

5

Artificial Intelligence Techniques Based on K-Means_{Two Way} Clustering and Greedy Triclustering Approach for 3D Gene Expression Data (GED)

N. Narmadha and R. Rathipriya

Abstract

Artificial intelligence (AI) refers to a machine's or robot's capacity to carry out operations that would typically require human comprehension and intelligence. Classification algorithms, regression algorithms, and clustering algorithms have traditionally been the three basic pillars of AI. The use of K-Means_{Two Way} and Greedy approaches for the triclustering of 3D GED using Artificial Intelligence Techniques is discussed in this chapter. The main goal is to create a triclustering algorithm that extracts triclusters from a given dataset with 100% Tri_{Gene}, Tri_{Sample}, and Tri_{Timepoint} coverage. This technique is combined with the greedy heuristics to find the ideal tricluster with the highest degree of coherence with the largest volume. On a 3D Yeast Cell Cycle (YCC) dataset, the suggested Greedy-based Triclustering approach is evaluated. In terms of extracting the larger volume tricluster with high MCV, Greedy_{Tri} outperformed K-Means_{Two Way} clustering.

Keywords

Artificial intelligence \cdot Triclustering \cdot K-Means_{Two Way} \cdot Greedy triclustering \cdot MCV \cdot 3D GED

N. Narmadha (🖂)

R. Rathipriya Department of Computer Science, Periyar University, Salem, Tamil Nadu, India

Department of Computer Science, Sri Sarada College for Women (Autonomous), Salem, Tamil Nadu, India

 $^{{\}rm (}^{\rm C}$ The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023

J. M. Chatterjee, S. K. Saxena (eds.), *Artificial Intelligence in Medical Virology*, Medical Virology: From Pathogenesis to Disease Control, https://doi.org/10.1007/978-981-99-0369-6_5

5.1 Introduction

Gene expression analysis, to put it simply, is the study of how genes are transcribed into functional gene products. The advancement of 3D data is accelerating daily. Data on 3D gene expression monitoring is particularly challenging. One of the key research issues is the detection of highly expressed gene patterns in this 3D GED using data mining techniques, to extract the numerous patterns from the 3D GED. The most popular methods for analysing the 3D GED are clustering and biclustering. However, because the time point cannot be focused, the clustering and biclustering approaches are unable to extract patterns from the 3D data. Triclustering is introduced to address the issues with clustering and biclustering. This chapter mainly focused on triclustering of 3D GED based on artificial intelligence. The artificial intelligence-based triclustering of 3D GED was the main topic of this chapter. Triclustering is also referred to as 3D data clustering, tradic data clustering, multi clustering, in other terms, is the simultaneous grouping of a gene and a sample at a particular time point (Narmadha 2017).

Contributions of this chapter are all follows:

- GED dataset analysis can find local structures.
- Extracting unique and practical information from a biological perspective.
- The YCC expression dataset contains three categories as follows:
 - CDC15 database contains 8832 genes, 9 samples, and 24 time points
 - Elutriation database contains 7744 genes, 9 samples, and 14 time points
 - Pheromone database contains 7744 genes, 8 samples, and 18 time points.
- Medical Domain—Analysis of this dataset also helps in various ways such as (1) diagnosis, (2) prognosis, (3) treatment planning, as well as (4) drug discovery, (5) drug assessment, and (6) drug development.

Scope

- · Treatment of drug development
- Diagnosis diseases/cancer

The structure of this chapter is as follows: The background review required for the research is discussed in Sect. 5.2. The thorough explanations of the proposed task are provided in Sect. 5.3. The findings and discussions are presented in Sect. 5.4. In Sect. 5.5, a summary of this chapter is provided.

5.2 Background Study

The work that is pertinent to 3D GED analysis is discussed in this area, and it is specifically related to Greedy-based clustering, biclustering, and triclustering methods.

The OAC-triclustering techniques to implement certain suggested modifications depending on the prime operators (Gnatyshak 2015). To make minor adjustments depending on clustering processes in order to maximize the effectiveness of the specialist-generalist categorization scheme (Gnatyshak 2014). To enhance search efficiency, the binary Particle Swarm Optimization (BPSO) technique incorporates a pattern-driven local search operator (Rathipriya et al. 2011). Gene class sensitivity (GCS) BPSO utilized largely for gene selection. Gene selection efficiency is achieved by using (1) K-Nearest Neighbour (KNN) and (2) Support Vector Machine (SVM) classifiers to predict microarray data with high accuracy (Han et al. 2017).

The bicluster in the GED is eliminated using the Particle Swarm Optimization (PSO) technique. This method's main objective is to include each gene expression data with matrix component in the overlapping bicluster (Li et al. 2014). Using the biclustering method, the coherent bicluster for GED is defined with low MSR (Mean Square Residue) and large row variance (Pontes et al. 2015). This type of problem is solved using a variety of optimization techniques, including (1) Nelder Mead with Levy Flight (NMLF) and (2) Nelder Mead Forbidden Search (NMFS), which are both introduced and contrasted. Comparing NM with Levy Flight to Nelder Mead's Tabu search, NM with Levy Flight demonstrates greater efficiency and offers a more optimal global answer (Balamurugan et al. 2016)

By lowering the residue or merit function of the biclusters, the coclustering techniques are utilized to group the data on gene expression. The stochastic heuristic technique is more applicable because of this merit function. It is advised that biclusters be optimized using a Parallel Genetic Algorithm (PGA) in order to decrease local optima in the biclustering approach and improve the possibility of global optima (Wei Shen 2012). Utilizing hybrid EDA-GA, can't be easily converges but also offers the full solution, the GED is evaluated (Liu 2006). To more accurately handle the biclustering problem, hybrid PSO-GA is provided (Xie et al. 2007)

The K-Means one-way clustering algorithm is used to develop the highly clustered small disjoint submatrices first. Second, the algorithm for greedy searches, which is mostly utilized for enlargement of seed. The Greedy Search (GS) algorithm is used to extract the output and starting binary PSO population in order to categorize the bicluster (Shyama and Idicula 2010). K-nearest neighbour (K-NN) as an IBPSO evaluator to resolve the GED classification problem techniques help reduce the overall number of functions as necessary (Chuang et al. 2008)

For clustering microarray data, hierarchical methods, FCM, and K-means are employed. But for clustering microarrays, PSO based on K-means provides the outperformance well (Lopamudra Dey 2014). The two-clustering approach scaled and shifted the advantage of the function, which is mostly used to enlarge the bicluster, in accordance with a pattern. But in order to establish scaling patterns and promote coherent evolution to build the bicluster, this measure has drawbacks (Thangavel et al. 2012). A coherent pattern based on tricluster with a higher MCV and greater volume is to be found using greedy two-way K-Means clustering (Narmadha and Rathipriya 2019a, b).

Greedy algorithms combined with other approaches are frequently used to analyse GED and to create high-quality biclusters from online usage data. In order to determine the quality of the tricluster, this chapter introduces the greedy approach using the triclustering technique with a coherent pattern.

5.2.1 Issues in the Literature

Some negative aspects of the literature exist. Following is a list of some of them:

- The effectiveness of the search is only relevant for local searches.
- In order to cover all gene expression elements, the overlapping will take place in the biclusters.
- In terms of defining scaling patterns and maintaining bicluster evolution, qualitative measurements have limitations of their own. For example, the accuracy of the high consistency of the given cluster in the literature is only about 70–80%.

5.3 Proposed Work

5.3.1 Mean Correlation Value Equation for Tricluster (Tri_{MCV})

Mean Correlation Value equation for deriving a Tricluster (Tri_{MCV}) is discussed in Eq. (5.1)

$$\sum_{a} \sum_{b} (X_{ab} - \overline{X}) \times (Y_{ab} - \overline{Y})' \sqrt{\left(\sum_{a} \sum_{b} (X_{ab} - \overline{X})^{2}\right) \left(\sum_{a} \sum_{b} (Y_{ab} - \overline{Y})^{2}\right)}$$
(5.1)
$$\sum_{a} \sum_{b} (X_{ab}) = \sum_{a} \sum_{b} (Y_{ab}) \sum_{a} (Y_{ab}) \sum_{b} (Y_{$$

where $\overline{X} = \frac{\sum_{a} \sum_{b} (X_{ab})}{a \ast b}$, $\overline{Y} = \frac{\sum_{a} \sum_{b} (Y_{ab})}{a \ast b}$

 Tri_{MCV} has a range of [0, 1]. If the X value is close to 1 (when the tricluster is highly correlated) otherwise, it is low-correlated or null-correlated (Narmadha and Rathipriya 2018).

5.3.2 Function for Fitness

Finding triclusters with a high Mean Correlation Value (Tri_{MCV}) and a higher volume is the major goal (Tri_{Volume}). To extract the best tricluster, the fitness function F (Tri_{Gene} , Tri_{Sample} , $Tri_{Timepoint}$) is specified in Eq. (5.2).

$$F(\operatorname{Tri}_{\operatorname{Gene}}, \operatorname{Tri}_{\operatorname{Sample}}, \operatorname{Tri}_{\operatorname{Timepoint}}) = \{ |\operatorname{Tri}_{\operatorname{Gene}}| * |\operatorname{Tri}_{\operatorname{Sample}}| * |\operatorname{Tri}_{\operatorname{Timepoint}}|, \text{ if } \operatorname{Tri}_{\operatorname{MCV}}(\operatorname{Tricluster}) \ge \delta 0, \text{ Otherwise}$$

$$(5.2)$$

where $|\text{Tri}_{\text{Gene}}|$, $|\text{Tri}_{\text{Sample}}|$, $|\text{Tri}_{\text{Timepoint}}|$ are the no. of genes: Tri_{Gene} , no. of samples $\text{Tri}_{\text{Sample}}$, and the no. of time points $\text{Tri}_{\text{Timepoint}}$ of tricluster.

5.3.3 Description of K-Means_{Two Way}

5.3.3.1 Tricluster Generation Using K-Means_{Two Way} Clustering

In order to create the tricluster, of K-Means $_{Two Way}$ clustering algorithms are as follows:

- To Use the K-Means_{Two Way} clustering algorithm to create kg and ks clusters at each Tri_{timepoint} 'T' along with the row and column dimensions of the data. For each time point, combine these clusters to produce the $k_{gene}*k_{sample}$ initial bicluster, where Data_{Timepoint} is the 2D data of the Tri_{Gene} and Tri_{Sample} at Tri_{Timepoint} 'T' and T = 1, 2,...nT.
- The binary string for these triclusters has the length $n_{binary}*(n_{Gene}+n_{Sample})$. Binary_{bicluster} is used to indicate it. The encoded bicluster's length is shown in Table 5.1.
- Create a random binary string of size n_{binary}*n_{Timepoint}, where n_{Timepoint} is the number of Data_{GST} time points and n_{bicluster} is the number of biclusters. It has the symbol Binary_{Timepoint}.

Then, combine two binary strings with the same number of rows, Binary_{bicluster} and Binary_{Timepoint}, to create a new binary string with the size $n_{bicluster}$ * ($n_{Gene}+n_{Sample}+n_{Timepoint}$), which is then utilized as a binary-encoded tricluster for further processing. Table 5.2 displays a single ($n_{Gene}+n_{Sample}+n_{Timepoint}$)-length binary-encoded tricluster. The notation and its descriptions are displayed in Table 5.3. Algorithm 5.1 describes the Tricluster Seed Formation phase utilizing K-means: Two-Way Clustering (Narmadha and Rathipriya 2020).

Table 5.1 $L_{\rm G}$	ngth of the encoded l	bicluster (n _c	dene+nSample)					
Trigene ₁	$Trigene_2$:	$Trigene_{nG} - 1$	TrigenenG	Trisample ₁	Trisample ₂	:	Trisampl

Trisample _{nS}
:
Trisample ₂
Trisample ₁
TrigenenG
$Trigene_{nG-1}$
:
Trigene ₂
e1

Table 5.2 The encoded tricluster's length $(n_{Gene}+n_{Sample}+n_{Timepoint})$

				•								
Trigene ₁	$Trigene_2$:	Trigene _{nG - 1}	Trigenen	Trisample ₁	$Trisample_2$:	Trisample _{nS}	Tritimepoint1	Tritimepoint2	:	TritimepointnT
n_{Gene} -8832					n _{Sample} -9				hTimepoint-24			
n_{Gene} -7744					n _{Sample} -9				nTimepoint-14			
n_{Gene} -7744					n _{Sample} -9				nTimepoint-18			

	-
Notations	Representations
Data _T	Data in two dimensions for the gene and the sample at time 'T'
k _{gene}	'k' is gene _{clusters}
k _{sample}	'k' is sample _{cluster}
Binary _{bicluster}	Bicluster—Encoded with Binary Value
Binary _{Timepoint}	Time points-Encoded with Binary Value
n _{bicluster}	No. of bicluster's
n _{Gene}	No. of Genes
n _{Sample}	No. of Samples
n _{Timepoint}	No. of time points
Data _{GST}	Dataset with three dimensions of data such as Genes, Samples, and Time points
Trigene	A subset of specific tricluster's genes
Tri _{sample}	A subset of specific tricluster's samples
Tri _{timepoint}	A subset of specific tricluster's timepoint
Tri _{Optimal}	To find the Optimal tricluster
Tripopulation	Population Size
Tri _{Gene}	No. of the tricluster's Genes
Tri _{Sample}	No. of tricluster's Samples
Tri _{Timepoint}	No. of tricluster's Timepoint
Tri _{MCV}	Mean Correlation Value in the Tricluster
Tri _{Volume}	Volume of the tricluster
Tri _{Gene} coverage	No. of Genes Covered by Tricluster
Tri _{Sample} coverage	No. of Sample Covered by Tricluster
Tri _{Timepoint} coverage	No. of Time Points Covered by Tricluster
K-Means _{Two Way}	Two-way K-means
Greedv	Greedy Triclustering

Table 5.3 Notations and representations

Algorithm 5.1 Tricluster Seed Formation Step Using K-Means_{Two Way} Clustering

Input: Data_{GST}, 3D GED

Output: Optimal Tricluster (Tri_{Optimal}) Step 1: Initialize the correlation distance measure Step 2: For each 't' in n_{Timepoint}

- (a) Apply the K-Means_{Two Way} Clustering algorithm on the no. of genes (Tri_{Gene}) and generate 'k_{gene}' gene clusters.
- (b) Apply a two-way K-Means Clustering algorithm on the no. of Samples (Tri_{Sample})and generate 'k_{sample}' sample clusters.
- (c) Combine ' k_{gene} ' is represented as gene cluster and ' k_{sample} ' is represented as a sample cluster to get k_{gene} * k_{sample} as initial biclusters.

Algorithm 5.1 (continued)

- (d) Encode the bicluster into a binary string of length $n_{bicluster}$ ($n_{Gene}+n_{Sample}$) and it is represented as Binary_{bicluster}
- (e) Generate a random binary string of length n_{bicluster} n_{Timepoint} and it is represented as Binary_{Timepoint}
- (f) Concatenate (Binary_{bicluster} and Binary_{Timepoint}).
- (g) Encode the Tricluster into a binary string of length $n_{bicluster}^{*}(n_{Gene}+n_{Sample}+n_{Timepoint})$

End

Step 3: Call Greedy Triclustering()

Step 4: Return the Optimal Tricluster (Tri_{Optimal})

5.3.4 Specification of Greedy Triclustering

A heuristic is a greedy algorithm that uses this method of problem-solving to achieve the global optimum by looking for the local optimal solution at each stage. The Greedy_{Tri} algorithm was used to determine the ideal tricluster using the initial population as input. In the proposed Greedy_{Tri} method, a list of genes, samples, and time points that were eliminated from the tricluster were preserved separately. More TriG_{enes}, Tri_{Samples}, and Tri_{Timepoints} are individually added to each tricluster to increase its size (Narmadha and Rathipriya 2019a, b).

The finest element is chosen from the given list such as (1) gene list, (2) sample list, or (3) time point list in this procedure, and it is additional to the tricluster. The value of $\text{Tri}_{\text{Volume}}$ and Tri_{MCV} included in the element determines the quality of the tricluster. The best element is that which results in a greater Tri_{MCV} being additional to the tricluster. The initial tricluster expands from the given list such as (1) gene list, then (2) the sample list (3) the time point list, until the tricluster's Tri_{MCV} value increases. The next gene, sample, or time point are chosen using what is referred to as the 'greedy strategy', which results in an ideal tricluster with a greater Tri_{MCV} value. In Algorithm 5.2, this Greedy_{Tri} is described.

Algorithm 5.2 Greedy Triclustering (Greedy_{Tri}) Input : Initialize of (n_{Gene}+n_{Sample}) Output: Gene_{Enlargement} and Gene_{Refinement} tricluster Step 1: Generate the random population using the algorithm1 Step 2: For each and every Tri_{Gene} (i) Call Gene_{Enlargement} (gene (G', S', T')) (ii) Call Gene_{Refinement} (gene (G', S', T')) Step 3: Return the Gene_{Enlargement} and Gene_{Refinement} tricluster Step 4: // Subfunctions of Gene_{Refinement} and Gene_{Refinement} tricluster

```
Algorithm 5.2 (continued)
   Call Gene<sub>Enlargement</sub> (gene (G', S', T'))
   Step 1: Set of genes as 'g' not in G'
   Step 2: Set of sample as 's' not in S'
   Step 3: Set of time point as 't' not in T'
   Step 4: For each node g/s/t
                 If Tri_{MCV} (union (gene, (g/s/t))) > Tri_{MCV} (gene (G,S,T)) then
                    1. Add g/s/t to gene (G,S,T)
                    2.
                         End (if)
            End (for)
   Step 5: Return the Enlarged<sub>gene</sub> set
   Call Gene<sub>Refinement</sub> (gene (G', S', T'))
   Step 1: For each node gene/sample/timepoint in the Enlarged gene
               Remove node gene/sample/timepoint in the Enlarged gene
              G"/S"/T' be set of rows as r/columns as c/time point as t in G'/S'/
T' but not contained g/s/t
               If Tri<sub>MCV</sub> Enlarged<sub>gene</sub> (G", S", T")> Tri<sub>MCV</sub> (Enlarged<sub>gene</sub> (G'/
S'/T'))
               Update G'/S'/T'
              End (if)
            End (for)
   Step 2: Return Refined<sub>gene</sub> set G", and A (G", S', T') as refined tricluster.
```

5.4 Result and Analysis

The performance level of the Greedy_{Tri} and K-Means_{Two Way} triclustering algorithms for three datasets was shown in Table 5.4. It is well known that the Greedy_{Tri} technique significantly boosted both the mean volume and the mean Tri_{MCV} of the triclusters. According to these findings, the Greedy_{Tri} technique did a good job of extracting the higher volume tricluster for the given Tri_{MCV} .

The clustered vertical bar chart for the $Greedy_{Tri}$ and K-Means: Two-Way approaches' volume-based performance is shown in Fig. 5.1. Visually, it is evident that the $Greedy_{Tri}$ method extends the K-Means: Two-Way triclustering method's triclusters, and this is reflected in the volume of the resulting clusters. The

Datasets	Methods	Mean Tri _{Volume}	Mean Tri _{MCV}
Data _{CDC15}	K-Means _{Two Way}	1192.125	0.941
	Greedy _{Tri}	47,390	0.951
DataElutriation	K-Means _{Two Way}	763.7143	0.940
	Greedy _{Tri}	38,705.79	0.940
Data _{Pheromone}	K-Means _{Two Way}	799.5556	0.945
	Greedy _{Tri}	70,951.56	0.959

Table 5.4 Mean presentation of K-Means_{Two Way} and Greedy_{Tri} triclustering methods

Fig. 5.1 Mean volume of K-Means: two-way and Greedy_{Tri} triclustering methods

performance of the Greedy_{Tri} and K-Means: Two-Way triclustering approaches, based on Tri_{MCV} , is shown in Fig. 5.2 as a clustered horizontal bar chart. It is discovered that while there is a significant difference in their Tri_{Volume} , there is little variation in their Tri_{MCV} . That is what makes the Greedy Triclustering approach special. Tricluster validation may be biological or statistical, depending on the features of the produced triclusters and the genes annotated in the various triclusters. This chapter primarily focused on the biological verification of the artificial intelligence-assisted tricluster.

- Utilize the GoTermFinder web tool to assess the triclusters physiologically.
- In order to determine what the genes in a given list may have in common, it looks for substantial shared GO keywords.
- In fact, the biological criteria make it possible to assess the quality of the generated triclusters by determining if their genes share any biological traits (Narmadha and Rathipriya 2019a, b).

5.4.1 CDC15 Experiment Using 3D GED

- The YCC data, Greedy_{Tri}, is capable to extract extremely correlated subset genes with larger volume. From the input list 3336 genes are known and not ambiguous. Also, 288 duplicates were removed from the input list. The removed genes are identified to be either unknown or ambiguous in the dataset.
- 7166 genes in all were utilized to determine the background distribution of GO keywords. Out of the 3435 terms that were found, 24 were shown.
- The total number of Tri_{Timepoint} in the CDC15 experiment is represented as 10–290 m and the difference between the time points is represented as 30 m.
- Figure 5.3 shows the representation of Tri_{Optimal} for the Data_{CDC15}. Table 5.5 shows the Highly Correlated Genes for the Data_{CDC15}
- Data_{CDC15} from YCC: Biological Significant for Biological Process shown in Table 5.6.

Fig. 5.3 Representation of $Tri_{Optimal}$ for the Data_{CDC15}

YHR197W	YKL203C	YEL009C	YDR201W	YHR119W	YLL003W
YOL071W	YPL139C	YEL015W	YDL127W	YMR072W	YCL048W
YCR060W	YIL115C	YCR092C	YAL018C	YLR009W	YGL175C
YBR120C	YHR115C	YLR218C	YJL159W	YDR130C	YOR250C
YIL075C	YLR467W	YLR408C	YKL126W	YKR100C	YLR307W
YGL131C	YDL164C	YDR258C	YGL066W	YLR248W	YKR076W
YFL049W	YDR328C	YKR086W	YDR190C	YMR305C	YHR102W
YEL077C	YAL002W	YPR049C	YLR356W	YCL031C	YBR202W
YKL190W	YOR058C	YDR309C	YGR133W	YCL056C	YPL074W
YOL109W	YLR399C	YPR179C	YOR152C	YDR356W	YMR190C
YBL031W	YBL043W	YDR069C	YOR330C	YBR135W	YPL029W
YAL029C	YPL004C	YGL049C	YLR067C	YDR295C	YAL007C
YLR168C	YJL180C	YIL041W	YNL084C	YLL026W	YGR239C
YNL218W	YHR039C	YNL021W	YOR056C	YOL126C	YLR461W
YDL195W	YPR194C	YNL006W	YML072C	YIL062C	YBL006C
YNL121C	YGL120C	YNL039W	YIL132C	YDL139C	YMR260C
YHL027W	YKL137W	YLR276C	YIR010W	YMR265C	YDR440W
YGL115W	YEL056W	YHR160C	YBR114W	YKL087C	YDR319C
YJR151C	YDL093W	YDR065W	YAL048C	YHR041C	YDR486C
YOR073W	YNL066W	YDR397C	YBR017C	YLR341W	YER106W
YBR237W	YKL192C	YMR163C	YMR211W	YER169W	YNL310C
YLR006C	YDR150W	YBR091C	YML010W	YDR437W	YBL078C

Table 5.5 Highly correlated genes for the Data_{CDC15}

5.4.2 Elutriation Experiment Using 3D GED

- The YCC data, Greedy_{Tri}, is capable to extract extremely correlated genes with larger volume. From the input list 3320 genes are known and not ambiguous. Also, 301 duplicates were removed from your input list. The removed genes are identified to be either unknown or ambiguous in the dataset. 7166 genes in all were utilized to determine the background distribution of GO keywords. Ten terms are being displayed out of the 3474 total identified. The total number of Tri_{Timepoint} in the elutriation is represented as 0–390 m and the difference between the time points is represented as 30 m.
- Figure 5.4 shows the Representation of Tri_{Optimal} for the Data_{Elutriation}. Table 5.7 shows the highly correlated genes for the Data_{Elutriation}. Data_{Elutriation} from YCC: Biological Significant for Biological Process shown in Table 5.8.

5.4.3 Pheromone Experiment Using 3D GED

 The YCC data, Greedy_{TriPSO}, is able to extract highly correlated genes with larger volumes of genes. From the input list 3297 genes are known and not ambiguous. Also, 270 duplicates were removed from your input list. The removed genes are

Biological proces	S			Molecular funct	tion			Cellular componer	nt		
	Cluster	Genome	Corrected		Cluster	Genome	Corrected		Cluster	Genome	Corrected
Gene	frequency with	frequency with		Gene Ontology	frequency with	frequency with		Gene	frequency with	frequency with	
Ontology term	Percentage	Percentage	P-value	term	Percentage	Percentage	P-value	Ontology term	Percentage	Percentage	P-value
Cellular	1120 of	2087 of	1.57E-11	Catalytic	1258 of	2434 of	2.05E-07	Organelle	2409 of	4824 of	2.77E-14
component	3333:	7166 genes,		activity	3333	7166 genes,			3333	7166 genes,	
organization	genes, 33.6%	29.1%			genes, 37.7%	34.0%			genes, 72.3%	67.3%	
Biological	1099 of	2055 of	1.42E-10	Ion binding	851 of	1603 of	1.44E-06	Intracellular	2408 of	4822 of	2.90E-14
regulation	3333	7166 genes,			3333	7166 genes,		organelle	3333	7166 genes,	
	genes, 33.0%	28.7%			genes, 25.5%	22.4%			genes, 72.2%	67.3%	
Intracellular	2225 of	4467 of	2.53E-10	Nucleotide	478 of	879 of 7166	0.00041	Membrane-	2255 of	4526 of	7.79E-11
membrane-	3333	7166 genes,		binding	3333	genes,		bounded	3333	7166 genes,	
bounded organelle	genes, 66.8%	62.3%			genes, 14.3%	12.3%		organelle	genes, 67.7%	63.2%	
Cell	2831 of	5834 of	3.08E-10	Nucleoside	478 of	879 of 7166	0.00041	Intracellular	2225 of	4467 of	2.53E-10
	3333:	7166:		phosphate	3333	genes,		membrane-	3333	7166 genes,	
	genes-,	genes-,		binding	genes,	12.3%		bounded	genes,	62.3%	
	84.9%	81.4%			14.3%			organelle	66.8%		
Cell part	2828 of	5829 of	4.50E-10	Small	511 of	948 of 7166	0.00067	Cell	2831 of	5834 of	3.08E-10
	3333	7166 genes,		molecule	3333	genes,			3333	7166 genes,	
	genes, 84.8%	81.3%		binding	genes, 15.3%	13.2%			genes, 84.9%	81.4%	
Membrane	1077 of	2070 of	1.12E-06	Anion	513 of	966 of 7166	0.00677	Cell part	2828 of	5829 of	4.50E-10
	3333	7166 genes,		binding	3333	genes,			3333	7166 genes,	
	genes,	28.9%			genes,	13.5%			genes,	81.3%	
	32.3%				15.4%				84.8%		

Table 5.6 Data_{CDC15} from YCC: biological significant for biological process

Fig. 5.4 Representation of Tri_{Optimal} for the Data_{Elutriation}

identified to be either unknown or ambiguous in the dataset. 7166 genes in all were utilized to determine the background distribution of GO keywords. Forty seven terms are being displayed out of the 3534 total discovered.

- The total number of Tri_{Timepoint} in the pheromone experiment is represented as 000–119 m and the difference between the time points is represented as 007 m.
- Figure 5.5 shows the Representation of Tri_{Optimal} for the Data_{Pheromone}. Table 5.9 shows the Highly Correlated Genes for the Data_{Pheromone}.
- The Biological Significant of the Biological Process for Data_{Pheromone} from YCC shown in Table 5.10.

5.5 Summary

This chapter introduces a new algorithm for extracting tricluster from 3D GED using artificial intelligence methods. K-Means_{TwoWay} clustering to create tricluster seeds. The greedy triclustering method is then used to enlarge these seeds. The primary goal of the optimization issue is to extract the highly correlated tricluster that has a bigger volume. The greedy triclustering method, which is based on the objective

YOR361C	YDR144C	YOL083W	YKL033W	YIR019C	YER013W
YDR099W	YKL074C	YOL009C	YBR034C	YHR086W	YDR171W
YAR003W	YDR225W	YNL264C	YMR183C	YLR424W	YDR060W
YHR038W	YMR078C	YDR273W	YBL055C	YKL049C	YMR002W
YIL095W	YPL242C	YIR018W	YGR280C	YOR189W	YPL152W
YJR021C	YML058W	YHR132C	YPR175W	YIL011W	YDR372C
YHR004C	YGR240C	YGL098W	YDR093W	YDR469W	YML015C
YGL112C	YIL176C	YBR234C	YKL117W	YFL013C	YPR016C
YGR074W	YPL184C	YGR105W	YJL164C	YKL164C	YPL047W
YJR033C	YJL100W	YML019W	YPL138C	YDR334W	YBL035C
YBR275C	YMR086W	YJL058C	YOR094W	YDR043C	YMR268C
YLL038C	YOR035C	YBR044C	YPL133C	YPR161C	YHR186C
YGL172W	YLR163C	YKR010C	YHL025W	YDR493W	YPL127C
YHR181W	YHR205W	YIL126W	YDR528W	YNL258C	YGR131W
YHL030W	YKL058W	YBR214W	YAL054C	YKL050C	YLR090W
YHL024W	YJL036W	YOL047C	YMR231W	YGL207W	YLR433C
YER122C	YNR031C	YGL194C	YKR054C	YLR200W	YDR359C
YGL059W	YKL156W	YNL138W	YER155C	YPR135W	YLR343W
YNL312W	YDR208W	YKL013C	YLR038C	YIR041W	YOR295W
YDL064W	YGL169W	YBL067C	YMR037C	YJR066W	YBR152W
YGR136W	YPL120W	YDL223C	YHR081W	YOR246C	YJL021C
YNL216W	YPR048W	YGR150C	YPL250C	YDL120W	YOR293W
YDR485C	YOR147W	YDR517W	YIR021W	YGL189C	YFL024C
YLR249W	YNL182C	YPL211W	YML046W	YKL145W	YPR041W

Table 5.7 Highly correlated genes for the Data_{Elutriation}

function, may extract highly linked genes with significant volume. The proposed Greedy_{Tri} is tested on YCC datasets using GO ontology tool. The findings of the GO validation are highly correlated and the levels of significance for the retrieved terms are high. The biological mechanism, molecular function, and cellular component of triclusters have all been graphically shown. It is observed that Greedy_{Tri} is capable to extract highly correlated tricluster with larger volume and biological significance also. Triclusters with scaling pattern have still more biological significance. Above all, triclusters with high correlation degree have more biological significance which is the finding of this work.

Table 5.8 Data	Elutriation from	n YCC: biolog	gical signific	cant for biolo	gical process						
Biological process				Molecular func	tion			Cellular component			
	Cluster	Genome	Corrected		Cluster	Genome	Corrected		Cluster	Genome	Corrected
	frequency	frequency		Gene	frequency	frequency			frequency	frequency	
Gene Ontology	with	with		Ontology	with	with		Gene Ontology	with	with	
term	Percentage	Percentage	P-value	term	Percentage	Percentage	P-value	term	Percentage	Percentage	P-value
Biological	1091 of	2055 of	1.96E-10	Catalytic	1250 of	2434 of	1.72E-07	Intracellular	2359 of	4822 of	7.89E-09
regulation	3308	7166		activity	3308	7166		organelle	3308	7166	
	genes,	genes,			genes,	genes,			genes,	genes,	
	33.0%	28.7%			37.8%	34.0%			71.3%	67.3%	
Regulation of	903 of	1690 of	1.58E-08	Ion	836 of	1603 of	3.26E-05	Membrane-	2226 of	4526 of	8.34E-09
biological	3308	7166		binding	3308	7166		bounded	3308	7166	
process	genes,	genes,			genes,	genes,		organelle	genes,	genes,	
	27.3%	23.6%			25.3%	22.4%			67.3%	63.2%	
Regulation of	845 of	1579 of	7.22E-08	Coenzyme	94 of 3308	144 of	0.0027	Organelle	2359 of	4824 of	1.07E-08
cellular process	3308	7166		binding	genes,	7166			3308	7166	
	genes,	genes,			2.8%	genes,			genes,	genes,	
	25.5%	22.0%				2.0%			71.3%	67.3%	
Cellular	1079 of	2087 of	3.53E-06					Intracellular	2190 of	4467 of	1.76E-07
component	3308	7166						membrane-	3308	7166	
organization	genes,	genes,						bounded	genes,	genes,	
	32.6%	29.1%						organelle	66.2%	62.3%	
Regulation of	602 of	1122 of	9.36E-05					Endomembrane	574 of	1091 of	0.00169
macromolecule	3308	7166						system	3308	7166	
metabolic	genes,	genes,							genes,	genes,	
process	18.2%	15.7%							17.4%	15.2%	
Regulation of	634 of	1192 of	0.00021					Nucleus	1221 of	2458 of	0.00751
metabolic	3308	7166							3308	7166	
process	genes,	genes,							genes,	genes,	
	19.2%	10.0%							50.9%	54.3%	

Fig. 5.5 Representation of $\mathrm{Tri}_{\mathrm{Optimal}}$ for the $\mathrm{Data}_{\mathrm{Pheromone}}$

YHR102W	YEL077C	YAL002W	YPR049C	YLR356W	YCL031C
YBR202W	YKL190W	YGR095C	YOR058C	YDR309C	YGR133W
YGR103W	YCL056C	YPL074W	YOL109W	YLR399C	YKL014C
YPR179C	YOR152C	YDR356W	YMR190C	YBL031W	YBL043W
YDR069C	YOR330C	YBR135W	YPL029W	YAL029C	YGR218W
YPL004C	YOR224C	YGL049C	YBL061C	YLR067C	YLL011W
YDR295C	YAL007C	YLR168C	YJL180C	YIL041W	YNL084C
YHR087W	YLL026W	YGR239C	YNL218W	YHR039C	YNL021W
YOR056C	YOL126C	YLR461W	YDL195W	YPR194C	YNL006W
YML072C	YIL062C	YBL006C	YBL018C	YNL121C	YGL120C
YNL039W	YIL132C	YDL139C	YMR260C	YHL027W	YKL137W
YLR276C	YDR021W	YIR010W	YMR265C	YDR440W	YNL075W
YGL115W	YNL232W	YEL056W	YHR160C	YBR114W	YKL087C
YOR210W	YJR002W	YDR319C	YJR151C	YDL093W	YPR187W
YDR065W	YAL048C	YHR041C	YDR486C	YOR073W	YNL066W
YDR397C	YBR017C	YLR341W	YAL059W	YER106W	YBR237W
YOR099W	YKL192C	YMR163C	YMR211W	YER169W	YNL310C
YLR006C	YDR150W	YDR449C	YBR091C	YML010W	YDR437W
YBL078C	YGR145W	YAL013W	YNL110C	YDR224C	YCL034W
YBL068W	YBR043C	YIL118W	YNL313C	YDR229W	YOR228C
YIL146C	YDR132C	YBR186W	YNL131W	YLL027W	YNL206C

 Table 5.9
 Highly correlated genes for the Data_{Pheromone}

			ہ ۵		-						
Biological process				Molecular fun-	ction			Cellular componer	nt		
	Cluster	Genome	Corrected		Cluster	Genome	Corrected		Cluster	Genome	Corrected
Gene Ontology	frequency with	frequency with		Gene Ontology	frequency with	frequency with		Gene	frequency with	frequency with	
term	Percentage	Percentage	P-value	term	Percentage	Percentage	P-value	Ontology term	Percentage	Percentage	P-value
Cellular	1122 of	2087 of	3.41E-14	Catalytic	1263 of	2434 of	2.65E-10	Intracellular	2431 of	4822 of	2.27E-25
component	3291	7166 genes,		activity	3291	7166 genes,		organelle	3291	7166 genes,	
organization	genes, 34.1%	29.1%			genes, 38.4%	34.0%			genes, 73.9%	67.3%	
Biological	1101 of	2055 of	4.03E-13	Ion	852 of	1603 of	3.30E-08	Organelle	2431 of	4824 of	3.71E-25
regulation	3291	7166 genes,		binding	3291:	7166 genes,			3291	7166 genes,	
	genes, 33.5%	28.7%			genes, 25.9%	22.4%			genes, 73.9%	67.3%	
Organelle	817 of	1496 of	8.37E-11	Protein	509 of	929 of 7166	4.68E-06	Membrane-	2282 of	4526 of	5.89E-21
organization	3291	7166 genes,		binding	3291	genes,		bounded	3291	7166 genes,	
	genes,	20.9%			genes,	13.0%		organelle	genes,	63.2%	
	24.8%				15.5%				69.3%		
Regulation of	911 of	1690 of	1.19E-10	Enzyme	90 of 3291	136 of 7166	0.00143	Intracellular	2253 of	4467 of	2.41E-20
biological	3291	7166 genes,		activator	genes,	genes, 1.9%		membrane-	3291	7166 genes,	
process	genes,	23.6%		activity	2.7%			bounded	genes,	62.3%	
	27.7%							organelle	68.5%		
Regulation of	853 of	1579 of	6.27E-10	Metal ion	443 of	830 of 7166	0.00334	Cell	2796 of	5834 of	4.28E-10
cellular process	3291	7166 genes,		binding	3291	genes,			3291	7166 genes,	
	genes,	22.0%			genes,	11.6%			genes,	81.4%	
	25.9%				13.5%				85.0%		
Cellular	1260 of	2447 of	2.14E-08	Cation	447 of	841 of 7166	0.00541	Cell part	2793 of	5829 of	6.33E-10
component	3291	7166 genes,		binding	3291	genes,			3291	7166 genes,	
organization or	genes,	34.1%			genes,	11.7%			genes,	81.3%	
biogenesis	38.3%				13.6%				84.9%		

Table 5.10 DataPheronone from YCC: biological significant for biological process

References

- Gnatyshak DV (2014) Greedy modifications of OAC-triclustering algorithm. Proc Comput Sci 31: 1116–1123. https://doi.org/10.1016/j.procs.2014.05.367
- Gnatyshak DV (2015) A single-pass triclustering algorithm. Automat Doc Math Ling 49(1):27–41. https://doi.org/10.3103/s0005105515010057
- Han F, Yang C, Wu Y, Zhu J, Ling Q, Song Y, Huang D (2017) A gene selection method for microarray data based on binary PSO encoding gene-to-class sensitivity information. IEEE/ ACM Trans Comput Biol Bioinform 14(1):85–96. https://doi.org/10.1109/tcbb.2015.2465906
- Rathipriya R, Thangavel K, Bagyamani J (2011) Binary particle swarm optimization based biclustering of web usage data. Int J Comput Appl 25(2):43–49. https://doi.org/10.5120/ 3001-4036
- Li Y, Tian X, Jiao L, Zhang X (2014) Biclustering of gene expression data using Particle Swarm Optimization integrated with pattern-driven local search. In: 2014 IEEE congress on evolutionary computation (CEC). https://doi.org/10.1109/cec.2014.6900323
- Pontes B, Girldez R, Aguilar-Ruiz JS (2015) Quality measures for gene expression biclusters. PLoS One 10(3):e0115497. https://doi.org/10.1371/journal.pone.0115497
- Balamurugan R, Natarajan A, Premalatha K (2016) Biclustering microarray gene expression data using modified Nelder-Mead method. Int J Inf Commun Technol 9(1):43. https://doi.org/10. 1504/ijict.2016.077686
- Wei Shen GL (2012) A novel biclustering algorithm and its application in gene expression profiles. J Inf Comput Sci 9(11):3113–3122
- Liu F (2006) Biclustering of gene expression data using EDA-GA hybrid. In: IEEE international conference on evolutionary computation. https://doi.org/10.1109/CEC.2006.1688499
- Xie B, Chen S, Liu F (2007) Biclustering of gene expression data using PSO-GA hybrid. In 2007 1st international conference on bioinformatics and biomedical engineering. https://doi.org/10. 1109/icbbe.2007.81
- Shyama D, Idicula SM (2010) Greedy search-binary PSO hybrid for biclustering gene expression data. Int J Comput Appl 2(3):1–5. https://doi.org/10.5120/651-908
- Chuang L, Chang H, Tu C, Yang C (2008) Improved binary PSO for feature selection using gene expression data. Comput Biol Chem 32(1):29–38. https://doi.org/10.1016/j.compbiolchem. 2007.09.005
- Lopamudra Dey AM (2014) Microarray gene expression data clustering using PSO based K-means algorithm. Int J Comput Sci Appl 1(1):232–236. issn: 2250-3765
- Thangavel K, Bagyamani J, Rathipriya R (2012) Novel hybrid PSO-SA model for biclustering of expression data. Proc Eng 30:1048–1055. https://doi.org/10.1016/j.proeng.2012.01.962
- Narmadha N, Rathipriya R (2019a) Greedy K-means: two way clustering for optimal coherent tricluster. Int J Sci Technol Res 8(10):1916–1921. issn:2277-8616
- Narmadha N, Rathipriya R (2018) Triclustering algorithm for 3D gene expression data using correlation measure. Int J Eng Res Comput Sci Eng 5(2):221–227
- Narmadha N (2017) Query based tri-clustering (QBTC). Int J Comput Intell Inform 7(2):117–121 Narmadha N, Rathipriya R (2019b) Gene ontology analysis of 3D microarray gene expression data
- using hybrid PSO optimization. Int J Innov Technol Explo Eng 8(11):3890–3896
- Narmadha N, Rathipriya R (2020) An optimized three-dimensional clustering for microarray data. In: Handbook of research on big data clustering and machine learning. IGI Global, pp 366–377