
Chapter 7 
Performance Evaluation Between 
HarperDB, Mongo DB and PostgreSQL 

Diana Figueiredo, Goncalo Saraiva, Joao Rebelo, Ricardo Rodrigues, 
Filipe Cardoso, Cristina Wanzeller, Pedro Martins, and Maryam Abbasi 

Abstract Several modern-day problems, like information overload and big data, 
need to deal with large amounts of data. As such, to meet the application requirements, 
for instance, performance and consistency, more and more systems are adapting to 
the specificities. The existing relational database management system (RDBMS)’s 
processing of massive data has become an issue because these databases do not deal 
with a massive amount of data. NoSQL is a database management system that makes 
processing massive and/or unstructured data easier because it uses key-value to store 
the data, collections or document stores instead of tables. Many companies today tend 
to start a project using NoSQL. However, HarperDB aims to produce a relational and 
non-relational DBMS, allowing developers to choose between different solutions. 
This paper aims to show the most relevant differences between HarperDB, MongoDB 
and PostgreSQL and compare their performances. Preliminary results show that

D. Figueiredo · G. Saraiva · J. Rebelo · R. Rodrigues 
Polytechnic of Viseu, Viseu, Portugal 
e-mail: estgv17365@alunos.estgv.ipv.pt 

G. Saraiva 
e-mail: pv23838@alunos.estgv.ipv.pt 

J. Rebelo 
e-mail: estgv17737@alunos.estgv.ipv.pt 

R. Rodrigues 
e-mail: estgv16802@alunos.estgv.ipv.pt 

C. Wanzeller · P. Martins (B) 
CISeD—Research Centre in Digital Services, Polytechnic of Viseu, Viseu, Portugal 
e-mail: pedromom@estgv.ipv.pt 

C. Wanzeller 
e-mail: cwanzeller@estgv.ipv.pt 

M. Abbasi 
CISUC—Centre for Informatics and Systems of the University of Coimbra, Coimbra, Portugal 
e-mail: maryam@dei.uc.pt 

F. Cardoso 
Polytechnic of Coimbra, Coimbra, Portugal 
e-mail: filipe@isec.pt 

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024 
J. L. Reis et al. (eds.), Marketing and Smart Technologies, Smart Innovation, Systems 
and Technologies 344, https://doi.org/10.1007/978-981-99-0333-7_7 

85

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-0333-7_7&domain=pdf
mailto:estgv17365@alunos.estgv.ipv.pt
mailto:pv23838@alunos.estgv.ipv.pt
mailto:estgv17737@alunos.estgv.ipv.pt
mailto:estgv16802@alunos.estgv.ipv.pt
mailto:pedromom@estgv.ipv.pt
mailto:cwanzeller@estgv.ipv.pt
mailto:maryam@dei.uc.pt
mailto:filipe@isec.pt
https://doi.org/10.1007/978-981-99-0333-7_7


86 D. Figueiredo et al.

PostgreSQL performs better with structured data, but HarperDB can integrate NoSQL 
and SQL, which can be a significant advantage to HarperDB compared with the other 
solutions. 

Keywords RDBMS · NoSQL · PostgreSQL ·MongoDB · HarperDB ·
Performance 

7.1 Introduction 

The data volumes generated by modern-day systems have met staggering growth 
during the last few years. Managing and analyzing these data is becoming increas-
ingly important, enabling novel applications that may transform science and society. 
Thanks to advances in storage technology (being larger and cheaper), more data 
of customers is being stored in the cloud. The problem is that the data collected 
is no longer relational, and companies have been adopting a new structure called 
NoSQL to meet this new requirement. The relational database management systems 
(RDBMS) have issues structuring unstructured data and performance/cost problems 
in processing massive data [1]. NoSQL performs read/write faster because it has a 
memory mapping function, making NoSQL suitable for processing big data. In addi-
tion, unlike RDBMS, which mainly processes structured data, NoSQL can handle 
unstructured data more easily [1]. This type of database has been around since the 
1960s. However, in the last decade, we have seen market traction and the trend 
toward databases, such as HarperDB, that are capable of storing relational and non-
relational data together [2]. HarperDB has been created to address the complexity and 
expense of current database systems. This database can be built and scaled without 
prior knowledge or understanding and without sacrificing performance. It has been 
marketed as a “true native high transnational NoSQL and SQL” single database solu-
tion [2]. With this in mind, in this paper, we will analyze the performance differences 
between PostgreSQL, an RDBMS, MongoDB, a NoSQL database, and HarperDB, 
which can work with relational and unstructured data. To perform these tests, we will 
use the TPC-H benchmark that was initially designed to compare database systems 
end-to-end. Researchers also use it to benchmark implementation details and algo-
rithms. It consists of a suite of business-oriented ad-hoc queries and concurrent data 
modifications [3]. 

This document is organized into five sections. Section 7.2 presents the state-
of-the-art articles comparing the performance between HarperDB, MongoDB and 
PostgreSQL. Section 7.3 explains, analyzes and compares the different architectures. 
Section 7.4 describes the setup used in the tests. Section 7.5 shows the obtained results 
in the tests. Finally, in Sect. 7.6 conclusions are drawn, followed by the introduction 
of future work guidelines.



7 Performance Evaluation Between HarperDB, Mongo DB and PostgreSQL 87

7.2 Related Work(s) 

The geographical data that current systems produce has grown astoundingly during 
the past few years. Managing and interpreting these data is becoming more and 
more crucial since it enables novel applications that could revolutionize science and 
society. The effort to deal with this data flood has shown to be greatly helped by 
distributed database systems. This article [4] compares the performance in terms of 
response time between a scalable document-based NoSQL data store MongoDB 
and an open-source object-relational database system (ORDBMS)—PostgreSQL 
with the PostGIS extension. PostGIS is a spatial extender that adds support for 
geographic objects [4]. Spatio-temporal queries that simulate actual case scenarios 
run against a dataset are used to gauge performance. The evaluation of the systems 
was investigated under various conditions, including a five-node cluster configuration 
vs a one-node implementation with and without the use of indexes. Each database 
system was installed on an Amazon Web Services (AWS) EC2 instance and utilized 
an Amazon S3 bucket to store and retrieve the data. The authors of this paper came 
to the following conclusions: PostgreSQL outperforms MongoDB in all scenarios; 
the average response time is reduced by half, almost always, with the use of indexes; 
however, PostgreSQL again reduces the response time by a significant amount; and 
PostgreSQL reduces the dataset size occupied in the system DB by four times because 
it stores data more effectively [4]. This paper differs in that, in addition to comparing 
the performance of the PostgreSQL database with the MongoDB performance. We 
also compare it with HarperDB. 

Big data technology has recently attracted interest from many industries and has 
received close attention from governments worldwide. Big data is viewed as the “oil” 
of contemporary civilization, and scientific research has shifted its attention to the 
value of the information it holds [5]. Before the big data era, data was organized using 
a two-dimensional table schema in the common format, which is relatively simple 
to manage and use. The complexity of the data kinds in the big data environment, 
however, makes it hard to predict how the data will be stored. For this reason, the 
shift from model-driven research to data-driven research was necessary [5]. When 
comparing the consumption times for writing the data into each database and the 
compression ratio, the authors of this paper [5] used remote sensing data as the target 
data to assess the performance differences between unstructured data in PostgreSQL 
and MongoDB database technologies. According to the research, MongoDB is six 
times faster than PostgreSQL at writing unstructured data, and PostgreSQL performs 
significantly better at compression than MongoDB. [5]. In our paper, we will try 
to compare the performance with both aspects and compare the performance with 
different sets of write and read between these databases and HarperDB.



88 D. Figueiredo et al.

7.3 Architecture 

7.3.1 HarperDB 

HarperDB was created because of the complexity and expense of database systems. 
The main goal of this software is to be built and scaled without prior knowledge 
or understanding by developers of any skill level, all of this without sacrificing 
performance [6]. This software can run in every operating system, allowing users to 
collect, process and distribute data in their company, from hosted servers to the cloud. 
With HarperDB, it is possible to use conventional SQL operations such as joins, order 
by and group by. HarperDB can support document storage, data modeling schema 
and queries based on API execution. 

7.3.2 MongoDB 

MongoDB was founded in 2007. It is an open-source database built on a horizontal 
scale-out architecture that uses a flexible schema for data storage. It is an open-
source document-based NoSQL datastore. MongoDB does not use tables, rows or 
columns, unlike the SQL database. In MongoDB, the database is a BSON document, 
a binary data representation. Applications can access it through JavaScript Object 
Notation (JSON) files. This is applied in most modern programming languages. This 
database allows programmers and developers to store structured or unstructured data, 
since it uses JSON-type files to store documents. Even though MongoDB is a non-
relational database, it contains features and functionalities of relational databases, 
such as sorting and secondary indexing. MongoDB also contains relational database 
operators such as create, insert, read and update [4]. 

7.3.3 PostgreSQL 

PostgreSQL is an open-source relational database that uses SQL language combined 
with features that allow you to scale even the most complicated database schemes. It 
was created in 1986 as the University of California at Berkeley project. PostgreSQL 
allows compatibility in several operating systems. It follows the atomicity, consis-
tency, isolation, durability (ACID) concept. These properties guarantee the trans-
actions in the database, and even if errors occur during the transition, PostgreSQL 
ensures that data is not lost [7]. 

PostgreSQL has gained an excellent reputation for its architecture, reliability and 
data integrity. It can be used on most operating systems, has trendy add-ons, and 
is used by many people and companies worldwide. PostgreSQL is a good option 
because it is easy to use, it is open-source, has a big community that can support



7 Performance Evaluation Between HarperDB, Mongo DB and PostgreSQL 89

it when needed, has a user-defined data type and many advantages that make this 
tool so popular. Nevertheless, it also has some disadvantages. For example, many 
open-source apps support MySQL but may not support PostgreSQL. 

7.3.4 HarperDB Versus MongoDB 

MongoDB is a document store that stores data in JSON-like documents that can vary 
in structure offering a dynamic, flexible schema [8]. MongoDB was also designed for 
high availability and scalability, with built-in replication and auto-sharding, which is 
excellent for storing unstructured data. It is a database that optimizes the data value 
chain for any size company without sacrificing features, functionality and stability. 
HarperDB is designed to run from the edge to the cloud, and it is a distributed 
database with a REST API and dynamic schema that supports NoSQL and SQL, 
including joins. (For example, it is possible to ingest data via NoSQL JSON and then 
immediately query it via SQL), contains an enterprise-level ACID SQL capability for 
storing documents. It includes a native REST API that supports SQL over JSON files. 
MongoDB is more optimized for large-scale writes, but not reads. HarperDB’s write 
algorithm allows large-scale reads and writes, which results in better performance 
generally. 

7.3.5 MongoDB Versus PostgreSQL 

MongoDB and PostgreSQL are different types of databases, and both serve different 
purposes [9]. PostgreSQL is one of the most popular relational database management 
systems (RDBMS) and is entirely open-source. It can support complex procedures, 
designs and integrations. It is a SQL database, and it follows the standard SQL 
queries. It is mainly used to store data that follows a particular structure. MongoDB 
is a NoSQL database model often used for unstructured data and application devel-
opment. It is a document-based database. MongoDB, a NoSQL database, is not 
relational and can have a dynamic schema. MongoDB gives us the flexibility to 
change the data schema at any time. MongoDB can handle operational, transnational 
and analytical workloads easily. MongoDB must be applied in a use case where it 
is needed to save unstructured data or if it is needed to handle massive data, and 
in the future that same data will keep growing. It is also good if the application is 
cloud-based. 

PostgreSQL is good if the data is structured and follows a specific pattern to 
perform a significant amount of joins in the application. This database should be 
used if the application does not have much data. The main difference between those 
two is that MongoDB is a NoSQL database, and PostgreSQL is a SQL database. In 
MongoDB, the data is saved as a collection, but in PostgreSQL, the data is held in 
tables.



90 D. Figueiredo et al.

7.3.6 PostgreSQL Versus HarperDB 

HarperDB scales horizontally, which allows for speed. It has bidirectional table-
level data replication and uses a simple pub-sub model; data is replicated by 
publishing data to different “chat rooms” to which different nodes subscribe and 
can be distributed horizontally [10]. Otherwise, PostgreSQL scales vertically (as 
it gets bigger, more space or memory is needed). Therefore, it requires downtime 
to upgrade. HarperDB and PostgreSQL have enterprise-grade ACID SQL transac-
tions, meaning data validity is quite reliable. The problem with PostgreSQL is that 
there is not a PostgreSQL cloud-like like HarperDB Cloud and MongoDB Atlas, 
but some cloud providers offer PostgreSQL-as-a-service. HarperDB is more flexible 
than PostgreSQL, which is a good option for complex or strict data. On the other 
hand, HarperDB is simpler to install, configure and administer. It allows developers 
to use SQL and NoSQL knowledge for the same data model. 

7.4 Experimental Setup 

In order to do the performance tests of the three different databases, we installed 
MongoDB and PostgreSQL on a computer to have the exact specifications allowing 
us to compare their performances, and we installed HarperDB on Docker on the same 
computer. We did the tests, each one at a time, to ensure that the condition of the tests 
was the same. This computer has Windows software installed and has the following 
specifications: Intel i5 processor and 8 gigabytes (GB) of random access memory 
(RAM). We inserted a dataset of 10 gigabytes in each database, generated with the 
benchmark TPC-H, and then proceeded with the performance tests. The free version 
of HarperDB has the limitation of 500 megabytes (MB) of RAM, limiting some tests 
done on HarperDB compared with the performance tests done in the other databases. 

As we mentioned earlier, the dataset of 10 GB was generated with TPC-H. TPC-
H is a benchmark that simulates a decision support system database environment. 
The components of the TPC-H database are defined to consist of eight separate and 
individual tables (the base tables). However, we focused our tests on the lineitem 
table because it is the one with more data. 

For this work, we focus on the insert test, which consists of inserting data into the 
database and selecting the test where we will execute some queries. 

To load the data to PostgreSQL and HarperDB, we used the file generated by the 
benchmark. However, to load the data to MongoDB, we needed to convert the data 
to JSON format. To do this, we used a script in NodeJS (code available in https:// 
github.com/Sworks99/Conver_to_json). However, we could not load all the datasets 
into HarperDB due to his limited RAM (0.5 GB of RAM) on the free version. These 
will also affect the queries we executed on HarperDB to perform the tests. 

After inserting the 10 GB dataset into each database, we selected queries 1, 6 and 
5 from the TPC-H benchmark to test the performance of each one of them. As we

https://github.com/Sworks99/Conver_to_json
https://github.com/Sworks99/Conver_to_json


7 Performance Evaluation Between HarperDB, Mongo DB and PostgreSQL 91

mentioned earlier, we could not insert all the datasets on HarperDB because of the 
limitations of the free version. MongoDB has a different syntax, so we had to convert 
the queries used to the MongoDB syntax. For HarperDB, we had to adapt one of 
the queries and execute it on each database because of the TPC-H queries. We were 
getting a timeout when executing on HarperDB. Next, we present the custom query 
created for each database (PostgreSQL, MongoDB and HarperDB, respectively): 

Custom Query on PostgreSQL 
SELECT * 
FROM lineitem 
WHERE lineitem.l_orderkey = 599456 

AND lineitem.l_partkey = 1321613 
AND lineitem.l_suppkey = 21614 
AND lineitem.l_linenumber = 3 
AND lineitem.l_quantity = 1; 

Custom Query on MongoDB 
DB.lineitem.find({ 

“l_orderkey”: “599456”, 
“l_partkey”:"21614”, 
“l_suppkey”:"3”, 
“l_linenumber”:"1321613”, 
“l_quantity”: “1”}); 

Custom Query on HarperDB 
SELECT * 
FROM AEABD.lineitem 
WHERE lineitem.l_orderkey = 599456 

AND lineitem.l_partkey = 21614 
AND lineitem.l_suppkey = 3 
AND lineitem.l_linenumber = 1321613 
AND lineitem.l_quantity = 1 

So basically, for the select queries, we will execute the three TPC-H queries 
mentioned before on MongoDB and PostgreSQL and another one on all three 
databases. For inserting data, we performed two tests: one with around 750 MB 
inserted into PostgreSQL and MongoDB and another with a file of 10 MB inserted 
on HarperDB. We did these two tests because HarperDB has the size of the file 
insert limited to 10 MB. The tests with HarperDB are done for more straightforward 
queries and smaller datasets. 

7.5 Results and Analysis 

With all the queries prepared, we proceeded to execute the performance tests. 
Executing the three TPC-H queries on MongoDB and PostgreSQL, we obtained 
the following results:



92 D. Figueiredo et al.

Fig. 7.1 Execution times of querys 

As shown in Fig. 7.1 generally, MongoDB takes more time to execute the TPC-H 
queries, especially on the execution of query 1. On the others, the performances 
of both databases are similar. With each database’s custom query execution results, 
we can conclude that MongoDB has worse performance than PostgreSQL and then 
HarperDB and that PostgreSQL has a better performance executing this query. 

However, we have to consider that in HarperDB, we do not have all the dataset 
loaded, so the difference between MongoDB and HarperDB in this query is not that 
different. With this graphic, we can see that performance improves each time we 
execute the queries. 

With the selected queries done, we advanced to test data insertion in each database. 
For this, we generated the dataset again with the TPC-H benchmark and used the 
lineitem table with around 750 MB. To insert the data into PostgreSQL, we used the 
command “COPY” and converted the dataset into a CSV file. For MongoDB, we 
again converted the dataset to JSON and used the command “mongoimport” to load 
the data into the database. With HarperDB, we separated the lineitem CSV file into 
10 MB files because it is the limit of upload defined by the database, originating 77 
files in total. On HarperDB, we only inserted one of the files because it takes much 
time to insert each file, as shown in Fig. 7.2.

As we can see in the graphic, MongoDB performs better, followed by PostgreSQL 
with times of around 2 min, with a minimum difference between these two. However, 
HarperDB uploading only one file takes more than three times more than the other 
databases. This is a considerable setback for HarperDB if we want to use essential 
data. 

With these results, we can conclude that the database with better performance 
for structured data is PostgreSQL. MongoDB performance-wise is not that far from 
PostgreSQL. However, to work with the data and execute complex queries is more 
complicated and a lot more complex. HarperDB, we consider that is valuable if it



7 Performance Evaluation Between HarperDB, Mongo DB and PostgreSQL 93

Fig. 7.2 Results inserting data

is needed to work with NoSQL and SQL, allowing us to work with both in a single 
database solution. 

7.6 Conclusions and Future Work 

In modern society, nearly every person runs across databases wittingly or unwittingly. 
For this interaction, people always want a good performance. Database designers are 
confronted with the task of getting reasonable speed and efficiency. Taking this 
into account, in this paper, we compared and analyzed the performance between 
PostgreSQL, MongoDB and HarperDB using the TPC-H benchmark. With the results 
obtained, we consider that the best database performance of these three is PostgreSQL 
with MongoDB, with a similar performance in most queries. HarperDB is valuable 
if it is needed to work with NoSQL and SQL in a single database solution. 

7.6.1 Future Work 

Although we presented some results and conclusions on the performance of these 
databases, we think that analyzing the memory consumption during the query 
execution could add more insights and obtain better results and conclusions. 

Acknowledgements “This work is funded by National Funds through the FCT—Foundation for 
Science and Technology, IP, within the scope of the project Ref UIDB/05583/2020. Furthermore, 
we would like to thank the Research Center in Digital Services (CISeD), the Polytechnic of Viseu, 
for their support.”



94 D. Figueiredo et al.

References 

1. Mukherjee, S. (2019). The battle between nosql databases and rdbms. Available at SSRN 
3393986 

2. Marsh, R., Belguith, S., & Dargahi, T. (2019). Iot database forensics: An investigation on 
harperdb security. In Proceedings of the 3rd International Conference on Future Networks and 
Distributed Systems (pp. 1–7) 

3. Dreseler, M., Boissier, M., Rabl, T., & Uflacker, M. (2020). Quantifying tpc-h choke points 
and their optimizations. Proceedings of the VLDB Endowment, 13(8), 1206–1220. 

4. Makris, A., Tserpes, K., Spiliopoulos, G., & Anagnostopoulos, D. (2019). Performance 
evaluation of mongodb and postgresql for spatiotemporal data. In EDBT/ICDT Workshops. 

5. Cheng, Y., Zhou, K., & Wang, J. (2019). Performance analysis of postgresql and mongodb 
databases for unstructured data. In 2019 International Conference on Mathematics, Big Data 
Analysis and Simulation and Modelling (MBDASM 2019) (pp. 60–62). Atlantis Press. 

6. HarperDB. Harperdb. https://harperdb.io/. Accessed May 14, 2022. 
7. Quillici, F., & Schiavon, L. (2021, May). Uma Comparação entre sistemas MongoDB 

e PostgreSQL: Comparação entre sistemas MongoDB e PostgreSQL. In Congresso de 
Tecnologia-Fatec Mococa (vol. 3, no. 2). 

8. Margo McCabe. Which database is right for you? harperdb vs. mongodb vs. postgresql. https:/ 
/hackernoon.com/which-database-is-right-for-you-harperdb-vs-mongodb-vs-postgresql-8m6 
a35uf. Accessed June 10, 2022. 

9. Naivskill. Mongodb vs postgresql: Complete comparison in 2022. https://naiveskill.com/mon 
godb-vs-postgresql/. Accessed June 17, 2022. 

10. stackshare. https://stackshare.io/stackups/harperdb-vs-postgresql. Accessed June 18, 2022.

https://harperdb.io/
https://hackernoon.com/which-database-is-right-for-you-harperdb-vs-mongodb-vs-postgresql-8m6a35uf
https://hackernoon.com/which-database-is-right-for-you-harperdb-vs-mongodb-vs-postgresql-8m6a35uf
https://naiveskill.com/mongodb-vs-postgresql/
https://naiveskill.com/mongodb-vs-postgresql/
https://stackshare.io/stackups/harperdb-vs-postgresql

	7 Performance Evaluation Between HarperDB, Mongo DB and PostgreSQL
	7.1 Introduction
	7.2 Related Work(s)
	7.3 Architecture
	7.3.1 HarperDB
	7.3.2 MongoDB
	7.3.3 PostgreSQL
	7.3.4 HarperDB Versus MongoDB
	7.3.5 MongoDB Versus PostgreSQL
	7.3.6 PostgreSQL Versus HarperDB

	7.4 Experimental Setup
	7.5 Results and Analysis
	7.6 Conclusions and Future Work
	7.6.1 Future Work

	References


