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Abstract 

Heavy metals (HMs) are natural assets on the planet, but they have become a 
serious threat to environmental pollution due to fast industrial enterprise, 
metropolitanism, and recent technological breakthroughs. The principal causes 
of HMs pollution in soil, water, and air are industrial waste, organic compounds, 
pesticides, paints (including small-medium industries), and mining activities. The 
land, water, and air utilized in farming are of major significance and may have an 
impact on the health of living organisms. Novel and robust ecotechnologies are 
needed to avoid HM contamination in the environment. Microbial bioremediation 
has long been recognized as the most well-understood biotechnological process 
for environmental restoration. For the treatment of HM-contaminated environ-
mental sites, microbial bioremediation is a cost-effective option. Researchers 
worldwide are making strides in discovering new bacterial strains with plasmid-
linked degradation/reduction ability. Genetic engineering and molecular biology 
aided in the development of microbes that would produce the desired results in 
the environment. Recent advances in microbial bioremediation techniques 
include biostimulation, bioaugmentation, bioaccumulation, biosorption, and the
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use of biofilms. This chapter assembles data on recent developments and 
applications of microbe-mediated bioremediation of HM-contaminated soils.
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11.1 Introduction 

The environment is made up of several complicated variables such as land, air, and 
water. The existence of humans and other living entities such as animals, plants, and 
bacteria is based on their positive correlation (Arora et al. 2018). Heavy metal 
(HM) pollution has become a serious risk to the environment and food production 
as a result of the massive expansion in the global population and quick progress in 
modern agriculture (Selvi et al. 2015). Many studies have reported it as a global 
problem in countries like India, Bangladesh, Italy, Germany, Greece, Hong Kong, 
China, Turkey, Iran, etc. (Chikumbusko et al. 2017). The lack of understanding 
about safe effluent disposal and the failure to impose strong regulatory standards 
have contributed to environmental degradation (Khalid et al. 2017). Vast amounts of 
solid waste in various harmful forms have been generated as a consequence of these 
circumstances leading to contamination of the entire ecosystem. The wastewaters, 
which may exceed authorized limits specified by international regulatory bodies, 
will have an impact on the quality of surface water and land (EPA 1992, 2002). 

Because of their nonbiodegradability, bioaccumulation, environmental stability, 
persistence, and biotoxicity, HMs make a major environmental risk to living 
creatures and environments (Khan et al. 2019). They can directly affect the physical 
and chemical properties of the soils, air, and water, which cause environmental 
pollution (Fig. 11.1) (Omwene et al. 2018). They can also disrupt the natural 
ecosystem and have a direct and continual impact on human health through food 
chains, leading to various diseases (Weber et al. 2020; Suhani et al. 2021),such as 
paralysis agitans, Alzheimer’s, Sclerosis, cancer, hardening of the arteries, etc. 
(Muszyńska and Hanus-Fajerska 2015). 

Many treatment approaches, such as physical, chemical, and biological, have 
recently been proposed to clean up HM pollution in the air, water, and soil. HM 
treatment processes include adsorption, heat treatment, chlorination, ion exchange, 
chemical extraction, bioleaching, and electrokinetics. According to reports, the 
majority of the aforementioned techniques are only intended to be used as single 
remedial methods. Despite their success, these methods have downsides such as 
inefficiency, cost, and failure during large-scale adoption, among other things 
(Volesky and Holan 1995; Selvi et al. 2019). 

In this chapter, we have discussed the HM sources, their harmful effects, issues 
associated with the disposal and recycling of HM-containing products, and different 
microbial-based methods for abatement and opportunities.
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Fig. 11.1 Heavy metals cause environmental pollution 

11.2 Toxicity of Heavy Metals and the Environment 

The biosphere is the most significant part of the environment where biotic entities, 
i.e., animals and plants, interact with abiotic surroundings, viz., soil, water, and air 
(Mahmoudi 2003). Pollution is defined as any human action that reduces the quality 
of the natural environment. Pollution of the environment is nothing new, yet it is still 
the world’s most serious problem and the primary cause of diseases and loss of life. 
Environmental pollution is generally worse in middle- and low-income countries as 
compared to the developed ones, partly due to poverty, ineffective legislation, and a 
lack of awareness about pollution. Environmental pollution is caused by HMs 
through a variety of factors, including industrial growth, urbanization, population 
increase, exploration, mining, deforestation, bush burning, dumping of agricultural 
and residential wastes in water bodies, use of pesticides in aquatic animal harvesting, 
inappropriate disposal of technological wastes, etc. (Landrigan et al. 2018) The 
repercussions affect not just people but also other land and aquatic species, including 
microbes, which support biogeochemical cycles required for a healthy ecosystem 
(Ukaogo et al. 2020). 

11.3 Heavy Metals 

HMs are metallic chemical elements with a relatively high density, which are 
harmful or lethal even at low doses. Almost all the HMs are hazardous to human 
health above a certain concentration and pose a risk to the environment. HMs include



cadmium (Cd), zinc (Zn), molybdenum (Mo), mercury (Hg), nickel (Ni), chromium 
(Cr), strontium (Sr), arsenic (As), vanadium (V), boron (B), cobalt (Co), copper 
(Cu), molybdenum (Mo), tin (Sn), lead (Pb), etc. HMs including Cu, Ni, Fe, Zn, B, 
and Mo are necessary for plant growth, but when their concentrations exceed the 
permissible limits, they can harm animals and plants. Among all the HMs, Pb, Hg, 
Cd, and As are not required for the growth and development of plants and animals. 
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11.3.1 Sources of Heavy Metal Pollution 

HMs in the soil aggregate due to a variety of causes that may be natural and 
anthropogenic sources (Fig. 11.2) (He et al. 2012). 

11.3.1.1 Natural Sources 
Under different environmental conditions, HMs are naturally emitted through vola-
tile organic compounds, forest fire, sea-salt sprays, volcanic ash, rock depletion, and 
dirt particles, which are the causes of HM pollution. HMs can be found in the form of 
oxides, silicates, sulfides, phosphates, sulfates, hydroxides, and organic molecules. 
Pb, Ni, Cr, Cd, As, Hg, Se, Zn, and Cu are some of the most regularly used HMs. 
While these HMs are found in smaller quantities in humans and other animals, they 
may cause severe health concerns (Ali et al. 2021). 

11.3.1.2 Anthropogenic Sources 
There are a lot of anthropogenic factors of HM concentrations in the environment, 
but the most significant are rising industrialization and urbanization in recent days. 
Fertilization, pesticide application, air deposition, sewage irrigation, mining, and 
sludge application are responsible for HM accumulation in the environment; in 
addition to these factors, melting activities for metallic ores, industrial wastes, 
combustion of fossil fuel refinement, and refinishing contribute to HM accumulation

Fig. 11.2 Source of heavy metals in the environment



(Srivastava et al. 2017). The primary cause of metal pollution in the atmosphere is 
assumed to be coal burning (Antoniadis et al. 2017).
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11.3.2 Environmental Impacts of Heavy Metals 

Heavy metals have a lot of negative consequences when they are present in the 
environment. The hydrosphere, lithosphere, and biosphere are all affected due to 
these HMs (Masindi and Muedi 2018) (Fig. 11.2). They can directly impact the 
physical and chemical properties of the sediment, soils, and water to hinder micro-
bial activities. They can also destabilize the natural ecosystem and have a direct and 
long-term impact on the human body, leading to a variety of diseases and issues in 
mankind (Ali et al. 2021). 

Population increase is one of the major issues in the world. Due to the increasing 
population, the use of HMs also increased, and with this contamination, major 
environmental components cause serious issues worldwide (Masindi and Muedi 
2018). 

11.3.2.1 Effect on Soil 
HMs affect the agroecosystem through both natural and artificial sources. Several 
studies have found that natural HM pollution sources are usually high when com-
pared to anthropogenic activity. The parent material from which HMs are derived is 
the major source of HMs in soil. Human activities disrupt the nature’s slow-moving 
geochemical cycle of HMs, resulting in accumulation in the soil (Dixit et al. 2015). 
Different anthropogenic activities like the refinement of fossil fuels through com-
bustion (Muradoglu et al. 2015), smelting and extracting metals (Chen et al. 2015), 
municipal trash disposal (Khan et al. 2016), fertilizer application (Atafar et al. 2010), 
pesticide usage (Ogunlade and Agbeniyi 2011), sewage application (Sun et al. 2013; 
Srivastava et al. 2016), etc. cause HM pollution. 

HMs in soil cause a severe problem because they accumulate in food chains, 
damaging the entire ecosystem. Organic pollutants are biodegradable, but their 
biodegradation rate is slowed by the presence of HMs in nature, which doubles the 
organic and HM pollution. HMs can harm animals, humans, plants, and ecosystems 
in a variety of ways. Direct ingestion, absorption by plants, transfer through food 
chains, drinking polluted water, and changes in soil color, pH, porosity, and natural 
chemistry all impact soil quality (Musilova et al. 2016). 

11.3.2.2 Effects on Water 
The kind of soil, rock, and water movement, all influence the metal composition of 
surface water such as rivers, lakes, and ponds. Metals on the soil’s surface are carried 
away by the wind and end up in sewage and reservoirs (Salem et al. 2000). 
Rainwater becomes polluted as it travels through the atmosphere. The passage of 
numerous industrial wastewaters into water sources contaminates them, which 
contain a large number of HM leachates from landfills and liquid disposal in deep 
wells, and contaminates the groundwater (Oyeku and Eludoyin 2010). The metal



level of water is affected by a variety of elements, including pH, life forms, ion 
exchange, temperature, vaporization, absorption, and others. 
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11.3.2.3 Effects on Air 
Surface degradation and loss of colloids release HMs into the atmosphere as vapors. 
Mineral dust, particles of sea salt, volcanoes, and forest fires are all atmospheric 
sources of HMs (Colbeck 1995). HM air pollution can come from a variety of 
industrial activities that produce dust particles, such as metal smelters and cement 
factories, in addition to these natural sources. In the atmosphere, unstable metals 
such as gaseous pollutants particles of Sb, Se, Hg, and As are transmitted. Metals 
like Zn, Pb, and Cu are carried as particulates which pollutes the air (Selvi et al. 
2019). 

11.3.2.4 Human Exposure to Heavy Metals 
Poison HMs get into the human body through a variety of mechanisms, including 
ingestion, inhalation, and skin absorption. People in underdeveloped countries are 
more exposed to hazardous metals (Eqani et al. 2016) because many people are 
unaware of the dangers of HM exposure and the ramifications for human health 
(Afrin et al. 2015). HMs may be present in the workplace and the environment. HMs 
are ingested by mining and industrial workers through metal particles containing 
dust and particulate matter. Welders exposed to welding fumes for an extended 
period had considerably greater blood levels of the HMs such as Cr, Ni, Cd, and Pb 
than the control group, as well as elevated oxidative stress (Mahmood et al. 2015). 
Cigarette smoking is a major source of human exposure to harmful HMs, i.e., Cd 
(Järup 2003) and other HMs found in tobacco leaves. Among these HMs, As is one 
of the most hazardous metalloids on the earth. According to the World Health 
Organization (WHO), the limit of As in the drinking water is 5–10 μg/L, but in 
many countries like Bangladesh and some parts of India, As concentration is more 
than 50 μg/L, causing many diseases such as skin cancers, kidney cancer, lung 
cancer, and bladder cancer apart from long-term exposure of inorganic arsenic 
hypertension, diabetes, reproductive disorders, and cardiovascular diseases (Santra 
et al. 2013). 

The overall public is exposed to HMs through food and water. Intensification of 
industrial and agricultural activity has resulted from globalization, urbanization, and 
rapid economic development. Toxic HMs could be released into the water, air, and 
soil as a result of these actions. HMs bioaccumulate in human food systems, 
eventually reaching the human body and causing different diseases (Ali et al. 
2019) (Fig. 11.3). 

11.4 Environmental Heavy Metal Remediation 

HMs emitted from several sites are released into the environment, either directly or 
indirectly, affecting humans, animals, and plants. Increased human exposure to HMs 
has serious health consequences and causes environmental degradation (Rzymski
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et al. 2014). The severity of negative health impacts varies depending on the duration 
of exposure, concentration, chemical form, and type of HMs. HM pollution in soil 
has led to ecosystem degradation, reduced food quality, and decreased soil health. 
HM concentrations in India’s industrial zones are far greater than the WHO’s 
allowed limit, putting humans at risk (Manivasagam 1987). The failure of respective 
government environmental safety agencies in developing countries to impose strict 
regulations and the unreliability of current individual treatment technologies in situ 
and a wide range of applications are all contributing to the health problems 
associated with metal pollution. 
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11.4.1 Biological Remediation 

Biological remediation is the utilization of living organisms to clean up HMs in the 
soil. Here we mainly discussed microbial remediation and phytoremediation. 

11.4.1.1 Microbial Remediation 
Environmental HM contamination has seriously threatened all ecosystems (Okolo 
et al. 2016). According to Environmental Protection Agency, parameterization is a 
natural activity in which microbial processes are utilized to break down or convert 
dangerous substances into less harmful ones, ultimately eliminating toxins from the 
environment. During the microbial process, microorganisms utilize chemical 
pollutants as an energy source in their metabolic processes. Synthetic nutrients 
limit microbial development in the soil (Ahirwar et al. 2016). Microorganisms can 
degrade, detoxify, and decontaminate substances and even accumulate toxic organic 
and inorganic substances from a variety of places in the environment; some bacteria 
will be described biochemically, and it will be determined whether they can tolerate 
heavy metals like copper and zinc. In the last 20 years, bioremediation strategies 
have made significant advances, with the ultimate goal of efficiently restoring 
damaged regions in an eco-friendly and low-cost manner (Ambaye et al. 2022). 

11.4.1.1.1 Bacterial Remediation Capacity of Heavy Metals 
Microbial biomass contains a variety of biosorption properties that range greatly 
among microorganisms. However, each microbial cell’s biosorption ability is deter-
mined by its pretreatment and experimental settings. Bacteria are essential 
bioabsorbents because of their widespread distribution, size, capacity to thrive in 
controlled environments, and resistance to environmental conditions (Srivastava 
et al. 2015). Their remarkable biosorption abilities are due to their high surface-to-
volume ratios and probable active chemisorption sites on the cell wall (Mosa et al. 
2016). Bacteria thrive in mixed cultures because they are more stable and survive 
longer (Sannasi et al. 2006). As a result, consortia are metabolically efficient for 
metal biosorption and more suitable for field application (Kader et al. 2007). De et al. 
(2008) used an Acinetobacter sp. bacterial consortium to decrease Cr by 78%. 
B. megaterium, B. niger, and Penicillium sp. had the greatest ability to reduce Pb 
(2.13–0.03 mg/L), Cr (1.38–0.08 mg/L), and Cd (0.4–0.03 mg/L), respectively.



Class of microorganisms References
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11.4.1.1.2 Plant Growth-Promoting Endophyte-Mediated Phytoremediation 
Endophytic bacteria have shown to assist host plants in adjusting to harsh soil 
conditions and improve phytoremediation capacity by modifying metal bioavailabil-
ity in soil, increasing plant growth, decreasing metal phytotoxicity, lowering mental 
stress, and changing metal translocation in plants (Ma et al. 2011). These bacterial 
endophytes contribute to the detoxification of metal-polluted soils by improving 
plant metal tolerance capacity and growth and increasing uptake capacity in plants as 
discussed (Table 11.1). 

11.4.1.1.3 Fungi Remediation Capacity of Heavy Metal 
Because of their strong metal uptake and restoration capabilities, fungi are often used 
as biosorbents to eliminate toxic metals (Fu et al. 2012). Dead fungal biomass from 
Penicillium chrysogenum, Saccharomyces cerevisiae, Aspergillus niger, and Rhizo-
pus oryzae can convert hazardous Cr (VI) to less dangerous or nontoxic Cr 
(Park et al. 2005). Luna et al. (2016) also reported that Candida sphaerica creates 
biosurfactants that remove Pb (79%), Zn (90%), and Fe (95%). Likewise surfactin,

Table 11.1 Microorganisms used in heavy metal remediation of contaminated sites 

Heavy metal 
removed 

A. Bacteria 

Pseudomonas veronii Cd, Zn, Cu (Coelho et al. 2015) 

Pseudomonas putida Cr (VI) (Balamurugan et al. 2014) 

Bacillus cereus Cr (VI) (Coelho et al. 2015) 

Bacillus cereus strain XMCr-6 Cr (VI) (Dong et al. 2013) 

Bacillus subtilis Cr (VI) (Balamurugan et al. 2014) 

Enterobacter cloacae B2-DHA Cr (VI) (Rahman et al. 2015) 

Kocuria flava Cu (Coelho et al. 2015) 

Sporosarcina ginsengisoli As (III) (Coelho et al. 2015) 

B. Fungi 

Gloeophyllum sepiarium Cr (VI) (Achal et al. 2011) 

Rhizopus oryzae (MPRO) Cr (VI) (Sukumar 2010) 

Aspergillus fumigatus Pb (Kumar Ramasamy et al. 
2011) 

Aspergillus versicolor Ni, Cu (Taştan et al. 2010) 

C. Algae 

Hydrodictyon, Oedogonium, and 
Rhizoclonium spp. 

As (Srivastava and Dwivedi 
2015) 

Spirogyra spp. and Cladophora spp. Pb (II), Cu (II) (Lee and Chang 2011) 

Spirogyra spp. and Spirulina spp. Cr Cu, Fe, Mn, Zn (Mane and Bhosle 2012) 

D. Yeast 

Saccharomyces cerevisiae Pb, Cd (Lívia and Benedito 2015)



rhamnolipid, and sophorolipid were also tested for HM (Cu and Zn) removal by 
Mulligan et al. (2001).
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11.4.1.1.4 Algae Remediation Capacity of Heavy Metal 
In comparison to other microbial bioabsorbents, algae are autotrophic, meaning they 
consume few nutrients and produce a large amount of biomass. These bioabsorbents 
have also been utilized to remove HMs from the environment due to their high 
sorption ability (Abbas et al. 2014). Adsorption or integration of algae biomass into 
cells is employed for bioremediation of HM-polluted wastewater. Phycoremediation 
is employing several forms of algae and cyanobacteria to remove or degrade 
toxicants to remediate HMs (Chabukdhara et al. 2017). Algae include chemical 
moieties on their surface that act as metal-binding sites, including hydroxyl, car-
boxyl, phosphate, and amide (Abbas et al. 2014). Dead Chlorella vulgaris cells were 
utilized by Hussian and Napiórkowska-Krzebietke et al. to remove Cd2+ , Cu2+ , and 
Pb2+ ions from aqueous solutions under various pH, bioabsorbent dosage, and 
contact time conditions. These findings demonstrate that the biomass of 
C. vulgaris is an exceptionally efficient bioabsorbent for the removal of Cd2+ , 
Cu2+ , and Pb2+ at 95.5%, 97.7%, and 99.4%, respectively, from a mixed solution 
containing 50 mg/dm3 of each metal ion (Goher et al. 2016). 

11.4.1.2 Heavy Metal Removal Using Biofilm 
In many experiments, biofilms were utilized to remove HMs. Biofilm is a type of 
bioremediation that also serves as a biological stabilizer. Biofilms have an extremely 
high tolerance for hazardous inorganic elements, even at deadly doses. According to 
research on Rhodotorula mucilaginosa, metal elimination efficacy varied from 4.79 
to 10.25% for planktonic cells and from 91.71 to 95.39% for biofilm cells (Goher 
et al. 2016). Biosorbents or exopolymeric substances present in biofilms that contain 
molecules with a surfactant or emulsifying qualities might be used in biofilm 
bioremediation approaches (El-Masry et al. 2004). 

11.4.1.2.1 Metal-Microbe Interaction 
The bacterial cell takes up the heavy metal by different methods, either active 
transport, ion exchange, electrostatic interaction, complexation, or the production 
of extracellular polysaccharides (Srivastava et al. 2017) (Fig. 11.4). 

When microbes interact with heavy metals, they accumulate in the microbial cell 
and can be detoxified by mechanisms such as bioadsorption, biomineralization, 
biodegradation, bioleaching, biotransformation, and bioaccumulation. 

11.4.1.3 Methods for Heavy Metal Remediation Using Microorganisms 

11.4.1.3.1 Biosorption 
Although the terms bioaccumulation and biosorption are often used interchangeably, 
they differ in how pollutants are sequestered. Biosorption, according to Volesky, 
is the adsorption of chemicals from solution by biological materials via



physiochemical absorption pathways such as electrostatic forces and ion/proton 
displacement (Volesky and Holan 1995). Biosorption has been proven to remove a 
wide range of HMs from aqueous solutions, including very hazardous metal ions 
such as Cd, Cr, Pb, Hg, and As (Saba et al. 2019). As a result, the diversity of cell 
wall architectures is critical to biosorption success. By using bioabsorbents like 
microorganisms (both live and dead), agricultural waste, and other industrial wastes, 
biosorption can remove pollutants and build the framework for long-term metal 
removal and recovery (Inoue et al. 2017). Numerous parameters such as pH, 
temperature, shaking speed, initial pollutant concentration, and bioabsorbent amount 
are considered to improve biosorption effectiveness. The chemical composition of 
each contaminant, biomass size, interaction between distinct metallic ions, and ionic 
strength influence the binding mechanism. Biosorption is also appealing because of a 
variety of benefits, including low operating costs due to its reversible process, no 
increase in chemical oxygen demand (COD), ease of desorption, and high adsorption 
rate. However, other factors must be considered, such as the potential toxicity of 
pollutants to bacterial cells if living cells are used in this procedure. 
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Fig. 11.4 Metal-microbe interaction 

11.4.1.3.2 Bioaccumulation Process 
Bioaccumulation, on the other hand, is a natural active metabolic process in which 
HMs accumulate and are taken up by proteins into intracellular living bacterial cells. 
The initial stage is the adsorption of HMs onto cells, and the metal species are then 
carried inside the cells, where the HMs can be sequestered by proteins, the lipid 
bilayer as an import system, and peptide ligands as a storage system (Mishra and 
Malik 2013). Metal ions were uptake by numerous substances inside the cell 
cytoplasm to create big ions in intracellular sequestration. Gram-negative bacteria



enhanced absorption from the periplasm into the cytoplasm is dependent on the 
expression of inner membrane importers in extracellular sequestration (Saier 2016; 
Diep et al. 2018). 
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11.4.1.3.3 Biomineralization 
Biomineralization is the process by which microorganisms mediate and catalyze 
inorganic reactions to form new mineral assemblages. Therefore, some 
microorganisms produce certain extracellular polymeric substances (EPSs) or 
biosurfactant in the extracellular environment, or sometimes they will also 
produce it in the intracellularly environment which will help to convert the heavy 
metal into the minerals, a process called biomineralization. Various bacteria like 
Bacillus, Streptococcus, etc. help in the biomineralization process (Arnold et al. 
2021). 

11.4.1.3.4 Bioleaching for Bioremediation 
“The dissolving of metals from their mineral source using specific naturally existing 
microbes” or “the use of microbes to alter metal elements so that the elements can be 
recovered when water is filtered through it” are two definitions of bioleaching 
(Mishra et al. 2005). Ni, Cu, Zn, Co, Au, Pb, and As have all been dissolved with 
it. This process is useful for extracting valuable metal compounds from solid 
substrates and detoxifying HM-contaminated wastes such as ores, energy, or landfill 
space as a technology (Singh and Li 2015). However, an investigation has 
demonstrated that chemolithotrophic techniques cannot handle industrial waste 
materials containing substantial levels of important metals (Sajjad et al. 2019). 
Additionally, this is dependent on the metal compounds in the waste as vanadium, 
chromium, copper, and zinc may all be fully recovered (Blaise et al. 2010). 
Thiobacilli have also been able to detoxify HM-contaminated sewage sludge, 
soil, sediment, and water (Blaise et al. 2010). From bacteria to fungi and algae, 
many microorganisms have been isolated from mining and environmental 
bioleaching settings. Rhodotorula sp., Trichosporon sp. (yeasts), Acidithiobacillus 
sp. (Bacteria), Eutrepia sp. (flagellates), protozoa, and amoebas have all been 
isolated from a copper mine. Some thermophilic bacteria (particularly Sulfolobus 
sp.) have also been isolated and enhanced from bioleaching environments. 

Researchers can examine the particular processes that sustain microbial 
successions and the impact of community structure on the environment in 
bioleaching heaps used for copper removal (Wang et al. 2020). Advances in DNA 
sequencing technology have made it possible to gather unprecedented amounts of 
information on the genomes of bioleaching bacteria, allowing for the development of 
metabolic potential estimation techniques and environmental level interactions. 

11.4.1.4 Phytoremediation 
The use of plants to clean up HMs in the soil is defined as phytoremediation. These 
include phytoaccumulation, phytostabilization, and phytodegradation (Fig.11.5). 
The hyperaccumulating plant will take up the heavy metal that will get accumulated



within the plant (Marques et al. 2009; Muthusaravanan et al. 2018; Chaney and 
Baklanov 2017) (Table 11.2). 
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Fig. 11.5 Plants use a variety of phytoremediation techniques 

Table 11.2 Microorganisms used in heavy metal remediation of contaminated sites 

Family Species Heavy metals References 

Brassicaceae Arabidopsis halleri Cd, Zn (Zhang et al. 2017) 

Brassicaceae Alyssum bertolonii Ni (Mengoni et al. 2012) 

Brassicaceae Arabidopsis halleri Cd (Claire-Lise and Nathalie 2012) 

Brassicaceae Alyssum murale Ni (Broadhurst and Chaney 2016) 

Asteraceae Helianthus annuus Zn, Pb, Cd (Fulekar 2016) 

Asteraceae Berkheya coddii Ni (Slatter 1998) 

Caryophyllaceae Minuartia verna Pb, Zn, Cd, (Bothe 2011) 

Poaceae Spartina argentinensis Cr (Nalla et al. 2012) 

Pteridaceae Pteris vittata As (Rathinasabapathi 2011) 

Pteridaceae Pteris vittata Hg (Su et al. 2008) 

Euphorbiaceae Euphorbia 
cheiradenia 

Cu, Fe, Pb, Zn (Nematian and Kazemeini 
2013) 

Fabaceae Astragalus racemosus Se (Alford et al. 2012) 

Fabaceae Medicago sativa Pb (Chibuike and Obiora 2014) 

Crassulaceae Sedum alfredii Pb (Chen et al. 2012) 

Violaceae Viola boashanensis Pb, Zn, Cd (Zhuang et al. 2005) 

In this case, plants will take it up, and sometimes, phytodegradation or the 
breakdown, phytostabilization, and rhizosphere degradation, that is, degrading of 
metal in the rhizosphere will happen.
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11.5 Conclusion 

HM pollution is a serious environmental problem that occurs due to a variety of 
human activities and has a significant impact on humans and the environment. 
Because of the biotechnological potential of microbes in removing or recovering 
metals, our focus has shifted to eco-friendly treatments such as phytoremediation 
and microbial remediation, which entail HM absorption by microorganisms. Apart 
from their contributions, biosorbents are potentially beneficial and readily available 
for removing HMs and for protecting nature and the environment using a bioreme-
diation process. Although just a few studies have been done on this subject, bacteria 
are one of the most significant microbiological approaches for bioremediation. As 
heavy-metal pollution alleviators, more research is needed to get the most out of 
bacterial systems and to determine the specific and unambiguous mechanisms 
involved in HMs removal by bacteria, fungus, and algae. For the betterment of our 
environment, we need environmentally friendly remediation solutions based on 
plants and microorganisms that are viable alternatives to physical and chemical 
removal methods. 
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