
Chapter 1
The Effect of Sleep Disruption
and Circadian Misalignment
on the Immune System
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Abstract Sleep disruption and circadian misalignment are associated with an
increased risk for infectious and inflammatory pathologies, including
cardiometabolic, neoplastic, autoimmune, and neurodegenerative diseases. Sleep
and circadian rhythms are closely involved in the regulation of the immune system.
Impairments of sleep quantity, quality, and timing, as well as circadian
misalignment, result in derangements of innate and adaptive immune responses
leading to a chronic inflammatory state and a decrease of the immune defense and
reaction to threats (infection or injury). The immune system potentially plays an
important mechanistic role in the relation between sleep disruption and circadian
misalignment, and adverse health effects. By regulating the immune system, sleep-
and circadian-centered intervention may beneficially impact overall health and on
the prevention—and treatment—of infections and chronic diseases, especially in the
modern lifestyles characterized by a multiplicity of social and environmental pres-
sures on sleep and circadian rhythms, and in times of infectious disease outbreaks,
such as COVID-19, where an effective immunity is of utmost importance.
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1.1 Introduction

There is a time for many words, and there is also a time for sleep. Homer. The Odyssey.
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Since antiquity, sleep has been recognized as essential for overall health. Sleep is
an active physiological process necessary for life, being involved in the regulation of
physical, mental, and emotional health.

Key components in the regulation and maintenance of the sleep/wake cycle are
the endogenous 24-h body clock/circadian system that drives wakefulness through-
out the day and sleep during the night; and the wake-dependent homeostatic drive
that generates a sleep pressure during the day, which is dissipated during sleep.
However, an exogenous drive that is the product of our societal temporal structure
(e.g., school and work times) forces an exogenous sleep/wake pattern influencing
sleep opportunities and thereby sleep duration, quality, and efficiency, potentially
resulting in sleep and circadian rhythm disruption (Zielinski et al. 2016).

On this background, patterns of sleep quantity, quality, and timing are influenced
by health status, cultural, social, psychological, behavioral, and environmental
factors (Grandner 2017). Expert consensus recommendations suggest that adults
should sleep a minimum of 7 h per night on a regular night to promote optimal health
(Consensus Conference et al. 2015a, b). Apart from sleep/circadian disorders how-
ever many factors, including jet lag syndrome, social jet lag, work schedule, growing
frequency of technology use, higher rates of obesity and diabetes, inadequate
nutrition, and other lifestyle factor changes occurring in the twenty-first century as
well as the COVID-19 pandemic are increasingly and often negatively impacting on
sleep quantity, quality, and timing, so that sleep problems have constantly arisen in
the general population and special groups of vulnerable people, including children/
adolescents or workers. Population-based studies reported that sleep duration among
adults has changed over the past few decades and, in particular, the prevalence of
adults sleeping less than 6 h per night has stably increased over a long period
(Gilmour et al. 2013; Ford et al. 2015a, b; Zomers et al. 2017). This phenomenon
is also occurring among children and adolescents (Matricciani et al. 2012), so 58%
and 73% of middle and high school-aged adolescents, respectively, do not meet the
American Academy of Sleep Medicine sleep duration recommendations (Wheaton
et al. 2018). A parallel increasing prevalence of insomnia has been documented in
several countries (Ford et al. 2015a, b).

In addition to excessive daytime sleepiness, fatigue, tiredness, depressed mood,
poor daytime functioning, and impaired cognitive and safety-related performance,
inadequate sleep is associated with an increased risk of adverse health outcomes,
including weight gain, obesity, type 2 diabetes mellitus, hypertension, cardiovascu-
lar (CV) and neurodegenerative diseases, mental diseases, cancer as well as all-cause
mortality (Vgontzas et al. 2009, 2013; Irwin 2015; Smagula et al. 2016; Cappuccio
and Miller 2017).

Another integral part of human physiology and behavior tightly regulating sleep
is the circadian rhythms, which are orchestrated by a central “master” clock, i.e., the
suprachiasmatic nucleus (SCN) located in the anterior hypothalamus, that coordi-
nates alignment between circadian clocks in other brain regions and peripheral
tissues with external synchronizing agents (the environment and behaviors). Indeed,
circadian rhythms are modulated by endogenous (genetic, physiological) as well as
environmental (light) and behavioral (activity, feeding) factors. Various behaviors



and physiological functions of the body show circadian rhythms, such as the sleep–
wake cycle and food intake, blood pressure, blood lipids, coagulation/fibrinolysis
system, heart rate, body temperature, locomotor activity, hormone levels, cell
metabolism and proliferation (Sulli et al. 2018). The advantages of internal clocks
are to enable individuals to anticipate, rather than react to, daily recurring events and
align their physiology and behavior to the changing environment.
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The “molecular circadian clock” refers to genes that maintain autoregulatory
feedback loops in which oscillating outputs regulate their expression (circadian
locomotor output cycles kaput [CLOCK], brain and muscle ARNT-like [BMAL],
period [PER], REV-ERB/nuclear receptor subfamily 1, group D [NR1D], and
cryptochrome [CRY]). The formation, trafficking, and degradation of different
clock protein complexes throughout this transcriptional cycle establish the intrinsic
24 h period of the cellular clock. Furthermore, at the cellular level, molecular clock
components generate circadian fluctuation in basic cellular functions, e.g., gene
expression, protein translation, and intracellular signaling, which are all involved
in fundamental processes, including cell cycle regulation, nutrient sensing/utiliza-
tion, metabolism, stress response, redox regulation, detoxification, and cell defense
(immunity and inflammation) in a tissue-specific manner (Mure et al. 2018). Circa-
dian disruption may occur as a result of a misalignment between external factors
(such as the natural light/dark cycle, social and work requirements, and behaviors
such as sleep and meal timing) with the master circadian clock as well as with
endogenous circadian clocks in other tissues. Misalignments can occur among two
(or more) rhythms which may be both internal (central vs. peripheral rhythms), or
one may be internal and the other external (e.g., central vs. light/dark or
peripheral vs. feeding/fasting). Social jet lag, jet lag syndrome, shift work, and
inappropriately timed light exposure (evening or night) are common causes of
circadian (external-internal) misalignments in modern society.

Circadian disruption has important public health implications due to its preva-
lence in modern society as well as its association with serious safety- and
performance-related issues (Mitler et al. 1988) and adverse health outcomes (Boivin
et al. 2022). Subjects with a nondaytime working schedule (shift work), exposure to
light pollution, social jet lag, or evening chronotype are at increased risk for
circadian disruption. Circadian disruption in humans is associated with broad and
significant consequences for mental and physical health, increasing the risk for the
development of cancer (Sulli et al. 2019), neurodegenerative, psychiatric (Abbott
et al. 2020), cardiometabolic (Scheer et al. 2009), and immune disorders (Fishbein
et al. 2021). Importantly, changes in circadian function are often accompanied by
sleep–wake disturbances. Therefore, increasing scientific efforts have been devoted
to understanding the health consequences of sleep disruption and circadian
misalignment, and to translating this science to directly impact human health.

The immune system functions to preserve the integrity of the body by sensing
physiological disturbances (microbes or tissue injury) and reinstating homeostasis
via both inflammatory immune responses and processes of tissue repair and physical
barrier regulation. In many chronic diseases, a deregulated and/or exacerbated
immune response shifts from repair/regulation towards immune-driven unresolved



inflammatory responses (Hand et al. 2016). Several anatomic and molecular mech-
anisms, including neurons, glial cells, leukocytes, nerve fibers, soluble mediators,
cellular receptors, the blood–brain barrier (BBB), the neuroendocrine hypothalamus-
pituitary-adrenal (HPA) axis, and the autonomic nervous system, participate in
orchestrating the bidirectional brain-immune crosstalk that fine tunes the immune
response and its relationship with sleep and the circadian systems (Dantzer 2018). In
this contest, the circadian system and sleep have emerged as important intertwined
regulators of the immune system. It follows that sleep disruption and circadian
misalignment may result in deregulated immune responses and pro-inflammatory
responses, that contribute to an increase in the risk for the onset and/or worsening of
infections as well as inflammation-related chronic diseases, including cancer,
cardiometabolic and neurodegenerative diseases (Labrecque and Cermakian 2015;
Scheiermann et al. 2018; Garbarino et al. 2021).
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This Chapter focuses on the regulation of the immune system by sleep and the
circadian rhythm, and the consequences for the immune function of sleep disruption
and circadian misalignment.

1.2 Immune Regulation by Sleep

The sleep–immune interaction hypothesis was first suggested by pioneering studies
attempting to identify substances involved in sleep regulation. The hypothesis of
humoral regulation of sleep dates back to the early 1900s and posited that substances
accumulated during waking could trigger subsequent sleep. Accordingly, experi-
mental studies found that injection of cerebrospinal fluid from sleep-deprived dogs
into rested recipient dogs caused the recipient dogs to fall into a narcosis-like sleep
state (Ishimori 1909; Legendre and Piéron 1913). Subsequent animal studies repli-
cated this result, pointing to the existence of hypnotoxins mediating sleep induction
(endogenous factor(s) S, where S stands for sleep), and led to the identification of
several sleep-promoting factors.

Among these hypnotoxins, muramyl peptide, a component of bacterial cell wall
able of activating the immune system and inducing the release of immune regulators,
such as cytokines, was recognized as the first molecular link between the immune
system and sleep (Krueger et al. 1982). Other microbial-derived factors such as the
endotoxin lipopolysaccharide (LPS), as well as mediators of inflammation, such as
cytokines (interleukin [IL]-1, tumor necrosis factor [TNF]-α), prostaglandins (PG),
uridine, growth factors, were found to regulate sleep (Zielinski and Krueger 2011).
These factors, through the BBB or via afferent nerve fibers, establish a signaling
network with other brain factors involved in sleep regulation, such as neurotrans-
mitters (acetylcholine, dopamine, serotonin, norepinephrine, histamine), neuropep-
tides (orexin), nucleosides (adenosine), the hormone melatonin as well as the
hypothalamus-pituitary (HPA) axis.

Animal studies have consistently reported a role for the cytokines IL-1 and
TNF-α and the prostaglandin PGD2 in the physiologic, homeostatic nonrapid eye



movement (NREM) sleep regulation in a dose- and time-of-day-dependent manner,
so that the inhibition of the biological action of these substances resulted in a
decrease of spontaneous NREM sleep, whereas administration of these substances
enhanced NREM sleep amount and intensity and suppressed REM sleep (Opp 2005;
Urade and Hayaishi 2011). Anti-inflammatory cytokines, including IL-4, IL-10, and
IL-13, have been found to inhibit NREM sleep in animal models (Kubota et al.
2000). In humans, the circulating levels of IL-1, IL-6, TNF-α, and PGD2 are highest
during sleep and, the available evidence, though indirect, converge to suggest the
involvement of these immune mediators in the physiologic regulation of sleep
(Besedovsky et al. 2019).
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Accordingly, infection or inflammatory diseases induce immune activation and
associated altered cytokine concentrations and profiles, which are transmitted to the
central nervous system inducing adaptive and energy-saving responses, including
sleep (Besedovsky et al. 2019). Acute mild immune activation enhances NREM
sleep and suppresses REM sleep, and the increase in NREM sleep was a favorable
prognostic factor for rabbits during infectious diseases (Toth et al. 1993). Contrarily,
severe immune response with an upsurge of cytokine levels causes sleep disturbance
with suppression of both NREM and REM sleep (Toth et al. 1993; Mullington et al.
2000; Sharpley et al. 2016). Chronic infectious, such as HIV infection (Chaponda
et al. 2018), and inflammatory diseases, such as inflammatory bowel disease or
rheumatoid arthritis (Ranjbaran et al. 2007; Uemura et al. 2016), are associated with
sleep disturbances.

Evidence of the immune-supportive effect of sleep that may favor host defense is
provided by vaccination studies. In humans, compared with nocturnal wakefulness,
sleep after vaccination boosted both the memory phase and the effector phase of the
immune response, underscoring the adjuvant-like effect of sleep on the immunolog-
ical function (Lange et al. 2011). Similarly, habitual (and hence chronic) short sleep
duration (less than 6 h) compared with longer sleep duration decreased the long-term
clinical protection after vaccination against hepatitis B (Prather et al. 2012).

In exerting these effects, sleep may benefit the immune response through different
mechanisms. Sleep influences the T helper (Th) phenotype and the cytokine balance
between Th1 and Th2 cells thus determining the types of the effector mechanisms of
the immune response. Th1 polarization state is typical of immune response to
intracellular viral and bacterial challenges and is characterized by increased release
of IFN-γ, IL-2, and TNF-α. It supports various cell-mediated responses, including
macrophage activation, phagocytosis, the killing of intracellular microbes, and
antigen presentation (Zhu and Zhu 2020). Th2 immunity is characterized by the
expression of IL-4, IL-5, IL-10, and IL-13, and mediates humoral defense by
stimulating mast cells, eosinophils, and B cells (with the production of IgG2,4 and
IgE) against extracellular pathogens (Zhu and Zhu 2020).

The balance of Th1/Th2 immunity is critically involved in antimicrobial and anti-
tumor immune responses. Th2 overactivity is found in some forms of allergic
responses, and increases the susceptibility to infection (Moser et al. 2018), as well
as to tumor development and progression, by limiting cytotoxic T lymphocytes
proliferation and modulating other inflammatory cell types (Disis 2010). In contrast,



Th1 immunity supports cytotoxic lymphocytes with the potential of elimination or
control of tumor cell growth; indeed, a Th1 adaptive immune response may be
associated with improved survival or prognosis (Disis 2010; Lee et al. 2019).
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Furthermore, sleep is associated with a reduction in circulating immune cells that
most likely accumulate into lymphatic tissues thus increasing the probability to
encounter antigens (immunological synapse) and trigger the immune response. An
effective adaptive immune response to an immunological challenge may be
facilitated by specific immune-active hormones associated with slow wave sleep
(SWS)-rich early sleep, which is characterized by minimum concentrations of
immunosuppressive hormones, such as cortisol, and high levels of immune-
stimulating hormones such as growth hormone (GH), prolactin, and aldosterone,
which support pro-inflammatory cytokine production and Th1 cell-mediated immu-
nity (Besedovsky et al. 2019). Therefore, through pro-inflammatory hormones and
cytokines night-time sleep facilitates the onset of adaptive immune responses, while
during daytime activity, anti-inflammatory signals, hormones, and cytokines support
immediate reactions to biological and other environmental challenges.

1.3 Sleep Disruption and Immune Consequences

In agreement with the sleep–immunity relationship, several lines of evidence from
experimental and epidemiological studies converge on the significant effects of sleep
disruption on immune function and related clinical outcomes.

Early animal studies found that sleep loss, besides being lethal after several
weeks, was associated with dysfunction of host defense (Everson and Toth 2000;
Everson et al. 2008, 2014) thus suggesting the importance of sleep for the immune
system. More pertinently, the effect of sleep on immune function has emerged in
studies in which immune parameters, including circulating levels of cytokines and
cell adhesion molecules, leukocyte counts, and activity, were measured under the
manipulation of sleep duration compared with undisturbed sleep.

Collectively most human and animal findings report on the supportive effect of
sleep—and the detrimental effect of disturbed sleep—on several immune regulators.
Indeed, compared with regular nocturnal sleep, acute and mostly sustained sleep loss
has been found: (a) to alter circulating leukocyte counts with studies reporting
increased numbers of total leukocytes and specific cell subsets mainly neutrophils,
monocytes, B cells, decreased circulating natural killer (NK) cells, and changes in
circulating CD4+ T cells (Born et al. 1997; Dimitrov et al. 2007; van Leeuwen et al.
2009; Lasselin et al. 2015; Said et al. 2019); (b) to alter the diurnal rhythm of
circulating leukocytes, resulting in higher levels during the night and at awakening
and a flattening of the rhythm (Born et al. 1997; Lasselin et al. 2015); (c) to increase
the plasma levels of pro-inflammatory cytokines such as IL-1, IL-6, CRP, and, less
consistently, TNF-α, MCP-1, and a homeostatic increase in endogenous inhibitors
such as IL-1 receptor antagonist (IL-1ra) and TNF receptor I and II in an attempt to
limit the increased cytokine levels and activity (Shearer et al. 2001; Hu et al. 2003;



Vgontzas et al. 2004; van Leeuwen et al. 2009); (d) to transiently decrease the
cytotoxic activity of NK cells, the proliferation capacity of lymphocytes (Irwin et al.
1994), and the phagocytic activity of neutrophils, important against infection (Said
et al. 2019); (e) to enhance circulating levels of endothelial adhesion molecules such
as intercellular adhesion molecule (ICAM)-1 and E-selectin, suggesting endothelial
activation and enhanced risk for vascular dysfunction (Sauvet et al. 2010); (f) to
reduce the stimulated production of IL-2 and IL-12, which normally support the
adaptive immune response (Dimitrov et al. 2007; Axelsson et al. 2013); (g) to reduce
the levels of Mac-1 positive lymphocytes suggesting reduced migratory capacity of
immune cells (Redwine et al. 2004). Compared to undisturbed sleep which is
predominantly characterized by a Th1 response (mainly during early sleep), exper-
imental sleep deprivation leads to a shift from a Th1 pattern towards a Th2 pattern in
humans (Dimitrov et al. 2004; Axelsson et al. 2013). Elderly people (Ginaldi et al.
1999), alcoholic subjects (Redwine et al. 2003) as well as insomnia patients (Sakami
et al. 2002), all characterized by disturbed sleep, show a cytokine shift towards Th2.
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At the molecular level, findings demonstrate that a single night of partial sleep
deprivation (4 h of sleep) (Irwin et al. 2006, 2015) or chronic partial sleep depriva-
tion (4 h of sleep for five nights) (van Leeuwen et al. 2009) in healthy adults led to
increased protein production and mRNA levels of inflammatory cytokines (IL-6,
IL-1β, TNF-α, IL-17). Accordingly, prominent genome-wide gene expression
changes have been found in response to acute (Irwin et al. 2006) or chronic (Aho
et al. 2013; Moller-Levet et al. 2013) partial sleep deprivation in human circulating
monocytes, so most of the genes and associated biological pathways upregulated
after sleep loss compared with unrestricted sleep were related to immune and
inflammatory processes (leukocyte activation and differentiation, cytokine positive
regulation, innate and adaptive immunity, TLRs signaling), as well as to oxidative
stress, response to stress, apoptosis, collectively indicating activation of the immune
system. Interestingly, genes associated with B cell activation and Th2 cell differen-
tiation were upregulated, whereas those associated with Th1 cell differentiation were
downregulated (Aho et al. 2013), suggesting that the Th2 immune response driven
by sleep deprivation, as observed in many studies, is regulated at the level of gene
expression. In contrast, biological processes associated with genes downregulated
following sleep deprivation compared with unrestricted sleep included chromatic
organization and modification, gene expression, cellular macromolecule metabolism
(Moller-Levet et al. 2013), cholesterol/lipid metabolism and transport, as well as NK
cell function thus contributing to the reduced immune response against pathogens
(Aho et al. 2013). The same expression profile of several genes identified in the
experimental sleep deprivation was observed in a cohort of subjects with self-report
of insufficient sleep (Aho et al. 2013), highlighting the physiological relevance of the
experimental results at the population level in real-life conditions.

The pro-inflammatory transcriptomic response observed after sleep deprivation
mainly involves the activation of the pro-inflammatory NF-κB family of transcrip-
tion factors (Irwin et al. 2006, 2008; Aho et al. 2013). NF-κB mediates the expres-
sion of genes (e.g., cytokines, chemokines, growth factors, receptors/transporters,
enzymes, adhesion molecules) involved in the activation of inflammation, adaptive



and innate immunity, proliferation, and apoptosis, and is recognized as a promising
therapeutic target in inflammatory diseases (Madonna and De Caterina 2012).
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Sleep disruption is also associated with oxidative stress, which represents an
imbalance in the production and/or detoxification of free radicals such as reactive
oxygen species (ROS). Oxygen-derived free radicals are generated during oxidative
metabolism and energy production processes and normally serve, at very low
physiologic concentrations, as important second messengers in many intracellular
signaling pathways for maintaining cell homeostasis and survival in response to
stress (Liguori et al. 2018). At higher levels which are not counteracted by the
antioxidant defenses of the cell, ROS can cause damage to cells and tissues resulting
in cell senescence and injury, unbalanced local/systemic inflammation, metabolic
dysfunction as well as immune derangements. Pertinently, ROS are essential, espe-
cially at low levels for a wide range of immune functions, including anti-viral, anti-
bacterial, and anti-tumor responses through, for example, killing of pathogens,
regulation of T cell activation, expansion and effector function, and induction of
balanced inflammatory reaction (Sena and Chandel 2012). However, excessive
uncompensated ROS production can lead to aberrant immune responses and unbal-
anced inflammatory reactions, including apoptosis and functional suppression of T
cells with following reduced anti-tumor function and chronic activation of
pro-inflammatory signaling pathways including NF-κB (Chen et al. 2016). Oxida-
tive stress is now recognized to play a central role in the pathophysiology of many
different disorders with immune components, mostly neurodegenerative, cardiovas-
cular, and metabolic diseases as well as cancer (Liguori et al. 2018), which are also
disease conditions triggered or exacerbated by sleep disturbance. Accordingly, most
animal studies found an increase in oxidative stress markers and/or a decrease in
endogenous antioxidants and antioxidant enzymes in brain regions and peripheral
tissues (liver, heart, plasma, etc.) after sleep disturbance, while recovery sleep
restored the antioxidant/oxidant balance (Villafuerte et al. 2015). Recent human
findings agree with animal results, as shown in night workers with chronic sleep loss
(Teixeira et al. 2019), and in young adults subjected to acute (overnight) sleep
deprivation (Trivedi et al. 2017). Therefore, sleep shows an antioxidant function,
responsible for eliminating ROS produced during wakefulness, and contrarily sleep
curtailment may exert negative health effects by causing oxidative stress.

A breakdown of host defense against microorganisms has been found in animals
subjected to insufficient sleep, as shown by the increased mortality after septic insult
in sleep-deprived mice compared with control mice (Friese et al. 2009), or by
systemic invasion by opportunistic microorganisms leading to increased morbidity
and lethal septicemia in sleep deprived-rats (Everson and Toth 2000). Patients with
sleep disorders exhibited a 1.23-fold greater risk of herpes zoster than did the
comparison cohort, after adjustment for potential covariates (Chung et al. 2016).
Accordingly, increased susceptibility to respiratory infections has been reported in
sleep-deprived human subjects, as those with habitual short sleep (≤5 h) compared
with 7–8 h sleep, in cross-sectional and prospective studies (Patel et al. 2012; Prather
and Leung 2016), and after an experimental viral challenge (Cohen et al. 2009;
Prather et al. 2015). Similarly, compared with long sleep duration (around 7 h), short



sleep duration (around 6 h) is associated with an increased risk of common illnesses,
including cold, flu, gastroenteritis, and other common infectious diseases, in ado-
lescents (Orzech et al. 2014).
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In sum, most of these immune responses to sleep loss are suggestive of a systemic
low-grade pro-inflammatory reaction. Following experimental findings, population-
based studies in adult and younger individuals found that habitual short sleep
duration (generally<5 or 6 h) is directly and independently associated with elevated
circulating pro-inflammatory markers, such as acute phase proteins (CRP, IL-6),
cytokines (TNF-α, IFN-γ, IL-1, etc.), adhesion molecules, white blood cell counts
(Miller et al. 2009; Patel et al. 2009; Ferrie et al. 2013; Perez de Heredia et al. 2014;
Bakour et al. 2017; Richardson and Churilla 2017). Furthermore, reduced NK cell
activity (Fondell et al. 2011) and a decline in naive T cells (Carroll et al. 2017) were
also found to be associated with habitual short sleep. A shortening of leukocyte
telomere length, which is a marker of cellular senescence and inflammation damage,
was also shown to be associated with shorter sleep duration in adults and children
(Jackowska et al. 2012; James et al. 2017). Systemic low-grade inflammation has
been shown to predict the risk of disease and mortality (Li et al. 2017); thus, it is
suggested to mediate the increased risk of morbidity and mortality associated with
sleep disruption (Hall et al. 2015; Smagula et al. 2016).

1.4 Circadian Clock Regulation of the Immune System

The circadian system encompasses a central clock representing a master circadian
pacemaker located in the SCN of the hypothalamus, and peripheral circadian clocks
are distributed in different cells or tissues outside the brain and functioning auton-
omously and flexibly (Patke et al. 2020). The central clock mainly responds to the
light/dark cycle, so that the ambient light (one of the strongest zeitgebers, i.e.,
external time givers) is transmitted to the hypothalamus through the retinal ganglion
cells leading to glutamate release at the nerve terminals and an increase in the SCN
neuronal activity (i.e., wake pressure).

The central and peripheral clocks interact through neural, endocrine pathways
and body temperature, to produce daily rhythms in sleep, physical activity, and
nutrient metabolism via self-sustained near-24 h and alternating activation-
repression cycles of core clock transcriptional and translational regulators (Clock,
Bmal1, Npas2, Crys, Pers, Rors, and Rev-erbs) (Sulli et al. 2018). The peripheral
clocks also respond to other synchronizers such as meal times and humoral factors,
and body temperature. Several metabolites and proteins interact with the core clock
components to influence their function and modulate specific outputs of the circa-
dian system. Whole-genome transcriptomic studies have revealed circadian variation
(i.e., with a ~24-h periodicity) in gene expression, and that almost every gene
including those encoding drug targets show diurnal rhythmic expression in a
tissue-specific manner and a bimodal distribution (with peaks predominantly occur-
ring during the biological night and day) thus suggesting a marked temporal



segmentation of biological processes and functions and contributing to the circadian
rhythmicity of basic cellular functions, including metabolism, immune function, and
tissue repair (Mure et al. 2018; Sulli et al. 2018; Christou et al. 2019).
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Both the innate and adaptive arms of the immune response are under circadian
control, which is instrumental to gate the immune functions, such as immune cell
trafficking, production of cytokines, or host–pathogen interaction, and to increase
organismal fitness, while minimizing metabolic costs of immune activation or
collateral tissue damage due to uncontrolled immune response. Both circulating
immune cell counts and inflammatory cytokine levels show variations during the
sleep/wake cycle dependent on both sleep- and circadian rhythm-associated pro-
cesses (Scheiermann et al. 2013): indeed, human natural killer (NK) cells and
neutrophils peak at midday and show minimum levels during the night; while
monocytes, B, and T cells peak during the first half of the night and have minimum
levels during the day (Born et al. 1997). Similarly, blood levels of pro-inflammatory
cytokines show a peak during early nocturnal sleep (Lange et al. 2010).

The rhythmic oscillation of immune function allows an appropriate magnitude of
immune response and ensures the resolution of injury without progressing towards
chronic inflammation. It follows that different aspects of innate immunity (e.g.,
production of cytokines and chemokines, expression of Toll-like receptors [TLRs],
antimicrobial peptides, phagocytosis, secretion of complement and coagulation
factors, barrier functions) are temporally gated (with nadir and peaks) to distinct
phases of the circadian cycle preventing their synchronous activation and limiting
the duration of the inflammatory response (Gibbs et al. 2012; Bellet et al. 2013). The
exit of differentiated immune cells from the bone marrow and trafficking of innate
and adaptive immune cells also display a circadian rhythm (Mendez-Ferrer et al.
2008; Druzd et al. 2017). The rhythmic cellular clock-based expression of TLRs as
well as the temporal gating of T cell activation and proliferation can maximize the
immune response at a specific time window, and contribute to the time-of-the-day
dependence of immunization after vaccination (Silver et al. 2012). Accordingly,
studies found that morning vaccination resulted in higher viral-specific antibody
responses compared with afternoon vaccination (Long et al. 2016).

The rhythmic outputs of the immune function can be generated by both extrinsic
(e.g., central clock) or intrinsic (cell-autonomous circadian clock) entrainment cues
(Man et al. 2016). For example, studies found that the central clock-regulated
rhythmic output of the sympathetic nervous system or glucocorticoids is the dom-
inant entrainment cue for the recruitment of hematopoietic stem cells, innate immune
cells, as well as adaptive immune cells, respectively. On the other hand, diurnal
oscillations in the abundance of inflammatory monocytes are under the control of
Bmal1 thus gating the host’s vulnerability to infection and associated tissue damage
(Man et al. 2016). Furthermore, the cellular circadian clock establishes the rhythmic
oscillations in the expression of basal and inducible inflammatory genes such as
cytokine and chemokines, which involves among others the regulation of the
transcription factor NF-κB, the major transcriptional activator of inflammation.
Bmal1 has been shown to modulate monocyte trafficking, immune response and
NF-κB signaling (Man et al. 2016) as well as to regulate metabolic utilization in



peripheral tissue (Peek et al. 2017) and to maintain the BBB function (Nakazato et al.
2017). Bmal1 knockout caused neuroinflammation, redox imbalance, and
neurodegeneration (Musiek et al. 2013). Similarly, REV-ERB-α and REV-ERB-β,
and CRY contribute to rhythmically repress inflammatory gene expression by acting
on NF-κB signaling (Narasimamurthy et al. 2012; Man et al. 2016).
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Diurnal oscillations have also been observed in the relative abundance and
composition of gut microbial communities, which translate to rhythmic production
of microbial metabolites, in turn, able to influence host circadian activity as well as
immune cell functions (Thaiss et al. 2016). Genetic ablation of molecular clock
components, circadian disruption due to jet lag, sleep disruption, or high-fat diet may
lead to alterations of the gut microbiota ecosystem (dysbiosis), which subsequently
impairs host metabolism and immune function (Murakami and Tognini 2019).

1.5 Immune Responses Under Circadian Misalignment

One potential common feature of the negative health consequences of circadian
disruption may be the dysregulation of the immune system. The loss of immune
regulation due to circadian disruption may increase the susceptibility to tissue
damage in response to infection or other challenges. Several studies assessed the
perturbation of circadian systems by environmental and/or genetic manipulations in
animal models. Animal studies found that global, brain, or peripheral knockout of
clock genes alters this circadian fluctuation and leads to an exacerbated inflamma-
tory response to infection or other pathogenic stimuli, oxidative stress, and
age-related phenotypes thus revealing a direct role for clock genes in suppressing
chronic inflammation and ensuring its timely resolution (Nguyen et al. 2013;
Scheiermann et al. 2013) Notably, cytokines, including TNF-α, IL-1β, and endo-
toxin, as observed in inflammation and infection, inhibit the expression of core clock
genes and clock-controlled genes, resulting in reduced locomotor activity and
prolonged rest time (Cavadini et al. 2007), and leading to the loss of basal oscillatory
rhythm and to a reprogramming of the temporal relationships between gene expres-
sion, metabolites and leukocyte trafficking (Haspel et al. 2014). Modulation of clock
molecules leads to increased replication of herpes, influenza, respiratory syncytial
virus, parainfluenza type 3, and hepatitis C virus (Majumdar et al. 2017; Zhuang
et al. 2019) pointing to an important role of the circadian clock in virus infection.
Herpes viruses target molecular clock components of the host, which in turn affects
the viral replication rate (Edgar et al. 2016).

A study in mice investigating the environmental perturbation of circadian
rhythms shows that experimentally induced circadian disruption schedule (four
consecutive weekly 6 h phase-advances of the light-dark) increased endotoxemic
shock and mortality compared to unshifted control mice in response to the immune
challenge LPS (Castanon-Cervantes et al. 2010). This result was associated with a
heightened inflammation in shifted animals as exemplified by higher levels of
pro-inflammatory cytokines and activation of peritoneal macrophages in response



to LPS treatment. Rhythms in the expression of clock genes in the central clock,
liver, thymus, and peritoneal macrophages were also altered and/or inhibited after
chronic jet lag, while no sleep loss or stress was documented (Castanon-Cervantes
et al. 2010). Furthermore, another study investigating the chronic effects of circadian
misalignment in mice revealed that the long-term nonadjustive shifted condition of
the light-dark cycle, simulating the chronic jet lag, induced chronic inflammation
and accelerated immune senescence in association with a reduced survival rate
(Inokawa et al. 2020). Therefore, the mouse model system of exposure to long-
term nonadjustive shifted light conditions may mirror the pathophysiology of
chronic circadian rhythm disruption in humans.
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In humans, the most common forms—and causes—of circadian misalignment
due to human behaviors are chronic jet lag, when traveling across several time zones;
social jet lag, which corresponds to the time difference between routine sleep cycles
during the work/school week and free time on weekends, involving a discrepancy
social clock and individual’s circadian rhythm; and shift work, an atypical working
schedule where individuals experience an unnatural routine of activity during the
dark phase and sleep during the light phase of the day so that work and sleep occur at
times that conflict with the circadian rhythm. These are conditions associated with
sleep disruption and psychosocial stress, and adversely affect the immune system
due to circadian misalignment. Human studies have found that centrally controlled
rhythms as well as peripheral clocks are disturbed in such conditions (Koshy et al.
2019). In night shift workers, light exposure at night has a large impact on the
resetting of peripheral circadian clocks (Cuesta et al. 2017).

Compared with the non-shift workers, the shift work schedule was associated
with a decline in innate immune response, e.g., NK cell activity (Okamoto et al.
2008; Nagai et al. 2011), and an increase in the number of circulating leukocytes
(Lu et al. 2016; Wirth et al. 2017), a lower CD4/CD8 ratio, cytokines and systemic
endotoxemia (Atwater et al. 2021), besides to shifted and desynchronized cytokine
release by immune cells (Cuesta et al. 2016). A 4-day simulated night shift work
protocol in healthy subjects changed the circadian regulation of the human
transcriptome and mostly affected biological processes related to the adverse health
effects associated with night shift work, notably the natural killer cell-mediated
immune response and inflammatory pathways (Kervezee et al. 2018). A recent
cross-sectional study showed that shift work, particularly night work, was associated
with a 1.85-fold increased risk of COVID-19 infection (Fatima et al. 2021). In a
case-control study on healthcare workers, people with sleep problems had greater
odds of COVID-19 (Kim et al. 2021). Individuals with social jet lag were also
significantly associated with a higher risk of COVID-19 infection (2.07-fold)
(Coelho et al. 2022). A recent study on the vaccination response in people with
circadian disruption, i.e., shift workers, found that compared with day workers shift
workers had altered sleep architecture, with a lower slow wave sleep and REM
duration, higher levels of cytokines and a weaker specific leukocyte-mediated
immune response to vaccination against meningococcal C meningitis (Ruiz et al.
2020). Research concerning the impact of sleep disruption and circadian



misalignment in shift workers on the immune response to COVID-19 vaccination is
currently ongoing (Lammers-van der Holst et al. 2022).
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A relationship between sleep and the circadian system has emerged in an inves-
tigation carried out in humans where sleep deprivation (5.70 h compared with 8.50 h
sleep per 24 h, for 1 week) led in the blood transcriptome to a significant reduction in
rhythmic transcripts (from 8.8% to 6.9%) and affected many genes associated with
sleep homeostasis, oxidative stress, metabolism, inflammatory and stress responses,
chromatin organization and modification (Moller-Levet et al. 2013). Among the
genes whose rhythmic expression was altered by sleep loss, there were several genes
classified as circadian, including classic clock genes, such as Bmal1, PERs, CRY,
neuronal PAS domain-containing protein (NPAS), REV-ERB-α, REV-ERB-β, with
a significant reduction in the number of rhythmic transcripts, in the circadian
amplitude and the width of the period of expression. On the other hand, another
set of genes, including those associated with RNA metabolic processes, became
circadian following sleep loss (Moller-Levet et al. 2013).

These data are following previous animal studies (Barclay et al. 2012) and
provide potential molecular mechanisms whereby sleep loss can lead to circadian
disruption, and cause negative health consequences. Furthermore, while many
transcripts in the human blood transcriptome have a circadian expression profile
when sleep occurred in phase with the central circadian rhythm (as indexed by the
melatonin rhythm), when sleep and associated locomotor, feeding, and metabolic
rhythms are phase-shifted compared with the circadian clock (mistimed sleep or
forced desynchrony), the majority of circadian transcripts became arrhythmic
(reduction in the number of circadian transcripts from 6.4% to 1% and changes in
the overall time course of expression of 34% of transcripts) (Archer et al. 2014). In
addition, results from a mathematical modeling analysis, which separated the rela-
tive contribution of sleep and circadian rhythmicity on the temporal gene expression
profile, suggests that circadian-driven transcripts are mainly associated with cellular
metabolic and homeostatic processes, whereas sleep-driven transcripts are linked
with the regulation of transcription and protein synthesis (Archer et al. 2014).

Overall, these data underscore the important role of sleep and circadian rhyth-
micity in the regulation of tissue gene expression and functions (Maret et al. 2007;
Mongrain et al. 2010; Pellegrino et al. 2012; Anafi et al. 2013; Perrin et al. 2018),
and indicate that a common feature is a 24-h organization of molecular processes,
including the immune function, in humans (Fig. 1.1). They also suggest that
appropriate sleep duration, quality, and timing significantly contribute to the overall
temporal organization of the human transcriptome, and desynchrony of sleep and
centrally driven circadian rhythms, as occurs in shift work and jet lag, may lead to
disruption of rhythmicity in physiology and endocrinology.



14 S. Garbarino et al.

Fig. 1.1 Regulation of the immune system by sleep and the circadian system. Immune system
functions, including cell proliferation, differentiation, trafficking, activity, and cytokine production,
are regulated by both homeostatic and circadian drives of sleep. The circadian clocks, with the cell-
autonomous transcriptional–translational feedback loop mechanism (depicted on the right inset),
include the central clock, located in the suprachiasmatic nucleus (SCN) of the hypothalamus, which
is entrained primarily by environmental cues from light. This SCN coordinates 24-h rhythms in
physiology and behavior through neural and hormonal signals that synchronize peripheral clocks in
peripheral organs or tissues, including the immune cells, through the expression of clock-controlled
genes (CCGs). Peripheral clocks can also be synchronized by behaviors, including eating and
physical activity. (Illustrations are adapted from Servier Medical Art (http://smart.servier.com/))

1.6 Conclusion and Perspectives

Epidemiological data suggest that increasing numbers of individuals are becoming
sleep disturbed and circadian misaligned, and the accumulation of these disturbances
over years may induce safety-related problems and have gradual cumulative adverse
effects on health, increasing the risk of chronic diseases and the susceptibility to
pathogens and pollution (Fig. 1.2). Sleep and the circadian rhythm exert immune-
supportive and regulatory functions, and impairments of the immune inflammatory
system are plausible mechanisms mediating the negative health effects of sleep and
circadian disruption. Evidence-based molecular and clinical studies have provided a
framework to understand the link between these disturbances and inflammatory
immune diseases, positing a causal role for the immune derangements in the
development and/or exacerbation of inflammatory and infectious diseases. Sleep

http://smart.servier.com/


deprivation superimposed on preexisting sleep disorders, as occurred in abstinent
alcohol-dependent subjects, more strongly increases susceptibility to inflammation
compared with subjects without sleep problems (Irwin et al. 2004). Similarly, sleep
deprivation can worsen the risk profile in individuals with hypertension, in which
even half a night of sleep deprivation elevates blood pressure the next day (Lusardi
et al. 1999).
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Fig. 1.2 Conditions of sleep disruption (e.g., sleep deprivation) and misaligned sleep–wake cycles
alter immune processes and are associated with or increase the risk for many diseases (right).
(Illustrations are adapted from Servier Medical Art (http://smart.servier.com/))

A practical implication of these observations is that immune homeostasis may be
a crucial target for intervention against diseases associated with sleep and circadian
clock disruption. Currently, limited evidence exists in this context. Treatment of
insomnia has been demonstrated to reverse humoral and cell inflammatory activa-
tion, as well as to reduce diabetic and cardiovascular risk, as assessed by a
multisystem biological risk based on eight biomarkers (Carroll et al. 2015). Ran-
domized controlled trials assessing the effect of the treatment of sleep and circadian
disturbances on inflammatory immune dysfunction and/or health outcomes are
needed to provide a cause–effect relationship. Knowledge of inflammatory and
immunological signatures in response to sleep curtailment, mostly through omic-
based approaches, may inform not only on the underlying molecular links but also
contribute to refining risk profiles to be used for developing biomarkers of disturbed
sleep and sleep disturbance-related health outcomes. Recent metabolomics (Weljie

http://smart.servier.com/


et al. 2015) and transcriptomic (Laing et al. 2019) studies hold promise in biomarker
discovery, not only confirming the activation of pathways related to immune,
inflammatory, and cell stress responses following sleep disruption but also identify-
ing, along these pathways, potential blood biomarkers and associated prediction
model for sleep debt status with practical applications (e.g., diagnosis of sleep
disorders, risk stratification for health outcomes and safety driving, evaluation of
therapeutic interventions on sleep) (Bragazzi et al. 2019; Laing et al. 2019).
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These efforts may converge towards a new ground fostering interaction between
sleep research, chronobiology, and the medical community to translate scientific
knowledge into lifestyle recommendations and clinical practice, and to prevent
and/or treat the negative health consequences of sleep disruption and circadian
misalignment. Particular attention deserves sleep management in the hospital envi-
ronment, where sleep disturbances often occur and in patients with acute or chronic
illness and hence particularly vulnerable may benefit from good sleep in terms of
immunity boosting and recovery of health.

These actions might also foster health literacy and empowerment of individuals to
actively better manage their health and well-being throughout their life course
utilizing lifestyle, nutritional and behavioral habits including sleep hygiene and
circadian lifestyle that include timing of sleep, activity, nutrition, and lighting
(Garbarino and Scoditti 2020; Scoditti et al. 2022). Of course, behavioral, lifestyle,
or pharmacological approaches to improve sleep beneficially impact one key com-
ponent of the circadian rhythm and may indirectly benefit other aspects of the daily
rhythms thereby leading to a better quality of life. Further knowledge in the circadian
system and its interaction with immunity may advance strategies to prevent or treat
several chronic diseases, establishing how to maintain a regular circadian rhythm in
sleep–wake, feeding–fasting, or light–dark cycles; how to optimize the timing of
drug treatment; and how to directly target a circadian clock component (clock-
targeting pharmacotherapy) for treating inflammatory disorders (Sulli et al. 2018).

Conclusively, in the perspective of staying healthy in this rapidly changing world,
the sleep/circadian clock–immunity relationship raises relevant clinical implications
for promoting health. During the COVID-19 pandemic, these issues have become
particularly important because of sleep disturbances often reported in association
with the heavy social, work, and lifestyle changes imposed to contain the virus
spreading. Moreover, healthcare workers, which are subjected to night shifts, irreg-
ular sleep–wake schedules, changes in daily routine, and circadian rhythm problems,
have been found to have more severe insomnia and a greater risk of coronavirus
infection (Kim et al. 2021). Pending further research, sleep and circadian-based
intervention may reduce the susceptibility to SARS-CoV-2 infection and the severity
of COVID-19, and improve immune response to COVID-19 vaccination (Meira
et al. 2020).
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