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1 Introduction

This chapter examines the concept of the DT in the context of manufacturing. The
chapter’s objective is to present a comprehensive reviewof the key enabling technolo-
gies and DT in manufacturing application domains. Therefore, the chapter focuses
on the technologies that are used in the DT, DT’s integration in manufacturing, and
the current state of the art in the related field. Also, challenges and future directions
for the DT in manufacturing are discussed.

The process of digitization was made possible by recent technological advance-
ments and developments, including the Internet of Things (IoT), machine learning
(ML), Artificial Intelligence (AI), Cloud Computing, smart sensors, and other new
generation technologies. These technologies also brought new opportunities for
a variety of industries. Digital technologies enable network infrastructures-based
remote sensing, monitoring, and control of cyber-physical manufacturing devices
and processes. This makes it feasible to connect the real and virtual worlds directly.
Consequently, the digital technologies and transformation of industrial production
processes from design and engineering to manufacturing lead to Industry 4.0 which
refers to the fourth industrial revolution.

Industry 4.0 creates an efficient, automated, connected, and intelligent ecosystem
for industry. Autonomous robots, big data, augmented reality, Cloud Computing,
cyber security, IoT, system integration, simulation, and 3D printing are the nine tech-
nologies that drive Industry 4.0. Achieving digital information technology, quick
design modifications, and great adaptability are all possible with Industry 4.0’s
sustainability and next-generation intelligent manufacturing [1]. Hence, Industry
4.0 enhances the future of industries and increases the productivity and efficiency in

O. Can (B) · A. Turkmen
Department of Computer Engineering, Ege University, Izmir, Turkey
e-mail: ozgu.can@ege.edu.tr

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
E. Karaarslan et al. (eds.), Digital Twin Driven Intelligent Systems and Emerging
Metaverse, https://doi.org/10.1007/978-981-99-0252-1_8

175

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-0252-1_8&domain=pdf
mailto:ozgu.can@ege.edu.tr
https://doi.org/10.1007/978-981-99-0252-1_8


176 O. Can and A. Turkmen

the manufacturing. Therefore, Industry 4.0 is a combination of modern information
and communication technology and industrial practices [2].

In today’s competitive environment, this digital transformation in manufacturing
is accepted as an opportunity to reach higher productivity levels. Therefore, opera-
tions in manufacturing systems are digitized. As a result, the global manufacturing
sector has undergone industrial revolutions like mechanization, electrification, and
information related to this digitalization and the ongoing development of commu-
nication, information, and automation technologies [3]. Moreover, the use of digi-
talization technologies enabled various industrial sectors to virtually represent their
products and plan their processes in manufacturing. Thus, industrial products are
produced using digital technologies and machinery throughout their entire life cycle.
Therefore, different types and large volumes of data are produced.

Every step of the manufacturing process involves the collection of enormous
volumes of data, which are then used for real-time planning. However, this leads to
low efficiency and low utilization due to the isolated nature of these valuable data
[4]. Therefore, these valuable data need to be processed and analyzed by simulation-
based solutions. Simulation-based solutions are applied to optimize operations and
predict possible errors during the production operations. Therefore, simulation is a
powerful technique for a system’s early planning stages of verification, validation,
and optimization [4]. The idea of the Digital Twin (DT), which is regarded as the
simulation of the system itself [5], has been revealed as a result of the significance
of the integration of the physical world and the digital world. Therefore, DT is used
to empower the manufacturing systems and various industrial sectors.

The Digital Twin is a representation of a physical thing, process, asset, system,
or service in the actual world. DT reproduces the physical entity accurately in the
digital world and enables an effective monitoring, prediction, and optimization of
the related physical entity throughout its life cycle [6]. For this purpose, DT uses
real-world data to create simulations. In the manufacturing, DT focuses on the Asset
Life Cycle Management (ALM) that is shown in Fig. 1 to optimize the life cycle
of an asset. Therefore, the DT can predict how a product or process will perform in
the production and how this process will progress. Thereby, each life cycle phase of
the manufacturing system’s operations can be optimized by DT. In addition, possible
outcomes are evaluated before any cost loss occurs and problems are identified before
starting the production process. Thus, efficiency is provided and higher volumes of
manufacturing are ensured. In this way, DT bridges the gap between physical world
and cyber world and constructs cyber-physical systems in manufacturing [7]. As a
result, DT has the potential to change both the present and the future ofmanufacturing
[8].

DT transforms the future manufacturing landscape by providing the necessary
technology to create smart manufacturing that is fueled by digital twins. According
to market data released in [9], the size of the global DTmarket is anticipated to reach
$63.5 billion by 2027, growing at a rate of 41.7%. Besides, due to the COVID-19
pandemic, companies are now choosing to operate with least manpower. Also, the
manufacturing has the largest share in the industry segment of the global DT market.
The market research further indicates that the primary end users of DT technology
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Fig. 1 Asset life cycle management

in manufacturing are the energy and power, automotive and transportation, and
aerospace and defense industries. The increased demand for predictive maintenance,
real-time data monitoring, real-world use cases, and improved decision-making are
the prime reasons for the growth of the DT market.

The remaining parts are organized as follows. The historical context and an
overview of the Digital Twin concept are provided in Sect. 2. The numerous Digital
Twin components and manufacturing applications are highlighted in Sect. 3 along
with its application areas. In Sect. 4, Digital Twin application examples in various
industries are presented. Section 5 discusses challenges, future directions, and open
problems that need to be tackled for an effective and productive adoption of Digital
Twin in manufacturing. Also, conclusions are presented in Sect. 5.

2 An Overview of Digital Twin

The Digital Twin provides a digital representation of a physical object. As a result,
the DT develops a living model of the physical product throughout its existence and
enhances decision-making by offering data on dependability and maintenance. In
order to prevent issues before they arise and to plan for the future using simulations,
the physical and virtual worlds are combined.

The DT has gained significant importance due to Industry 4.0 and technologies
such as machine learning, IoT, and Artificial Intelligence. The emergence of DT is
a result of the development of the concept of “digital production” and the Industrial
IoT [10]. The idea of DT is not new. The DT technology is based on the existing
technologies such as simulation and digital prototypes. DT is stated as the next wave
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Fig. 2 Digital twin as the next wave in simulation

of the modeling and simulation technologies [11] as shown in Fig. 2. Today, the DT
is a more important topic and has become more widespread. Therefore, it is applied
to various fields, such as manufacturing, healthcare, retail, and supply chain. As
companies are now digitizing their operational processes, the market size of the DT
is increasing in worldwide. The size of the global DT market was estimated at USD
3.1 billion in 2020, and by 2026, it is expected to have grown to USD 48.2 billion
[12]. Hence, the DT is considered to be one of the ten most promising technical
advancements for the coming 10 years [13]. Also, the DT is predicted to have a
major role in the future for the defense and aerospace industry [14].

The first use of the DT concept dates back to 2003. In 2003, the DT is introduced
by Michael Grieves at his Executive Course on Product Life Cycle Management
(PLM). Later, Grieves classified the DT into three subtypes: (i) the DT prototype,
(ii) the DT instance, and (iii) the DT aggregate [15]. In 2014, Grieves indicated
three main parts for the DT in a whitepaper [16]: (i) a virtual product, (ii) a physical
product, and (iii) a connection of data and information that ties the virtual and real
products. Also, the development of the DT technology needs three components that
are shown in Fig. 3 [8]: (i) an information model, (ii) a communication mechanism,
and (iii) a data processing module. The data processing module uses information
from heterogeneousmulti-source data to create the live representation of the physical
object, while the information model abstracts the physical object’s specifications and
the communication mechanism transmits bidirectional data between a DT and its
physical object. These components must work together to construct a DT [8].

The five-dimension DTmodel is proposed in [17]. The proposed model improves
the aspects of production, operations, and business processes. As shown in Fig. 4,
the five-dimensional conceptual model of the DT consists of virtual models, data,
physical entities, services, and connections [17].



Digital Twin and Manufacturing 179

Fig. 3 Components of
digital twin [8]

Fig. 4 Five-dimensional conceptual model of digital twin
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The physical entities represent a physical object that is tangible and visible. The
DT creates the virtual model of the physical entity. Physical entities provide the
collection of various parameters through sensors. Thus, the collected data is used to
create the virtual state of the physical entity.

The virtual model is the digital model of a physical entity. An efficient IoT
infrastructure is needed to increase the accuracy of virtual assets and to ensure the
compatibility of virtual and physical assets.

The DT deals with large, multi-source, multi-temporal, multi-dimensional, and
heterogeneous data [17]. This incoming data is used by various algorithms to make
decisions. The data model can be obtained from multiple data sources, physical and
virtual assets, services, and knowledge that is extracted from domain information.

Services include all functions of the DT. Functions that are provided by the DT
are presented through interfaces. The main feature of services is to receive data from
sensors and process these data. The DT offers users platform services, third-party
services, and application services. Application services include simulation, verifica-
tion, monitoring, and optimization (such as customized software development, and
service delivery) [17].

Virtual entities, physical entities, and services connect with each other to form
the structure of the DT concept. For this purpose, information flow is established
between physical entities, virtual entities, and services by connections. This connec-
tion between, virtual entities, services and physical entities is crucial for accurate
analysis in the DT process.

3 Digital Twin for Manufacturing

Manufacturing refers to transforming raw materials into finished goods. Manufac-
turing also enables more complex products to be produced by selling basic goods
to manufacturers. Thus, manufacturers can produce these complex products such
as cars, airplanes, or household appliances. In recent years, global competition in
manufacturing has accelerated as a result of technological advancements, product
diversity, and the increase inmarket needs. Thus, the intensification of global compe-
tition has enabled manufacturing to evolve from traditional production processes to
smart production processes. Further, several sectors in manufacturing aim to reach
qualified products, efficient and effective services at less cost and in less time by
integrating new technological developments. Therefore, the DT is a key concept
for smart manufacturing as it enables interaction between the virtual and physical
worlds. The benefits of the DT technology make DT the most powerful and intelli-
gent consultant in the industry [18]. The major utilities of the DT are given in Fig. 5
[18]. Therefore, the DT can be used to train employees, plan the innovation, identify
errors and avoid them, utilize optimization and risk management, and also provide a
virtual platform for learning.

Digital Twin technology enables manufacturers to better understand and analyze
their products in product design, real-time simulation, tracking, and optimization. In
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Fig. 5 Major utilities of the
DT [18]

the real world, performing tests on complex products is costly and difficult, whereas
using DT allows the product to be easily tested before presenting it to the physical
world. The DT also reduces the operational costs and potential capital costs, extends
the life of assets, optimizes the operational performance, and improves the optimiza-
tion and preventative maintenance over the changing conditions. The product design,
real-time monitoring, quality management, predictive maintenance, and production
planning enable DT to improve operations in manufacturing.

3.1 Product Design

In the design and product development processes, the DT is commonly used. The
DT enables to create virtual prototypes during the design phase. Thus, it is used to
test different simulations or designs before investing in the final product. Therefore,
deficiencies of the product are being determined before the production by analyzing
whether the product designs are efficient or not, especially for a product with a
complex manufacturing process. Consequently, possible results will be evaluated
without any cost. Moreover, any problems that may occur will be detected before
starting the production. Hence, DT saves time and money by reducing the number
of iterations that are required to put the product into the production process, itera-
tivelymodeling changes, testing components and their functions, and troubleshooting
malfunctions. Also, Digital Twins and XR technologies can be combined at the
product modeling phase to produce high-quality designs. This makes it possible for
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all stakeholders, including managers and customers of digital twins, to monitor each
stage of the product design process in detail and find solutions rapidly.

3.2 Real-Time Monitoring

Digital Twin is a real-time virtual representation of a product and an operational
process. Instant data flow is provided to the DT through sensors that are placed on
physical objects. The production is monitored in real time with this instant data flow.
Therefore, problems in the production life cycle can be identified, and strategic deci-
sions can be made by directly intervening in the production. Thus, monitoring the
DT production performance in real time helps pre-planning and optimizing work-
flows. In addition, the DT can also be used to analyze data retrospectively to make
predictions on future productions.

3.3 Quality Management

Quality management is an essential factor in the manufacturing process. Monitoring
IoT sensor data and responding to them are critical issues for maintaining quality and
reducing bottlenecks during production. The usage of DT enables real-time analysis
of data that comes from sensors. Thus, the product quality is improved at decreased
costs by detecting the quality control problems immediately. Moreover, the DT data
can also be used to detect reasons of the related problems. Therefore, in order to
improve the quality of the production, the DT is used to model each part of the
manufacturing process to determine which materials or processes can be used.

3.4 Predictive Maintenance

The DT determines variances that indicate the need for preventative repair or
predictive maintenance before a serious problem occurs in the manufacturing
process. In traditional approaches, processes of determining the malfunctioning of a
machine/equipment, decision-making, and taking an action result in time loss. For
this reason, the production volumes of enterprises decrease. Periodic maintenance of
machine equipment can help prevent malfunctions, but it does not guarantee that the
equipment will not malfunction. However, the DT collects real-time data via sensors
to create a virtual representation of the machine. Thus, the status of the machine can
be monitored in real time, and accurate forecasts can be done regarding the status of
the machine. Also, the DT is used to optimize the load levels, tool calibrations, and
cycle times of machines. Therefore, using DT enables enterprises to detect problems
with machines that may arise and to implement predictive maintenance.
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Businesses can predict when and where potential service breakdowns might
happen and respond to them in order to stop any service interruptions by having
robust predictive maintenance solutions in place. In machine learning and Artificial
Intelligence, predictive maintenance refers to the ability to use a vast quantity of data
to forecast and address future issues before they lead to operational breakdowns.
Predictive maintenance uses sensor data to determine when maintenance is required
in order to minimize downtime. Data collected initially by various sensors located
on the machines are pre-processed. In a pre-processing step, significant features are
retrieved from this data and used to train a machine learning and Artificial Intel-
ligence algorithms system for predictive maintenance. Then, Artificial Intelligence
(AI)-based decision support systems utilize these data. However, under normal fault
circumstances, it is not always possible to collect data from field-based physical
equipment. Also, equipment damage and catastrophic failures might result from
allowing field failures to collect sensor data used to train AI and machine learning
systems. It could be time-consuming, expensive to purposefully create errors under
more regulated conditions. However, the creation of a Digital Twin of the equipment
and the modeling of various failure scenarios can be used to create sensor data to
address these problems. Thus, all possible fault combinations can be evaluated.

3.5 Production Planning

Production planning cannot be handled in traditional ways due to the complex nature
of the manufacturing processes. Thus, planners may overlook the actual processing
conditions when designing the process. The DT enables enterprises to make produc-
tion planning by simulating the operation processes in a digital environment. Thus,
the efficiency of the production plan that is tested in the virtual environment can
be analyzed. As a result of these analyses, production volumes and profit rates can
be improved by making changes in production plans. Furthermore, production time
and cost can be reduced with the results of analyses. Besides, simulations that are
tested in the virtual environment include parameters such as equipment failures and
lack of personnel which affect the production flow. Therefore, simulations give more
efficient and accurate results than plans that are done with traditional methods. Thus,
businesses achieve success in today’s competitive environment and gain an advantage
over their competitors by creating stronger production plans.

4 Digital Twin Applications in Manufacturing and Industry

Digital Twin is evolving rapidly with the recent scientific developments in commu-
nication technologies, sensors, actuators and connected devices, big data analytics,



184 O. Can and A. Turkmen

the Internet of Things (IoT), data fusion techniques, and Artificial Intelligence algo-
rithms. The ongoing digital transformation and smart technologies enabled the imple-
mentation of DT technology in the industry to grow exponentially. Also, the DT has
an essential role in the Industrial IoT (IIoT) concept which connects machines to
other machines and optimizes productivity to make smart factories. Industry 4.0
deals with two worlds: one is the “physical world” and the other is a “digital world”
[18]. Industry 4.0 aims to combine the physical and digital worlds by establishing
real-time communication between them. They would be able to communicate manu-
facturing data in real time due to this connectivity. Therefore, the usage of DT in
product development and process improvement studies has increased. In addition,
the global market for DT technology is also growing due to the increased need for
low-cost operations, optimized control in process systems, and the shortened product
time-to-market. TheDigital Factory’smethodologies andmodels are utilized for low-
cost integration, and the Digital Twin is a significant future component of the Digital
Factory [19]. As stated in [19, 20], Digital Factory can avoid 70% of the planning
errors, increase the planning maturity by 12%, reduce 30% of the planning time and
15% of the change costs. For this purpose, several companies in various industries
use DT technology for their production systems.

The DT is useful throughout a product’s life span. Four stages represent the
product life cycle for successful products [21]: Development/Introduction, Growth,
Maturity, and Decline. The Development/Introduction phase is the awareness stage
of the product, the Growth phase is the product branding and promotion strategies,
the Maturity phase is the market competition stage and in the final Decline phase
the product becomes obsolete [18]. The Product Life Cycle Management (PLM)
improves innovation, reduces time-to-market, provides new services for products,
and supports for customers [22]. The DT has a potential to solve data-driven prob-
lems that exist in PLM, such as data sharing and big data analysis. For this purpose,
the stages of detailed design, conceptual design and virtual verification are used to
divide the product design process into three sections [23]. In the conceptual design,
the concept, esthetics, and the main functions of the new product are defined. The
design and construction of the product prototype are completed in the detailed design.
Finally, the DT-driven virtual verification is the evaluation and test phase to detect
design defects and their causes for a fast and convenient redesign. As a result, the
DT technology offers great potential for use in product design, manufacturing, and
service. In the existing literature, there are various DT solutions that have been
proposed for different industry examples and real-life examples in manufacturing.
In manufacturing, DT technology is generally used in applications such as manu-
facturing schedules and management, manufacturing control optimization, cyber-
physical production system (CPPS) and layout of manufacturing lines [24]. In [19,
25], the technical production planning issues in automotive industry and the auto-
mated creation of a DT of a Body-In-White (BIW) production system are presented.
Similarly, a DT approach for production planning and control is presented in [26]
with a case study featuring a manufacturer that provides mechanical parts to the
automotive sector.
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In the automotive industry, the DT technology is used for optimization purposes
in the production statistics and user experiences of the product that emerges in the
vehicle production processes. For example, Tesla creates the DT of each vehicle
that it sells [27]. Sensors in the car are used to provide the stream data into each
car’s simulation in the factory. Artificial Intelligence (AI) is used to interpret these
data and determine whether a car is working as intended or if it needs maintenance
[27]. Therefore, Tesla constantly learns from the real world and optimize each of its
cars individually in real time by merging AI and IoT with the DT. The usage of DT
technology evaluates the engine life of the vehicle, mechanical aging, damage that
may occur in possible accident scenarios, errors related to aerodynamic design, and
makes the necessary improvements before the vehicle reaches the end user. Thereby,
Tesla ensures the continuity in its customers’ vehicles by regularly downloading the
recent software updates to their vehicles. Another example in automotive industry
that uses the DT technology is Maserati. Maserati uses DT to increase its production
capacity andmaintain the tailor-made production. As a result,Maserati developed the
Ghibli DT using Siemens’ DT technology, which was a perfect replica of the original
[28]. Processes were optimized for this reason by using data from both the real and
virtual models at the same time. The result was a 30% reduction in development time
and a decrease in manufacturing costs. Moreover, the DT is also used in Formula 1 to
improve performances and to help in making the right strategy decision. Further, the
DT helps teams to prepare and optimize their operations by practicing their driving
and learning things in a car simulator before hitting the racetracks [29].

Similar to the automotive industry, DT technology has also an important role in
the aerospace, defense, and space industries. The DT is used to track and monitor the
vital and critical parameters of aircraft, test, and evaluate tools to check the integrity
of aircraft features, and also for capacity planning, real-time remote monitoring, and
process optimization. Thus, DT is a vital technique for simulating, predicting, and
optimizing the product and the production system over the whole product lifetime
in the associated industries. Many aerospace and defense companies have started
using DTs for these reasons in order to decrease unplanned downtime for engines
and other systems, mitigate damages and degradations, accurately predict how long
an asset will be useful, increase operational availability and efficiency of platforms
by performing proactive and predictive maintenance, extend the useful life cycle of
platforms, and lower the life cycle cost of platforms [30]. For example, Boeing has
adopted DT to advance aircraft manufacturing and maintenance operations in both
its commercial and defense businesses, and Lufthansa Technik’s AVIATOR platform
uses DTs and other advanced digital tools to alert customers to possible problems
before they occur and to offer technical solutions to address these problems [31].

Industry 4.0 promises an improved productivity, increased flexibility, customiza-
tion, and better quality in manufacturing [32]. In this context, manufacturing systems
are updated to an intelligent level from knowledge-based intelligent manufacturing
to data-driven and knowledge-enabled smart manufacturing [32, 33]. An impor-
tant prerequisite for smart manufacturing is cyber-physical integration [33]. The
cyber-physical system (CPS) is the integration of the physical world with the digital
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Fig. 6 CPS and DT for smart manufacturing [38]

world [18]. As seen in Fig. 6 [33], CPS and DT transform the existing manufac-
turing systems and enable smart manufacturing applications. The CPS consists of
autonomous and collaborative parts and subsystems that are linked based on context
within and across all production levels, from processes viamachines up to production
and logistics networks [34]. Smartness, connectedness, and responsiveness are the
three main characters of the CPS. Hence, CPS is considered as a key feature of the
Industry 4.0 [35], and the DT technology is accepted as a key enabler for realizing a
CPS. A detailed discussion on the correlation and the integration of CPS and DT is
presented in [33]. An information modeling approach to integrate various physical
resources into CPPS via DT and AutomationML is proposed in [36]. In [37], the
integration of CPS and DT is proposed, and a systematic framework is offered as a
set of principles for quick system configuration and simple DT-based CPS runtime.

The DT-based approaches are used in various process manufacturing industries.
For example, a framework is proposed in [38] to construct a DT-based approach for
the petrochemical industry. For manufacturing simulation and control, the suggested
DT architecture enables convergence between the physical and digital worlds. Simi-
larly, the DT technology is also used in the energy sector for performance improve-
ments, preventive maintenance, and repair works. Additionally, the cutting-edge DT
solutions allow for changes in energy users’ behavior to attain the necessary level of
energy efficiency. A content analysis of the most recent energy research is offered
in [39] with the goal of increasing energy efficiency. Furthermore, new generation
power systems and the adaptation of the DT technology for power supply systems are
presented in [40–43]. Also, energy forecasting studies based on the DT technology
are proposed in [44–47] to ensure rational energy consumption and provide smart
energy management system.
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As a result, there are many actual instances of smart manufacturing facilitated by
theDigital Twin. By fully utilizing cutting-edge information andmanufacturing tech-
nology, smart manufacturing strives to optimize production and product exchanges
[32]. Additionally, the use of intelligent sensors and devices, communication tech-
nology, data analytics, and decision-making models can facilitate the complete
product life cycle. As a result, the DT enables real-time analysis of the past to
forecast the future, enabling smart decisions to be made at every stage of manufac-
turing activities. This is the setting in which the DT plays a crucial role in smart
manufacturing [8]. Thus, the effectiveness of the production and the quality of the
goods and services will be increased, while production time and running expenses
will be decreased. Besides, environment-friendly services for users are facilitated,
and the market competitiveness of the manufacturing enterprises is improved [48].

5 Future Directions and Conclusion

The use of DT is anticipated to increase tremendously in the coming decades
[49]. Also, the DT has enormous potential for changing the current manufacturing
paradigm to one of smart manufacturing. Consequently, the DT is referred to as the
leader of Industry 4.0 [39]. In this context, the DT enables to dynamically adapt
to the changing environment, optimizes the production to respond changes in a
timely manner, and improves economic benefits [38]. Thus, the DT technology is
being recognized as a game changer in the manufacturing industry with the recent
digitization process of manufacturing. Figure 7 presents the Strengths, Weaknesses,
Opportunities and Threats (SWOT) of the DT in manufacturing.

The DT is an emergent technology, and the widespread implementation of the
DT technology is increasing in various domains. Manufacturing is one of the main
application domains among the DT applications. The DT technology is crucial
in converting the conventional manufacturing system into a smart manufacturing
system. The DT has the potential to develop into a significant technology for both
research and application in the future, despite the fact that it is still in its early stages.
Besides, theDT provides a substantial motivation for the future agenda of researchers
and practitioners.

In today’s dynamic environment, the DT is a promising and innovative approach
for smart manufacturing. Moreover, the DT technology has an essential role in
Industry 4.0 and the digitalization in manufacturing processes. The digital trans-
formation in manufacturing reduces the production costs, increases the flexibility,
and improves the productivity, the quality of products, and the efficiency of produc-
tion process. The usage of the DT in manufacturing along with the advanced tech-
nologies such as smart sensors, decision-making models, data fusion techniques,
big data analytics, simulation, Cloud Computing, Artificial Intelligence, and the IoT
enables to facilitate of the entire product life cycle. Thus, manufacturers can monitor
and optimize the production. The DT also offers special opportunities for value
co-creation by assisting decision-making [50]. For this purpose, the DT reasons
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Fig. 7 SWOT analysis for the DT technology

why something might be happening, evaluates different alternatives, predicts the
possible future outcome, and decides the action based on the objectives and prefer-
ences [51]. Thus, the DT improves the automated production planning, predictive
analysis, real-time monitoring, and product optimization. Therefore, manufacturers
gain an important competitive advantage against the dynamics and fluctuations of
the global manufacturing market.

Several cloud service providers, such as Amazon, IBM,Microsoft Azure, provide
“Container-as-a-Service” solutions for the development ofDigital Twins. An Internet
of Things (IoT) platform calledAzureDigital Twins enables you to construct a digital
representation of things, places, people, and business processes that exist in the actual
world. Azure Digital Twins enables the creation of twin graphics based on digital
models of all environments such as buildings, factories, farms, power networks,
railways, stadiums, and even entire cities. These digital models provide better prod-
ucts, improved operations, reduced costs, and improved customer experiences. The
“device twin” model is a component of the device management strategy used by
Microsoft Azure IoT. The Device Twin is a JSON file that represents the device
and provides information about its state. It changes practically quickly using data
from the real system. When a device is connected to the Microsoft IoT hub, a device
twin is automatically created. Azure IoT Hub is hosted in the cloud that serves as a
central messaging hub for interactions between IoT applications and the connected
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devices. AWS IoT TwinMaker is a different Digital Twin platform that makes it
simple for developers to generate digital twins of real-world systems like facto-
ries, industrial machinery, buildings, and production lines. Building Digital Twins
can help optimize building operations, boost output, and enhance equipment perfor-
mance. AWS IoT TwinMaker gives users the tools to do this. Customers can import
pre-existing 3D models into AWS IoT TwinMaker to develop 3D representations of
the physical system,which can thenbeoverlaidwith knowledgegraphdata to produce
the digital twin. The Digital Twin is a JavaScript Object Notation (JSON) file that
contains data, metadata, timestamps, and other essential information to clearly iden-
tify the connected device and is frequently referred to byAmazon as a device shadow.
MQ Telemetry Transport, Representational State Transfer (REST) calls, or Message
Queue Telemetry Transport (MQTT) architecture might all be used to provide near
real-time communication. Also, the IBM Digital Twin Exchange is a platform that
enables sharing of digital resources as Digital Twins between manufacturers, OEMs,
and third-party content suppliers [52]. IBM is now targeting this business as a way
to introduce intelligence, agility, and efficiency to a variety of sectors in light of the
growth of digital twins. In order to digitize the real world, the new IBMDigital Twin
exchange aims to bring together businesses and a variety of service and tool suppliers
to build an app store. Industries with a high concentration of assets are the focus of
the IBM Digital Twin Exchange, including manufacturing, oil and gas, civil infras-
tructure, automotive, etc. Customers may browse, buy, and download Digital Twin
materials using IBM Digital Twin Exchange, a first-of-its-kind Exchange. The user
interface on the Exchange isn’t all that far from a standard e-commerce purchasing
experience. The IBMDigital Twin Exchange’s quick integration with ERP and EAM
systems is a key benefit for customers.

On the other hand, various threats arise during the implementation of the DT. The
DT is continuously fed with data via sensors to optimize performance, predict errors,
and simulate future scenarios. Therefore, the automated process for physical asset
data collection requires an efficient and robust IoT structure. A robust IoT infrastruc-
ture enables the DT to provide greater efficiency and more accurate results. Besides,
the DT needs a noiseless and continuous stream of data to produce accurate results.
Insufficient, inconsistent, and incomplete data cause the DT to produce incorrect
results. Consequently, this also causes the results of the analysis to be inaccurate.
Therefore, data quality has a significant role in the DT technology.

Further, privacy and security issues are themain challenges for theDT technology.
The DT in manufacturing deals with large amounts of data that is provided by the
IoT infrastructure. Besides, risks related to security, compliance, data protection, and
regulations arise with the growing connectivity [53]. Also, the rise in cyber-attacks
on critical infrastructures and sensitive data raises security concerns. Therefore, the
relevant IoT infrastructure must meet the security requirements and be compatible
with the recent privacy regulations. Another challenge is the lack of a standardized
concept and approach in DT modeling systems. The lack of a standardized approach
for the implementation of the DT concept causes the implementation process to be
more complex. Universally shared use of digital twins throughout the entire product
life cycle requires a standardized coherent framework that encompasses data flows,
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interfaces, etc. Thus, this is also an important research topic for future research in
DT technology.

The concept of the DT has been around for a long time since it is introduced by
Michael Grieves. However, in recent years DT technology has become a strategic
technology trend in digital transformation. Moreover, the DT technology is working
in integration with other technologies such as IoT, Cloud Computing, and Artificial
Intelligence. Therefore, the DT is impacting several industries from many different
areas. In smart manufacturing, manufacturers use DT to create products’ designs,
prototype their products, simulate their operations, and analyze production data and
results. The DT enables interconnecting the physical and virtual worlds. For this
purpose, the DT gathers all the interrelating data sources from an asset’s entire life
cycle [53]. Thus, operational processes and products that are risky and expensive in
the physical world can be simulated in digital environments and analyzed and imple-
mented in the physical world. Therefore, manufacturers improve their operational
performance and business processes, save production costs and time. In addition,
the Digital Twin will help to reduce IoT device development costs by accelerating
the development of IoT devices. Thereby, IoT devices can be prototyped, the perfor-
mances of these prototyped devices can be tested, and designs can be reshaped with
the virtual world created by the DT.

Over two-thirds of businesses that have adopted IoT will have deployed at least
one DT in production by 2022, predicts Gartner [54]. Furthermore, it is estimated
that by 2028, the size of the global DT market would be USD 86.09 billion [55].
Additionally, the COVID-19 has accelerated the adoption of DTs in particular end-
use industries and given DT adoption a boost to be better prepared for any future
crises of this nature [55]. Figure 8 shows the global market size of the DT [53, 55].
Energy, automotive, transportation, aerospace, and defense industries are indicated
as key industries among the end users of the DT technology [53].

Fig. 8 DT global market size
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Today’s digitalizing world is reshaping themanufacturing industry. The use, oper-
ation, and maintenance of products after the sale are all being altered by the digi-
tization of production. Additionally, the management of the manufacturing supply
chain is changing as a result of digitization, as are the operations, procedures, energy
footprint, and management of factories [56]. In this digitalization process of manu-
facturing,DT is a powerful tool formanufacturers to improve production lines, down-
stream operations, and to gain advantages in the global manufacturing competition.
The DT technology, however, is still in its infancy. The DT faces several constraints
and difficulties that must be overcome in order to realize its full potential, including
financial burdens, the complexity of the information, a lack of standards, upkeep
requirements, and regulations, and communications and cybersecurity-related prob-
lems [57]. Therefore, the DT concept provides new opportunities and motivation
for future research initiatives. In this chapter, the fundamentals of the Digital Twin
are discussed, along with how they apply to manufacturing. Additionally, a compre-
hensive analysis of the advantages, difficulties, and potential applications of DT
technology in manufacturing is presented.
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