is closer to the true values
when s is close to n. In fact, the BUP and the CMP are computationally attractive
when compared to the MLP.

Table 1 Point predictors of future lifetimes Y = Ts:n
s True value MLP CMP BUP

31 6.73 6.600 6.664 6.696

32 6.75 6.669 6.769 6.810

33 6.80 6.743 6.896 6.949

34 6.84 6.825 7.053 7.121

35 6.92 6.922 7.251 7.343
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Infra Soft β-Open Sets and Their
Applications on Infra Soft Topological
Spaces

Tareq M. Al-shami and Radwan Abu-Gdairi

Abstract The aim of writing this article is to present the concept of infra soft β-
open sets as a new class of generalizations of infra open sets. We first investigate
their main properties and study their behaviours under the product of soft spaces and
some softmaps. Then, we establish some soft operators such as interior, closure, limit
and boundary using infra soft β-open and infra soft β-closed sets. The relationships
between them are illustrated and the main features are discussed. Finally, we display
some soft maps defined using infra soft β-open and infra soft β-closed sets and
scrutinize their master properties.

Keywords Infra soft β-open set · Infra soft β-interior points · Infra soft β-closure
points · Infra soft β-continuity

1 Introduction

Molodtsov [57], in 1999, proposed the idea of a soft set as a new mathematical
tool to deal with vagueness. He presented some of its applications in some areas.
Since the advent of soft sets, they have been applied to address some problems and
phenomena in different disciplines such as information system [10], economy [11],
linear equations [27], computer science [45] and decision-making problems [48].

Maji et al. [56], in 2003, put forward the main concepts via soft set theory such as
the difference, union and intersection operators and a complement of a soft set. To
improve these concepts and cancel shortcomings that appeared in these definitions,
new versions of these operations and operators were proposed by Ali et al. [3].
Keeping some classical properties via soft set theory was the major goal of [27]. To
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expand the applications of soft sets, new extensions of soft sets like bipolar soft sets
[9] and double-framed soft sets were introduced [34].

As iswell known, topology is a novel type of geometry that relies on the neighbour-
hoods of points instead of measuring the distance between them. Recently, topology
has been applied to model some real-life issues as shown in [1, 16, 17, 32, 51, 59].
To study topology via soft set theory, Çaǧman et al. [46] and Shabir and Naz [60],
in 2011, introduced the concept of soft topology. They followed different techniques
for studying soft topology. This article follows Shabir and Naz’s technique which is
defined as a soft topology over the universal set and a fixed set of parameters. The
basic concepts and notions of classical topology have been studied in soft topology
such as calibre and chain conditions [2], compactness [4, 24, 28, 29, 36, 44], sep-
aration axioms [18, 22, 42], fixed point theorem [12, 20], connectedness [49, 52,
54], mappings [21, 26, 30, 53], bioperators [43], covering properties [38, 39, 55],
sum of topologies [31, 40] and generalized open sets [5]. Additionally, soft topolo-
gies and supra soft topologies were discussed in ordered settings as given in [25].
Al-shami and Kočinac [37] elucidated the conditions under which the soft operators
and classical operators of interior and closure are interchangeable. It should be noted
that some classical topological properties were generalized to soft topologies without
consideration for the divergences between soft topologies and classical topologies,
which causes some incorrect forms of some results; so some articles were conducted
to put forward the correct frame of these results via soft structures; see [6–8].

The structure of infra soft topologies [13] is one of the recent generalizations of
soft topologies. The main advantages of continuously investigating infra soft topolo-
gies are the following: (1) many classical topological properties are true in the infra
soft topological spaces; (2) easily obtaining the examples that show the interrelations
among the different concepts. These advantages are illustrated for the twomain topo-
logical concepts “compactness and connectedness” in [14, 19]. Also, the concepts of
homeomorphisms [15] and separation axioms [33, 35] were introduced in the frame
of infra soft topologies. Extensions of infra soft open sets were a goal of some papers.
Some types of these extensions were investigated such as infra soft semi-open [23]
and infra soft pre-open sets [41]. This manuscript aims to familiarize the notion of
infra soft β-open sets as a new extension of infra soft open sets. To confirm that
infra soft topology offers a flexible frame to discuss the topological concepts and
reveal the relationships between them, we show that several characterizations and
properties of soft β-open sets are kept for infra soft β-open sets.

2 Preliminaries

2.1 Soft Set Theory

Definition 1 ([57]) The ordered pair (H,O) is called a soft set over X if
H : O → 2X is a map, where O denotes a parameter set and 2X the power set of X .
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A soft set is expressed as (H,O) = {(o,H(o)) : o ∈ O and H(o) ∈ 2X }.
We used the symbol C(XO) to refer a class of all soft sets over X with O.

Definition 2 ([3]) A soft set (Hc,O) is called a complement of (H,O) ifHc(o) =
X \ H(o) for every o ∈ O.

Definition 3 ([56]) Let (H,O) be a soft set on X such thatH(o) = X (resp.,H(o) =
∅) for all o ∈ O. Then we say that (H,O) is an absolute (resp., a null) soft set.

The absolute and null soft sets are denoted by � and ˜X , respectively.

Definition 4 ([47, 58])We call (H,O) a countable (resp. finite) soft set if all compo-
nents are countable (resp., finite). Otherwise, it is called uncountable (resp. infinite).

Definition 5 ([58]) A soft point on X is a soft set (H,O) such that H(o) = x ∈ X
and H(o′) = ∅ for all o′ �= o. It is denoted by δxo .

Definition 6 ([3]) The intersection of soft sets (H,O) and (F ,Δ) on X , symbolized
by (H,O)˜

⋂

(F ,Δ), is a soft set (G, T ), where T = O ∩ Δ �= ∅, and amapG : T →
2X is given by G(o) = H(o) ∩ F(o) for each o ∈ T .

Definition 7 ([56]) The union of soft sets (H,O) and (F ,Δ) on X , symbolized by
(H,O)˜

⋃

(F ,Δ), is a soft set (G, T ), where T = O ∪ Δ and a map T : O → 2X is
given as follows:

G(o) =
⎧

⎨

⎩

H(o) : o ∈ O \ Δ

F(o) : o ∈ Δ \ O
H(o) ∪ F(o) : o ∈ O ∩ Δ

Definition 8 ([50]) A soft set (H,O) is a subset of a soft set (F ,Δ), symbolized
by (H,O)˜⊆(F ,Δ), if O ⊆ Δ and H(o) ⊆ F(o) for all o ∈ O. If (H,O)˜⊆(F ,Δ)

and (F ,Δ)˜⊆(H,O), then (H,O) and (F ,Δ) are called soft equal.

Definition 9 ([44]) The Cartesian product of (H,O) and (F ,Δ), symbolized by
(H × F ,O × Δ), is defined as (H × F)(o, o′) = H(o) × F(o′) for each (o, o′) ∈
O × Δ.

The soft maps definition displayed in [53] was redefined to reduce calculation
burden and give a logical explanation for the followed manner of defining some
concepts via soft settings such as why we define an injective, or surjective soft map
fψ according to its classical maps f and ψ .

Definition 10 ([15]) Let f : X → S and ψ : O → Δ be two crisp maps. A soft
map fψ of C(XO) into C(SΔ) is a relation such that each soft point in C(XO) is
related to one and only one soft point in C(SΔ) such that

fψ(δxo ) = δ
f (x)
ψ(o) for each δxo ∈ C(XO).

In addition, f −1
ψ (δ

y
γ ) = 


λ∈ψ−1(γ )

x∈ f −1(y)

δxλ for each δ
y
γ ∈ C(SΔ).

Definition 11 ([58]) fψ : C(XO) → C(SΔ) is called surjective (resp., injective,
bijective) if f and ψ are surjective (resp., injective, bijective).
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2.2 Infra Soft Topological Spaces

Definition 12 ([13]) We called a subfamily μ of C(XO) an infra soft topology on
X if it is closed under finite intersection and � is a member of μ.

An infra soft topological space (in short, ISTS) is the triple (X, μ,O). A soft set
is called an infra soft open set if it belongs to μ and the complement of infra soft
open is called an infra soft closed set.

Definition 13 ([13]) Let (H,O) be a subset of (X, μ,O).

(i) The infra soft closure of (H,O), denoted by Cl(H,O), is the intersection of all
infra soft closed supersets of (H,O).

(ii) The infra soft interior of (H,O), denoted by I nt (H,O), is the union of all infra
soft open subsets of (H,O).

Proposition 1 ([13]) Let (H,O) and (F ,O) be subsets of an ISTS (X, μ,O). Then

(i) Cl[(H,O)˜
⋃

(F ,O)] = Cl(H,O)˜
⋃

Cl(F ,O), and
(ii) I nt[(H,O)˜

⋂

(F ,O)] = I nt (H,O)˜
⋂

I nt (F ,O).

Proposition 2 ([13]) Let (H,O) be an infra soft open set. Then

(H,O)
˜

⋂

Cl(F ,O)˜⊆Cl[(H,O)
˜

⋃

(F ,O)] for any subset (F,O) of (X, μ,O)

Proposition 3 ([13]) Let (H,O) be an infra soft closed set. Then

Int[(H,O)
˜

⋃

(F ,O)]˜⊆(H,O)
˜

⋃

I nt (F ,O) for any subset (H,O) of (X, μ,O)

Definition 14 ([15]) A soft map which is bijective, infra soft continuous and infra
soft open is called an infra soft homeomorphism.

We call a property which is kept by any infra soft homeomorphism an infra soft
topological property (in short, IST property).

Definition 15 ([15]) Let fψ : (X, μ,O) → (S, ν,Δ) be a soft map and M �= ∅
be a subset of X . A soft map fψ|M : (M, μM,O) → (S, ν,Δ) which given by
fψ|M(δmo ) = fψ(δmo ) for every δmo ∈ ˜M is called a restriction soft map of fψ onM.

Lemma 1 Let fψ : (X1, μ1,O1) → (X2, μ2,O2) be an infra soft homeomorphism
map. Then for any subset (H,O1) we have the next two results.

(i) fψ(I nt (H,O1)) = I nt ( fψ(H,O1)).
(ii) fψ(Cl(H,O1)) = Cl( fψ(H,O1)).

Lemma 2 ([23, 41]) Consider (H1,O1) and (H2,O2) as subsets of (X1, μ1,O1)

and (X2, μ2,O2), respectively. Then
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(i) Cl[(H1,O1) × (H2,O2)] = Cl(H1,O1) × Cl(H2,O2).
(ii) I nt[(H1,O1) × (H2,O2)] = I nt (H1,O1) × I nt (H2,O2).

Proposition 4 ([14]) Let {(Xk, μk,Ok) : k ∈ K } be a family of ISTSs. Then μ =
{∏k∈K (ok,Ok) : (ok,Ok) ∈ ψk} is an infra soft topology on T = ∏

k∈K Xk under a
set of parameters B = ∏

k∈K Ok .

We call μ, given in proposition above, a product of infra soft topologies, and
(T,μ,B) a product of infra soft spaces.

3 Main Properties of Infra Soft β-Open Sets

Definition 16 A subset (H,O) of an ISTS (X, μ,O) is called infra soft β-open if
(H,O)˜⊆Cl(I nt (Cl(H,O))). Its complement is called infra soft β-closed.

Proposition 5 Every infra soft semi-open (infra soft pre-open) set is an infra soft
β-open.

Proof Let (H,O) be an infra soft semi-open (resp. infra soft pre-open) set. Then,
(H,O)˜⊆Cl(I nt (H,O)) (resp. (H,O)˜⊆I nt (Cl(H,O))). Automatically, we obtain
(H,O)˜⊆Cl(I nt (Cl(H,O))), which means that (H,O) is infra soft β-open.

The next example shows that the converse of the above proposition fails.

Example 1 Let X = {x1, x2, x3} and O = {o1, o2}. Then μ = {�, ˜X , (H1,O),

(H2,O)} is an IST on X with O, where
(H1,O) = {(o1, {x1}), (o2, {x2, x3})} and
(H2,O) = {(o1, {x3}), (o2, {x1})}.

Let (H5,O) = {(o1, {x3}), (o2, {x3})} and (H6,O) = {(o1, {x1, x2}), (o2,
{x2, x3})}. SinceCl(H5,O) = ˜X andCl(I nt (Cl(H6,O))) = (H6,O), then (H5,O)

and (H6,O) are infra soft β-open sets. On the other hand, we have I nt (H5,O) =
� and I nt (Cl(H5,O)) = {(o1, {x1}), (o2, {x2, x3})}˜�(H6,O), which means that
(H5,O) and (H6,O) are not infra soft semi-open and infra soft pre-open sets, respec-
tively.

Proposition 6 The arbitrary unions of infra soft β-open sets is infra soft β-open.

Proof Let {(H j ,O) : j ∈ J } be a class of infra soft β-open sets. Suppose that
J �= ∅. Then for each j ∈ J , we have (H j ,O)˜⊆Cl(I nt (Cl(H j ,O))). Therefore,
˜

⋃

j∈J (H j ,O)˜⊆˜

⋃

j∈JCl(I nt (Cl(H j ,O))) ˜⊆Cl(I nt (Cl(˜
⋃

j∈J (H j ,O)))). Hence,
˜

⋃

j∈J (H j ,O) is infra soft β-open.

Corollary 1 The arbitrary intersection of infra soft β-closed sets is infra soft β-
closed.
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Proposition 7 The intersection of infra soft open and infra soft β-open sets is an
infra soft β-open set.

Proof Let (H1,O) be an infra soft open set and (H2,O) be an infra soft β-
open set. Then (H1,O)˜

⋂

(H2,O)˜⊆(H1,O)˜
⋂

Cl(I nt (Cl(H2,O))). It follows from
Proposition2 that (H1,O)˜

⋂

Cl(I nt (Cl(H2,O))) ˜⊆Cl[(H1,O)˜
⋂

I nt (Cl(H2,O))]
= Cl(I nt[(H1,O)˜

⋂

Cl(H2,O)]˜⊆
Cl(I nt (Cl[(H1,O)˜

⋂

(H2,O)])). Hence, (H1,O)˜
⋂

(H2,O) is an infra soft β-open
set.

Corollary 2 The union of infra soft closed and infra soft β-closed sets is an infra
soft β-closed set.

Proposition 8 The image of an infra soft β-open set is infra soft β-open under any
infra soft homeomorphism.

Proof Consider fψ : (X1, μ1,O1) → (X2, μ2,O2) as an infra soft continuous
map and let (H,O1) be an infra soft β-open subset of (X1, μ1,O1). Then
fψ(H,O1)˜⊆ fψ(Cl(I nt (Cl(H,O1)))). It follows from Lemma1 that fψ(H,O1)˜⊆
Cl(I nt (Cl( fψ(H,O1)))). Hence, fψ(H,O1) is an infra soft β-open subset of
(X2, μ2,O2), as required.

Proposition 9 The product of infra soft β-open sets is an infra soft β-open set.

Proof Let (H1,O1) and (H2,O2) be infra soft β-open subsets of (X1, μ1,O1) and
(X2, μ2,O2), respectively. Then (H1,O1) × (H2,O2)˜⊆Cl(I nt (Cl(H1,O1))) ×
Cl(I nt (Cl(H2,O2))). According to Lemma2, we obtain (H1,O1) × (H2,O2)˜⊆
Cl(I nt (Cl[(H1,O1) × (H2,O2)])) which means that (H1,O1) × (H2,O2) is an
infra soft β-open subset of ˜X1 × ˜X2.

4 Infra β-Interior, Infra β-Closure, Infra β-Limit and
Infra β-Boundary Soft Points of a Soft Set

Definition 17 Let (H,O) be a subset of (X, μ,O). Then

(i) the infra soft β-interior of (H,O), denoted by β I nt (H,O), is the union of all
infra soft β-open subsets of (H,O).

(ii) the infra soft β-closure of (H,O), denoted by βCl(H,O), is the intersection of
all infra soft β-closed supersets of (H,O).

Proposition 10 We have the following properties:

(i) (H,O) is an infra soft β-open subset of (X, μ,O) iff β I nt (H,O) = (H,O).
(ii) (H,O) is an infra soft β-closed subset of (X, μ,O) iff βCl(H,O) = (H,O).

Proof It comes from Proposition6 and Corollary1.
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The two characterizations given in the above proposition are generally false for
infra soft open and infra soft closed sets.

Proposition 11 Let (H,O) be a subset of (X, μ,O).

(i) δxo ∈ β I nt (H,O) iff there is an infra soft β-open set (F ,O) such that δxo ∈
(F ,O)˜⊆(H,O).

(ii) δxo ∈ βCl(H,O) iff the intersection of any infra soft β-open set (F ,O) contain-
ing δxo and (H,O) is non-null.

Proof The proof of (i) is obvious, so we prove (ii).
Let δxo ∈ βCl(H,O). Then every infra soft β-closed set contains (H,O) con-

tains δxo as well. Suppose that there is an infra soft β-open set (F ,O) contain-
ing δxo such that (H,O)˜

⋂

(F ,O) = �. Therefore, (H,O)˜⊆(F c,O) which means
that δxo /∈ βCl(H,O). This is a contradiction. Conversely, suppose that there is an
infra soft β-open set (F ,O) containing δxo such that (H,O)˜

⋂

(F ,O) = �. There-
fore, βCl(H,O)˜⊆(F c,O) which means that δxo /∈ βCl(H,O). Hence, we obtain
the desired result.

Proposition 12 Let (H,O) be a subset of (X, μ,O). Then

(i) (β I nt (H,O))c = βCl(Hc,O).
(ii) (βCl(H,O))c = β I nt (Hc,O).

Proof (i): (β I nt (H,O))c = { ˜

⋃

j∈J
(F j ,O) : (F j ,O) is an infra soft β-open set con-

tained in (H,O)}c = ˜

⋂

j∈J
{(F c

j ,O) : (F c
j ,O) is an infra soft β-closed set containing

(Hc,O)} = βCl(Hc,O).
The proof of (ii) is similar to (i).

Proposition 13 Let (F ,O) be an infra soft open set and (
,O) be an infra soft
closed set in (X, μ,O). Then

(i) (F ,O)˜
⋂

βCl(H,O)˜⊆βCl((F ,O)˜
⋂

(H,O)).
(ii) β I nt ((
,O)˜

⋃

(H,O))˜⊆(
,O)˜
⋃

β I nt (H,O).

Proof (i): Let δxo ∈ (F ,O)˜
⋂

βCl(H,O). Then δxo ∈ (F ,O) and δxo ∈ βCl(H,O).
This implies that (U ,O)˜

⋂

(H,O) �= � for every infra soft
β-open set (U ,O) containing δxo . It follows from Proposition7 that (F ,O)˜

⋂

(U ,O)

is an infra soft β-open set containing δxo . Therefore, [(F ,O)˜
⋂

(U ,O)]˜⋂(H,O) �=
�. Now, (U ,O)˜

⋂[(F ,O)˜
⋂

(H,O)] �= � which means that δxo ∈ βCl((F ,O)˜
⋂

(H,O)). Hence, (F ,O)˜
⋂

βCl(H,O)˜⊆βCl((F ,O)˜
⋂

(H,O)).
One can prove (ii) following similar arguments.

Theorem 1 Let (H,O) and (F ,O) be subsets of (X, μ,O). Then

(i) β I nt (˜X) = ˜X.
(ii) β I nt (H,O)˜⊆(H,O).
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(iii) If (F ,O)˜⊆(H,O), then β I nt (F ,O)˜⊆β I nt (H,O).
(iv) β I nt (β I nt (H,O)) = β I nt (H,O).
(v) β I nt (F ,O)˜

⋂

β I nt (H,O)˜⊆β I nt ((F ,O)˜
⋂

(H,O)).

Proof (i): Since ˜X is infra soft β-open, β I nt (˜X) = ˜X .
(ii) and (iii) are obvious.
(iv): It is clear that β I nt (β I nt (H,O)) is the largest infra soft β-open set con-

tained in β I nt (H,O); however, β I nt (H,O) is an infra soft β-open set; hence,
β I nt (β I nt (H,O)) = β I nt (H,O).

(v): It comes from (iii).

Theorem 2 Let (H,O) and (F ,O) be subsets of (X, μ,O). Then

(i) βCl(�) = �.
(ii) (H,O)˜⊆βCl(H,O).
(iii) If (F ,O)˜⊆(H,O), then βCl(F ,O)˜⊆βCl(H,O).
(iv) βCl(βCl(H,O))˜⊆βCl(H,O).
(v) βCl((F ,O)˜

⋃

(H,O)) = βCl(F ,O)˜
⋃

βCl(H,O).

Proof This is similar to Theorem1.

Definition 18 A soft point δxo is called an infra soft β-limit point of a subset (H,O)

of (X, μ,O) provided that [(F ,O)\δxo ]˜
⋂

(H,O) �= � for every infra soft β-open
set (F ,O) containing δxo .

The soft set of all infra soft β-limit points of (H,O) is called an infra β-derived
soft set. It is denoted by (H,O)βs′.

Proposition 14 Consider (F ,O) and (H,O) as subsets of (X, μ,O). Then

(i) �βs′ = � and ˜Xβs′
˜⊆˜X.

(ii) If (F ,O)˜⊆(H,O), then (F ,O)βs′˜⊆(H,O)βs′.
(iii) If δxo ∈ (H,O)βs′, then δxo ∈ ((H,O) \ δxo )

βs′.
(iv) (F ,O)βs′ ˜

⋃

(H,O)βs′˜⊆((F ,O)˜
⋃

(H,O))βs′.

Proof It is straightforward.

Theorem 3 Let (H,O) be a subset of (X, μ,O). Then

(i) If (H,O) is an infra soft β-closed set, then (H,O)βs′ ⊆ (H,O).
(ii) ((H,O)˜

⋃

(H,O)βs′)βs′˜⊆(H,O)˜
⋃

(H,O)βs′.
(iii) βCl(H,O) = (H,O)˜

⋃

(H,O)βs′.

Proof (i) Consider (H,O) as an infra soft β-closed set such that δxo /∈ (H,O).
Then δxo ∈ (Hc,O). Now, (Hc,O) is an infra soft β-open set such that
(Hc,O)˜

⋂

(H,O) = �whichmeans that δxo /∈ (H,O)βs′. Thus, (H,O)βs′˜⊆(H,O).
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(ii) Consider δxo /∈ (H,O)˜
⋃

(H,O)βs′. Then δxo /∈ (H,O) and δxo /∈ (H,O)βs′.
Therefore, there is an infra soft β-open set (F ,O) such that

(F ,O)
˜

⋂

(H,O) = � (1)

This implies that

(F ,O)
˜

⋂

(H,O)βs′ = � (2)

It follows from (1) and (2) that (F ,O)˜
⋂

((H,O)˜
⋃

(H,O)βs′) = �. Thus, δxo /∈
((H,O)˜

⋃

(H,O)βs′)βs′. Hence, ((H,O)˜
⋃

(H,O)βs′)βs′˜⊆((H,O)˜
⋃

(H,

O)βs′), as required.
(iii) Itisclearthat(H,O)˜

⋃

(H,O)βs′˜⊆βCl(H,O).Conversely,letδxo ∈ βCl(H,O).
Then for every infra soft β-open set containing δxo , we have (H,O)˜

⋂

(F ,O) �=
�.Without lossofgenerality, letδxo /∈ (H,O).Then[(H,O)\δxo ]˜

⋂

(F ,O) �= �.
Consequentially, δxo ∈ (H,O)βs′. Hence, the proof is complete.

Definition 19 The infra soft β-boundary points of a subset (H,O) of (X, μ,O),
denoted by βB(H,O), are all the soft points which belong to the complement of
β I nt (H,O)˜

⋃

β I nt (Hc,O).

Proposition 15 Let (H,O) be a subset of (X, μ,O). Then

(i) βB(H,O) = βCl(H,O)˜
⋂

βCl((Hc,O)).
(ii) βB(H,O) = βCl(H,O) \ β I nt (H,O).

Proof (i) βB(H,O) = {δxo ∈ ˜X : δxo /∈ β I nt (H,O) and δxo /∈ β I nt ((Hc,O))}
= {δxo ∈ ˜X : δxo /∈ (βCl(Hc,O))c and δxo /∈ (βCl(H,O))c}
= {δxo ∈ ˜X : δxo ∈ βCl(Hc,O) and δxo ∈ βCl(H,O)}
= βCl(H,O)˜

⋂

βCl(Hc,O)

(ii) βB(H,O) = βCl(H,O)˜
⋂

βCl(Hc,O)

= βCl(H,O)˜
⋂

(β I nt (H,O))c

= βCl(H,O) \ β I nt (H,O).

Corollary 3 Let (H,O) be a subset of (X, μ,O). Then

(i) βB(H,O) = βB(Hc,O)

(ii) βCl(H,O) = β I nt (H,O)˜
⋃

βB(H,O).

Proposition 16 Let (H,O) be a subset of (X, μ,O). Then

(i) (H,O) is infra soft β-open iff βB(H,O)˜
⋂

(H,O) = �.
(ii) (H,O) is infra soft β-closed iff βB(H,O)˜⊆(H,O).

Proof (i) βB(H,O)
⋂

(H,O) = βB(H,O)
⋂

β I nt (H,O) = �. Conversely, let
δxo ∈ (H,O). Then δxo ∈ β I nt (H,O) or δxo ∈ βB(H,O). Since βB(H,O)

⋂

(H,O) = �, δxo ∈ β I nt (H,O). Thus, (H,O) ⊆ β I nt (H,O)whichmeans that
(H,O) = β I nt (H,O). Hence, (H,O) is infra soft β-open.
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(ii) (H,O) is infra soft β-closed ⇔ (Hc,O) is infra soft β-open ⇔ βB(Hc,O)
⋂

(Hc,O) = � ⇔ βB(H,O)
⋂

(Hc,O) = � ⇔ βB(H,O) ⊆ (H,O).

Corollary 4 A subset (H,O) of (X, μ,O) is infra soft β-open and infra soft β-
closed iff βB(H,O) = �.

5 Infra Soft β-Homeomorphism Maps

Definition 20 A soft map fψ : (X, μ,O) → (S, ν,Δ) is called infra soft
β-continuous at δxo ∈ ˜X if for any infra soft β-open set (F ,Δ) containing fψ(δxo ),
there is an infra soft β-open set (H,O) containing δxo such that fψ(H,O)˜⊆(F ,Δ).

If fψ is infra soft β-continuous at all soft points of the domain, then it is called
infra soft β-continuous.

Theorem 4 Let fψ : (X, μ,O) → (S, ν,Δ) be an infra soft β-continuous map.
Then we have the following five equivalent statements:

(i) fψ is an infra soft β-continuous map;
(ii) The inverse image of each infra soft β-closed set is infra soft β-closed;
(iii) βCl( f −1

ψ (H,Δ))˜⊆ f −1
ψ (βCl(H,Δ)) for each (H,Δ)˜⊆˜S;

(iv) fψ(βCl(F ,O))˜⊆βCl( fψ(F ,O)) for each (F ,O)˜⊆˜X;
(v) f −1

ψ (β I nt (H,Δ))˜⊆β I nt ( f −1
ψ (H,Δ)) for each (H,Δ)˜⊆˜S.

Proof (i) ⇒ (i i): Let (H,Δ) be an infra soft β-closed set in (S, ν,Δ). Then
f −1
ψ (Hc,Δ) is an infra soft β-open subset of ˜X . Obviously, f −1

ψ (Hc,Δ) = ˜X −
f −1
ψ (H,Δ); hence, f −1

ψ (H,Δ) is an infra soft β-closed subset of ˜X .

(i i) ⇒ (i i i): According to (ii), f −1
ψ (βCl(H,Δ)) is an infra soft β-closed subset

of ˜X . Then βCl( f −1
ψ (H,Δ))˜⊆βCl( f −1

ψ (βCl(H,Δ))) = f −1
ψ (βCl(H,Δ)).

(i i i) ⇒ (vi): According to (iii), βCl( f −1
ψ ( fψ(F ,O)))˜⊆ f −1

ψ (βCl( fψ(F ,O))).
Then
fψ(βCl(F ,O))˜⊆ fψ( f −1

ψ (βCl( fψ(F ,O))))˜⊆βCl( fψ(F ,O)).

(iv) ⇒ (v): According to (iv), fψ(βCl(˜X − f −1
ψ (H,Δ)))˜⊆βCl( fψ(˜X − f −1

ψ

(H,Δ))). Therefore, fψ(˜X − β I nt ( f −1
ψ (H,Δ))) = fψ(βCl(˜X − f −1

ψ (H,Δ))) ⊆
βCl(˜S − (H,Δ)) = ˜S − β I nt (H,Δ). Thus, ˜X − β I nt ( f −1

ψ (H,Δ))˜⊆ f −1
ψ (˜S −

β I nt (H,Δ)) = f −1
ψ (˜S) − f −1

ψ (β I nt (H,Δ)). Hence, f −1
ψ (β I nt (H,Δ))˜⊆β I nt

( f −1
ψ (H,Δ)).

(v) ⇒ (i): Let (H,Δ) be an infra soft open subset of ˜S. According to (v),
f −1
ψ (H,Δ)˜⊆β I nt ( f −1

ψ (H,Δ)). This implies that f −1
ψ (H,Δ) = β I nt ( f −1

ψ (H,Δ)).
Hence, fψ is infra soft β-continuous.

Theorem 5 If fψ : (X, μ,O) → (S, ν,Δ) is infra soft β-continuous, then the
restriction soft map fψ|M : (M, μM,O) → (S, ν,Δ) is infra soft β-continuous
provided that ˜M is an infra soft open set.
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Proof Consider (H,Δ) is an infra soft β-open set in (S, ν,Δ). By hypothesis,
f −1
ψ (H,Δ) is infra soft β-open. Now, f −1

ψ|M(H,Δ) = f −1
ψ (H,Δ)˜

⋂

˜M. Since ˜M is

an infra soft open set, it follows from Proposition7 that f −1
ψ|M(H,Δ) is infra soft

β-open. Hence, fψ|M is an infra soft β-continuous map.

Proposition 17 Let fψ : (X, μ,O) → (S, ν,Δ) and Fν : (S, ν,Δ) → (V, σ,U)

be infra soft β-continuous. Then Fν ◦ fψ is infra soft β-continuous.

Proof It is straightforward.

Definition 21 A soft map fψ : (X, μ,O) → (S, ν,Δ) is called infra soft β-open
(resp., infra soft β-closed) if the image of each infra soft β-open (resp., infra soft
β-closed) set is infra soft β-open (resp., infra soft β-closed).

Proposition 18 fψ : (X, μ,O) → (S, ν,Δ) is an infra soft β-open map iff
fψ(β I nt (H,O)) ˜⊆β I nt ( fψ(H,O)) for each subset of (H,O) of ˜X.

Proof ⇒: Let (H,O) be a subset of ˜X . Now, fψ(β I nt (H,O))˜⊆ fψ(H,O) and
β I nt (H,O) is an infra soft β-open set. By hypothesis, fψ(β I nt (H,O)) is infra
soft β-open. Therefore, fψ(β I nt (H,O))˜⊆β I nt ( fψ(H,O)).

⇐: Let(
,O)beaninfrasoftopensubsetof˜X .Then fψ(H,O)˜⊆β I nt ( fψ(H,O)).
Therefore, fψ(H,O) = β I nt ( fψ(H,O))whichmeans that fψ is an infra softβ-open
map.

Proposition 19 fψ : (X, μ,O) → (S, ν,Δ) is an infra soft β-closed map iff
βCl( fψ(H,O)) ˜⊆ fψ(βCl(H,O)) for each subset (H,O) of ˜X.

Proof ⇒: Let fψ be an infra soft β-closed map and (H,O) be a subset of ˜X . By
hypothesis, fψ(βCl(H,O))isinfrasoftβ-closed.Since fψ(H,O)˜⊆ fψ(βCl(H,O)),
βCl( fψ(H,O)) ˜⊆ fψ(βCl(H,O)).

⇐: Suppose that (H,O) is an infra soft β-closed subset of ˜X . By hypothesis,
fψ(H,O)˜⊆ βCl( fψ(H,O))˜⊆ fψ(βCl(H,O)) = fψ(H,O). Therefore, fψ(H,O)

is infra soft β-closed. Hence, fψ is an infra soft β-closed map.

Proposition 20 The concepts of infra soft β-open and infra soft β-closed maps are
equivalent under bijectiveness.

Proof It comes from the fact that a bijective soft map fψ : (X, μ,O) → (S, ν,Δ)

implies that fψ(Hc,O) = ( fψ(H,O))c.

Proposition 21 Let fψ : (X, μ,O) → (S, ν,Δ) and Fν : (S, ν,Δ) → (V, σ,U)

be two soft maps. Then

(i) If fψ and Fν are infra soft β-open (resp. infra soft β-closed) maps, then Fν ◦ fψ
is an infra soft β-open (resp. infra soft β-closed) map.

(ii) If Fν ◦ fψ is an infra soft β-open (resp. infra soft β-closed) map and fψ is a
surjective infra soft β-continuous map, then Fν is an infra soft β-open (resp.
infra soft β-closed) map.
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(iii) If Fν ◦ fψ is an infra soft β-open (resp. infra soft β-closed) map and Fν is an
injective infra soft β-continuous map, then fψ is an infra soft β-open (resp.
infra soft β-closed) map.

Proof (i) It is straightforward.
(ii) Consider (H,Δ) as an infra soft β-open subset of (S, ν,Δ). By hypothesis,

f −1
ψ (H,Δ) is an infra soft β-open subset of (X, μ,O). Again, by hypothesis,

(Fν ◦ fψ)( f −1
ψ (H,Δ)) is an infra soft β-open subset of (V, σ,U). Since fψ

is surjective, then (Fν ◦ fψ)( f −1
ψ (H,Δ)) = Fν( fψ( f −1

ψ (H,Δ))) = Fν(H,Δ).
Hence, Fν is an infra soft β-open map.

(iii) Consider (H,O) as an infra soft β-open subset of (X, μ,O). By hypothesis,
(Fν ◦ fψ)(H,O) is an infra soft β-open subset of (V, σ,U). Again, by hypoth-
esis, F−1

ν (Fν ◦ fψ(H,O)) is an infra soft β-open subset of (S, ν,Δ). Since Fν

is injective, then F−1
ν (Fν ◦ fψ(H,O)) = (F−1

ν Fν)( fψ(H,O)) = fψ(H,O).
Hence, fψ is an infra soft β-open map.

Definition 22 A bijective soft map fψ : (X, μ,O) → (S, ν,Δ) is called an infra
soft β-homeomorphism if it is infra soft β-continuous and infra soft β-open.

Proposition 22 Let fψ : (X, μ,O) → (S, ν,Δ)and Fν : (S, ν,Δ) → (V, σ,U)be
infra soft β-homeomorphism maps. Then Fν ◦ fψ is an infra soft β-homeomorphism
map.

Proposition 23 If fψ : (X, μ,O) → (S, ν,Δ) is a bijective soft map, then the fol-
lowing statements are equivalent:

(i) fψ is an infra soft β-homeomorphism.
(ii) fψ and f −1

ψ is infra soft β-continuous.
(iii) fψ is infra soft β-closed and infra soft β-continuous.

Proposition 24 If fψ : (X, μ,O) → (S, ν,Δ) is an infra soft β-homeomorphism
map, then for each (H,O) ∈ S(X)A, we have

(i) fψ(β I nt (H,O)) = β I nt ( fψ(H,O)).
(ii) fψ(βCl(H,O)) = βCl( fψ(H,O)).

Proof (i): It comes fromProposition18 (i) that fψ(β I nt (H,O))˜⊆β I nt ( fψ(H,O)).
Conversely, let δsκ ∈ β I nt ( fψ(H,O). Then there is an infra soft β-open set (F ,Δ)

such that δsκ ∈ (F ,Δ)˜⊆ fψ(H,O). By hypothesis, δxo = f −1
ψ (δsκ) ∈ f −1

ψ (F ,Δ)˜⊆
(H,O) such that f −1

ψ (F ,Δ) is an infra soft β-open set so that δxo ∈ β I nt (H,O)

which means that δsκ ∈ fψ(β I nt (H,O)).
Item (ii) is proved similar to (i).

Theorem 6 The property of an infra soft β-dense set is an infra soft topological
invariant.
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Proof Let fψ : (X, μ,O) → (S, ν,Δ) be an infra soft β-homeomorphism and let
(H,O) be an infra soft β-dense set in (X, μ,O), i.e. βCl(H,O) = ˜X . By Proposi-
tion24, (ii) we find βCl( fψ(H,O)) = fψ(βCl(H,O)) = fψ(˜X) = βCl(˜S) = ˜S.
Thus, fψ(H,O) is an infra soft β-dense set in (S, ν,Δ).
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An Algorithm of the Prey and Predator
Struggle to Survive as a RandomWalk
Simulation Case Study

Raed M. Khalil and Rania Saadeh

Abstract This paper is an attempt to make use of a mathematical simulation of the
tracking problem. Random walk algorithm is used to simulate the interaction over
time of hunter and prey in a small rectangular area.

Keywords Hunter · Prey · Random walk · Rugby

1 Introduction

A computer games production company would like to ensure its client’s satisfaction
and impressions about the game it produces recently. The rugby game is a first-game
product. The objective of Rugby is to advance the ball down the field by running it
forward in the attempt to score points. Besides that the company needs to simulate
the running the ball forward in the attempt to score points. The problem can be solved
using algorithms andmathematical simulation of a tracking problem like hunter-prey
tracking from a random walk view.

Things in nature often move in complicated ways. You have probably watched
the way a butterfly moves. The molecules of the air that you are breathing move in
a similar way. This type of motion we call a random walk.

In the next section, the hunter and prey approach is described. The section after
contains the simulation study of the rugby game, and then the conclusion section.
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2 Hunter and Prey Approach

A hunter in hunter and prey wants to track its prey. The hunter must determine which
direction to move in at each stage in order to get as close to the prey as possible.
In this simulation, there is no element of surprise. The hunter just notices the prey’s
movement and tries to catch it.

With this case, a human would be equipped with two primary tools to aid in the
endeavor. To begin with, humans intuitively understand that the shortest distance
between two sites is a straight line. As a result, if the prey remains static or moves
slowly, a human hunter will charge straight at it and catch it [1]. The second tool is
that humans can observe the pattern of prior prey movement and forecast where it
will go in the future. This allows the human hunter to predict what the prey will do
next and act accordingly, not just to reduce the distance between hunter and prey at
any one time, but also to reduce the amount of time (and hence effort) required to
catch the prey.

In the case of the rugby game, this second tool can be better visualized. Consider
the following two rugby players: one is young, swift, and inexperienced, while the
other is older, slower, and more experienced. These two players have quite different
skill sets, but they can play at the same level and have a lot of fun. International teams
frequently include a mixture of these types of players. The younger player has a leg
up on the older player in terms of endurance and quickness. This enables him to use
the first tracking tool (knowing that the shortest distance is a straight line) to catch
his prey on a regular basis (chase down and tackle the member of the opposite team
which holds the ball).

Following this strategy, the elder player would become fatigued more quickly.
He’d also be more likely to fail because he’d be slightly slower. This athlete will
have to rely on his biggest asset, which is his rugby experience [2]. This will allow
him to use less energy and move at a slower pace while accomplishing the same
goal. He can make accurate predictions about the ball carrier’s future moves based
on not only his previousmatch experience, but also the behavior of opposition players
during the current encounter. Due to his previous expertise, hewill be paying farmore
attention to the other team’s activities than his younger opponent. As a result of his
experience, he now has a better ability to forecast.

Why don’t we simply educate younger players on how to do this, integrating both
advantages in a single player? That is not as simple as it may appear, because the
greatest way to learn is through doing.

We’ll now look at how to describe this initial tracking tool mathematically, such
that a computerized hunter can try to catch a computerized prey in 2D.

The Hunter Algorithm

To put it another way, we assume that the hunter can only move in set steps of a
particular length. Before taking each step, the hunter must choose which path is the
best for minimizing the gap between it and the prey. This cycle repeats until the prey
is apprehended [3].
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This program uses the mathematical idea of limited optimization to determine the
hunter’s stride direction.

To undertake optimization, we’ll need an objective function (the distance between
the hunter and the prey), whose value we’ll strive to minimize by changing the
values of some variables (in this case, the step direction) while keeping any relevant
constraints in mind (in this case, the length of the step). Pythagoras’ theorem [1] is
used to characterize the objective function f(x, y) as follows:

f (x, y) = (
x − xprey

)2 + (
y − yprey

)2

where:

• x = Next x-coordinate of Hunter
• y = Next y-coordinate of Hunter
• xprey = Present x-coordinate of Prey
• yprey = Present y-coordinate of Prey.

The distance between the hunter and the prey is squared, not the actual distance
between them. Minimizing the squared distance is the same as minimizing the
distance. The primary purpose for using the distance squared is to ensure that the
value of f(x, y) is never negative. Numerical operations are simplified as a result of
this.

This objective function is to be minimized by changing the values of particular
variables, according to the statement. The variables in this situation are x and y,
which are the coordinates of the hunter’s position. Currently, minimization of this
function occurs when x = xprey and y = yprey (the value of f(x, y) is zero, which is
the smallest value feasible for a non-negative function).

This, however, implies that the hunter can take arbitrarily lengthy steps, which
is unrealistic. This would be the equivalent of the hunter teleporting to the prey and
instantaneously grabbing it.

To account for the hunter’s limited stepwise mobility, the hunter position must be
on a circle with a radius of one step length (the circle’s center being the last hunter
position). This restriction will be known as h(x, y), and it is written as follows:

h(x, y) = (x − xhunter )
2 + (y − yhunter )

2 − R2 = 0

where:

• x = Next x-coordinate of Hunter
• y = Next y-coordinate of Hunter
• xhunter = Present x-coordinate of Hunter
• yhunter = Present y-coordinate of Hunter
• R = Allowed Hunter step length (radius of circle).

It’sworth noting that f(x, y) and h(x, y) are eerily similar. However, the distinctions
are significant and should be highlighted. To begin with, f(x, y) is not required to
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take any precise value (albeit it should be at a minimum), but h(x, y) must always
equal zero. h(x, y) is a limitation on the distance between the current hunter position
and the next hunter position, whereas f(x, y) is a measure of the distance between
the next hunter position and the current prey position.

Finding the derivative of f(x, y) with respect to x and the derivative of f(x, y) with
respect to y, setting them both to zero, and solving the system of two equations in
two unknowns is the formal method of minimizing a function (f(x, y) This can be
written mathematically as

∂ f (x, y)

∂x
= 0

∂ f (x, y)

∂y
= 0

This form of attack, on the other hand, would result in the circumstance stated
above, in which the hunter would instantaneously switch to the prey position. As
a result, we require a formal method for minimizing f(x, y) such that h(x, y) = 0.
This can be demonstrated (but not here!) by setting the derivatives of the Lagrangian
function (rather than the objective function) for this system to zero. L(x, y, l) is a
Lagrangian function that is defined as

L(x, y, λ) = f (x, y) + λh(x, y)

So the criterion for the optimal solution becomes

∂L(x, y, λ)

∂x
= ∂ f (x, y)

∂x
+ λ

∂h(x, y)

∂x
= 0

∂L(x, y, λ)

∂y
= ∂ f (x, y)

∂y
+ λ

∂h(x, y)

∂y
= 0

∂L(x, y, λ)

∂λ
= h(x, y) = 0

If we write down the derivatives of these functions the equations above become

2λ(x − xhunter ) + 2
(
x − xprey

) = 0

2λ(y − yhunter ) + 2
(
y − yprey

) = 0

(x − xhunter )
2 + (y − yhunter )

2 − R2 = 0

There are three equations in three unknowns, as can be seen (x, y, l). It’s worth
noting that R is a user-defined constant and that the prey position (xprey, yprey) can
be read (and so can also be treated as constant during each optimization). These
equations’ answers yield numbers for x and y (the new hunter location) as well
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as l. (which can be discarded). It is important to note that numerous solutions are
feasible, and the one that minimizes f must be chosen (x, y). This is accomplished
by guaranteeing that the Hessian of Lagrangian’s eigenvalues are all positive (i.e.,
that the Hessian is positive definite) at the solution.

So, now that we know how to calculate a plausible, realistic hunter movement at
each step, it’s only a matter of updating the hunter position and repeating the process
until the prey is caught (or flees!). The following pseudo-code illustrates how this
could be accomplished:

Define the Prey motion as a function of time (i.e. xprey = xprey(t), yprey =
yprey(t)). Note that the Hunter algorithm does not have this information.

Define initial Hunter position (xhunter0, yhunter0)

For t = 0 to f(x, y) < R2 OR t > tMax
Solve

This gives (x, y)
Update xhunter = x; yhunter = y

End

Now the hunter and prey movement has been calculated and can be plotted and
the time to capture can be seen.

The Seeker Algorithm

The hunter’s second tool is more complicated. This is due to the fact that there is
a component of forecasting future behavior. Predicting the future is difficult at the
best of times, and numerical tracking methods are no exception. The first method
of prediction that we shall consider is linear [4]. Making a linear prediction of the
prey’s mobility based on the current position and a position a predefined time interval
previously will be required. If and only if the prey moves in a perfectly straight line,
this strategy will produce ideal results (vertically). In this example, perfect means
that the prey will be caught as soon as feasible.

However, when the prey motion deviates from linearity, the method’s efficiency
deteriorates. Furthermore, if the prey motion oscillates often but remains roughly
linear, the method’s performance will be influenced to some extent by the time
interval between the two sample points.

The Tracker Algorithm

So, if linear approximations aren’t great, what alternatives are there? It is possible to
match a variety of functions to past prey situations that include curvilinear behavior.
This fit can also be achieved in a variety of ways [5]. For example, it may be decided
to choose the best fit curve through all previous prey placements or a fixed number
of the most recent ones. This could be computationally expensive, and the prediction
will not be very precise at the end of the day [6]. Making useful forecasts requires
making them rapidly based on recent movements and just predicting a little amount
ahead.
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The optimal quantification of these adjectives (quickly, recently, and usefully) is
dependent on the prey’s real behavior and the types of functions that are fitted to the
motion. It is our responsibility to select an appropriate function and settings that will
allow us to follow prey behavior over a wide range of scenarios. This will ensure that
the greatest number of prey is captured [7].

Lagrangian interpolation polynomials are a quick and easy approach to fit prey
positions. These are functions that yield a polynomial that passes through all of the
points in the data set when evaluated [8].

Lagrangian Interpolation Polynomials

A line is defined by two points. Or in other words, a unique line can be drawn through
a given pair of points. This line can be expressed as

f (x) = x − x2
x1 − x2

y1 + x − x1
x2 − x1

y2

A quadratic polynomial can be rendered using three points, a cubic polynomial
using four points, and so on. La-formula, grange’s which is just an extension of the
linear expression above to higher order polynomials, can be used to find these unique
functions:

f (x) =
N∑

i=1

N∏

j=1
( j �=i)

(
x − x j

)

(
xi − x j

) yi

This is simple to develop for any number of points because no optimization is
necessary (as there would be with regular curve fitting). If the points do not naturally
lie along a low-order polynomial curve, a very high-order polynomial must be fitted
to them in order to ensure that the curve passes through all of them. This creates
false wave behavior, which can result in wildly erroneous forecasts. To avoid this, it
is recommended that the formula be applied to a limited set of current data and that
it be used to forecast a little amount ahead of time (which will lessen the effect of
any spurious wiggles).

∂L(x, y, λ)

∂x
= ∂ f (x, y)

∂x
+ λ

∂h(x, y)

∂x
= 0

∂L(x, y, λ)

∂y
= ∂ f (x, y)

∂y
+ λ

∂h(x, y)

∂y
= 0

∂L(x, y, λ)

∂λ
= h(x, y) = 0



AnAlgorithm of the Prey and Predator Struggle to Survive as a Random… 413

Fig. 1 The simulation study strategy

3 The Simulation Study

The simulation study strategy we follow all over this project is illustrated in Fig. 1.

4 Conclusion

Rugby game is programmed and simulated using the hunter-prey strategy in random
walk view, which eventually refreshes our minds and reminds us of a variety of
various application ideas that can be implemented using these algorithms. The
tracking algorithm is a more powerful technology that has been utilized in game
production for a long time and was developed utilizing more mathematical notions.

Last but not least, the company we are considering using this simulation as an
advantage point to finish what it started in building a game in the proper human–
computer approach.
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New Modification Methods for Finding
Zeros of Nonlinear Functions

Osama Ababneh and Khalid Al-Boureeny

Abstract The objective of this article is to define new efficient iterative methods
for finding zeros of nonlinear functions. This procedure is based on Homeier [12]
and Newton [12, 20, 27] methods. The proposed methods require only three function
evaluations per iteration (only two function evaluations and one first derivative evalu-
ation). The error equations are given theoretically to prove that the suggestedmethods
have third-order convergence.Moreover, the Efficiency Index [20] is 1.4422. Numer-
ical comparisons to demonstrate the exceptional convergence speed of the proposed
methods using several types of functions and different initial guesses are included.
A comparison with other well-known iterative methods is made. It is observed that
our proposed methods are very competitive with the third-order methods.

Keywords Nonlinear functions · Newton methods · Nonlinear equations ·
Derivative-free methods · Simple roots

1 Introduction

Finding zeros of nonlinear functions by using iterative methods is one of the impor-
tant problems which have interesting applications in different branches of science,
in particular, physics and engineering [20, 22, 27], such as fluid dynamics, nuclear
systems, and dynamic economic systems. Also, in mathematics, we do need itera-
tive methods to find rapid solutions for special integrals and differential equations.
Recently, there are many numerical iterative methods have been developed to solve
these problems, see [1, 5, 6, 14, 16, 19, 27, 30]. These methods have been suggested
and analyzed by using a variant of different techniques such as Taylor series. We
first looked for the best approximation of which is used in many iterative methods.
We obtained this approximation by combining two well-known methods, Potra–
Ptak [23] and Weerakon methods [28]. Then, we used Homeier method [12] and the
approximation to introduce the first method, which we called the Variant of Homeier
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Method 1 (VHM1). Finally, we used predictor–corrector technique to improve the
first method (VHM1) and we called it Variant of Homeier Method 2 (VHM2). We
showed that the new iterative methods are of third order of convergence, Efficiency
Index [20] E.I. = 1.4422 and very robust and competitive with other third-order
iterative methods.

2 The Established Methods

For the purpose of comparison, three 2-step third-order methods and two 1-step
third-order methods are considered. Since these methods are well established, we
state the essential formulas used to calculate the simple zero of nonlinear functions
and thus compare the effectiveness of the proposed 2-step third-order methods.

Newton Method [3, 4, 9, 20, 22, 24, 27, 29].
One well-known 1-step iterative zero-finding method,

xn+1 = xn − f (xn)

f ′(xn)
, n = 0, 1, 2, . . . (1)

Halley Method [7, 8, 10, 11, 15, 24]:

xn+1 = xn − 2 f (xn) f ′(xn)
2 f ′2(xn) − f (xn) f ′′(xn)

, n = 0, 1, 2, . . . (2)

which is widely known Halley’s method. It is a cubically converging (p = 3) zero-
finding 1-step algorithm. It requires three function evaluations (r = 3) and its E.I. =
1.4422.

Householder method [13, 24]:

xn+1 = xn − f (xn)

f ′(xn)

{
1 + f (xn) f ′′(xn)

2 f ′2(xn)

}
, n = 0, 1, 2, . . . (3)

Householder’s method is also cubically converging (p = 3) 1-step zero-finding
algorithm. It requires three function evaluations (r = 3) and it’s E.I. = 1.4422.

Weerakoon and Fernando Method [21, 28]:

xn+1 = xn − 2 f (xn)

f ′(xn) + f ′(yn)
, n = 0, 1, 2, . . . where, (4)

yn = xn − f (xn)

f ′(xn)

Obviously, this is an implicit scheme, which requires having the derivative of the
function at the (n + 1)th iterative step to calculate the (n + 1)th iterate itself. They
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overcome this difficulty by making use of Newton’s iterative step to compute the
(n + 1)th iterate on the right-hand side.

This scheme has also been derived by Ozban by using the arithmetic mean of
f ′(xn) and f ′(yn) instead of f ′(xn) inNewton’smethod (1), i.e., ( f ′(xn)+ f ′(yn))/2.
Weerakoon and Fernando method is also a cubically converging (p = 3) 2-step

zero-finding algorithm. It requires three function evaluations (r = 3) and it’s E .I. =
1.4422.

Homeier Method [12, 21]:

xn+1 = xn −
(

f (xn)

2

){
1

f ′(xn)
+ 1

f ′(yn)

}
, n = 0, 1, 2, . . . (5)

where yn = xn − f (xn)
f ′(xn) .

Homeier’s method is also cubically converging (p = 3) 2-step zero-finding
algorithm. It requires three function evaluations (r = 3) and its E.I. = 1.4422.

Potra-Ptak Method [23, 25]:

xn+1 = xn − f (xn) + f (yn)

f ′(xn)
, (6)

where

yn = xn − f (xn)

f ′(xn)

Potr-Ptak’s method is also a cubically converging (p = 3) 2-step zero-finding
algorithm. It requires three function evaluations; two function evaluations and one
first derivative (r = 3) and its E.I. = 1.4422.

2.1 Construction of the New Methods

In this section, firstwedefine a new third-ordermethod for finding zeros of a nonlinear
function. We do that by combining two well-known methods to obtain a new one.
In fact, the new iterative method will be an improvement of the classical Homeier
method and this will be our first algorithm.

Secondly, we will improve our first algorithm by assuming a three-step iterative
method per full cycle. In order to do that, we perform a Newton iteration at the new
third step. We use a third variable Zn for the third step, which we will approximate
lately.

First, we equate (combine) the two methods (4) and (6) to obtain f ′(yn)

2 f (xn)

f ′(xn) + f ′(yn)
≈ f (xn) + f (yn)

f ′(xn)
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2 f (xn) f
′(xn) ≈ [ f (xn) + f (yn)]

{
f ′(xn) + f ′(yn)

}

2 f (xn) f
′(xn) ≈ [ f (xn) + f (yn)] f

′(xn) + [ f (xn) + f (yn)] f
′(yn)

2 f (xn) f ′(xn) − [ f (xn) + f (yn)] f ′(xn)
[ f (xn) + f (yn)]

≈ f ′(yn)

f ′(yn) ≈ f (xn) − f (yn)

f (xn) + f (yn)
f ′(xn) (7)

Now substituting (7) in (5) in order to get the first algorithm

xn+1 = xn − f (xn)

2
∗

{
1

f ′(xn)
+ 1

f (xn)− f (yn)
f (xn)+ f (yn)

f ′(xn)

}

So, we get the first Algorithm (1) which we will call it a Variant of Homeier
Method 1 (VHM1).

For a given x◦ , compute the approximate solution xn by iterative scheme.

yn = xn − f (xn)

f ′(xn)
, f ′(xn) �= 0

xn+1 = xn − f 2(xn)

[ f (xn) − f (yn)] f ′(xn)
, for n = 0, 1, 2, . . . (8)

Now, we need to drive the next algorithm, which will be an improvement of the
first algorithm. The main goal is to make the new scheme optimal. We perform a
Newton iteration at the new third step which comes next:

yn = xn − f (xn)

f ′(xn)
(9)

zn = xn − f 2(xn)

[ f (xn) − f (yn)] f ′(xn)
(10)

xn+1 = zn − f (zn)

f ′(zn)
. (11)

Now, we try to simplify our new scheme to reach the convergence rate three
with three function evaluations per full cycle; two function evaluations and one
first derivative evaluation. Obviously, f (zn) and f ′(zn) should be approximated. We
replace f ′(zn) by f ′(xn) and write the Taylor expansion of f (zn) about xn [25].
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f (zn) = f (xn) + f ′(xn)(zn − xn) + 1

2! f
′′(xn)(zn − xn)

2 (12)

Now, f ′′(xn) should be approximated as well. Once again we write the Taylor
expansion of f (yn) about xn as follows:

f (yn) = f (xn) + f ′(xn)(yn − xn) + 1

2! f
′′(xn)(yn − xn)

2 (13)

From (13) and (9), we obtain f ′′(xn) as follows:

f ′′(xn) = 2 f (yn)
[
f ′(xn)

]2
[ f (xn)]

2 (14)

Now substituting (14) and (10) in (12), we obtain f(zn) as follows:

f (zn) = f (xn) f 2(yn)

[ f (xn) − f (yn)]
2 . (15)

Now, we substitute (10) and (15) in (11), also f ′(xn) instead of f ′(zn):

xn+1 = zn − f (zn)

f ′(zn)

Xn+1 =
{
Xn − f 2(xn)

[ f (xn) − f (yn)] f ′(xn)

}
−

f (xn) f 2(yn)
[ f (xn)− f (yn)]

2

f ′(xn)

After doing some simplifying work, we get a new algorithm.
Algorithm (1): we will call it the Variant Homeier Method 2 (VHM2).
For a given x0, compute the approximate solution xn+1 by an iterative scheme

yn = xn − f (xn)

f ′(xn)
, f ′(xn) �= 0.

xn+1 = xn −
{
1 + f (xn) f (yn)

[ f (xn) − f (yn)]
2

}
∗ f (xn)

f ′(xn)
, for n = 0, 1, 2, . . . (16)

As we can see, both algorithms require only two function evaluations and only
one first derivative evaluation per each cycle. When we compare both algorithms and
Homeier method, clearly, there is big difference, which is Homeier method requires
one function evaluation and two first derivative evaluations.
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2.2 Convergence Criteria of the New Methods

Now, we compute the orders of convergences and corresponding error equations of
the proposed methods Algorithms (8) and (16).

Theorem 2.1 Let ∝ ε I be a simple zero of sufficiently differentiable function f: I
⊆ R → R for an open interval I. If x0 is sufficiently close to ∝, then the iterative
method defined by Algorithm (1) is of order three and satisfies the error equation:

en+1 = (2c22 + 2c3)e
3
n + o(e4n),

where
Ck = f (k)(α)

k! f ′(α)
, k = 2, 3, . . . and en = xn − α.

Proof Let ∝ be a simple zero of f, f ′(α) �= 0. Using Taylor’s series expansion

around ∝ in the nth iterate results in

f (xn) = f ′(α)en + 1

2! f
′′(α)e2n + 1

3! f
′′′(α)e3n + O(e4n)

f (xn) = f ′(α)
[
en + c2e

2
n + c3e

3
n + O(e4n)

]
(17)

f ′(xn) = f ′(α)
[
1 + 2c2en + 3c3e

2
n + O(e3n)

]
(18)

From (17) and (18), we have

f (xn)

f ′(xn)
= en − c2e

2
n + (2c22 − 2c3)e

3
n + O(e3n) (19)

But yn = xn − f (xn)
f ′(xn) , en = xn − α. Using (19), we get

yn = xn − {
en − c2e

2
n + (2c22 − 2c3)e

3
n + O(e3n)

}

yn = α + c2e
2
n + (2c3 − 2c22)e

3
n + O(e3n)

(yn − α) = c2e
2
n + (2c3 − 2c22)e

3
n + O(e3n) (20)

Now by Taylor expansion once again f (yn) about ∝ and using (20):

f (yn) = f (α) + f ′(α)(yn − α) + f ′′(α)

2! (yn − α)2 but f (α) = 0,

f (yn) = f ′(α)
[
(yn − α) + f ′′(α)

2! f ′(α)
(yn − α)2

]
and f ′′(α)

2! f ′(α)
= C2

f (yn) = f ′(α)
[
c2e

2
n + (2c3 − 2c22)e

3
n + O(e4n)

]
(21)
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f 2(xn) = f ′2(α)
[
e2n + 2c2e

3
n + c3e

3
n + O(e4n)

]
(22)

From (17) and (21), we get
f (xn) − f (yn) = f ′(α)

[
en + (2c22 − c3)e3n

]
and by using (18), we obtain

f ′(xn)( f (xn) − f (yn)) = f ′2(α)
[
en + 2c2e

2
n + (2c22 + 2c3)e

3
n + O(e4n)

]
(23)

Now by (22) and (23), we get

f 2(xn)

f ′(xn)( f (xn) − f (yn))
= en − (2c22 + 2c3)e

3
n + O(e4n) (24)

Putting (24) in the Algorithm (1), Eq. (8), we get
xn+1 = xn − {

en − (2c22 + 2c3)e3n + O(e4n)
}
, where en = xn − α

xn+1 = α + (2c22 + 2c3)e
3
n + O(e4n) (25)

Now, en+1 = xn+1 − α, by substituting (25), we get.

en+1 = (2c22 + 2c3)e3n + O(e4n) and the proof is completed.

Theorem 2.2 Let ∝ ∈ I be a simple zero of sufficiently differentiable function f: I
⊆ R → R for an open interval I. If × 0 is sufficiently close to ∝, then the iterative
method defined by (8) is of order three and satisfies the error equation:

en+1 = (2c3 − c22)e
3
n + o(e4n),

Proof Let ∝ be a simple zero of f, f ′(α) �= 0, once again, we can follow the same
procedure provided in Theorem 2.1.

Using (17) and (21), we get

f (xn) f (yn) = f ′2(α)
[
c2e

3
n

]
(26)

f (xn) − f (yn) = f ′(α)
[
en + (2c22 − c3)e

3
n

]

[ f (xn) − f (yn)]
2 = f ′2(α)

[
e2n

]
(27)

And then dividing (26) by (27), we get

f (xn) f (yn)

[ f (xn) − f (yn)]
2 = c2en (28)

By using (19) and (28), we obtain:
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{
1 + f (xn) f (yn)

[ f (xn) − f (yn)]
2

}
∗ f (xn)

f ′(xn)
= en + (c22 − 2c3)e

3
n (29)

Now, substituting (29) in Algorithm (1.2), we get

xn+1 =xn −
{
1 + f (xn) f (yn)

[ f (xn) − f (yn)]
2

}
∗ f (xn)

f ′(xn)
= xn − {

en + (c22 − 2c3)e
3
n

}
, and by en = xn − α,we get :

= α + (2c3 − c22)e
3
n + O(e4n)

Now using the previous result in en+1 = xn+1 − α

en+1 = {
α + (2c3 − c22)e

3
n + O(e4n)

} − α = (2c3 − c22)e
3
n + O(e4n),

the proof is done.

2.3 More Suggestions

In this section, we present new modifications of important methods for solving
nonlinear equations of type f (x) = 0 using the substitution of the formula (7)
f ′(yn) = f (xn)− f (yn)

f (xn)+ f (yn)
f ′(xn) in well-known methods.

As we will see, this is so helpful that it reduces the number of required derivative
evaluations in iteration schemes.Wewill introduce only two suggestions as examples
and we will show their rate of convergences.

Example 1 Consider Noor and Gupta’s fourth-order method [17, 18].

yn = xn − f (xn)
f ′(xn) ,

xn+1 = yn − f (yn)

f ′(yn)
− 1

2

(
f (yn)

f ′(yn)

)2

∗ f ′(yn)
f (xn)

∗ f ′(yn) − f ′(xn)
f ′(yn)

(30)

By substituting (7) in (30), we get

xn+1 = yn − f (xn) + f (yn)

f (xn) − f (yn)
∗ f (yn)

f ′(xn)

(
1 − f (yn)

f (xn)
∗ f (yn)

f (xn) − f (yn)

)
(31)

or in another form:

xn+1 = yn − f 3(xn) − 2 f (xn) f 2(yn) − f 3(yn)

[ f (xn) − f (yn)]
2 ∗ f (yn)

f (xn) f ′(xn)

Theorem 2.3 Let ∝ ε I be a simple zero of sufficiently differentiable function.
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f: I ⊆ R → R for an open interval I. If × 0 is sufficiently close to ∝, then the
iterative method introduced in (31) is of order four and satisfies the error equation:

en+1 = (5c32 − c2c3)e
4
n + o(e5n),

Notes:

1. The suggested method requires only two function evaluations and one derivative
evaluation (r = 3).

2. Rate of convergence P = 4.

3. Efficiency Index E.I. = p
1/r = 4

1/3 = 1.5874.

Example 2 Consider Jarratt’s fourth-order method [2].

yn = xn − 2 f (xn)
3 f ′(xn) ,

xn+1 = xn − 3 f ′(yn)+ f ′(xn)
6 f ′(yn)−2 f ′(xn) ∗ f (xn)

f ′(xn)

By substituting the previous formula (16), we get

xn+1 = xn − 2 f (xn) − f (yn)

2 f (xn) − 4 f (yn)
∗ f (xn)

f ′(xn)
, (32)

where

yn = xn − f (xn)

f ′(xn)

with error equation

en+1 = −c2
2

e2n + (c22 − c3)e
3
n + o(e4n).

Theorem 2.4 Let ∝ ∈ I be a simple zero of sufficiently differentiable function f: I
⊆ R → R for an open interval I. If × 0 is sufficiently close to ∝, then the iterative
method introduced in (32) is of order two and satisfies the error equation:

en+1 = −c2
2

e2n + (c22 − c3)e
3
n + o(e4n),

3 Numerical Examples

In this section, first we present the results of numerical calculations on different
functions and initial guesses to demonstrate the efficiency of the suggested methods,
VariantHomeierMethod1 (VHM1) and its improvement (VHM2).Also,we compare
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Table 1 Different test
functions and their
approximate zeros (∝)

Functions Approximate roots (∝)

F1(x) = x ex^2 – sin2x + 3cosx + 5 −1.20764782713919

F2(x) = sin2x – x2 + 1 1.404491648215341

F3(x) = ex – 5x2 + 7x – 3 0.300026392366926

F4(x) = Ln(x2 + x + 2) – x + 1 4.152590736757158

F5(x) = x10 − 2x3 − x + 1 0.591448093340752

F6(x) = sin(1 + x) − x + 2 2.070766727142040

F7(x) = tan(
√
x2 + 1) − 7x + 1 0.410901501707263)

F8(x) = Ln(cosx + 1)+
√
1 − 2x +

3x
−0.706338530699419

F9(x) = ( x2 − 10x)3 −100,000 −3.450792172105985

F10(x) = √
x − Ln(x) + sinx − x 1.747991025989651

these methods with famous methods, such as Halley’s, Weerakoon and Potra–Ptak
methods. All computations are carried out with 15 decimal places (See Table 1)
approximate zeros α found up to 15th decimal place).

All programs and computations were completed using MATLAB, 2009a. Table 2
displays the number of iterations (IT) and the computational order of convergences
(COC). Table 3 displays the number of function evaluations (r), convergence order
(P), efficiency index (E.I.), the sumof iterations, and averageCOC’s for eachmethod.
When we reached the sought zero α after only three iterations, we used the second
formula to compute the COC of the iterative method. Furthermore, we assumed COC
is zero when the iterative method diverged. Table 4 displays the number of function
evaluations and derivative evaluations required for each method.

4 Conclusion

We have developed two of 2-step iterative methods for finding zeros of nonlinear
functions, (VHM1) and (VHM2). The main goal is to find and improve iterative
schemes which requires less derivative evaluations of the function, whereas more
derivative evaluations in a method cost need more time and effort from an industry
point of view. So, both new methods require only two function evaluations and one
first derivative evaluation. On the contrary, known methods as Halley and House-
holder require one function evaluation, one first derivative and one second derivative
evaluation whereas Weerakoon and Homeier methods require one function evalua-
tion and two first derivative evaluations (See Table 4). Furthermore, we have proved
theoretically that both new methods are of order three. It can be observed that the
numerical experiment is displayed in Tables 2, 3, and 4.

In addition, based on numerical experiments, the proposed methods are also
compared with the previous well-known iterative methods of the same order of
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Table 3 Summary of the comparison of variant methods

VHM1 VHM2 HAL
MD

HOS
MD

WRK
MD

POT
MD

HOM
MD

Number of func
Eval.‘s required (r)

3 3 3 3 3 3 3

Convergence order (p)
(theoretically)

3 3 3 3 3 3 3

Efficiency Index

E.I. = p
1/r

1.4422 1.4422 1.4422 1.4422 1.4422 1.4422 1.4422

Sum of iterations needed 87 76 83 90 85 108 82

Average COC 3.02 3.90 3.00 2.96 3.00 3.00 3.09

Number of
(div)’s

0 0 1 1 0 0 0

Table 4 Type of functions required for each method

VHM1 VHM2 HAL
MD

HOS
MD

WRK
MD

POT
MD

HOM
MD

Number of function
Eval.‘s required (r)

3 3 3 3 3 3 3

Number of function Eval.‘s. f(x) 2 2 1 1 1 2 1

Number of 1st derivative Eval.‘s. f ‘(x) 1 1 1 1 2 1 2

Number of 2nd derivative Eval.‘s. f “ (x) 0 0 1 1 0 0 0

convergence. The performance of the proposed methods can be seen in Tables 2, 3,
and 4.

Moreover, it can easily be seen that both new methods are more efficient, robust,
and faster convergence than the other methods with respect to the required number
of derivative evaluations for each method, IT’s and COC results.

Numerical experiments show that the order of convergence of both methods is at
least three.

Conflict of Interest Statement: The authors declare no conflict of interest regarding this
publication.
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On Tempered Exponential Trisplitting
for Random Semi-dynamical Systems

Ioan-Lucian Popa, Traian Ceauşu, Larisa Elena Biriş, and Akbar Zada

Abstract In the present paper, the concept of tempered exponential trisplitting for
random one-sided discrete-time systems is considered. We establish Datko’s type
result in terms of invariant projections.

Keywords Stochastic dynamical systems · Tempered exponential trisplitting

1 Introduction and Preliminaries

The concept of exponential trisplitting is a generalization of the well-known notion
of exponential trichotomy. Important results for the study of exponential trichotomy
for linear discrete-time systems were obtained for the deterministic case. See, for
example, [1, 6, 10, 18]. It is worth mentioning [7, 15], where the authors studied
the connections between uniform exponential trisplitting and uniform exponential
trichotomy, and they presented some necessary and sufficient conditions for uni-
form exponential trisplitting with invariant projectors, respectively strongly invari-
ant projectors. Characterizations of tempered exponential splitting for random semi-
dynamical systems are obtained in [17].
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In the present paper, we consider random discrete-time systems which are defined
only on semi-axes, the so-called one-sided systems. The aim of this paper is to extend
a result of Datko’s type from the deterministic case of linear discrete-time skew
product over semiflows to the stochastic one-sided discrete-time random dynamical
systems. We obtain a necessary and sufficient condition for tempered exponential
splitting with the hypothesis that the projectors are invariant. It is worth mentioning
that this approach can be extended to the case of strongly invariant projectors as they
are considered in Definition4.

Let Z+ denote the set of positive integers. (X, ‖ · ‖) denotes a Banach space. By
B(X), we denote the Banach algebra of all bounded linear operators acting from X
into X. By (Ω,F,P), we denote a probability space and θ : Ω → Ω is a measurable
map preserving the probability measure P, that is P(θB) = P(B), for any B ∈ F.

Definition 1 (see, for example, [3, 8, 9, 17]) A random variable ϕ : Ω → (0,+∞)

is called θ−invariant if ϕ ◦ θ = ϕ, that is ϕ(θω) = ϕ(ω), for all ω ∈ Ω. By conven-
tion, we have θ0 = IΩ, where I denotes the identity. As a fast property, we have that
θn ◦ θm = θn+m = θm+n = θm ◦ θn, for all m, n ∈ Z+.

The application Z+ × Ω � (n, z) → θnω ∈ Ω is measurable for all n ∈ Z+. We
have thatP(θn B) = P(B), for all n ∈ Z+ and all B ∈ F.Also,we have thatϕ(θnω) =
ϕ(ω), for all n ∈ Z+ and ω ∈ Ω.

Further, we consider the metric semi-dynamical system (Ω,F ,P, θ), which is
a probability space, with θ : Ω → Ω, measurable. The measurable application φ :
Z+ × Ω → B(X) represents a linear random one-sided discrete-time system on X
over a measurable semi-dynamical system θ. For more details about these notions,
we can point out the references [8, 9, 13]. Of interest in this paper, we have the
following properties:

(a) φ(0,ω) = IX , for all ω ∈ Ω;
(b) φ(n + m,ω) = φ(n, θmω)φ(m,ω), for all n,m ∈ Z+ and ω ∈ Ω.

Obvious from relation (b), we have that

φ(n + m,ω) = φ(m, θnω)φ(n,ω), for all n,m ∈ Z+ and ω ∈ Ω.

Throughout this work, the notation (θ,φ) will be used for a linear random one-sided
discrete-time system (RDTS).

Definition 2 An application P : Ω → B(X) is called a projection if

P2(ω) = P(ω), for all ω ∈ Ω.

Definition 3 The projection P : Ω → B(X) is called invariant for the RDTS (θ,φ)

if
φ(n,ω)P(ω) = P(θnω)φ(n,ω) (1)

for all (n,ω) ∈ Z+ × Ω.
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Remark 1 If the projection P : Ω → B(X) is invariant for the RDTS (θ,φ) then
Q : Ω → B(X) defined by Q(ω) = I − P(ω) is also invariant for RDTS (θ,φ).

Definition 4 The projection P : Ω → B(X) is called strongly invariant for the
RDTS (θ,φ) if (1) is satisfied and φ(n,ω) : Ker P(ω) → Ker P(θnω) is an iso-
morphism, for all (n,ω) ∈ Z+ × Ω.

As a fast remark from Definition4, we obtain the following.

Remark 2 The invariant projection P : Ω → B(X) is strongly invariant for the
RDTS (θ,φ) if φ(n,ω) : Q(ω)X → Q(θnω)X is an isomorphism, for all (n,ω) ∈
Z+ × Ω.

Definition 5 If P1, P2, P3 : Ω → B(X) are three strongly invariant projections,
then the family P = {P1, P2, P3} is
(a) orthogonal if

P1(ω) + P2(ω) + P3(ω) = I, for all ω ∈ Ω;

Pk(ω) = Pj (ω) = 0, for all ω ∈ Ω, and any k, j ∈ {1, 2, 3}, k �= j.

(b) invariant for the RDTS (θ,φ) if Pj is invariant for the RDTS (θ,φ), for all
j ∈ {1, 2, 3}.

(c) strongly invariant for the RDTS (θ,φ) if Pj is strongly invariant for the RDTS
(θ,φ), for all j ∈ {1, 2, 3}.

Definition 6 Let P = {P1, P2, P3} be a family of orthogonal and invariant projec-
tions for the RDTS (θ,φ).We say that the pair (θ,P) admits a tempered exponential
trisplitting if there exists a function N : Ω → [1,+∞) and θ−invariant random
variables α,β, γ, δ : Ω → (0,+∞), with α < β and γ < δ such that

‖φ(n,ω)P1(ω)x‖ ≤ N (ω)eα(ω)n‖P1(ω)x‖ (2)

eβ(ω)n‖P2(ω)x‖ ≤ N (ω)‖φ(n,ω)P2(ω)x‖ (3)

eγ(ω)n‖φ(n,ω)P3(ω)x‖ ≤ N (ω)‖P3(ω)x‖ (4)

‖P3(ω)x‖ ≤ N (ω)eδ(ω)n‖φ(n,ω)P3(ω)x‖ (5)

for all (n,ω, x) ∈ Z+ × Ω × X.

Proposition 1 Let (φ,P) and the functions N : Ω → [1,+∞) and α,β, γ, δ :
Ω → (0,+∞), as in Definition6. Let (n,ω, x) ∈ Z+ × Ω × X. Then we have that
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(a) The following are equivalent:

(a1) Relation (2) holds
(a2)

‖φ(m + n,ω)P1(ω)x‖ ≤ N (ω)eα(ω)(m+n)‖P1(ω)x‖ (6)

(a3)
‖φ(m + n,ω)P1(ω)x‖ ≤ N (θmω)eα(ω)n‖φ(m,ω)P1(ω)x‖ (7)

(a4)
‖φ(m + n,ω)P1(ω)x‖ ≤ N (θnω)eα(ω)m‖φ(n,ω)P1(ω)x‖ (8)

(b) The following are equivalent:

(b1) Relation (3) holds
(b2)

eβ(ω)(m+n)‖P2(ω)x‖ ≤ N (ω)‖φ(m + n,ω)P2(ω)x‖ (9)

(b3)
eβ(ω)n‖φ(m,ω)P2(ω)x‖ ≤ N (θmω)‖φ(m + n,ω)P2(ω)x‖ (10)

(b4)
eβ(ω)m‖φ(n,ω)P2(ω)x‖ ≤ N (θnω)‖φ(m + n,ω)P2(ω)x‖ (11)

(c) The following are equivalent:

(c1) Relation (4) holds
(c2)

eγ(ω)(m+n)‖φ(m + n,ω)P3(ω)x‖ ≤ N (ω)‖P3(ω)x‖ (12)

(c3)
eγ(ω)n‖φ(m + n,ω)P3(ω)x‖ ≤ N (θmω)‖φ(m,ω)P3(ω)x‖ (13)

(c4)
eγ(ω)m‖φ(m + n,ω)P3(ω)x‖ ≤ N (θnω)‖φ(n,ω)P3(ω)x‖ (14)

(d) The following are equivalent:

(d1) Relation (5) holds
(d2)

‖P3(ω)x‖ ≤ N (ω)eδ(ω)(m+n)‖φ(m + n,ω)P3(ω)x‖ (15)
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(d3)
‖φ(m,ω)P3(ω)x‖ ≤ N (θmω)eδ(ω)n‖φ(m + n,ω)P3(ω)x‖ (16)

(d4)
‖φ(n,ω)P3(ω)x‖ ≤ N (θnω)eδ(ω)m‖φ(m + n,ω)P3(ω)x‖. (17)

Proof The proof is straightforward using Definition6 and therefore it is omitted.

Remark 3 (a) Definition6 represents a natural generalization of Definition 2.6
from [7].

(b) In Definition6, if we consider the θ-invariant variables α,β, γ, δ : Ω →
(0,+∞), satisfyingα < 0 < β and γ < 0 < δ then for the pair (φ,P)weobtain
the definition of tempered exponential trichotomy. For the deterministic case,
we refer the reader to [14].

(c) In Definition6, if we consider P3(ω) = 0 then we recover the definition of tem-
pered exponential splitting (see [17]). For the deterministic case, we refer the
reader to [2, 15]. Also, if we consider the θ−invariant variables α,β : Ω →
(0,+∞), satisfying α < 0 < β then we obtain the concept of tempered expo-
nential dichotomy (see [19]). For the deterministic case, we refer the reader to
[4, 5, 11] for the case of skew-product semiflows, and [12, 16] for the case of
difference equations.

2 Datko-Type Criterion

Definition 7 Let P = {P1, P2, P3} be a family of orthogonal and invariant projec-
tions for the RDTS (θ,φ). We say that the pair (θ,P) admits a tempered expo-
nential trisplitting of Datko type if there exist the functions N , D : Ω → [1,+∞)

and θ−invariant random variablesμ, ν, ξ, η : Ω → (0,+∞),withμ < ν and ξ < η
such that

+∞∑

k=n

eμ(ω)(n−k)N (θnω)−1‖φ(k,ω)P1(ω)x‖ ≤ D(ω)‖φ(n,ω)P1(ω)x‖ (18)

n∑

k=0

eν(ω)(n−k)N (θnω)−1‖φ(k,ω)P2(ω)x‖ ≤ D(ω)‖φ(n,ω)P2(ω)x‖ (19)

+∞∑

k=n

eξ(ω)(k−n)N (θnω)−1‖φ(k,ω)P3(ω)x‖ ≤ D(ω)‖φ(n,ω)P3(ω)x‖ (20)
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n∑

k=0

eη(ω)(k−n)N (θnω)−1‖φ(k,ω)P3(ω)x‖ ≤ D(ω)‖φ(n,ω)P3(ω)x‖ (21)

for all (n,ω, x) ∈ Z+ × Ω × X.

Theorem 1 The pair (θ,P) admits a tempered exponential trisplitting if and only
if the pair (θ,P) admits a tempered exponential trisplitting of Datko type.

Proof Necessity. Let N : Ω → [1,+∞) and the θ−invariant random variables
α,β, γ, δ : Ω → (0,+∞) as in Definition6. We consider the θ-invariant random
variables μ, ν, ξ, η : Ω → (0,+∞) with α < μ < ν < β and ξ < γ < δ < η and
D : Ω → [1,+∞) defined by

D(ω) = 1 + eμ(ω)

eμ(ω) − eα(ω)
+ eβ(ω)

eβ(ω) − eν(ω)
+ eγ(ω)

eγ(ω) − eξ(ω)
+ eη(ω)

eη(ω) − eδ(ω)

for all ω ∈ Ω. Let (n,ω, x) ∈ Z+ × Ω × X. Using (8) from Proposition1, we have
that

+∞∑

k=n

eν(ω)(n−k)N (θnω)−1‖φ(k,ω)P1(ω)x‖

≤ ‖φ(n,ω)P1(ω)x‖
+∞∑

k=n

e(α(ω)−μ(ω))(k−n)

= eμ(ω)

eμ(ω) − eα(ω)
‖φ(n,ω)P1(ω)x‖

≤ D(ω)‖φ(n,ω)P1(ω)x‖,

hence (18). Similarly, using (11) we obtain

n∑

k=0

eν(ω)(n−k)N (θkω)−1‖φ(k,ω)P2(ω)x‖

≤ ‖φ(n,ω)P2(ω)x‖
n∑

k=0

e(ν(ω)−β(ω))(n−k)

= ‖φ(n,ω)P2(ω)x‖e(ν(ω)−β(ω))n
n∑

k=0

e(β(ω)−ν(ω))k

≤ ‖φ(n,ω)P2(ω)x‖e(ν(ω)−β(ω))n eβ(ω)

eβ(ω) − eν(ω) − 1

= eβ(ω)

eβ(ω) − eν(ω)
‖φ(n,ω)P2(ω)x‖

≤ D(ω)‖φ(n,ω)P2(ω)x‖
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from where we obtain that (19) is true. Further, (14) implies that

+∞∑

k=n

eξ(ω)(k−n)N (θnω)−1‖φ(k,ω)P3(ω)x‖

≤ ‖φ(n,ω)P3(ω)x‖
+∞∑

k=n

e(ξ(ω)−γ(ω))(k−n)

= eγ(ω)

eγ(ω) − eξ(ω)
‖φ(n,ω)P3(ω)x‖

≤ D(ω)‖φ(n,ω)P3(ω)x‖

from where we obtain that (20) holds. Finally, using (17) one can check that

n∑

k=0

eη(ω)(k−n)N (θkω)−1‖φ(k,ω)P3(ω)x‖

≤ ‖φ(n,ω)P3(ω)x‖
n∑

k=0

e(η(ω)−δ(ω))(k−n)

= ‖φ(n,ω)P3(ω)x‖e(δ(ω)−η(ω))n e
(η(ω)−δ(ω)(n+1)

eη(ω)−δ(ω) − 1

= eη(ω)

eη(ω) − eδ(ω)
‖φ(n,ω)P3(ω)x‖

≤ D(ω)‖φ(n,ω)P3(ω)x‖

which provides that (21) is also satisfied. Hence, the pair (θ,P) admits a tempered
exponential trisplitting of Datko type.

Sufficiency. Let (k,ω, x) ∈ Z+ × Ω × X. From (18) for n = 0, we have that

e−μ(ω)k‖φ(k,ω)P1(ω)x‖ ≤ N (ω)D(ω)‖P1(ω)x‖

so (2) is satisfied. In a similar manner using (20), we obtain

eξ(ω)k‖φ(k,ω)P3(ω)x‖ ≤ N (ω)D(ω)‖P3(ω)x‖

hence (4). Now, let (n,ω, x) ∈ Z+ × Ω × X. For k = 0 from (19), we deduce that

eν(ω)n‖P2(ω)x‖ ≤ N (ω)D(ω)‖φ(n,ω)P2(ω)x‖

so (3) is true. Finally, making use of (21) one sees that

e−η(ω)n‖P3(ω)x‖ ≤ N (ω)D(ω)‖φ(n,ω)P3(ω)x‖
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which conclude that (5) holds. Thus, we may conclude that the pair (θ,P) admits a
tempered exponential trisplitting. This completes the proof.
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On q-Laplace Transforms

H. El-Metwally, F. M. Masood, Radwan Abu-Gdairi, and Tareq M. Al-shami

Abstract In this paper, we are concerned about q-Laplace transform which is
expected to play a similar role in q-difference analysis as the Laplace transform
in continuous analysis or Z transform in difference analysis, especially, in solving
q-difference equations.

Keywords q-Laplace transforms · q-difference equations

1 Introduction

Quantum calculus, sometimes called calculus without limits, is equivalent to tradi-
tional infinitesimal calculus without the notion of limits. It is defined as “q-calculus”,
where q stands for quantum. In q-calculus, we are looking for q-analogues of math-
ematical objects that have the original object as limits when q tends to 1.

The subject of q-calculus started appearing in the nineteenth century in intensive
works especially by Jackson [13], Carmichael [5], Mason [16], Adams [2], Trjitzin-
sky [23], and other authors such as Poincare, Picard, and Ramanujan.

The q-difference has many applications in different mathematics, such as orthog-
onal polynomials [12], fractal geometry [9, 10], statistical physics [24], quantum
mechanics, number theory, and other sciences including mechanics, quantum the-
ory, and theory of relativity [4].
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Laplace transforms have been widely used in mathematical physics and applied
mathematics. The theory of the Laplace transform is well known by Sneddon [22],
and its generalization was considered by many authors such as Zemanian [25], Rao
[20], and Saxena [17–19]. Various existence conditions and a detailed study about
the range and invertibility were studied by Rooney [21].

In this paper,we present somedefinitions, theories, and properties of the q-Laplace
transform of some elementary functions such that we need to solve some q-difference
equations with some examples.

2 Preliminaries

In this section, we recall the main concepts and properties of q-Laplace transforms
which represent an extension of their counterparts via classical Laplace transforms.
Then, we list some q-Laplace transforms of some elementary functions.

2.1 Fundamental Concepts of q-Calculus

Definition 1 We define the q-Laplace transformation as a function

F(s) = £q{ f (t)} =
∫ +∞

0
e−st
q−1 f (t)dqt, s = p + iσ ∈ C, (1)

and we denote f (t) �q F(s). Here, f (t) is denoted as q-original of F(s), while
F(s) is denoted as the q-formimag of f (t) by the q-Laplace transformation [1].

Let us recall some basic concepts of q-calculus introduced in published literature
[4, 6, 8, 11, 13–15].

The shifted factorial (m)n is defined by

(m; q)0 = 1,

(m; q)n = (1 − m)(1 − qm)(1 − q2m)(1 − q3m) . . . (1 − qn−1m)

=
n−1∏
k=0

(1 − qkm), n ∈ N .

A complex number m is defined by

[m]q = 1 + q + q2 + · · · + qm−1

= 1 − qm

1 − q
, q ∈ C − {1}; m ∈ C,
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and the factorial function is

[m]q ! = [1]q [2]q [3]q . . . [m]q
=

m∏
n=1

[n]q , q �= 1; n ∈ N, 0 ≤ q ≤ 1.

The q-binomial coefficient

[
m
k

]
q

is defined by

[
m
k

]
q

= [m]q !
[r ]q ![m − r ]q ! , r = 0, 1, 2, . . .m.

The function (x + y)m is defined as

(x + y)mq =
m∑

r=0

[
m
r

]
q

qr(r−1)/2xm−ryr ; m ∈ N.

The exponential function is defined as

etq =
∞∑
k=0

t k

[k]q ! , 0 < |q| < 1 .

The functions etq and e−t
q−1 satisfy

etq e
−t
q−1 = 1.

The q-derivative Dq f is defined as

Dq f (t) = f (qt) − f (t)

qt − t
, 0 < |q| < 1,

Dq( f g)(t) = g(qt)Dq f (t) + f (t)Dqg(t)

= f (qt)Dqg(t) + g(t)Dq f (t),

and

Dq

(
f

g

)
(t) = g(t)Dq f (t) − f (t)Dqg(t)

g(qt)g(t)
.
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The q-integral

∫ t

a
f (u)dqu =

∞∑
k=0

(1 − q)qk
[
t f

(
tqk

) − a f
(
qka

)]
, t ∈ [a, b],

and for a = 0, we obtain

Iq f (t) =
∫ t

0
f (u)dqu =

∞∑
k=0

t (1 − q)qk f
(
tqk

)
,

provided the series converges. Also

∫ b

a
f (t)dqt =

∫ b

0
f (t)dqt −

∫ a

0
f (t)dqt, a ∈ [0, b].

Similarly

I 0q f (t) = f (t), I nq f (t) = Iq I
n−1
q f (t), n ∈ N.

Integration by parts is given by

∫ b

a
f (t)Dqg(t)dqt = [ f g]ba −

∫ b

a
g(qt)Dq f (t)dqt.

2.2 Main Properties of q-Laplace Transforms

Herein, we list the ten basic properties of q-Laplace transforms. 1. Scaling:

£q{α f (t)} = α£q{ f (t)}, α ∈ R.

2. Linearity:

£q{α f (t) + βg(t)} = α£q{ f (t)} + β£q{g(t)}, α, β ∈ R.

3. Substitution:
e−st+s0t
q−1 estq f (t) �q F(s − s0). (2)

4. Translation: Consider

η(t) =
{
0, t < 0,
1, t ≥ 0.

it is clear that f (t) = f (t)η(t) for t ≥ 0. Hence, we have
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£q { f (t − t0)} =
∫ +∞

t0

e−st
q−1 f (t − t0) η (t − t0) dqt.

Supposing t − t0 = t , we get

£q { f (t − t0)} =
∫ +∞

0

t + t0
t

estq e
−s(t+t0)
q−1 f (t)dqt

= e−st0
q−1 £q

{
t + t0
t

est0q estq e
−s(t+t0)
q−1 f (t)

}
.

5. Transform of derivatives

Dn
q f (t) �q

sn

qn
F(s) −

n−1∑
j=0

(
s

q

)n−1− j

D j
q f (0). (3)

6. Derivative of transforms

(−t)nq
−n
2 (n+3) f (tq−n) �q Dn

q,s F(s). (4)

7 . Transform of tn f (t) is given by
(i) tn f (t) �q (−1)nDn

q−1,s(F(s)),

(ii) tn f (t) �q (−1)nq− n(n+1)
2 Dn

q (F(sq−n)).

8. Transform of integrals

t∫

0

f (t)dqt �q q
F(s)

s
.

9. Integral of transforms.

∞∫

s

F(s)dqt �q q
f (qt)

t
. (5)

This formula is especially useful in computing infinite integrals. Indeed, let s → 0
in (5), then

∞∫

0

F(s)dqt = q

∞∫

0

f (qt)

t
dq t = q

∞∫

0

f (t)

t
dq t.
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10. Product of transforms

f (t) ∗q g(t) �q £q{ f (t)}£q{g(t)} = F(s)G(s). (6)

2.3 q-Laplace Transform of Some Elementary Functions

Inwhat follows,we provide someq-Laplace transformof some elementary functions.
1. If f (t) = 1, then

F(s) �q
q

s
.

2. If f (t) = t , then

F(s) �q
q2

s2
.

3. If f (t) = tn , then

tn �q [n]q !
(q
s

)n+1
.

4. If f (t) = eαt
q , since eαt

q =
∞∑
k=0

αn tn

[n]q ! , then

F(s) �q
q

s − qα
, |s| > |αq| . (7)

5. If f (t) = eαt
q−1 , since eαt

q−1 =
∞∑
n=0

αn tn

[n]q−1 ! , then

F(s) �q
q

s

∞∑
n=0

q
n
2 (n−1)

(qα

s

)n
.

6. If f (t) = cosq αt = eiαtq +e−iαt
q

2 , then

F(s) �q
qs

s2 + q2α2
. (8)

7. If f (t) = sinq αt = eiαtq −e−iαt
q

2i , then

F(s) �q
q2α

s2 + q2α2
. (9)
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8. If f (t) = coshq αt = eαt
q +e−αt

q

2 , then

F(s) �q
q2α

s2 + q2α2
. (10)

9. If f (t) = sinhq αt = eαt
q −e−at

q

2 , then

F(s) �q
q2α

s2 − q2α2
. (11)

10. If f (t) =
∞∑
k=0

αk tk , then

F(s) �q
q

s

∞∑
k=0

αk[k]q !
(q
s

)k
.

3 Applications of q-Laplace Transforms to Solve Some
q-Difference Equations

In most cases, the search for the q-origin of a given q-image is performed using the
results of the basic primitive function transform along with the application of the
properties of the q-Laplace transform.

(Note: We put £−1
q {F(s)} = f (t), and this is an inverse correspondence of q-

Laplace transform.)

Theorem 1 If the q-image of the unknown origin of q could be written in an integer
series of powers 1

s of the form

F(s) =
∞∑
j=0

α j s
− j−1, (12)

(this series is convergent to F(s) for |s| > R, where R = limn→∞
∣∣∣ αn+1

αn

∣∣∣ �= ∞),

then the q-original f (t) is given by the formula

f (t) =
∞∑
k=0

αk

qk+1[k]q ! t
k . (13)

Example 1 Find the inverse of F(s) = 1
s−s0

.
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Solution. We have

F(s) =
∞∑
k=0

sk0s
−k−1.

Hence,

f (t) =
∞∑
k=0

sk0
[k]q !sk+1

t k = 1

q

∞∑
k=0

(s0q−1t)k

[k]q ! = q−1es0q
−1t

q .

As Laplace transform is widely applied in solving differential and difference
equations, the q-Laplace transform is expected to play the same role but now in
q-difference equations. The principle lying behind is always the same:

1.Consider a k−order linear constant coefficient q-difference equation,with initial
conditions

c0D
k
qy(t) + c1D

k−1
q y(t) + · · · + ck−1Dqy(t) + cky(t) = g(t), (14)

y(0) = y0, Dqy(0) = y1, . . . , Dk−1
q y(0) = yk−1,

by using q-Laplace transformon both sides of the equation and then use the inverse
q-Laplace transform to find the unknown function y(t).

For example, consider the case of the second order

c0D
2
qy(t) + c1Dqy(t) + c2y(t) = g(t), (15)

y(0) = y0, Dqy(0) = y1.

Let y(t) �q Y (s), g(t) �q G(s), and using (3), then

Dqy(t) � q
s

q
Y (s) − y(0),

D2
qy(t) � q

(
s

q

)2

Y (s) − s

q
y(0) − Dqy(0). (16)

Loading (16) in (15), one gets

c0

((
s

q

)2

Y (s) − s

q
y(0) − Dqy(0)

)
+ c1

(
s

q
Y (s) − y(0)

)
+ c2Y (s) = G(s),

(
c0

(
s

q

)2

+ c1
s

q
+ c2

)
Y (s) − c0y0

s

q
− c0y1 − c1y0 = G(s),
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then

Y (s) = G(s) + c0y0
s
q + c0y1 + c1y0

c0
(

s
q

)2 + c1
s
q + c2

. (17)

The remaining task consists in finding the express version of y(t) = £−1
q {Y (s)}.

Example 2 Find the q-original of

F(s) = 1

s(s2 − 1)(s2 + 4)
. (18)

Solution. Since

1

s(s2 − 1)(s2 + 4)
= 1

s(s − 1)(s + 1)(s2 + 4)
,

then

F(s) = 1

s(s2 − 1)(s2 + 4)
=

−1
4

s
+

1
10

s − 1
+

1
10

s + 1
+

−1
40

s − 2i
+

1
40

s + 2i
,

and by using the inverse q-Laplace transform we obtain

f (t) = £−1
q {F(s)}

= £−1
q

{ −1
4

s
+

1
10

s − 1
+

1
10

s + 1
+

−1
40

s − 2i
+

−1
40

s + 2i

}

= −1

4
£−1
q

{
1

s

}
+ 1

10
£−1
q

{
1

s − 1

}
+ 1

10
£−1
q

{
1

s + 1

}
− 1

40
£−1
q

{
1

s − 2i

}
+ 1

40
£−1
q

{
1

s + 2i

}

= −1

4

1

q
+ 1

10

1

q
eq

−1t
q + 1

10

1

q
e−q−1t
q − 1

40

1

q
e2iq

−1 t
q − 1

40

1

q
e−2iq−1t
q .

Example 3 Using the q-Laplace transform, solve the equations

(I ) D2
qy(t) + y(t) = 0, (19)

y(0) = 1, Dqy(0) = 0.

(I I ) D2
qy(t) − y(t) = 0, (20)

y(0) = 0, Dqy(0) = 1.
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(I I I ) D2
qy(t) − 3Dqy(t) + 2y(t) = 0, (21)

y(0) = 0, Dqy(0) = 1.

Solution.
(I) Using (17) and the data in (19), we get

Y (s) = qs

s2 + q2
,

which by (8) with w = 1 gives y(t) = cosq t .
(II) Similarly, using (17) and the data in (20), we get

Y (s) = q2

s2 − q2
,

which by (11) with w = 1 gives y(t) = sinhq t.
(III) Using (17) and the data in (21), we have

Y (s) = 1(
s
q

)2 − 3 s
q + 2

= 1(
s
q − 2

) (
s
q − 1

)

= q

s − 2q
− q

s − q
,

which by (7) with a = 2 and a = 1 gives

y(t) = e2tq − etq .

Example 4 Solve the q-difference equation

D2
qy(t) + Dqy(t) − 2y(t) = e−t , (22)

y(0) = 0, Dqy(0) = 1.

Solution. Using (17), we have

(
s

q

)2

Y (s) − s

q
y(0) − Dqy(0) + s

q
Y (s) − y(0) − 2Y (s) = q

s + q
,

and by using the data in (22), we get
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Y (s) = 1(
s
q + 1

) (
s
q − 1

) =
−1
2

s
q + 1

+ 1
s
q − 1

=
−1
2 q

s + q
+ q

s − q
,

then

y(t) = £−1
q {Y (s)} = −1

2
£−1
q

{
q

s + q

}
+ £−1

q

{
q

s − q

}

y(t) = −1

2
e−t
q + etq .

Example 5 Solve the system of q-difference equations

⎧⎨
⎩

Dqt (t) = t (t) + 2y(t),
Dqy(t) = 2t (t) + y(t) + 1,

t (0) = y(0) = 0.
(23)

Solution. Using (17), we have

⎧⎪⎨
⎪⎩

s

q
T (s) − t (0) = T (s) + 2Y (s),

s

q
Y (s) − y(0) = 2T (s) + Y (s) + q

s
,

and by using the data in (23), we get

⎧⎪⎪⎨
⎪⎪⎩
T (s) = 2q

s − q
Y (s),

Y (s) = q2

s(s − q)
+ 2q

s − q
t (s),

(24)

Now inputting the first equation in (24) in the second equation, we obtain

Y (s) = q2

s(s − q)
+ 4q2

(s − q)2
Y (s)

=⇒ Y (s) = q2(s − q)

s(s2 − 2sq + q2)
= q2(s − q)

s(s − 3q)(s + q)

Y (s) = 1

3

q

s
+ 1

6

q

s − 3q
− 1

2

q

s + q
,

y(t) = 1

3
+ 1

6
e3tq − 1

2
e−t
q .
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Similarly, inputting the first equation in (24) Y (s) in the first equation, we obtain

T (s) = 2q3

s(s − 3q)(s + q)
= −2

3

q

s
+ 1

6

q

s − 3q
+ 1

2

q

s + q
,

x(t) = −2

3
+ 1

6
e3tq + 1

2
e−t
q ,

then, the general solution of (23) is

x(t) = −2

3
+ 1

6
e3tq + 1

2
e−t
q ,

y(t) = 1

3
+ 1

6
e3tq − 1

2
e−t
q .
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An Effective Procedure for Solving
Volterra Integro-Differential Equations

N. R Anakira, G. F. Bani-Hani, and O. Ababneh

Abstract In this paper, accurate solutions close to the exact one are obtained success-
fully based on the homotopy perturbation method (HPM), Laplace transformation
and Pade approximant to be an effective procedure for solving linear and nonlinear
integral equations of Volterra kind. The obtained results reveal that the new hybrid
procedure is powerful, effective and reliable for solving this kind of differential
equation.

Keywords Integral equations · HPM procedure · Series expansion · Laplace
transform · Pade approximant

1 Introduction

Many engineering and physical problems are mathematically formulated in the form
of integral equations of Volterra kind, such as diffusion and concrete problems in
mechanics, heat conduction, fluid dynamics and so on of other physical applications
[1–4].

To obtain the solution of this type of differential equation, several numerical
procedures have been used and employed, for example, Maleknejad et al. [5–7]
employ a numerical procedure based on a wavelet, modified block plus function
and Bernstein’s approximation method to obtain a solution of the first kind Volterra
integral equation. Babolian andMasouri [8] used a direct procedure to solve Volterra
integral equation. Recently, various numerical procedures were being employed and
developed to find the solution of integral equations of Volterra kind; for more details,
see [8–12].
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This study aims to improve the accuracy of the HPM procedure by applying
Laplace transformation to the first few terms of the HPM series approximate solu-
tion and then converting the transformed series into a meromorphic function by
applying the Pade approximants, and lastly by applying the inverse of the Laplace
transformation, we get the required solution to the given problem with high perfor-
mance. This method is effective, and doesn’t need big efforts to get accurate results
with high precision.

2 Description of Research Methods

In this section, we present the basic idea of the research methods.

2.1 Analysis of the Homotopy Perturbation Method (HPM)

To illustrate the basic idea of HPM procedure [13–17], we consider the following
nonlinear integral equation:

A(u) − f (r) = 0, r ∈ Ω (1)

where A is a general integral operator, B is a boundary operator, f (r) is a known
analytic function and � is the boundary of the domain Ω . The operator A can be
generally divided into two parts L and N , where L is linear, whereas N is nonlinear.
Therefore, Eq. (1) can be rewritten as follows:

L(u) − N (u) − f (r) = 0. (2)

He [4] constructed a homotopy v : Ω[0, 1] → R which satisfies

H(v; p) = L(v) − L(v0) + pL(v0) + p[N (v) − f (r)] = 0 (3)

or

H(v; p) = (1 − p)[L(v) − L(v0)] + p[A(v0) − F(r)] = 0, (4)

where r ∈ Ω, p ∈ [0, 1] is called homotopy parameter, and v0(x) is an initial
approximation of Eq. (1). Hence, it is obvious that

H(v; 0) = L(u) − L(v0) = 0, H(v; 1) = A(v) − F(r) = 0, (5)

and the changing process of p from 0 to 1 is just that of H(v, p) from L(u) − L(v0)

to A(v) − F(r). In topology, this is called deformation, where L(u) − L(v0) and
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A(v) − F(r) are called homotopic. Applying the perturbation technique [16], due to
the fact that 0 ≤ p ≤ 1 can be considered as a small parameter, we can assume that
the solution of Eq. (4) or (5) can be expressed as a series in p, as follows:

v = v0 + pv1 + p2v2 + p3v3 + · · · (6)

where, when p → 1, Eq. (4) or Eq. (5) corresponds to Eq. (3) and becomes the
approximate solution of Eq. (1). i.e.,

u = lim
p→1

v = v0 + v1 + v2 + v3 + · · · (7)

2.2 Padé Approximation

Padé approximant [18, 19] is the ratio of two polynomials constructed from the
coefficients of the Taylor series expansion of a function y(x).

The [L/M] Padé approximants to a function y(x) are given by

[
L

M

]
= PL(x)

QM(x)

where PL(x) is a polynomial of degree at most L and QM(x) is a polynomial of
degree at most M . The formal power series

y (x) =
∞∑
i=1

ai x
i ,

y (x) − PL (x)

QM (x)
= O

(
x L+M+1) (8)

determine the coefficients of PL(x) and QM(x) by the equation. Since we can clearly
multiply the numerator and denominator by a constant and leave [L/M] unchanged,
then we impose the normalization condition

QM (0) = 1. (9)

Finally, we require that PL(x) and QM(x) have no common factors. If we write the
coefficient of PL(x) and QM(x) as

{
PL (x) = p0 + p1x + p2x2 + · · · + pLx L

QM (x) = q0 + q1x + q2x2 + · · · + qMxM (10)
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then, by (9) and (10), wemaymultiply (8) by QM(x), which linearizes the coefficient
equations. We can write out (8) in more detail as

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

aL+1 + aLq1 + · · · + aL−M+1qM = 0
aL+2 + aL+1q1 + · · · + aL−M+2qM = 0

.

.

aL+M + aL+M−1q1 + · · · + aLqM = 0

(11)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

a0 = p0
a0 + a0q1 = p1

a2 + a1q1 + a0q2 = p2
.

.

aL + aL−1q1 + · · · + a0qL = pL .

(12)

To solve these equations,we start with equation (11), which is a set of linear equations
for all the unknown q ′s. Once the q ′s are known, then Eq. (12) gives an explicit
formula for the unknown p′s, which complete the solution.

If Eqs. (12) and (11) are non-singular, then we can solve them directly and obtain
Eq. (13) [20], where Eq. (13) holds, and if the lower index on a sum exceeds the
upper, the sum is replaced by zero:

[
L

M

]
=

det

⎡
⎢⎢⎢⎢⎢⎢⎣

aL−M+1

.

.

.

aL∑L
j=M a j−Mx j

aL−M+2

.

.

.

aL+1∑L
j=M−1 a j−M+1x j

...

.

.

.

...

...

aL+1

.

.

.

aL+M∑L
j=0 a j x j

⎤
⎥⎥⎥⎥⎥⎥⎦

det

⎡
⎢⎢⎢⎢⎢⎢⎣

aL−M+1

.

.

.

aL
xM

aL−M+2

.

.

.

aL+1

xM−1

...

.

.

.

...

...

aL+1

.

.

.

aL+M

1

⎤
⎥⎥⎥⎥⎥⎥⎦

.

(13)

To obtain diagonal Padé approximants of different order such as [2/2], [4/4] or [6/6],
we can use the symbolic calculus software, Mathematica.

Note that typically the Padé approximant, obtained from a partial Taylor sum, is
more accurate than the latter. However, the Padé, being a rational expression, has
poles, which are not present in the original function. It is a simple algebraic task
to expand the form of an [N , M] Padé in a Taylor series and compute the Padé
coefficients by matching with the above [20].
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3 Numerical Examples

To illustrate the effectiveness of the new HPM procedure, we shall consider some
examples of Volterra integral equations.

3.1 Example 1

Consider the following linear Volterra integral equation of first order taken from
Wazwaz 2013 [21]:

u′(x) = 1 + 1

x2
−

∫ x

0
u(t)dt, u(0) = 1. (14)

To solve this problem using the presented procedure constructed in the previous
section, we define the linear and nonlinear operators as given below

L[v(x, p)] = dv(x, p)

dx
,

N [v(x; p)] = dv(x, p)

dx
− 1 − x2

2
+

∫ x

0
v(t; p)dt. (15)

Then, we construct a homotopy equation in the form

(1 − p)L[v(x; p)] = H(q)

(
dv(x, p)

dx
− 1 − x2

2
+

∫ x

0
v(t; p)dt

)
. (16)

Then the zeroth-order problem is given by

u′
0(x) = 0, u0(0) = 1 (17)

which has the solution

u0(x) = 1. (18)

The first-order problem with its initial conditions is given in the following form:

u′
1(x) = h

(
− x2

2
+ x − 1

)
, u1(0) = 0 (19)

which has the following solution:

u1(x) = −1

6
hx

(
x2 − 3x + 6

)
. (20)
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The second-order problem with its initial conditions is given in the following form
along with its solution:

u′
2(x) = − 1

24
h2x4 + h2x3

6
− h2x2 + h2x − h2 − hx2

2
+ hx − h (21)

which has the following solution:

u2(x) = − 1

120
hx

(
h

(
x4 − 5x3 + 40x2 − 60x + 120

) + 20
(
x2 − 3x + 6

))
.(22)

The third-order problem with its initial conditions is given in the following form
along with its solution:

u′
3(x) = − 1

720
h3x6 + h3x5

120
− h3x4

8
+ h3x3

3
− 3h3x2

2
+ h3x

−h3 − h2x4

12
+ h2x3

3
− 2h2x2

+2h2x − 2h2 − hx2

2
+ hx − h), u3(x)

′ = 0, (23)

which has the following solution:

u3(x) = − h3x7

5040
+ h3x6

720
− h3x5

40
+ h3x4

12
− h3x3

2
+ h3x2

2
− h3x

−h2x5

60
+ h2x4

12
− 2h2x3

3
+ h2x2 − 2h2x − hx3

6
+ hx2

2
− hx . (24)

Following the same procedure up to the sixth-order problem, and by considering
h = −1, we have the approximate solution

˜u(x) = − x13

6227020800
+ x12

479001600
− x10

3628800
+ x8

40320

− x6

720
+ x4

24
− x2

2
+ x + 1 (25)

which yields the exact solution (28) in the Limit of infinity terms of theHPMapproxi-
mate solution.Numerical results resulting from6 terms ofHPMapproximate solution
are presented in Table1. In order to improve the accuracy and effectiveness of the
HPM procedure, we will use the Laplace transform of the first five terms of the HPM
approximate series solution (25), which yields

L ˜u(x) = − 1

s7
+ 1

s5
− 1

s3
+ 1

s2
+ 1

s
. (26)
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Table 1 Comparison of exact solution and OHAM solution for Example 1

x Exact solution HPM approximate
solution

Absolute error

0.0 1.00000 1.00000 0

0.2 1.18007 1.18007 0

0.4 1.32106 1.32106 1.33 × 10−15

0.6 1.42534 1.42534 2.00 × 10−13

0.8 1.49671 1.49671 8.33 × 10−12

1.0 1.54030 1.54030 1.49 × 10−10

For simplicity, consider s = 1
z ; we have

L ˜u(x) = z + z2 − z3 + z5 − z7. (27)

Now, we use the Pade approximants of [ 44 ] = z+z2+z4

1+z2 and then using z = 1
s , and

applying the inverse Laplace transform we obtain the exact solution

u(x) = x + cos(x). (28)

3.2 Example 2

The second problem in this section is the following second-order linear Volterra
integral equation with it is initial condition taken from Wazwaz 2013 [21]:

u′′(x) = 1 +
∫ x

0
(x − t)u(t)dt, u(0) = 1, u′(0) = 0. (29)

Following the same procedure applied in the previous example, we obtained the
sixth-order of the HPM approximate solution:

˜u(x) = 1 + x2

2
+ x4

24
+ x6

720
+ x8

40320
+ x10

3628800
+ x12

479001600
+ x14

87178291200

+ x16

20922789888000
+ x18

6402373705728000
+ x20

2432902008176640000

+ x22

1124000727777607680000
+ x24

620448401733239439360000
(30)

which yields the exact solution u(x) = cosh(x), in the Limit of infinity terms of the
order of HPM approximate solution. Numerical results resulting from sixth order of
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Table 2 Comparison of exact solution and OHAM solution for Example 1

x Exact solution HPM approximate
solution

Absolute error

0.0 1.02007 1.02007 0

0.2 1.02007 1.02007 0

0.4 1.08107 1.08107 1.33 × 10−15

0.6 1.18547 1.18547 2.00 × 10−13

0.8 1.33743 1.33743 8.33 × 10−12

1.0 1.54308 1.54308 1.49 × 10−10

HPM approximate solution are presented in Table2. In order to improve the accuracy
and effectiveness of the HPM procedure, we will use the Laplace transform of the
first five terms of the HPM approximate series solution (28), which yields

L ˜u(x) = − 1

s9
+ 1

s7
+ 1

s5
+ 1

s3
+ 1

s
. (31)

For simplicity, consider s = 1
z ; we have

L ˜u(x) = z + z3 + z5 + z7 + z9. (32)

Now,we use the Pade approximants of [ 44 ] = z
1−z2 and then using z = 1

s , and applying
the inverse Laplace transform we obtain the exact solution u(x) = x + cos(x).

4 Results and Dissections

Numerical results are obtained using several terms of HPM approximate solutions
formulated in the tables. The approximate results obtained reveal that the HPM pro-
cedure is a powerful and effective procedure for solving this kind of differential equa-
tion, and the solution converges to the exact solutions in the limit of infinity terms. To
improve the accuracy of the HPM procedure and obtain the exact solution using only
a few terms of the HPM approximate solution, we construct an alternative procedure
which modifies the series approximate solution by applying Laplace transformation
to the truncated series obtained by HPM, then convert the transformed series into a
meromorphic function by Pade approximants, and finally apply the inverse Laplace
transform to obtain the exact solutions for the given problem.
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5 Conclusion

Based on HPM, a new procedure was proposed for different classes of integral
equations of Volterra kind. The reliability, effectiveness and power of this procedure
were proved throughout obtaining the exact solutions of the given test problems using
only a few terms of the HPM truncated series approximate solutions.
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New Estimations for Zeros
of Polynomials Using Numerical Radius
and Similarity of Matrices

Saeed Alkhalely, Aliaa Burqan, and Mowafaq Muhammed Al-Kassab

Abstract The applications of the estimation for the zeros of polynomials are impor-
tant in many areas of sciences such as signal processing, control theory, communica-
tion theory, coding theory, cryptography, etc. Finding the exact zeros of polynomials
of higher order is not an easy task and there is no standard method to find them. In
this article, we introduce some upper bounds for zeros of monic polynomials with
numerical coefficients based on some numerical radius inequalities and similarity of
matrices, we also introduce some numerical examples to show that our bounds are
better than some existing estimations. Also, we give a new upper bound for zeros of
polynomials with matrix coefficients by using the similarity of matrices.

Keywords Monic polynomial · Frobenius companion matrix · Similar matrices ·
Numerical radius

1 Introductions
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no closed form or stander method to find them. Therefore, the researchers directed to
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estimate the zeros of polynomials by using the Frobenius companion matrix corre-
sponding to themonic polynomialwhere the eigenvalues of the companionmatrix are
the zeros of the polynomial. Over the years, various mathematicians have estimated
the zeros of polynomials using various techniques. A fewof them are displayed below
where λ is a zero of the monic polynomial p(z) = zn + anzn−1 + · · · + a2z + a1.

1. Cauchy bound (1985, [6])

|λ| ≤ 1 + max{|a1|, |a2|, . . . , |an|}.

2. Montel bound (1985, [6])

|λ| ≤ max
{
1,
∑n

i=1
|ai |

}
.

3. Carmichael and Mason bound (1985, [6])

|λ| ≤ (
1 + |a1|2 + |a2|2 + · · · + |an|2

) 1
2 .

4. Fujii and Kubo bound (1993, [3])

|λ| ≤ cos
π

n + 1
+ 1

2

⎛
⎝
√√√√

n∑
i=1

|ai |2 + |an|
⎞
⎠.

5. Kittaneh bounds (2003, [7])

1. |λ| ≤ 1

2

⎛
⎜⎜⎝|an| + 1 +

√√√√√(|an| − 1)2 + 4

√√√√n−1∑
i=1

|ai |2
⎞
⎟⎟⎠,

2. |λ| ≤ 1

2
(|an| + cos

π

n
+
√(

|an| − cos
π

n

)2 + (|an−1| + 1)2 +
∑n−2

i=1
|ai |2.

6. Bhunia et al. bounds (2020, [2])
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1. |λ| ≤ 1

2
(|an| + cos

π

n
+
√(

|an| − cos
π

n

)2 +
∑n−1

i=1
|ai |2 + 1 + α,

where α = |an−1| +
√∑n−1

i=1 |ai |2.

2. |λ| ≤
√

|an|2 + 1

2
α

(
|an| + 1

2
α

)
+
√
cos2

π

n
+ 1

2

(
cos

π

n
+ 1

2

)
,

where α =
√∑n−1

i=1 |ai |2.
In this paper, we present some numerical radius inequalities to obtain new bounds

for zeros of polynomials. Moreover, we utilize the similarity of matrices to get new
upper bounds for the zeros of polynomials with numerical and matrix coefficients.
The main results are given in Sects. 2 and 3 includes bounds for zeros of polynomials
using similarity of matrices, and the bounds for the zeros of polynomials with matrix
coefficients using similarity of matrices are presented in Sect. 4.

2 Main Results

Let Mn denote the algebra of all n × n complex matrices. For A ∈ Mn, let
σ(A), r(A), w(A) and ‖A‖ denote the spectrum, the spectral radius, the numerical
radius, and the spectral normof A, respectively. It is well known that r(A) ≤ w(A) ≤
‖A‖. Consider the monic polynomial of degree n (n > 2):

p(z) = zn + anz
n−1 + an−1z

n−2 + · · · + a2z + a1,

where the coefficients ai ∈ C for i = 1, 2, . . . , n, and a1 �= 0.
The Frobenius companionmatrix of p,C(p), associatedwith the polynomial p(z)

is given by

C(p) =

⎡
⎢⎢⎢⎢⎢⎢⎣

−an −an−1 · · · −a2 −a1
1 0 · · · 0 0

0 1
. . . 0 0

...
...

. . .
...

...

0 0 . . . 1 0

⎤
⎥⎥⎥⎥⎥⎥⎦

n×n

.

It is well known that the eigenvalues of C(p) are exactly the zeros of p(z). Using
the fact r(C(p)) ≤ w(C(p)) and since |λ| ≤ r(C(p)) for any λ ∈ σ(c(p)), we get
|λ| ≤ w(C(p)).
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Now to display our first new upper bounds we need the following two lemmas,
see [3, 7].

Lemma 2.1 Let ai ∈ C for each i = 1, 2, . . . , n. Then.

w

⎛
⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎣

a1 a2 · · · an
0 0 · · · 0
0 0 · · · 0
...

... · · · ...

0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎠

= 1

2

⎛
⎝|a1| +

√√√√
n∑

i=1

|ai |2
⎞
⎠.

Lemma 2.2 Let A ∈ Mn. Then.

w(A) ≤ 1

2
‖|A| + ∣∣A∗∣∣‖.

Theorem 2.1 Let λ be a zero of p(z) = zn + anzn−1 + · · · + a2z + a1. Then.

|λ| ≤ max{|a1|, 1} + 1

2

⎛
⎝|an| +

√√√√
n∑

i=2

|ai |2
⎞
⎠ = S1

Proof Consider the Frobenius companion matrix of p(z),

C(p) =

⎡
⎢⎢⎢⎢⎢⎢⎣

−an −an−1 · · · −a2 −a1
1 0 · · · 0 0

0 1
. . . 0 0

...
...

. . .
...

...

0 0 · · · 1 0

⎤
⎥⎥⎥⎥⎥⎥⎦

n×n

.

Write C(p) as a sum of two matrices such as C(p) = A + B,

where A =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0 −a1
1 0 · · · 0 0

0 1
. . . 0 0

...
...

. . .
...

...

0 0 · · · 1 0

⎤
⎥⎥⎥⎥⎥⎥⎦
and B =

⎡
⎢⎢⎢⎢⎢⎢⎣

−an −an−1 · · · −a2 0
0 0 · · · 0 0

0 0
. . . 0 0

...
...

. . .
...

...

0 0 · · · 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦
.

Then using the property of subadditivity of numerical radius, we have

w(C(p)) ≤ w(A) + w(B)

w(A) can be bounded as
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w(A) ≤ ‖A‖ = max{|a1|, 1},

and Lemma 2.1 yields that

w(B) = 1

2

⎛
⎝|an| +

√√√√
n∑

i=2

|ai |2
⎞
⎠.

Thus,

|λ| ≤ max{|a1|, 1} + 1

2

⎛
⎝|an| +

√√√√
n∑

i=2

|ai |2
⎞
⎠.

In the following, we show with a numerical example that our estimation in
Theorem 2.1 is better than some of the existing estimations.

Example 2.1 Consider the polynomial p(z) = z4 + z3 + 4z2 + z + 1. The upper
bounds for the zeros of this polynomial estimated by different mathematicians are
as given in the following table.

Cauchy 5

Montel 8

Carmichael 4.4721

Bhunia et al. (2) 3.811175

while our bound S1 = 3.62132. This shows that for this example, our bound obtained
in the above theorem is better than all the estimations mentioned above.

Theorem 2.2 Let λ be a zero of p(z) = zn + anzn−1 + · · · + a2z + a1. Then

|λ| ≤ w(p(z)) ≤ 1

2

⎛
⎝max{|a1| + 1, 2} + |an| +

√√√√
n∑

i=2

|ai |2
⎞
⎠ = S2

Proof Consider C(p) associated with p(z)

C(p) =

⎡
⎢⎢⎢⎢⎢⎢⎣

−an −an−1 · · · −a2 −a1
1 0 · · · 0 0

0 1
. . . 0 0

...
...

. . .
...

...

0 0 · · · 1 0

⎤
⎥⎥⎥⎥⎥⎥⎦

n×n

.
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Now, we can write C(p) as a sum of two matrices as in the previous proof

C(p) = A + B,

where A =

⎡
⎢⎢⎢⎢⎢⎢⎣

−an −an−1 · · · −a2 0
0 0 · · · 0 0

0 0
. . . 0 0

...
...

. . .
...

...

0 0 · · · 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦
and B =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0 −a1
1 0 · · · 0 0

0 1
. . . 0 0

...
...

. . .
...

...

0 0 · · · 1 0

⎤
⎥⎥⎥⎥⎥⎥⎦
.

Then using the property of subadditivity of numerical radius, we have

w(C(p)) ≤ w(A) + w(B),

where w(A) = 1
2

(
|an| +

√∑n
i=2

∣∣a j

∣∣2
)

.

Lemma 2.2 gives

w(B) ≤ 1

2
‖|B| + ∣∣B∗∣∣‖.

Now, by the definition of the absolute value of matrices, we have.

|B| = (B∗B)
1
2 =

⎡
⎢⎢⎢⎣

1 0 . . . 0
0 1 . . . 0
...

...
. . .

...

0 0 . . . |a1|

⎤
⎥⎥⎥⎦ and |B∗| = (BB∗)

1
2 =

⎡
⎢⎢⎢⎣

|a1| 0 . . . 0
0 1 . . . 0
...

...
. . .

...

0 0 . . . 1

⎤
⎥⎥⎥⎦.

Thus,

w(B) ≤ 1

2
‖

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

|a1| + 1 0 0 0 . . . 0
0 2 0 0 . . . 0

0 0 2 0 . . .
...

0 0 0 2 . . .
...

...
... 0 0

. . .
...

0 0 . . . 0 0 |a1| + 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

‖ = 1

2
max{|a1| + 1, 2}.

So,

|λ| ≤ 1
2

(
max{|a1| + 1, 2} + |an| +

√∑n
i=2 |ai |2

)
�

In the following example,we shownumerically that our estimation inTheorem2.2
is better than some of the existing estimations.
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Example 2.2 Consider the polynomial p(z) = z4 + z3 + 4z2 + z + 2. The upper
bounds for the zeros of this polynomial estimated by different mathematicians are
shown in the following table.

Cauchy 5

Montel 8

Carmichael 4.7958

while our bound S2 = 3.6213. This shows that for this example, our bound obtained
in the above theorem is better than all estimations mentioned above.

3 Bounds for Zeros of Polynomials Using Similarity
of Matrices

In this section, Consider the monic polynomial of degree n (n > 2):

p(z) = zn + anz
n−1 + an−1z

n−2 + · · · + a2z + a1,

where the coefficients ai ∈ C for i = 1, 2, . . . , n, a1 �= 0 and n is an even number.
Using the similarity of matrices, we give an upper bound for the zeros of p(z),
we know that if A and B are similar, then the spectrum of A and the spectrum
of B are equal, so we consider the matrix (S-compaion matrix) to be similar to
the Frobenius companion matrix which implies that the eigenvalues of companion
matrix are exactly the same as to the eigenvalues of our matrix.

Let K =
[
I I
0 I

]
∈ Mn where I ∈ Mmand n = 2m Then K is an invertible matrix

since and K−1 =
[
I −I
0 I

]
.

Define a matrix S as S = KC(p)K−1.We will call the matrix S by the
S-companion matrix of p(z) which is equal
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S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−an −an−1 −an−2 · · · 1 − a n
2 +1 an − a n

2
an−1 − a n

2
· · · an− n

2 +2 − a2 a n
2 +1 − a1 − 1

1 0 0 · · · 0 0 0 · · · 0 0
0 1 0 · · · 0 0 0 · · · 0 0
0 0 1 · · · 0 0 0 · · · 0 0

0 0 0
. . . 0 0 0 · · · 0 0

.

.

.
.
.
.

.

.

. · · · . . .
.
.
.

.

.

. · · ·
.
.
.

.

.

.

.

.

.
.
.
.

.

.

. · · ·
.
.
.

. . .
.
.
. · · ·

.

.

. −1
.
.
.

.

.

.
.
.
. · · ·

.

.

.
.
.
.

. . . · · ·
.
.
.

.

.

.

.

.

.
.
.
.

.

.

. · · ·
.
.
.

.

.

.
.
.
.

. . .
.
.
.

.

.

.

0 0 0 · · · 0 0 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where −1 occurs in ( n2 + 1)th row.
To establish our new upper bound, we present the following lemmas. The first

lemma can be found in [4], and the second lemma can be found in [5].

Lemma 3.1 Let T = [Ti j ] be an n × n block matrix where Ti j ∈ Mmi×mj and∑n
i=1 mi = n. Then.

w(T ) ≤ 1

2

⎛
⎜⎜⎜⎜⎜⎜⎝

n∑
i=1

w(Tii ) +
√√√√√√√

w2(Tii ) +
n∑

j = 1
i �= j

‖Ti j‖2

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Lemma 3.2 Let hn be the n × n matrix given by hn =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 . . . . . . 0
1 0 . . . . . . 0
... 1

. . .
...

...
...

. . .
. . .

...

0 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎦
.

Then.

w(hn) = cos
π

n + 1
.

Theorem 3.1 let λ be a zero of p(z) = zn + anzn−1 + · · · + a2z + a1.Then.

|λ| ≤ 1

2

(
|an | + cos

π

n − 1
+
√
cos2

π

n − 1
+ 2 +

√
|an |2 + β +

∣∣∣a( n
2+1

) − a1 − 1
∣∣∣2
)

= S3,

where β = ∑n−1
i=( n

2 +2)
|ai |2 +

∣∣∣1 − a( n
2 +1)

∣∣∣
2 + ∑( n

2 −2)
k=0

∣∣∣a(n−k) − a( n
2 −k)

∣∣∣
2
.
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Proof The S-companion matrix can be written as follows:

S =
⎡
⎣
T11 T12 T13
T21 T22 T23
T31 T32 T33

⎤
⎦ where, T11 = [−an], T22 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 . . . . . . 0
1 0 . . . . . . 0
... 1

. . .
...

...
...

. . .
. . .

...

0 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎦

,

T33 = [0], T13 =
[
a( n

2 +1) − a1 − 1
]
, T23 = [0 . . . 0 − 10 . . . 0]t

T12 =
[
−an−1 − an−2 . . . 1 − a( n

2 +1)an − a n
2
an−1 − a n

2
. . . a(n− n

2 +2) − a2
]

T21 = [100 . . . 0]t , T31 = [0], T32 = [0 . . . 001].

Now, the definitions of the numerical radius and the spectral norm with Lemma
3.2 yield that

w(T11) = |an|, w(T22) = cos
π

n − 1
, w(T33) = 0

‖T12‖2 = α; where α = ∑( n
2 −2)

i=0

∣∣∣a(n−i) − a( n
2 −i)

∣∣∣
2 +

∣∣∣1 − a( n
2 +1)

∣∣∣
2 +

∑(n−1)

(i= n
2 +2)

|ai |2

‖T13‖2 =
∣∣∣a( n

2 +1) − a1 − 1
∣∣∣
2
, ‖T21‖2 = ‖T23‖2 = ‖T32‖2 = 1, ‖T31‖2 = 0

Applying Lemma 3.1 we get

w(S) ≤ 1

2

(
|an | + cos

π

n − 1
+
√
cos2

π

n − 1
+ 2 +

√
|an |2 + β +

∣∣∣a( n
2+1

) − a1 − 1
∣∣∣2
)

,

Use the fact |λ| ≤ r(C(p)) = r(S) ≤ w(S) we have

|λ| ≤ 1

2

(
|an | + cos

π

n − 1
+
√
cos2

π

n − 1
+ 2 +

√
|an |2 + β +

∣∣∣a( n
2+1

) − a1 − 1
∣∣∣2
)

.

This completes the proof. �
The following examples show that our estimations in Theorem 3.1 are better than

some existing estimations.

Example 3.1 Consider the polynomial.



470 S. Alkhalely et al.

p(z) = z8 − 30z7 + 1
64 z

6 + 1
16 z

5 + z4 − 30z3 + 1
64 z

2 + 1
16 z + 1.

The upper bounds for the zeros of this polynomial p(z) estimated by different
researchers are shown in the following table.

Carmichael 42.461845

Montel 62.15625

Fujii and Kubo 37.164726

Kittaneh (1) 31.94029

Kittaneh (2) 36.369237

Bhunia et al., (2) 36.54794

while our bound S3 = 31.79726. This shows that for this example, our bound
obtained in the above theorem is better than all the estimations mentioned above.

Example 3.2 We consider the following polynomial.

p(z) = z8 + 1
64 z

6 + 1
16 z

5 + z4 − 4z3 + 1
64 z

2 + 1
16 z + 1.

The upper bounds for the zeros of this polynomial p(z) estimated by different
researchers are shown in the following table.

Cauchy 5

Carmichael 4.35985

Montel 18.0083

while our bound S3 = 3.8507. This shows that for this example, our bound obtained
in the above theorem is better than all the estimations mentioned above.

4 Bounds for the Zeros of Polynomials with Matrix
Coefficients by Using Similarity of Matrices

Consider the monic polynomial

P(z) = zm + Amz
m−1 + Am−1z

m−2 + · · · + A2z + A1

where Ai ∈ Mn(C)∀i = 1, 2, 3, . . . ,m where m is an even number. The Frobenius
companion matrix of P(z) is the nm × nm matrix given by
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C(p) =

⎡
⎢⎢⎢⎢⎢⎢⎣

−Am −Am−1 · · · −A2 −A1

I 0 · · · 0 0

0 I
. . . 0 0

...
...

. . .
...

...

0 0 0 I 0

⎤
⎥⎥⎥⎥⎥⎥⎦

nm×nm

.

To obtain our new bound for the zeros of P(z) consider the matrix

Z =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I 0 · · · 0 I 0 · · · 0
0 I · · · 0 0 I

...
...

. . .
. . .

. . . 0
...

. . .
. . . I

...
. . .

. . . 0
...

. . .
. . .

...

0
. . . I 0

0 · · · · · · 0 0 · · · 0 I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

nm×nm

,

and Z−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I 0 · · · 0 −I 0 · · · 0

0 I · · · 0 0 −I
...

...
. . .

. . .
. . . 0

...
. . .

. . . −I
...

. . .
. . . 0

...
. . .

. . .
...

0
. . . I 0

0 · · · · · · 0 0 · · · 0 I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

nm×nm

.

Define the matrix B as B = ZC(p)Z−1, then B is similar to C(p) which implies
that the eigenvalues of B are exactly the same as the eigenvalues of C(p).

We denote B by the B-companion matrix of P(z) which is equal to
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B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Am −Am−1 −Am−2 · · · I − A m
2 +1 Am − A m

2
Am−1 − A m

2
· · · Am−m

2 +2 − A2 A m
2 +1 − A1 − I

I 0 0 · · · 0 0 0 · · · 0 0

0 I 0 · · · 0 0 0 · · · 0 0

0 0 I · · · 0 0 0 · · · 0 0

0 0 0
.
.
. 0 0 0 · · · 0 0

.

.

.

.

.

.

.

.

. · · ·
.
.
.

.

.

.

.

.

. · · ·
.
.
.

.

.

.

.

.

.

.

.

.

.

.

. · · ·
.
.
.

.
.
.

.

.

. · · ·
.
.
. −1

.

.

.

.

.

.

.

.

. · · ·
.
.
.

.

.

.

.
.
. · · ·

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. · · ·
.
.
.

.

.

.

.

.

.

.
.
.

.

.

.

.

.

.

0 0 0 · · · 0 0 0 0 I 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where −1 in occurs in ( nm2 + 1)th row.
The following lemmas are needed for proving further results involving estimates

for w(C(P)) ([1, 8]).

Lemma 4.1 Let T = [Ti j ] be an n × n block matrix with Ti j ∈ Mmi×m j (C) and∑n
i=1 mi = n. Then.

w(T ) ≤ w
[
ti j
]
where ti j =

[
0 Ti j
Tji 0

]
in particular tii = w(Tii ), i =

1, 2, 3, . . . , n.

Lemma 4.2 Let ln be the n × n block matrix given by

ln =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 1
2 I 0 · · · 0

1
2 I 0 1

2 I
. . .

0 1
2 I 0

. . . 0
...

. . .
. . . 1

2 I
0 0 0 1

2 I 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
. Then the eigenvalue of ln = λi = cos π i

n+1

for i = 1, 2, 3, . . . , n.

Theorem 4.1 Let λ be a zero of the polynomial.

P(z) = zm + Amz
m−1 + Am−1z

m−2 + · · · + A2z + A1.

Then

|λ| ≤ 1

2

(
w(Am) + cos

π

m − 1
+
√

w2(Am) + α + ‖I + A1 − Am
2 +1‖2

+
√
cos2

π

m − 1
+ α + 1 +

√
1 + ‖I + A1 − Am

2 +1‖2
)

,

where α = ∑mn−1
i= mn

2 +2 ‖Ai‖2 + ‖1 − Am
2 +1‖2 + ∑ mn

2 −2
k=0 ‖Amn−k − Amn

2 −k‖2.
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Proof for any two matrices X,Y ∈ Mm let TX,Y =
[
0 X
Y 0

]
.

Applying Lemma 4.1 on the B-companion matrix, we have
w(B) ≤ w(B̃),

where

Using the fact that w

([
0 T
0 0

])
= w

([
0 0
T 0

])
= ‖T ‖

2 , for any matrix T ∈ Mn .

Then partitioning the matrix B̃ as follows:

B̃ =
⎡
⎣
T11 T12 T13
T21 T22 T23
T31 T32 T33

⎤
⎦,

where

T11 = w(Am), T22 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 1
2 0 · · · 0

1
2 0 1

2

...

0 1
2

. . .
. . . 0

...
. . .

. . . 1
2

0 · · · 0 1
2 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, T33 = w(0) = 0,

T12 = T21 =
[
w
[
T (Am−1, I )

]
w
[
T (Am−2, I )

] · · · w
[
T
(
I − A m

2 +1, 0
)]

w
[
T
(
Am − A m

2 +1, 0
)]

. . . w
[
T
(
Am− m

2 +2 − A
2
, 0
)]]

,

and T13 = T31 = w
(
T
(
Am

2 +1 − A1 − I, 0
))

.

Now, by definitions of the numerical radius and spectral norm and Lemma 4.2,
we have

w(T11) = w(Am), w(T22) = cos
π

m − 1
, w(T33) = 0,
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‖T12‖2 = ‖T21‖2 =
mn−1∑

i= mn
2 +2

‖Ai‖2 + ‖1 − Am
2 +1‖2 +

mn
2 −2∑
i=0

‖Amn−i − Amn
2 −i‖2,

‖T31‖2 = ‖T13‖2 = ‖I + A1 − Am
2 +1‖2, ‖T32‖2 = ‖T23‖2 = 1.

By applying Lemma 3.1 on the partition of the B̃, we have.

w
(
B̃
)

≤ 1

2

(
w(Am) + cos

π

m − 1
+
√

w2(Am) + α + ‖I + A1 − Am
2 +1‖2

+
√
cos2

π

m − 1
+ α + 1 +

√
1 + ‖I + A1 − Am

2 +1‖2
) .

Since |z| ≤ r(C(p)) = r(B) ≤ w(B) ≤ w(B̃).
The proof is completed. �
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A New Paranormed Sequence Space
and Invariant Means

Ekrem Savaş

Abstract The purpose of this paper is to introduce the new sequence space which
emerges naturally from the concept of invariant means and lacunary sequence. Some
inclusion relations and matrix transformations have been discussed.

Keywords Infinite matrices · Lacunary sequence · σ-mean · Matrix
transformations

1 Introduction

Let s be the set of all sequences real or complex. By l∞ and c, we denote the Banach
spaces of bounded and convergent sequences x = (xk) normed by ‖x‖ = supk |xk |,
respectively.

Let σ be a one-to-one mapping of the set of positive integers into itself. A con-
tinuous linear functional ϕ on l∞ is said to be an invariant mean or a σ-mean if and
only if

1. ϕ ≥ 0 when the sequence x = (xn) has xn ≥ 0 for all n.
2. ϕ(e) = 1, where e = (1, 1, . . .).
3. ϕ

(
xσ(n)

) = ϕ(x) for all x ∈ l∞.

For a certain kind ofmappingσ every invariantmeanϕ extends the limit functional
on space c, in the sense that ϕ(x) = lim x for all x ∈ c. Consequently, c ⊂ Vσ where
Vσ is the bounded sequences all of whose σ-means are equal (see [14]).

If x = (xk), by setting T x = (T xk) = (
xσ(k)

)
it can be shown that (see Schaefer

[14])

Vσ =
{
x ∈ l∞ : lim

m
tmn (x) = Le uniformly in n for some L = σ − lim x

}
(1)
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where

tmn(x) = xn + T xn + · · · + Tmxn
m + 1

and t−1,m = 0.

We say that a bounded sequence x = (xk) is σ-convergent if and only if x ∈ Vσ

such that σk(n) �= n for all n ≥ 0, k ≥ 1.
The special case of (1) in which σ(n) = n + 1 was given by Lorentz [3]. Let ĉ

denote the set of all almost convergent sequences. Lorentz proved that

ĉ =
{
x : lim

m
dmn (x) exists uniformly in n

}

where
dmn (x) = xn + xn+1 + · · · + xn+m

m + 1
.

Just as the concept of almost convergence leads naturally to the concept of strong
almost convergence, σ-convergence leads naturally to the concept of strong σ-
convergence.A sequence x = (xk) is said to be stronglyσ-convergent (seeMursaleen
[7]) if there exists a number L such that

1

k

k∑

i=1

∣∣xσi (n) − L
∣∣ → 0 (2)

as k → ∞ uniformly in n. We write [Vσ] as the set of all strong σ-convergent
sequences. When (2) holds, we write [Vσ] − lim x = �. Taking σ(n) = n + 1, we
obtain [Vσ] = [ĉ] (see [4]) so strong σ- convergence generalizes the concept of
strong almost convergence. Note that

[Vσ] ⊂ Vσ ⊂ l∞.

σ-convergent sequences are studied by Savas [6, 8–13] and others.
By a lacunary θ = (kr ), r = 0, 1, 2, . . . where k0 = 0, we shall mean an increas-

ing sequence of non-negative integers with kr − kr−1 as r → ∞. The intervals deter-
mined by θ will be denoted by Ir = (kr−1, kr ] and hr = kr − kr−1 (see [2]).

Recently, Savas [13] introduced the space V (σ, θ) of lacunary σ-convergent
sequences as follows:

V (σ, θ) =
{
x : lim

r
tri (x − L) exists uniformly in i

}

where

tri (x) = 1

hr

∑

k∈Ir
xσi (k).
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Note that in the special case where θ = 2r , we have V (σ, θ) = Vσ. If we take
σ(n) = n + 1, V (σ, θ) of lacunary σ-convergent sequences reduces to lacunary
almost convergence which is defined in [1].

The purpose of this paper is to consider a new sequence N (σ, θ, p), which emerges
naturally from the concept of σ-convergence and lacunary sequence. We also study
the spaces N (σ, θ, p), which generalize N (σ, θ) in the sameway as l(p) generalize l
(see [15]). We discuss a related sequence space. Further we characterize somematrix
transformations.

Let {pr } be a bounded sequence of positive real numbers. We define

N (σ, θ, p) =
{
x :

∑

r

|tri |pr converges uniformly in i

}

and

N (σ, θ, p) =
{
x : sup

n

∑

r

|tri |pr < ∞
}
.

(Here and afterwards, summationwithout limits runs from0 to∞.) If pr = p for all r ,

we write N (σ, θ)p and N (σ, θ)p in place of N (σ, θ, p) and N (σ, θ, p), respectively.

If p = 1, we write N (σ, θ), N (σ, θ) for N (σ, θ, p) and N (σ, θ, p), respectively.

It is now a natural question whether N (σ, θ, p) = N (σ, θ, p). We are only able

to prove that N (σ, θ, p) ⊂ N (σ, θ, p). We have the following theorem.

Theorem 1 N (σ, θ, p) ⊂ N (σ, θ, p).

Proof Suppose x ∈ N (σ, θ, p). Then there is a constant R such that

∑

r≥R+1

|tri |pr ≤ 1. (3)

Hence, it is enough to show that, for fixed r , |tri |pr is bounded, or, equivalently, that
tri is bounded. It follows from (3) that |tri | ≤ 1 for r ≥ R + 1 and all i . But if r ≥ 2,

(hr + 1)tri − hr tr−1,i = xσkr (i). (4)

Applying (4) with any fixed r ≥ R + 1, we deduce that xσkr (i) is bounded. Hence, tri
is bounded for all r . Thus the theorem is proved.

Write M = max(1, sup pr ). For x ∈ N (σ, θ, p), define

gp(x) = sup
n

(
∑

r

|tri |pr ) 1
M ; (5)
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this exists because of Theorem1. We write

Theorem 2 (i) N (σ, θ, p) is a complete linear topological space paranormed by
gp.

(ii) N (σ, θ, p) ⊂ N (σ, θ, q) for pr ≤ qr .

Proof It can be proved by “standard” arguments that gp is a paranorm on N (σ, θ, p)
and also, with the paranorm topology, the space N (σ, θ, p) is complete. As one step
in the proof, we shall only show that for fixed x ,λx → 0 asλ → 0. If x ∈ N (σ, θ, p),
then given ε > 0 there is a R such that, for all r ,

∑

r≥R

|tri |pr < ε. (6)

So if 0 < λ ≤ 1, then

∑

r≥R

|tri (λx)|pr ≤
∑

r≥R

|tri (x)|pr ≤ ε,

and since, for fixed R,
R−1∑

r=0

|tri (λx)|pr → 0

as λ → 0, this completes the proof. If pr = p for all r , then gp is a norm for p ≥ 1
and p-norm for 0 ≤ p ≤ 1. To prove (ii), let x ∈ N (σ, θ, p). Then there is an integer
R such that (3) holds. Hence for r ≥ R, |tri | ≤ 1 so that

|tri |qr ≤ |tri |pr

and this completes the proof.

Theorem 3 (i) Let in f pr > 0. Then N (σ, θ, p) is a complete linear topological
space paranormed by gp.

(i i) N (σ, θ, p) ⊂ N (σ, θ, q) for pr ≤ qr .

Proof (i) It can be proved by “standard” arguments. It may, however, be noted
that there is an essential difference between the proof of Theorem3(i) and that of

Theorem2(i). If we are given that x ∈ N (σ, θ, p), we cannot assert (6). We now use
the assumption that in f pr > 0.

Let ρ = in f pr > 0. Then for |λ| ≤ 1, |λ|pr ≤ |λ|ρ, so that gp(λx) ≤ |λ|ρ gp(x).
The result clearly follows.

(ii) The proof differs from that of Theorem2(ii), since we cannot assert (3). If

x ∈ N (σ, θ, p), then
∑

r
|tri |pr is bounded. So tri is bounded for all r, i , say |tri | ≤ K .

We may suppose that K ≥ 1. Then
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∑

r

|tri |qr ≤
∑

r

K qr−pr |tri |pr ≤ RM
∑

r

|tri |pr .

Hence, the result follows.

2 Matrix Transformations

Let D = (dnk) be an infinite matrix of complex numbers. Let X and Y be any two
subsets of space of all sequences of complex numbers. We write Dx = (Dn(x)) if
Dn(x) = ∑

k dnk xk converges for each n.
If x ∈ X implies that Dx ∈ Y , then we say that A defines a matrix transformation

from X into Y, and we denote it by D : X −→ Y. By (X,Y ), we mean the class of
matrices D such that D : X −→ Y. If in X and Y there is some notion of limit or sum,
then we write (X,Y, P) to denote the subset of (X,Y ) which preserves the limit or
sum (see Maddox [5]).

We now characterize some matrix transformations connecting N (σ, θ)p.
We write, for all integer r, i ,

tri (Dx) = 1

hr

∑

i∈Ir
Dσn(i)(x) =

∑

k

d(n, k, r)xk

where

d(n, k, r) = 1

hr

∑

i∈Ir
dσi (n),k .

We have the following.

Theorem 4 Let 1 ≤ p < ∞. Then A ∈ (c, N (σ, θ)p if and only if

sup
n

(
∑

r

(
∑

k

(d(n, k, r))) < ∞ (7)

The proof is easy, so we omit the details.
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